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Signaling pathways induce stereotyped transcriptional changes

as stem cells progress into mature cell types during embryoge-

nesis. Signaling perturbations are necessary to discover which

genes are responsive or insensitive to pathway activity. How-

ever, gene regulation is additionally dependent on cell state-

specific factors like chromatin modifications or transcription

factor binding. Thus, transcriptional profiles need to be as-

sayed in single cells to identify potentially multiple, distinct

perturbation responses among heterogeneous cell states in an

embryo. In perturbation studies, comparing heterogeneous

transcriptional states among experimental conditions often re-

quires samples to be collected over multiple independent exper-

iments. Datasets produced in such complex experimental de-

signs can be confounded by batch effects. We present Design-

Aware Integration of Single Cell ExpEriments (DAISEE), a

new algorithm that models perturbation responses in single-

cell datasets with a complex experimental design. We demon-

strate that DAISEE improves upon a previously available in-

tegrative non-negative matrix factorization framework, more

efficiently separating perturbation responses from confounding

variation. We use DAISEE to integrate newly collected single-

cell RNA-sequencing datasets from 5-hour old zebrafish em-

bryos expressing optimized photoswitchable MEK (psMEK),

which globally activates the extracellular signal-regulated ki-

nase (ERK), a signaling molecule involved in many cell specifica-

tion events. psMEK drives some cells that are normally not ex-

posed to ERK signals towards other wild type states and induces

novel states expressing a mixture of transcriptional programs,

including precociously activated endothelial genes. ERK signal-

ing is therefore capable of introducing profoundly new gene ex-

pression states in developing embryos.
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Significance Statement
Signaling perturbations produce heterogeneous transcrip-

tional responses that must be measured at the single-cell

level. Data integration techniques allow us to model these

responses which, however, can be confounded by batch ef-

fects. We present a computational tool (DAISEE) for extract-

ing the common and perturbation-specific features of single-

cell datasets representing multiple experimental conditions

while achieving efficient batch effect correction. DAISEE

outperforms its predecessor and will enable accurate anal-

ysis of a broad range of single-cell datasets. DAISEE ap-

plied to new single-cell RNA sequencing data from zebrafish

embryos shows that gain-of-function signaling perturbations

can induce novel states. Our analysis suggests that a wild

type endothelial cell-specification program can be activated

in abnormal developmental contexts when the extracellular

signal-regulated kinase (ERK) pathway is deregulated.

Introduction
During metazoan embryogenesis, pluripotent cells acquire
specific identities via systematic changes in gene expression,
in large part coordinated by the stereotyped activation of
cell-cell signaling pathways. A signaling perturbation can
generate diverse and context-dependent gene expression
responses that are challenging to predict a priori and can
only be fully described using single-cell measurements.
Genomic technologies can provide unbiased, comprehensive
readouts of individual cell states. Comparing these readouts
upon perturbation to wild type embryos may reveal specific
signal-driven changes in gene regulatory programs that derail
normal cell specification and cause developmental disease.
Here, we develop a computational tool for integrating single-
cell perturbation experiments and use it to quantitatively
characterize single-cell transcriptional responses to global
signaling activation in early zebrafish embryos.

In response to changes in signaling, cell states in an embryo
can become redistributed, undergo a minor perturbation,
or entirely different states unseen in the wild type embryo
can be realized. To obtain a comprehensive description
of perturbation responses in these terms, it is necessary to
collect large datasets of high-dimensional single-cell mea-
surements corresponding to multiple conditions. To increase
statistical power, data from many cells are often gathered
in several independent experiments, and the responses to
perturbation can be confounded by sources of variation
other than the perturbation itself, such as batch effects due to
unavoidable technical differences in experimental protocol or
sequencing procedure. Computational integration techniques
can provide a unified view of all samples by embedding the
measured cell states into a common phenotypic space and
modeling the perturbation responses of interest, potentially
separating them from confounding variation (1–5). Our tool
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is designed to improve batch effect correction in a leading
family of perturbation modeling techniques by incorporating
information about the experimental design into the algorithm.

We perform extensive benchmarking to demonstrate that
our refined approach, Design-Aware Integration of Single
Cell ExpEriments (DAISEE), more efficiently separates
perturbation effects from confounding variation introduced
by batch effects than its predecessor, Linked Inference
of Genomic Experimental Relationships (LIGER) (1), in
simulated, existing, and new data. DAISEE is a non-negative
matrix factorization (NMF) technique, which extracts state
signatures as gene modules, or factors, and has been shown
to be an effective approach for interpreting embryonic data
that lie on a continuum, with every cell expressing a combi-
nation of gene modules (6). Our algorithm applies broadly to
any perturbation experiment that produces high-dimensional,
single-cell measurements and requires a known source of
confounding variation to be corrected for.

With DAISEE, we integrate newly collected single-cell RNA
sequencing (scRNA-seq) data from 5 hour old zebrafish
embryos experiencing constitutive activation of the con-
served extracellular signal-regulated kinase (ERK) pathway,
which coordinates cell fate specification widely in vertebrate
embryogenesis (7–9). We sustain ERK activity without
relying on the endogenous signal transduction cascade by
using an optogenetic tool, photoswitchable MEK (10). Our
study is the first to assay single-cell responses to overactive
signaling in an embryo, which we hypothesized would
expose many different cells to abnormal differentiation cues
and potentially reveal new gene expression profiles.

We indeed find novel transcriptional states driven by mul-
tiple DAISEE factors, including one that resembles a tran-
scriptional signature of endothelial fate appearing much later
in development. This work illustrates remarkable plasticity
of cells in the zebrafish embryo, and highlights the need to
push signaling activity beyond the endogenous spatiotempo-
ral limits to discover gene responses that are unrealized in
wild type embryos, but potentially play important roles in
driving disease phenotypes. We anticipate that DAISEE will
be useful in continuing to study more sophisticated signal-
ing perturbations that can be made with a variety of optoge-
netic signaling tools now available for multiple developmen-
tal pathways (10–13).

Single-cell RNA sequencing of optogeneti-
cally ERK-activated zebrafish embryos
We performed scRNA-seq on dissociated cells from zebrafish
embryos (Fig.1a). We assayed the 50% epiboly stage, when
the thinning and spreading of the blastoderm over the yolk,
in a process called epiboly, reaches the halfway point. At this
stage, a handful of signaling cues, including the Fibroblast
Growth Factor (FGF), Nodal, Bone Morphogenetic Protein
(BMP), and Wnt pathways, are subject to strict spatiotempo-
ral regulation and induce non-uniform expression of key cell

fate determining genes (8, 14). FGFs are ligands that bind to
FGF receptors (FGFRs) and then trigger a phosphorylation
cascade from the kinases RAF to MEK to ERK (Fig.1b).
Phosphorylated ERK is the active effector molecule of
the pathway, and translocates to the nucleus to interact
with transcription factors and regulate gene expression.
We changed activity of the FGF/ERK pathway, which is
normally restricted to the dorsal side of the embryo before
epiboly starts, then shifts to the blastoderm-yolk margin
during epiboly (15–18). The FGF-driven ERK activity
contributes to the specification of dorsal versus ventral cell
fates and germ layer (mesoderm, endoderm, and ectoderm)
fates (19–21).

We implemented an optogenetic version of mitogen-
activated protein kinase kinase (MEK) (photoswitchable
MEK, psMEK) to add an orthogonal source of direct,
FGF-independent ERK activation and perturb the signaling
landscape of the embryo (22) (Fig.1b). We had previously
optimized psMEK using several gain-of-function mutations
that lock MEK in its active conformation without phospho-
rylation by RAF (10). psMEK contains photodimerizable
domains that harness this ligand-independent constitutive
activity.

We injected mRNA for optimized psMEK into embryos at
the 1-cell stage, and let them develop for 5 hours while ex-
posed to the psMEK-activating wavelength of light (500 nm)
(Fig.1c). At the 50% epiboly stage, active ERK, indicated
by immunofluorescence staining of dually phosphorylated
ERK, is only found at the blastoderm-yolk margin and not in
the remainder of the blastoderm (animal pole) (10, 23). In
previous work, we showed ERK activation throughout the
blastoderm, outside of the margin, using similar immunoflu-
orescence stainings in 50% epiboly embryos treated with
optimized psMEK exactly as we have done in this study (10).
Our psMEK treated embryos therefore experience strong,
ectopic ERK activation, which could result in cells in the
animal pole assuming states normally driven by FGF signals
in other parts of the embryo, or new states that emerge as
a result of treatment-induced new combinations of ERK
signals with other active signals in the embryo.

DAISEE provides efficient integration of per-
turbation experiments
To obtain a comprehensive description of the effects of a
perturbation on cell states, including those on rare cell types,
it is necessary to collect single-cell data from thousands of
cells. To this end, new data for the experimental conditions
of interest are often acquired in several batches, or data are
integrated from independent previous experiments (example
experimental design in Fig.1d). However, batch effects
confound the signal of interest, and must be accounted for to
interpret condition-dependent effects (Fig.1e).

To efficiently integrate our dataset and separate the effects
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of perturbation from batch effects, we developed DAISEE,
an algorithm that is broadly applicable to any perturbation
study with a complex experimental design (Fig.1d). DAISEE
provides a joint embedding of all the cells into a common
low-dimensional space, correcting for batch effects and
aligning cells before and after perturbation. DAISEE is
based on a previously available integrative NMF (iNMF)
framework (1, 24) and is a simple and convenient tool for
perturbation experiment analysis and interpretation. To
integrate the data, iNMF extracts gene signatures (factors)
that can usually be interpreted as a biological signal such as
a transcriptome of a particular cell state or a transcriptomic
signature of a particular developmental program. DAISEE
models the perturbation affecting every factor, simultane-
ously extracting and correcting the factor-specific batch
effects. Ultimately, for each factor, every cell gets assigned
an expression score which not only serves to construct
the joint embedding but can also be used for quantitative
interpretation of cell states.

More precisely, DAISEE achieves efficient batch correction
and perturbation modeling by explicitly incorporating
the known experimental design into an iNMF model and
separating the effects of a confounding factor from an
effect of interest like variation due to perturbation. iNMF
simultaneously decomposes the normalized count matrices
from the single-cell datasets into products of lower rank
non-negative matrices (Fig.1e). While some gene signatures
are shared between all datasets (common factors, W ,
Fig.1e), there are other sources of biological and technical
variability that are specific to subsets of the data and are
captured by sample-specific factors Vc(i) and Vb(i). While
batch-specific factors Vb allow for batch effect correction,
condition-specific factors Vc can be further interpreted to
analyze the effects of perturbation.

We applied DAISEE to our experimental design which
included 7 samples representing 2 conditions and 4 batches
(24,957 cells, Fig.1f) after extensively benchmarking
DAISEE’s performance against its iNMF predecessor,
LIGER (1) (Supp. Figs.1,2). LIGER is a competitive method
of batch effect correction for scRNA-seq data and has
been shown to outperform other methods in a scATAC-seq
data integration task in an extensive benchmarking study
(25). However, when integrating perturbation conditions,
LIGER does not directly incorporate the batch effects into
its objective function and corrects for batch effects only im-
plicitly through a joint clustering and quantile normalization
procedure applied to the factor scores post-factorization. We
observed that providing DAISEE with explicit information
on experimental batches resulted in better batch effect
correction and retained the ability to integrate conditions in
our experiment (Fig.1g,h).

Batch effect correction efficiency was measured using 2
previously introduced metrics, sample agreement and batch
alignment (1, 26). Sample agreement measures the amount

of distortion that the samples undergo during embedding
into the common phenotypic space. At the same time, the
batch alignment metric reflects how well-mixed the batches
are in local neighborhoods on average, with perfectly mixed
batches getting a score of 1. DAISEE, while preserving the
level of agreement between samples, improves alignment as
compared to LIGER (Fig.1i).

To test the performance of DAISEE on the batch effect
correction task for different perturbation strengths over a
range of regularization parameters, we simulated single-cell
transcriptomic data from the iNMF framework, using a
simple experimental design with 2 treatment conditions
collected over 2 different batches (Methods, Supp. Fig.1a,b).
We found that on simulated data DAISEE significantly
outperforms LIGER for both agreement and alignment
metrics, with increase in performance becoming larger as we
increased the strength of the batch effect (Supp. Fig.1c,d).
To further increase the complexity of the integration task,
we additionally benchmarked DAISEE on two different pre-
viously available atlases of human and mouse immune cells
and cells of the mouse embryo (25). We explored a range
of regularization strengths for batch-specific components
and uncovered that significant alignment improvement over
LIGER can be achieved without loss of agreement on both
datasets (Supp. Fig.2a,b).

Collectively, these results suggest that DAISEE allows for an
improved integration of single-cell datasets. Thus, we ap-
ply it to study psMEK-driven perturbation effects in early ze-
brafish embryos.

Annotation of cell states embedded in the
DAISEE space
To analyze our zebrafish embryonic data with DAISEE, we
performed additional tuning of the parameters (Methods).
We retained k = 30 components for the analysis based on
the Kullback-Leibler (KL) divergence heuristic as suggested
in (1) (Supp. Fig.3a). Additionally, we tuned the regular-
ization parameter of DAISEE controlling the magnitude
of the batch-specific factors (Supp. Fig.3b). Furthermore,
after applying DAISEE, we identified 9 factors that were
highly batch-specific and manually filtered them out which
resulted in a small increase of alignment at the expense of
a small decrease of agreement (Methods, Supp. Fig.3d).
We proceeded with the resulting 21 DAISEE factors and
used them to construct an ambient space with embedded cell
states from our data (Fig.2a). We scaled iNMF factors and
partitioned the cells into discrete clusters of states based on
the factor with the highest score (Fig.2b).

We turned to published data to annotate the factors and
corresponding cell states captured in our experiments. We
compared DAISEE factors to annotated NMF factors ex-
tracted from previously collected scRNA-seq data from wild
type 50% epiboly zebrafish embryos reported in Farrell et.
al. (6) (Methods, Supp. Fig.3c). We identified clusters based
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on all of the published and annotated spatial factors (labeled
by their ventral (V) versus dorsal (D) or animal (A) versus
marginal (M) expression patterns), as well as the enveloping
layer cells (EVL), the previously reported apoptotic-like
(AL) cells, and the primordial germ cell (PGC) cells (6, 27).
We additionally annotated one of the DAISEE factors
and associated cluster as endoderm (Endo) due to its high
expression of sox17 and sox32 in its common component W .
Several states could not be annotated, which we identified
with the number of the factor with the highest expression.
This annotation allowed us to interpret quantitative effects of
treatment in terms of known cell types.

We provide the gene expression profiles of several represen-
tative markers in the DAISEE integration in Fig.2c. To high-
light a few top gene markers, eve1 (factor V) is a transcrip-
tion factor that promotes ventral fates and is under control
of ventralizing cues antagonized by dorsalizing factors like
chrd (factor D) produced on the opposite side of the embryo
(28, 29). The dorsal shield, equivalent to the Spemann orga-
nizer, is marked by gsc (factor MD) (30, 31). sesn3 (factor
AL) is a gene marker for the rare apoptotic-like cell type first
reported in (27). A dotplot that summarizes per-cluster ex-
pression of top 10 genes of the common component of each
factor can be found in Supp. Fig.4. In sum, DAISEE inte-
gration produced a map of cell states in which mRNA signals
for genes with known biological function are detected in ex-
pected patterns, and DAISEE factors can be used to partition
the map into interpretable regions.

psMEK treatment redistributes states in the
DAISEE space
Since FGF plays a key role in cell fate determination, we
posited that out-of-bounds ERK signaling in psMEK-treated
embryos could expand some states at the expense of others.
We sought to identify the cell states that were over- or
underrepresented in the perturbed condition when compared
to control. Towards this end, we applied MILO to test for
differential abundance of conditions in local neighborhoods
of the integrated dataset (32). MILO builds a k-nearest
neighbors (kNN) graph of all the cells using a sampling pro-
cedure to define overlapping neighborhoods of the graph that
can then be tested for differential abundance (Methods). By
studying how cell states were redistributed by treatment, we
could identify which transcriptional states were susceptible
to changes in signaling conditions.

We identified multiple neighborhoods that were differentially
abundant between treatment conditions at a spatial false dis-
covery rate threshold of 5% calculated by MILO (Fig.3a,
Supp. Fig.5a). After mapping neighborhoods back to clus-
ter annotations through majority voting, we discovered dif-
ferential abundance within several regions of the manifold
(Fig.3a). The most striking trends in the redistribution pro-
file overall pointed to a large depletion in the VA region and
enrichment in the DA region, and enrichment of the AL and
unnamed 7 and 11 states. A more detailed substructure of

the redistribution within neighborhood clusters, evident in the
DAISEE framework, showed that there is a correlation be-
tween a cell’s DA or VA factor expression and how strongly
psMEK treatment enriches or depletes the DA or VA state
respectively (Supp. Fig.5b). This result is consistent with
psMEK treatment deregulating the cell fate specification pro-
grams that establish spatially variable cell states along the
emerging dorsoventral axis. In summary, psMEK treatment
caused changes in specification of the VA state that led to
its loss, while also promoting the overspecification of other
states.

Optimal transport underlying cell state re-
distribution describes likely paths of signal-
driven reprogramming
We next sought to build a map of cell state reassignments,
driven by the changes in gene expression caused by psMEK
treatment, that would result in the redistribution detected
by MILO. Optimal transport, which is widely studied in
mathematics and applies to many problems of resource al-
location, generally seeks to map one probability distribution
into another one while minimizing the overall cost of the
mapping for a predefined cost function. Optimal transport
algorithms have been applied to scRNA-seq data to extract
trajectories or study perturbation responses (4, 5, 33, 34).
In a toy example, the probability distributions in question
represent a pile of sand and a sand castle with the cost
function defined to be the cost of transport from location x

in the pile to location y in the castle (Supp. Fig.6a). In our
datasets, the probability distributions we wish to map are the
distributions of cell states (over MILO neighborhoods) in the
untreated and treated conditions (Supp. Fig.6c). We chose
Kantorovich relaxation of the optimal transport problem
where, for every untreated cell state x, a transportation
plan is stochastic and describes a probability distribution
of treated cell states y to which x is mapped as a result of
perturbation.

The resulting map of transport probabilities (Fig.3b) reports
a reassignment plan that includes shifts in cell state that
were not apparent in the global redistribution. In addition to
direct reassignment of the VA state to other enriched states,
which would result in depletion of VA cells and enrichment
of other cells as we have observed, there are several transport
paths that include multiple steps through intervening states
(see multiple arrows from the VA state to other spatially
variable states in Fig.3b). Such gradual transportation is not
observed in the transport of the VA state towards the enriched
non-spatially variable states AL, 7, and 11, and could indi-
cate different psMEK-driven transcriptional changes in the
enrichment of spatially-variable states versus the other states.

The step-wise transport of cells through wild type spatially
variable states (VA, A, DA, V, MD, D, M, MD.2) could
reflect regulation of a differentiation cue that responds in
a graded manner to ERK perturbation. We posit that this
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behavior is the attenuation of the BMP signaling gradient
that acts as a master regulator of dorsoventral fates across
vertebrates (35). In psMEK treated embryos, BMP signaling
is indeed attenuated at multiple levels of the signaling
cascade. Prior measurements of p-Smad1/5/8 phosphory-
lation, the active effector molecule of the BMP pathway,
in psMEK treated embryos showed loss of signaling on the
ventral side of the embryo (10). This study’s scRNA-seq
found upregulation of chrd, a well-known antagonist of
BMP ligand-receptor binding and downregulation of bmp2b,
which encodes a ligand that activates the BMP pathway
(Supp. Fig.6d). Loss of BMP signaling in ventral cells
would fail to specify ventral fates and instead permit over-
representation of signaling conditions that promote dorsal
fates. The systematic shift towards more dorsal states points
to the early embryo undergoing dorsalization.

The reassignment of VA cells directly to the non spatially
variable states (AL, 7, 11) remained unclear. Apoptotic-like
(AL) cells are a rare cell type found primarily in the animal
pole (6). The cell states found in cluster 7 and 11 are for-
eign to the wild type 50% zebrafish embryo, yet are not arti-
facts of confounding factors and are present in all replicates
of psMEK treatment. We note enrichment of these states
was not a result of embryos exposed to heat or light during
optogenetic treatment (Supp. Fig.7). We posited that there
were new gene expression behaviors in embryos responding
to psMEK treatment that cannot be explained by well-known
transcriptional signatures or gene-regulatory phenomena in
the wild type 50% epiboly zebrafish embryo.

New endothelial and stress-like factors
shape the DAISEE space
We turned to the gene markers for the common component
of factors 7 and 11 reported in the W term of DAISEE
to search for identities of the significantly enriched new
states. Factors 7 and 11 were both expressed in differentially
abundant cells, which suggests that these transcriptional
programs simultaneously drive the emergence of the new
states (Fig.4a). By visual inspection, we noticed several
genes (several heat shock protein hsp genes, ubb, dusp5,
see Fig.4b) in the list of top 100 markers for factor 7 that
matched markers of a transcriptional program found in a
"stress-like" cancerous state (36). Cells in this state were
discovered in a scRNA-seq study of melanoma tumors
induced by expressing the human oncogene BRAFV600E,
which affects the ERK pathway, in zebrafish. One of the
constitutively activating mutations (E203K) in psMEK is
also associated with cancer (37, 38). We concluded that
we had triggered a stress response, and labeled factor 7
stress-like (SL).

The genes lmo2 and fli1 found in factor 11 (Fig.4b) encode
transcription factors that play key roles in the normal
specification of endothelial cells (39, 40). While endothelial
precursors are specified from the ventral mesoderm of the
early embryo, lmo2 and fli1 are not expected to be highly

expressed throughout the early embryo, and rather are
expressed abundantly in the vasculature of the much older
somite-stage embryo (41). We investigated their expression
using gene-specific probes that we could label and image at
multiple stages of embryogenesis. We used HCR RNA-FISH
probes to label lmo2 and fli1 transcripts in the emerging
vasculature of somite-stage embryos (Fig.4c). We then
used these same probes to label lmo2 and fli1 transcripts
in the wild type 50% epiboly embryo, and indeed found
little expression. However, in psMEK-treated 50% epiboly
embryos stained and imaged in the same experiment we
found abundant labeling of lmo2 and fli1 transcripts (Fig.4c).
Therefore, in psMEK-activated conditions, lmo2 and fli1

appear to be upregulated in parts of the embryo that normally
do not express these genes.

We explored the hypothesis that factor 11 represents a
gene signature of a precocious endothelial fate by taking
advantage of a published comprehensive transcriptomic
atlas of zebrafish development. We performed differential
expression analysis between the cell states identified in our
datasets to search for enrichment of gene sets from every
stage of embryogenesis reported in (42). This atlas contains
198 gene sets of markers of cell states from zebrafish
aged 4 h.p.f. to 24 h.p.f. Gene set enrichment analysis
(43) showed that the new clusters 7 and 11 significantly
overexpress a gene set belonging to a cell state found at 18
h.p.f. and corresponding to an endothelial fate (Fig.4d, Supp.
Fig.8a). Several gene markers from the 18 h.p.f. endothelial
transcriptional program were exclusively expressed in the
new clusters 7 and 11 (Supp. Fig.8b). Thus, we named factor
11 endothelial-like (EL).

The new SL and EL psMEK-specific factors represent highly
abnormal transcriptional signatures expressed in the treated
embryos. The EL and SL factors expand the set of possible
gene expression states, represented in our framework as an
ambient space built by DAISEE.

Quantitative changes in DAISEE factors de-
scribe perturbation responses
With new factors annotated, we could explore factor score
changes during the cell state reassignment to build a
quantitative picture of the perturbation responses. In the
zebrafish embryo, one of the first cell fate decisions requires
signals derived from the dorsal organizer, together with
BMP signals, to define dorsal versus ventral cell types.
It has long been proposed that FGF ligands are a part of
these dorsalizing cues (19), but until now characterization of
signal-driven dorsalization has been limited by the number of
genes that could be labeled. DAISEE provides a quantitative
description of complex changes in gene expression during
dorsoventral reprogramming at the whole transcriptome
level. We found a systematic loss of expression of the VA
factor across states, accompanied by gain in expression of
the DA factor (Fig.5a). The MD factors expressing gsc were
not as upregulated, thus, psMEK treatment appears to have
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promoted shifts towards dorsal states without expanding the
progenitors of the dorsal organizer itself.

Concurrently, there was expansion of the AL, SL and EL
compartments at the expense of the VA compartment through
over-expression of the corresponding factors. Interestingly,
the increase in DA factor expression extends into the SL and
EL state, generating highly aberrant states that express a
mixture of new and wild type transcriptional signatures. We
used the Vc components of DAISEE, which report local tran-
scriptomic changes as treatment-specific DAISEE factors, to
show that transcriptional program mixing is apparent even in
cells that are common across conditions and are not entirely
reprogrammed. The genes listed in the treatment-specific Vc

component for a given factor indicate the upregulated genes
upon psMEK activation in the corresponding cluster of cell
states (Fig.5b). E.g., the treatment-specific Vc component
provided by DAISEE for the DA factor indicates that DA
cells overexpress several genes upon psMEK treatment
(Fig.5c). One of these overexpressed genes is chrd, usually
lowly expressed in wild type DA cells, with its expression
more pronounced in D and MD cells (see Supp. Fig.4, top
MD factor genes). Alongside chrd, the gene she, also an
endothelial gene usually expressed at later stages in the
developing zebrafish vasculature, becomes overexpressed in
DA cells upon psMEK treatment.

So far, our analysis primarily found changes in cell states
outside of the margin. However, we expected to find some
transcriptional responses in the margin, where Nodal signal-
ing regulates FGF-driven ERK activation to ensure balanced
specification of mesoderm and endoderm precursors (17).
Endoderm induction is a stochastic event that is negatively
modulated by FGF within a time window of Nodal signal-
ing (18). Since psMEK treatment both amplifies and extends
ERK activity in the embryo, we had expected psMEK treat-
ment to prevent bipotential mesendoderm progenitors from
switching into the endodermal fate. It is possible that neg-
ative feedback, known to buffer ERK activation when ec-
topic signals are present alongside ligand inputs, could occur
where cells receive both ligand-derived and ectopic ERK in-
puts, and tamper ectopic psMEK-driven ERK signals in the
margin (23). We nevertheless searched for subtle transcrip-
tional changes in the margin using the untreated condition-
specific Vc components of the M factor, pointing to down-
regulated genes (Fig.5d) in the margin. We indeed found
that in the marginal cells, markers for endoderm progen-
itors sox32 and lft2 become downregulated upon psMEK-
treatment, along with endodermal genes gata5 and gata6.
This result suggests attenuation of endoderm specification in
psMEK-activated embryos.

Discussion
Signaling pathways are necessary cues that drive uncom-
mitted cells towards specific transcriptional states in a
developing embryo. Developmental signals are often tran-
sient, whereas deregulated, sustained signal transduction

in embryogenesis can lead to disease (44). Understanding
the multifaceted changes in heterogeneous gene expression
states in embryos experiencing spurious signaling requires
single-cell approaches. However, single-cell studies have
only perturbed signaling by removing pathway components
(6, 45) which potentially only decreases the cell state
diversity. Here, we find evidence that amplifying signaling
can generate new cell states.

High-dimensional heterogeneous single-cell datasets like the
ones we collected often require data integration algorithms
in order to interpret. Data integration algorithms can
provide an accurate comparison of common states across
conditions, and identification of novel states that appear
upon perturbation. Some available algorithms do not correct
for confounding factors such as batch effects while others do
not provide an easily interpretable framework, e.g., through
factor analysis provided by iNMF methods. We presented
DAISEE, an algorithm that combines the advantages of
previously available iNMF-based approaches with explicit
batch effect correction. DAISEE enabled construction
of an ambient space in which cell state shifts and local,
condition-driven cell state responses can be characterized
(Fig.6). DAISEE promises to be broadly applicable to
transcriptional measurements with scRNA-seq and multi-
plexed RNA imaging, as well as single-cell measurements
of other aspects of the cell state like chromatin accessibility,
epigenetic profile, or genome organization (46, 47).

In this study, we used DAISEE to map transcriptional state
shifts in 5 hour old zebrafish embryos experiencing hyper-
active ERK signaling, and discovered several simultaneous
directions of change including dramatic deviations from
the normal transcriptomic landscape of the early embryo
towards endothelial-like states (Fig.6). We expect that
mechanistic dissection of this state will shed light on the
origins of abnormal blood vessel development, which is
common in a broad class of developmental diseases that are
caused by hyperactivity of the ERK pathway (44, 48). In
later stages of zebrafish development, FGF ligands repress
rather than promote endothelial fate (49). It is therefore
unclear whether endothelial genes could be regulated by
FGF-responsive genetic elements. Interestingly, oncogenic
ERK pathway-activating mutations in somatic tissue also
drive cerebral arteriovenous malformations likely by en-
dothelial cell proliferation (50). Thus, upregulation of
endothelial genes by ERK may require pathological levels of
ERK signaling, and can be modeled and studied in the early
zebrafish embryo with wide implications for human health.
We suggest that dynamic measurements of cell state changes
throughout early embryogenesis at multiple levels of gene
regulation, from transcription factor binding, to chromatin
accessibility and gene expression, will be crucial to address
these open questions about ERK-mediated endothelial gene
regulation.
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Methods
ScRNA-seq data collection and preprocessing. Injec-
tion and optogenetics: Danio rerio embryos were raised
according to standard zebrafish husbandry procedures. The
pwt line was used to set up mating pairs. Synchronously
fertilized embryos were collected and prepared for injection
before they reached the 1-cell stage. psMEK mRNA was
transcribed from the PCS2 psMEK E203K plasmid using
the Ambion mMessage Machine SP6 kit. 50 pg of psMEK
mRNA in a 500 pL droplet was injected into the yolks of
each wild type embryo via a PV280 Pneumatic PicoPump
(World Precision Instruments). Injected embryos were
placed in glass petri dishes and stored in a 32ºC incubator
in an aluminum foil lined box. A home built 505 nm LED
board was placed on top of the box to flood the embryos
in the petri dishes with light. For the batch-controlled
experiments (batches 3 and 4, see Supp. Fig. 7a), un-injected
embryos were placed under the 505 nm LED lights alongside
injected embryos. All zebrafish procedures and experimental
protocols in this study were conducted in accordance with
the Princeton University Institutional Animal Care and Use
Committee.

Dissociation: Embryos were removed from the light box
when they reached the 50% epiboly stage and dechorionated.
Dechorionation was performed by briefly softening chorions
with pronase, washing out the pronase, and manually remov-
ing the chorion with forceps. 20-25 embryos per condition

were deyolked manually in embryo medium and collected
in a 1.5 ml Eppendorf tube. The deyolked embryos were
resuspended in 200 µl embryo medium and dissociated by
first flicking the tube 20 times then pipetting up and down 3
times. 800µl PBS with .1% BSA was added to the dissoci-
ated cells, and cells were spun down into a pellet at 300xg
for 30 seconds. The supernatant was removed, being careful
not to disturb the pellet, and the pellet was resuspended in
15-20µl PBS with .1% BSA. The concentration of cells was
adjusted by diluting in PBS with .1% BSA as appropriate for
downstream 10X Genomics scRNA-seq library preparation.
In batch controlled experiments, samples from all conditions
were prepared simultaneously.

Sequencing: Samples of dissociated cells were submitted to
Princeton University Genomics Core facility for preparation
and sequencing. Dissociated cells were processed with
the Chromium Single Cell 3’ Assay. cDNA synthesis
and library construction were carried out according to the
manufacturer’s protocol. cDNA libraries were amplified
with PCR and sequenced on the NovaSeq 6000 system. The
resulting sequencing data were analyzed using the standard
10X Cellranger pipeline. Transcriptomic libraries were
mapped to a zebrafish reference transcriptome built from
the GRCz11 genome assembly and feature-barcode matrices
were generated.

QC and preprocessing: After cellxgene count matrices were
generated, standard pre-processing steps were applied as fol-
lows. First, data for all the samples were concatenated into
one count matrix. Low quality cells were filtered by retain-
ing only the cells with >1000 reads, >500 genes expressed
and <5% mitochondrial counts. Genes were then filtered
by retaining only the genes that are expressed in >10 cells
and have >50 read counts. Outlier genes with >100000 read
counts were removed. The concatenated data were clustered
using Leiden clustering (50 PCs, 20 neighbors). We used the
clustering results to filter the genes with >90% correlation
of expression profiles over clusters with at least one gene
from a pre-defined set of housekeeping genes (see (42) for
the details). After this, the samples were separated and clus-
tered separately with standard parameters (2000 highly vari-
able genes with seurat_v3 method from the scanpy package,
20 neighbors, 50 PCs were used for each sample individu-
ally). In this step, we aimed to remove remaining low-quality
and the EVL cells from every sample. For every sample,
we manually removed clusters with low library sizes as low-
quality cells (with thresholds differing for every sample due
to differences in their library size distributions). EVL clusters
could be clearly identified by differential expression analysis
(Wilcoxon test) due to their overexpression of standard EVL
markers such as krt4, krt5 or krt8. This resulted in 17,276
cells after filtering. We note that some EVL cells were still
identified in the filtered dataset during subsequent analysis.

DAISEE algorithm. DAISEE solves an iNMF problem for a
set of samples incorporating the experimental design into the
objective function. More precisely, for N samples Xi col-
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lected with C conditions and B batches, with sample i corre-
sponding to condition c(i) and batch b(i), we seek dataset-
specific loadings Hi and matrices of common factors W ,
condition-specific factors Vc and batch-specific factors Vb

which are a solution to the following optimization problem:

{Hi}i =1...N ,W,{Vc}c =1...C ,{Vb}b =1...B

= argmin
HiØ0,W Ø0,VcØ0,V

b
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We approach this problem similarly to (1) by iterative updates
of the loadings and factors through the following steps:
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We solve each of the optimization problems independently
using the block coordinate descent algorithm supplied by
LIGER package (see (1) for details).

Parameters for benchmarking experiments and de-
tails of implementation. For all benchmarking experiments
(Supp. Figs. 1, 2), for LIGER, the default parameters of
k = 30 and ⁄ = 5 were used. For DAISEE, we applied the
same parameters, k = 30 and ⁄c = 5, with varying ⁄b. The
default 30 iterations of iNMF were applied for both.
Gene scaling was applied according to (1) at the sample level
for both methods. Quantile normalization was applied to cell
scores post-factorization for both methods. For the agree-
ment metric, 100 nearest neighbors were used by default for
jaccard similarity calculation for all benchmarks except the
smaller simulated experiments where 15 nearest neighbors
were used.

Benchmarking DAISEE on scRNA-seq atlases. To
demonstrate DAISEE on previously available scRNA-seq
datasets, we chose two atlases from previous publications
(25, 32). Immune atlas was aggregated for benchmark-
ing purposes in (25) and is comprised of 96,348 human
and mouse immune cells from different tissues that were
collected over 23 samples by several laboratories. In this

dataset, species were treated as perturbation for our purposes
and we seeked to integrate the samples efficiently modeling
the species-specific variability.

The mouse embryonic atlas (32) represents more homoge-
neous data and is comprised of 14,679 cells from mouse em-
bryonic tissues collected over two consecutive stages, E7.0
and E7.5. In this dataset, we chose to model stage-specific
differences in lieu of the perturbation. The data for both
stages were collected over three batches resulting in a com-
plex experimental design assumed by DAISEE.

Applying DAISEE to the zebrafish embryo dataset. Top
1000 highly variable genes were used for all the analysis on
the zebrafish embryo dataset. When applying DAISEE and
LIGER on this dataset to compare their performance (Fig.
1), iNMF decomposition for both methods was run for 100
iterations and repeated 3 times, and the best replicate was
chosen.

To finetune DAISEE on our newly collected data, we first
followed the heuristic approach suggested in (1) to identify
an appropriate number of factors for low-dimensional
decomposition k. We calculate the Kullback-Leibler (KL)
divergence (compared to uniform distribution) of the factor
loadings for each cell and plot its median across cells as
a function of k. The experiment for every k was repeated
over 10 replicates. LIGER suggested that saturation in KL
divergence would indicate that increasing the rank does not
significantly change the sparsity of the factor loadings. We
observed slow saturation of KL divergence (Supp. Fig.3a)
and chose to proceed with DAISEE at k = 30.

While we chose to use the default ⁄c = 5 parameter, we
tuned ⁄b parameter to achieve optimal alignment. Indeed,
varying ⁄b over a large domain on the log-scale, i.e.,
⁄b = {2n}6

n=≠3, and repeating the experiment for every ⁄b

over 10 replicates, we discovered that the alignment saturates
around ⁄b = 4 (Supp. Fig.3b) which we fixed to proceed
with the analysis.

After decomposing the zebrafish embryo dataset with 30
factors, we tested the factors for their batch and treatment
specificity (Supp. Fig.3d). More precisely, in accordance
to (1), for every factor j, batch specificity was calculated
as

q
B

b1=1
q

B

b2=b1+1 100
1

1≠ ÎVb1,j+WjÎ2
ÎVb2,j+WjÎ2

2
. Analo-

gously, condition (treatment) specificity was calculated as
q

C

c1=1
q

C

c2=c1+1 100
1

1≠ ÎVc1,j+WjÎ2
ÎVc2,j+WjÎ2

2
. The threshold

for batch specificity of factors was chosen at 6 to make sure
that multiple factors exhibiting high treatment specificity and
low batch specificity were included. Simultaneously, all but
one of the 9 highly batch specific factors that were excluded
demonstrated low treatment specificity (< 1.5). Excluding 9
batch-specific factors resulted in a perturbation to alignment
and agreement of the DAISEE embedding setting alignment
at 0.93 and agreement at 0.17.
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For factor annotation, we compared our DAISEE factors to
the previously published NMF factors from (6). The pub-
lished factors were fitted to scRNA-seq data from wild type
50% epiboly zebrafish embryos, and were partially anno-
tated. Top 30 markers for every identified component were
published. To make a mapping, we intersected top 50 mark-
ers for DAISEE components corresponding to untreated con-
dition (W +VU ) with the published gene lists (Supp. Fig.3c).
As a result, we mapped all the previously annotated factors
except the cell cycle component to one DAISEE factor with
the largest intersection set (with the exception of MD for
which two DAISEE components were retained).

Simulation from iNMF framework. We used the DAISEE
framework to simulate single-cell transcriptomics data for
a complex experimental design. For these experiments,
we chose the simplest possible design with two treatments
collected across two batches (Supp. Fig.1a). We reduced the
parameter space by generating our toy single-cell data with
K = 3 factors only, and assuming G = 1000 as the number
of genes considered, with N = 1000 cells in every sample.
Every experiment consisted of 20 datasets (of 4 samples
each) corresponding to a fixed pair (–c,–b) of condition-
specific perturbation and batch effect strengths (see below
for definitions). We allowed both –c and –b to run over
the list [0.05,0.2,0.5,1]. For every dataset, we simulated
common (W ), condition- (Vc) and batch-specific (Vb) iNMF
factors. Furthermore, we simulated the corresponding cell
scores H with an important simplifying assumption that
condition can redistribute the cell scores in the dataset while
batch does not. Finally, in every simulated sample, we varied
the level of sparsity in our generated datasets by controlling
the parameters of the library size distribution.

To be more precise, for every simulated dataset, we started
by sampling the gene modules. Every w

(k), v
(k)
c and v

(k)
b

was sampled from a � distribution with shape 0.25 and scale
1 and size G = 1000. The shape of the distribution was fit
to the biggest unperturbed sample (library-size normalized)
in our zebrafish embryonic dataset and the scale parameter
can be ignored due to downstream normalization. To
control the size of the condition-specific and batch-specific
effects, we normalized every sampled factor by their L1
norm (denoting the result by Âw(k), Âv(k)

c and Âv(k)
b

). At a
condition-specific perturbation strength parameter –c and
a batch effect parameter –b, for sample s, we considered
p

(k)
s = Âw(k) +–cÂv(k)

c(s) +–bÂv(k)
b(s) as the final gene module.

To sample condition-dependent cell scores h
(k)
c that would

correspond to every sample s with c(s) = c, we chose a
shape parameter Ÿ

(k)
c uniformly from [0.1,1] and sampled

N = 1000 cell scores from �(Ÿ(k)
c ,1). The cell scores were

then normalized for every cell to sum up to 1. This resulted
in a triangular geometry for every sample with condition-
dependent concentration parameters (Supp. Fig.1b).

Additionally, for every dataset (with 4 samples sharing

sparsity level), a level of sparsity was chosen by controlling
the mean of the library size distribution. After sampling a
parameter m uniformly from [4,7], library sizes for each
dataset were sampled from a lognormal distribution with
mean m and standard deviation 0.5 of the underlying normal
distribution. This resulted in the datasets with sparsity
varying from 45% to 94%, with the median sparsity of 80%.

After generating the gene loadings, cell scores and library
sizes as specified above, for sample s, the RNA count for
gene j of a cell i with library size li were sampled from a
Poisson distribution with mean µsij = li

q
K

k=1 h
(k)
c(s),i

p
(k)
s,j

.

Finally, when applying DAISEE to the simulated benchmark-
ing experiments (Supp. Fig.1c,d), a range of regularization
parameters ⁄b = [0,0.001,0.01,0.1,1,10] were considered.

Testing conditions for differential abundance. To study
differential abundance between the conditions in the ze-
brafish embryo dataset, we chose to apply MILO (32). We
first applied MILO to form overlapping neighborhoods in
the k-nearest neighbor graph in the reduced, batch-corrected
DAISEE space (dim = 21), choosing k = 100. To define the
neighborhoods, MILO uses a refined sampling scheme ini-
tialized by sampling a fixed proportion of cell p. We chose
p = 0.1 for our analysis which resulted in ¥100-300 cells
per neighborhood. The strength of MILO is in its ability to
test for differential abundance in overlapping neighborhoods.
The method applies a negative binomial generalized linear
model framework and uses a weighted FDR procedure to
account for neighborhood overlap. We applied MILO with
design="≥condition" and applied FDR<=5% cutoff to the
per-neighborhood hypothesis testing results (Supp. Fig.5a).
We refer the reader to the original MILO publication (32) for
additional details.

Optimal transport of cell state probability distributions
between control and treatment. To study the transitions
between control and treatment conditions in our data that re-
sulted in the re-distribution predicted by MILO, we formu-
lated an optimal transport problem. More precisely, MILO
allowed us to extract the distributions of cells over neigh-
borhoods in the control and treated conditions, with the cor-
responding probability distributions denoted by µ and ‹ re-
spectfully. For any pre-defined cost-function c(·, ·) defined
over pairs of neighborhoods, the optimal transport problem
is searching for an optimal transportation map T : X æ X

transforming µ into ‹ and simultaneously minimizing the
overall cost of transport, i.e.

argminT,T #µ=‹

⁄
c(x,Tx)dµ

where # denotes the push-forward of measure. In practice,
this problem (formulated by Gaspard Monge in 1781) is dif-
ficult to solve and is often substituted with a relaxation pro-
posed by Leonid Kantorovich. The deterministic transporta-
tion map T is substituted by a transportation plan, i.e., a joint
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probability density fi, with the problem becoming

argminfiœ�(µ,‹)

⁄

X◊X

c(x,y)dfi,

where �(µ,‹), denotes the set of probability distributions on
X ◊ X with µ and ‹ as their corresponding marginals. En-
tropic regularization makes the problem strictly convex en-
suring solution uniqueness and provable convergence. More
precisely, a regularization term is added to the objective func-
tion as follows:

argminfiœ�(µ,‹)

⁄

X◊X

c(x,y)dfi +⁄H(fi)

with the same conditions on fi as above and H(fi) denoting
the entropy on the probability distribution fi. We employed
the implementation of entropic regularized optimal transport
from the python pyopt package specifically devoted to opti-
mal transport problems. To solve the optimization problem,
we made use of the implementation of the Sinkhorn-Knopp
algorithm within the package (ot.sinkhorn) and applied
a small regularization parameter ⁄ = 1e≠3.

To define a cost function for transport between neighbor-
hoods, we reasoned that it should reflect the transcriptomic
distance between the neighborhoods in the batch-corrected
space. More precisely, for every sample Ei, the DAISEE
algorithm provides a decomposition into low-dimensional
(rank 21) matrices : Ei = Hi(W + Vc(i) + Vb(i)). To
define the transcriptomic distance, we chose to correct for
batch-specific effects but preserve the treatment-specific
transcriptomic changes, i.e., we use Euclidean distance
between the corrected transcriptomes Ẽi = Hi(W + Vc(i)),
with quantile-normalized cell scores H .

Finally, every neighorhood gets assigned a state through
majority voting of the corresponding cells. To define the
cost of transport between 2 neighborhoods, x and y, we
averaged all pairwise distances between the cells assigned
to these neighborhoods. To calculate a transition proba-
bility from state s1 to state s2 upon treatment shown in
Fig. 3, we use the optimal transportation plan ÂT as follows:1q

xœs1,yœs2
ÂT (x,y)

2
/

1q
y,xœs1

ÂT (x,y)
2

.

Gene set enrichment analysis. We performed GSEA
analysis for a collection of gene sets from a zebrafish em-
bryonic development transcriptomic atlas (42). The atlas
contains 194 gene sets of top differentially expressed genes
in clusters of scRNA-seq data collected between 6 h.p.f.
and 24 h.p.f. embryonic stages spanning from 11 clus-
ters at 6 h.p.f. to 72 clusters of emerging tissues at 24
h.p.f. To run GSEA, we performed differential expres-
sion (DE) analysis between the clusters defined in Fig.2b
(Wilcoxon rank-sum test with Benjamini-Hochberg correc-
tion was applied on log-transformed library-size normal-
ized data). For every cluster, we used the adjusted p-value
(pval_adj) and the logfoldchange (logFC) of gene expression

reported by DE results to rank the genes by ordering them
by -log(pval_adj)*sign(logFC). To identify enrichment of a
gene set at the top or bottom of a ranked list, GseaPreranked
tool (43) was applied using the conservative classic scoring
scheme. Only gene sets with at least 10 genes were used in
this analysis. GSEA results were summarized in Fig.4d and
Supp. Fig.8a.

Hybridization Chain Reaction in situ. psMEK mRNA
was transcribed from the PCS2 psMEK E203K plasmid
using the Ambion mMessage Machine SP6 kit. 50 pg of
psMEK mRNA in a 500 pL droplet was injected into each
wild type embryo via a PV280 Pneumatic PicoPump (World
Precision Instruments). Embryos were injected into one
of the following areas: into the yolk at the one-cell stage,
into the cell at the one-cell stage, or into one of two cells at
the two-cell stage. Injected embryos and uninjected control
embryos were immediately placed in 5 cm Pyrex glass dishes
in an aluminum foil-lined box. The box was covered with
a LED board, which emitted 505 nm light as previously
described in (10). Embryos were incubated at 32°C and
exposed to 505 nm light until 50% epiboly, at which point
they were either dissociated for scRNA-seq or fixed in 4%
paraformaldehyde overnight at 4°C for HCR. Fixed embryos
were then washed in PBT, dechorionated, and gradually
transitioned to 100% methanol for storage until the HCR
protocol was started. WIK and Tu wild type strains were
used.

The HCR RNA-FISH kit and probes for fli1 and lmo2

were purchased from Molecular Instruments. Molecular
Instruments HCR RNA-FISH protocol for whole-mount
zebrafish embryos and larvae (Danio rerio) version 8 was
carried out with the following adjustments: for proteinase K
treatment, embryos were treated with 1 mL of 100 µg/mL
proteinase K for 5 minutes at room temperature; 3 µL of
each probe was diluted into 200 µL of probe hybridization
buffer for probe incubation; 6 µL of hairpin was diluted into
200 µL of amplification buffer for hairpin incubation; after
hairpin solution removal, 1:500 Hoescht stain in 5X SSCT
was added to sample tubes and incubated for 30 minutes at
room temperature.

Embryos were deyolked and mounted in ProLong Diamond
Antifade Mountant such that the vegetal pole touched the
Fisherbrand microscope slide and the animal pole touched
the VWR cover slip. Embryos were imaged using a Nikon
A1 confocal microscope. Whole embryo images were ob-
tained using the 10X objective with 20 µm Z-stacks. Cellular
images were obtained using the 40X objective with 10 µm
Z-stacks. pdDronpa from psMEK was detected with the 488
nm laser, Hoechst with the 408 nm laser, and HCR labeled
RNA with the 647 nm laser. All images were obtained using
the same laser settings.

HCR spot quantification. Quantification of RNA spots de-
tected in the HCR images was performed on individual z
slices of the confocal stacks. Spots were detected using the
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Big-FISH python package. Nuclei were segmented using
cellpose. For each image from an injected embryo spots and
nuclei were counted only in regions of the image where the
pdDronpa from the psMEK was detected. The same param-
eters for spot detection by Big-FISH were applied to all im-
ages. The number of spots normalized by the number of nu-
clei detected in the image was reported for each z slice.

12 | bioR‰iv Patel, Avdeeva et al. | Disrupted developmental signaling induces novel transcriptional states

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.610903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.610903
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1. DAISEE provides efficient integration of perturbation experiments a) Our data come from untreated and treated zebrafish embryos at the 50% epiboly
stage. Embryos were dissociated in preparation for single-cell RNA sequencing. b) The treatment affects the ERK pathway. In the wild type embryo, fibroblast growth
factor (FGF) ligands bind to FGF receptors (FGFRs) to trigger a phosphorylation cascade from the kinases RAF to MEK to ERK. In treated embryos, an optogenetic tool
(psMEK) bypasses the signal transduction cascade and directly activates ERK. 500 nm light uncages photodimerizable domains in psMEK that permit its activation of ERK.
Active ERK translocates to the nucleus to regulate gene expression. c) psMEK was expressed by injecting mRNA encoding psMEK into the yolk of the 1-cell stage embryo.
Injected embryos were then exposed to 500 nm light for 5 hours while they developed. This treatment activates ERK throughout the blastoderm, whereas in untreated
wild type embryos, ERK activity (black) is restricted to the margin. d) A table describing an experimental design with n single-cell samples collected over multiple batches
and corresponding to different conditions. Sample i corresponds to batch b(i) and condition c(i). e) A schematic of Design-Aware Integration of Single-cell ExpEriments
(DAISEE) algorithm. DAISEE jointly decomposes single-cell datasets, Ei, into products of non-negative matrices (of lower rank k). Hi: factor scores (loadings), W :
common factors, Vb(i): batch-specific factors, Vc(i): condition-specific factors. This decomposition allows us to explicitly correct for batch dependent differences for reliable
downstream interpretation of condition-dependent differences. f) The experimental design table for newly collected data. g) UMAPs showing batch-dependent and condition-
dependent differences for the newly collected zebrafish data integrated using LIGER. h) Same as g) for DAISEE. i) Sample agreement and batch alignment for DAISEE vs
LIGER on zebrafish embryonic data.
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Figure 2. Annotation of cell states in psMEK treated perturbation experiments a) UMAP of zebrafish embryonic data integrated with DAISEE. Orange corresponds to
data from the treated condition (T) and grey corresponds to data from the untreated condition (U). b) Axes extending from the dorsal (D) side to the ventral (V) side and from
the margin (M) to the animal pole (A) of 50% epiboly zebrafish embryo define a coordinate system on its surface. DAISEE clusters are shown; each cluster corresponds to
a dominating factor. Clusters were annotated using previous publications; several clusters are annotated using the A-M, V-D coordinate system of the 50% epiboly zebrafish
embryo. c) UMAPs showing expression of select gene markers in the untreated data (imputed over 50 nearest neighbors).
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Figure 3. psMEK treatment redistributes cell states a) Differential abundance testing (MILO) reports neighborhood states that are enriched (red) or depleted (blue) in the
psMEK treated condition. Left: Per-neighborhood results are summarized in the UMAP. Right: Every dot corresponds to one of the overlapping neighborhoods formed by
MILO. x-axis: log-foldchange of abundance (logFC) per neighborhood of treated vs untreated conditions, y-axis: DAISEE cluster annotation transferred to the neighborhood,
color: logFC per neighborhood, with only neighborhoods below 5% Spatial FDR cutoff shown in color. b) Transport probabilities between spatially variable (VA, A, DA, V, MD,
D, M, MD.2) and clusters 7, 11 and AL. The transition probabilities are derived from the optimal transport map ÂT . Every edge is marked with the corresponding transition
probability and its width is proportional to it.
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Figure 4. psMEK treatment-specific DAISEE factors are endothelial-like and stress-like a) Mixing of factors 7 and 11. x-axis: per-neighborhood factor 7 score, y-axis:
same for factor 11. Per-neighborhood scores were calculated by averaging cell scores over the neighborhood. Neighborhoods colored by their logFC in treated-vs-untreated
cell abundance (as in Fig.3a). b) Gene markers for the common (shared, W ) component of factors 7 (stress-like) and 11 (endothelial-like). Key genes identifying the factor
are underlined. c) Left: RNA Hybridization Chain Reaction in situ images for fli1 and lmo2 in wild type 20 somite zebrafish embryos. Scale bar = 200µm. Right: The same
probes were used to label fli1 and lmo2 in 50% epiboly stage embryos imaged in the animal pole at 40x. All embryos were co-stained with Hoechst. In each z slice, the RNA
spots for fli1 and lmo2 were detected and counted, as were number of nuclei. The number of spots divided by the number of nuclei (S/N) is reported. In the injected embryos,
only cells expressing psMEK (psMEK+) were considered. All cells in the uninjected (psMEK-) images were measured. For the fli1 HCR in situ: 14 images from 3 injected
embryos and 17 images from 4 uninjected embryos were analyzed. For the lmo2 HCR in situ: 22 images from 5 injected embryos and 17 images from 4 uninjected embryos
were analyzed. A t-test indicates statistically significant (p < .05) differences (*) between the psMEK+ and psMEK- data. d) Normalized enrichment score after performing
GSEA. 18 h.p.f. endothelial genes were highly differentially expressed in the 7 and 11 clusters of cell states (boxed). FDR q-value < .001 cutoff was applied.

16 | bioR‰iv Patel, Avdeeva et al. | Disrupted developmental signaling induces novel transcriptional states

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.610903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.610903
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5. Quantitative changes in DAISEE factors describe perturbation responses a) Heatmaps: factor scores before and after treatment are shown, with the rows
on the left and right in direct correspondence reflecting the reprogramming changes derived from the optimal transport analysis. More precisely, in the heatmap on the right,
factor loadings (minmax normalized) are shown for every neighborhood in the treated condition. Each neighborhood was assigned to the cluster that most frequently appears
in the corresponding cells (by majority voting). Row color on the right: cluster assignment of a neighborhood. Neighborhoods are grouped by their assigned cluster and
ordered by their average score for the corresponding factor. Only annotated clusters are shown. Rows in heatmaps are in direct correspondence. I.e., for every neighborhood
on the right, in the corresponding row on the left the pre-images of this neighborhood were derived from the optimal transport solution ÂT and their corresponding weighted
average loading profile is shown. Row color on the left: most likely cluster assignment in the pre-image. To reflect the density of cells in each neighborhood, the thickness
of a row corresponding to a neighborhood is proportional to its density in the treated condition (both left and right). Top gene markers for the shared component W for the
DA factor are shown on the right. b) Condition-specific factors Vc contain information about local transcriptomic changes in cell states that are common between untreated
(U) and treated (T) conditions. VT , the condition-specific factor for the treated condition, indicates genes that are upregulated locally in the psMEK treatment condition. VU ,
the wild type-specific factor for the untreated condition, indicates genes that are downregulated locally in the psMEK treatment condition. c) VT for the DA factor indicates
upregulated genes in dorsal animal cells in the treated condition. Loadings for top 30 genes are shown (and filtered for differential expression between conditions in the
corresponding cells, with > 0.5 absolute log-foldchange and < 0.05 adjusted p-value cutoff). The underlined genes are an endothelial gene she and the dorsalizing factor
chrd. d) VU for the M factor indicates downregulated genes in marginal cells (filtered as in c)). Endodermal genes lft2, sox32, gata5 and gata6 are underlined.
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Figure 6. Summary of DAISEE DAISEE is a framework for integrating high-dimensional single-cell data from multiple experimental conditions. It contains components that
allow for batch correction (Vb(i)) and data annotation (W ). Cell factor scores (Hi) are used for low-dimensional embedding that allows to study redistribution of cell states
and discover new states. The Vc(i) component describes local transcriptomic changes. We identified how psMEK treatment reassigned cell states in the zebrafish 50%
epiboly embryo (arrows).
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