

1 CD4⁺Foxp3E2⁺ regulatory T cell frequency predicts breast cancer prognosis and 2 recurrence

3 4 **Running Title: Foxp3Exon2 as biomarker of breast cancer prognosis**

5
6
7 Clorinda Fusco^{1†}, Francesca Di Rella^{2†}, Antonietta Liotti^{3,4‡}, Alessandra Colamatteo¹, Anne Lise Ferrara⁴,
8 Vincenzo Gigantino⁵, Francesca Collina⁵, Emanuela Esposito⁶, Ivana Donzelli⁶, Antonio Porcellini⁷,
9 Antonia Feola⁷, Teresa Micillo¹, Francesco Perna⁸, Federica Garziano⁹, Giorgia Teresa Maniscalco¹⁰, Gilda
10 Varricchi^{3,4}, Maria Mottola¹¹, Bruno Zuccarelli¹¹, Bruna De Simone¹², Maurizio di Bonito⁵, Giuseppe
11 Matarese^{1,3}, Antonello Accurso¹³, Martina Pontillo¹³, Daniela Russo¹⁴, Luigi Insabato¹⁴, Alessandra
12 Spaziano¹, Irene Cantone^{1,3*‡}, Antonio Pezone^{7*‡} and Veronica De Rosa^{3*‡}

13
14 ¹Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy;

15 ²Oncologia Clinica Sperimentale di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy;

16 ³Istituto per l'Endocrinologia e l'Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy;

17 ⁴Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy;

18 ⁵Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy;

19 ⁶Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy;

20 ⁷Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy;

21 ⁸Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy;

22 ⁹U.O.C Biochimica Clinica Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno-C.T.O. Presidio Monaldi, Napoli, Italy;

23 ¹⁰Clinica Neurologica e Unità Stroke, Centro Sclerosi Multipla, Ospedale “A.Cardarelli” Napoli 80131, Italy;

24 ¹¹U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy;

25 ¹²Dipartimento di Sanità Pubblica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy;

26 ¹³Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli
27 80131, Italy;

28 ¹⁴Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di
29 Napoli “Federico II”, Napoli 80131, Italy.

30 Correspondence: ^{*}Veronica De Rosa (veronica.derosa@cnr.it), ^{*}Antonio Pezone (antonio.pezone@unina.it), ^{*}Irene
31 Cantone (irene.cantone@unina.it).

32
33 [†]These authors contributed equally to this work as first author.

34 [‡]These authors contributed equally to this work as last author.

35
36

37 **Abstract**

38
39 CD4⁺Foxp3⁺ regulatory T cells (Tregs) are key to maintain peripheral *self*-tolerance and suppress
40 immune responses to tumors. Their accumulation in the tumor microenvironment (TME) correlates
41 with poor clinical outcome in several human cancers, including breast cancer (BC). However, the
42 properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally
43 distinct subpopulation of tumor-infiltrating Tregs, which express the Foxp3 splicing variant
44 retaining exon 2 (Foxp3E2), is prominent in the TME and peripheral blood of hormone receptor-
45 positive (HR⁺) BC subjects with poor prognosis. Notably, a comprehensive examination of the
46 Tumor Cell Genome Atlas (TCGA) validated Foxp3E2 as an independent prognostic marker in all
47 other BC subtypes. We found that FOXP3E2 expression underlies BCs with highly immune
48 suppressive landscape, defective mismatch repair and a stem-like signature thus highlighting
49 pathways involved in tumor immune evasion. Finally, we confirmed the higher immunosuppressive
50 capacity of BC patients-derived Foxp3E2⁺ Tregs by functional assays. Our study suggests
51 Foxp3E2⁺ Tregs might be used as an independent biomarker to predict BC prognosis and
52 recurrence, and to develop super-targeted depletion-based immunotherapies.

53

54

55 **One-sentence summaries:** Foxp3E2⁺ Treg enrichment reflects an increased tumor-immune
56 suppression and predicts prognosis and recurrence in breast cancer.

57

58 **Keywords**

59 Regulatory T cell, FOXP3, prognosis, biomarker, breast cancer, immune checkpoint, human cancer
60 genomics.

61

62

63

64

65

66

67 **Introduction**

68 Immune surveillance against cancer is an important strategy for tracing, identifying, and eliminating
69 growing tumor cells (1-4). Nonetheless, the immune system can shape tumor genomes by selecting
70 neoantigen-depleted clones (i.e., immune editing) or promoting the accumulation of clones with an
71 immune evasion strategy (i.e., immune escape), representing one of the main drivers of relapse (5,
72 6). Breast cancer (BC) is more resistant to immunotherapies than other solid tumors (7, 8), with a
73 large window of recurrence spanning from months to decades after surgery (9, 10). Although the
74 exact cause of this unusual recurrence pattern is still unknown, patients with luminal cancer
75 typically have a better prognosis, whereas basal-like and HER2-enriched patients experience early
76 relapses (within the first five years after diagnosis) (11, 12). However, the risk of late recurrence
77 ranges from 10 to 41% in all BC subgroups, based on their primary tumor classification system
78 (e.g. tumor-node-metastasis – TNM) (13), population-based data, and occasionally primary tumor
79 gene expression profiles (14). Although the highest cumulative incidence has been observed among
80 ER-positive patients, late recurrences also occur among those with ER-negative tumors (15, 16). It
81 is, therefore, of paramount importance to identify novel prognostic biomarkers alongside with the
82 causes of recurrence (17).

83 The interaction between tumor, stromal, and immune cells may promote metastatic progression and
84 immune escape, challenging cancer immunotherapy efficacy (5, 18). Anti-tumor specific T cell
85 responses arise in BC subjects but are halted by suppressive mechanisms established in the TME
86 during tumor progression (19). CD4⁺CD25⁺ regulatory T cells (Tregs) expressing the Forkhead-
87 box-p (Foxp)-3 transcription factor are enriched in the tumor microenvironment (TME) and
88 associate with an invasive phenotype, reduced relapse-free and overall survival in several cancers
89 (20), consistently with their role in suppressing effector cells. Transient depletion of Tregs via
90 CD25, CTLA4, or CCR4 blockade results in improved clinical outcomes and increased anti-tumor
91 specific immune responses (19). Foxp3⁺ Tregs variably infiltrate human BC and mainly correlate

92 with reduced survival and poor prognosis (1, 21-26). Although their central function in tumor
93 escape (27) and their role as therapeutic targets of immune checkpoint inhibitors (ICIs), the
94 properties of intratumoral Tregs remain largely unknown and they are not a good prognostic marker
95 for BC (23, 28). Published transcriptomic profiles indicate that tumor-infiltrating Tregs constitute
96 a heterogeneous population (29, 30). Whether the tumor milieu imprints unique functional and
97 transcriptional features to Tregs or whether distinct subsets of peripheral blood Tregs are
98 differentially recruited within the tumor is still unclear (31, 32). Characterizing tumor-infiltrating
99 Tregs will, therefore, be the key to find novel biomarkers and develop therapies that precisely target
100 cells that block anti-tumor response without altering peripheral *self*-tolerance.

101 In humans, the master regulator of Treg development and function is *FOXP3* gene. It
102 comprises 12 exons encoding multiple transcript variants, among which four are co-expressed at
103 different levels in circulating Tregs, including the full-length (Foxp3FL) and those lacking exon 2
104 (Foxp3 Δ 2), which are generally more abundant (33, 34). Several reports uncover indispensable
105 functions of the 105 base-pair region constituting *FOXP3* exon 2 (*FOXPE2*), highlighting a possible
106 role of this region in regulating a transcriptional program that maintains Treg stability and immune
107 homeostasis (34-37). In subjects with autoimmunity, we reported a selective reduction of Foxp3E2
108 splicing variants associated with impaired Treg suppressive function (35). Here, we study the
109 distribution and function of Foxp3E2 $^+$ Tregs, both in the TME and peripheral blood of BC subjects
110 in order to explore their connection with the molecular landscape of the primary tumor and patient
111 prognosis.

112

113

114

115

116

117 **Results**

118 **Elevated frequency of Foxp3E2⁺ Tregs in the tumor infiltrate and peripheral blood of HR⁺
119 BC subjects**

120 High infiltration of Foxp3⁺ Tregs is expected to be associated with an unfavorable outcome
121 in several cancers, but studies of breast cancer have led to highly discrepant findings (38). Here, we
122 aimed at dissecting whether Tregs expressing different *FOXP3* variants could have a dominant role
123 in breast cancer immune evasion (**Fig. 1a**). We analyzed the frequency of Foxp3⁺ (all *FOXP3*
124 transcript variants) and Foxp3E2⁺ Tregs (*FOXP3* variants retaining exon2) in the peripheral blood
125 (PB) and tumor-infiltrating lymphocytes (TILs) from two different cohorts of newly diagnosed,
126 untreated ER⁺PR⁺(HR⁺)-HER2⁻ breast cancer (BC) and non-malignant breast fibroadenoma (BF)
127 subjects (**Supplementary Table 1**). Freshly resected breast tissue was mechanically dissociated
128 into a single-cell homogenate to enrich TILs (39). Flow cytometric analysis revealed a dominance
129 of CD4⁺ T cells in BC, also confirmed by a lower CD8⁺/CD4⁺ ratio compared to BF tissue (0.86 vs
130 2.51) (**Fig. 1b**). In addition, BC tissue shows a more abundant infiltrate of Foxp3⁺ Tregs as
131 compared to BF tissue and, a higher frequency of Treg cells is detected within the tissues as
132 compared to peripheral blood (PB) from both BC and BF subjects (**Fig. 1c**). Importantly, we
133 detected a significant enrichment of Foxp3E2⁺ Tregs in BC tissue (i.e. TIL-Foxp3E2⁺) compared
134 to BF and PB (both from BC and BF subjects) (**Fig. 1d**). To estimate the relative frequency of
135 Foxp3E2⁺ compared to the overall Treg compartment, we measured the Foxp3E2⁺/Foxp3⁺ ratio
136 (herein defined E2 ratio) and found that Foxp3E2⁺ Tregs were more abundant both in the TME and
137 PB of BC patients compared to BF (**Fig. 1e**). Furthermore, we compared the percentage and ratio
138 of Foxp3E2⁺ and Foxp3⁺ Tregs in the TIL and PB of our BC cohort. The percentage of TIL-
139 Foxp3E2⁺ Tregs was on average 8.33%, and the TIL-Foxp3⁺ represented 14.75% (**Fig. S1a**). The
140 percentage of PB-derived Foxp3E2⁺ Tregs (PB-Foxp3E2⁺) and PB-Foxp3⁺ were, instead, 2.57%
141 and 5.27% of the total CD4⁺ T cells, respectively (**Fig. S1a**). Notably the ratio between Foxp3E2⁺

142 and total Tregs in BC subjects was significantly higher in TIL compartment as compared to PB
143 lymphocytes suggesting that Foxp3E2^+ Tregs preferentially accumulate in the TME (mean E2 ratio
144 is equal to 0.64 in TIL and 0.54 in PB) (**Fig. 1f**). Strikingly, the $\text{CD8}^+/\text{Treg}$ ratio was significantly
145 lower in BC (both in PB and TIL) and inversely correlated with the percentage of TIL- Foxp3E2^+
146 in the TME ($r = -0.603, P = 0.001$) (**Fig. 1g, h**), while no correlation was observed with the TIL-
147 Foxp3^+ (not shown). As the $\text{CD8}^+/\text{Treg}$ ratio is considered a reliable marker of anti-tumor specific
148 T cell response (34), our data suggest that the Foxp3E2^+ Treg subset mainly accounts for the
149 suppression of the immune response to cancer. Immunohistochemical (IHC) staining and digital
150 quantitative image analysis confirmed the higher infiltration of Foxp3^+ and Foxp3E2^+ Tregs in BC
151 tissue compared to BF (**Fig. 1i-p**). Our results unveil for the first time a distinct prevalence of
152 Foxp3E2^+ Tregs in human BC that is not observed in non-malignant forms of breast tumors (i.e.,
153 BF) and inversely correlates with anti-tumor immune response.

154

155 ***FOXP3E2* transcript levels in BC tissue mark an immunosuppressive landscape and correlate**
156 **with reduced overall survival**

157 To determine whether the increased percentage of Foxp3E2^+ Tregs is associated with BC
158 prognosis in general, we examined RNAseq data from about one thousand subjects (990 breast
159 cancer tissues and 112 tumor-adjacent normal tissues) in the TCGA Splicing Variant Database
160 (TSVdb) that includes information on alternative splicing (40). We found that primary breast
161 cancers (69.2% $\text{HR}^+\text{HER2}^-$, 12.6% $\text{HR}^+\text{HER2}^+$, 18.2% $\text{HR}^-\text{HER2}^-$) expressed higher levels of
162 *FOXP3* transcripts compared to normal breast tissue (NT) (64.00 vs 13.40) (**Fig. 2a**). However,
163 *FOXP3* transcript levels did not correlate with patient overall survival when BC subjects were
164 stratified either on their median value (Q2) or on their upper quartile range (Q3) (**Fig. 2b, c, Fig.**
165 **S1b, c**). Thus, we measured the expression of the 5 different *FOXP3* isoforms (schematically
166 represented in **Fig. S1d** and reported in the UCSC bank (33)), and we found that 4 of them were

167 upregulated in BC tissue compared to NT (**Fig. S2a-d**) but none correlated with overall survival
168 (**Fig. S2e-l**). Then, we estimated the ratio of *FOXP3* exon 2-containing transcripts relative to the
169 other variants and stratified BC subjects into low- ($< Q3 = 0.09$) and high- ($> Q3 = 0.29$) E2 ratio
170 groups (**Fig. 2d, e**). This analysis clearly shows that the difference in *FOXP3E2* expression between
171 the two groups was inversely correlated with patient overall survival (log-rank $P = 0.01$, Chisq =
172 6.2) (**Fig. 2f, g**). No difference in total *FOXP3* expression between the two groups was observed
173 (**Fig. S3a**); also, we did not find correlation when BC subjects were stratified on the median value
174 of the E2 ratio (**Fig. S3b-d**). Notably, TCGA also included HER2⁺ as well as the most aggressive
175 triple negative tumors, thus suggesting a general association between the enrichment of Foxp3E2⁺
176 Tregs within the tumor and breast cancer prognosis.

177 To gain insights into the nature of the local TME (41, 42), we characterized gene expression
178 patterns of high- and low- Foxp3E2⁺/Foxp3⁺ ratio BC groups. Analysis of differentially expressed
179 genes (DEGs) identified 702 DEGs (523 downregulated and 179 upregulated genes) (**Fig. 2h**).
180 Gene ontology revealed a significant enrichment of genes belonging to immunoregulatory
181 pathways in the BC group showing high Foxp3E2⁺/Foxp3⁺ ratio. These immunoregulatory genes
182 included humoral immune response, complement activation and antigen receptor-mediated
183 signaling (**Fig. 2i**). Among all, the upregulation of *BTN1A1*, *FCRL1*, *CXCR5*, *AIRE*, *ZAP70* was
184 noteworthy (**Fig. 2i**) indicating a dominant immunosuppressive signature (43, 44). Consistently,
185 GSEA-KEGG analysis showed 5 sub-gene sets activated in the high E2 ratio BC group (chemokine
186 signalling, hematopoietic cell lineage, glycerolipid metabolism, cAMP signaling and neuroactive
187 ligand-receptor interaction (45)) (**Fig. S3e**). Upregulation of *WNT3a*, *ESRG*, *NANOGP1*, *NEFL*,
188 instead, suggested the acquisition of stem cell-like features (46-49) (**Fig. S4**). Overall, these
189 analyses reveal that Foxp3E2 marks a distinctive group of BC subjects characterized by worst
190 clinical outcomes (i.e., lower survival) and likely associated with increased immunosuppression
191 and stemness.

192 **BC tumors with high Foxp3E2⁺/Foxp3⁺ ratio show greater heterogeneity**

193 To better understand the relationship between high E2 ratio and poor BC clinical outcome,
194 we investigated mutations in cancer driver genes. To this aim, we first characterized genome
195 variants in the high- and low-E2 ratio BC groups. We observed comparable tumor mutational
196 burden in the two groups, with *PIK3CA* and *TP53* mutations dominating the landscape (**Fig. 3a, b**,
197 **Fig. S5a, b**) consistently with previous reports (50). Other genes, however, harbored coding
198 mutations in at least 6% of the samples: *TTN*, *MUC16*, *MAP3K1*, *KMT2C*, *GATA3*, *SYNE1* and
199 *FLG* (**Fig. 3a, b**). Well-known germline mutations in *BRCA1* and *BRCA2* were identified in less
200 than 5% of BC subjects of both groups (**Fig. S6**). We then examined pairwise associations between
201 somatic events to explore co-mutations and mutual exclusivity patterns and found mutual
202 exclusivity between *TP53*, *GATA3* and *CDH1* mutations in both BC patient groups, suggesting they
203 might have originated from similar ancestral clones. Interestingly, the PI3K/Akt co-mutation
204 marked specifically the high Foxp3E2⁺/Foxp3⁺ ratio BC group (false discovery rate (FDR) <0.05)
205 (**Fig. 3c, d**), further suggesting cancer stem-like features (51, 52). Furthermore, we detected a lower
206 frequency of co-mutations in the high Foxp3E2⁺/Foxp3⁺ ratio BC group despite the comparable
207 tumor mutation burden (**Fig. 3c, d**). The latter might reflect a sub-clonal heterogeneity that has been
208 associated with therapy resistance and tumor shaping (53-56). Overall, this suggests that Foxp3E2⁺
209 Tregs mark a subgroup of tumors with greater intratumor heterogeneity.

210

211 **BC tumors with high Foxp3E2⁺/Foxp3⁺ ratio show mutational signatures associated with
212 defective DNA mismatch repair and strong immunosuppressive response**

213 The sub-clonal nature of the high E2 ratio BC group suggests a tumor evolution and
214 selection (57, 58), which implies different molecular mechanisms including spontaneous and
215 enzymatic deamination of the cytosine base (59, 60). To gain insights into the dynamics of the
216 mutational signature that shapes both BC groups, we interrogated COSMIC mutational signatures

217 that have been associated with specific pathways (30). Signatures associated with spontaneous
218 deamination of 5-methylcytosine and APOBEC cytidine deaminase were detected in both the high-
219 and low-E2 ratio BC groups (**Fig. 4a, b**). Enrichment analysis of APOBEC motif (i.e. tCw motif
220 primarily associate with C>T transitions driven by APOBEC cytidine deaminase activity) in the
221 high and low Foxp3E2⁺/Foxp3⁺ ratio BC groups showed a similar prevalence of tCw mutations
222 (34% APOBEC vs 9% non-APOBEC in the low-E2 ratio BC group; 38% APOBEC vs 9% non-
223 APOBEC in the high-E2 ratio BC group) (**Fig. 4c, d**), with no changes in the global DNA
224 methylation (**Fig. S7a**). Defects in polymerase POLE, which occur in ultra-hypermutators, have
225 instead been observed only in the low-E2 ratio BC group (**Fig. 4e**), thus confirming the high tumor
226 mutational burden associated with the increased presence of immunogenic neoantigens (54).

227 Strikingly, the signature associated with defective DNA mismatch repair (dMMR) was
228 specific for the high-E2 ratio BC group (**Fig. 4f**). MMR is a fundamental DNA repair pathway
229 essential to maintain genome stability during cellular replication (61) and defects have been
230 considered driver of endocrine treatment resistance in 15-17% of ER⁺/HER2⁻ BC subjects (62, 63).
231 To better dissect this pathway, we evaluated gene and protein expression of MMR-associated
232 factors. We did not observe changes in MMR gene expression (e.g. *MLH1*, *MLH3*, *MSH2*, *MSH3*,
233 *MSH6*, *PMS2*) (**Fig. 4g**). However, analysis of reverse phase protein array (RPPA) showed, instead,
234 high levels of ATM, ATM_pS1981, UVRAG, XPA and low levels of BRCA2, CHK2, DDR1,
235 DDR1_pY513, DNA PolG, MSH2, MSH6, Wee1, X53BP1 and DNMT1 in the high
236 Foxp3E2⁺/Foxp3⁺ BC subjects (**Fig. 4h**), suggesting that DNA Damage Response (DDR) might be
237 specifically dysregulated in these patients.

238 Notably, BC patients with high Foxp3E2⁺/Foxp3⁺ ratio also showed higher expression of
239 immuno-modulatory signatures as compared with the low-E2 ratio group (i.e., *CD20*, *CD38*, *CD4*,
240 *CD45*, *IL6*, *JAG1*, *ZAP70*) (**Fig. 4h**). This increase in immunomodulatory pathways was also
241 confirmed by enrichment analysis of the differentially expressed probes using Metascape (64) (**Fig.**

242 **4i).** Notably, immune cell deconvolution shows only a slight increase in the number of endothelial
243 cells between the two subgroups with no difference in the immune cell compartments (**Fig. S7b**).
244 Altogether our analyses unveil that Foxp3E2 marks a subgroup of breast tumors characterized by
245 defective DNA damage repair and strong immunosuppressive signature.

246
247 **Increased immune checkpoint expression and stronger suppressive capability is associated**
248 **with Foxp3E2 expression in Tregs of HR⁺ BC**

249 As both our *ex-vivo* analyses of HR⁺ BC subjects and TCGA data mining suggest an
250 association between Foxp3E2⁺ Tregs and immunosuppression in the TME, we evaluated their
251 immunosuppressive function. To this aim, we initially checked the expression of a range of co-
252 inhibitory molecules – known to modulate tumor immune responses and upregulated in tumor-
253 infiltrating Tregs (15, 21, 22, 65) (e.g., immune checkpoints (ICs), such as CTLA-4, PD-1 and
254 TIGIT) – in TIL and PB-derived CD4⁺ T cells from BC patients (**Fig. 5**, **Fig. S8**). We found that
255 TIL-Foxp3E2⁺ Tregs have increased percentage of Helios and CCR8 and higher levels of Helios
256 and CTLA-4 than TIL-Foxp3⁺ Tregs. Moreover, when compared to PB, TIL-Foxp3E2⁺ Tregs show
257 increased expression of Helios, ICOS, CTLA-4, PD-1, TIGIT and CCR8, and higher proliferative
258 capacity, as pointed out by Ki67⁺ frequency (**Fig. 5**, **Fig. S8**). Interestingly, co-expression of CTLA-
259 4 and PD-1 or TIGIT and CCR8 was higher in TIL-Foxp3E2⁺ than in PB-Foxp3E2⁺ Tregs (**Fig. 5**),
260 thus suggesting that this Treg subpopulation exerts a dominant role in cancer
261 evasion/immunosuppression. This is particularly relevant as elevated CCR8 expression in TIL-
262 Tregs are related to poor prognosis in several cancer types (19, 66). Moreover, the increased
263 expression of Helios and ICOS revealed that Foxp3E2⁺ Tregs infiltrating the tumor had a hyper-
264 activated phenotype. Also, the evidence that pS6 levels – reflecting mTOR kinase activity – were
265 reduced specifically in TIL-Foxp3E2⁺ compared to the PB-counterpart, suggests a detrimental role
266 for the mTOR pathway in the suppression of anti-tumor response. Overall, the increased expression

267 of Helios and IC in the Foxp3E2⁺ Tregs proposes that they might have a higher immunosuppressive
268 capacity in cancer. We, indeed, tested this hypothesis through an *in vitro* CFSE-based suppression
269 assay by culturing blood-derived conventional T cells (Tconvs) with autologous Tregs from BC
270 subjects. Tregs from BC patients show stronger suppressive capacity compared to Tregs from age-
271 matched healthy female donors (HD) (**Fig. 6a**). When compared to HD, BC subjects displayed
272 increased E2 PB-ratio (0.54 vs 0.49) (**Fig. 6b**), and higher frequency of TIGIT⁺, CCR8⁺,
273 TIGIT/CCR8 and CTLA-4/PD-1 double positive PB-Foxp3E2⁺ Tregs (**Fig. 6c**, **Fig. S9**).
274 Interestingly, the lower expression of ICOS in PB-Foxp3E2⁺ Tregs of BC subjects suggested a
275 preferential recruitment of ICOS⁺Foxp3E2⁺ Tregs in the TME, as ICOS levels were higher in TIL-
276 Foxp3E2⁺ Tregs compared to the peripheral blood (**Fig. 5**, **Fig. 6c**). Notably, the median of the E2
277 PB-ratio within the BC cohort (Q2 = 0.545) represents a “hub value” almost coincident with that
278 corresponding to the Q3 value of HD (Q3 = 0.546) (**Fig. 6d**), suggesting E2 PB-ratio might as well
279 be associated with stronger immune suppression.

280 Then we observed that Treg peripheral suppression in BC subjects directly correlated with
281 the E2 TIL-ratio ($r = 0.66, P = 0.021$) (**Fig. 7a**). Specifically, BC subjects with high E2 TIL-ratio
282 (≥ 0.64) showed higher peripheral Treg suppression than the ones with a low ratio (< 0.64) (**Fig.**
283 **7b**). The more TIL-Foxp3E2⁺ Tregs they had, the greater was their peripheral suppressive capacity.
284 Importantly, we observed that the E2 PB-ratio strictly mirrored the E2 TIL-ratio, as high E2 TIL-
285 ratio BC subjects also exhibited higher E2 PB-ratio (**Fig. 7c**). Consistently, Tregs from BC patients
286 with higher E2 PB-ratio showed increased suppressive activity compared to the low E2 PB-ratio
287 group (**Fig. 7d**). Furthermore, Foxp3E2⁺ Tregs from the high E2 PB-ratio BC group displayed an
288 immune phenotype distinct from the Foxp3⁺ Tregs, with enhanced expression of Helios, ICOS,
289 CTLA-4, CCR8, and co-expression of CTLA-4/PD-1 and TIGIT/CCR8 (**Fig. 7e**, **Fig. S10a**) thus
290 mirroring the hyperactivated phenotype observed in TIL-Foxp3E2⁺ Tregs (**Fig. 5**). Strikingly,
291 Foxp3E2⁺ Tregs from the high E2 PB-ratio expressed low pS6 levels compared to Foxp3E2⁺ Tregs

292 from the low E2 PB-ratio group (**Fig. 7e**), according to what previously observed in TIL-Foxp3E2⁺
293 *versus* TIL-Foxp3⁺ (**Fig. 5**). This could further support that mTOR activity perturbs the suppression
294 of antitumor-specific immune response.

295 Overall, our data indicate that the E2 ratio in the peripheral blood reflects the infiltration of
296 highly immunosuppressive Foxp3E2⁺ Tregs in the TME.

297

298 **Foxp3E2⁺/Foxp3⁺ ratio predicts the prognosis in newly-diagnosed HR⁺ BC subjects**

299 As our findings uncovered a direct connection between peripheral- and tumor-infiltrating
300 Foxp3E2⁺ Tregs, we assessed whether their peripheral frequency correlated with the clinical
301 parameters of our BC cohorts, which have been stratified based on histopathological analyses
302 (tumor-node-metastasis – TNM) into luminal A and B tumors with different survival periods (67).

303 First, we evaluated one of the main prognostic markers in BC, the intratumoral Ki67 expression
304 (68). We found that the percentage of intratumoral Ki67 was significantly higher in the high
305 compared to the low E2 PB-ratio BC group (20% *vs* 10%, $P = 0.022$) (**Fig. 8a**). Furthermore, 74%
306 of the BC subjects with low E2 PB-ratio belonged to the luminal A subgroup (which has a better
307 prognosis than luminal B (67)), while only 43% of the high E2 PB-ratio BC subjects fell in that
308 subgroup (**Fig. 8b**). Moreover, luminal B BC subjects showed higher PB-ratio compared to the
309 luminal A group and this correlated with stronger suppressive activity (**Fig. 8c, d**). Finally, we
310 stratified our BC cohort in two clinical-pathological groups with different prognosis (69) and we
311 found that E2 PB-ratio strictly reflected the overall BC status, as it was significantly increased in
312 the poor-prognosis BC group (0.56 *vs* 0.51) (**Fig. 8e**). Importantly, we show stronger
313 immunosuppression of peripheral Tconvs from Tregs of the poor-prognosis BC group (**Fig. 8f**),
314 thus suggesting that an increased percentage of Foxp3E2⁺ Tregs is associated with an enhanced
315 peripheral suppressive function and worse prognosis. Taken together, our findings identify
316 Foxp3E2 as a novel prognostic marker in BC (**Fig. 8g**).

317 **Discussion**

318 Women with early-stage breast cancer (BC) have an independent risk of recurrence and
319 mortality for at least 20 years after the initial diagnosis with the greatest impact demonstrated in
320 hormone receptor-positive (HR⁺) disease, even after 5 years of adjuvant endocrine treatment. In
321 order to improve BC patient survival, an accurate classification of breast cancer subtypes and the
322 identification of prognostic markers that can predict the course of the disease (e.g., relapse,
323 mortality, therapeutic response) are needed alongside with the identification of the underlying
324 molecular pathways.

325 Regulatory T cells (Tregs) that express the transcription factor Foxp3 are crucial for
326 maintaining immunological *self*-tolerance and suppressing the anti-cancer immune response. The
327 role of distinct Treg subpopulations, their respective functions and interactions within the complex
328 network of the TME have, however, not been fully elucidated (1). The composition of intratumoral
329 Foxp3⁺ Tregs is characterized by a subpopulation of highly immune suppressive cells having a
330 distinct gene expression profile, possibly due to the hyperstimulation by tumor-associated antigens
331 (19, 31, 32). It has been previously reported that, among all Foxp3⁺ Tregs, those expressing the
332 isoforms retaining exon 2 display stronger suppressive function and increased lineage stability (34,
333 37). Notably, although the role of Foxp3 as a master regulator of Treg differentiation and stability
334 is conserved in mouse (33, 70), mouse *Foxp3* gene does not have splicing variants making human
335 studies essential to characterize Tregs and their function in human cancers. To date, whether
336 Foxp3E2⁺ Tregs are preferentially enriched within the TME or the peripheral blood of subjects with
337 cancer and how they correlate with the clinical outcome is completely unknown.

338 Here, we investigated the role of Tregs in two independent cohorts of newly diagnosed
339 ER⁺PR⁺HER2⁻ (HR)⁺ BC and non-malignant breast fibroadenoma (BF) subjects (i.e., 57 patients).
340 Our analyses revealed for the first time a different composition of tumor-infiltrating immune cells
341 in breast cancer and non-malignant tumors, with BC being characterized by a lower CD8⁺/CD4⁺
342 ratio and higher frequency of Foxp3⁺ Tregs. Strikingly, we showed that the Foxp3E2⁺ Treg

343 subpopulation is increased in the TME of BC compared to BF patients, and a similar enrichment is
344 detected in the peripheral blood as well. We further associated Foxp3E2⁺ Treg enrichment with
345 worst BC prognosis both in our HR⁺ BC subjects and in a wider published cohort of 990 BC subjects
346 (from the TCGA) that also includes HER2⁺ and triple negative BC.

347 In addition, we detected a lower frequency of co-mutations in BC subjects with a high
348 Foxp3E2⁺/Foxp3⁺ ratio, suggesting a sub-clonal heterogeneity of these tumors that has already been
349 associated with therapy resistance and tumor shaping (53-56). Overall, our data suggest that
350 Foxp3E2 might be used as a novel biomarker to develop a blood-based test predictive of BC
351 prognosis (all tumor subtypes) and, perhaps, of susceptibility to specific therapies.

352 The origin of intra-tumoral Tregs and their relationship with those circulating in peripheral
353 blood remains unclear. Nonetheless, comparing intra-tumoral Foxp3E2⁺ Tregs with those
354 circulating in the peripheral blood, we found that both overexpress Helios, a transcription factor
355 that regulates Treg function and stability, suggesting that it might be involved specifically in the
356 differentiation/function of the Treg subset expressing the Foxp3E2 splicing variants. Notably, BC
357 tumors with high Foxp3E2⁺/Foxp3⁺ ratio showed greater levels of cancer stem-cell genes (e.g.,
358 WNT3a, NANOGP1 and ESRG) suggesting that this Treg subset might shape the TME to foster
359 cancer stem cell growth or maintenance. Importantly, gene expression and mutational signature
360 analyses showed that Foxp3E2 may be utilized to identify a unique subset of individuals with
361 stronger tumor immune tolerance, persistent DNA damage (only ATM-dependent) and metabolic
362 rewiring induced by hyperactive oncogenic signaling (as PI3K/AKT) (49, 71). Moreover,
363 intratumor heterogeneity and tumor shaping in the high Foxp3E2⁺/Foxp3⁺ ratio BC group may
364 result from an earlier immunosurveillance that spreads the number of sub-clonal neoantigens
365 associated with increased aggressiveness and drug resistance in cancer (53, 64, 72, 73). It is
366 important to note that chemotherapy and radiation-induced mutagenesis may be accelerated in BC
367 patients having a deficiency in the DNA mismatch repair (MMR) system (74). Some novel mutated

368 genes may be cancer-driver genes, which means that MMR inactivation can lead to disease
369 progression and therapeutic resistance (23). TGCA data mining collectively demonstrate that
370 FOX3E2 expression in the TME is associated with defects in mismatch repair and PI3K/AKT co-
371 mutations indicating stemness and sub-clonal heterogeneity. In addition, FOXP3E2 is associated
372 with immunosuppressive signatures that may contribute to stem-like clones evading tumor immune
373 responses and, account for BC immunological quiescence (low lymphocyte infiltration, low
374 mutational burden, minimal response to immunotherapy (5, 50, 75) and tumor shaping (55)).

375 Finally, our data suggest that Foxp3E2^+ Tregs may account for higher immunosuppressive
376 function. Strikingly, we showed that Tregs from BC patients with increased Foxp3E2 levels provide
377 stronger suppression of effector cells during *in vitro* functional assays. This is consistent with the
378 increased expression of Helios, ICOS and immune checkpoint receptors by Treg
379 immunophenotyping and with the enrichment of an immunosuppressive gene signature in the BC
380 patients with high $\text{Foxp3E2}^+/\text{Foxp3}^+$ ratio. In addition, known markers of anti-tumor T cell response
381 (e.g., $\text{CD8}^+/\text{Treg}$ ratio or CCR8 expression) strongly suggest that this Treg subset is associated with
382 tumor immune escaping. Of note, the increased expression of ICOS and lower levels of pS6 suggest
383 that Treg function might be tuned by the mTOR metabolic pathway.

384 Our overall data suggest that the Foxp3E2^+ Treg subpopulation might have a dominant role
385 in cancer evasion/immunosuppression. This might at least in part be mediated by the increased
386 expression of immune checkpoint co-stimulatory receptors (e.g. CTLA4, PD1 and TIGIT), which
387 represent the targets of currently available immunotherapies that are effective against several
388 malignancies, including BC (e.g., ipilimumab and pembrolizumab) (1, 76-80). Notably, the levels
389 of CCR8 are also increased in TIL- Foxp3E2^+ Tregs. As elevated CCR8 levels in TIL-Tregs
390 associate with poor prognosis in several cancer types (19, 66), this could further contribute to
391 Foxp3E2^+ Treg retention within the tumor thus amplifying the immunosuppression. Altogether,
392 these highlight the importance to consider TIL- Foxp3E2^+ Tregs as a novel target for improving the

393 actual BC immunotherapeutic strategies. We hypothesized that breast cancer cells may induce
394 (and/or increase recruitment/retention) of Foxp3E2⁺ Tregs through the establishment of a highly
395 immunosuppressive milieu (**Fig. S10b**). To this aim, unravelling the specific pathways involved in
396 Foxp3E2⁺ Treg induction will be instrumental to restrain their generation restoring the tumor-
397 immune responses.

398 In conclusion, we showed that high Foxp3E2⁺/Foxp3⁺ (E2) ratio in the peripheral blood of
399 BC subjects reflects stronger immunosuppression and defective MMR at the tumor site, thus
400 predicting poor prognosis. Since the accumulation of Tregs represents an essential mechanism for
401 cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy, our
402 findings may represent a vital jigsaw piece in the early detection of the
403 BC prognosis puzzle. Furthermore, these results might offer a novel paradigm for developing a
404 “super-targeted” approach that selectively restrains tumor-promoting Tregs while preserving a
405 proper peripheral tolerance.

406

407

408

409

410

411

412

413

414

415

416

417

418 **Methods**

419 **Subjects and study design.** The clinical and demographic characteristics of the study cohorts were
420 shown in **Supplementary Table 1**. Female subjects were enrolled after obtaining informed consent.
421 The study has been approved by the Institutional Review Board of the University of Naples
422 “Federico II” (Protocol n. 269/15/ES01). Biological samples were collected by clinicians at the
423 National Cancer Institute – IRCCS “G. Pascale” Foundation (Clinical and Experimental or
424 Oncological Surgery of Senology) and at the Department of General, Oncological, Bariatric and
425 Endocrine-Metabolic Surgery, University of Naples “Federico II”, Naples. BC subjects were naïve-
426 to-treatment and with definite clinicopathological parameters, including age, tumor-node-
427 metastasis (TNM) stage, histological type and grade (according to WHO 2012-2019 and Elston-
428 Ellis) (81, 82), Ki67 index, estrogen receptor (ER), progesterone receptor (PR) and human
429 epidermal growth factor receptor 2 (HER2) status. For each subject, a detailed past medical history
430 was recorded to exclude intake of glucocorticoids and/or antihistamine drugs in the 2 months
431 preceding the enrolment and previous diagnosis of chronic inflammatory, autoimmune or other
432 neoplastic diseases. Subjects underwent breast surgery or core needle biopsies, collected with
433 ultrasound guidance. Tissue and blood samples were collected prior to chemotherapy, radiotherapy,
434 endocrine therapy, or any other treatment. Enrolled subjects were classified into
435 immunohistochemically defined surrogate molecular subtypes, according to the American Society
436 of Clinical Oncology/College of American Pathologists (ASCO/CAP) 2013-2018. Healthy female
437 donors (HD) were matched for age and body mass index and had no history of inflammation,
438 endocrine or autoimmune disease. The ethnic distribution among the groups was comparable, with
439 all participants being white.

440

441 **Breast cancer and breast fibroadenoma tissue samples preparation.** For the preparation of
442 tissue microarray (TMA) and histologic review, five-micrometer sections from each formalin-

443 fixed-paraffin-embedded tissue block were stained with hematoxylin and eosin for the
444 identification of tumor areas. Immunohistochemical (IHC) analysis was performed on TMA with
445 up to four 1.5-mm cores from primarily the invasive tumor front from each tumor. A review of
446 histologic subtype and grade was performed according to WHO guidelines (81). The diagnosis of
447 ductal carcinoma with medullary characteristics was designated for high-grade tumours with
448 pushing margins and syncytial growth patterns in >75% of the tumour in association with a
449 pronounced lymphoplasmacytic infiltrate (81).

450

451 **Immunohistochemistry.** Immunohistochemical staining was performed on slides from formalin-
452 fixed, paraffin-embedded tissues to evaluate the expression of CD3, CD8, Foxp3 and Foxp3E2
453 markers in breast fibroadenoma ($n = 6$) and breast cancer ($n = 23$) tissues. Paraffin slides were de-
454 paraffinized in xylene and rehydrated through graded alcohols. Antigen retrieval was performed
455 with slides heated in 0.01 M citrate buffer (pH 6.0) in a bath for 20 minutes at 97°C. After antigen
456 retrieval, the slides allow to cool. The endogenous peroxidase was inactivated with 3% hydrogen
457 peroxide was inactivated with 3% hydrogen peroxide. After protein block (BSA 5% in PBS 1x),
458 slides were incubated with specific primary antibodies: human anti-CD3 (2GV6) dilution 1:100
459 (Ventana), human anti-CD8 (CAL66) dilution 1:100 (Roche), human anti-FOXP3 (D2W8E)
460 dilution 1:125 (Cell Signaling) and anti-human Foxp3E2 (150D) dilution 1:125 (BioLegend). The
461 sections were incubated for 1 hour with Novocastra Biotinylated Secondary Antibody (HRP-
462 conjugated) and visualized with 3,3'-Diaminobenzidine (DAB) chromogen. Finally, the sections
463 were counterstained with hematoxylin and mounted. CD3, CD8, Foxp3 and Foxp3E2 positive
464 nuclei were counted evaluating at least five fields at 400x magnification. All sections were
465 evaluated in a blinded fashion by 2 investigators. For each marker, a mean value of up to five cores
466 for each patient was calculated representing the overall expression of the specific marker.

467

468 **Breast tissue preparation and cell purification.** For the isolation of tumor-infiltrating
469 lymphocytes (TILs), dissected tissue fragments from freshly isolated biopsies were transferred in
470 GentleMACS C tubes (Miltenyi Biotec) containing Hanks' Balanced Salts Solution (HBSS) with
471 Calcium, Magnesium, Sodium Bicarbonate and without Phenol Red (Aurogene) supplemented with
472 0.5 mg/mL Collagenase IV (Sigma), 50 ng/mL DNase I (Worthington), 2% fetal bovine serum
473 (FBS) (GIBCO) and 10% bovine serum albumin (Sigma). Tissue dissociation was made on a
474 GentleMACS Dissociator (Miltenyi Biotec) by using the “h_tumor 01_03” program. Single-cell
475 suspensions were obtained by disrupting the fragments with a syringe plunger over a cell strainer
476 (100 μ m) and washing with cold HBSS. Cell suspension was centrifuged at 2700 rpm for 5 minutes
477 to remove debris and the cell pellet was resuspended in RPMI 1640 medium for successive
478 evaluations. Peripheral blood mononuclear cells (PBMCs) from BF, BC and HD subjects were
479 isolated from blood samples after Ficoll-Hypaque gradient centrifugation (GE Healthcare). Tregs
480 ($CD4^+CD25^+CD127^-$) and Tconvs ($CD4^+CD25^-$) were purified (90-95% pure) by using the
481 $CD4^+CD25^+$ Regulatory T Cell Isolation Kit (Miltenyi Biotec).

482

483 **Flow cytometry, proliferation and CFSE staining.** Freshly isolated PBMCs and TILs from BF,
484 BC and HD females were surface-stained with the following mAbs: APC-H7-conjugated anti-
485 human CD45 (2D1), V500-conjugated anti-human CD4 (RPA-T4), APC-H7-conjugated anti-
486 human CD4 (RPA-T4), PE-Cy7-conjugated anti-human CD8 (RPA-T8), BV421-conjugated anti-
487 human CD279/PD-1 (EH12.1) and BV421-conjugated anti-human CD198/CCR8 (4333H) all from
488 BD Biosciences, PE-Cy7-conjugated anti-human TIGIT (MBCA43) (eBioscience). Thereafter,
489 cells were washed, fixed and permeabilized (anti-human FOXP3 staining Set PE; eBioscience) and
490 stained with following mAbs: PE-conjugated anti-human FOXP3 from eBioscience (PCH101, that
491 recognizes all splicing variants through an epitope of the amino terminus of Foxp3), and PE-
492 conjugated anti-human Foxp3 from eBioscience (150D/E4, that recognizes Foxp3E2 variants

493 through an epitope present in the exon 2 only), APC-conjugated anti-human CD152/CTLA-4
494 (BNI3) (BD Biosciences), Alexa Fluor 488-conjugated anti-human Helios (22F6) and BV510-
495 conjugated anti-human Ki67 (B56). Cells were analyzed with FACSCanto II (BD Biosciences) and
496 FlowJo software (Tree Star). For T cell proliferation and suppression assays, Tconv cells (2×10^4
497 cells/well) were stained with the fluorescent dye CFSE at 1 μ g/ml (Invitrogen). Flow cytometry
498 analyzing CFSE dilution was performed by gating on CFSE⁺ cells stimulated for 72 hours in round-
499 bottomed 96-well plates (Corning Falcon) with anti-CD3/anti-CD28 mAb-coated beads (0.2
500 beads/cell; Thermo-Fisher) alone or cultured with Tregs from BC and HD subjects, respectively.

501
502 **Systematic transcript variant analysis in public databases.** The Foxp3 spliced variant sequences
503 were assessed in UCSC Genome Browser on Human (GRCh37/hg19) (83) databases. The
504 schematic diagram of the Foxp3 variant structures is reported in **Fig. S1d**.

505
506 **The cancer genome atlas (TCGA) BRCA database analyses.** Foxp3 splicing variant expression
507 data derived from TCGA splicing variant database (TSVdb) web tool (<http://www.tsvdb.com>) and
508 are reported as normalized RNA-Seq by Expectation Maximization (RSEM) values. Samples with
509 unreported and/or missing clinical data were removed. The Foxp3E2⁺/Foxp3⁺ ratio was calculated
510 using GRCh37/hg19 coordinates chrX:49,114,121-49,114,225 and chrX:49,109,587-49,109,663
511 that recognize respectively the Foxp3 splicing variants containing the exon 2 and the exon 9 (being
512 this last common to all transcripts).

513
514 **Kaplan–Meier survival plot.** Overall survival analysis was conducted using only patients with
515 survival and gene expression data from TSVdb. Samples were categorized using Cox proportional
516 hazards regression into two groups based either on the mean RSEM value (high expression \geq Q2
517 and low expression $<$ Q2) or on the upper quartile RSEM value (high expression \geq Q3 and low
518 expression $<$ Q3). The Kaplan–Meier survival plots were generated using R packages: “survival

519 and survminer". The survival curves of samples with high and low gene expression were compared
520 by log-rank test, and data groups with P value < 0.05 were considered statistically significant.
521

522 **RNAseq analysis.** Primary BC ($n = 990$) and normal breast tissue ($n = 112$) RNA-seq data counts
523 were downloaded from the TCGA BRCA project (available online at
524 <https://portal.gdc.cancer.gov/projects/TCGA-BRCA>). Further analysis and visualizations of the
525 processed data were performed in R and Bioconductor. For differential expression analyses
526 between high- ($n = 248$) and low- ($n = 742$) ratio BC groups, counts were normalized using the size
527 factor normalization technique available in DESeq2 and an absolute $\log2FoldChange > 0.5$ and p -
528 $\text{adj} < 0.001$. We used the online tools RDAVIDWebService (84) and GOplot (85) to identify GO
529 Biological Processes overrepresented and to prepare circular composition overview. We performed
530 a statistical overrepresentation test using default parameters. GO-terms were considered
531 overrepresented only if FDR-corrected P-values were below < 0.05 . Then, ClusterProfiler v.4.6
532 and Enrichplot v.1.19.0.01 were used for gene set enrichment analysis (GSEA) and plotting (49,
533 86). DNA mismatch repair (MMR) gene expressions were obtained by comparing the low- ($n =$
534 742) and high- ($n = 248$) ratio BC groups and filtering the normalized count matrix.
535

536 **Tumor immune microenvironment cell composition analysis.** Tissue composition analysis of
537 low ($n = 735$) and high ($n = 248$) ratio BC immune and stroma (Tumor immune microenvironment
538 deconvolution) was performed using the online tool TimeDB (63) based on differentially expressed
539 genes (DEGs) obtained from RNAseq analysis.
540

541 **Mutation enrichment analysis.** Variants were obtained from TCGA-BRCA WES using the
542 TCGAbiolinks R package (87) to identify differentially mutated genes in low- ($n = 650$) and high-
543 ($n = 211$) ratio BC groups. Analysis (variants number, somatic interactions, APOBEC enrichments,

544 and signatures detection) and visualization of mutations were performed using the Maftools R
545 package (88). Contributions of mutational signatures in COSMIC(89) were determined in each
546 sample using nonnegative matrix factorization provided by the NMF v1.8.0 R package (90) using
547 a p-value < 0.001

548

549 **Differentially methylated regions.** Differentially methylated regions were calculated using the
550 normalized beta-values (methylation values ranging from 0.0 to 1.0) obtained from TCGA-BRCA
551 Illumina Human Methylation 450 downloaded through TCGAbiolinks R package. To compare low-
552 (n = 524) and high- (n = 194) ratio BC groups, we used the Wilcoxon test with the adjusted
553 Benjamini-Hochberg method. The default parameters were set to require a minimum absolute beta-
554 value difference of 0.2 and a p-value adjusted of < 0.01.

555

556 **RPPA analysis.** Proteomic analyses were performed using the level 4 (log2 transformed with
557 loading and batch corrected) RPPA dataset from the TCGA-BRCA study downloaded from The
558 Cancer Proteome Atlas portal (<https://tcpaportal.org/tcpa/>). For differential protein expression
559 analysis between high- (n = 248) and low- (n = 742) ratio BC groups, RPPA relative fluorescence
560 intensity (RFI) values were compared using an ANOVA FDR p-value threshold of less than 0.05.
561 The data were then scaled based on Average RFI threshold for each protein to extract upregulated
562 (red) and downregulated (green) probes of the high-ratio BC group. Metascape was used to perform
563 the enrichment analysis of the differentially expressed probes. The data were displayed as median
564 values.

565

566 **Statistical analysis.** Statistical analyses were performed using GraphPad program (Abacus
567 Concepts) and R packages. Results were expressed as Median and interquartile range (IQR). The
568 non-parametric Mann-Whitney *U*-test, the Wilcoxon matched-pairs signed-rank test and the t-test

569 were used. Correlations were computed with a non-parametric Spearman r correlation test, overall
570 survival with a log-rank test, and hazard ratio with multivariate Cox regression model reference. A
571 two-tailed *P* value < 0.05 was considered statistically significant.

572
573 **Data and code availability statement.** The results published here are based in part on data from
574 The Cancer Genome Atlas pilot project established by NCI and the National Human Genome
575 Research Institute. The data was retrieved partly via public repositories and partly via the Genotypes
576 and Phenotypes Authorization Database (dbGaP) (accession number: phs000178.v11.p8). Links to
577 public repositories can be found via online citations. Analysis and visualizations on the processed
578 data were performed using citated R packages. Clinical datasets that support the findings of this
579 study are not publicly available due to information that could compromise research participant
580 consent. Each request for access to the dataset will be granted upon reasonable request sent to the
581 corresponding author and approval by the ethic committee.

582
583
584
585
586

587

588

589

590

591

592

593

594

595

596

597

598

599 **Acknowledgments**

600 We thank the study participants of this study, Mariarosaria Montagna e Salvatore De Simone for
601 technical support, Dr. Gjada Criscuolo and Dr. Remo Poto for critical reading of the manuscript.

602 IC acknowledges support by FISM - Fondazione Italiana Sclerosi Multipla cod.2020/BC/001 and
603 financed or co-financed with the "5 per mille" public funding. AL acknowledges support by
604 Fondazione Umberto Veronesi.

605

606 **Author contributions:** CF, FDR and VDR contributed to study design. FDR, VG, FC, EE, ID, LI,
607 AA, MP, FP, FG, DR, MM, BZ and MDB contributed to the collection of clinical specimens. FDR,
608 AA and LI provided clinical data. CF, AC, AL, ALF, TM and AF performed laboratory
609 experiments. CF, AL, ALF and BDS collected the data. APezzone and AP performed NGS data
610 analysis. GTM, AS, GV and GM reviewed and edited the draft. VDR, IC and APezzone drafted the
611 manuscript.

612

613 **Competing Interests Statement:** The authors declare no competing interests.

614

615 **Funding:** This work was supported by grants from Fondazione Italiana Sclerosi Multipla
616 (2018/R/4), Ministry of Education, University and Research (MIUR) PRIN 2022KT2HBJ, PRIN-
617 PNRR 2022C5KBT, European Union - Next Generation EU “PE8 Ageing Well in an ageing society
618 – AGE-IT” Investment 1.3 (Partenariato Esteso - PE0000015) and Associazione Italiana per la
619 Ricerca sul Cancro-TRIDEO (Transforming Ideas in Oncological research, n.17447) to VDR.

620

621 **Additional Information:**

622
623 Supplementary Table 1.
624 Supplementary Figure S1-S10.

625

626

627

628

629 **Figure legends**

630 **Figure 1. Characterization of the immune infiltrate in peripheral blood (PB) and primary**
631 **tissue from breast cancer (BC) and fibroadenoma (BF) subjects. (a)** Schematic representation
632 of Foxp3⁺ and Foxp3E2⁺ Tregs in tumor immune escape. **(b)** CD8⁺/CD4⁺ ratio, % of **(c)** Foxp3⁺
633 and **(d)** Foxp3E2⁺ cells (gated on CD4⁺), **(e-f)** Foxp3E2⁺/Foxp3⁺ ratio (E2 ratio) and **(g)** CD8⁺/Treg
634 ratio in peripheral blood (PB – represented as dots) and tumor-infiltrating lymphocytes (TILs –
635 represented as triangles) from BF (white empty) and BC (red empty) subjects. In panel **(b-g)**,
636 represented data are for BF at least $n = 7$ and $n = 15$ and for BC at least $n = 15$ and $n = 24$
637 (respectively for PB and TILs), $n = 77$ for PB and $n = 26$ for TILs. **(h)** Correlation between % of
638 Foxp3E2⁺ and CD8⁺/Treg ratio in TILs from BC subjects ($n = 24$). **(i)** Representative
639 immunohistochemical staining of primary BC and BF tissue showing CD3⁺, CD8⁺, Foxp3⁺ and
640 Foxp3E2⁺ cells. Immunohistochemistry-based quantification of **(j)** % of CD3⁺, **(k)** CD8⁺, **(l)**
641 Foxp3⁺, **(m)** Foxp3E2⁺ cells, **(n)** CD8⁺/CD3⁺ ratio, **(o)** Foxp3⁺/CD3⁺ ratio and **(p)** Foxp3E2⁺/CD3⁺
642 ratio [respectively white dots ($n = 6$) for BF and red triangles ($n = 23$) for BC subjects]. Data are
643 presented as Median values. Each data point represents a different individual (i.e., independent
644 biological samples) **(a-e, g, h, j-p)** or experimental replicates **(f)**. Statistical analyses were
645 performed by using Mann-Whitney *U*-test (two tails) **(a-g, j-p)** and Spearman *r* correlation test **(h)**.

646 * $P \leq 0.05$; ** $P \leq 0.01$; *** $P \leq 0.005$; **** $P \leq 0.0001$.

647

648 **Figure 2. Foxp3E2 transcript analysis from primary breast cancer (BC) tissues delineates a**
649 **subgroup of subjects with poor prognosis and a distinct gene expression profile. (a)** Foxp3
650 transcripts in normal ($n = 112$) and primary breast cancer ($n = 990$) tissues. Data represent
651 normalized RSEM value obtained by RNAseq analysis of datasets in the TCGA Splicing Variant
652 Database. **(b, c)** Kaplan-Meier survival curve of BC subjects stratified into low- and high-Foxp3

653 expression levels within the primary tumor based on its Q2 ($n = 495$ and 495) or Q3 ($n = 742$ and
654 248) value. **(d)** Interquartile distribution of the $\text{Foxp3E2}^+/\text{Foxp3}^+$ ratio calculated in the primary BC
655 tissue ($n = 990$). **(e)** BC subjects were stratified into low- ($n = 741$) and high- ($n = 249$)
656 $\text{Foxp3E2}^+/\text{Foxp3}^+$ ratio (E2 ratio) according to the Q3 value cut-off. **(f)** Hazard Ratio (HR = 1.8,
657 CI 1.1 – 2.8, Cox $P = 0.014$) and **(g)** Kaplan-Meier survival curve of low- ($n = 741$) and high- ($n =$
658 249) E2 ratio BC subjects according to Q3 value cut-off. **(h)** Volcano plot of Differentially
659 Expressed Genes (DEGs) obtained by applying a threshold of $\log_2 \text{foldchange} > \pm 0.05$ (x-axis)
660 and a $p\text{-adj} < 0.001$ (y-axis) in the two groups of BC subjects. Dots represented single genes: 179
661 upregulated (red), and 523 downregulated (green) in the high-ratio BC group. **(i)** Circular
662 composition overview plot for selected gene ontology pathways (represented in different colors)
663 overrepresented among DEGs in high- vs low-ratio BC groups. Gene Ontology (GO) analysis was
664 performed by DAVID (Database for Annotation, Visualization and Integrated Discovery) database
665 Gene color scale indicates the relevant fold change values (red -upregulated, green -
666 downregulated). Data are presented as Median values. Statistical analyses were performed by using
667 Mann-Whitney U -test (two tails) **(a, e)**, Multivariate Cox regression model reference **(b, c, g)**, and
668 log-rank test **(f)**. *** $P \leq 0.0001$.

669

670 **Figure 3. High intra-tumor heterogeneity characterizes the BC group with high**
671 **$\text{Foxp3E2}^+/\text{Foxp3}^+$ ratio. (a, b)** Summary of top 10 mutated genes in BC subjects with **(a)** low-
672 and **(b)** high- E2 ratio. **(c, d)** Somatic interaction analysis between gene pairs showing co-occurring
673 mutations (green squares) and mutually exclusive mutations (brown squares). The intensity of the
674 color is proportionate to the $-\log_{10}$ (P -value). Statistical analyses were performed by using
675 Fisher's exact test.

676

677 **Figure 4. Defective DNA mismatch repair and specific mutational signatures in BC subjects**

678 **with high Foxp3E2⁺/Foxp3⁺ ratio.** Mutational signatures identified in BC subjects with **(a, e)**
679 low- and **(b, f)** high- Foxp3E2⁺/Foxp3⁺ ratio, respectively. The y-axis indicates exposure of 96
680 trinucleotide motifs to overall signature. In each plot, we report the best match against validated
681 COSMIC signatures and cosine similarity value alongside the proposed etiology. **(c, d)** APOBEC
682 enrichment analysis in BC subjects with **(c)** low- and **(d)** high-E2 ratio. Box plots (left panels) show
683 differences in mutation load between APOBEC-enriched and nonenriched samples. Donut plots
684 (upper panels) display the proportion of mutations in tCw context. Bar plots (lower panels) show
685 the top 10 differentially mutated genes between APOBEC-enriched and non-APOBEC-enriched
686 samples. **(g)** Box plots reporting the expression profiles of MMR-relative genes (MLH1, MLH3,
687 MSH2, MSH3, MSH6, PMS2). **(h)** Supervised hierarchical clustering analysis of TCGA-BC RPPA
688 results using an ANOVA FDR p-value threshold lower than 0.05. Based on this threshold, 81 probes
689 were differentially altered in the high-E2 ratio group, with 40 probes upregulated (red bar) and 41
690 downregulated (green bar). **(i)** Enrichment analysis of the differently expressed probes using
691 Metascape. Statistical analyses were performed by using the Wilcoxon rank-sum test and Fisher's
692 exact test **(a, b, e, f)**; *** $P \leq 0.005$.

693

694 **Figure 5. Highly immunosuppressive Foxp3E2⁺ Tregs preferentially accumulate in TILs of**
695 **newly diagnosed HR⁺ BC subjects.** Cumulative data of flow cytometry analysis showing cell
696 percentage and mean fluorescence intensity (MFI) of Helios⁺, pS6⁺, CCR8⁺, TIGIT⁺, ICOS⁺,
697 CTLA-4⁺, PD-1⁺ and Ki67⁺ cells (gated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺) in freshly isolated
698 TILs (at least $n = 4$) and PB (at least $n = 9$) from BC subjects. Data are presented as Median values.
699 Statistical analysis was performed by using Wilcoxon and Mann-Whitney *U*-test (two tails); * $P \leq$
700 0.05 ; ** $P \leq 0.01$; *** $P \leq 0.005$; **** $P \leq 0.0001$.

701

702 **Figure 6. Higher immune checkpoint expression in Tregs from HR⁺ BC subjects correlates**
703 **with increased Foxp3E2⁺/Foxp3⁺ ratio and peripheral Treg suppressive function. (a)**
704 Percentage of suppression of Tregs in co-culture with CFSE-labeled Tconvs at different ratios, from
705 HD ($n = 20$) and BC ($n = 16$) subjects. **(b)** Cumulative data calculated by flow cytometry
706 quantification of the E2 ratio (evaluated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺ Tregs) from PB of
707 HD ($n = 38$) and BC ($n = 33$) subjects. **(c)** Percentage of TIGIT⁺, CCR8⁺, TIGIT⁺/CCR8⁺, CTLA-
708 4⁺, CTLA-4⁺/PD-1⁺, Helios⁺ and ICOS⁺ Tregs and MFI of ICOS, CCR8, CTLA-4 and Helios on
709 CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺ Tregs from freshly isolated PB of HD (at least $n = 25$) and BC
710 (at least $n = 22$) subjects. **(d)** E2 PB-ratio (median, minimum to maximum values, and quartiles)
711 from BC ($n = 33$) and HD ($n = 38$) subjects. Each symbol shows independent biological samples
712 **(b-d)** or experimental replicates **(a)**. Data are presented as Median values. Statistical analysis was
713 performed by using Wilcoxon and Mann-Whitney *U*-test (two tails); * $P \leq 0.05$; ** $P \leq 0.01$; *** $P \leq$
714 0.005; **** $P \leq 0.0001$.

715

716 **Figure 7. Increased peripheral Treg suppressive function and immune checkpoint expression**
717 **in Tregs from BC subjects with higher Foxp3E2⁺/Foxp3⁺ TIL- and PB-ratio. (a)** Correlation
718 between the E2 TIL-ratio and the percentage of peripheral suppression of Tregs from BC subjects
719 ($n = 10$). **(b)** Percentage of suppression of Tregs from BC subjects with high ($n = 6$) and low ($n =$
720 6) E2 TIL-ratio BC subjects at different proportions of Treg/Tconv cells. **(c)** E2 PB-ratio from BC
721 subjects with high ($n = 18$) and low ($n = 24$) TIL-ratio. **(d)** Percentage of Treg suppression in BC
722 subjects divided into high- ($n = 7$) and low- ($n = 10$) Foxp3E2⁺/Foxp3⁺ PB-ratio. **(e)** Cumulative
723 data calculated by flow cytometry quantification showing the percentage of Helios⁺, CTLA-4⁺,
724 CTLA-4⁺PD-1⁺, CCR8⁺, TIGIT⁺CCR8⁺ and pS6⁺ cells and MFI (Helios, CTLA-4, CCR8, pS6 and
725 ICOS) gated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺ Tregs from peripheral blood of BC subjects with
726 high- (at least $n = 11$) and low- (at least $n = 13$) E2 PB-ratio BC subjects. Each symbol shows

727 independent biological samples (**a-c, e**) or experimental replicates (**b, d**). Data are presented as
728 Median values. Statistical analysis was performed by using Wilcoxon and Mann-Whitney *U*-test
729 (two tails); * $P \leq 0.05$; ** $P \leq 0.01$; *** $P \leq 0.005$; **** $P \leq 0.0001$.

730

731 **Figure 8. High Foxp3E2⁺/Foxp3⁺ ratio predicts worse prognosis in two independent cohorts**
732 **of newly diagnosed HR⁺BC subjects.** **(a)** Intratumoral Ki67 from BC subjects with high ($n = 21$)
733 and low ($n = 19$) E2 PB-ratio. **(b)** Luminal A and B (average proportion) in the high and low E2 PB-
734 ratio BC groups. **(c)** E2 PB-ratio in Luminal B ($n = 35$) and Luminal A ($n = 57$) BC groups. **(d)**
735 Percentage of Treg suppression from Luminal B ($n = 6$) and Luminal A ($n = 12$) BC subjects. **(e)**
736 PB-ratio from BC subjects with poor ($n = 29$) or good ($n = 54$) prognosis. **(f)** Percentage of Treg
737 suppression in BC subjects with poor ($n = 5$) or good ($n = 13$) prognosis. **(g)** Schematical summary
738 of the results. Each symbol shows independent biological samples **(a, b)** or experimental replicates
739 **(c-f).** Data are presented as Median values. Statistical analyses were performed by using Wilcoxon
740 and Mann-Whitney *U*-test (two tails) **(a, c-f)** and Fisher's exact test **(b)**; * $P \leq 0.05$; ** $P \leq 0.01$;
741 *** $P \leq 0.005$; **** $P \leq 0.0001$.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764 **References**

765

766

- 767 1. F. Shan, A. Somasundaram, T. C. Bruno, C. J. Workman, D. A. A. Vignali, Therapeutic targeting of regulatory T cells in cancer. *Trends Cancer* **8**, 944-961 (2022).
- 768 2. Y. Togashi, K. Shitara, H. Nishikawa, Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. *Nat Rev Clin Oncol* **16**, 356-371 (2019).
- 769 3. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber, Cancer immunoediting: from 770 immunosurveillance to tumor escape. *Nat Immunol* **3**, 991-998 (2002).
- 771 4. J. S. O'Donnell, M. W. L. Teng, M. J. Smyth, Cancer immunoediting and resistance to T 772 cell-based immunotherapy. *Nat Rev Clin Oncol* **16**, 151-167 (2019).
- 773 5. J. Blanco-Heredia *et al.*, Converging and evolving immuno-genomic routes toward immune 774 escape in breast cancer. *Nat Commun* **15**, 1302 (2024).
- 775 6. N. McGranahan *et al.*, Allele-Specific HLA Loss and Immune Escape in Lung Cancer 776 Evolution. *Cell* **171**, 1259-1271 e1211 (2017).
- 777 7. S. Adams *et al.*, Pembrolizumab monotherapy for previously treated metastatic triple- 778 negative breast cancer: cohort A of the phase II KEYNOTE-086 study. *Ann Oncol* **30**, 397- 781 404 (2019).
- 779 8. M. E. Gatti-Mays *et al.*, If we build it they will come: targeting the immune response to 780 breast cancer. *NPJ Breast Cancer* **5**, 37 (2019).
- 781 9. R. R. Gomis, S. Gawrzak, Tumor cell dormancy. *Mol Oncol* **11**, 62-78 (2017).
- 782 10. T. G. Garrison, D. J. Ferguson, P. Meier, Dormancy of mammary carcinoma after 783 mastectomy. *J Natl Cancer Inst* **91**, 80-85 (1999).
- 784 11. R. Demicheli *et al.*, Recurrence and mortality dynamics for breast cancer patients 785 undergoing mastectomy according to estrogen receptor status: different mortality but 786 similar recurrence. *Cancer Sci* **101**, 826-830 (2010).
- 787 12. M. Colleoni *et al.*, Annual Hazard Rates of Recurrence for Breast Cancer During 24 Years 788 of Follow-Up: Results From the International Breast Cancer Study Group Trials I to V. *J 789 Clin Oncol* **34**, 927-935 (2016).
- 790 13. P. F. Denoix, [Nomenclature and classification of cancers based on an atlas]. *Acta Unio Int 791 Contra Cancrum* **9**, 769-771 (1953).
- 792 14. A. F. Vieira, F. Schmitt, An Update on Breast Cancer Multigene Prognostic Tests-Emergent 793 Clinical Biomarkers. *Front Med (Lausanne)* **5**, 248 (2018).
- 794 15. R. N. Pedersen *et al.*, The Incidence of Breast Cancer Recurrence 10-32 Years After Primary 795 Diagnosis. *J Natl Cancer Inst* **114**, 391-399 (2022).
- 796 16. H. Pan *et al.*, 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy 797 at 5 Years. *N Engl J Med* **377**, 1836-1846 (2017).
- 798 17. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2020. *CA Cancer J Clin* **70**, 7-30 800 (2020).
- 799 18. G. L. Beatty, W. L. Gladney, Immune escape mechanisms as a guide for cancer 801 immunotherapy. *Clin Cancer Res* **21**, 687-692 (2015).
- 802 19. M. De Simone *et al.*, Transcriptional Landscape of Human Tissue Lymphocytes Unveils 803 Uniqueness of Tumor-Infiltrating T Regulatory Cells. *Immunity* **45**, 1135-1147 (2016).
- 804 20. B. Shang, Y. Liu, S. J. Jiang, Y. Liu, Prognostic value of tumor-infiltrating FoxP3+ 805 regulatory T cells in cancers: a systematic review and meta-analysis. *Sci Rep* **5**, 15179 806 (2015).
- 807 21. A. Tanaka, S. Sakaguchi, Regulatory T cells in cancer immunotherapy. *Cell Res* **27**, 109- 808 118 (2017).

812 22. R. Saleh, E. Elkord, FoxP3(+) T regulatory cells in cancer: Prognostic biomarkers and
813 therapeutic targets. *Cancer Lett* **490**, 174-185 (2020).

814 23. S. Liu *et al.*, Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast
815 cancer depends on estrogen receptor and human epidermal growth factor receptor-2
816 expression status and concurrent cytotoxic T-cell infiltration. *Breast Cancer Res* **16**, 432
817 (2014).

818 24. S. A. Perez *et al.*, CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive
819 and HER-negative advanced-stage breast cancer patients. *Clin Cancer Res* **13**, 2714-2721
820 (2007).

821 25. R. J. deLeeuw, S. E. Kost, J. A. Kakal, B. H. Nelson, The prognostic value of FoxP3+
822 tumor-infiltrating lymphocytes in cancer: a critical review of the literature. *Clin Cancer Res*
823 **18**, 3022-3029 (2012).

824 26. J. Stenstrom, I. Hedenfalk, C. Hagerling, Regulatory T lymphocyte infiltration in metastatic
825 breast cancer-an independent prognostic factor that changes with tumor progression. *Breast
826 Cancer Res* **23**, 27 (2021).

827 27. K. Kos *et al.*, Tumor-educated T(regs) drive organ-specific metastasis in breast cancer by
828 impairing NK cells in the lymph node niche. *Cell Rep* **38**, 110447 (2022).

829 28. N. R. West *et al.*, Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic
830 immune responses and good clinical outcome in oestrogen receptor-negative breast cancer.
831 *Br J Cancer* **108**, 155-162 (2013).

832 29. G. Plitas *et al.*, Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer.
833 *Immunity* **45**, 1122-1134 (2016).

834 30. J. G. Tate *et al.*, COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids
835 Res* **47**, D941-D947 (2019).

836 31. H. Nakagawa *et al.*, Instability of Helios-deficient Tregs is associated with conversion to a
837 T-effector phenotype and enhanced antitumor immunity. *Proc Natl Acad Sci U S A* **113**,
838 6248-6253 (2016).

839 32. M. J. Watson *et al.*, Metabolic support of tumour-infiltrating regulatory T cells by lactic
840 acid. *Nature* **591**, 645-651 (2021).

841 33. R. K. W. Mailer, Alternative Splicing of FOXP3-Virtue and Vice. *Front Immunol* **9**, 530
842 (2018).

843 34. N. Goda *et al.*, The ratio of CD8 + lymphocytes to tumor-infiltrating suppressive FOXP3 +
844 effector regulatory T cells is associated with treatment response in invasive breast cancer.
845 *Discov Oncol* **13**, 27 (2022).

846 35. V. De Rosa *et al.*, Glycolysis controls the induction of human regulatory T cells by
847 modulating the expression of FOXP3 exon 2 splicing variants. *Nat Immunol* **16**, 1174-1184
848 (2015).

849 36. S. Junius *et al.*, Unstable regulatory T cells, enriched for naive and Nrp1(neg) cells, are
850 purged after fate challenge. *Sci Immunol* **6**, (2021).

851 37. J. Du *et al.*, FOXP3 exon 2 controls T(reg) stability and autoimmunity. *Sci Immunol* **7**,
852 eab05407 (2022).

853 38. L. Demir *et al.*, Predictive and prognostic factors in locally advanced breast cancer: effect
854 of intratumoral FOXP3+ Tregs. *Clin Exp Metastasis* **30**, 1047-1062 (2013).

855 39. S. Garaud *et al.*, A simple and rapid protocol to non-enzymatically dissociate fresh human
856 tissues for the analysis of infiltrating lymphocytes. *J Vis Exp*, (2014).

857 40. W. Sun *et al.*, TSVdb: a web-tool for TCGA splicing variants analysis. *BMC Genomics* **19**,
858 405 (2018).

859 41. D. O. Croci *et al.*, Dynamic cross-talk between tumor and immune cells in orchestrating the
860 immunosuppressive network at the tumor microenvironment. *Cancer Immunol Immunother*
861 **56**, 1687-1700 (2007).

862 42. T. L. Whiteside, The tumor microenvironment and its role in promoting tumor growth. *Oncogene* **27**, 5904-5912 (2008).

863 43. M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **28**, 27-30 (2000).

864 44. P. Jayachandran *et al.*, Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. *Oncogene* **42**, 627-637 (2023).

865 45. I. Bozic *et al.*, Accumulation of driver and passenger mutations during tumor progression. *Proc Natl Acad Sci U S A* **107**, 18545-18550 (2010).

866 46. E. Lee *et al.*, Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. *Cell Death Dis* **6**, e1805 (2015).

867 47. K. Takahashi *et al.*, The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. *PLoS Genet* **17**, e1009587 (2021).

868 48. K. Maskalenka *et al.*, NANOGP1, a tandem duplicate of NANOG, exhibits partial functional conservation in human naive pluripotent stem cells. *Development* **150**, (2023).

869 49. T. Wu *et al.*, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation (Camb)* **2**, 100141 (2021).

870 50. L. Beumers *et al.*, Clonal heterogeneity in ER+ breast cancer reveals the proteasome and PKC as potential therapeutic targets. *NPJ Breast Cancer* **9**, 97 (2023).

871 51. C. Yoon *et al.*, PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. *Oncogenesis* **10**, 12 (2021).

872 52. M. Karami Fath *et al.*, PI3K/Akt/mTOR signaling pathway in cancer stem cells. *Pathol Res Pract* **237**, 154010 (2022).

873 53. N. McGranahan *et al.*, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. *Science* **351**, 1463-1469 (2016).

874 54. C. Valero *et al.*, The association between tumor mutational burden and prognosis is dependent on treatment context. *Nat Genet* **53**, 11-15 (2021).

875 55. A. Walens *et al.*, Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. *Nat Commun* **11**, 5017 (2020).

876 56. M. S. Lawrence *et al.*, Discovery and saturation analysis of cancer genes across 21 tumour types. *Nature* **505**, 495-501 (2014).

877 57. S. Nik-Zainal *et al.*, Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* **534**, 47-54 (2016).

878 58. S. Nik-Zainal *et al.*, The life history of 21 breast cancers. *Cell* **149**, 994-1007 (2012).

879 59. M. B. Burns *et al.*, APOBEC3B is an enzymatic source of mutation in breast cancer. *Nature* **494**, 366-370 (2013).

880 60. L. B. Alexandrov *et al.*, Signatures of mutational processes in human cancer. *Nature* **500**, 415-421 (2013).

881 61. S. Haricharan *et al.*, Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. *Cancer Discov* **7**, 1168-1183 (2017).

882 62. M. Anurag *et al.*, Comprehensive Profiling of DNA Repair Defects in Breast Cancer Identifies a Novel Class of Endocrine Therapy Resistance Drivers. *Clin Cancer Res* **24**, 4887-4899 (2018).

883 63. X. Wang *et al.*, TIMEDB: tumor immune micro-environment cell composition database with automatic analysis and interactive visualization. *Nucleic Acids Res* **51**, D1417-D1424 (2023).

884 64. T. C. Brown, J. Jiricny, Repair of base-base mismatches in simian and human cells. *Genome* **31**, 578-583 (1989).

885 65. M. Haruna *et al.*, The impact of CCR8+ regulatory T cells on cytotoxic T cell function in human lung cancer. *Sci Rep* **12**, 5377 (2022).

912 66. T. Wang *et al.*, CCR8 blockade primes anti-tumor immunity through intratumoral
913 regulatory T cells destabilization in muscle-invasive bladder cancer. *Cancer Immunol*
914 *Immunother* **69**, 1855-1867 (2020).

915 67. H. Kennecke *et al.*, Metastatic behavior of breast cancer subtypes. *J Clin Oncol* **28**, 3271-
916 3277 (2010).

917 68. N. A. Soliman, S. M. Yussif, Ki-67 as a prognostic marker according to breast cancer
918 molecular subtype. *Cancer Biol Med* **13**, 496-504 (2016).

919 69. A. C. Wolff *et al.*, Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer:
920 American Society of Clinical Oncology/College of American Pathologists Clinical Practice
921 Guideline Focused Update. *J Clin Oncol* **36**, 2105-2122 (2018).

922 70. A. Raugh, D. Allard, M. Bettini, Nature vs. nurture: FOXP3, genetics, and tissue
923 environment shape Treg function. *Front Immunol* **13**, 911151 (2022).

924 71. L. Wang *et al.*, PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. *Int J*
925 *Mol Sci* **18**, (2017).

926 72. A. Glaviano *et al.*, PI3K/AKT/mTOR signaling transduction pathway and targeted therapies
927 in cancer. *Mol Cancer* **22**, 138 (2023).

928 73. P. M. K. Westcott *et al.*, Mismatch repair deficiency is not sufficient to elicit tumor
929 immunogenicity. *Nat Genet* **55**, 1686-1695 (2023).

930 74. M. Efremova, F. Finotello, D. Rieder, Z. Trajanoski, Neoantigens Generated by Individual
931 Mutations and Their Role in Cancer Immunity and Immunotherapy. *Front Immunol* **8**, 1679
932 (2017).

933 75. P. Baldominos *et al.*, Quiescent cancer cells resist T cell attack by forming an
934 immunosuppressive niche. *Cell* **185**, 1694-1708 e1619 (2022).

935 76. S. Adams *et al.*, A Multicenter Phase II Trial of Ipilimumab and Nivolumab in Unresectable
936 or Metastatic Metaplastic Breast Cancer: Cohort 36 of Dual Anti-CTLA-4 and Anti-PD-1
937 Blockade in Rare Tumors (DART, SWOG S1609). *Clin Cancer Res* **28**, 271-278 (2022).

938 77. R. N. Amaria *et al.*, Neoadjuvant immune checkpoint blockade in high-risk resectable
939 melanoma. *Nat Med* **24**, 1649-1654 (2018).

940 78. M. D. Hellmann *et al.*, Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor
941 Mutational Burden. *N Engl J Med* **378**, 2093-2104 (2018).

942 79. J. A. Kyte *et al.*, ICON: a randomized phase IIb study evaluating immunogenic
943 chemotherapy combined with ipilimumab and nivolumab in patients with metastatic
944 hormone receptor positive breast cancer. *J Transl Med* **18**, 269 (2020).

945 80. A. Ribas, J. D. Wolchok, Cancer immunotherapy using checkpoint blockade. *Science* **359**,
946 1350-1355 (2018).

947 81. C. W. Elston, I. O. Ellis, Pathological prognostic factors in breast cancer. I. The value of
948 histological grade in breast cancer: experience from a large study with long-term follow-up.
949 *Histopathology* **19**, 403-410 (1991).

950 82. P. H. Tan *et al.*, The 2019 World Health Organization classification of tumours of the breast.
951 *Histopathology* **77**, 181-185 (2020).

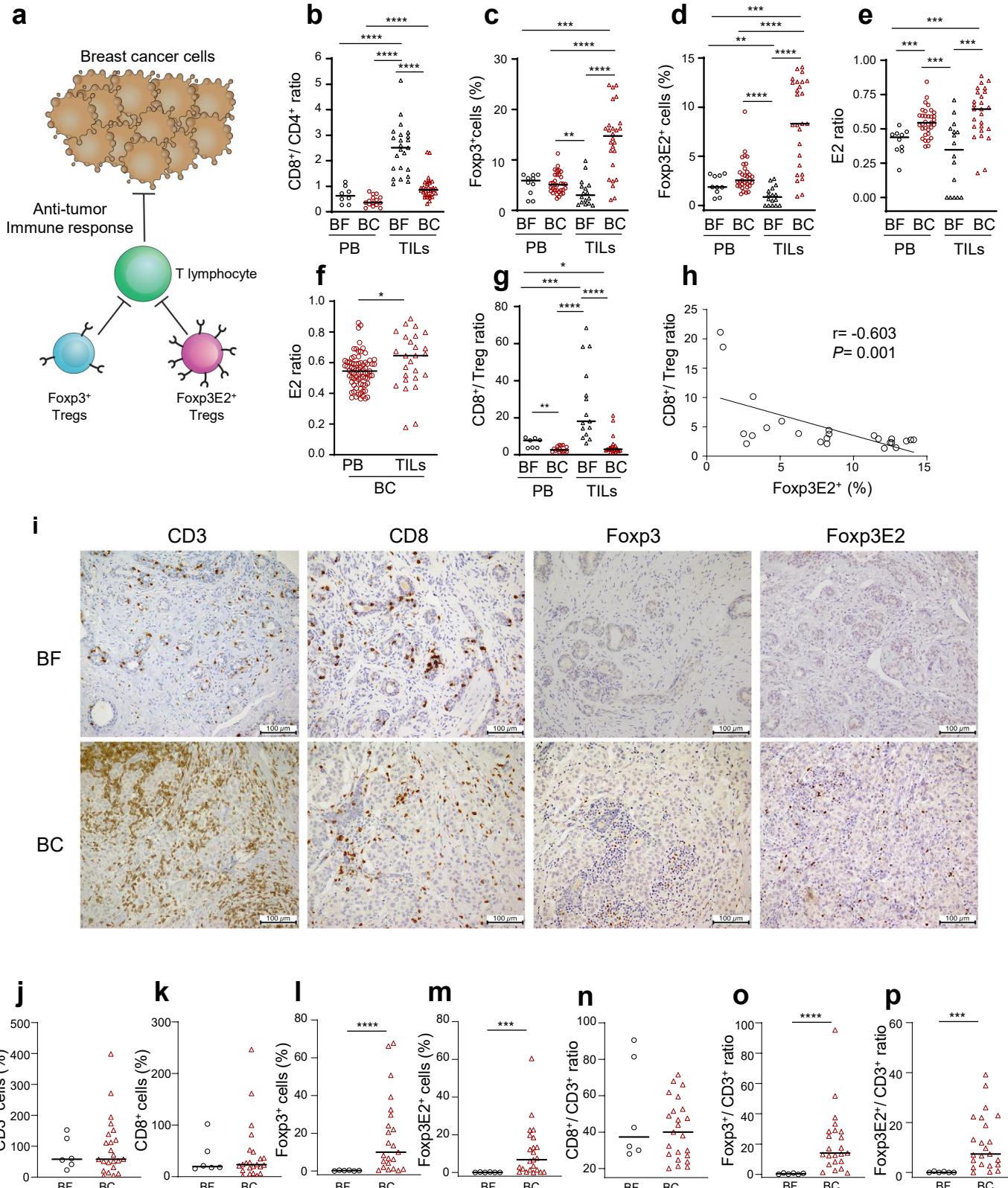
952 83. W. J. Kent *et al.*, The human genome browser at UCSC. *Genome Res* **12**, 996-1006 (2002).

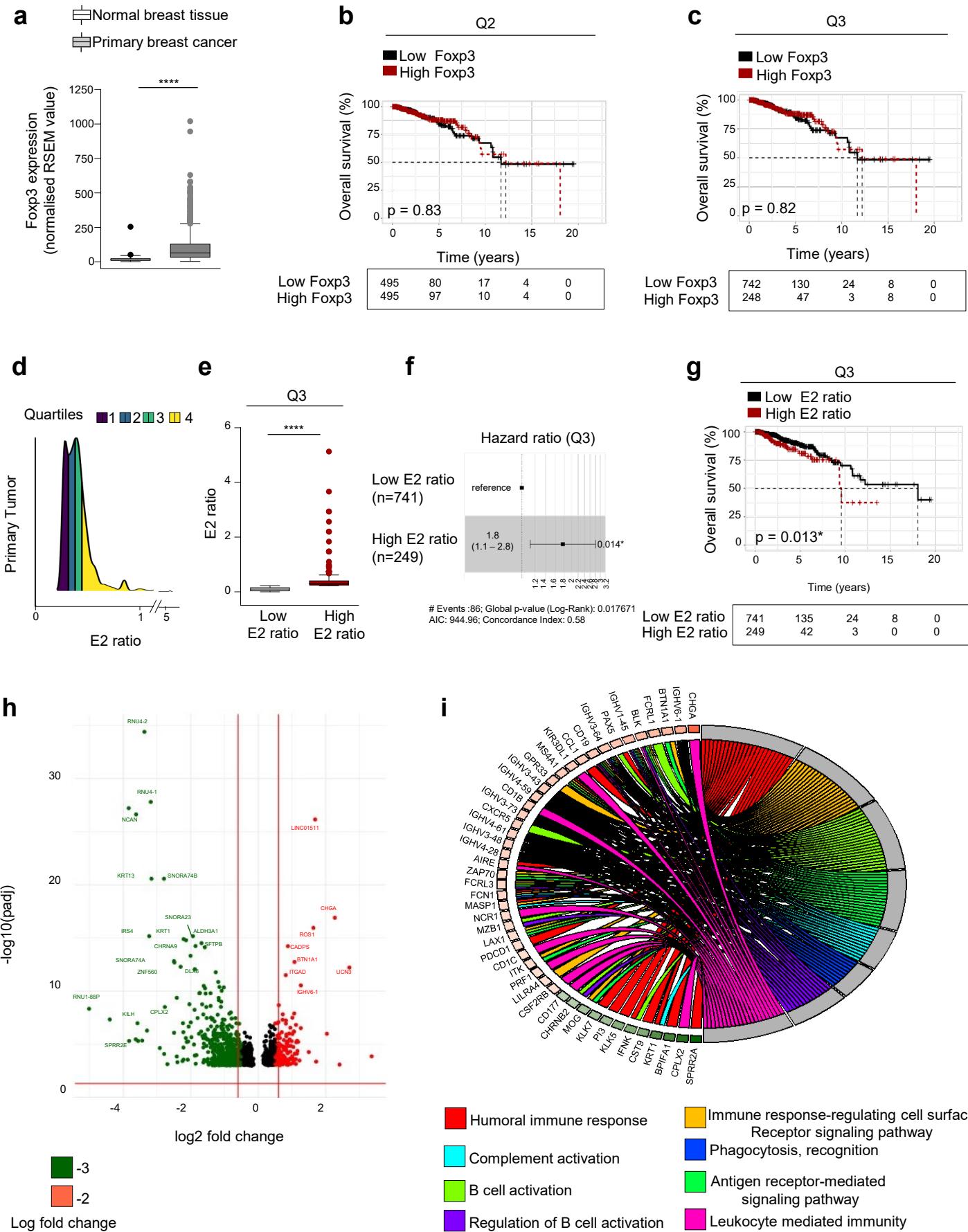
953 84. C. Fresno, E. A. Fernandez, RDAVIDWebService: a versatile R interface to DAVID.
954 *Bioinformatics* **29**, 2810-2811 (2013).

955 85. W. Walter, F. Sanchez-Cabo, M. Ricote, GOplot: an R package for visually combining
956 expression data with functional analysis. *Bioinformatics* **31**, 2912-2914 (2015).

957 86. G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing
958 biological themes among gene clusters. *OMICS* **16**, 284-287 (2012).

959 87. A. Colaprico *et al.*, TCGAbiolinks: an R/Bioconductor package for integrative analysis of
960 TCGA data. *Nucleic Acids Res* **44**, e71 (2016).


961 88. A. Mayakonda, D. C. Lin, Y. Assenov, C. Plass, H. P. Koeffler, Maftools: efficient and
962 comprehensive analysis of somatic variants in cancer. *Genome Res* **28**, 1747-1756 (2018).


963 89. M. S. Lawrence *et al.*, Mutational heterogeneity in cancer and the search for new cancer-
964 associated genes. *Nature* **499**, 214-218 (2013).

965 90. R. Gaujoux, C. Seoighe, A flexible R package for nonnegative matrix factorization. *BMC*
966 *Bioinformatics* **11**, 367 (2010).

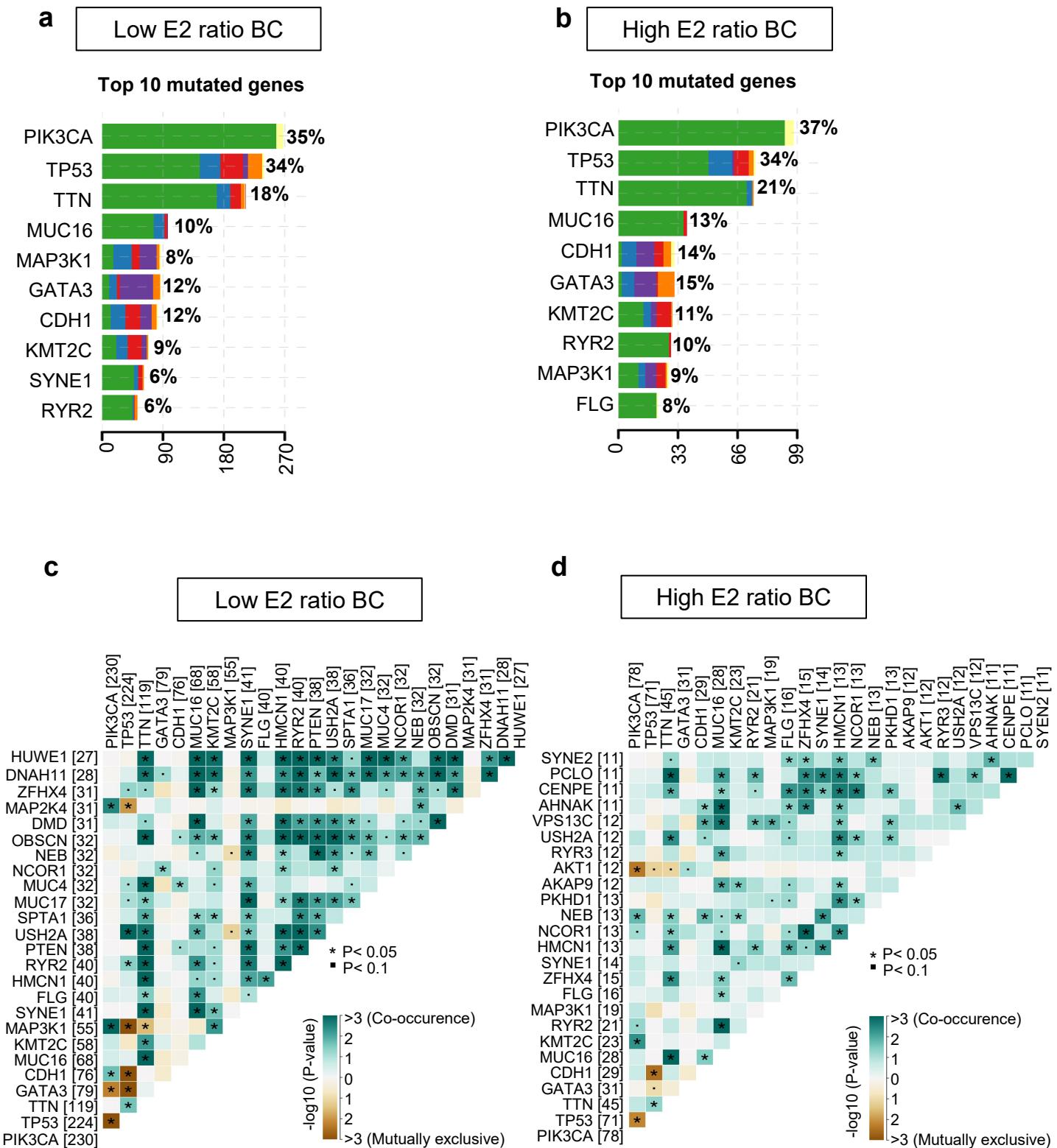
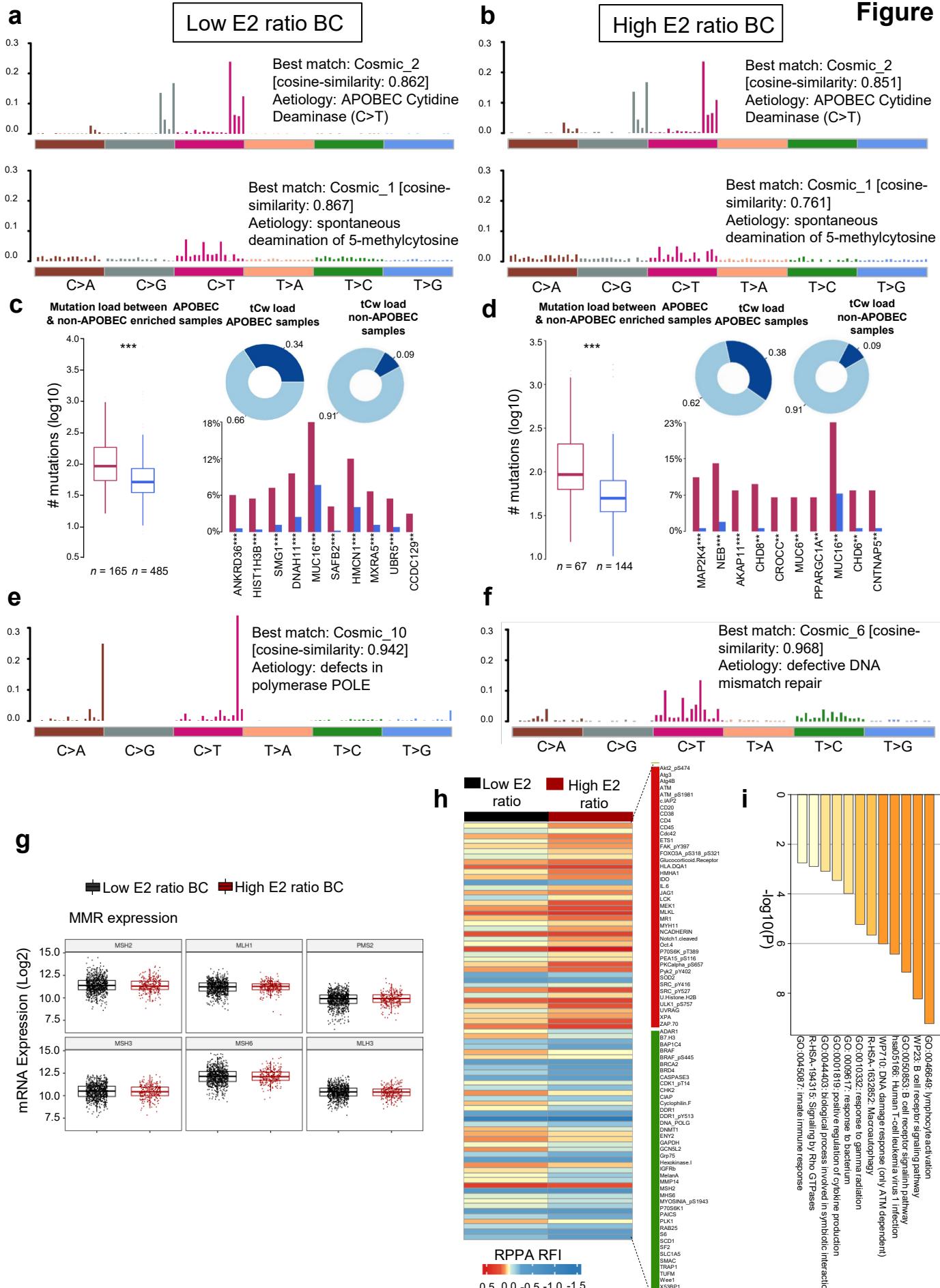
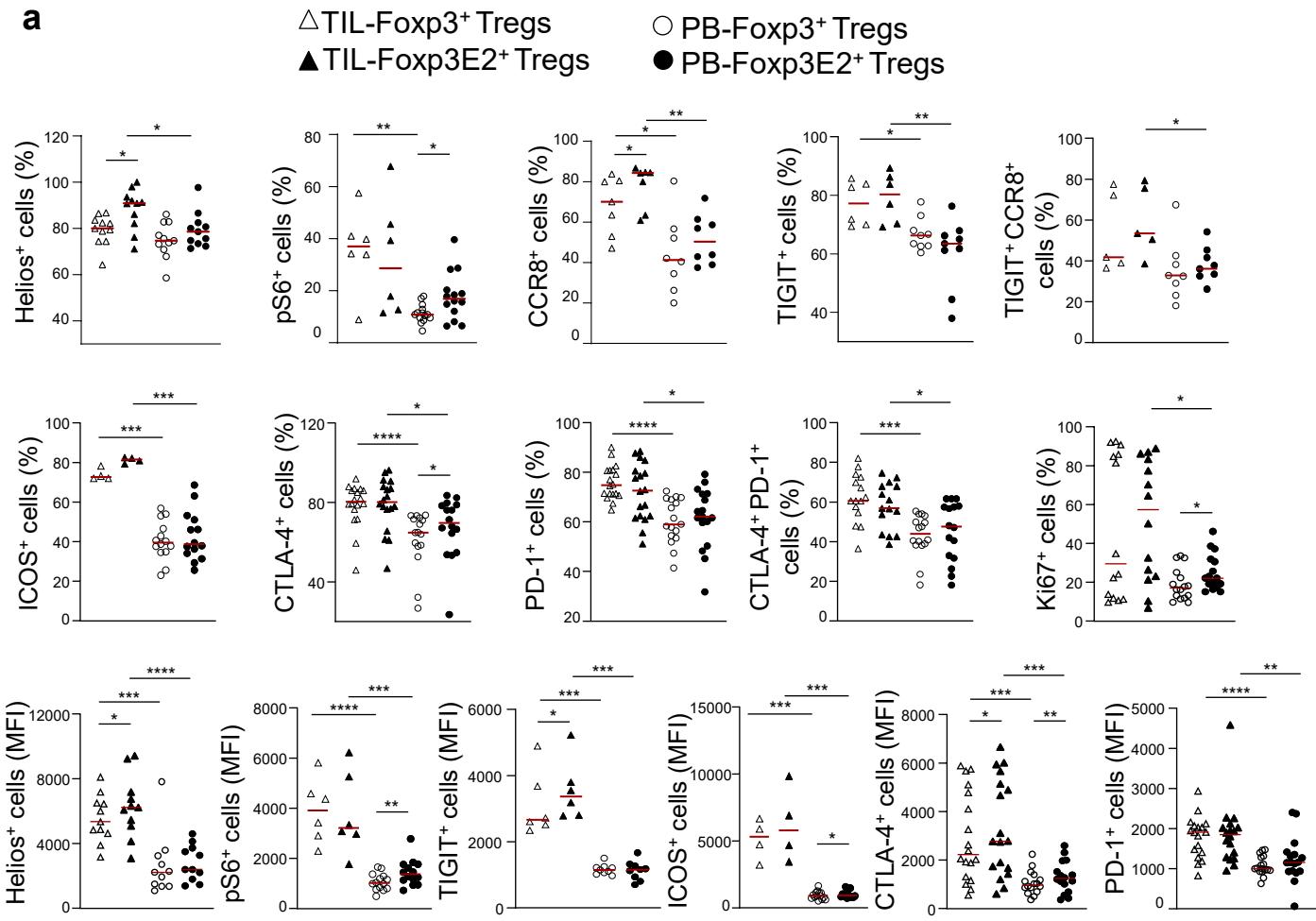
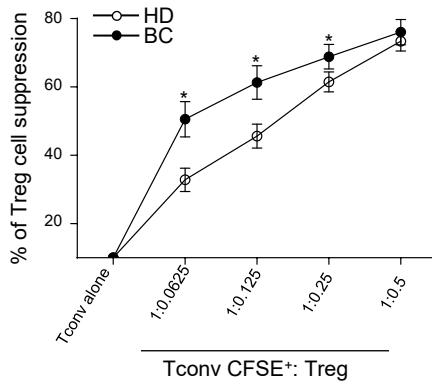
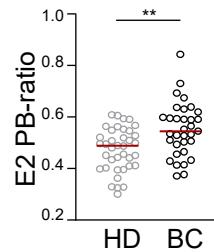
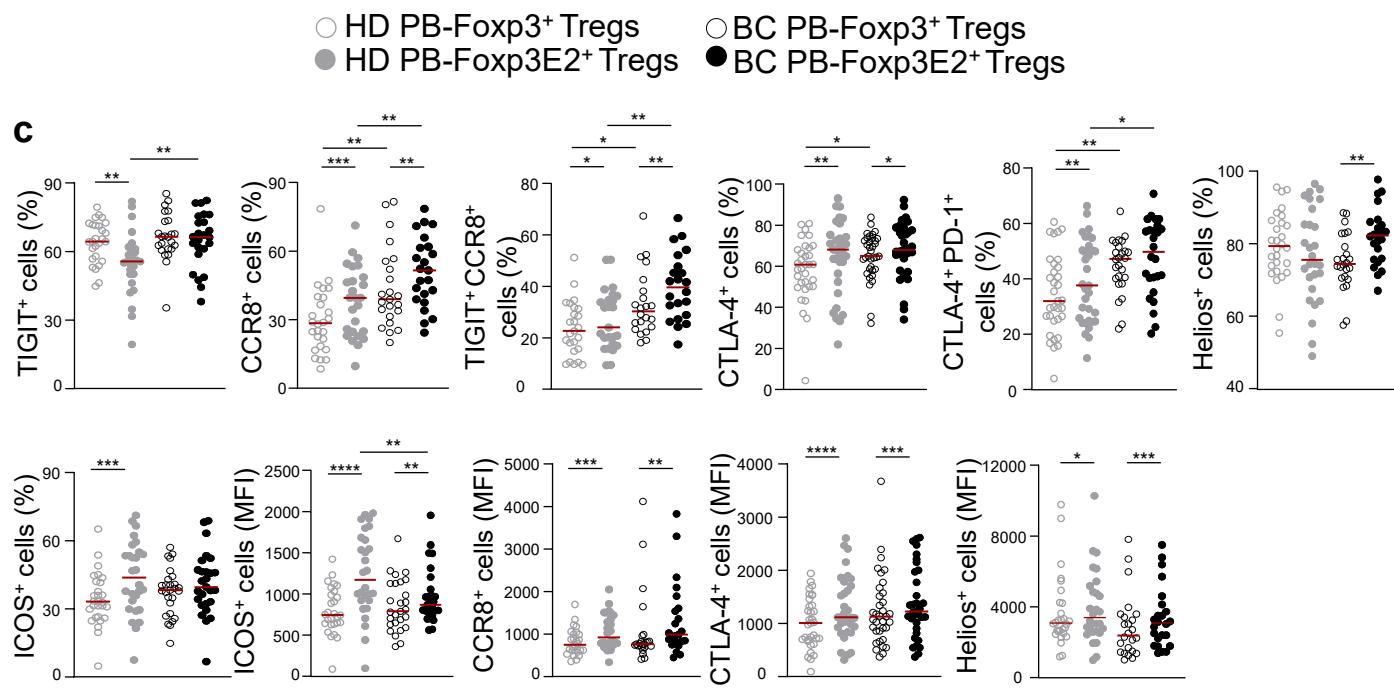
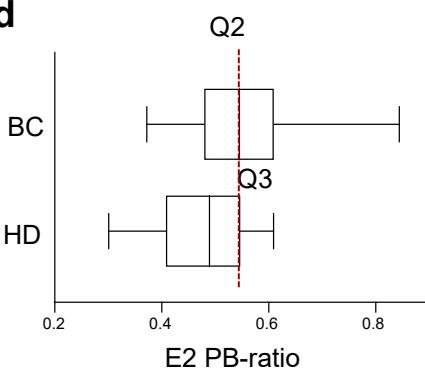
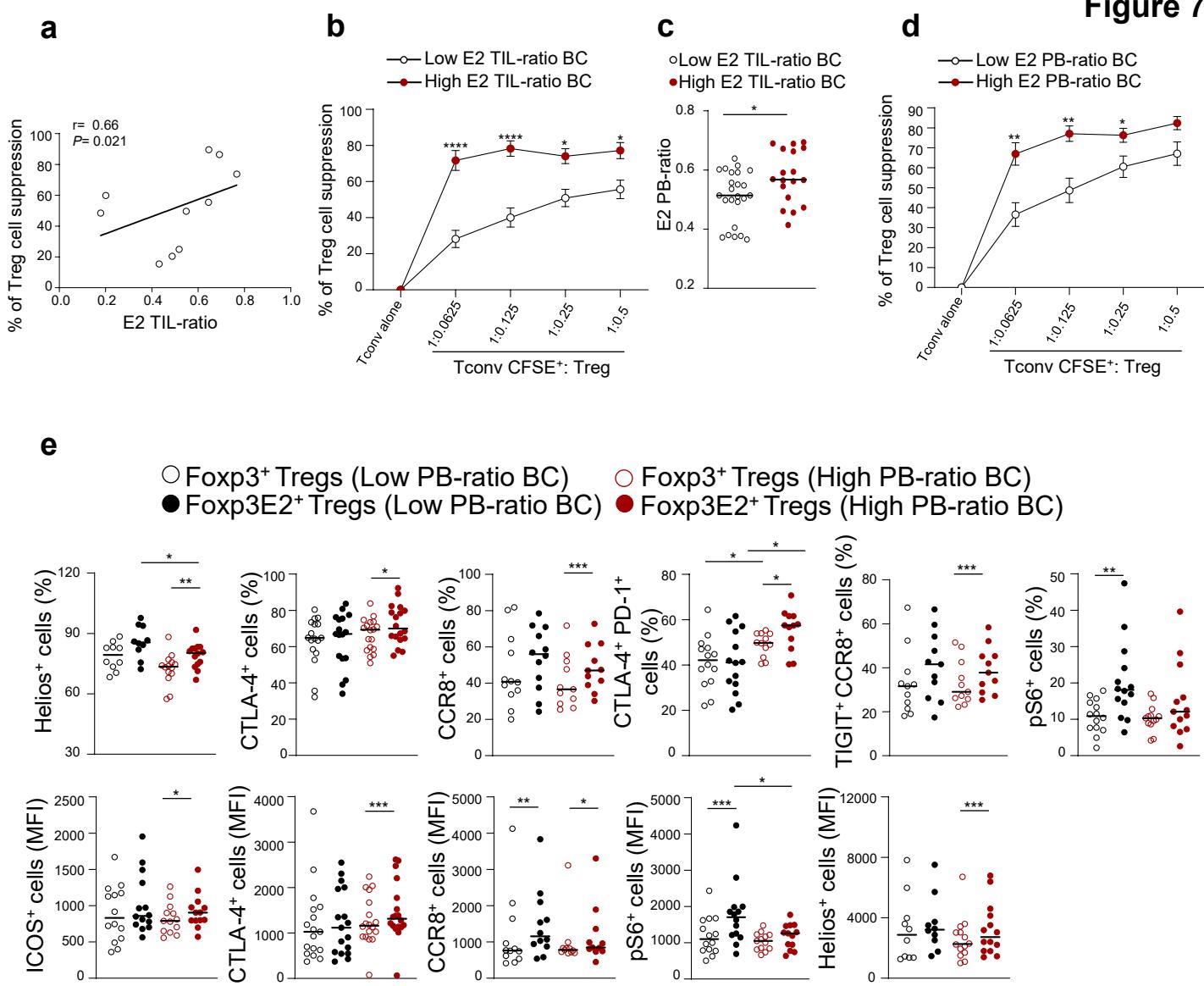

967

Figure 1




Figure 2





Figure 3



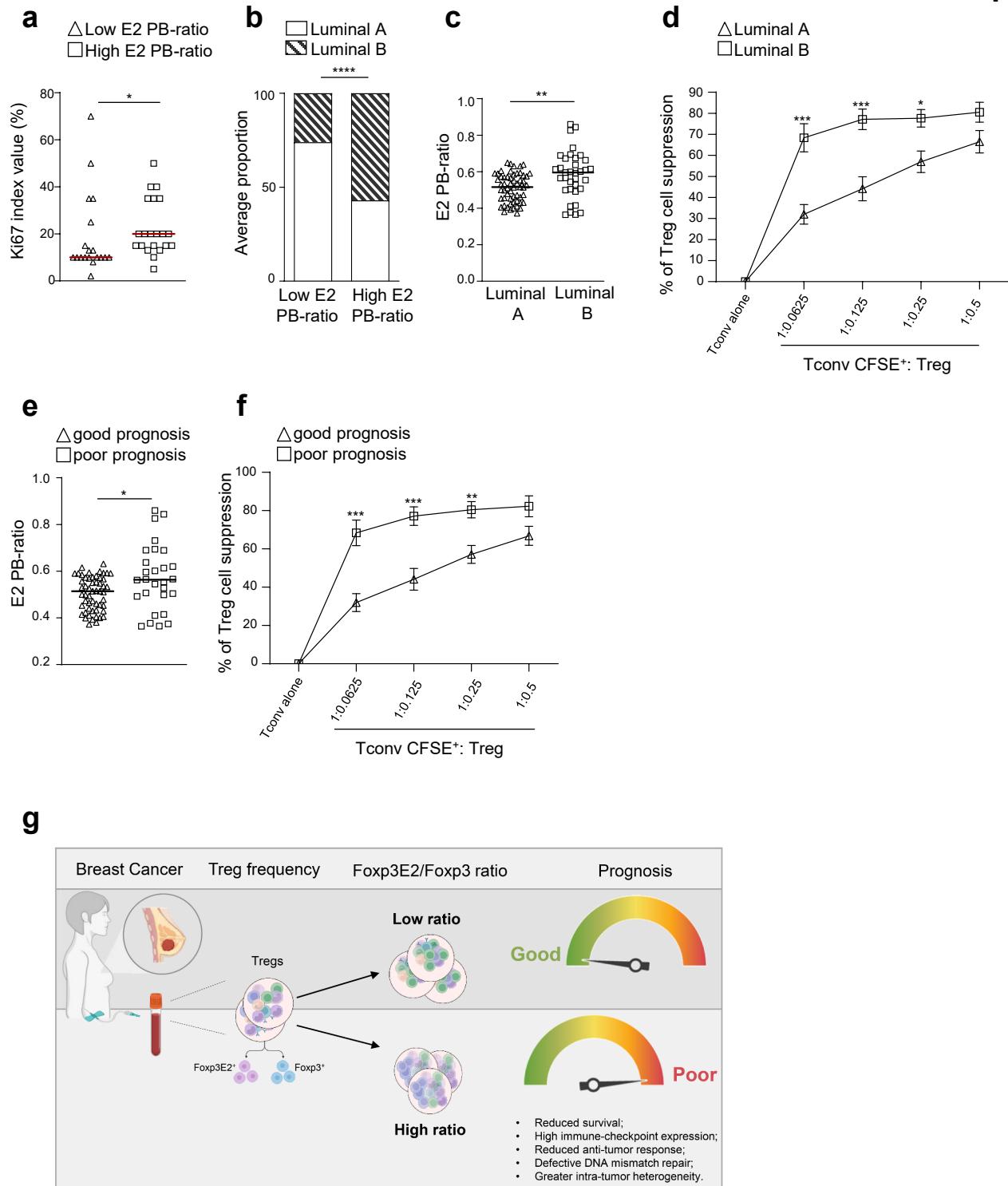
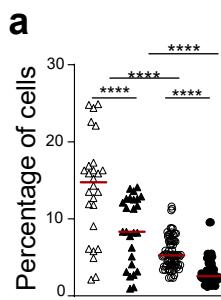

Figure 4

Figure 5

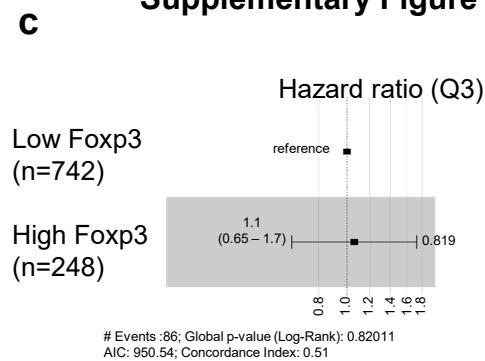
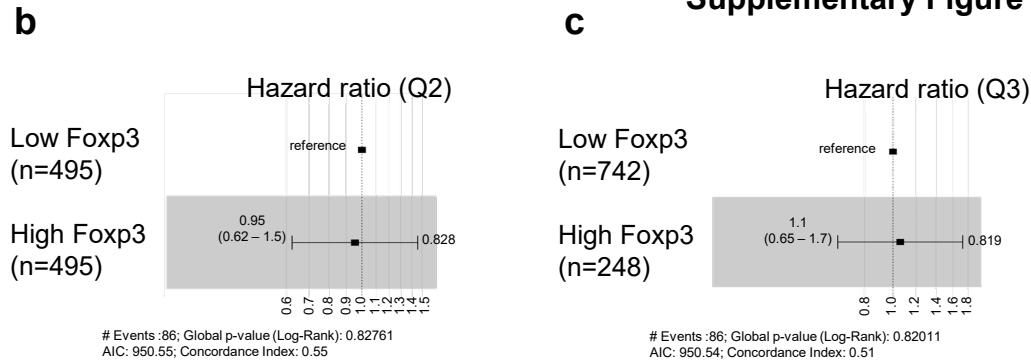
Figure 6**a****b****c****d**

Figure 7

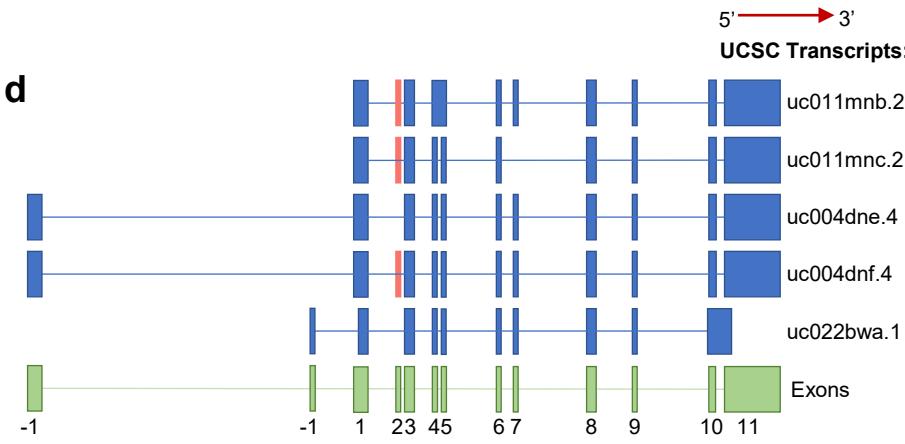
Figure 8

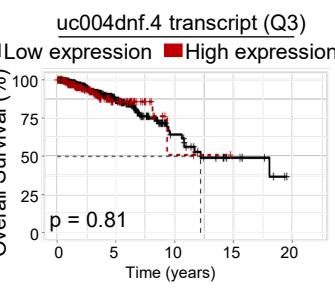
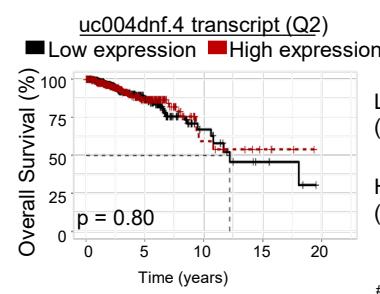
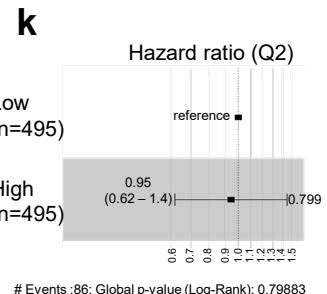
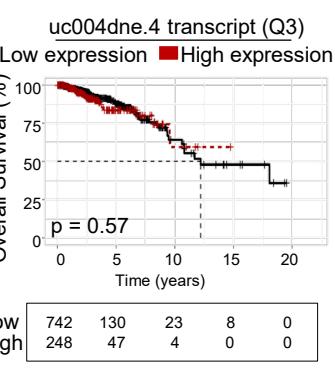
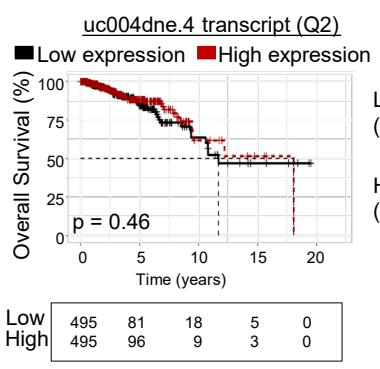
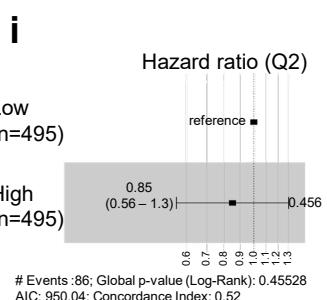
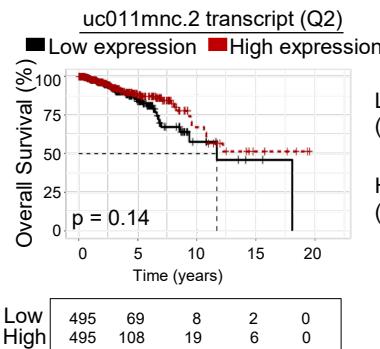
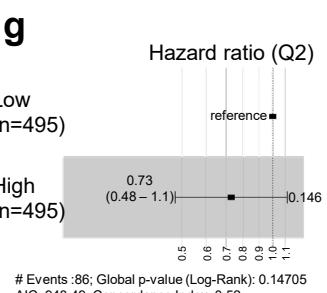
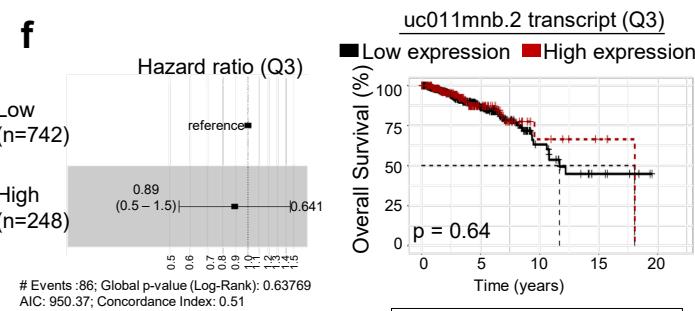
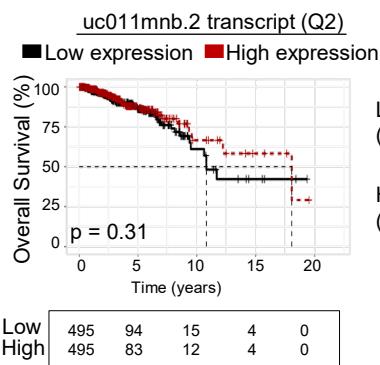
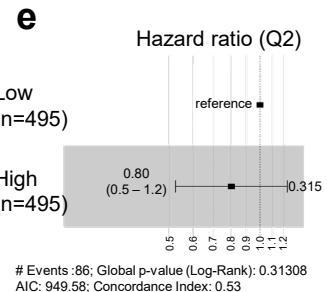
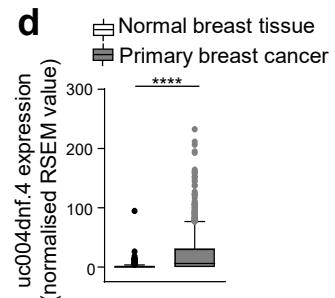
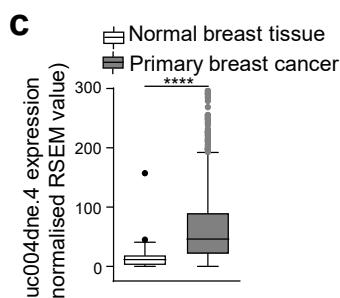
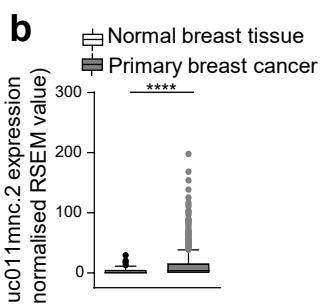
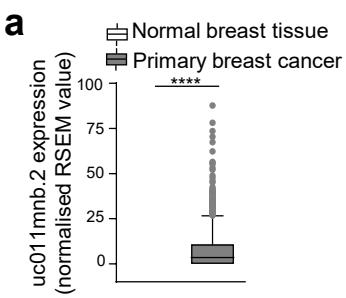

Supplementary Table 1. Clinical and demographic characteristics of the study cohort.

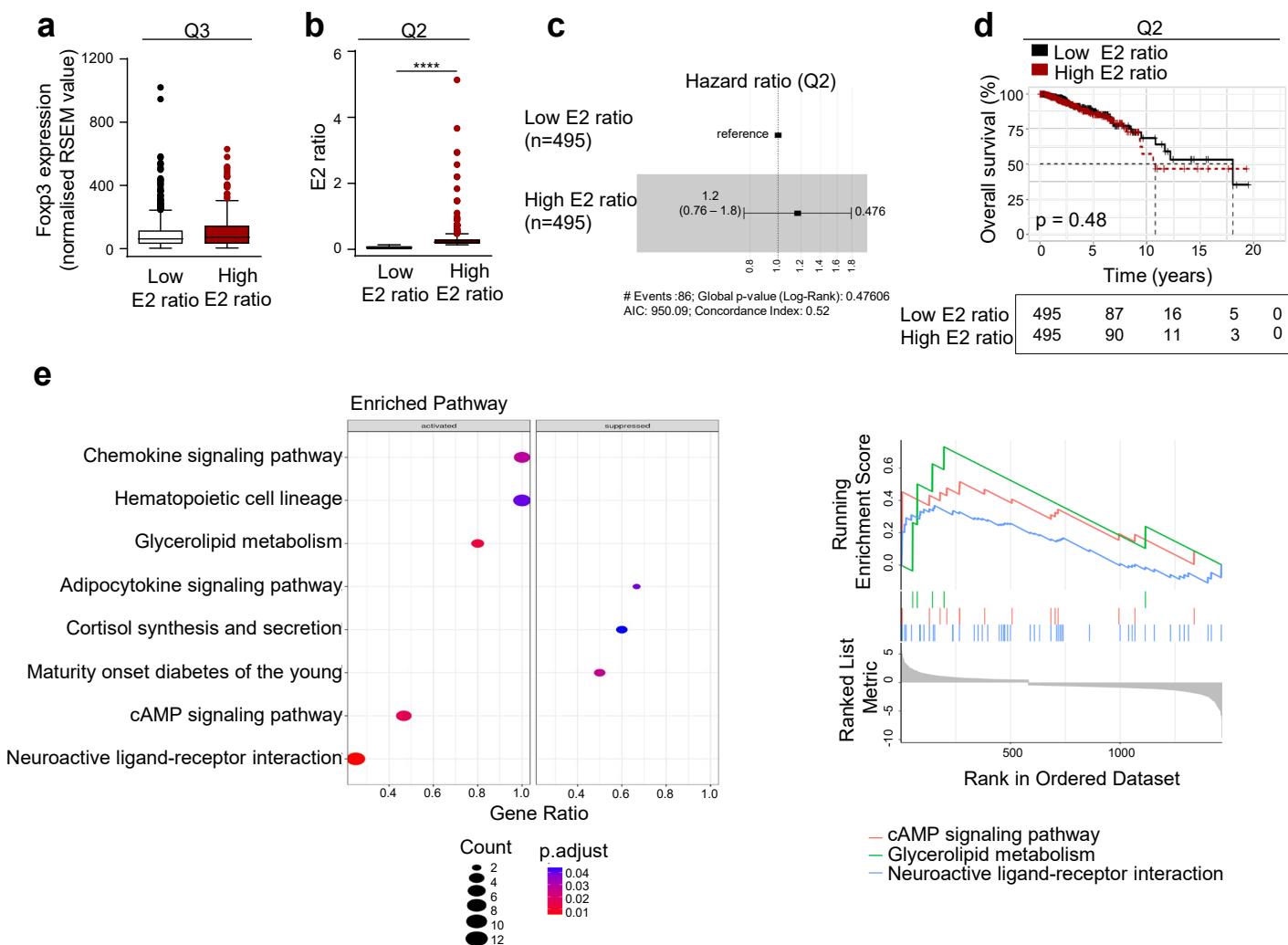
	BC	BF	HD
N ^(a)	40	17	38
Gender n (%)			
Female	40 (100)	17 (100)	38 (100)
Male	0 (0)	0 (0)	0 (0)
Age, mean ± SD, year	53 (±12)	39 (±10)	47 (±10)
Tumor staging n (%)			
T1	23 (57.5)		
T2	14 (34.1)		
T3	0 (0)		
T4	0 (0)		
Missing	3 (7.5)		
Lymph Nodes metastasis n (%)			
0	24 (60.0)		
1-3	12 (30.0)		
≥4	0 (0)		
Missing	4 (10)		
Histological grading n (%)			
I	2 (5)		
II	27 (67.5)		
III	10 (25)		
Missing	1 (2.5)		
Immunohistochemical status n (%)			
ER positive	40 (100)		
PR positive	40 (100)		
HER2 negative	40 (100)		
Molecular subtype			
Luminal A	25 (62.5)		
Luminal B	13 (32.5)		
Missing	2 (5)		

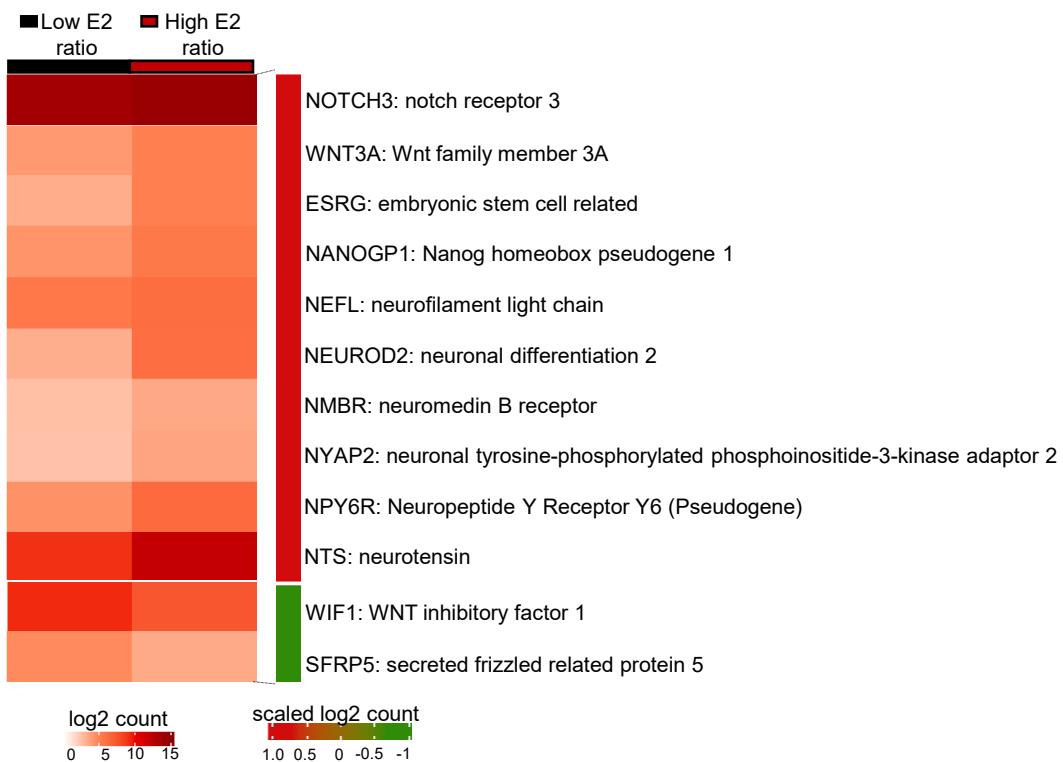


^(a) Numbers may not add up to the total number of patients because of missing values for some variables.

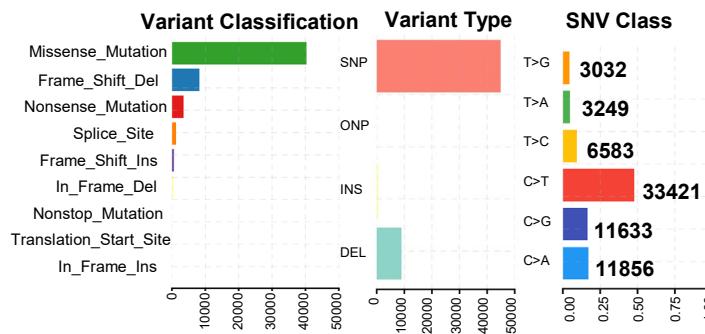
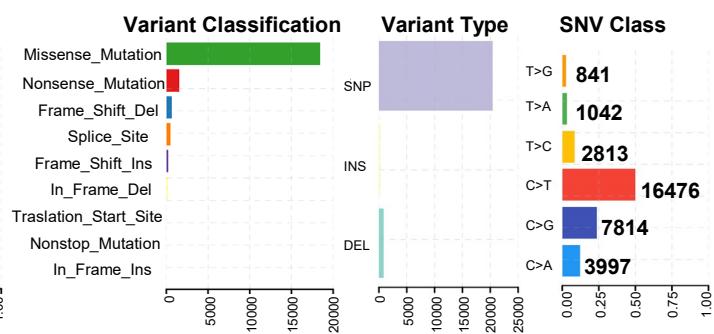
BC: breast cancer subjects; **BF:** breast fibroadenoma subjects; **ER:** estrogen receptor; **HD:** healthy donors; **HER2:** human epidermal growth factor receptor 2; **n/a:** not applicable; **PR:** progesterone receptor.


Supplementary Figure 1

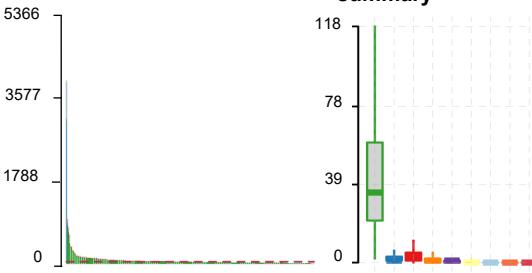















△ TIL-Foxp3⁺ Tregs
 ▲ TIL-Foxp3E2⁺ Tregs
 ○ PB-Foxp3⁺ Tregs
 ● PB-Foxp3E2⁺ Tregs

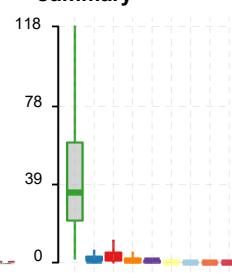



d

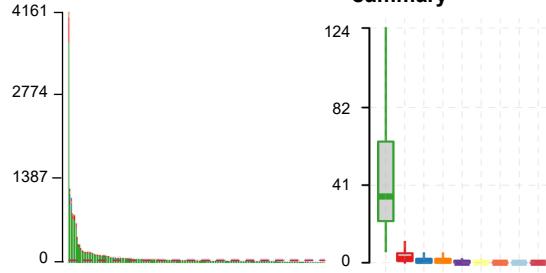



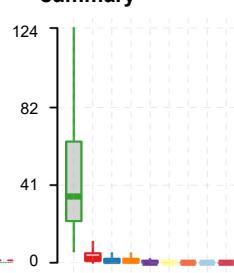
Supplementary Figure 2

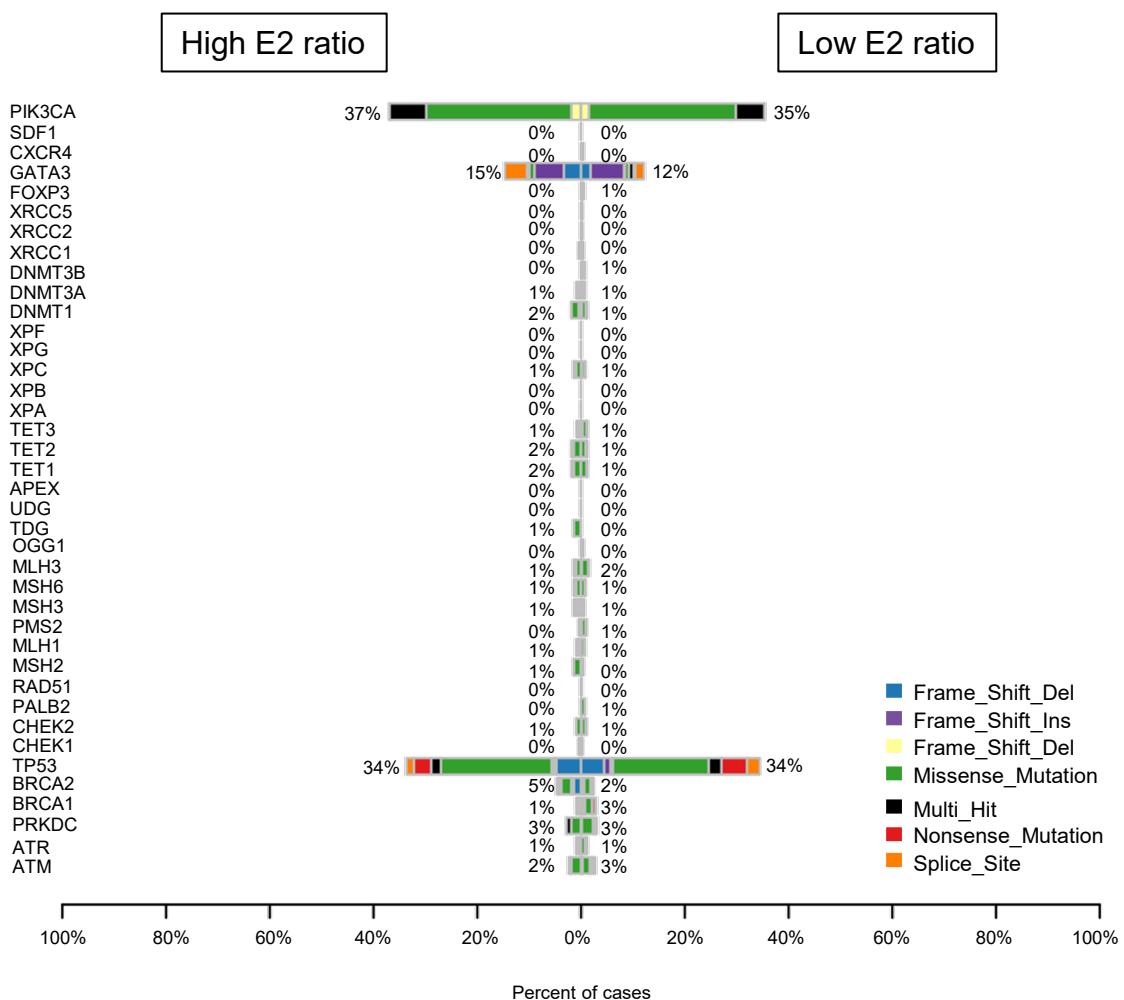


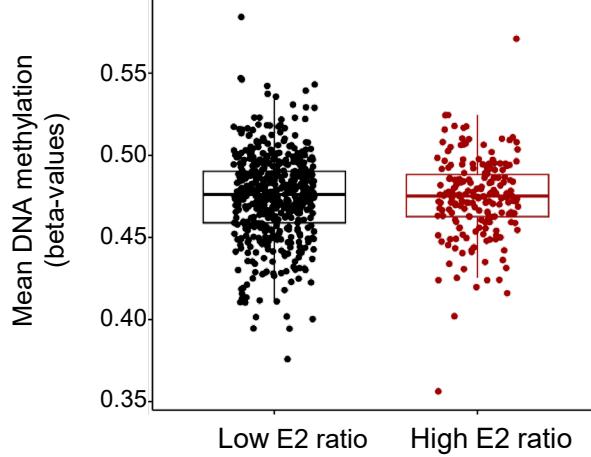
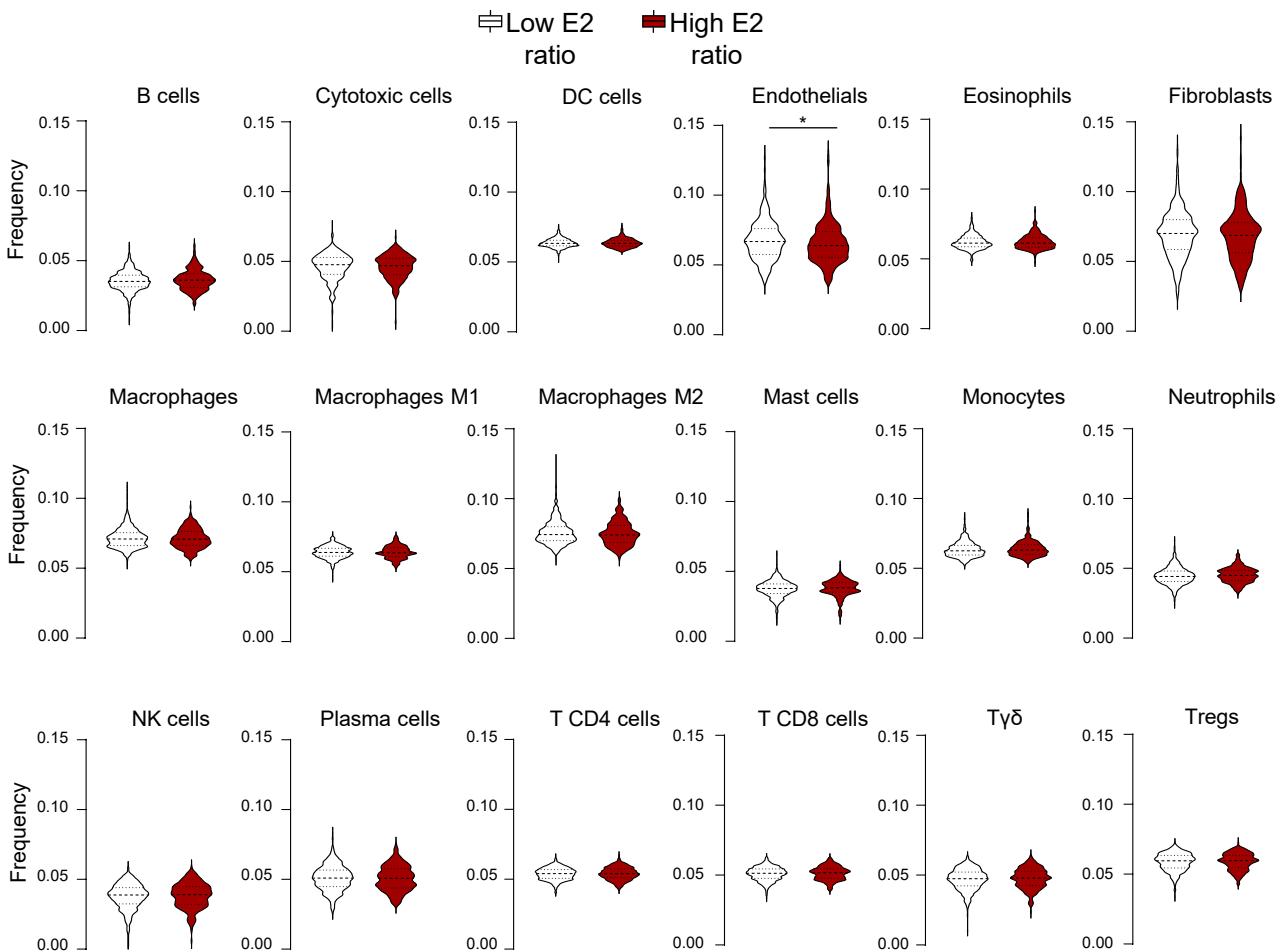


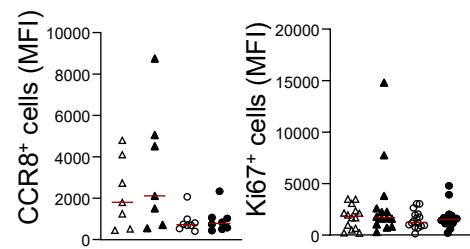
a**Low E2 ratio****b****High E2 ratio**


Variants per sample
Median 41.5


Variant Classification summary

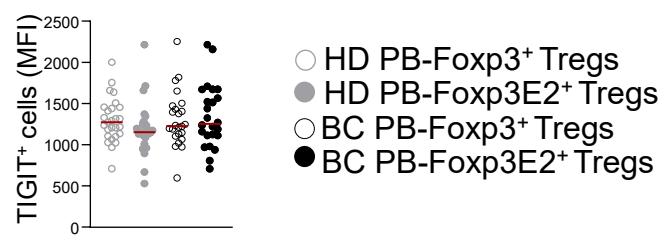


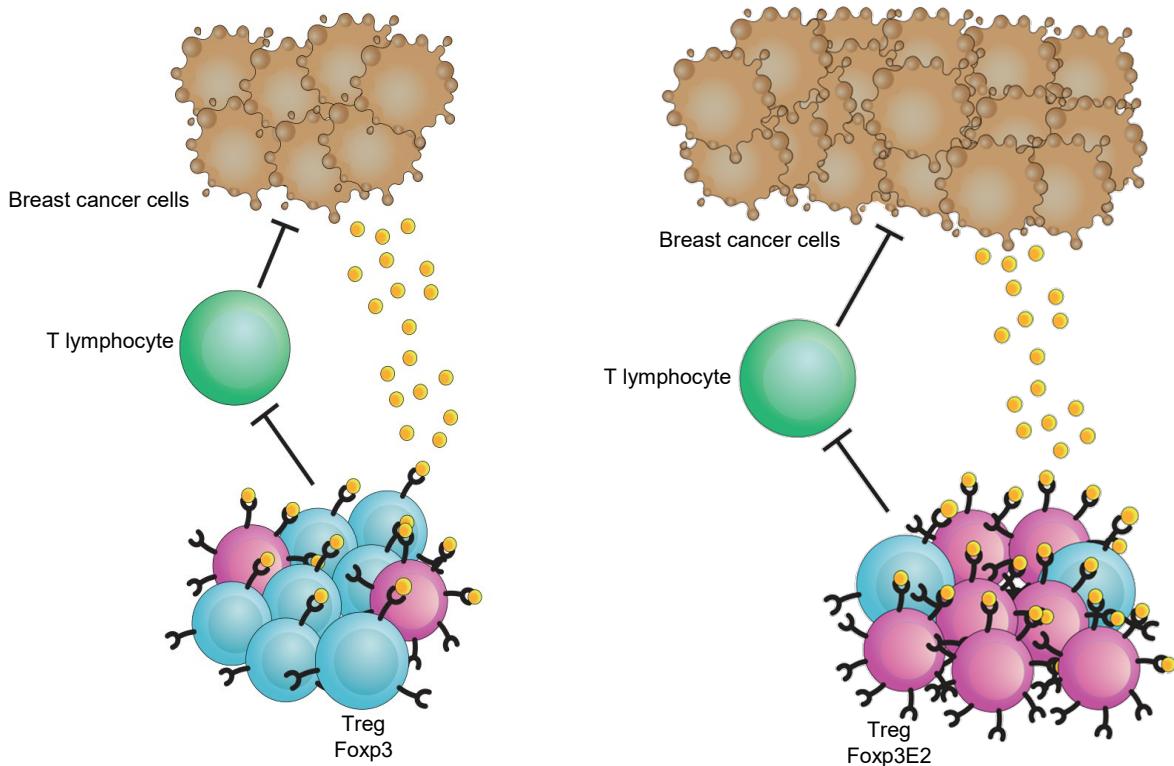


Variants per sample
Median 41



Variant Classification summary

a**b**




△ TIL-Foxp3⁺ Tregs

▲ TIL-Foxp3E2⁺ Tregs

○ PB-Foxp3⁺ Tregs

● PB-Foxp3E2⁺ Tregs

a**b**

Supplementary Figure 1. RNAseq analysis of Foxp3 transcript expression in primary tumor of breast cancer (BC) subjects. **(a)** Percentage of Foxp3⁺ and Foxp3E2⁺ cells (gated on CD4⁺) from TILs [respectively empty and full triangles ($n = 26$)] and PB [respectively empty and full dots ($n = 77$)] of BC subjects. Each symbol showed experimental replicates. **(b)** Hazard ratio (HR) (0.95, CI 0.62 – 1.5, Cox $P = 0.828$) of BC subjects ($n = 990$) stratified into low- ($n = 495$) and high- ($n = 495$) Foxp3 expression based on its median value, obtained through RNAseq data using TSVdb. **(c)** HR (1.1, CI 0.65 – 1.7, Cox $P = 0.819$). **(d)** Schematic representation of the five alternative Foxp3 transcripts: the exon 9 is common to all mRNAs, while only the uc011mnb.2, uc011mnc.2, uc004dnf.4 variants contain the exon 2 (light red rectangle). Data are presented as Median values. Statistical analyses were performed by using Wilcoxon and Mann-Whitney U -test (two tails) **(a)**, log-rank test **(b, c)**. $****P \leq 0.0001$.

Supplementary Figure 2. Foxp3 splicing variant expression in normal breast *versus* breast cancer tissue. **(a)** uc011mnb.2, **(b)** uc011mnc.2, **(c)** uc004dne.4, **(d)** uc004dnf.4 Foxp3 transcript expression (normalized RNA-Seq by Expectation Maximization (RSEM) value) in normal breast ($n = 112$) and primary breast cancer ($n = 990$) tissue from TSVdb. **(e-l)** HR and KM survival curves of BC subjects stratified into low- and high-transcript expression based either on the median **(e, g, i, k)** or on the upper quartile value **(f, h, j, l)** of **(a)** uc011mnb.2 **(e, f)**, **(b)** uc011mnc.2 **(g, h)**, **(c)** uc004dne.4 **(i, j)** and **(d)** uc004dnf.4 **(k, l)** expression in primary BC tissue. Data are presented as Median values **(a-d)**. Statistical analyses were performed by using Mann-Whitney U -test (two tails) **(a-d)**, log-rank test and Multivariate Cox regression model reference **(e-l)**. $****P \leq 0.0001$.

Supplementary Figure 3. Stratification of BC subjects according to the Foxp3E2⁺/Foxp3⁺ ratio. **(a)** Foxp3 expression levels in low- ($n = 741$) and high-E2 ratio ($n = 249$) BC subjects according to the Q3 value cut-off. **(b)** E2 ratio from BC subjects stratified into low ($n = 495$) and high ($n = 495$) according to its median value. **(c)** HR (1.2, CI 0.76 – 1.8, Cox $P = 0.476$) and **(d)** KM survival curve

of low- and high- E2 ratio BC subjects. (e) Enrichment of KEGG pathways within activated and suppressed genes in high- vs low-E2 ratio BC groups. Upper: Significantly enriched KEGG pathways among up- and down- regulated DEGs. The plot shows KEGG terms (vertical axis) versus gene ratio (horizontal). Number of genes in each category is proportional to circle value and color represents the adjusted p-value. Lower: GSEA-based KEGG-enrichment plots of representative gene sets from activated paths: cAMP signaling pathway, glycerolipid metabolism and neuroactive ligand-receptor interaction. Statistical analyses were performed using Mann-Whitney *U*-test (two tails) (a, b), log-rank test (c), Multivariate Cox regression model reference (d). *** $P \leq 0.0001$.

Supplementary Figure 4. Expression of stem cell-like features in BC subjects according to the Foxp3E2+/Foxp3+ ratio. Heatmap of 12 differentially expressed genes indicating stem cell-like characteristics. Each row corresponds to one gene, while each column represents one group. In the high-E2 ratio BC group, a scaled log2 count revealed that 10 genes were upregulated (red bar) and 2 were downregulated (green bar).

Supplementary Figure 5. Detection of somatic alterations and association with Foxp3E2+/Foxp3+ ratio. (a, b) Summary of somatic variants displaying variant classification, types, SNV class and number in BC subjects with (a) low- and (b) high-E2 ratio.

Supplementary Figure 6. CoBarplot of DNA Damage Repair (DDR) genes. Mutation of DDR genes in high- (left, $n = 211$) and low- (right, $n = 650$) E2 ratio BC groups. No differences were observed in variant incidence between the two groups, although they showed higher occurrences of TP53 mutations. Variant type is indicated (see key below). Data were analyzed using Maftool R package.

Supplementary Figure 7. Global DNA methylation analysis and Tumor immune

microenvironment deconvolution of primary BC tissues. **(a)** Total mean DNA methylation values for low- ($n = 524$) and high- ($n = 194$) E2 ratio BC groups were calculated by mean methylation beta values (ratio of intensities between methylated and unmethylated alleles) for all probes in the Illumina 450k methylation array TCGA BRCA. **(b)** Violin plots showing the distribution of cell type fraction in primary breast cancer tissue (Tumor immune microenvironment deconvolution) from BC subjects stratified into low- ($n = 735$) and high- ($n = 248$) E2 ratio according to its Q3 value. Tumor immune microenvironment deconvolution was performed using the online tool TimeDB (62). Data are presented as Median values. Statistical analyses were performed using Mann-Whitney *U*-test and Wilcoxon signed-rank test (two tails). $*P \leq 0.05$.

Supplementary Figure 8. Immunophenotype in Tregs from TIL and PB of newly diagnosed HR⁺ BC subjects. Cumulative data of flow cytometry analysis showing mean fluorescence intensity (MFI) of CCR8⁺ and Ki67⁺ cells (gated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺) in freshly isolated TILs (at least $n = 6$) and PB (at least $n = 10$) from BC subjects. Each symbol shows independent biological samples. Data are presented as Median values. Statistical analysis was performed by using Wilcoxon and Mann-Whitney *U*-test (two tails).

Supplementary Figure 9. Immune checkpoint expression in Tregs from BC and Healthy Donor (HD) subjects. Cumulative data of flow cytometry analysis showing mean fluorescence intensity (MFI) of TIGIT⁺ cells gated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺ Tregs from freshly isolated PB of HD ($n = 27$) and BC ($n = 24$) subjects. Each symbol shows independent biological samples. Data are presented as Median values. Statistical analysis was performed by using Wilcoxon and Mann-Whitney *U*-test (two tails).

Supplementary Figure 10. Immunophenotype in Tregs from PB of high- and low-E2 PB-ratio

HR⁺ BC subjects. **(a)** Cumulative data calculated by flow cytometry quantification showing the percentage of ICOS⁺ cells gated on CD4⁺Foxp3⁺ and CD4⁺Foxp3E2⁺ Tregs from peripheral blood of high- ($n = 13$) and low- ($n = 14$) PB E2 ratio BC subjects. **(b)** Schematical model of the breast cancer-induced polarization of Foxp3E2⁺ Tregs in the tumor microenvironment. Each symbol shows independent biological samples. Data are presented as Median values. Statistical analysis was performed by using Wilcoxon and Mann-Whitney U -test (two tails).