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Abstract

CD4 Foxp3* regulatory T cells (Tregs) are key to maintain peripheral self-tolerance and suppress
immune responses to tumors. Their accumulation in the tumor microenvironment (TME) correlates
with poor clinical outcome in several human cancers, including breast cancer (BC). However, the
properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally
distinct subpopulation of tumor-infiltrating Tregs, which express the Foxp3 splicing variant
retaining exon 2 (Foxp3E?2), is prominent in the TME and peripheral blood of hormone receptor-
positive (HR") BC subjects with poor prognosis. Notably, a comprehensive examination of the
Tumor Cell Genome Atlas (TCGA) validated Foxp3E2 as an independent prognostic marker in all
other BC subtypes. We found that FOXP3E2 expression underlies BCs with highly immune
suppressive landscape, defective mismatch repair and a stem-like signature thus highlighting
pathways involved in tumor immune evasion. Finally, we confirmed the higher immunosuppressive
capacity of BC patients-derived Foxp3E2" Tregs by functional assays. Our study suggests
Foxp3E2" Tregs might be used as an independent biomarker to predict BC prognosis and

recurrence, and to develop super-targeted depletion-based immunotherapies.

One-sentence summaries: Foxp3E2" Treg enrichment reflects an increased tumor-immune

suppression and predicts prognosis and recurrence in breast cancer.

Keywords
Regulatory T cell, FOXP3, prognosis, biomarker, breast cancer, immune checkpoint, human cancer

genomics.
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Introduction

Immune surveillance against cancer is an important strategy for tracing, identifying, and eliminating
growing tumor cells (/-4). Nonetheless, the immune system can shape tumor genomes by selecting
neoantigen-depleted clones (i.e., immune editing) or promoting the accumulation of clones with an
immune evasion strategy (i.e., immune escape), representing one of the main drivers of relapse (35,
6). Breast cancer (BC) is more resistant to immunotherapies than other solid tumors (7, §), with a
large window of recurrence spanning from months to decades after surgery (9, 70). Although the
exact cause of this unusual recurrence pattern is still unknown, patients with luminal cancer
typically have a better prognosis, whereas basal-like and HER2-enriched patients experience early
relapses (within the first five years after diagnosis) (//, 12). However, the risk of late recurrence
ranges from 10 to 41% in all BC subgroups, based on their primary tumor classification system
(e.g. tumor-node-metastasis — TNM) (/3), population-based data, and occasionally primary tumor
gene expression profiles (/4). Although the highest cumulative incidence has been observed among
ER-positive patients, late recurrences also occur among those with ER-negative tumors (735, 76). It
is, therefore, of paramount importance to identify novel prognostic biomarkers alongside with the
causes of recurrence (/7).

The interaction between tumor, stromal, and immune cells may promote metastatic progression and
immune escape, challenging cancer immunotherapy efficacy (5, /8). Anti-tumor specific T cell
responses arise in BC subjects but are halted by suppressive mechanisms established in the TME
during tumor progression (19). CD4"CD25" regulatory T cells (Tregs) expressing the Forkhead-
box-p (Foxp)-3 transcription factor are enriched in the tumor microenvironment (TME) and
associate with an invasive phenotype, reduced relapse-free and overall survival in several cancers
(20), consistently with their role in suppressing effector cells. Transient depletion of Tregs via
CD25, CTLAA4, or CCR4 blockade results in improved clinical outcomes and increased anti-tumor

specific immune responses (/9). Foxp3™ Tregs variably infiltrate human BC and mainly correlate
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92 with reduced survival and poor prognosis (/, 21-26). Although their central function in tumor
93  escape (27) and their role as therapeutic targets of immune checkpoint inhibitors (ICls), the
94  properties of intratumoral Tregs remain largely unknown and they are not a good prognostic marker
95  for BC (23, 28). Published transcriptomic profiles indicate that tumor-infiltrating Tregs constitute
96 a heterogeneous population (29, 30). Whether the tumor milieu imprints unique functional and
97  transcriptional features to Tregs or whether distinct subsets of peripheral blood Tregs are
98 differentially recruited within the tumor is still unclear (37, 32). Characterizing tumor-infiltrating
99  Tregs will, therefore, be the key to find novel biomarkers and develop therapies that precisely target

100  cells that block anti-tumor response without altering peripheral se/f-tolerance.

101 In humans, the master regulator of Treg development and function is FOXP3 gene. It

102 comprises 12 exons encoding multiple transcript variants, among which four are co-expressed at

103 different levels in circulating Tregs, including the full-length (Foxp3FL) and those lacking exon 2

104  (Foxp3A2), which are generally more abundant (33, 34). Several reports uncover indispensable

105  functions of the 105 base-pair region constituting FOXP3 exon 2 (FOXPE?2), highlighting a possible

106  role of this region in regulating a transcriptional program that maintains Treg stability and immune

107 homeostasis (34-37). In subjects with autoimmunity, we reported a selective reduction of Foxp3E2

108  splicing variants associated with impaired Treg suppressive function (35). Here, we study the

109  distribution and function of Foxp3E2" Tregs, both in the TME and peripheral blood of BC subjects

110 in order to explore their connection with the molecular landscape of the primary tumor and patient

111 prognosis.

112

113

114

115

116
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117 Results

118  Elevated frequency of Foxp3E2* Tregs in the tumor infiltrate and peripheral blood of HR*
119  BC subjects

120 High infiltration of Foxp3" Tregs is expected to be associated with an unfavorable outcome
121 in several cancers, but studies of breast cancer have led to highly discrepant findings (38). Here, we
122 aimed at dissecting whether Tregs expressing different FOXP3 variants could have a dominant role
123 in breast cancer immune evasion (Fig. 1a). We analyzed the frequency of Foxp3™ (all FOXP3
124 transcript variants) and Foxp3E2" Tregs (FOXP3 variants retaining exon2) in the peripheral blood
125  (PB) and tumor-infiltrating lymphocytes (TILs) from two different cohorts of newly diagnosed,
126  untreated ER"PR"(HR")-HER2" breast cancer (BC) and non-malignant breast fibroadenoma (BF)
127 subjects (Supplementary Table 1). Freshly resected breast tissue was mechanically dissociated
128  into a single-cell homogenate to enrich TILs (39). Flow cytometric analysis revealed a dominance
129  of CD4" T cells in BC, also confirmed by a lower CD8"/CD4" ratio compared to BF tissue (0.86 vs
130 2.51) (Fig. 1b). In addition, BC tissue shows a more abundant infiltrate of Foxp3™ Tregs as
131 compared to BF tissue and, a higher frequency of Treg cells is detected within the tissues as
132 compared to peripheral blood (PB) from both BC and BF subjects (Fig. 1c¢). Importantly, we
133 detected a significant enrichment of Foxp3E2" Tregs in BC tissue (i.e. TIL-Foxp3E2") compared
134 to BF and PB (both from BC and BF subjects) (Fig. 1d). To estimate the relative frequency of
135 Foxp3E2" compared to the overall Treg compartment, we measured the Foxp3E2"/Foxp3" ratio
136 (herein defined E2 ratio) and found that Foxp3E2" Tregs were more abundant both in the TME and
137 PB of BC patients compared to BF (Fig. 1e). Furthermore, we compared the percentage and ratio
138 of Foxp3E2" and Foxp3™ Tregs in the TIL and PB of our BC cohort. The percentage of TIL-
139 Foxp3E2" Tregs was on average 8.33%, and the TIL-Foxp3" represented 14.75% (Fig. S1a). The
140  percentage of PB-derived Foxp3E2" Tregs (PB-Foxp3E2") and PB-Foxp3™" were, instead, 2.57%

141 and 5.27% of the total CD4" T cells, respectively (Fig. S1a). Notably the ratio between Foxp3E2*
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142 and total Tregs in BC subjects was significantly higher in TIL compartment as compared to PB
143 lymphocytes suggesting that Foxp3E2" Tregs preferentially accumulate in the TME (mean E2 ratio
144 is equal to 0.64 in TIL and 0.54 in PB) (Fig. 1f). Strikingly, the CD8"/Treg ratio was significantly
145 lower in BC (both in PB and TIL) and inversely correlated with the percentage of TIL-Foxp3E2"
146 in the TME (» = -0.603, P = 0.001) (Fig. 1g, h), while no correlation was observed with the TIL-
147 Foxp3" (not shown). As the CD8"/Treg ratio is considered a reliable marker of anti-tumor specific
148 T cell response (34), our data suggest that the Foxp3E2" Treg subset mainly accounts for the
149 suppression of the immune response to cancer. Immunohistochemical (IHC) staining and digital
150  quantitative image analysis confirmed the higher infiltration of Foxp3*and Foxp3E2" Tregs in BC
151 tissue compared to BF (Fig. 1i-p). Our results unveil for the first time a distinct prevalence of
152 Foxp3E2" Tregs in human BC that is not observed in non-malignant forms of breast tumors (i.e.,
153 BF) and inversely correlates with anti-tumor immune response.

154

155  FOXP3E2transcript levels in BC tissue mark an immunosuppressive landscape and correlate
156 with reduced overall survival

157 To determine whether the increased percentage of Foxp3E2" Tregs is associated with BC
158  prognosis in general, we examined RNAseq data from about one thousand subjects (990 breast
159  cancer tissues and 112 tumor-adjacent normal tissues) in the TCGA Splicing Variant Database
160  (TSVdb) that includes information on alternative splicing (40). We found that primary breast
161  cancers (69.2% HR'HER2", 12.6% HR'HER2", 18.2% HRHER2") expressed higher levels of
162  FOXP3 transcripts compared to normal breast tissue (NT) (64.00 vs 13.40) (Fig. 2a). However,
163 FOXP3 transcript levels did not correlate with patient overall survival when BC subjects were
164  stratified either on their median value (Q2) or on their upper quartile range (Q3) (Fig. 2b, ¢, Fig.
165  Sl1b, ¢). Thus, we measured the expression of the 5 different FOXP3 isoforms (schematically

166  represented in Fig. S1d and reported in the UCSC bank (33)), and we found that 4 of them were
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167  upregulated in BC tissue compared to NT (Fig. S2a-d) but none correlated with overall survival
168  (Fig. S2e-1). Then, we estimated the ratio of FOXP3 exon 2-containing transcripts relative to the
169  other variants and stratified BC subjects into low- (< Q3 = 0.09) and high- (> Q3 = 0.29) E2 ratio
170 groups (Fig. 2d, e). This analysis clearly shows that the difference in FOXP3E?2 expression between
171 the two groups was inversely correlated with patient overall survival (log-rank P = 0.01, Chisq =
172 6.2) (Fig. 2f, g). No difference in total FOXP3 expression between the two groups was observed
173 (Fig. S3a); also, we did not find correlation when BC subjects were stratified on the median value
174  of the E2 ratio (Fig. S3b-d). Notably, TCGA also included HER2" as well as the most aggressive
175  triple negative tumors, thus suggesting a general association between the enrichment of Foxp3E2*
176~ Tregs within the tumor and breast cancer prognosis.

177 To gain insights into the nature of the local TME (41, 42), we characterized gene expression
178  patterns of high- and low- Foxp3E2"/Foxp3™ ratio BC groups. Analysis of differentially expressed
179 genes (DEGs) identified 702 DEGs (523 downregulated and 179 upregulated genes) (Fig. 2h).
180  Gene ontology revealed a significant enrichment of genes belonging to immunoregulatory
181  pathways in the BC group showing high Foxp3E2*/Foxp3™ ratio. These immunoregulatory genes
182  included humoral immune response, complement activation and antigen receptor-mediated
183 signaling (Fig. 2i). Among all, the upregulation of BTNIAI, FCRLI1, CXCRS5, AIRE, ZAP70 was
184  noteworthy (Fig. 2i) indicating a dominant immunosuppressive signature (43, 44). Consistently,
185  GSEA-KEGG analysis showed 5 sub-gene sets activated in the high E2 ratio BC group (chemokine
186  signalling, hematopoietic cell lineage, glycerolipid metabolism, cAMP signaling and neuroactive
187  ligand-receptor interaction (45)) (Fig. S3e). Upregulation of WNT3a, ESRG, NANOGPI, NEFL,
188  instead, suggested the acquisition of stem cell-like features (46-49) (Fig. S4). Overall, these
189  analyses reveal that Foxp3E2 marks a distinctive group of BC subjects characterized by worst
190  clinical outcomes (i.e., lower survival) and likely associated with increased immunosuppression

191 and stemness.
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192 BC tumors with high Foxp3E2*/Foxp3* ratio show greater heterogeneity

193 To better understand the relationship between high E2 ratio and poor BC clinical outcome,
194  we investigated mutations in cancer driver genes. To this aim, we first characterized genome
195  variants in the high- and low-E2 ratio BC groups. We observed comparable tumor mutational
196  burden in the two groups, with PIK3CA and TP53 mutations dominating the landscape (Fig. 3a, b,
197  Fig. SS5a, b) consistently with previous reports (50). Other genes, however, harbored coding
198  mutations in at least 6% of the samples: TTN, MUC16, MAP3K1, KMT2C, GATA3, SYNEI and
199  FLG (Fig. 3a, b). Well-known germline mutations in BRCAI and BRCA2 were identified in less
200  than 5% of BC subjects of both groups (Fig. S6). We then examined pairwise associations between
201  somatic events to explore co-mutations and mutual exclusivity patterns and found mutual
202 exclusivity between TP53, GATA3 and CDH mutations in both BC patient groups, suggesting they
203  might have originated from similar ancestral clones. Interestingly, the PI3K/Akt co-mutation
204  marked specifically the high Foxp3E2"/Foxp3* ratio BC group (false discovery rate (FDR) <0.05)
205  (Fig. 3¢, d), further suggesting cancer stem-like features (57, 52). Furthermore, we detected a lower
206  frequency of co-mutations in the high Foxp3E2"/Foxp3™ ratio BC group despite the comparable
207  tumor mutation burden (Fig. 3¢, d). The latter might reflect a sub-clonal heterogeneity that has been
208  associated with therapy resistance and tumor shaping (53-56). Overall, this suggests that Foxp3E2"
209  Tregs mark a subgroup of tumors with greater intratumor heterogeneity.

210

211 BC tumors with high Foxp3E2*/Foxp3* ratio show mutational signatures associated with
212 defective DNA mismatch repair and strong immunosuppressive response

213 The sub-clonal nature of the high E2 ratio BC group suggests a tumor evolution and
214 selection (57, 58), which implies different molecular mechanisms including spontaneous and
215  enzymatic deamination of the cytosine base (59, 60). To gain insights into the dynamics of the

216  mutational signature that shapes both BC groups, we interrogated COSMIC mutational signatures
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217  that have been associated with specific pathways (30). Signatures associated with spontaneous
218 deamination of 5-methylcytosine and APOBEC cytidine deaminase were detected in both the high-
219  and low-E2 ratio BC groups (Fig. 4a, b). Enrichment analysis of APOBEC motif (i.e. tCw motif
220  primarily associate with C>T transitions driven by APOBEC cytidine deaminase activity) in the
221 high and low Foxp3E2"/Foxp3" ratio BC groups showed a similar prevalence of tCw mutations
222 (34% APOBEC vs 9% non-APOBEC in the low-E2 ratio BC group; 38% APOBEC vs 9% non-
223 APOBEC in the high-E2 ratio BC group) (Fig. 4¢, d), with no changes in the global DNA
224 methylation (Fig. S7a). Defects in polymerase POLE, which occur in ultra-hypermutators, have
225  instead been observed only in the low-E2 ratio BC group (Fig. 4e), thus confirming the high tumor
226  mutational burden associated with the increased presence of immunogenic neoantigens (54).

227 Strikingly, the signature associated with defective DNA mismatch repair (AIMMR) was
228  specific for the high-E2 ratio BC group (Fig. 4f). MMR is a fundamental DNA repair pathway
229  essential to maintain genome stability during cellular replication (6/) and defects have been
230 considered driver of endocrine treatment resistance in 15-17% of ER”/HER2™ BC subjects (62, 63).
231  To better dissect this pathway, we evaluated gene and protein expression of MMR-associated
232 factors. We did not observe changes in MMR gene expression (e.g. MLHI, MLH3, MSH2, MSH3,
233 MSH6, PMS?2) (Fig. 4g). However, analysis of reverse phase protein array (RPPA) showed, instead,
234 high levels of ATM, ATM pS1981, UVRAG, XPA and low levels of BRCA2, CHK2, DDRI,
235 DDRI pY513, DNA PolG, MSH2, MSH6, Weel, X53BP1 and DNMTI in the high
236 Foxp3E2"/Foxp3* BC subjects (Fig. 4h), suggesting that DNA Damage Response (DDR) might be
237  specifically dysregulated in these patients.

238 Notably, BC patients with high Foxp3E2"/Foxp3" ratio also showed higher expression of
239  immuno-modulatory signatures as compared with the low-E2 ratio group (i.e., CD20, CD38, CD4,
240  CD45, IL6, JAGI, ZAP70) (Fig. 4h). This increase in immunomodulatory pathways was also

241 confirmed by enrichment analysis of the differentially expressed probes using Metascape (64) (Fig.
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242 4i). Notably, immune cell deconvolution shows only a slight increase in the number of endothelial
243 cells between the two subgroups with no difference in the immune cell compartments (Fig. S7b).
244 Altogether our analyses unveil that Foxp3E2 marks a subgroup of breast tumors characterized by
245  defective DNA damage repair and strong immunosuppressive signature.

246

247  Increased immune checkpoint expression and stronger suppressive capability is associated
248  with Foxp3E2 expression in Tregs of HR* BC

249 As both our ex-vivo analyses of HR" BC subjects and TCGA data mining suggest an
250  association between Foxp3E2" Tregs and immunosuppression in the TME, we evaluated their
251  immunosuppressive function. To this aim, we initially checked the expression of a range of co-
252 inhibitory molecules — known to modulate tumor immune responses and upregulated in tumor-
253 infiltrating Tregs (15, 21, 22, 65) (e.g., immune checkpoints (ICs), such as CTLA-4, PD-1 and
254 TIGIT) — in TIL and PB-derived CD4" T cells from BC patients (Fig. 5, Fig. S8). We found that
255  TIL-Foxp3E2" Tregs have increased percentage of Helios and CCRS8 and higher levels of Helios
256 and CTLA-4 than TIL-Foxp3" Tregs. Moreover, when compared to PB, TIL-Foxp3E2" Tregs show
257  increased expression of Helios, I[COS, CTLA-4, PD-1, TIGIT and CCRS, and higher proliferative
258  capacity, as pointed out by Ki67" frequency (Fig. 5, Fig. S8). Interestingly, co-expression of CTLA-
259 4 and PD-1 or TIGIT and CCR8 was higher in TIL-Foxp3E2" than in PB-Foxp3E2" Tregs (Fig. 5),
260  thus suggesting that this Treg subpopulation exerts a dominant role in cancer
261 evasion/immunosuppression. This is particularly relevant as elevated CCR8 expression in TIL-
262  Tregs are related to poor prognosis in several cancer types (/9, 66). Moreover, the increased
263  expression of Helios and ICOS revealed that Foxp3E2" Tregs infiltrating the tumor had a hyper-
264  activated phenotype. Also, the evidence that pS6 levels — reflecting mTOR kinase activity — were
265  reduced specifically in TIL-Foxp3E2" compared to the PB-counterpart, suggests a detrimental role

266  for the mTOR pathway in the suppression of anti-tumor response. Overall, the increased expression

10
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267  of Helios and IC in the Foxp3E2" Tregs proposes that they might have a higher immunosuppressive
268  capacity in cancer. We, indeed, tested this hypothesis through an in vitro CFSE-based suppression
269  assay by culturing blood-derived conventional T cells (Tconvs) with autologous Tregs from BC
270  subjects. Tregs from BC patients show stronger suppressive capacity compared to Tregs from age-
271 matched healthy female donors (HD) (Fig. 6a). When compared to HD, BC subjects displayed
272 increased E2 PB-ratio (0.54 vs 0.49) (Fig. 6b), and higher frequency of TIGIT', CCRS8",
273 TIGIT/CCR8 and CTLA-4/PD-1 double positive PB-Foxp3E2" Tregs (Fig. 6¢, Fig. S9).
274  Interestingly, the lower expression of ICOS in PB-Foxp3E2" Tregs of BC subjects suggested a
275  preferential recruitment of ICOS*Foxp3E2" Tregs in the TME, as ICOS levels were higher in TIL-
276 Foxp3E2" Tregs compared to the peripheral blood (Fig. 5, Fig. 6¢). Notably, the median of the E2
277 PB-ratio within the BC cohort (Q2 = 0.545) represents a “hub value” almost coincident with that
278  corresponding to the Q3 value of HD (Q3 = 0.546) (Fig. 6d), suggesting E2 PB-ratio might as well
279  be associated with stronger immune suppression.

280 Then we observed that Treg peripheral suppression in BC subjects directly correlated with
281  the E2 TIL-ratio (» = 0.66, P = 0.021) (Fig. 7a). Specifically, BC subjects with high E2 TIL-ratio
282 (= 0.64) showed higher peripheral Treg suppression than the ones with a low ratio (< 0.64) (Fig.
283 7b). The more TIL-Foxp3E2" Tregs they had, the greater was their peripheral suppressive capacity.
284  Importantly, we observed that the E2 PB-ratio strictly mirrored the E2 TIL-ratio, as high E2 TIL-
285  ratio BC subjects also exhibited higher E2 PB-ratio (Fig. 7¢). Consistently, Tregs from BC patients
286  with higher E2 PB-ratio showed increased suppressive activity compared to the low E2 PB-ratio
287  group (Fig. 7d). Furthermore, Foxp3E2" Tregs from the high E2 PB-ratio BC group displayed an
288  immune phenotype distinct from the Foxp3™ Tregs, with enhanced expression of Helios, ICOS,
289  CTLA-4, CCRS, and co-expression of CTLA-4/PD-1 and TIGIT/CCRS (Fig. 7e, Fig. S10a) thus
290  mirroring the hyperactivated phenotype observed in TIL-Foxp3E2" Tregs (Fig. 5). Strikingly,

291  Foxp3E2" Tregs from the high E2 PB-ratio expressed low pS6 levels compared to Foxp3E2" Tregs
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292 from the low E2 PB-ratio group (Fig. 7e), according to what previously observed in TIL-Foxp3E2*
293 versus TIL-Foxp3™ (Fig. 5). This could further support that mTOR activity perturbs the suppression
294  of antitumor-specific immune response.

295 Overall, our data indicate that the E2 ratio in the peripheral blood reflects the infiltration of
296  highly immunosuppressive Foxp3E2" Tregs in the TME.

297

298  Foxp3E2*/Foxp3* ratio predicts the prognosis in newly-diagnosed HR* BC subjects

299 As our findings uncovered a direct connection between peripheral- and tumor-infiltrating
300 Foxp3E2" Tregs, we assessed whether their peripheral frequency correlated with the clinical
301  parameters of our BC cohorts, which have been stratified based on histopathological analyses
302 (tumor-node-metastasis — TNM) into luminal A and B tumors with different survival periods (67).
303  First, we evaluated one of the main prognostic markers in BC, the intratumoral Ki67 expression
304 (68). We found that the percentage of intratumoral Ki67 was significantly higher in the high
305  compared to the low E2 PB-ratio BC group (20% vs 10%, P = 0.022) (Fig. 8a). Furthermore, 74%
306  of the BC subjects with low E2 PB-ratio belonged to the luminal A subgroup (which has a better
307  prognosis than luminal B (67)), while only 43% of the high E2 PB-ratio BC subjects fell in that
308  subgroup (Fig. 8b). Moreover, luminal B BC subjects showed higher PB-ratio compared to the
309  luminal A group and this correlated with stronger suppressive activity (Fig. 8c, d). Finally, we
310  stratified our BC cohort in two clinical-pathological groups with different prognosis (69) and we
311 found that E2 PB-ratio strictly reflected the overall BC status, as it was significantly increased in
312 the poor-prognosis BC group (0.56 vs 0.51) (Fig. 8e). Importantly, we show stronger
313 immunosuppression of peripheral Tconvs from Tregs of the poor-prognosis BC group (Fig. 8f),
314  thus suggesting that an increased percentage of Foxp3E2" Tregs is associated with an enhanced
315  peripheral suppressive function and worse prognosis. Taken together, our findings identify

316  Foxp3E2 as a novel prognostic marker in BC (Fig. 8g).
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317 Discussion
318 Women with early-stage breast cancer (BC) have an independent risk of recurrence and

319  mortality for at least 20 years after the initial diagnosis with the greatest impact demonstrated in
320  hormone receptor-positive (HR") disease, even after 5 years of adjuvant endocrine treatment. In
321  order to improve BC patient survival, an accurate classification of breast cancer subtypes and the
322 identification of prognostic markers that can predict the course of the disease (e.g., relapse,
323 mortality, therapeutic response) are needed alongside with the identification of the underlying
324  molecular pathways.

325 Regulatory T cells (Tregs) that express the transcription factor Foxp3 are crucial for
326  maintaining immunological self~tolerance and suppressing the anti-cancer immune response. The
327  role of distinct Treg subpopulations, their respective functions and interactions within the complex
328  network of the TME have, however, not been fully elucidated (/). The composition of intratumoral
329  Foxp3" Tregs is characterized by a subpopulation of highly immune suppressive cells having a
330  distinct gene expression profile, possibly due to the hyperstimulation by tumor-associated antigens
331 (19, 31, 32). It has been previously reported that, among all Foxp3"™ Tregs, those expressing the
332 isoforms retaining exon 2 display stronger suppressive function and increased lineage stability (34,
333 37). Notably, although the role of Foxp3 as a master regulator of Treg differentiation and stability
334 is conserved in mouse (33, 70), mouse Foxp3 gene does not have splicing variants making human
335  studies essential to characterize Tregs and their function in human cancers. To date, whether
336  Foxp3E2" Tregs are preferentially enriched within the TME or the peripheral blood of subjects with
337  cancer and how they correlate with the clinical outcome is completely unknown.

338 Here, we investigated the role of Tregs in two independent cohorts of newly diagnosed
339  ER'PR'HER2 (HR)" BC and non-malignant breast fibroadenoma (BF) subjects (i.e., 57 patients).
340  Our analyses revealed for the first time a different composition of tumor-infiltrating immune cells
341  in breast cancer and non-malignant tumors, with BC being characterized by a lower CD8"/CD4"
342 ratio and higher frequency of Foxp3™ Tregs. Strikingly, we showed that the Foxp3E2" Treg
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343 subpopulationis increased in the TME of BC compared to BF patients, and a similar enrichment is
344  detected in the peripheral blood as well. We further associated Foxp3E2" Treg enrichment with
345  worst BC prognosis both in our HR" BC subjects and in a wider published cohort of 990 BC subjects
346 (from the TCGA) that also includes HER2" and triple negative BC.

347 In addition, we detected a lower frequency of co-mutations in BC subjects with a high
348  Foxp3E2"/Foxp3'ratio, suggesting a sub-clonal heterogeneity of these tumors that has already been
349  associated with therapy resistance and tumor shaping (53-56). Overall, our data suggest that
350  Foxp3E2 might be used as a novel biomarker to develop a blood-based test predictive of BC
351  prognosis (all tumor subtypes) and, perhaps, of susceptibility to specific therapies.

352 The origin of intra-tumoral Tregs and their relationship with those circulating in peripheral
353  blood remains unclear. Nonetheless, comparing intra-tumoral Foxp3E2" Tregs with those
354  circulating in the peripheral blood, we found that both overexpress Helios, a transcription factor
355  that regulates Treg function and stability, suggesting that it might be involved specifically in the
356  differentiation/function of the Treg subset expressing the Foxp3E2 splicing variants. Notably, BC
357  tumors with high Foxp3E2"/Foxp3* ratio showed greater levels of cancer stem-cell genes (e.g.,
358  WNT3a, NANOGPI and ESRG) suggesting that this Treg subset might shape the TME to foster
359  cancer stem cell growth or maintenance. Importantly, gene expression and mutational signature
360  analyses showed that Foxp3E2 may be utilized to identify a unique subset of individuals with
361  stronger tumor immune tolerance, persistent DNA damage (only ATM-dependent) and metabolic
362 rewiring induced by hyperactive oncogenic signaling (as PI3K/AKT) (49, 71). Moreover,
363  intratumor heterogenicity and tumor shaping in the high Foxp3E2"/Foxp3" ratio BC group may
364  result from an earlier immunosurveillance that spreads the number of sub-clonal neoantigens
365  associated with increased aggressiveness and drug resistance in cancer (53, 64, 72, 73). It is
366  important to note that chemotherapy and radiation-induced mutagenesis may be accelerated in BC

367  patients having a deficiency in the DNA mismatch repair (MMR) system (74). Some novel mutated
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368  genes may be cancer-driver genes, which means that MMR inactivation can lead to disease
369  progression and therapeutic resistance (23). TGCA data mining collectively demonstrate that
370  FOX3E2 expression in the TME is associated with defects in mismatch repair and PI3K/AKT co-
371  mutations indicating stemness and sub-clonal heterogeneity. In addition, FOXP3E2 is associated
372 with immunosuppressive signatures that may contribute to stem-like clones evading tumor immune
373 responses and, account for BC immunological quiescence (low lymphocyte infiltration, low
374  mutational burden, minimal response to immunotherapy (5, 50, 75) and tumor shaping (55)).

375 Finally, our data suggest that Foxp3E2" Tregs may account for higher immunosuppressive
376  function. Strikingly, we showed that Tregs from BC patients with increased Foxp3E2 levels provide
377  stronger suppression of effector cells during in vitro functional assays. This is consistent with the
378  increased expression of Helios, ICOS and immune checkpoint receptors by Treg
379  immunophenotyping and with the enrichment of an immunosuppressive gene signature in the BC
380  patients with high Foxp3E2"/Foxp3 ratio. In addition, known markers of anti-tumor T cell response
381  (e.g., CD8'/Treg ratio or CCR8 expression) strongly suggest that this Treg subset is associated with
382 tumor immune escaping. Of note, the increased expression of ICOS and lower levels of pS6 suggest
383 that Treg function might be tuned by the mTOR metabolic pathway.

384 Our overall data suggest that the Foxp3E2" Treg subpopulation might have a dominant role
385  in cancer evasion/immunosuppression. This might at least in part be mediated by the increased
386  expression of immune checkpoint co-stimulatory receptors (e.g. CTLA4, PD1 and TIGIT), which
387  represent the targets of currently available immunotherapies that are effective against several
388  malignancies, including BC (e.g., ipilimumab and pembrolizumab) (/, 76-80). Notably, the levels
389  of CCRS are also increased in TIL-Foxp3E2" Tregs. As elevated CCR8 levels in TIL-Tregs
390  associate with poor prognosis in several cancer types (/9, 66), this could further contribute to
391  Foxp3E2" Treg retention within the tumor thus amplifying the immunosuppression. Altogether,

392 these highlight the importance to consider TIL-Foxp3E2" Tregs as a novel target for improving the
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393 actual BC immunotherapeutic strategies. We hypothesized that breast cancer cells may induce
394  (and/or increase recruitment/retention) of Foxp3E2" Tregs through the establishment of a highly
395  immunosuppressive milieu (Fig. S10b). To this aim, unravelling the specific pathways involved in
396  Foxp3E2" Treg induction will be instrumental to restrain their generation restoring the tumor-
397  immune responses.

398 In conclusion, we showed that high Foxp3E2"/Foxp3" (E2) ratio in the peripheral blood of
399  BC subjects reflects stronger immunosuppression and defective MMR at the tumor site, thus
400  predicting poor prognosis. Since the accumulation of Tregs represents an essential mechanism for
401  cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy, our
402  findings may represent a vital jigsaw piecein the early detection of the
403  BC prognosis puzzle. Furthermore, these results might offer a novel paradigm for developing a
404  “‘super-targeted” approach that selectively restrains tumor-promoting Tregs while preserving a
405  proper peripheral tolerance.
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418  Methods

419  Subjects and study design. The clinical and demographic characteristics of the study cohorts were
420  shown in Supplementary Table 1. Female subjects were enrolled after obtaining informed consent.
421  The study has been approved by the Institutional Review Board of the University of Naples
422 “Federico II” (Protocol n. 269/15/ESO01). Biological samples were collected by clinicians at the
423 National Cancer Institute — IRCCS “G. Pascale” Foundation (Clinical and Experimental or
424 Oncological Surgery of Senology) and at the Department of General, Oncological, Bariatric and
425  Endocrine-Metabolic Surgery, University of Naples “Federico 11, Naples. BC subjects were naive-
426  to-treatment and with definite clinicopathological parameters, including age, tumor-node-
427  metastasis (TNM) stage, histological type and grade (according to WHO 2012-2019 and Elston-
428  Ellis) (81, 82), Ki67 index, estrogen receptor (ER), progesterone receptor (PR) and human
429  epidermal growth factor receptor 2 (HER2) status. For each subject, a detailed past medical history
430  was recorded to exclude intake of glucocorticoids and/or antihistamine drugs in the 2 months
431  preceding the enrolment and previous diagnosis of chronic inflammatory, autoimmune or other
432 neoplastic diseases. Subjects underwent breast surgery or core needle biopsies, collected with
433 ultrasound guidance. Tissue and blood samples were collected prior to chemotherapy, radiotherapy,
434  endocrine therapy, or any other treatment. Enrolled subjects were classified into
435  immunohistochemically defined surrogate molecular subtypes, according to the American Society
436  of Clinical Oncology/College of American Pathologists (ASCO/CAP) 2013-2018. Healthy female
437  donors (HD) were matched for age and body mass index and had no history of inflammation,
438  endocrine or autoimmune disease. The ethnic distribution among the groups was comparable, with
439  all participants being white.

440

441  Breast cancer and breast fibroadenoma tissue samples preparation. For the preparation of

442  tissue microarray (TMA) and histologic review, five-micrometer sections from each formalin-
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443 fixed-paraffin-embedded tissue block were stained with hematoxylin and eosin for the
444 identification of tumor areas. Immunohistochemical (IHC) analysis was performed on TMA with
445  up to four 1.5-mm cores from primarily the invasive tumor front from each tumor. A review of
446  histologic subtype and grade was performed according to WHO guidelines (87). The diagnosis of
447  ductal carcinoma with medullary characteristics was designated for high-grade tumours with
448  pushing margins and syncytial growth patterns in >75% of the tumour in association with a
449  pronounced lymphoplasmacytic infiltrate (§7).

450

451  Immunohistochemistry. Inmunohistochemical staining was performed on slides from formalin-
452 fixed, paraffin-embedded tissues to evaluate the expression of CD3, CDS8, Foxp3 and Foxp3E2
453  markers in breast fibroadenoma (n = 6) and breast cancer (n = 23) tissues. Paraffin slides were de-
454  paraffinized in xylene and rehydrated through graded alcohols. Antigen retrieval was performed
455  with slides heated in 0.01 M citrate buffer (pH 6.0) in a bath for 20 minutes at 97°C. After antigen
456  retrieval, the slides allow to cool. The endogenous peroxidase was inactivated with 3% hydrogen
457  peroxide was inactivated with 3% hydrogen peroxide. After protein block (BSA 5% in PBS 1x),
458  slides were incubated with specific primary antibodies: human anti-CD3 (2GV6) dilution 1:100
459  (Ventana), human anti-CD8 (CAL66) dilution 1:100 (Roche), human anti-FOXP3 (D2WS8E)
460  dilution 1:125 (Cell Signaling) and anti-human Foxp3E2 (150D) dilution 1:125 (BioLegend). The
461  sections were incubated for 1 hour with Novocastra Biotinylated Secondary Antibody (HRP-
462  conjugated) and visualized with 3,3'-Diaminobenzidine (DAB) chromogen. Finally, the sections
463  were counterstained with hematoxylin and mounted. CD3, CDS8, Foxp3 and Foxp3E2 positive
464  nuclei were counted evaluating at least five fields at 400x magnification. All sections were
465  evaluated in a blinded fashion by 2 investigators. For each marker, a mean value of up to five cores
466  for each patient was calculated representing the overall expression of the specific marker.

467
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468  Breast tissue preparation and cell purification. For the isolation of tumor-infiltrating
469  lymphocytes (TILs), dissected tissue fragments from freshly isolated biopsies were transferred in
470  GentleMACS C tubes (Miltenyi Biotec) containing Hanks’ Balanced Salts Solution (HBSS) with
471 Calcium, Magnesium, Sodium Bicarbonate and without Phenol Red (Aurogene) supplemented with
472 0.5 mg/mL Collagenase IV (Sigma), 50 ng/mL. DNAse I (Worthington), 2% fetal bovine serum
473 (FBS) (GIBCO) and 10% bovine serum albumin (Sigma). Tissue dissociation was made on a
474 GentleMACS Dissociator (Miltenyi Biotec) by using the “h_tumor 01 03” program. Single-cell
475  suspensions were obtained by disrupting the fragments with a syringe plunger over a cell strainer
476 (100 um) and washing with cold HBSS. Cell suspension was centrifuged at 2700 rpm for 5 minutes
477  to remove debris and the cell pellet was resuspended in RPMI 1640 medium for successive
478  evaluations. Peripheral blood mononuclear cells (PBMCs) from BF, BC and HD subjects were
479  isolated from blood samples after Ficoll-Hypaque gradient centrifugation (GE Healthcare). Tregs
480 (CD4'CD25'CDI127°) and Tconvs (CD4'CD25) were purified (90-95% pure) by using the
481  CD4'CD25" Regulatory T Cell Isolation Kit (Miltenyi Biotec).

482

483 Flow cytometry, proliferation and CFSE staining. Freshly isolated PBMCs and TILs from BF,
484  BC and HD females were surface-stained with the following mAbs: APC-H7-conjugated anti-
485  human CD45 (2D1), V500—conjugated anti-human CD4 (RPA-T4), APC-H7—conjugated anti-
486  human CD4 (RPA-T4), PE-Cy7—conjugated anti-human CD8 (RPA-TS8), BV421—-conjugated anti-
487  human CD279/PD-1 (EH12.1) and BV421—conjugated anti-human CD198/CCRS8 (4333H) all from
488  BD Biosciences, PE-Cy7—conjugated anti-human TIGIT (MBCA43) (eBioscience). Thereafter,
489  cells were washed, fixed and permeabilized (anti-human FOXP3 staining Set PE; eBioscience) and
490  stained with following mAbs: PE-conjugated anti-human FOXP3 from eBioscience (PCH101, that
491  recognizes all splicing variants through an epitope of the amino terminus of Foxp3), and PE-

492 conjugated anti-human Foxp3 from eBioscience (150D/E4, that recognizes Foxp3E2 variants
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493 through an epitope present in the exon 2 only), APC—conjugated anti-human CDI152/CTLA-4
494  (BNI3) (BD Biosciences), Alexa Fluor 488—conjugated anti-human Helios (22F6) and BV510—
495  conjugated anti-human Ki67 (B56). Cells were analyzed with FACSCanto II (BD Biosciences) and
496  Flowlo software (Tree Star). For T cell proliferation and suppression assays, Tconv cells (2 x 10*
497  cells/well) were stained with the fluorescent dye CFSE at 1 pg/ml (Invitrogen). Flow cytometry
498  analyzing CFSE dilution was performed by gating on CFSE" cells stimulated for 72 hours in round-
499  bottomed 96-well plates (Corning Falcon) with anti-CD3/anti-CD28 mAb-coated beads (0.2

500  beads/cell; Thermo-Fisher) alone or cultured with Tregs from BC and HD subjects, respectively.

501
502  Systematic transcript variant analysis in public databases. The Foxp3 spliced variant sequences

503  were assessed in UCSC Genome Browser on Human (GRCh37/hgl9) (83) databases. The
504  schematic diagram of the Foxp3 variant structures is reported in Fig. S1d.

505

506  The cancer genome atlas (TCGA) BRCA database analyses. Foxp3 splicing variant expression

507  data derived from TCGA splicing variant database (TSVdb) web tool (http://www.tsvdb.com) and

508  are reported as normalized RNA-Seq by Expectation Maximization (RSEM) values. Samples with
509  unreported and/or missing clinical data were removed. The Foxp3E2*/Foxp3™ ratio was calculated
510  using GRCh37/hgl9 coordinates chrX:49,114,121-49,114,225 and chrX:49,109,587-49,109,663
511  that recognize respectively the Foxp3 splicing variants containing the exon 2 and the exon 9 (being
512 this last common to all transcripts).

513

514  Kaplan—Meier survival plot. Overall survival analysis was conducted using only patients with
515  survival and gene expression data from TSVdb. Samples were categorized using Cox proportional
516  hazards regression into two groups based either on the mean RSEM value (high expression > Q2
517  and low expression < Q2) or on the upper quartile RSEM value (high expression > Q3 and low

518  expression < Q3). The Kaplan—Meier survival plots were generated using R packages: “survival
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519  and survminer”. The survival curves of samples with high and low gene expression were compared
520 by log-rank test, and data groups with P value < 0.05 were considered statistically significant.

521

522 RNAseq analysis. Primary BC (n = 990) and normal breast tissue (n = 112) RNA-seq data counts
523 were downloaded from the TCGA BRCA  project (available online at
524 https://portal.gdc.cancer.gov/projects/ TCGA-BRCA). Further analysis and visualizations of the
525  processed data were performed in R and Bioconductor. For differential expression analyses
526  between high- (n = 248) and low- (n = 742) ratio BC groups, counts were normalized using the size
527  factor normalization technique available in DESeq2 and an absolute log2FoldChange > 0.5 and p-
528  adj <0.001. We used the online tools RDAVIDWebService (84) and GOplot (85) to identify GO
529  Biological Processes overrepresented and to prepare circular composition overview. We performed
530 a statistical overrepresentation test using default parameters. GO-terms were considered
531  overrepresented only if FDR-corrected P-values were below < 0.05. Then, ClusterProfiler v.4.6
532 and Enrichplot v.1.19.0.01 were used for gene set enrichment analysis (GSEA) and plotting (49,
533  86). DNA mismatch repair (MMR) gene expressions were obtained by comparing the low- (n =
534 742) and high- (n = 248) ratio BC groups and filtering the normalized count matrix.

535

536 Tumor immune microenvironment cell composition analysis. Tissue composition analysis of
537  low (n=735) and high (n = 248) ratio BC immune and stroma (Tumor immune microenvironment
538  deconvolution) was performed using the online tool TimeDB (63) based on differentially expressed
539  genes (DEGs) obtained from RNAseq analysis.

540

541  Mutation enrichment analysis. Variants were obtained from TCGA-BRCA WES using the
542 TCGADbDiolinks R package (87) to identify differentially mutated genes in low- (n = 650) and high-

543 (n=211)ratio BC groups. Analysis (variants number, somatic interactions, APOBEC enrichments,
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544  and signatures detection) and visualization of mutations were performed using the Maftools R
545  package (88). Contributions of mutational signatures in COSMIC(89) were determined in each
546  sample using nonnegative matrix factorization provided by the NMF v1.8.0 R package (90) using
547  ap-value <0.001

548

549  Differentially methylated regions. Differentially methylated regions were calculated using the
550  normalized beta-values (methylation values ranging from 0.0 to 1.0) obtained from TCGA-BRCA
551  Illumina Human Methylation 450 downloaded through TCGAbiolinks R package. To compare low-
552 (n = 524) and high- (n = 194) ratio BC groups, we used the Wilcoxon test with the adjusted
553  Benjamini-Hochberg method. The default parameters were set to require a minimum absolute beta-
554  value difference of 0.2 and a p-value adjusted of < 0.01.

555

556  RPPA analysis. Proteomic analyses were performed using the level 4 (log2 transformed with
557  loading and batch corrected) RPPA dataset from the TCGA-BRCA study downloaded from The
558  Cancer Proteome Atlas portal (https://tcpaportal.org/tcpa/). For differential protein expression
559  analysis between high- (n = 248) and low- (n = 742) ratio BC groups, RPPA relative fluorescence
560  intensity (RFI) values were compared using an ANOVA FDR p-value threshold of less than 0.05.
561  The data were then scaled based on Average RFI threshold for each protein to extract upregulated
562  (red) and downregulated (green) probes of the high-ratio BC group. Metascape was used to perform
563  the enrichment analysis of the differentially expressed probes. The data were displayed as median
564  values.

565

566  Statistical analysis. Statistical analyses were performed using GraphPad program (Abacus
567  Concepts) and R packages. Results were expressed as Median and interquartile range (IQR). The

568  non-parametric Mann-Whitney U-test, the Wilcoxon matched-pairs signed-rank test and the t-test
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569  were used. Correlations were computed with a non-parametric Spearman r correlation test, overall
570  survival with a log-rank test, and hazard ratio with multivariate Cox regression model reference. A
571 two-tailed P value < 0.05 was considered statistically significant.

572
573  Data and code availability statement. The results published here are based in part on data from

574  The Cancer Genome Atlas pilot project established by NCI and the National Human Genome
575  Research Institute. The data was retrieved partly via public repositories and partly via the Genotypes
576  and Phenotypes Authorization Database (dbGaP) (accession number: phs000178.v11.p8). Links to
577  public repositories can be found via online citations. Analysis and visualizations on the processed
578  data were performed using citated R packages. Clinical datasets that support the findings of this
579  study are not publicly available due to information that could compromise research participant
580  consent. Each request for access to the dataset will be granted upon reasonable request sent to the
581  corresponding author and approval by the ethic committee.
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628

629  Figure legends

630  Figure 1. Characterization of the immune infiltrate in peripheral blood (PB) and primary
631  tissue from breast cancer (BC) and fibroadenoma (BF) subjects. (a) Schematic representation
632 of Foxp3" and Foxp3E2" Tregs in tumor immune escape. (b) CD8"/CD4" ratio, % of (¢) Foxp3*
633  and (d) Foxp3E2" cells (gated on CD4"), (e-f) Foxp3E2*/Foxp3*ratio (E2 ratio) and (g) CD8"/Treg
634  ratio in peripheral blood (PB — represented as dots) and tumor-infiltrating lymphocytes (TILs —
635  represented as triangles) from BF (white empty) and BC (red empty) subjects. In panel (b-g),
636  represented data are for BF at least » = 7 and n = 15 and for BC at least n = 15 and n = 24
637  (respectively for PB and TILs), n = 77 for PB and n = 26 for TILs. (h) Correlation between % of
638  Foxp3E2" and CD8'/Treg ratio in TILs from BC subjects (n = 24). (i) Representative
639  immunohistochemical staining of primary BC and BF tissue showing CD3", CD8", Foxp3" and
640  Foxp3E2" cells. Immunohistochemistry-based quantification of (j) % of CD3", (k) CD8", (1)
641  Foxp3™, (m) Foxp3E2" cells, (n) CD8*/CD3" ratio, (0) Foxp3"/CD3" ratio and (p) Foxp3E2"/CD3*
642  ratio [respectively white dots (n = 6) for BF and red triangles (n = 23) for BC subjects]. Data are
643  presented as Median values. Each data point represents a different individual (i.e., independent
644  biological samples) (a-e, g, h, j-p) or experimental replicates (f). Statistical analyses were
645  performed by using Mann-Whitney U-test (two tails) (a-g, j-p) and Spearman r correlation test (h).
646  * P<0.05; **P<0.01; ***P<0.005; ****P<0.0001.

647

648  Figure 2. Foxp3E2 transcript analysis from primary breast cancer (BC) tissues delineates a
649  subgroup of subjects with poor prognosis and a distinct gene expression profile. (a) Foxp3
650  transcripts in normal (n = 112) and primary breast cancer (n = 990) tissues. Data represent
651 normalized RSEM value obtained by RNAseq analysis of datasets in the TCGA Splicing Variant

652  Database. (b, ¢) Kaplan-Meier survival curve of BC subjects stratified into low- and high-Foxp3
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653  expression levels within the primary tumor based on its Q2 (n =495 and 495) or Q3 (n = 742 and
654  248) value. (d) Interquartile distribution of the Foxp3E2*/Foxp3 ratio calculated in the primary BC
655  tissue (n = 990). (e) BC subjects were stratified into low- (n = 741) and high- (n = 249)
656  Foxp3E2"/Foxp3" ratio (E2 ratio) according to the Q3 value cut-off. (f) Hazard Ratio (HR = 1.8,
657 CI1.1-2.8, Cox P=0.014) and (g) Kaplan-Meier survival curve of low- (n = 741) and high- (n =
658  249) E2 ratio BC subjects according to Q3 value cut-off. (h) Volcano plot of Differentially
659  Expressed Genes (DEGs) obtained by applying a threshold of log2 foldchange > + 0.05 (x-axis)
660  and a p-adj < 0.001 (y-axis) in the two groups of BC subjects. Dots represented single genes: 179
661  upregulated (red), and 523 downregulated (green) in the high-ratio BC group. (i) Circular
662  composition overview plot for selected gene ontology pathways (represented in different colors)
663  overrepresented among DEGs in high- vs low-ratio BC groups. Gene Ontology (GO) analysis was
664  performed by DAVID (Database for Annotation, Visualization and Integrated Discovery) database
665 Gene color scale indicates the relevant fold change values (red -upregulated, green -
666  downregulated). Data are presented as Median values. Statistical analyses were performed by using
667  Mann-Whitney U-test (two tails) (a, e), Multivariate Cox regression model reference (b, ¢, g), and
668  log-rank test (f). ****P<0.0001.

669

670  Figure 3. High intra-tumor heterogeneity characterizes the BC group with high
671  Foxp3E2*/Foxp3* ratio. (a, b) Summary of top 10 mutated genes in BC subjects with (a) low-
672 and (b) high- E2 ratio. (¢, d) Somatic interaction analysis between gene pairs showing co-occurring
673  mutations (green squares) and mutually exclusive mutations (brown squares). The intensity of the
674  color is proportionate to the — logl0 (P-value). Statistical analyses were performed by using
675  Fisher’s exact test.

676
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677  Figure 4. Defective DNA mismatch repair and specific mutational signatures in BC subjects
678  with high Foxp3E2*/Foxp3* ratio. Mutational signatures identified in BC subjects with (a, e)
679  low- and (b, f) high- Foxp3E2"/Foxp3™ ratio, respectively. The y-axis indicates exposure of 96
680  trinucleotide motifs to overall signature. In each plot, we report the best match against validated
681  COSMIC signatures and cosine similarity value alongside the proposed etiology. (¢, d) APOBEC
682  enrichment analysis in BC subjects with (¢) low- and (d) high-E2 ratio. Box plots (left panels) show
683  differences in mutation load between APOBEC-enriched and nonenriched samples. Donut plots
684  (upper panels) display the proportion of mutations in tCw context. Bar plots (lower panels) show
685  the top 10 differentially mutated genes between APOBEC-enriched and non-APOBEC-enriched
686  samples. (g) Box plots reporting the expression profiles of MMR-relative genes (MLH1, MLH3,
687  MSH2, MSH3, MSH6, PMS2). (h) Supervised hierarchical clustering analysis of TCGA-BC RPPA
688  results using an ANOVA FDR p-value threshold lower than 0.05. Based on this threshold, 81 probes
689  were differentially altered in the high-E2 ratio group, with 40 probes upregulated (red bar) and 41
690  downregulated (green bar). (i) Enrichment analysis of the differently expressed probes using
691  Metascape. Statistical analyses were performed by using the Wilcoxon rank-sum test and Fisher’s
692  exact test (a, b, e, f); ***P<0.005.

693

694  Figure 5. Highly immunosuppressive Foxp3E2* Tregs preferentially accumulate in TILs of
695  newly diagnosed HR* BC subjects. Cumulative data of flow cytometry analysis showing cell
696  percentage and mean fluorescence intensity (MFI) of Helios", pS6™ CCRS8", TIGIT", ICOS",
697 CTLA-4", PD-1" and Ki67" cells (gated on CD4 Foxp3" and CD4 Foxp3E2") in freshly isolated
698  TILs (at least n =4) and PB (at least n = 9) from BC subjects. Data are presented as Median values.
699  Statistical analysis was performed by using Wilcoxon and Mann-Whitney U-test (two tails); *P<
700  0.05; **P<0.01; ***P<0.005; ****P<0.0001.

701
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702 Figure 6. Higher immune checkpoint expression in Tregs from HR* BC subjects correlates
703  with increased Foxp3E2/Foxp3* ratio and peripheral Treg suppressive function. (a)
704  Percentage of suppression of Tregs in co-culture with CFSE-labeled Tconvs at different ratios, from
705 HD (n = 20) and BC (n = 16) subjects. (b) Cumulative data calculated by flow cytometry
706  quantification of the E2 ratio (evaluated on CD4"Foxp3* and CD4Foxp3E2" Tregs) from PB of
707  HD (n = 38) and BC (n = 33) subjects. (¢) Percentage of TIGIT", CCR8", TIGIT"/CCRS8", CTLA-
708 4%, CTLA-47/PD-1", Helios" and ICOS™ Tregs and MFI of ICOS, CCRS8, CTLA-4 and Helios on
709  CD4"Foxp3" and CD4 Foxp3E2" Tregs from freshly isolated PB of HD (at least n = 25) and BC
710  (at least n = 22) subjects. (d) E2 PB-ratio (median, minimum to maximum values, and quartiles)
711 from BC (n = 33) and HD (n = 38) subjects. Each symbol shows independent biological samples
712 (b-d) or experimental replicates (a). Data are presented as Median values. Statistical analysis was
713 performed by using Wilcoxon and Mann-Whitney U-test (two tails); *P< 0.05; **P<(0.01; ***P<
714 0.005; ****P<(0.0001.

715

716  Figure 7. Increased peripheral Treg suppressive function and immune checkpoint expression
717 in Tregs from BC subjects with higher Foxp3E2*/Foxp3* TIL- and PB-ratio. (a) Correlation
718  between the E2 TIL-ratio and the percentage of peripheral suppression of Tregs from BC subjects
719 (n=10). (b) Percentage of suppression of Tregs from BC subjects with high (n = 6) and low (n =
720  6) E2 TIL-ratio BC subjects at different proportions of Treg/Tconv cells. (¢) E2 PB-ratio from BC
721 subjects with high (n = 18) and low (n = 24) TIL-ratio. (d) Percentage of Treg suppression in BC
722 subjects divided into high- (n = 7) and low- (n = 10) Foxp3E2"/Foxp3* PB-ratio. (¢) Cumulative
723 data calculated by flow cytometry quantification showing the percentage of Helios', CTLA-4",
724  CTLA-4"PD-17, CCR8", TIGIT*CCR8" and pS6" cells and MFI (Helios, CTLA-4, CCRS, pS6 and
725 ICOS) gated on CD4 Foxp3™ and CD4 Foxp3E2"* Tregs from peripheral blood of BC subjects with

726 high- (at least » = 11) and low- (at least » = 13) E2 PB-ratio BC subjects. Each symbol shows
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727  independent biological samples (a-c, e) or experimental replicates (b, d). Data are presented as
728  Median values. Statistical analysis was performed by using Wilcoxon and Mann-Whitney U-test
729 (two tails); *P<0.05; **P< 0.01; ***P<0.005; ****P<0.0001.

730

731  Figure 8. High Foxp3E2*/Foxp3™ ratio predicts worse prognosis in two independent cohorts
732 of newly diagnosed HR*BC subjects. (a) Intratumoral Ki67 from BC subjects with high (n =21)
733 and low (n =19) E2 PB-ratio. (b) Luminal A and B (average proportion) in the high and low E2 PB-
734 ratio BC groups. (¢) E2 PB-ratio in Luminal B (#z = 35) and Luminal A (n = 57) BC groups. (d)
735 Percentage of Treg suppression from Luminal B (n = 6) and Luminal A (n = 12) BC subjects. (e)
736 PB-ratio from BC subjects with poor (n = 29) or good (n = 54) prognosis. (f) Percentage of Treg
737  suppression in BC subjects with poor (n = 5) or good (rn = 13) prognosis. (g) Schematical summary
738 of the results. Each symbol shows independent biological samples (a, b) or experimental replicates
739 (c-f). Data are presented as Median values. Statistical analyses were performed by using Wilcoxon
740  and Mann-Whitney U-test (two tails) (a, c-f) and Fisher’s exact test (b); *P< 0.05; **P< 0.01;
741 *FEXP<(.005; ****P<0.0001.
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Supplementary Table 1. Clinical and demographic characteristics of the study cohort.

BC BF HD
N@ 40 17 38
Gender n (%)
Female 40 (100) 17 (100) 38 (100)
Male 0(0) 0(0) 0(0)
Age, mean = SD, year 53 (%12) 39 (+10) 47 (£10)
Tumor staging n (%)
T1 23 (57.5)
T2 14 (34.1)
T3 0(0)
T4 0(0)
Missing 3(7.5)
Lymph Nodes metastasis n (%)
0 24 (60.0)
1-3 12 (30.0)
>4 0 (0)
Missing 4 (10)
Histological grading n (%)
I 2(5)
11 27 (67.5)
111 10 (25)
Missing 1(2.5)
Immunohistochemical status n (%)
ER positive 40 (100)
PR positive 40 (100)
HER?2 negative 40 (100)
Molecular subtype
Luminal A 25 (62.5)
Luminal B 13 (32.5)
Missing 2 (5)

® Numbers may not add up to the total number of patients because of missing values for some variables.
BC: breast cancer subjects; BF: breast fibroadenoma subjects; ER: estrogen receptor; HD: healthy donors; HER2:

human epidermal growth factor receptor 2; n/a: not applicable; PR: progesterone receptor.
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Supplementary Figure 1. RNAYeHHA1VRTS 6F Fox|p3 fraseript &epiession in primary tumor of
breast cancer (BC) subjects. (a) Percentage of Foxp3" and Foxp3E2 cells (gated on CD4") from
TILs [respectively empty and full triangles (n = 26)] and PB [respectively empty and full dots (n =
77)] of BC subjects. Each symbol showed experimental replicates. (b) Hazard ratio (HR) (0.95, CI
0.62 — 1.5, Cox P =0.828) of BC subjects (n = 990) stratified into low- (n =495) and high- (n = 495)
Foxp3 expression based on its median value, obtained through RNAseq data using TSVdb. (¢) HR
(1.1, CI 0.65 — 1.7, Cox P = 0.819). (d) Schematic representation of the five alternative Foxp3
transcripts: the exon 9 is common to all mRNAs, while only the ucOl1mnb.2, ucOl1mnc.2,
uc004dnf.4 variants contain the exon 2 (light red rectangle). Data are presented as Median values.
Statistical analyses were performed by using Wilcoxon and Mann-Whitney U-test (two tails) (a), log-

rank test (b, ¢). ****P<0.0001.

Supplementary Figure 2. Foxp3 splicing variant expression in normal breast versus breast
cancer tissue. (a) ucOlIlmnb.2, (b) ucOl1lmnc.2, (¢) uc004dne.4, (d) uc004dnf.4 Foxp3 transcript
expression (normalized RNA-Seq by Expectation Maximization (RSEM) value) in normal breast (n
= 112) and primary breast cancer (n = 990) tissue from TSVdb. (e-1) HR and KM survival curves of
BC subjects stratified into low- and high-transcript expression based either on the median (e, g, i, k)
or on the upper quartile value (f, h, j, 1) of (a) ucOl1lmnb.2 (e, f), (b) ucOllmnc.2 (g, h), (c)
uc004dne.4 (i, j) and (d) uc004dnf.4 (k, 1) expression in primary BC tissue. Data are presented as
Median values (a-d). Statistical analyses were performed by using Mann-Whitney U-test (two tails)

(a-d), log-rank test and Multivariate Cox regression model reference (e-1). ****P<(0.0001.

Supplementary Figure 3. Stratification of BC subjects according to the Foxp3E2*/Foxp3™ ratio.
(a) Foxp3 expression levels in low- (n = 741) and high-E2 ratio (n = 249) BC subjects according to
the Q3 value cut-off. (b) E2 ratio from BC subjects stratified into low (n = 495) and high (n = 495)

according to its median value. (¢) HR (1.2, C10.76 — 1.8, Cox P =0.476) and (d) KM survival curve
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of low- and high- E2 ratio BE/AaBfet" tef BrNciént BT REBI(Fpathways within activated and
suppressed genes in high- vs low-E2 ratio BC groups. Upper: Significantly enriched KEGG pathways
among up- and down- regulated DEGs. The plot shows KEGG terms (vertical axis) versus gene ratio
(horizontal). Number of genes in each category is proportional to circle value and color represents
the adjusted p-value. Lower: GSEA-based KEGG-enrichment plots of representative gene sets from
activated paths: cAMP signaling pathway, glycerolipid metabolism and neuroactive ligand-receptor
interaction. Statistical analyses were performed using Mann-Whitney U-test (two tails) (a, b), log-

rank test (c), Multivariate Cox regression model reference (d). ****P< (0.0001.

Supplementary Figure 4. Expression of stem cell-like features in BC subjects according to the
Foxp3E2+/Foxp3+ ratio. Heatmap of 12 differentially expressed genes indicating stem cell-like
characteristics. Each row corresponds to one gene, while each column represents one group. In the
high-E2 ratio BC group, a scaled log2 count revealed that 10 genes were upregulated (red bar) and 2

were downregulated (green bar).

Supplementary Figure 5. Detection of somatic alterations and association with
Foxp3E2+/Foxp3+ ratio. (a, b) Summary of somatic variants displaying variant classification, types,

SNV class and number in BC subjects with (a) low- and (b) high-E2 ratio.

Supplementary Figure 6. CoBarplot of DNA Damage Repair (DDR) genes. Mutation of DDR
genes in high- (left, » = 211) and low- (right, n = 650) E2 ratio BC groups. No differences were
observed in variant incidence between the two groups, although they showed higher occurrences of
TP53 mutations. Variant type is indicated (see key below). Data were analyzed using Maftool R

package.
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Supplementary Figure 7.2T3b4re BRAY \mtthiiafotiiowhsisis and Tumor immune
microenvironment deconvolution of primary BC tissues. (a) Total mean DNA methylation values
for low- (n = 524) and high-(n = 194) E2 ratio BC groups were calculated by mean methylation beta
values (ratio of intensities between methylated and unmethylated alleles) for all probes in the [llumina
450k methylation array TCGA BRCA. (b) Violin plots showing the distribution of cell type fraction
in primary breast cancer tissue (Tumor immune microenvironment deconvolution) from BC subjects
stratified into low- (n = 735) and high- (n = 248) E2 ratio according to its Q3 value. Tumor immune
microenvironment deconvolution was performed using the online tool TimeDB (62). Data are
presented as Median values. Statistical analyses were performed using Mann-Whitney U-test and

Wilcoxon signed-rank test (two tails). *P< 0.05.

Supplementary Figure 8. Immunophenotype in Tregs from TIL and PB of newly diagnosed
HR* BC subjects. Cumulative data of flow cytometry analysis showing mean fluorescence intensity
(MFI) of CCR8" and Ki67" cells (gated on CD4 Foxp3* and CD4"Foxp3E2") in freshly isolated TILs
(at least n =6) and PB (at least n = 10) from BC subjects. Each symbol shows independent biological
samples. Data are presented as Median values. Statistical analysis was performed by using Wilcoxon

and Mann-Whitney U-test (two tails).

Supplementary Figure 9. Immune checkpoint expression in Tregs from BC and Healthy Donor
(HD) subjects. Cumulative data of flow cytometry analysis showing mean fluorescence intensity
(MFI) of TIGIT" cells gated on CD4Foxp3™ and CD4 Foxp3E2" Tregs from freshly isolated PB of
HD (n =27) and BC (n = 24) subjects. Each symbol shows independent biological samples. Data are
presented as Median values. Statistical analysis was performed by using Wilcoxon and Mann-

Whitney U-test (two tails).
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Supplementary Figure 10. IftiiiifoptiéaotypeinP RS oI P B0T°high- and low-E2 PB-ratio
HR* BC subjects. (a) Cumulative data calculated by flow cytometry quantification showing the
percentage of ICOS™ cells gated on CD4Foxp3™ and CD4 "Foxp3E2" Tregs from peripheral blood of
high- (n = 13) and low- (n = 14) PB E2 ratio BC subjects. (b) Schematical model of the breast cancer-
induced polarization of Foxp3E2" Tregs in the tumor microenvironment. Each symbol shows
independent biological samples. Data are presented as Median values. Statistical analysis was

performed by using Wilcoxon and Mann-Whitney U-test (two tails).
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