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Abstract: 

 Sequence-function data  provides valuable information about the protein functional landscape, but is 

rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing 

(LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate 

sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering 

workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates 

data-driven protein engineering by consolidating sequence-function data to inform directed evolution and 

provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality 

control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation 

studies demonstrate LevSeq’s ability to accurately detect variants under various experimental conditions. 

Finally, we show LevSeq’s utility in engineering protoglobins for new-to-nature chemistry. Widespread 

adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function 

landscapes and empower data-driven directed evolution. 
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Introduction 

Directed evolution (DE) has been key to the discovery and engineering of biocatalysts 

for new-to-nature chemistry1, development of sustainable bioprocesses for pharmaceutical 

synthesis2,3, and for engineering proteins for environmental sensing4 and bioremediation5,  

among many other applications. The power of directed evolution resides in the rapid evaluation 

of mutated proteins to traverse the fitness landscape toward those exhibiting improved fitness6,7. 

A typical directed evolution campaign involves the generation and screening of thousands of 

variants – a significant number but still only a tiny fraction of the possible sequence space8. To 

streamline directed evolution, machine learning (ML) can be employed9–11  to guide sequence-

function exploration to variants with high fitness12–15. 

Traditional directed evolution (DE) approaches have generated datasets rich in activity 

labels but often lacking sequence information, as they focus on optimizing activity without 

sequencing all variants3. Existing sequence-function datasets for protein evolution studies are 

primarily comprised of deep mutational scanning data covering all single mutations or 

combinatorial libraries targeting specific sites16–18. While valuable, these approaches are costly 

and capture only a fraction of the sequence diversity most useful for protein evolution19. To 

advance machine learning in protein engineering, we need a method for collecting, analyzing, 

and pairing sequence-function data from diverse mutagenesis approaches20,21. This method 

would work for random mutagenesis across whole genes, combinatorial libraries at sites distant 

in the primary sequence, and other targeted mutagenesis approaches.  

Challenges that must be overcome to realize this vision include the high cost of 

sequencing entire genes22 and the lack of a standardized format to create and distribute the data. 

The Arnold lab developed the every variant sequencing (evSeq) method using Illumina short-

read sequencing to capture the sequences of variants arrayed in 96-well plates23. Due to the short 

sequencing lengths (~250 base pairs), however, evSeq is not ideal for collecting full-gene-length 

gene sequences. In contrast, real-time sequencing technologies like nanopore sequencing can 

capture millions of long reads at a low cost24, but nanopore sequencing is characterized by a 
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high error rate25–27. Previously published high-throughput nanopore sequencing methods,  

parSEQ28 and SequenceGenie27, have overcome this limitation by performing statistical 

analyses on consensus reads to detect true variants. UMIC-seq takes a different approach and 

clusters sequences rather than identifying individual variants, as the objective is to map 

evolutionary lineages29. Each of these methods uses a similar DNA-barcoding approach to 

demultiplex reads, which we have now coupled with the evSeq pipeline to enable collection of 

sequence-function data for directed evolution studies. 

This work describes Long-read every variant Sequencing (LevSeq), which extends the 

previous evSeq method by utilizing the barcode strategy described in Currin et al.27 for nanopore 

sequencing, enabling the evSeq pipeline to be utilized on full-length genes. LevSeq includes the 

following steps: 1) a colony polymerase chain reaction (PCR) to generate barcoded gene 

amplicons, 2) Oxford Nanopore sample preparation and sequencing to generate sequencing 

information, 3) demultiplexing and variant identification, 4) sequence-function data coupling 

accompanied by visualization and analyses, and 5) generation of data outputs that are amenable 

to downstream ML and compatible with existing databases. This method is rapid and robust 

under different mutagenesis conditions and enables researchers with no prior experience 

working with next-generation sequencing (NGS) data to perform analyses of mutagenesis 

libraries.  

Importantly, LevSeq offers several advantages: a) the software is open source, easy to 

set up, and designed for directed evolution experiments; b) it requires as few as ten reads to 

detect a variant in a well; c) results are available before the resource-intensive screening phase, 

enabling selection of specific variants for testing; d) fitness data are linked with sequence 

information to inform subsequent engineering steps. We demonstrate LevSeq in two protein 

engineering projects. First, we sequenced ∼1,000 variants of an error-prone polymerase chain 

reaction (epPCR) random mutagenesis library and identified the top variants in a typical epPCR 

workflow by coupling sequence and function data. In the second demonstration, we applied 

LevSeq to variants sampled from a five-site combinatorial library, which yielded data for 

downstream ML packages to predict variants with increased activity30. We show that LevSeq 
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facilitates machine learning-guided protein engineering (MLPE) by collecting a small subset of 

sequence-function data from the studied system to be used as training or input data.  

Materials and Methods 

Design of backbone-specific barcoded primers 

Universal binding sites of the pET-22b(+) cloning vector are first identified, and two sites upstream 

and downstream of the cloning site were chosen for primer design. All variants cloned using the 

pET-22b(+) vector can be sequenced using the primers designed for this research. Alternatively, 

primers can be designed for different cloning vectors, as long as the barcodes are attached to the 

upstream of the upstream primer and downstream of the downstream primer. (Supplementary 

Information Oligonucleotide Design).  

Colony PCR for generating barcoded amplicons 

PCR protocols are optimized for robust amplification of the full-length gene. Best performance 

is obtained using Taq polymerase and a touchdown PCR program. The PCR set up for each well 

includes 1 µL of overnight culture, 2 µL of 1 µM each barcoded primer mix, and 7 µL of PCR 

master mix. Using either 96-well or 384-well PCR thermocyclers, an initial 300 s denaturing 

step is performed followed by the touchdown PCR program detailed in the supplementary 

information. Depending on the length of the gene, one minute elongation time per 1 kb is 

recommended for optimal amplification. Amplicons were then pooled (Supplementary 

Information), analyzed, and purified with gel electrophoresis using the Zymoclean Gel DNA 

Recovery Kit (Zymo Research D4002). 

Sample preparation and sequencing 

Purified amplicon samples were normalized and combined into one sample and prepared for 

sequencing using the Oxford Nanopore ligation sequencing kit (LSK-114). For the MinION and 
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Flongle run setup, 0.02 Gb of basecalled bases per 96 variants and super accurate basecalling 

model are recommended as sequencing parameters. One Flongle flow cell is recommended for 

sequencing up to 1600 variants, whereas the MinION flow cell can be washed and reused using 

the Oxford Nanopore wash kit until the number of pores decreases below 100. We recommend 

skipping the use of storage buffer as significant pore loss was observed after applying storage 

buffer to the flow cell (~300 pores lost). 

Variant calling 

The computational delineation of reads from a pooled sample is slow and thus we wrote a 

bespoke pairwise local alignment using the Smith-Waterman algorithm in C++ to efficiently 

detect barcodes at the 5’ and 3’ ends of each nanopore read. The 3’ end barcodes are aligned to 

the last 100 base pairs of each read, and the highest matching score above threshold 80 is used 

to assign each read to the 96-well plate of origin. Next, 5’ barcodes are aligned to the first 100 

base pairs of each read, and the highest matching score is used to assign each read to a specific 

well within the assigned plate. The reads for each well are aligned using minimap2, version 2.1. 

The parameters for minimap2 are the standard long read parameters: ”-ax map-ont”, a -B 

mismatch score of 2, a match score of 4, and a gap opening penalty of 10. These were chosen 

to deprioritize frame shift mutations, because they occur less frequently. If multiple reads with 

the same read ID are mapped to the same well, the read with the highest quality is retained. 

During variant calling several quality control files are produced: a multiple sequence alignment 

and a csv file for each well in each plate, which contains the p-values, p-adjusted values, and 

counts for each position in the sequence. The sequencing error for a nanopore device is 

comparatively high at approximately 10% and dependent on myriad factors such as the flow 

cell, age of the cell, run conditions, etc. As such, for each well we calculate the error rate as the 

mean rate of non-reference nucleic acids per position. The probability that a mutation observed 

across a set of reads is a true mutation can be calculated using the binomial test. Namely, the 

null hypothesis, π0, is that the observed sequence variation is due to the inherent sequencing 
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error of the nanopore device, and the alternative hypothesis is that the observed nucleic acids 

are due to a mutation induced by SSM or epPCR. The number of trials, n, is the number of reads 

for a given well, the number of successes, k, is the number of a given nucleic acid or deletion, 

that is different to the reference sequence. Significance of the observed data is calculated using 

a one-sided test, testing for greater than expected error π > π0, and calculating this for each A, 

T, G, C and deletion for each position for each well. The expected error rate used can be defined 

by the user; we use a default of 10%, or the mean error rate for the well. Multiple testing is 

corrected for by using the Benjamini-Hochberg test, with a false discovery rate of 0.05. For 

each well, for a given sequence, the number of tests that are corrected for is equivalent to the 

length of the sequence. Additionally, corrections for multiple testing are made across the wells 

that meet a mutation frequency threshold. If a well has a mutation frequency above a user-

defined threshold, the well is checked for mutations and mixed wells. A well is classified as 

"mixed" if a position has more than one significant mutation by the FDR adjusted binomial test, 

using a threshold of p < 0.05 by default. Finally, post-variant calling we match the nucleotide 

variants to the amino acid changes. 

Simulation study 

For the simulation, the protoglobin used in case 1 and case 2 was chosen. This protein is 204 

amino acids long. For epPCR, errors are introduced at the DNA level, and as such an error rate 

of 2% corresponds to approximately 12 nucleotide mutations. To test the effect of sequencing 

error, sequencing error was varied from 0 to 100% across the sequence by incrementing at 5% 

intervals with a constant read depth of 10 reads. For read depth, the number of reads varied from 

one read to 50 in increments of 1, with the sequencing error held constant at the reported 

nanopore sequencing error of 10%. To test the effect of sequence length, the sequence was 

trimmed to lengths between five and 200 at step sizes of 20.  

Software stack 
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After the initial base-calling, which is a default option when using the MinION protocol, LevSeq 

is operating-system independent and runs entirely using docker or a web app. We modularized 

the application to comprise two components. The first is a command line and app that is used 

to de-multiplex and call variants. This is hosted locally, to reduce the need for large data transfer 

and processing. We opted to deploy this as an in-house tool as this component is stable and 

unlikely to change in future software updates. The code and docker image are available on 

GitHub (https://github.com/fhalab/LevSeq). It includes a multiple sequence alignment that 

shows the pileup from the bam files for quality control visualization. The output is an interactive 

HTML file that provides a per-plate view of the mutation, sequence count, and alignment 

probability. The second component is a web application where users upload screening data with 

coupled function. To calculate the combined “fitness”, we normalize each user-provided feature 

and then compute the median across the normalized features. While median is the recommended 

summary statistic, as it is less susceptible to outliers, users can switch to calculating the mean 

across features. 

Error-prone PCR random mutagenesis library generation for ParLQ 

Error-prone mutagenesis libraries were prepared using a standard error-prone PCR protocol. We 

designed primers using the template given in Supporting Information, Table S13. Different 

concentrations (100 mM, 200 mM, 300 mM, 400 mM) of MnCl2 were added to each PCR. Once 

PCRs finished, 1 µL of DpnI (NEB R0176S) was added to each of the reactions followed by 

incubation at 37 ◦C for 1 h to digest any residual template plasmid. DNA fragments with the 

desired size were excised from an agarose electrophoresis gel and then purified using the 

Zymoclean Gel DNA Recovery Kit (Zymo Research D4002). 

The expression plasmids containing an ampicillin resistance gene were constructed 

following standard Gibson assembly method. After 1 h of incubation at 50 ◦C, the reaction 

mixtures were used to transform T7 Express competent BL21 E. coli cells (NEB C2566H). 

Transformed cells were spread onto solid agar selection medium consisting of Luria broth (RPI 
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L24040-5000.0) supplemented with 0.1 mg/mL ampicillin (LBamp) and incubated at 30 ◦C until 

visible individual colonies are formed. To grow the error-prone libraries, 600 µL of LBamp were 

added into each well of 96-well deep-well plates (2-mL well volume). Individual colonies from 

the agar plates were then transferred into the wells with each well containing a single colony. 

The plates containing these overnight cultures were shaken at 220 rpm, 37 ◦C, and 80% humidity 

for 16 hours in an Infors Multitron HT shaking incubator. After overnight growth, 100 µL of 

overnight cultures were added to 100 µL of 50% glycerol solution to make glycerol stock plates, 

these plates can be used to store variants for future analysis. 

Sequencing of ParLQ epPCR libraries 

With the fresh overnight culture, sequencing libraries were prepared following the protocol 

described in Supporting Information, LevSeq Library Preparation and Sequencing; the LevSeq 

software was run using all default parameters. Barcode-linked primer plates used are in 

Supporting information, Tables S5–S12; the barcode plates were paired to libraries as given in 

Supporting Information, Table S14. 

Measuring cis and trans cyclopropane formation from 4-methoxystyrene 

For expression of the variant libraries, 50 µL of the saturated overnight cultures were used to 

inoculate 900 µl of Terrific Broth with 0.1 mg/mL ampicillin (TBamp) in 96-well plates. These 

cultures were then grown at 37 ◦C, 220 rpm, and 80% humidity for 2.5 h in an Infors Multitron 

HT shaking incubator, after which they were placed on ice for 20 minutes. Following this, 25 

µL of a 20 mM solution of isopropyl-β-d-thiogalactoside (IPTG; GoldBio # I2481C100) and 25 

µL of a 40 mM solution of 5-aminolevulinic acid (ALA;thermo scientific # 103920050) in 

TBamp were added to each well to induce protein expression at a final concentration of 0.5 mM 

IPTG and 1 mM ALA. Expression proceeded in the same Infors shaker at 22 ◦C and 220 rpm 

for 18 h. Cells were harvested through centrifugation at 4,000g for 5 minutes, the supernatant 

was removed, and the pellets were resuspended in 380 µL of M9-N. In an anaerobic Coy 
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chamber, 20 µL of 200 mM 4-methoxystyrene and 300 mM ethyldiazoacetate in acetonitrile 

were added into each well of the resuspended pellets. The reaction plates were sealed using 

sticky aluminum foil and shaken at room temperature at 800 rpm on an IKA MTS 4 shaker for 

20 h. Following the reaction, 800 µL of cyclohexane were added to each well, and the reactions 

were shaken and centrifuged at 5,000g for 10 minutes. The organic layer was transferred into 

GC screw vials (Agilent 5182-0715) and analyzed using GCMS (Agilent 7820A(G4350A)). 

Results and Discussion 

A standardized workflow to sequence thousands of full-length variant genes 

We use a dual backbone-specific barcoded primer system to streamline the sequencing process 

and maximize resource efficiency31. The primer sequences are designed for pET-22b(+) 

backbones and can be redesigned for other cloning vectors following standard design techniques 

(Supplementary Information Oligonucleotide Design). Compared to the original evSeq 

approach, LevSeq is not constrained by sequence length, can sequence any gene of interest in 

the cloning backbone, and has a short turnaround time (3–12 hours)23. The protocol commences 

with a one-step colony PCR that produces a full-length protein-coding DNA amplicon with 

unique barcode pairs at both ends (Figure 1A). Using 96 unique forward barcodes for each well 

of a 96-well plate and 96 unique reverse barcodes for as many as 96 unique plates, it is 

theoretically possible to demultiplex and sequence 9,216 variants29–32. 

A typical round of directed evolution with LevSeq begins with isolating colonies into a 

96-well plate for overnight culture, followed by protein expression and screening. The LevSeq 

protocol is executed during the protein expression time, after overnight cultures of individually 

arrayed colonies in 96-well plates are grown to saturation. 
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Figure 1: Overview of LevSeq library preparation, variant sequencing, and data visualization. 

A. The first step of LevSeq involves a one-step PCR using backbone-specific 5’ and 3’ end 

barcoded primers to amplify the full-length targeted gene. B. All PCR products from one 96-

well plate are pooled for gel purification. The purified DNA samples from each plate are 
normalized by molarity and combined for nanopore sample preparation using the ligation 

sequencing kit. The sequencing run is performed in-house on a MinION sequencer, and the raw 

voltage signals are base-call-converted into nucleotides with the resulting fastq reads filtered by 
quality. C. Sequence function data pairing, visualization, and storage in format compatible with 

database. 

A small amount of overnight culture is combined with PCR master mix and barcoded 

primers to generate barcoded gene amplicons from each well (Supplementary Protocols). After 

colony PCR, DNA samples are pooled and normalized (Figure 1B). Samples are prepared for 

sequencing using the ligation kit provided by Oxford Nanopore before being loaded onto the 

MinION or Flongle flow cell. The real-time sequencing data, stored as raw and base-called files, 

are readily processed by the open-source software for comprehensive data analysis, 
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visualization, and storage (Figure 1C). Our software also provides a template for LC-MS 

instruments based on the sequencing results to screen only true variants, reducing the screening 

load and automatically coupling the sequence function data (Figure 2).  

 

Figure 2: LevSeq reduces screening burden by enabling removal of sequences with no mutations, 

stop codons, and deletions. 

LevSeq has an accurate variant caller that is robust to experimental designs 

We developed a software suite for LevSeq that consists of two components to process 

and analyze every variant. The first is an operating system-independent docker image that 

performs efficient barcode de-multiplexing and runs on the sequencing computer36. The de-

multiplexed plate and well data are parsed by a Python package to identify statistically 

significant variants and notify users of any poor-quality mappings or mixed wells. If a particular 

barcode is undesirable, users can edit the barcode sequences file provided in the software suite 

to incorporate any customized barcodes; no information beyond the barcode sequence is needed 

for the demultiplexing step. We validated the variant calling software by performing over 1,000 

simulations to test the effect of experimental and sequencing conditions on the variant calling 

accuracy. Experimental variation, defined here as protein sequence length and ePCR error rate 

showed no effect on the efficacy of variant calling (Supplementary Figure 1E–F). Sequencing 

variation, such as nanopore error rate, does not affect the ability to accurately call variants if 

more than 10 reads are assigned to a well, which is within the typical flow cell operating range 

(error < 20%), (Supplementary Figure 1A–B). We showed that variants are accurately detected 

(>99%) with 10 reads37 to generate a consensus sequence38,39 up to a sequencing error rate of 
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20%, which exceeds the expected error of nanopore devices40 (Figure 3A). Previous methods 

have opted for alternative approaches to overcome the high error rate: SequenceGenie leverages 

strand bias and Bayesian statistics to identify true variants27, while parSEQ uses a conservative 

consensus threshold of 0.928.  

The second component of the software suite is a website that processes LevSeq files for 

future reference and downstream ML. Users upload variant information from LevSeq along 

with associated fitness data. Top variants are returned to the user along with a visualization of 

the coupled sequence function data. This process enables the collection and consolidation of 

standardized data along with the associated screening conditions (e.g. chemical reaction, 

stability, etc.). The deployment of this software is a primary differentiator between LevSeq and 

other nanopore variant calling methods, parSEQ and SequenceGenie. While SequenceGenie is 

also suitable for an individual lab, it requires users to build the docker image and has limited 

documentation, making it a challenge for the standard bench scientist to implement27. ParSEQ 

is an extensive software suite and utilizes comprehensive cloud computing, making it ideal for 

larger scale operations. However, it requires knowledge of cloud infrastructure28, an uncommon 

skill set in a typical protein engineering lab. LevSeq followed the evSeq approach and was 

designed to be easily deployable with minimal installation and a single command to run analyses 

and output data in an interoperable format. We envision these datasets will be compatible with 

existing databases41–44 and will become a useful resource for protein engineers who seek to 

create data-driven models of protein sequence-function landscapes.  

 

Use case 1: Analyze random mutagenesis libraries and inform next steps in DE 

To demonstrate the utility of LevSeq in a random mutagenesis experiment, we 

constructed and screened ten 96-well plates from an error-prone PCR library of Pyrobaculum 

arsenaticum protoglobin (ParPgb) LQ variants45. ParPgb is isolated from thermostable archaea 

and expresses well in Escherichia coli. Over the past decade, our laboratory has shown that 

protoglobins exhibit remarkable tolerance to mutations that alter their catalytic capabilities46–49. 
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Three of the ten plates exhibited unusually low sequencing coverage, contributing to a large 

number of samples with insufficient coverage (Supplementary Figure 2). (The insufficient 

coverage in this case resulted from improper PCR amplification. This can be mitigated by 

adjusting the PCR setup method (Supplementary Protocols) and was not observed in subsequent 

sequencing experiments (Supplementary Figure 3). The final dataset for ParPgb included 211 

sequences with zero amino acid mutations and 539 sequences with up to five amino acid 

mutations from the parent.  Single amino acid mutations were most prevalent, occurring in 210 

out of 539 sequences (Figure 3B and 3C). The mutation distribution aligned with the expected 

outcome of the mutagenesis method. Following sequencing, we utilized the LevSeq toolkit to 

generate sequence-function data. 

 

Figure 3: A. Accuracy of detecting variants using simulation studies on ParPgb LQ, varying 

read depth from 1 to 20 using an epPCR mutation rate of 2% and a nanopore sequencing error 

rate of 10%. B. Beneficial epPCR mutations favoring the cis and trans products are shown on 
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the ParPgb structure. C. Clustered reads across all ten plates from the epPCR experiment. D. 
Enzyme-catalyzed reaction screened in the epPCR experiments is cyclopropanation of 4-

methoxystyrene, leading to cis and trans cyclopropane products. The positions mutated for 
selected variants are highlighted on an AlphaFold3 structure of ParPgb. 

All ten plates were screened for activity and specificity for catalyzing the formation of 

the cis and trans cyclopropanation products of 4-methoxystyrene (Figure 3A). The software 

automatically returns the top-performing variants for each recorded fitness value, which in this 

case were top variants for both the cis and trans cyclopropanation products (see Methods for 

details on selection criteria). We found a single mutation conferred the highest activity for each 

desired stereoisomeric outcome: F70L for cis preference and F89L for trans (Figure 3D). 

Sequencing every variant also revealed sites with epistatic interactions. For example, the single 

mutation D72G improved the formation of both cis and trans products 1.5-fold, and the F89L 

mutation improved trans product formation nearly 3-fold. However, combining D72G and F89L 

resulted in activity similar to the parent, indicating higher-order interactions50,51 between sites 

72 and 89, which could be further investigated with a double-site saturation mutagenesis 

experiment. 

With a MinION flow cell, LevSeq can generate reads for a theoretical value of 2,500 

96-well plates in a single flow cell, assuming 1,000 base pair lengths, as noted in previous 

nanopore sequencing methods27. Sequencing bias, increased sequencing length, and low-quality 

samples will reduce the number of useful sequences obtained. However, the reusability of the 

flow cell makes LevSeq a more economical option compared to Sanger and short-read next-

generation sequencing. LevSeq is specifically designed to develop sequence-function datasets 

for research labs and as such the software has been designed for ease of installation and speed. 

A limitation of this is that the increased demultiplexing speed results in fewer reads assigned to 

each well compared with other methods27,28. For LevSeq we opted for this trade-off, which is 

beneficial when running experiments on a per lab basis where real-time data analysis is 
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important for guiding the next step of an experiment. For industrial scale protein engineering 

procedures or in a sequencing facility, ParSEQ may be a more suitable pipeline28.  

 

Use case 2: Collecting sequence-function data to optimize variants using ML 

To use in silico tools for protein optimization, one ideally starts with sequence-function data 

for a small subset of the studied system and these datasets serve as a foundation from which to 

make predictions and guide the engineering process. As one use case, LevSeq was used for 

active learning-assisted directed evolution (ALDE)30 by Yang et al. to sequence and analyze 

four 96-well plates of ParPgb LQ variants from a 5-site combinatorial library. From the four 

plates, 216 unique variants without stop codons were identified and screened for activity and 

specificity for catalyzing the formation of the cis and trans cyclopropanation products of 4-

methoxystyrene, the same reaction as in case 1. The sequence data from LevSeq and 

corresponding labels were used as initial training data for a batch Bayesian optimization 

algorithm, forming the baseline distribution to capture the effect on function of different amino 

acids at specific residues. This model was then used to suggest 96 sequences for testing; the 

researchers ordered exact genes for the 96 designed variants. Through three active learning 

loops the yield of non-native cyclopropanation reaction increased from 12% to 99%, with a 14:1 

cis:trans selectivity ratio30.  LevSeq enabled a critical step of collecting sequence-fitness 

datasets for model training in ML-assisted workflows. This foundation enhanced the 

effectiveness of subsequent rounds of ML guided directed evolution, leading to more successful 

outcomes. 

In addition to collecting data for active learning, LevSeq can be used for experimental 

validation of suggested variants from various MLPE tools such as focused training MLDE 

(ftMLDE)13, cluster learning-assisted directed evolution (CLADE)52, and degenerate codon 

optimization for informed libraries (DeCOIL)53.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611255doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611255
http://creativecommons.org/licenses/by-nc/4.0/


Conclusion 

LevSeq serves three primary functions for protein engineering: optimizing directed 

evolution workflows, gathering sequence information for specific MLPE projects, and 

consolidating sequence-function data for training future generalizable MLPE models. During 

exploration of the vast sequence-function space, experimentalists often encounter library bias; 

bias can lead to time and resources wasted on evaluating low-quality libraries. By providing 

sequence information prior to screening, LevSeq ensures that the gathered data are useful, 

regardless of whether the fitness results are positive, negative, or neutral. 

In addition to its role in optimizing directed evolution workflows, the LevSeq pipeline can 

be used to generate high-quality datasets for MLPE. The cost-effective and efficient sequencing 

of variants from random mutagenesis studies using LevSeq helps overcome the bottleneck of 

limited data. Moreover, the scalability of LevSeq allows for the generation of datasets from a 

wide range of mutagenesis experiments, further expanding the scope of MLPE applications and 

facilitating advancements in protein engineering. By creating diverse and representative 

datasets that capture relevant sequence-function relationships, LevSeq can enable more robust 

and accurate models to be trained, ultimately leading to improved protein engineering and 

design. 
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