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Highlight 32 

A dense genome-wide meta-analysis provides new QTLs, reveals breeding history trends 33 

and identifies new candidate genes for yield, plant height, grain weight and heading time 34 

of spring barley. 35 

Abstract 36 

This study contributes new knowledge on quantitative trait loci (QTLs) and candidate 37 

genes for adaptive traits and yield in two-rowed spring barley. A meta-analysis of a 38 

network of field trials, varying in latitude and sowing date, with 151 cultivars across 39 

several European countries, increased QTL detection power compared to single-trial 40 

analyses. The traits analysed were heading date (HD), plant height (PH), thousand-grain 41 

weight (TGW), and grain yield (GY). Breaking down the analysis by the main genotype-42 

by-environment trends revealed QTLs and candidate genes specific to conditions like 43 

sowing date and latitude. A historical look on the evolution of QTL frequencies revealed 44 

that early selection focused on PH and TGW, likely due to their high heritability. GY 45 

selection occurred later, facilitated by reduced variance in other traits. The study 46 

observed that favourable alleles for plant height were often fixed before those for grain 47 

yield and TGW. Some regions showed linkage in repulsion, suggesting targets for future 48 

breeding. Several candidate genes were identified, including known genes and new 49 

candidates based on orthology with rice. Remarkably, the deficiens allele of gene Vrs1, 50 

appears associated to higher GY. These findings provide valuable insights for barley 51 

breeders aiming to improve yield, and other agronomic traits. 52 

Keywords: agronomic traits, barley, breeding history, GWAS, meta-analysis, Vrs1  53 
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Introduction 54 

Barley (Hordeum vulgare L.) is the fourth-ranking cereal in the world, and one of the 55 

most important crops in Europe, in terms of cultivation area and economic relevance 56 

(Dawson et al., 2015, Looseley et al., 2020). In Europe, barley has been the subject of 57 

intensive breeding for over 100 years. Competitive breeding in the spring two-rowed 58 

pool, with thorough use of the traditional “cross the best with the best and hope for the 59 

best” strategy has increased concerns about possible genetic erosion in the cultivated 60 

germplasm pool. This process has led to the preferential selection of some genomic 61 

regions, and to an overall decrease in genetic diversity, particularly in the spring barley 62 

pool (Kolodinska Brantestam et al., 2004; Dziurdziak et al., 2022; Schmidt et al., 2023). 63 

Indeed, Tondelli et al. (2013) detected signs of extinction of diversity in some genomic 64 

regions. Intensive breeding activities usually produce, inadvertently or consciously, 65 

fixation of alleles with large effects on important target traits. However, genetic 66 

variation is still present (Tondelli et al., 2013), although finding QTLs, even with small 67 

effects, becomes harder. One way to detect minor QTLs is by relying on extensive 68 

phenotyping and meta-analysis (Muñoz-Amatriaín et al., 2020). In many European 69 

regions, barley with spring growth habit is sown between February and May, to avoid 70 

harsh winters. This is mandatory in Nordic countries and other European areas with 71 

harsh winters, particularly in Eastern Europe, but cultivation of spring-type barley occurs 72 

throughout Europe. Its relevance is increasing for two reasons. On the one hand, 73 

increasing winter temperatures allow its cultivation in areas of Europe (like Germany, 74 

Italy, Spain, or Switzerland) where winter barley and autumn/winter sowings were 75 

prevalent. On the other hand, the main economic boost for barley breeding in Europe 76 

has been, and still is, malting quality, a sector largely dominated by spring two-rowed 77 

types, consequently, breeding efforts have been particularly intense within this pool, 78 

giving rise to malting cultivars as productive as the best feed barleys.  79 

Genome-wide Association (GWA) studies have been widely used in barley to find 80 

genomic regions of interest for a large variety of agronomic characters (Igartua et al., 81 

2019; Thomas, 2020). In some cases, candidate genes were identified and validated, 82 

making for straightforward breeding. Even so, this is only possible when large diversity 83 

panels are available, combined with enough marker density. Marker density provided 84 

by the 50k SNP chip (Bayer et al., 2017) gives the opportunity to search for candidate 85 

genes in association studies. In narrow germplasm sets, linkage disequilibrium (LD) 86 

should be high, hence relatively low marker density is sufficient to pinpoint QTL regions 87 

in GWA studies (GWAS). However, to differentiate cultivars that are very close, and be 88 
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able to track alleles of candidate genes, higher marker densities eventually are needed. 89 

This is likely the case of the cultivated spring two-rowed barley pool. Dense genotyping 90 

can be achieved using exome capture data, which is available in barley (Mascher et al., 91 

2013; Russell et al., 2016; Chen et al., 2022). Another aspect which has not been fully 92 

exploited in GWA is the information from multi-trial studies. With few exceptions (for 93 

instance Bustos-Korts et al., 2019), these are analysed as the mean of all trials, or by 94 

identifying the intersection of associated markers between single-trials analyses. These 95 

methods do not make full use of the potential of independent effects tested in multiple 96 

sites to detect QTLs (Muñoz-Amatriain et al., 2020). 97 

This study aims at finding new QTLs for relevant agronomic traits in spring two-rowed 98 

barley cultivars, and at indicating new candidate genes that may become new targets 99 

for barley breeding in Europe. 100 

Materials and methods 101 

Plant material  102 

A collection of 164 spring two-rowed cultivars was tested in the framework of the 103 

international projects EXBARDIV (http://pgrc.ipk-104 

gatersleben.de/barleynet/projects_exbardiv.php) and CLIMBAR (https://project-105 

wheel.faccejpi.net/climbar/). The two projects included extensive sets of genotypes, but 106 

only spring two-rowed cultivars common to both projects were kept for this study. A 107 

principal component analysis for marker data was carried out with the SNPRelate 108 

package (Zheng et al., 2012) in R (R Core Team, 2024). Cultivars clearly outside the 109 

principal cloud of points were filtered out (Fig. S1). Discarded cultivars either originated 110 

in southern Europe (likely representing distinct germplasm pools) or had introgressions 111 

from exotic parents. A total of 151 cultivars that did not show a clear population 112 

structure were kept for further analyses (Table S1). 113 

Phenotypic evaluation, curation and analysis 114 

Field trials were carried out in 2009 and 2010 within the EXBARDIV project, and in 2016 115 

and 2017 in the framework of the CLIMBAR project, in the United Kingdom, Finland, 116 

Germany, Italy, Spain and Morocco (Table 1, Table S2). All trials consisted of plots of four 117 

to eight rows, 2-3 m long, and 1-1.5 m wide, in two replicates, following alpha-lattice 118 

designs, with plots managed according to local practices for sowing rate and chemical 119 

inputs. Flowering time (HD, days from sowing to appearance of the spike out of the flag 120 
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leaf sheath, Z55, according to Zadoks et al. 1974), plant height (PH, cm, length from the 121 

ground to the tip of the spike, without awns, average of five plants), grain yield after 122 

combine harvest (GY), and thousand grain weight (TGW) were recorded. Raw 123 

phenotypic data from EXBARDIV were retrieved for the 2009 and 2010 seasons, partially 124 

reported in Xu et al. (2018). Phenotypic data were curated for outlier data. Two trials 125 

(MAR17 and DE2-10) were fully discarded due either to consistently low correlation 126 

coefficients with the rest (Fig. S2) or to low overall data quality. Data from 16 trials were 127 

kept for HD, PH and GY, while TGW was recorded from 15 trials only.  128 

Best linear unbiased estimators (BLUEs) were calculated with Genstat 20 (VSN 129 

International, 2022). In each trial, the best spatial correction model was used, with the 130 

simplest model being a randomized complete block design; the full model including 131 

replicates, autoregressive order 1 in rows and columns, and additional contributions 132 

from significant random row and column factors (Table S2). Chi-square tests were 133 

performed for models differing by a single factor. The most parsimonious model for each 134 

trait was chosen, the last in which the inclusion of a spatial correction factor improved 135 

the model significantly. If a given cultivar had missing data in three or less trials, its 136 

phenotype was imputed with the value corresponding to the percentile of that trait for 137 

the missing cultivar in the average of the remaining trials (21, 21, 27 and 17 imputed 138 

values for HD, PH, GY and TGW, respectively).  139 

An additive main effects and multiplicative interaction analysis (AMMI) was done for 140 

each trait with Genstat 20 (VSN International, 2022). These analyses were used to cluster 141 

the trials into mega-environments, following the main direction of genotype by 142 

environment interaction (GEI) per trait. 143 

Genotyping  144 

The lines were genotyped with the 50k Illumina Infinium SNP Array (Bayer et al., 2017). 145 

Missing data were imputed with Beagle 5.0 (Browning et al., 2018), as described in 146 

Bretani et al. (2022). After imputation, 40639 markers remained. For further analysis, 147 

markers with a minor allele frequency equal to or higher than 0.05 were kept (28988 148 

markers). Physical positions of markers were retrieved from both MorexV1 (Mascher et 149 

al., 2017) and MorexV3 (Mascher et al., 2021). Additional genotyping for flowering time 150 

genes and Vrs1 (main gene determining spike type) was performed for all lines, with 151 

specific markers developed as described in Table S1.  152 

Genome-Wide Association Analysis and meta-analysis 153 
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Association analyses at the single trial level were carried out for all phenotypes and trials 154 

using the mixed linear model (MLM) implemented in the GAPIT package (Wang and 155 

Zhang, 2021) in R (R Core Team, 2024), with a genomic kinship matrix for adjustment of 156 

relatedness, calculated with a randomly selected set of 10% of markers (Fig. S3). 157 

The results of a single trial GWA per trait were meta-analysed with the software METAL 158 

(Willer et al., 2010), using the sample size strategy, for the whole set of trials, and for 159 

the best grouping of trials indicated by the AMMI analysis. For grain yield, ITA16 and 160 

ITA17 were discarded for meta-analysis due to the high dispersion within each trial. A 161 

meta-GWA threshold was calculated as the minimum p-value detected by 1000 162 

meta-analysis of 1000 permutations per trial, for each phenotype and combination of 163 

trials. Markers with a higher -log10(p-val) than the threshold were declared as a marker-164 

trait association (MTA). Neighbouring MTAs were grouped into single QTL with two 165 

different criteria. First, MTAs from the same chromosome were grouped according to a 166 

cluster analysis, as in Looseley et al. (2020). The marker with the largest association per 167 

QTL was declared as flag marker. Then, flag markers from the same chromosome, which 168 

were in the same LD block (detailed below), were merged. 169 

Linkage disequilibrium analysis 170 

A basal genomic LD threshold was computed. This threshold was estimated as the 171 

square of the 95th percentile of the distribution of unlinked r2 values (square root 172 

transformed), as in Breseghello and Sorrells (2006). This distribution was fitted with the 173 

values of the interchromosomal r2 between 200 random markers per chromosome, 174 

discounting the population structure using the r2v parameter, using the R package 175 

LDcorSV (Mangin et al., 2012), which considers kinship relatedness. For each 176 

chromosome, intrachromosomic LD block size was calculated using r2v, for pairwise LD 177 

values between 500 random markers per chromosome. Chromosomic LD decay was 178 

calculated as the point where a loess regression intercepted with the basal genomic LD, 179 

using R package fitdistrplus (Delignette-Muller and Dutang, 2015); this procedure served 180 

to merge the flag markers of several MTAs into a single QTL. 181 

To search for candidate genes, the confidence region for each QTL was calculated. Local 182 

LD decay around each flag marker was estimated fitting a loess regression to the 183 

pairwise LD values from the closest 400 markers. The confidence region was defined as 184 

the distance from the flag marker to the point where the loess curve decreased to the 185 

basal genomic LD threshold. When the loess curves did not converge, the chromosomal 186 

LD was used instead to declare confidence intervals. 187 
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Meta-analysis multilocus model  188 

The markers found in the meta-analysis may still present some multicollinearity. To 189 

reduce it, sequential multivariate analyses of variance were carried out for each trait, 190 

with package car (Fox and Weisberg, 2019). The flag markers were introduced as 191 

independent variables, and the genotypic values for each trial were the dependent 192 

variables. Markers were introduced sequentially at each step, keeping in the model the 193 

most significant one at each round. The final model summarizes the set of markers most 194 

likely having a combined independent effect for all trials, on each trait. 195 

GWA enrichment with exome capture markers 196 

Markers based on exome capture (EC) (Chen et al., 2022) were used for the refinement 197 

of peak regions found with 50k markers. For each QTL, all available markers (50k + EC 198 

markers) within its local LD block were retrieved and a single-trial GWA and its meta-199 

analysis were run again. Exome capture markers with higher -log10(p-values) than that 200 

of the flag marker were considered indicators of a possible candidate gene. Relevant 201 

annotations of homologs from other species and gene expression (Milne et al., 2021; Li 202 

et al., 2023) in tissues related to the phenotype were considered as additional pointers 203 

for possible candidate genes. 204 

Homologues of the candidate genes from Arabidopsis thaliana, rice, and wheat were 205 

identified with protein BLAST in order to gather functional information using Ensembl 206 

Plants (Yates et al., 2022). Only the top homologue with an identity above 80% was 207 

considered. Orthologues of Oryza sativa subsp. japonica of each candidate gene were 208 

identified with Ensembl Plants. FunRiceGenes (Huang et al., 2022) was used to check if 209 

a rice orthologue was a trait-related gene. 210 

Allele frequency shifts over time of cultivar release 211 

The genotypic panel used is representative of the progression of spring barley breeding 212 

in Europe. The wide range in the cultivars’ year of release enables tracking of the fate of 213 

QTLs in parallel with the history of European spring barley breeding. The cultivars were 214 

grouped by year of release into four groups, with the number of cultivars in parentheses: 215 

1920-1959 (n = 18), 1960-1979 (38), 1980-1999 (69) and 2000- (29), respectively. Mean 216 

allele frequencies of 250 rolling windows per chromosome were calculated for the four 217 

groups of cultivars. MetaQTLs allele frequencies were also calculated for the same four 218 

classes, to describe any trends likely due to breeding. Allele frequency shifts of 219 
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metaQTLs, and genome-wide rolling windows, were determined as the difference 220 

between the allele frequencies of the oldest and most recent group of cultivars. 221 

Results 222 

Field trial results 223 

The field trials represented a varied range of latitudes, climates, and edaphic and 224 

agronomic conditions. Accordingly, grain yields were highly variable, between 2.8 and 225 

8.0 t ha-1, with an overall yield of 4.9 t ha-1. Autumn- or winter-sown trials in Spain and 226 

Morocco showed the lowest yields, while trials autumn-sown in Italy and spring-sown 227 

trials at northern latitudes were more productive (Table 1, Fig. S4). The largest variation 228 

in days from sowing to heading was mainly caused by sowing date. The trials that were 229 

autumn-sown in Italy or Spain, as well as the winter-sown trial in Morocco, experienced 230 

longer cycles, followed by the late-winter-sown trials in Italy (ITA09 and ITA10, sown in 231 

February and early March), and by all the spring-sown trials. Among the latter, Scottish 232 

trials showed longer seasons than German and Finnish trials. Within sowing dates, those 233 

differences in cycle lengths were probably caused by different rates of accumulation of 234 

growing degree days. Plant height also varied widely between trial means, from 52 to 235 

90 cm, suggesting a large variability in water availability during the stem elongation 236 

phase. Thousand-grain weight (TGW) varied between 33 g, for some southern locations, 237 

to 51 g in the Scottish trials, indicating highly variable grain filling conditions. Grain yield 238 

trial means showed a tight correlation of 0.84 with plant height (a surrogate of biomass) 239 

and a moderate correlation with TGW (0.60), indicating the importance of the biomass 240 

formation phase, throughout the entire season, and of the conditions prevalent during 241 

grain filling for grain yield build-up (Fig. S5). 242 

For all the traits, both the genotypic and genotype by environment (G x E) interaction 243 

effects were significant. In general, G x E was more relevant for GY or TGW than for HD 244 

or PH but, in all cases, the genotypic sum of squares was much larger. G x E patterns 245 

revealed by the AMMI analysis were different for each trait. For grain yield, most trials 246 

formed a tight cloud, except those of ITA16 and ITA17, both being trials with high yields 247 

having a large effect on overall G x E variance (Table 2, Fig. S6). For heading date (Fig. 1), 248 

the first principal component reflected mainly a difference between sowing dates, with 249 

autumn-sown (ESP16, ESP17, ITA16, ITA17) or winter-sown trials (MAR16) showing large 250 

positive loadings, spring-sown ones (DE1-09, DE1-10, DE2-09, GBR09, GBR10, GBR16, 251 

GBR17, FIN16, FIN17) placed opposite to them, and intermediate-sowing dates (ITA09 252 
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and ITA10) in a halfway position. ITA09 and ITA10 were, however, classified as spring 253 

trials for meta-analysis. The first principal component explained a large proportion of G 254 

x E, and was strongly influenced by the differential behaviour of Nordic cultivars Mona 255 

and Saana. These cultivars were relatively later in the northernmost environments, and 256 

very early in the autumn-sown trials. This was also evidenced by the comparison of the 257 

differences between heading date of these cultivars and the overall mean at each trial 258 

(Fig. S7). The distribution of trials over the first component for plant height showed a 259 

geographic pattern, with most southern environments (Italy, Morocco and Spain) on one 260 

side of the first axis, and most northern towards the opposite side (Finland, Germany 261 

and the United Kingdom). For TGW, the unique behaviour of ITA16 was the main cause 262 

of the very large first principal component. 263 

QTL analysis at single environments 264 

GWA analyses of the four phenotypic traits at the single-trial level produced relatively 265 

weak associations. For grain yield, only two MTAs were detected above a Bonferroni 266 

threshold of P<0.05, while 20 MTAs were detected for heading date and none both for 267 

plant height and for thousand grain weight. Both MTAs of GY were detected from ITA10; 268 

the 20 MTAs for HD were from ESP16. Lowering the threshold to a more liberal 269 

p<0.0001, commonly used in GWA studies, still detected 125 MTAs for grain yield, 96 270 

MTAs for heading date, 54 MTAs for plant height, and 10 MTAs for TGW (Table S3). Some 271 

regions with common QTLs across trials were suggested but, overall, the number and 272 

strength of associations found was low. 273 

QTL meta-analysis 274 

The meta-analyses amplified the association signals, based on the relevance of p-values 275 

and the commonality in the direction of the effects sign across trials. The results were 276 

analysed using a stringent threshold based on permutations. Many SNPs had 277 

associations above that threshold. Some markers clearly indicated the same 278 

chromosome region. Associated markers were merged into QTLs, combining several 279 

criteria. All associated markers in a chromosome were subjected to cluster analysis, as 280 

in Looseley et al. (2020), suggesting groups likely belonging to the same QTL. The local 281 

LD decay (and chromosomal LD decay, if local LD was indeterminate), helped to delimit 282 

the QTLs on each chromosome. This process resulted in the detection of 23 QTLs for 283 

heading date, 29 for plant height, 11 for grain yield, and 27 for thousand grain weight 284 

(Table 3, Fig.2, Fig. S8). These numbers are rather high, because of the detection of QTLs 285 

having minor effects, which are usually not found in studies of smaller scale. The meta-286 
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analysis tends to identify MTAs that show the same sign across all trials. For this reason, 287 

it is not expected that it will capture qualitative QTL-by-environment interactions, if 288 

these exist. Therefore, most QTLs were rather consistent across trials (Table 3). 289 

However, some patterns of interaction were evident for a few QTLs, particularly for 290 

heading date. The differences in significance between the autumn- and spring-sown 291 

trials were large in some cases. The QTLs for HD5 (Fig. 3), HD6, and HD8 were much 292 

more significant in spring than in autumn trials. Conversely, HD21 was relatively more 293 

important in autumn-sown trials. There was a single QTL detected in the analyses of HD 294 

split by sowing time that was not detected in the global analysis. HDA1, on 1H, was 295 

significant only in the autumn-sown trials, indicating a marked QTL-by-environment 296 

interaction, possibly of qualitative nature, at this locus. The QTL-by-environment 297 

interaction was less evident for plant height (Table 3), as shown by PH14 (Fig. 3). 298 

Multilocus models derived from sequential MANOVA analyses were used to identify the 299 

best subset of significant QTLs that jointly explained each trait. All QTLs included in the 300 

models were significant for P<0.05 or less and had partial Eta squared (ηp²) above 0.14. 301 

This value is commonly used as threshold to declare the influence of independent 302 

factors on the dependent variables. These joint models explained around 16% of 303 

phenotypic variance for HD, TGW, and GY, and 33% for PH (Table 4). The QTLs retained 304 

in the models had a rather small effect, explaining from 1.08 up to 6.07 percent of the 305 

variance of the traits: from 0.14 to 0.33 t ha-1 (averaged across all environments) for GY, 306 

from 0.7 to 1.9 days for HD, 1.4 to 2.7 cm for PH, and 0.6 to 1.3 g for TGW. The QTLs 307 

explaining more than 5% of the variance of the trait were PH28, on 7H (2.5 cm), and 308 

GY2, on 1H (5.08%, 0.28 t ha-1). 309 

The intervals for confidence regions of the QTLs were wide, with a mean size of 25.95 310 

Mb. Regions ranged from 1.23 Mb to 349.45 Mb, illustrating just how unevenly 311 

distributed is LD in spring barley germplasm. Moreover, two regions of nearly 350 Mb 312 

were identified on chromosome 7H, most likely related to an inversion of 141 Mb 313 

(Jayakodi et al., 2020) that already has been identified in some cultivars included in our 314 

association panel. There was overlap between the confidence intervals for QTLs of 315 

different traits, as indicated in Table S4. The region of TGW15-PH19 could represent the 316 

same QTL with pleiotropic effects. Some grain yield QTLs overlap with plant height 317 

(PH4), and thousand grain weight (TGW5, TGW25, TGW26, and TGW27). Other QTLs 318 

were linked to some extent, which may have implications for their management in 319 

breeding. 320 
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Temporal variation in traits and QTL allelic frequencies  321 

The classification of cultivars into four classes, according to the year of release, revealed 322 

salient trait and QTL trends resulting from breeding efforts and preferences. Plant height 323 

and thousand-grain weight presented marked trends towards reduced (PH) or increased 324 

(TGW) values through the years, in accordance with the expected outcome from 325 

breeding programs (Fig. 4) and these traits’ heritability (Table 1). The trends were highly 326 

consistent across environments (Fig. S4). For grain yield, the increase over time was less 327 

marked, except in Scotland. In general, the largest yield improvement was observed for 328 

the most modern cultivars compared to earlier ones. There were no marked historic 329 

trends regarding heading date. The only remarkable feature was that the most modern 330 

class of cultivars was always the earliest in all spring-grown trials, whereas this 331 

difference was not observed in the autumn-sown trials, hinting at the occurrence of a 332 

possible genotype-by-environment interaction. 333 

Regarding allelic frequencies for QTLs over time, some QTLs followed the general trend 334 

for their trait, while others showed no apparent response. For PH, the height-increasing 335 

alleles of eight QTLs were already at low frequencies in the old cultivars; these remained 336 

low thereafter. Five QTLs (PH10, PH11, PH17, PH24, PH26) seemed not to be affected 337 

by selection, keeping high to very high frequencies of height-increasing alleles, whereas 338 

11 QTLs exhibited marked increases in the frequency of height-reducing alleles 339 

(coloured lines, Fig. 5). For TGW (Fig. S9), the situation was similar, but with fewer QTLs 340 

apparently affected by selection. Five QTLs (TGW2, TGW5, TGW6, TGW11, TGW12) 341 

showed high frequencies of grain-weight-increasing alleles already in the oldest cultivar 342 

class, increasing slightly to almost fixation in the most modern class. The frequencies of 343 

another five QTLs (TGW7, TGW14, TGW18, TGW20, TGW26) for higher grain weight 344 

approximately doubled over time, i.e., were apparently favoured by selection. For 345 

another 17 QTLs, frequencies of favourable alleles varied between medium to low, with 346 

little or no response to selection. For GY, the frequency shifts of several QTLs occurred 347 

only in the most recent groups of cultivars. An exception was GY7, which was the QTL 348 

having the largest frequency change over time, considering all four analysed traits. For 349 

HD (Fig. S9), there were three QTLs that were apparently affected by selection (HD5, 350 

HD6 and HD8). These QTLs suffered some selection towards earliness. It is remarkable 351 

that these three QTLs were detected in the spring-sown trials, yet not in the 352 

autumn-sown ones (Table 3), showing the largest difference in significance between the 353 

two sets of trials. They may be responsible for the increased earliness shown by the most 354 

modern class of cultivars, which is seen only under spring-sown conditions. 355 
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At the genome level, some regions seemed preferentially targeted by selection. This was 356 

examined by looking at the difference in frequencies between the oldest and newest 357 

cultivar classes, calculated for the SNPs divided in 250 rolling windows (bins) per 358 

chromosome for all four groups of year of release (Fig. S10). Focusing on the 1% of bins 359 

with the largest frequency changes, the most visible selection footprint was in the 360 

pericentromeric area of chromosome 5H (65-310 Mb), coincident with the haplotype 361 

already detected by Wonneberger et al. (2023). Another narrow region in 5HL (around 362 

543 Mb) showed similar allele frequency changes. Finally, a region in 4HL (510-530 Mb) 363 

also showed two close, narrow peaks of very large frequency shifts over time. For all 364 

traits, we have identified some QTLs apparently untouched by selection and some at 365 

low frequencies in the set studied. These could be aimed at by current breeders, 366 

provided they have not already been targeted by breeding in recent years and that they 367 

do not convey negative pleiotropic effects. 368 

Exome capture enrichment and candidate genes 369 

The inclusion of exome capture (EC) data for the analysis of the QTLs detected provided 370 

119,811 more markers. In 25 cases (31.65%), exome capture markers had equal or 371 

higher association than for the 50k SNPs (Table S5); these were designated as the new 372 

flag SNPs. For each QTL, a search of candidate genes for the flag markers was carried 373 

out within the confidence interval regions. In some cases, flag markers were present 374 

inside genes having annotations relevant for the traits considered. The EC markers 375 

provided higher resolution than did SNPs from the 50k set, for example, in the region of 376 

flowering time QTL HD17 on chromosome 6H. That confidence interval region harbours 377 

two flowering-related genes, HvCMF3 (Cockram et al., 2012) and HvZTLb (Russell et al., 378 

2016). However, the EC marker with the largest association is located inside gene model 379 

HORVU.MOREX.r3.6HG0557980, annotated as the nuclear pore complex protein Nup 380 

160.  381 

Several plant height QTLs presented EC markers with higher associations than those of 382 

markers in the 50k SNP set. PH1 showed highly associated EC markers in two different 383 

genes. While the most strongly associated marker was within a low-confidence gene, 384 

the second group of highly associated markers pointed to a nitrate transporter 385 

(HORVU.MOREX.r3.1HG0005090), which is an ortholog of rice OsNRT1.4 (Bucher et al., 386 

2014). PH24, which presents one of the highest associations, was within gene 387 

HORVU.MOREX.r3.6HG0632820, annotated as a WRKY transcription factor-like protein. 388 

The sdw1 gene is a good candidate for QTL PH14. Mutations in this gene, a gibberellin 389 
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20-oxidase gene (HvGA20ox2), are one of the most common causes of semi-dwarfism in 390 

barley. It is a multiallelic locus, with a few alleles commonly employed in barley breeding 391 

to reduce plant height (Xu et al., 2017).  392 

Half of the QTLs for thousand-grain weight contained interesting candidate genes, 393 

indicated by a higher association of an EC marker. For TGW18, included in the 394 

multivariate multilocus model, an ortholog of rice gene OsBRXL4 was identified 395 

(HORVU.MOREX.r3.5HG0535760). The EC flag maker gene for TGW27 is 396 

HORVU.MOREX.r3.7HG0752360, which is a lysine-specific demethylase. Interestingly, 397 

this is the same annotation of the Vrs3 gene (Bull et al., 2017; van Esse et al., 2017) and 398 

is expressed in developing inflorescences and grains. Its homologous gene in A. thaliana 399 

is activated under dehydration stress (Huang et al., 2019). For grain yield, enrichment 400 

with EC markers identified a gene coding an ɑ-glucosidase enzyme in QTL GY5. This gene, 401 

HvAGL2 (HORVU.MOREX.r3.3HG0221900) was previously confirmed to be involved in 402 

starch metabolism in developing grains in barley (Andriotis et al., 2016). The GY2 403 

confidence interval includes the HvHOX1 (Vrs1) gene, involved in spike-row 404 

determination (Komatsuda et al., 2007). We used a specifically-designed KASP marker 405 

(Table S1) to genotype the panel for the deficiens allele Vrs1.t. None of the cultivars with 406 

the unfavourable allele at GY2 carried Vrs1.t. Out of the 15 cultivars carrying the 407 

favourable allele at QTL GY2, 14 were available to phenotype and genotype. Thirteen of 408 

them (all but Forum) carried the deficiens allele. An evaluation of the spikes of the 14 409 

revealed differences in the size of the lateral spikelets. Eleven cultivars were 410 

phenotypically deficiens, without lateral spikelets. Forum was clearly not deficiens, 411 

genetically and phenotypically. Although Felicitas and Tocada are genetically deficiens, 412 

both showed very small laterals spikelets (Fig. S11). These results support Vrs1 as a 413 

candidate gene for GY2. 414 

DISCUSSION 415 

The sensitivity of the meta-analysis varied among traits. Using the rather liberal 416 

threshold (widely found in the literature) of –log10(p-value) = 4 at single-trial level, a total 417 

of 96 MTAs were detected for HD, in approximately 16 regions, with no QTL detected in 418 

more than three trials, while the meta-GWA allowed identification of 22 QTLs in high-419 

confidence regions for HD (reduced to eight in the multilocus analysis). For PH and TGW, 420 

only three and six regions, respectively, were detected in single trials (with a maximum 421 

coincidence of five trials), much less than those identified by the meta-analysis. For grain 422 

yield, there were more regions detected in single trials, altogether 125 MTAs in 20 423 
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regions, compared to the 11 QTLs found in the meta-analysis. However, with a threshold 424 

of five, the number of MTAs dropped to 48 (in two QTL regions), zero, six (in one QTL), 425 

and 34 (in nine QTL regions), for HD, TGW, PH, and GY, respectively.  426 

Overall, the meta-analysis increased the power of QTL detection; the confidence on the 427 

main-effect QTLs, particularly those in the multilocus analyses, is high. The more trials 428 

involved, the greater power of detection achieved. We were able to detect QTL effects 429 

as low as just above 1% of the traits’ variances. The stringent permutation test which 430 

was used protects against false positives. A strict LD control to determine the confidence 431 

intervals, and the use of multilocus models, restricted the number of QTLs detected even 432 

further, but we still found a high number of QTLs. Besides the increased power of the 433 

meta-analysis, breaking down the analysis by the main G x E component detected for 434 

HD and PH revealed QTLs and candidate genes specific for certain conditions, such as 435 

sowing date (autumn/spring) or latitude. The unique behaviour of cultivars Mona and 436 

Saana is likely caused by their carrying the same mutant allele in a major flowering time 437 

gene, HvELF3 (Faure et al., 2012, Göransson et al., 2021). This causes them to bypass the 438 

photoperiod sensitivity mechanism, leading to early flowering irrespective of the 439 

daylength. This fact makes them relatively early in Southern environments, in which 440 

most of the growing period occurs under short photoperiod. 441 

The QTL regions found in this study were compared with those of recent studies 442 

involving large populations and SNP genotyping, therefore allowing direct comparison. 443 

First, the co-localisation of plant height QTLs with those reported by Tondelli et al. (2013) 444 

was rather high. This is not surprising, as our genotype set is a subsample of theirs (they 445 

used a 216 spring two-rowed panel), and some trials were also shared (those from 2009 446 

and 2010). We found 29 PH QTLs, compared with 17 found in Tondelli et al. (2013). Out 447 

of those 17 PH QTLs, 11 were inside the confidence intervals of our QTLs (PH1, PH2, PH4, 448 

PH6, PH11, PH13, PH14, or very close to them PH15, PH20, PH25, PH29). Plant height 449 

QTL derived from part of our trials (2016 and 2017) were reported by Bretani et al. 450 

(2022). They studied a larger diversity panel, comprising 165 two-rowed (including our 451 

entire panel), and 96 six-rowed barleys. They found 48 PH QTL, 26 of them either in the 452 

two-rowed or in the whole panel. Twelve of those 26 were inside the confidence 453 

intervals of nine of our QTLs (PH2, PH3, PH4, PH5, PH8, PH13, PH14, PH20, PH28). None 454 

of our QTLs coincided with their 22 six-rowed specific QTLs. 455 

The same association panel as Tondelli et al. (2013) was studied by Xu et al. (2018). In 456 

this case, only two QTLs, one for grain yield (GY6) and one for thousand grain weight 457 
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(TGW18), are shared with our results. This low number of matches could be explained 458 

by different methodologies for QTL detection. Multilocation QTL analysis was run using 459 

Genstat software, which allows finding QTL in interactions with the environment. As 460 

mentioned above, the meta-analysis focuses on QTLs with low interaction. Out of the 461 

23 QTLs detected for GY and TGW in the work by Xu et al. (2018), only eight were 462 

detected as the main factor QTL (i.e., not interacting with the environment) and one of 463 

them coincided with a TGW found in our study. 464 

Bustos-Korts et al. (2019) studied a highly diverse panel of 371 genotypes including 465 

landraces and cultivars, two- and six-rowed, winter and spring barley. They scored plant 466 

height, thousand grain weight, and flowering time (Z55) in common with our study. Two 467 

QTLs are shared for flowering time (HD12 and HD13), one of them in the region of 468 

HvVRN2. For plant height, two QTLs have matching confidence intervals (PH8 and PH14); 469 

sdw1 is within one of them. For TGW, there is no QTL in common, although they found 470 

a QTL for this trait close to the Vrs1 gene, which is the same location as our QTL GY2. 471 

Recently, a large association panel (n = 363) of European two-rowed spring barley was 472 

analysed for flowering time, plant height, and thousand grain weight (Bernád et al., 473 

2024). One QTL for flowering time on chromosome 6H had overlapping confidence 474 

intervals with HD17. Meanwhile, one MTA for plant height is within PH14, where sdw1 475 

is located, while another one on chromosome 7H is close to PH25, where their LD block 476 

should overlap. For thousand grain weight, one of their four QTLs has also been 477 

identified in this study (TGW9, chromosome 3H). 478 

We found evidence of surprisingly highly colocalizing QTLs in a recent study addressing 479 

two- and six-rowed spring barley germplasm, which was less related to our panel than 480 

that of other previous studies. Two articles published using a diverse multi-parent barley 481 

population found new QTLs with minor to moderate phenotypic effects (Shrestha et al., 482 

2022; Cosenza et al., 2024). Several of our HD QTLs co-located with those found in 483 

Cosenza et al. (2024): HD3, HD4, HD10, HD15, and HD17 had overlapping confidence 484 

intervals with QTLs found in the multi-parent population analysis; whereas QTLs 485 

overlapping with HD5, HD13 and HD22 were detected in single populations. For plant 486 

height, 14 of the 29 QTLs (Table 3) co-located with QTLs for the same trait in the multi-487 

parent population. Most of them were detected in single populations, but three (PH15, 488 

PH22, PH24) were detected in the whole population. Regarding thousand grain weight, 489 

out of the 27 QTLs found in our study, 10 coincided with TGW QTLs in the multi-parent 490 

population (Shrestha et al., 2022). 491 
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The population studied by Shrestha et al. (2022) and Cosenza et al. (2024) is composed 492 

of two-row and six-row subpopulations and, thus, probably represents a larger genetic 493 

diversity space than our panel. Moreover, the multi-parent population they used is more 494 

amenable to the detection of small effect QTLs. In any case, the multiple shared 495 

locations for QTLs in our study and theirs is likely a result of the higher power of 496 

detection achieved with either approach, thus providing further confidence in the 497 

associations found in the present study. Therefore, the loci identified constitute a sound 498 

set of QTLs, with a clear potential to contribute to barley breeding in Europe. 499 

A recent study (Hong et al., 2024), using a large and diverse two-rowed barley panel, 500 

found 38 MTAs for grain size, one in common with our TGW20 QTL. Finally, a meta-501 

analysis revising yield-related traits of 54 studies that were published since 2000 (Du et 502 

al., 2024) found four QTLs co-locating with ours: TGW3, TGW17, TGW25 and GY2. 503 

Implications for breeding 504 

The major selection footprints that we found appeared to be associated with disease 505 

resistance. We concentrated only on the most salient selective sweeps, although it is 506 

evident that breeding affected allelic frequencies throughout the genome with the shifts 507 

(large or small) paralleling always the time gradient (Fig. S10). The pericentromeric 508 

region of 5H, and its possible relation to the introduction of leaf rust tolerance, was 509 

thoroughly described in Wonneberger et al. (2023). Interestingly, the narrower, but 510 

equally marked selection footprint of 5HL appears to be associated with two stem rust 511 

resistance QTLs (Case et al., 2018). The selection footprint found in 4HL was not 512 

associated with agronomic QTLs. The closest one was TGW13, 15 Mb away. However, a 513 

QTL for net blotch tolerance, on the position of the selection footprints was found by 514 

Daba et al. (2020). 515 

The dynamics of the evolution of allele frequencies for the agronomic QTLs in the 516 

timeframe of our study suggest an early selection of many plant height QTLs, followed 517 

closely in time by selection for thousand grain weight. Not surprisingly, both traits 518 

usually show high heritability. Effective selection for grain yield QTLs occurs later, 519 

apparently facilitated once the variance for the other traits was reduced. Plant height is 520 

easy to select, due to its high heritability, and shortness was preferred to minimize 521 

lodging, particularly after the introduction of semi-dwarf alleles like denso/sdw1 522 

(detected as PH14). Grain yield and thousand-grain weight were also important 523 

breeding targets for production and quality, but their selection appeared stronger after 524 

PH was improved. For instance, in the close QTL pairs PH1-TGW1, PH6-TGW4, PH15-525 
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TGW10, PH4-GY1, and PH8-GY3 (Table S4), PH-favourable alleles were fixed, or almost 526 

so, in the most modern class of cultivars, whereas the frequencies of favourable alleles 527 

for the QTLs of the other trait were low (although already growing in some cases). This 528 

was also the case for the region with QTL PH27-TGW26-GY9. In this region, modern 529 

varieties have favourable alleles for GY and PH almost fixed, while the favourable TGW 530 

allele frequency is still low. In other cases, favourable alleles for the two traits in a 531 

particular region were found in intermediate frequencies throughout the breeding 532 

history (PH10-TGW7, PH26-TGW25, PH13-TGW9, PH24-TGW21). Therefore, selection 533 

for both favourable alleles is likely feasible although, in the last two cases, the genotypic 534 

frequencies indicate a possible linkage in repulsion for the favourable alleles. In all other 535 

cases, the favourable alleles had already been selected. These observations can be of 536 

direct use for barley breeders.  537 

GY7 showed the largest frequency shift, around 0.9, across time of all QTLs detected in 538 

this study. It was very effectively selected throughout the second half of the 20th 539 

Century. The QTLs PH19 and TGW15 lie close to GY7. These two QTLs share the flag 540 

marker, although with opposite effects for agronomic fitness. One allele is associated 541 

with low height and thin grains, and the other one to tall plants and large grains. The 542 

antagonistic effect of a single gene on these two traits was already described for the 543 

main semi-dwarfing gene in barley, HvGA20ox2 (Thomas et al., 1991). In this case, 544 

breeding selected short plants preferentially over large grains, although grain weight 545 

may have been compensated by selection at other loci. A possible explanation of the 546 

historic trends observed is that, once the PH19/TGW15 QTL was almost fixed for short 547 

plants, selection for grain yield at this region was facilitated. Indeed, favourable alleles 548 

for low TGW and plant height appear together in 142 cultivars, whereas the only nine 549 

cultivars with the “elevated height” allele also present the “high TGW” allele. 550 

The near fixation of favourable alleles for traits which suffered strong selection pressure 551 

on neighbouring QTLs may have helped the selection at GY7. A similar situation may 552 

have occurred at 5HL, where the near fixation of the favourable (low height) allele at 553 

PH22, may have strengthened selection near TGW18, whose favourable allele suffered 554 

strong selection over time. The proximity of some QTLs and their fates throughout 555 

breeding suggests possible targets for future breeding. For example, in the distal region 556 

of 3HL, PH15 shows a decreasing frequency of “high” alleles, indicating selection 557 

pressure; however, the favourable allele of the neighbouring QTL, TGW10, remains at a 558 

low frequency. This suggests the presence of linked favourable alleles in repulsion, a 559 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.04.611234doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611234
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

situation that could be addressed by breeding. A similar phenomenon occurs at the 560 

beginning of 2H, with QTL PH6 and TGW4. 561 

Candidate genes 562 

Some candidate loci corresponded to the already-known functions of characterised 563 

genes, while loci either provided new information about the effects of known genes or 564 

revealed genes with unknown roles in barley, but with suggested ones based on 565 

orthologues in rice (Table 5). For example, the candidate gene for HD17 is a homologue 566 

of Arabidopsis thaliana AtNUP160, associated with flowering time (Li et al., 2020). It 567 

anchors HOS1 to the ubiquitinated CONSTANS protein, which has not been reported in 568 

barley so far. Further evidence for the possible involvement of this gene in flowering 569 

comes from its preferential expression in barley apical meristems, inflorescences, and 570 

microspores (Li et al., 2023). 571 

Looking at the confidence intervals of HD QTLs, several known flowering-related genes 572 

were located within them. Among these 22 QTLs, the confidence regions included 573 

HvCO9 (Cockram et al., 2012), HvFT3 (Faure et al., 2007, Kikuchi et al., 2009), HvHAP3 574 

(Campoli et al., 2013), and HvVRN2 (Karsai et al., 2005), respectively in HD3, HD4, HD6, 575 

and HD13. However, HvFT3 is not a good candidate, since all 151 cultivars have the same 576 

(presence) allele at this gene. Similarly, HvVRN2 is not a likely candidate, as the allelic 577 

segregation for this gene does not coincide with that of the QTL (Table S1). On the 578 

contrary, three more QTLs were located near flowering-related genes that are good 579 

candidates: HD13 was only 3 Mb apart from HvFT5 (Faure et al., 2007, Kikuchi et al., 580 

2009), HD21 was 5.5 Mb away from HvMADS26 (Pankin et al., 2018, Hill et al., 2019), 581 

and HD16 was 383 kb away of HvFRI (Campoli et al., 2013). 582 

The candidate gene for the plant height QTL PH24 corresponds to the orthologous one 583 

in rice, LAI1/LAZY1. This gene regulates the expression of auxin transporters to control 584 

tiller angle and shoot gravitropism (Li et al., 2007; Zhu et al., 2020). Interestingly, a 585 

candidate gene for the thousand-grain weight QTL TGW18 is the orthologue of rice 586 

OsBRXL4, which is a regulator of the nuclear localization gene of rice LAI1/LAZY1 (Li et 587 

al., 2019). Although neither rice gene has been studied for grain weight, they are highly 588 

related to plant architecture. There is a possible candidate locus affecting two QTLs on 589 

7HL, PH29 and GY11. The candidate is a cluster of four orthologues of the rice gene 590 

OsMPH1/OsMYB45, located exactly in the overlapping interval of the two QTLs. This rice 591 

gene affects plant height and grain yield (Zhang et al., 2017), which is consistent with 592 

our observations. The favourable alleles at these two QTL were present at high 593 
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frequencies, and both increased over time until fixation, indicating joint selection in this 594 

region. 595 

The HvHOX1 (Vrs1) gene is a candidate for QTL GY2. The haplotype Vrs1.t, commonly 596 

known as deficiens (Sakuma et al., 2017) could underlie the favourable allele, providing 597 

a yield advantage of 0.28 t ha-1 across all trials. Selection at this QTL apparently started 598 

in the 1980-90s and was subject to strong selection pressure. This allele conferred larger 599 

grains, although this did not result in a yield advantage in the study by Sakuma et al 600 

(2017). Those authors hypothesized that deficiens induces larger grains by the 601 

suppression of organs (lateral florets), not specifically involved in sink/source 602 

relationships. In our study, however, this QTL did not show a clear signal for TGW, but 603 

the GY response was very consistent across environments. To the best of our knowledge, 604 

this is the first time that a yield advantage has been reported for this gene under field 605 

conditions. 606 

In summary, our results indicate when and where breeding removed allelic diversity, 607 

which traits were more accessible to breeders, where there were effects on nearby 608 

genes, and how. When combined with candidate gene identification, our approach 609 

allows the biological function of gene under relevant field conditions to be examined. 610 

This information, in sum, provides a road map to help breeders fine tuning their targets 611 

for the future. 612 

Supplementary data 613 

Supplementary Table S1. List of 164 genotypes, with country and release year. Allelic 614 

data for flowering-related genes and Vrs1. 615 

Supplementary Table S2. Information of the field trial network and best spatial 616 

correction models. 617 

Supplementary Table S3. Summary of MTAs of single-trial GWAS. 618 

Supplementary Table S4. Co-localisation of meta-QTLs between traits. 619 

Supplementary Table S5. Summary of meta-QTLs enrichment with exome capture 620 

markers. 621 

Supplementary Table S6. BLUEs of the four phenotypic traits evaluated. 622 

Supplementary Table S7. Genotypic data of 151 two-rowed spring barleys 623 
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Table 1. Field trial network; locations and years. Phenotype means, standard deviation, and broad sense 

heritability. 

   
Heading time 

(DAS) 

Plant height 

(cm) 

Grain yield 

(t/ha) 

Thousand 

grain weight 

(g) 

Country Trial code 
Sowing 

date 
Mean SD Mean SD Mean SD Mean SD 

Morocco MAR16 06/01/16 104.0 4.5 71.3 7.2 3.25 0.55 NA NA 

Spain ESP16 11/11/15 163.7 6.6 63 8.8 2.98 0.67 33.2 3.3 

Spain ESP17 15/11/16 154.1 4.6 54.1 6.5 2.85 0.5 39.1 3 

Italy ITA16 05/11/15 167.8 4.0 86.4 6.9 7.98 1.13 38.4 5.2 

Italy ITA17 08/11/16 174.5 4.9 84.3 6.9 6.79 1.03 46.6 4.6 

Italy ITA09 17/02/09 96.3 2.9 65.3 6.1 4.55 0.74 43.6 3.1 

Italy ITA10 01/03/10 93.6 3.8 52.4 5.8 3.14 0.69 42.5 2.6 

Germany DE1-09 31/03/09 62.8 3.3 76.2 7.4 3.91 0.76 35.9 4.6 

Germany DE1-10 06/04/10 67.5 2.2 83.2 8.3 4.74 0.76 46.5 3.7 

Germany DE2-09 03/04/09 66.5 2.9 89.9 12.8 6.55 0.66 50.1 3.4 

United 

Kingdom 
GBR09 25/03/09 90.7 2.5 72.3 10.8 5.51 0.63 46.1 3.4 

United 

Kingdom 
GBR10 01/04/10 78.9 2.6 82 9.7 5.24 0.76 46.9 3.9 

United 

Kingdom 
GBR16 16/03/16 89.5 2.3 89.8 14.2 6.21 0.73 50.4 3.2 

United 

Kingdom 
GBR17 29/03/17 83.4 2.2 88.1 10.4 7.04 0.79 51.0 3.6 

Finland FIN16 11/05/16 53.3 3.4 49.4 6.3 2.94 0.6 35.8 3.1 

Finland FIN17 19/05/17 53.9 1.9 69.9 7.5 5.43 0.56 49.2 3.6 

Heritability (h2)  0.822  0.869  0.216  0.836  
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Table 2. Multi-environment analysis of variance for BLUEs of four traits. Mean squares are presented (ms). 

As the replicate layer is not present, the variance ratio (vr) for genotype and environment is calculated 

with the G x E term in the denominator, becoming a stringent test, as this variance adds true G x E variance 

to the error variance. G x E variance is broken down in the first four components of an AMMI analysis for 

each trait, each tested for significance against the residual G x E variance left after removing the variance 

accounted for by each principal component (PC). 

  Grain yield Heading date Plant height 
Thousand grain 

weight 

Source df ms vr ms vr ms vr ms vr 

Genotype (G) 142 3.01 7.9** 117 27.9** 856 34.5** 124.9 22.3** 
Environment (E) 15 397.3 1049.9** 249336 59620.4** 26706 1075.1** 5003.7 894.7** 
G x E 2129 0.38  4  25  5.6  
 IPCA 1 156 0.94 3.7** 23 12.1** 128 10.8** 17.3 5.3** 
 IPCA 2 154 0.68 2.7** 6 3.0** 47 3.9** 10.5 3.2** 
 IPCA 3 152 0.62 2.4** 5 2.9** 28 2.4** 8.1 2.5** 
 IPCA 4 150 0.45 1.8** 4 2.2** 23 1.9** 7.6 2.3** 
 Residuals 1517 0.26  2  12  3.2  
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Table 3. Codes, positions, and significance of QTLs detected in the meta-analyses for the four traits studied. The last two columns correspond to the meta-analyses carried 

out splitting the trials in two subsets, according to the main genotype-by-environment trends found for HD and PH. 

Trait QTL Flag marker CHR Position (bp) MAF (%) -log10(P) CI Left CI Right Frequency shift   

          
AUTUMN-

log(P) 
SPRING-log(P) 

HD HD1 JHI-9615 1H 9334749 7.95 21.59 8657247 10012251 -0.0198 4.65 18.09 

HD HD2 JHI-22609 1H 288026140 23.18 15.78 227188624 348863656 0.0278 5.28 11.20 

HD HD3 JHI-30295 1H 393403435 8.61 20.22 370210929 416595941 -0.0754 12.66 9.74 

HD HD4 JHI-40964 1H 473573354 14.57 22.66 463423350 483723358 0.0833 8.67 14.84 

HD HD5 JHI-79301 2H 48535423 21.85 18.87 43707921 53362925 0.3175 1.69 20.10 

HD HD6 JHI-84334 2H 80227961 8.61 13.12 54440457 106015465 0.1667 1.71 20.41 

HD HD7 JHI-139077 2H 650766414 6.62 32.33 648843896 652688932 -0.0556 11.91 21.32 

HD HD8 JHI-160692 3H 21859520 28.48 17.77 20147016 23572024 0.3334 1.06 20.39 

HD HD9 JHI-195020 3H 520711672 7.28 16.69 516881670 524541674 -0.1111 6.36 11.08 

HD HD10 JHI-202588 3H 553851218 25.83 18.88 551156212 556546224 0.0437 6.50 13.12 

HD HD11 JHI-230339 4H 11284074 7.95 15.4 9756570 12811578 -0.0556 5.14 10.95 

HD HD12 JHI-258528 4H 553142475 21.85 16.45 550707467 555577483 -0.0873 3.52 13.95 

HD HD13 JHI-274290 4H 605288793 8.61 19.89 602946289 607631297 -0.0556 6.45 14.19 

HD HD14 JHI-281887 5H 10837439 17.22 16.11 9264937 12409941 -0.2977 5.62 11.19 

HD HD15 JHI-333135 5H 523882465 6.62 21.22 521534963 526229967 -0.0873 12.53 10.66 

HD HD16 JHI-363055 5H 580109624 5.96 17.67 578892122 581327125 -0.0397 5.52 12.89 

HD HD17 JHI-385161 6H 40578511 6.62 34.76 9871009 71286013 -0.1667 9.33 26.44 

HD HD18 JHI-449563 7H 15111871 34.44 28.74 12271867 17951874 0.1389 8.70 20.89 

HD HD19 JHI-465895 7H 61645217 29.14 19.9 55847715 67442719 -0.0952 9.40 11.63 

HD HD20 JHI-482284 7H 339274267 5.30 20.47 180054249 498494285 -0.1111 13.26 9.60 

HD HD21 JHI-487408 7H 445376601 5.30 18.13 411521597 479231605 -0.0556 13.14 7.80 

HD HD22 JHI-500129 7H 590186971 8.61 16.81 586726967 593646975 -0.1111 4.80 12.77 
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Trait QTL Flag marker CHR Position (bp) MAF (%) -log10(P) CI Left CI Right Frequency shift   

HD HDA1 JHI-36690 1H 439402226  9.45 431402226 447402226  19.67 0.73 

          NORTH-log(P) SOUTH-log(P) 

PH PH1 JHI-10283 1H 10222515 26.49 14.32 8937513 11507517 0.2659 5.81 7.64 

PH PH2 JHI-26359 1H 341796547 21.85 22.67 307514031 376079063 0.3571 13.09 7.88 

PH PH3 JHI-31326 1H 399027554 39.74 22.42 377665052 420390056 0.6587 12.34 8.20 

PH PH4 JHI-50444 1H 497490361 5.30 15.61 496007859 498972863 0.1667 7.78 7.56 

PH PH5 JHI-71619 2H 21253094 28.48 27.93 19518088 22988100 0.3373 14.13 10.64 

PH PH6 SCRI_RS_207244 2H 43626804 25.83 21.73 39626802 47626806 0.0476 11.06 8.56 

PH PH7 JHI-102401 2H 545047467 21.85 11.96 531869961 558224973 0.2976 4.58 6.83 

PH PH8 JHI-127870 2H 630365638 48.34 27.41 627615632 633115644 0.7857 16.02 10.22 

PH PH9 JHI-149745 3H 2203527 5.96 14.65 0 5218531 0 7.90 7.67 

PH PH10 JHI-164742 3H 52796359 13.25 24.59 24821353 80771365 0.0834 13.56 10.08 

PH PH11 SCRI_RS_8664 3H 385814518 10.60 19.29 232594474 539034562 -0.0238 12.43 7.38 

PH PH12 JHI-192298 3H 501844817 5.96 14.24 492514815 511174819 0.0754 9.14 4.40 

PH PH13 JHI-197260 3H 529944715 38.41 42.18 521877213 538012217 0.4524 20.59 17.41 

PH PH14 JHI-204986 3H 562585430 29.80 32.94 560745422 564425438 0.5952 13.25 16.58 

PH PH15 JHI-224935 3H 617619009 39.07 17.53 615594005 619644013 0.504 4.44 8.91 

PH PH16 JHI-233087 4H 28157377 17.22 20.19 23844871 32469883 0.3889 10.20 7.95 

PH PH17 JHI-259677 4H 561914675 27.15 13.69 560192173 563637177 0.1032 5.62 6.22 

PH PH18 SCRI_RS_25685 4H 579246000 10.60 25.94 575945996 582546004 0.1865 15.18 9.10 

PH PH19 JHI-281008 5H 9003891 5.96 17.44 8228889 9778893 0.0556 9.71 7.81 

PH PH20 JHI-325973 5H 510459720 23.18 22.05 505807218 515112222 0.4643 14.83 8.29 

PH PH21 JHI-344172 5H 545071584 49.67 14.41 542706564 547436604 0.6548 6.04 7.00 

PH PH22 JHI-363188 5H 580264475 7.95 17.86 579106973 581421977 -0.0873 6.24 9.81 

PH PH23 JHI-376336 6H 16037775 11.26 20.81 15397771 16677779 0.0437 12.08 7.24 

PH PH24 JHI-432554 6H 558950326 37.09 28.17 553850324 564050327 -0.0595 13.31 13.36 

PH PH25 JHI-456995 7H 31631859 29.80 23.12 26229343 37034375 0.246 11.63 8.72 
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Trait QTL Flag marker CHR Position (bp) MAF (%) -log10(P) CI Left CI Right Frequency shift   

PH PH26 SCRI_RS_235584 7H 435303585 36.42 17.59 404683581 465923589 -0.0675 7.33 9.58 

          NORTH-log(P) SOUTH-log(P) 

PH PH27 JHI-488571 7H 484010786 5.30 12.51 470178282 497843290 0.0556 6.92 4.42 

PH PH28 JHI-493193 7H 567606818 39.07 22.06 562011816 573201820 0.2778 14.52 5.61 

PH PH29 JHI-501203 7H 593432421 5.30 25.17 590122417 596742424 0.2223 12.88 10.89 

            

TGW TGW1 JHI-8460 1H 8528373 6.62 13.39 7915871 9140874 -0.0714   

TGW TGW2 JHI-30897 1H 395769146 9.93 10.34 373764140 417774151 -0.1508   

TGW TGW3 JHI-37341 1H 445816857 32.45 14.04 433116855 458516859 -0.0873   

TGW TGW4 JHI-78063 2H 43791847 6.62 13.59 39781845 47801846 -0.1587   

TGW TGW5 JHI-143015 2H 657064597 7.95 22.00 653724591.5 660404602 -0.131   

TGW TGW6 JHI-148635 3H 317035 13.25 13.01 0 1259307 -0.1865   

TGW TGW7 JHI-164082 3H 36220523 15.89 11.36 31745517 40695529 -0.2302   

TGW TGW8 JHI-186657 3H 467575649 45.03 11.72 452938141 482213156 0.0198   

TGW TGW9 JHI-199513 3H 539898192 6.62 20.74 531870684 547925700 0.0198   

TGW TGW10 JHI-224889 3H 616943116 5.30 12.63 614920612 618965619 0.1111   

TGW TGW11 JHI-230271 4H 11066831 17.22 16.95 9536827 12596834 -0.0238   

TGW TGW12 JHI-236625 4H 50716395 10.60 14.12 33296389 68136400 -0.0953   

TGW TGW13 SCRI_RS_159331 4H 546549711 9.93 13.14 543149703 549949719 -0.0873   

TGW TGW14 JHI-266331 4H 588890830 27.15 16.52 585968326 591813334 -0.5357   

TGW TGW15 JHI-281008 5H 9003828 5.96 13.76 8228826 9778830 0.0556   

TGW TGW16 JHI-308899 5H 441356776 27.81 18.68 434834272 447879279 0.0635   

TGW TGW17 SCRI_RS_165578 5H 533639048 13.91 20.99 531739042 535539053 -0.1032   

TGW TGW18 JHI-364661 5H 582365354 41.72 22.95 581067852 583662855 -0.4683   

TGW TGW19 JHI-381643 6H 31250013 11.92 13.95 27115011 35385014 -0.0119   

TGW TGW20 JHI-402516 6H 388187724 49.67 13.84 359287700 417087747 -0.3095   

TGW TGW21 JHI-433405 6H 560487100 17.88 18.04 546287100 574687100 -0.0675   
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Trait QTL Flag marker CHR Position (bp) MAF (%) -log10(P) CI Left CI Right Frequency shift   

TGW TGW22 JHI-452562 7H 20790898 11.26 13.32 18458394 23123401 0.1111   

TGW TGW23 JHI-478583 7H 254515002 5.96 13.60 245715002 263315002 0.0198   

TGW TGW24 JHI-483539 7H 386803631 44.37 10.71 212081113 561526149 0.1071   

TGW TGW25 JHI-486280 7H 441942697 41.72 18.48 382762693 501122701 -0.004   

TGW TGW26 JHI-488064 7H 479905076 41.06 14.31 465226728 494583424 -0.2222   

TGW TGW27 JHI-519440 7H 630314109 6.62 15.08 626879105 633749113 -0.0159   

GY GY1 JHI-50447 1H 497490053 11.26 11.30 495987551 498992555 -0.3571   

GY GY2 JHI-107800 2H 571877011 9.93 15.69 558557009 585197013 -0.4286   

GY GY3 JHI-126025 2H 626362758 7.28 12.11 624117756 628607760 -0.3214   

GY GY4 JHI-144055 2H 657925477 8.61 11.33 651895471 663955483 -0.1667   

GY GY5 JHI-153479 3H 7136438 21.85 11.19 4503934 9768942 -0.1389   

GY GY6 JHI-226878 4H 2316928 15.23 9.74 974426 3659430 -0.4087   

GY GY7 JHI-279907 5H 6585842 31.79 9.86 5450840 7720844 -0.9286   

GY GY8 JHI-441782 7H 6202146 12.58 11.76 4697144 7707146 -0.2778   

GY GY9 JHI-489124 7H 496874345 5.30 11.39 483214341 510534349 -0.0556   

GY GY10 JHI-492462 7H 559843244 11.93 21.14 293446961 632540561 -0.0556   

GY GY11 JHI-504313 7H 598982630 8.61 18.35 595532628 602432632 -0.2222     
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Table 4. Summary of QTLs kept in the multivariate multilocus analysis for the four studied traits. 

Trait Chr QTL Best model Partial Eta2 
Percentage of 

explained variance 

HD 1H HD1 * 0.20 1.39 

HD 2H HD5 *** 0.37 2.89 

HD 3H HD8 *** 0.30 2.23 

HD 5H HD16 *** 0.22 1.58 

HD 6H HD17 *** 0.26 1.84 

HD 7H HD18 *** 0.27 1.95 

HD 7H HD21 *** 0.40 3.17 

HD 7H HD22 * 0.21 1.47 

     Total HD: 16.52 

PH 1H PH1 *** 0.40 3.17 

PH 2H PH6 *** 0.30 2.18 

PH 2H PH8 *** 0.30 2.23 

PH 3H PH11 ** 0.26 1.89 

PH 3H PH13 ** 0.23 1.58 

PH 3H PH14 *** 0.43 3.45 

PH 4H PH16 ** 0.23 1.65 

PH 4H PH17 * 0.21 1.48 

PH 5H PH20 *** 0.54 4.72 

PH 5H PH21 ** 0.23 1.66 

PH 6H PH23 * 0.20 1.42 

PH 7H PH26 * 0.21 1.50 

PH 7H PH28 *** 0.63 6.07 

     Total PH: 32.99 

TGW 1H TGW3 * 0.18 1.22 

TGW 2H TGW5 ** 0.23 1.63 

TGW 4H TGW14 *** 0.39 3.02 

TGW 5H TGW15 *** 0.32 2.40 

TGW 5H TGW16 * 0.20 1.36 

TGW 5H TGW18 *** 0.26 1.85 

TGW 6H TGW20 * 0.18 1.23 

TGW 7H TGW26 *** 0.32 2.41 

TGW 7H TGW27 ** 0.21 1.50 

     Total TGW: 16.61 

GY 2H GY2 *** 0.57 5.08 

GY 2H GY4 ** 0.20 1.41 

GY 4H GY6 . 0.16 1.08 

GY 5H GY7 *** 0.30 2.23 

GY 7H GY9 *** 0.26 1.86 

GY 7H GY10 * 0.18 1.22 

GY 7H GY11 *** 0.39 3.00 

     Total GY: 15.88 
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Table 5. Best candidate genes found for selected QTLs. 

Trait QTL CHR 
Candidate 

gene 
Gene model ID MorexV3 Annotation 

HD HD1 1H WNK3 HORVU.MOREX.r3.1HG0004150 Kinase family protein 

HD HD2 1H HvCMF10 HORVU.MOREX.r3.1HG0041150 Zinc finger protein CONSTANS 

HD HD3 1H HvCO9 HORVU.MOREX.r3.1HG0058180 CONSTANS-like protein 

HD HD5 2H HvCO18 HORVU.MOREX.r3.2HG0115000 CONSTANS-like protein 

HD HD9 3H HvFDL-H4 HORVU.MOREX.r3.3HG0296180 BZIP transcription factor 

HD HD16 5H HvFRI HORVU.MOREX.r3.5HG0534990 FRIGIDA-like protein, putative 

HD HD17 6H HvNUP160 HORVU.MOREX.r3.6HG0557980 Nuclear pore complex protein Nup 160 

HD HD21 7H HvMADS26 HORVU.MOREX.r3.7HG0705340 MADS-box transcription factor 

HD HD22 7H HvNF-Yb2 HORVU.MOREX.r3.7HG0734470 Nuclear transcription factor Y subunit B 

PH PH1 1H HvNRT HORVU.MOREX.r3.1HG0005090 Nitrate transporter 1.1 

PH PH3 1H OsCKX9 HORVU.MOREX.r3.1HG0059670 Cytokinin oxidase/dehydrogenase 

PH PH4 1H HvGA20x8a HORVU.MOREX.r3.1HG0087020 Gibberellin 2-oxidase 

PH PH13 3H OsWRKY21 
HORVU.MOREX.r3.3HG0297540 
HORVU.MOREX.r3.3HG0297550 

WRKY transcription factor 

PH PH14 3H 
HvGA20ox2 

(sdw1/denso) 
HORVU.MOREX.r3.3HG0307130 Gibberellin 20 oxidase 

PH PH20 5H OsPH9 HORVU.MOREX.r3.5HG0496220 Histone H4 

PH PH24 6H HvLAZY1 HORVU.MOREX.r3.6HG0632820 WRKY transcription factor-like protein 

PH PH29 7H OsMYB45 

HORVU.MOREX.r3.7HG0736780 Homeodomain-like superfamily protein 

HORVU.MOREX.r3.7HG0736790 Homeodomain-like superfamily protein 

HORVU.MOREX.r3.7HG0736800 Two-component response regulator 

HORVU.MOREX.r3.7HG0736840 MYB transcription factor-like 

TGW TGW2 1H OsCKX9 HORVU.MOREX.r3.1HG0059670 Cytokinin oxidase/dehydrogenase 

TGW TGW2 1H HvSMOS1 HORVU.MOREX.r3.1HG0058550 
AP2-like ethylene-responsive transcription 

factor 

TGW TGW7 3H HvRA2 (vrs4) HORVU.MOREX.r3.3HG0233930 LOB domain protein 

TGW TGW8 3H HvBRI1 HORVU.MOREX.r3.3HG0285210 Receptor kinase 

TGW TGW13 4H HvGT1 HORVU.MOREX.r3.4HG0399240 Homeobox protein, putative 

TGW TGW14 4H HvCMF4 HORVU.MOREX.r3.4HG0411680 Zinc finger protein CONSTANS 

TGW TGW18 5H HvBRXL4 HORVU.MOREX.r3.5HG0535760 Protein BREVIS RADIX 

TGW TGW27 7H HvJMJ HORVU.MOREX.r3.7HG0752360 Lysine-specific demethylase 

GY GY1 1H HvGA20x8a HORVU.MOREX.r3.1HG0087020 Gibberellin 2-oxidase 

GY GY2 2H HvHOX1 HORVU.MOREX.r3.2HG0184740 Homeobox leucine zipper protein 

GY GY5 3H HvAGL2 HORVU.MOREX.r3.3HG0221900 Alpha-glucosidase 

GY GY8 7H HvKAO1 HORVU.MOREX.r3.7HG0637750 Cytochrome P450 

GY GY11 7H OsMYB45 

HORVU.MOREX.r3.7HG0736780 Homeodomain-like superfamily protein 

HORVU.MOREX.r3.7HG0736790 Homeodomain-like superfamily protein 

HORVU.MOREX.r3.7HG0736800 Two-component response regulator 

HORVU.MOREX.r3.7HG0736840 MYB transcription factor-like 
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Figure legends 

Figure 1. Plot of first two principal components of the AMMI analysis for heading date (Z55) of 151 

spring two-rowed cultivars over 16 field trials. 

Figure 2. Manhattan plot of the meta-analysis of 14 trials for grain yield (GY). In blue, threshold 

commonly used in meta-analyses in the literature. In red, threshold calculated in this study, 

corresponding to the minimum P-value resulting from 1000 permutations. 

Figure 3. Allelic boxplots for four QTL (one for each trait), across environments. A) QTL HD5, days 

from sowing to heading, divided into autumn (left panel) and winter-spring sowings (right panel); B) 

QTL PH14, plant height; C) QTL TGW18, thousand grain weight; D) QTL GY2, grain yield. 

Figure 4. Phenotype boxplots of all trials divided by groups of release years. A) Days from sowing to 

heading, B) plant height, C) thousand grain weight and D) grain yield. 

Figure 5. Changes in allele frequencies of the QTLs identified in the meta-analyses for plant height (A) 

and grain yield (B) across time of release of the cultivars. 
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Figure 1. Plot of first two principal components of the AMMI analysis for heading date (Z55) of 151 spring two-

rowed cultivars over 16 field trials.  
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Figure 2. Manhattan plot of the meta-analysis of 14 trials for grain yield (GY). In blue, threshold commonly used 
in meta-analyses in the literature. In red, threshold calculated in this study, corresponding to the minimum P-
value resulting from 1000 permutations.  
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Figure 3. Allelic boxplots for four QTL (one for each trait), across environments. A) QTL HD5, days from sowing 
to heading, divided into autumn (left panel) and winter-spring sowings (right panel); B) QTL PH14, plant height; 
C) QTL TGW18, thousand grain weight; D) QTL GY2, grain yield.  
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Figure 4. Phenotype boxplots of all trials divided by groups of release years. A) Days from sowing to heading, B) 
plant height, C) thousand grain weight and D) grain yield.  
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Figure 5. Changes in allele frequencies of the QTLs identified in the meta-analyses for plant height (A) and grain 

yield (B) across time of release of the cultivars.  
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