

1 **Fc-dependent protective efficacy of non-inhibitory antibodies targeting influenza A virus
2 neuraminidase is limited by epitope availability**

3 Mirte N. Pascha^{1#}, Marlies Ballegeer^{2,3}, Rien van Haperen^{4,5}, Annick C. Kooij¹, Danique M. van
4 Miltenburg¹, Anthony A. Smits¹, Jelle G. Schipper¹, Hongrui Cui², Irina C. Albulescu¹, Berend Jan Bosch¹,
5 Frank Grosveld^{4,5}, Frank J.M. van Kuppeveld¹, Xavier Saelens^{2,3}, Dubravka Drabek^{4,5}, Cornelis A.M. de
6 Haan¹

7 **Affiliations:**

8 1. Section of Virology, Division of Infectious Diseases and Immunology, Department of
9 Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,
10 The Netherlands

11 2. VIB Center for Medical Biotechnology, VIB, Ghent, Belgium

12 3. Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium

13 4. Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands

14 5. Harbour BioMed, Rotterdam, The Netherlands

15 [#] Current affiliation: Division of Infectious Diseases, Department of Medicine Solna, Center for
16 Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden

17 **Abstract**

18 Antibodies targeting hemagglutinin and neuraminidase (NA) are key components of the adaptive
19 immune response against influenza A virus (IAV). However, antigenic drift allows the virus to escape
20 inhibition by such antibodies. In this study, we aimed to isolate antibodies with cross-subtype
21 reactivity against human H1N1 and H3N2 IAVs from transgenic mice bearing genes encoding the
22 human immunoglobulin variable regions. We immunized these mice with recombinant N1 and N2 NA
23 proteins, presenting them either as unconjugated soluble proteins or conjugated to self-assembling
24 protein nanoparticles. This approach yielded a panel of NA-specific monoclonal antibodies (mAbs)
25 with various levels of intra- and inter-subtype reactivity for N1 and N2 NA. Three of these mAbs, which
26 collectively recognize two distinct epitopes, were cross-reactive against N1 and N2 NAs in ELISA, but
27 did not inhibit NA enzymatic activity. Two of these mAbs, 21H8 and 45D9, were selected for further
28 characterization. These recognized different epitopes and induced Fc-mediated effector functions to
29 varying extents. Prophylactic administration of 21H8, but not 45D9, protected mice against challenge
30 with H1N1 IAV, while neither mAb protected against a H3N2 challenge. The observed protective
31 efficacy correlated with the mAbs' capacity, or lack thereof, to bind membrane-associated full-length
32 NA. The introduction of Fc silencing mutations in mAb 21H8 resulted in an inability to activate NK cells
33 or mediate phagocytosis *in vitro* and significantly reduced protection *in vivo*, indicating that the
34 protective efficacy of mAb 21H8 is Fc-dependent. However, mAb 21H8 expressed with reduced core
35 fucosylation of its Fc N-glycan, which specifically enhanced NK cell activation *in vitro*, failed to improve
36 protection against H1N1 challenge *in vivo*. Future work is needed to decipher in more detail the
37 mechanism of Fc-mediated protection against influenza via NA-specific antibodies and to identify the
38 optimal strategies for their enhancement.

39 **Introduction**

40 Influenza A virus (IAV) is a highly contagious respiratory pathogen that causes seasonal epidemics and
41 occasional pandemics, posing a significant threat to public health worldwide. Human IAV is notorious
42 for its rapid antigenic evolution, resulting in the emergence of novel strains that can evade pre-existing
43 immunity. Current inactivated vaccines mainly induce antibodies directed against immunodominant

44 epitopes of the main surface glycoprotein hemagglutinin (HA), which are highly variable.¹ Vaccine
45 efficacy is therefore largely restricted to the strains included in the vaccine, resulting in a need for
46 novel vaccines that induce a more broadly, cross-reactive immune response.^{2,3} The discovery of novel,
47 broadly protective antibodies could aid in vaccine development and advance the development of
48 antibody-based therapeutics.

49 Besides the attachment and fusion protein HA, neuraminidase (NA) plays a critical role in the viral life
50 cycle.⁴ NA cleaves sialic acid residues from (decoy) receptors, facilitating the release of newly formed
51 virus particles from infected cells and movement through the sialic acid-dense environment of the
52 respiratory tract to infect new host cells. In line with this essential role in the virus life cycle, antibodies
53 targeting NA can reduce disease severity and virus transmission.⁵⁻⁹ NA-targeting antibodies may block
54 enzymatic activity and thereby interfere with viral release and spread, but their antiviral potential
55 extends beyond direct inhibition.^{10,11} Antibodies with no or limited NA inhibiting (NAI) activity have
56 been shown to rely on their ability to activate the immune system through Fc effector functions for
57 protection.¹⁰⁻¹²

58 By binding to Fc gamma receptors (FcγR) on immune cells, such as natural killer (NK) cells and
59 macrophages, antibodies can trigger antibody-dependent cellular cytotoxicity (ADCC) and antibody-
60 dependent cellular phagocytosis (ADCP). ADCC leads to the destruction of infected cells, while ADCP
61 involves the engulfment and clearance of viral particles or virus infected cells by phagocytic cells.^{13,14}
62 In addition, antibody binding to an infected cell can trigger complement deposition, resulting in
63 complement-dependent cytotoxicity (CDC).¹⁵ These processes also result in the release of antiviral
64 cytokines that further enhance immune activation.¹⁶ Interaction with FcγRs is required for the *in vivo*
65 protective efficacy of non-neutralizing antibodies against IAV, including antibodies targeting the HA
66 stem and NA-specific antibodies.^{10,11,17}

67 NA is increasingly recognized as an attractive target for improved influenza vaccines.¹⁸ Advancing our
68 knowledge on the characteristics of protective cross-reactive monoclonal NA-targeting antibodies
69 may inform vaccine design to promote the induction of protective antibodies against conserved
70 epitopes. Few NA-targeting antibodies have been described that display cross-subtype specificity. All
71 reported cross-subtype-reactive monoclonal antibodies (mAbs) target the highly conserved catalytic
72 site and inhibit NA activity by blocking the interaction with sialic acid.¹⁹⁻²¹ These mAbs were isolated
73 from patients infected with seasonal IAV or a healthy donor with unspecified exposure history. The
74 most recently reported catalytic site-targeting antibody binds through sialic acid receptor mimicry and
75 thereby displays exceptional breadth across IAV and IBV NAs.²¹ Antibodies binding elsewhere on NA
76 can be strain-specific or cross-reactive within the subtype, but generally do not bind multiple NA
77 subtypes.^{12,22-28}

78 We previously demonstrated that immunization with NA conjugated to Mi3 self-assembling protein
79 nanoparticles induced higher antibody titers than unconjugated NA and provided superior protection
80 against a lethal viral challenge.²⁹ In addition, differences in reactivity against heterologous NA proteins
81 indicated that nanoparticle conjugation of NA induced an antibody response characterized by altered
82 epitope targeting compared to unconjugated NA. In this study we aimed to identify NA-targeting
83 antibodies with cross-subtype protective efficacy. To this end, we immunized Harbour H2L2 transgenic
84 mice with recombinant N1 and N2 NAs administered as unconjugated protein or conjugated to
85 nanoparticles. These mice carry the human heavy and light chain variable regions and the rat
86 immunoglobulin constant regions. The human/rat chimeric antibodies that they produce can be
87 engineered into fully human antibodies by replacing the rat constant regions with that of any human
88 immunoglobulin isotype and subclass. Here, we isolated a panel of monoclonal antibodies (mAbs) that
89 displayed varying levels of cross-reactivity against N1 and N2 recombinant proteins and engineered

90 them into human IgG1 antibodies. While some mAbs displayed broad cross-subtype reactivity, their
91 binding to recombinant NA proteins in enzyme-linked immunosorbent assays (ELISA) did not correlate
92 with binding of NA in the native conformation or with protective efficacy. One mAb (21H8) protected
93 mice against a challenge with H1N1, but not H3N2 IAV, while another mAb (45D9), targeting a
94 different epitope, did not provide protection against either virus. We demonstrate that 21H8 lacks
95 detectable NAI activity and relies on Fc-effector functions to mediate protection. However, enhancing
96 ADCC by reducing Fc fucosylation did not improve its potency.

97 **Results**

98 *Production of recombinant NAs and nanoparticles*

99 To elicit and isolate novel mAbs against N1 and N2 NA and compare epitope targeting between
100 different antigen preparations, we generated recombinant NA antigens N1 WI13 (derived from
101 A/Wisconsin/09/2013) and N2 GE18 (derived from A/Germany/7830/2018), unconjugated and
102 conjugated to nanoparticles (NA-NP). The recombinant tetrameric NAs were produced in a eukaryotic
103 expression system using a modification of a previously described construct design consisting of the
104 NA ectodomain preceded by a tetrabrachion tetramerization domain.³⁰ The constructs also included
105 a Strep tag for affinity purification and a SpyTag for nanoparticle conjugation (Fig. 1a), as described
106 previously.³¹ Mi3-SpyCatcher³² and lumazine synthase (LS)-SpyCatcher self-assembling protein
107 nanoparticles (NPs) were expressed in *E.coli* and affinity purified using a C-tag. Conjugation of the NA
108 antigens to Mi3 or LS NPs occurred by spontaneous formation of an isopeptide bond between the
109 SpyTag and SpyCatcher³³ upon their coincubation (Fig. 1b, Fig. S1).

110 *Immunizations of H2L2 mice*

111 We immunized Harbour H2L2 mice (6 per group) with a mixture of unconjugated N1 and N2 or with
112 N1 and N2 co-conjugated to Mi3 or LS nanoparticles via subcutaneous immunization of 25 µg NA per
113 mouse formulated with oil-in-water-based adjuvants. The mice received a total of six doses
114 administered at regular intervals of two weeks. For mice that received NA-NP, we alternated between
115 NA-Mi3 and NA-LS to minimize anti-carrier responses. NA-specific antibody titers were monitored
116 during immunizations in enzyme-linked immunosorbent assays (ELISA). Analysis of serum samples
117 taken after the fourth immunization demonstrated reactivity against the homologous NAs (N1 WI13
118 and N2 GE18; Fig. S2a and c), varying degrees of cross-reactivity against heterologous N1 and N2
119 proteins (N1 HU02 and N2 SI57; Fig. S2b and d), and low cross-subtype reactivity against N9 (Fig. S2e).
120 High reactivity was also detected against the tetramerization domain and tags fused to the NA
121 proteins, as demonstrated by binding to an unrelated RSV G recombinant protein containing the same
122 domains as the NAs (Fig. S2f).

123 *Screening of NA-specific mAbs*

124 After six immunizations of the H2L2 mice with NA or NA-NP antigens, B cells were isolated and fused
125 with a myeloma cell line into hybridomas expressing monoclonal antibodies. We then screened nearly
126 12,000 hybridoma supernatants for binding to NA in an antigen-specific ELISA. In total, 51 hybridomas
127 derived from mice immunized with unconjugated NA proteins demonstrated reactivity against N1
128 and/or N2. Of these, 18 also showed reactivity against the RSV G control protein, indicating that these
129 antibodies interacted with the tags or tetramerization domain rather than NA. Of the 33 remaining
130 NA-specific mAbs, one was cross-reactive against N1 and N2, 17 were specific for N1, and 15 were
131 specific for N2. Immunizations with NA-NP yielded only five reactive hybridomas. Of these, three
132 cross-reacted with N1 and N2 NA, two were specific for N1 NA, and none bound the recombinant RSV
133 G control protein (Fig. 1c).

134 *Selection of cross-reactive mAbs*

135 Next, we sequenced the genes encoding the IgG heavy and light chains of the mAbs specific for NA.
136 Some overlap in sequences was found, resulting in a selection of 21 IgG mAbs with unique CDR region
137 sequences. These selected mAbs were then purified from the supernatant for further profiling of their
138 antigen specificity. Reactivity against a range of N1 and N2 NA proteins was determined by ELISA using
139 the mAb 1G01¹⁹, a broadly neutralizing anti-NA mAb with cross-subtype specificity, as a control (Fig.
140 1d). Based on antigen specificity, the 21 mAbs could be roughly grouped into five categories; those
141 with cross-subtype reactivity, broad reactivity within the N2 subtype, specific reactivity against N2 of
142 recent H3N2 strains, broad reactivity within the N1 subtype, and specific reactivity against N1 of
143 pandemic H1N1 strains. Two of the mAbs with cross-subtype specificity (12F5 and 45D9) also
144 demonstrated broad reactivity within the N1 and N2 subtypes. 21H8 was broadly reactive within the
145 N2 subtype, but only bound N1 NAs of new pandemic H1N1 origin. 24E5 was broadly reactive within
146 the N1 subtype, but only demonstrated weak binding against a few N2 NAs (Fig. 1d; Fig. S3).

147 *Binding and inhibition characterization of the cross-reactive mAbs 12F5, 21H8, and 45D9*

148 We moved forward with mAbs 12F5, 21H8, and 45D9 as these demonstrated the strongest binding to
149 both N1 and N2 NAs. These mAbs were recombinantly expressed as human IgG1 isotypes for further
150 characterization. The hIgG1 mAbs displayed high affinity binding to N1 WI13 in ELISA, with half-
151 maximum binding values (EC₅₀) of 100.7 ng/ml for 12F5, 94.6 ng/ml for 21H8, and 368.2 ng/ml for
152 45D9 (Fig. 2a). For N2 GE18, the EC₅₀ values were 47.6 ng/ml for 12F5, 134.4 ng/ml for 21H8, and 202.8
153 ng/ml for 45D9 (Fig. 2b). These findings confirmed our data collected with the rat IgG isotype mAbs
154 (Fig. S4). We then assessed whether the mAbs were able to inhibit sialidase activity of NA in an
155 enzyme-linked lectin assay (ELLA). While the 1G01 mAb effectively inhibits NA activity by binding
156 directly to the catalytic site¹⁹, no NA inhibiting (NAI) activity of H1N1 or H3N2 was observed for 12F5,
157 21H8, or 45D9 in an enzyme-linked lectin assay (ELLA) (Fig. 2c-d; Fig. S4).

158 *MAbs 12F5, 21H8, and 45D9 bind linear epitopes*

159 The lack of NAI activity by the cross-reactive mAbs is suggestive of binding to an epitope distant from
160 the catalytic site. To elucidate their epitopes, we first assessed the ability of the mAbs to bind
161 denatured NA. 12F5, 21H8, and 45D9 all bound N1 and N2 NAs that were denatured by heat treatment
162 in the presence of sodium dodecyl sulfate and 2-mercaptoethanol (Fig. 3a-b), suggesting that these
163 mAbs bind linear sequences in the NAs. In contrast, the 1G01 mAb, which is known to bind a
164 conformational epitope¹⁹, did not display any binding against denatured NA. As expected, an antibody
165 recognizing the linear strep tag displayed high reactivity against denatured NA.

166 Since all three mAbs bound a linear amino acid sequence within the NAs, we were able to map the
167 epitopes with tiled peptide arrays. Binding of the mAbs to 13- to 15-meric peptides spanning the
168 sequences of N1 (A/New York/18/2009) and N2 (A/Perth/16/2009) with 11 amino acids overlap was
169 assessed by ELISA. 21H8 bound to peptides corresponding to amino acids 446-460 and 450-464 in N1.
170 This mAb was not reactive against the corresponding peptides in N2, but instead bound a peptide
171 corresponding to an adjacent region (433-447) with no shared sequence identity except for two
172 overlapping amino acids (Fig. S5a and S6a). The peptide sequence of N1 corresponds to the lateral
173 interface between the NA protomers and extends towards the carboxy-terminus (C-terminus) on top
174 of the protein (Fig. 3c). The peptide sequence of N2 corresponds to an internal β -strand and a loop at
175 the top of the protein adjacent to the C-terminus (Fig. 3d). 45D9 bound peptides corresponding to
176 amino acids 288-302 and 292-306 (N1), and 289-303 and 293-306 (N2) (Fig. S5c and S6c). These
177 regions map to two beta strands inside the NA head and a surface loop adjacent to the catalytic site

178 (Fig. 3e-f). 12F5 was found to bind a similar region as 45D9 in N1 (amino acids 288-302) and N2 (amino
179 acids 293-306) (Fig. S5b and S6b). The identified peptide sequences are highly conserved within the
180 subtypes and, for the most part of the sequences recognized by 12F5 and 45D9, also between N1 and
181 N2 (Fig. S7). As 45D9 and 12F5 bind to similar epitopes, we continued the characterization with 45D9
182 and 21H8.

183 *MAbs 21H8 and 45D9 induce Fc-mediated effector functions*

184 In the absence of direct neutralizing capacity, anti-NA mAbs may protect through Fc-mediated
185 immune activation. MAbs 21H8 and 45D9 were both able to activate NK cells *in vitro* when bound to
186 N1 or N2 recombinant proteins adsorbed to ELISA plates (Fig. 4a and c). NK cell activation against N2
187 VI75 was higher for 45D9 than for 21H8, whereas 21H8 induced higher activation against N1 CA09,
188 consistent with their respective binding strengths against these NAs in ELISA (Fig. 4b and d). Binding
189 of 21H8 to N1 NA immobilized on beads also effectively induced phagocytosis by THP-1 cells and, in
190 higher concentrations, complement deposition (Fig. 4e-f). 45D9 demonstrated limited binding to N1
191 conjugated to beads (Fig. 4g) and, probably as a result thereof, did not induce phagocytosis or
192 complement activation in these assays as efficiently as 21H8 (Fig. 4e-f). Coupling the NA proteins to
193 the neutravidin beads required their biotinylation. To this end, we incorporated a biotin acceptor
194 peptide (BAP) in the NA constructs and co-expressed these with biotin ligase (BirA), resulting in the in
195 situ site-specific biotinylation of the NAs. This biotinylation process impacted the expression levels of
196 the NA proteins considerably. Consequently, we were unable to recover adequate amounts of the N2
197 NAs to conduct the assays with.

198 *21H8, but not 45D9, protects from IAV infection*

199 To assess whether the mAbs could protect *in vivo*, we prophylactically treated mice with 21H8 or 45D9
200 before challenge with H1N1 or H3N2 IAV. Mice (n = 6 per group) were treated intranasally with 50 µg
201 of the anti-NA hIgG1 21H8 or 45D9, a positive control mAb (N1-C4 NAI mAb²²) for the H1N1 challenge
202 virus, or a negative control irrelevant hIgG1 one day prior to virus challenge. hIgG1 binds mouse Fc
203 receptors with affinities similar to the mouse isotypes³⁴ and effectively induces Fc effector functions
204 in murine effector cells³⁵, indicating that hIgG1 mAbs can be used in mice for the detection of Fc-
205 mediated protection.

206 mAb 21H8 effectively protected mice from H1N1 challenge. Mice that received this antibody prior to
207 infection experienced limited weight loss and survived the challenge (Fig. 5a-b). However, weight loss
208 was somewhat higher than in the mice treated with the positive control NAI mAb (Fig. 5a; table S2).
209 In contrast, 21H8 failed to protect mice from H3N2 infection. These mice all lost weight and died or
210 reached the ethical endpoint at a rate similar to those that received the negative control mAb (Fig. 5c-
211 d). MAb 45D9 provided very limited, if any, protection against either IAV challenge. Most mice that
212 received 45D9 lost weight similar to the negative control treated mice, although a few mice
213 experienced reduced weight loss (Fig. 5a and c; table S2). In addition, three out of six mice treated
214 prophylactically with 45D9 survived in both the H1N1 and H3N2 experiments, compared to one of the
215 negative control-treated mice infected with H1N1 and two in the negative control group infected with
216 H3N2 (Fig. 5b and d).

217 Collectively, these results demonstrate protective efficacy *in vivo* only for mAb 21H8 against H1N1 IAV
218 challenge. 21H8 most likely protects against H1N1 through Fc effector functions but was unable to
219 protect against H3N2 infection. Protective efficacy of 45D9 was very limited against both H1N1 and
220 H3N2, despite its strong NK cell-activating effect particularly when bound to immobilized N2 NA *in*
221 *vitro*.

222 *Protection by 21H8 and 45D9 mAbs correlates with binding to NA on virus or to infected cells*

223 Further investigation into the lack of correlation between *in vitro* Fc effector functions and *in vivo*
224 protection of our mAbs led us to examine their binding to NA in a more biologically relevant context.
225 Whereas both 21H8 and 45D9 demonstrated strong binding by ELISA (Fig. 2a-b) to recombinant NA
226 proteins, which have been confirmed to be well-folded and enzymatically active^{29,36}, binding against
227 NA on IAV particles was much lower (Fig. 6a-b). Consistent with the challenge results, 21H8
228 demonstrated good binding to H1N1 but not to H3N2. Binding of 45D9 was very low against H1N1 and
229 not detectable against H3N2.

230 These observations were confirmed for NA expressed on infected MDCKII cells. 21H8 and 1G01, but
231 not 45D9, were able to bind NA on the surface of H1N1 infected cells (Fig. 6c). Some low reactivity
232 with 45D9 was detected in permeabilized H1N1 infected cells, indicating that this mAb can bind the
233 NA only intracellularly (Fig. S8). 1G01 was able to bind NA on the surface of H3N2 infected cells,
234 indicating the expression and correct folding of the NA. However, no reactivity of our mAbs 21H8 and
235 45D9 was detected against cells infected with this virus (Fig. 6d and Fig. S8).

236 *Fc engineering to modulate Fc effector functions of 21H8*

237 To increase the potency of 21H8 and improve our understanding of the role of Fc effector functions
238 in protection against IAV, we modulated the Fc domain of 21H8 and tested different variants in the
239 H1N1 challenge model. First, we introduced the silencing mutations LALA-PG (L234A, L235A, and
240 P329G) to confirm that 21H8 protects against H1N1 infection solely through Fc effector functions. The
241 LALA-PG mutations eliminate complement binding and interaction with Fcγ receptors of IgG1,
242 resulting in a complete loss of Fc effector functions.³⁷ Second, to determine whether protective
243 efficacy could be improved by enhancing ADCC, we modified the glycosylation of 21H8. The absence
244 of a core fucose on the N-linked glycan at position N297 in the interface between the Fc protomers of
245 IgG1 enhances affinity for activating FcγRs associated with ADCC activity (FcγRIIIa in humans).³⁸ We
246 produced 21H8 with low fucose content (21H8ΔF) by co-expression of GDP-6-deoxy-D-lyxo-4-hexulose
247 reductase (RMD)³⁹ in cells expressing the mAb. Reduced fucose content was confirmed by ELLA using
248 *Aleuria aurantia* lectin (AAL) (Fig S9).

249 The Fc modifications of 21H8 IgG1 had the expected effects on modulating NK cell activation *in vitro*
250 without affecting the binding affinity of the mAbs against recombinant N1 protein (Fig. 7a). 21H8-
251 LALA-PG was unable to activate NK cells, whereas the number of activated (CD107a⁺) NK cells more
252 than doubled with 21H8ΔF compared to the wild type 21H8 with high fucose content (Fig. 7b). The
253 enhancing effect of the modification was even stronger for NK cell activation against the virus
254 particles, to which the mAbs bound only to low levels probably due to low NA content in these
255 preparations (Fig. 7c and d). 21H8ΔF induced phagocytosis to equal levels as the unmodified mAb,
256 while phagocytosis was absent with 21H8-LALA-PG (Fig. S10).

257 After confirming the functional effects of the Fc modifications *in vitro*, we tested the prophylactic
258 efficacy of 21H8ΔF and 21H8-LALA-PG relative to the wild-type, high fucose 21H8 mAb in the H1N1
259 challenge model. For this challenge experiment, we used a lower dose of the mAbs (10 µg instead of
260 50 µg in the experiment in Fig. 5) to discern potential positive effects of reduced fucosylation. The
261 protective efficacy against challenge with H1N1 Bel/09 at either two- or four times the median lethal
262 dose (2LD₅₀ or 4LD₅₀) was reduced significantly for 21H8-LALA-PG (Fig. 8, Table S3), suggesting that
263 21H8 indeed largely depends on Fc-mediated effector functions to mediate protection. However, the
264 LALA-PG mutant retained a low level of protective activity against weight loss, which was significant
265 only in the 2LD₅₀ treated mice. While with both challenge doses all six mice that received the negative

266 control IgG died after six to nine days, one or two mice that received the 21H8-LALA-PG mAb survived
267 the challenge. Mice that received the unmodified 21H8 mAb experienced substantial weight loss, but
268 most survived the challenge except for one mouse that died on day 10 post-challenge with 4LD₅₀
269 Bel/09. Despite its enhanced ability to activate NK cells *in vitro*, 21H8ΔF did not display enhanced
270 protection *in vivo* compared to the unmodified 21H8. Weight loss in mice of both groups was similar,
271 although in the 2LD₅₀ Bel/09 challenge dose setting, the mice treated with 21H8ΔF made a faster
272 recovery when compared to the wild-type antibody. However, more mice died in the groups that
273 received 21H8ΔF, one in the group challenged with 2LD₅₀ and two in the group challenged with 4LD₅₀
274 Bel/09 (Fig. 8).

275 **Discussion**

276 Antibodies, including those targeting NA, are an essential component of immunity against IAV. The
277 discovery of novel broadly protective antibodies may give rise to new antibody-based therapeutics. In
278 addition, based on these antibodies novel conserved antigenic sites may be identified that can aid in
279 the development of broadly reactive vaccine immunogens. Here, we immunized H2L2 transgenic mice
280 with either unconjugated or nanoparticle-conjugated recombinant N1 and N2 NAs to elucidate
281 putative differences in epitope targeting and to discover new antibodies that can recognize both NA
282 subtypes. We identified several antibodies with varying breadth across different N1 and N2 strains,
283 including four that display broad cross-subtype reactivity in ELISA. However, these cross-reactive
284 antibodies appear to preferentially target occluded epitopes, resulting in reduced reactivity with
285 membrane-bound NA, with the exception of mAb 21H8 binding to N1 NA. As a result, only 21H8 was
286 able to protect mice against infection with H1N1, but not H3N2. This protection is mediated through
287 Fc effector functions. We observed that reducing fucosylation of the glycan side chain in the Fc domain
288 of 21H8 greatly enhanced NK cell activation *in vitro*. However, this modification did not improve
289 protection *in vivo*.

290 We previously demonstrated that NA-Mi3 NPs induce higher NA-specific antibody titers than
291 unconjugated NA antigens in Balb/c mice.²⁹ While the overall antibody titers were generally lower in
292 the Harbour H2L2 mice and the difference between NA-NP and unconjugated NA antigens was not
293 significant, we did observe differences in antigen specificity which suggests an altered epitope
294 targeting due to NP conjugation. Specifically, NA-NP induced more antibodies that displayed cross-
295 subtype reactivity, whereas unconjugated NA primarily induced subtype-specific antibodies and
296 antibodies targeting tags on the recombinant NA proteins. Nevertheless, these findings need to be
297 interpreted with caution, as our analysis of antigen specificity was limited to mAbs expressed by
298 hybridomas, which represents the polyclonal response incompletely. A comprehensive
299 characterization of the antibody response through polyclonal epitope mapping using for example
300 electron microscopy⁴⁰ or hydrogen-deuterium exchange mass spectrometry⁴¹ could provide a more
301 in-depth understanding of the changes in epitope targeting resulting from nanoparticle presentation.

302 The isolated mAbs 12F5 and 45D9 bind a linear epitope that is largely conserved between N1 and
303 N2 NAs, resulting in cross-subtype reactivity against N1 and N2 NAs from various strains in ELISA.
304 However, this binding was reduced considerably to NA proteins that were immobilized on a surface in
305 a more defined orientation using a C-terminal peptide tag or biotinylation, as well as to full-length NA
306 on IAV particles or infected cells. Our recombinant NA proteins adopt a closed tetrameric
307 conformation resembling that of full-length membrane-bound NA and display high enzymatic
308 activity²⁹, suggesting that they retain their structural integrity in solution. Yet, the non-specific
309 adsorption of the recombinant NA proteins onto the assay plates in ELISA may have compromised
310 their conformation, leading to the exposure of otherwise occluded epitopes. This could have led to
311 the identification of 21H8 and 45D9 as cross-subtype reactive mAbs, whereas their reactivity seems

312 more restricted when NA is displayed in the native conformation. While 45D9 showed minimal binding
313 to surface-expressed NA, it did exhibit some reactivity to intracellular NA. This might be attributed to
314 the intracellular proteins being in the process of folding. Consistent with the observed lack of binding
315 to surface-expressed NA, 45D9 was unable to protect against IAV challenge in mice.

316 MAb 21H8 also displayed cross-subtype reactivity against N1 and N2, but bound to different linear
317 epitopes on N1 and N2 with very limited shared sequence identity. Since the N1 and N2 reactive
318 sequences are adjacent to each other on the quaternary NA structure, this may indicate a larger
319 antibody footprint with a different binding mode against each subtype. Similar to the epitopes of 12F5
320 and 45D9, the N2 epitope for 21H8 was unavailable for binding in the full-length NA, possibly due to
321 it also being an occluded epitope. On N1, 21H8 binds 2 peptides located closer to the C-terminus when
322 compared to N2. The overlapping peptide sequence shows a three amino acid overlap with the
323 epitope identified for mouse mAb N1-7D3²², with the N1-7D3 mAb binding closer to the highly
324 conserved C-terminus of N1 NA. Whereas N1-7D3 is broadly cross-reactive within the N1 subtype,
325 including NA of pre-2009 H1N1 and avian H5N1, 21H8 binds only to NAs of post-2009 human H1N1
326 viruses.

327 The protective efficacy of 21H8 against a challenge with H1N1 in mice was largely dependent on the
328 engagement of FcγRs, as demonstrated by the greatly reduced protection of the antibody variant
329 harboring the LALA-PG Fc-silencing mutations. In agreement with these observations, the protective
330 efficacy of the previously described mAb N1-7D3 that targets a partially overlapping epitope was
331 dependent on the isotype. N1-7D3 is a mouse IgG1 antibody, which is a subtype known for weak
332 induction of Fc effector functions, and therefore did not protect against IAV infection²², whereas a
333 hIgG1 chimeric version of N1-7D3 did protect¹¹. Similarly, the mAb 3C05, which showed broad
334 reactivity within the N1 subtype and low neutralizing activity *in vitro*, was also dependent on FcR
335 engagement for protection against H1N1.¹⁰

336 Since most activating FcγRs bind IgG with low affinity, the induction of Fc effector functions depends
337 on multivalent interactions stemming from the clustering of IgG molecules on the surface of the virus
338 or infected cells.⁴² The relatively low abundance of NA on these surfaces has been proposed to make
339 NA-targeting antibodies less efficient inducers of Fc effector functions than HA-targeting antibodies.⁴³
340 Aiming to augment the protective efficacy of 21H8, we reduced fucosylation of the N-linked glycan in
341 the Fc domain. hIgG1 lacking the core fucose binds to human FcγRIIIa with higher affinity and thus
342 more potently induces ADCC.³⁸ The effects of the modification on other Fc effector functions like ADCP
343 remain somewhat ambiguous but seem to be limited.⁴⁴ Utilizing a human NK cell line, we confirmed
344 the enhanced NK cell activation by the modified 21H8 mAb (21H8ΔF). Although the mouse orthologs
345 of FcγRIIIa differ considerably from the human receptor, the enhanced stimulation of ADCC by
346 afucosylated human IgG1 has been observed in different species, including mice.⁴⁵⁻⁴⁷

347 The reduced fucosylation of mAb 21H8 did not improve its potency against H1N1 challenge in mice.
348 These findings align with the results of a study by Bournazos *et al.*, which described the effects of
349 several different Fc modifications on the protective efficacy of HA- and NA-targeting antibodies.⁴⁸
350 Enhancement of FcγRIIIa binding augmented the protective efficacy in mice expressing human FcγRs,
351 while modifications promoting binding to FcγRIIIa, including afucosylation, were ineffective.
352 Collectively, our results and those from Bournazos and colleagues suggest that ADCC plays a minor
353 role in antibody-mediated protection against influenza virus compared to other Fc effector functions.
354 This interpretation aligns with observations from He *et al.*, which point towards a pivotal role of
355 alveolar macrophages for antibody-mediated protection against influenza virus in mice, downplaying
356 the role of NK cells.⁴⁹ Nevertheless, in older human adults, NK cell activation and influenza-specific
357 afucosylated antibodies have been demonstrated to correlate with enhanced protection.⁵⁰ More

358 studies are needed to further explore the importance of Fc effector functions in protection against
359 IAV and of strategies to enhance the protective efficacy of non-neutralizing mAbs.

360 **Acknowledgements**

361 The authors would like to thank Rory de Vries and Nella Nieuwkoop from Erasmus Medical Center,
362 Rotterdam, and Puck van Kasteren, Anke Lakerveld, and Anne Gelderloos from the Rijksinstituut voor
363 Volksgezondheid en Milieu (RIVM), Bilthoven for generous exchange of materials and technical advice.
364 The authors are also grateful for the support of Richard Wubbolts from the Center for Cell Imaging
365 (CCI) of the Faculty of Veterinary Medicine at Utrecht University. This study was done within the
366 framework of the research program of the Netherlands Centre for One Health (www.ncoh.nl) and co-
367 funded by the PPP Allowance made available by Health~Holland (Grant no. LSHM19136), Top Sector
368 Life Sciences & Health, to stimulate public-private partnerships. The following reagents were obtained
369 through BEI Resources, NIAID, NIH: influenza virus peptide arrays A/New York/18/2009 (H1N1) (NR-
370 19249) and A/Perth/16/2009 (H3N2) (NR-19267). M.B., H.C., and C.A.M.d.H. were supported by the
371 ENDFLU project that received funding from the European Union's Horizon 2020 research and
372 innovation program under grant agreement No. 874650.

373 **Competing interests**

374 D.D., R.H., and F.G. are employees of Harbour Biomed and hold company shares. The remaining
375 authors declare no competing interests.

376 **Materials and Methods**

377 *NA gene construct design*

378 Human codon-optimized cDNA (Genscript, USA) encoding the NA ectodomains of
379 A/Wisconsin/09/2013 (H1N1) (GenBank accession no. AGV29183.1; referred to as N1 WI13),
380 A/California/04/2009 (H1N1) (GenBank: ACP41107.1; N1 CA09), A/Hunan/795/2002 (H5N1)
381 (GenBank: BAM85820.1; N1 HU02), A/Puerto Rico/8/34 (H1N1) (GenBank: AAM75160.1; N1 PR8),
382 A/Kentucky/UR06-0258/2007 (H1N1) (GenBank: CY028165.1; N1 KY07), A/Germany/7830/2018
383 (H3N2) (GenBank: QBH71200.1; N2 GE18), A/Netherlands/063/2011(H3N2) (GenBank: AFH00706.1;
384 N2 PE09), A/Netherlands/213/2003(H3N2) (GenBank: AFN11848.1; N2 FU02),
385 A/Netherlands/179/1993(H3N2) (GenBank: AFG72375.1; N2 BE92), A/Bilthoven/1761/1976(H3N2)
386 (GenBank: AFG99020.1; N2 VI75), A/Hong Kong/1968 (H3N2) (GenBank: ABQ97206.1; N2 HK68) were
387 cloned into pFRT expression plasmids (Thermo Fisher Scientific) as previously described.^{30,51} The NA
388 ectodomain sequences were preceded by sequences encoding the signal peptide derived from
389 Gaussia luciferase, a Twin-Strep-tag for affinity purification (IBA), and the Tetrabrachion
390 tetramerization domain (similarly as described previously^{30,51}). A RSV G ectodomain-encoding
391 sequence⁵² was cloned in the same pFRT vector. The plasmids encoding N1 WI13 and N2 GE18
392 additionally contained the sequence encoding the SpyTag preceding the Strep tag sequence (as
393 recently described²⁹).

394 *Protein expression and purification*

395 Proteins were expressed in FreeStyle 293-F cells (Gibco) that were maintained in Freestyle 293
396 Expression Medium (Gibco) at 37°C with 8% CO₂ with shaking at 130 rpm. Plasmids encoding the
397 proteins were transfected into the cells using polyethyleneimine (PEI) in a 1:3 ratio (μg DNA:μg PEI).
398 After 24 hours Peptone Primatone RL (Sigma-Aldrich) and valproic acid (Sigma) were added to final
399 concentrations of 0.5% and 2,25 mM, respectively. Cells were then incubated for a further 3-4 days
400 until viability fell below 80%. Cell supernatant was harvested by centrifugation and then incubated

401 with Biolock (IBA) for 20 minutes before StrepTactin Sepharose resin (IBA) was added. After overnight
402 incubation at 4°C the proteins were purified on Poly-Prep chromatography columns (BioRad)
403 according to instructions of the manufacturers of the affinity resins. Proteins were eluted from the
404 resin using D(+)Biotin (Roth). Proteins were analyzed for correct size and purity by sodium dodecyl
405 sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% gel and under reducing conditions,
406 stained with GelCode Blue Stain Reagent (Thermo Scientific).

407 *Nanoparticle expression, purification, and NA-NP assembly*

408 Mi3 and lumazine synthase were expressed in BL21 cells (Novagen) from the pET28a-C-tag-
409 SpyCatcher-Mi3 (Addgene #112255) and pET15b-StrepTag-SpyCatcher-LS (Novagen) plasmids. Cells
410 transformed with these plasmids were grown at 37°C in LB medium until they reached log phase (OD₆₀₀
411 ~0.8) and then expression was induced by adding isopropyl-β-d-thiogalactopyranoside (IPTG; GIBCO
412 BRL) to a final concentration of 0.5 mM. Cultures were incubated for 16 hours at 22°C, then pelleted
413 and resuspended in lysis buffer (50mM HEPES, 150mM NaCl, 0.1% Triton X-100, 0.1 mg/mL Lysozyme,
414 cComplete Protease Inhibitor (Roche)). Samples were then sonicated on ice in four rounds of 30
415 seconds. Debris was removed by ultracentrifugation and supernatant was incubated overnight with
416 CaptureSelect C-Tag affinity matrix (Thermo Scientific; Mi3 purification) or StrepTactin Sepharose
417 resin (IBA; LS purification). Nanoparticles were purified according to manufacturer's instructions.
418 Proteins were analyzed on 12% SDS-PAGE gel with GelCode Blue (Thermo Scientific). NA-NP
419 nanoparticles were assembled by co-incubation of SpyTag-NA and SpyCatcher-NP in 50 mM HEPES
420 and 150 mM NaCl pH 7.4 For 16 hours at room temperature. Conjugation of NA to the nanoparticles
421 was confirmed with SDS-PAGE on a 12% gel under reducing conditions, stained with GelCode Blue
422 (Thermo Scientific).

423 *Generation of mAbs*

424 Harbour H2L2 transgenic mice (www.harbourbiomed.com) were immunized with six doses of 25 µg
425 purified recombinant NA proteins per mouse in two-week intervals. One group received a mix of
426 unconjugated N1 WI13 and N2 GE18 proteins and the other group received the N1 and N2 proteins
427 conjugated to nanoparticles. For NA-NP vaccination we alternated between NA-Mi3 and NA-LS
428 immunizations. The first immunization was prepared with Stimune Adjuvant (Prionics) according to
429 manufacturer's instructions and the booster immunizations were prepared with Ribi (Sigma) adjuvant.
430 Immunizations were administered subcutaneously in the left and right groin (50 µl each) and
431 intraperitoneally (100 µl). Four days after the last injection, spleen and lymph nodes were harvested
432 and hybridomas were generated as described previously.⁵³ Hybridoma supernatants were screened
433 for reactivity against the NA antigens and negatively selected for reactivity against RSV G containing
434 the same tetramerization domain and tags in ELISA. Antibodies from the hybridomas selected for
435 further development were subcloned and produced in small scale (as described⁵⁴) for further analysis
436 in ELISA, MUNANA, and infection neutralization assays. The mouse immunization experiments were
437 done under the animal permit 2010806, approved by the Dutch central committee for animal
438 experiments.

439 *Production of human monoclonal antibodies*

440 For recombinant mAb production, the genes encoding the heavy and light chain variable regions were
441 sequenced (sequences are available on request). Human codon-optimized cDNA (Genscript, USA)
442 encoding these regions was cloned into pCAGGS expression plasmids containing the human IgG1
443 heavy chain and Ig kappa light chain constant regions.⁵⁵ Recombinant hIgG1 12F5, 21H8, 45D9, 1G01¹⁹,
444 and isotype control (anti-RSV-F mAb Palivizumab⁵⁶) were produced in HEK293 FreeStyle 293-F cells

445 (Gibco) following transfection with pairs of the IgG1 heavy and light chain expression plasmids similar
446 as described above for production of recombinant NA proteins. Antibodies were purified from the cell
447 culture supernatants using Protein-A resin (GE Healthcare) according to manufacturer's instructions.
448 The antibodies were eluted using 0.1 M citric acid at pH 3.0 and neutralized using 1 M Tris-HCl at pH
449 8.8.

450 *Viruses*

451 Mouse-adapted A/Belgium/1/2009 (H1N1; referred to as Bel/09) and A/Victoria/3/75 (H3N2 in the
452 genetic background of PR8; referred to as X47) virus strains were used in mouse challenge
453 experiments. These virus strains were amplified on Madin-Darby canine kidney (MDCK) cells in serum-
454 free Dulbecco's Modified Eagle medium (DMEM) supplemented with non-essential amino acids, 2 mM
455 L-glutamine and 0.4 mM sodium pyruvate in the presence of 2 µg/mL TPCK-treated trypsin (Sigma) at
456 37 °C in 5% CO₂. Ninety-six hours after virus inoculation, the culture medium was collected, cell debris
457 was removed by centrifugation for 10 min at 2500 rcf at 4°C, and the virus was pelleted from the
458 supernatants by overnight centrifugation at 30,000 rcf at 4°C. The pellet was resuspended in cold
459 sterile 20% glycerol in PBS, aliquoted and stored at -80°C until used.

460 A/Netherlands/602/2009 (H1N1; referred to as H1N1pdm09), A/Perth/16/2009 (H3N2; referred to as
461 PE09), A/Bilthoven/1761/1976 (H3N2 in the genetic background of A/Puerto Rico/8/34/Mount Sinai;
462 referred to as VI75) were used in *in vitro* assays. The virus strains were amplified on Madin-Darby
463 canine kidney (MDCK) cells in Opti-MEM reduced serum medium in the presence of 1 µg/mL TPCK-
464 treated trypsin (Sigma) at 37 °C in 5% CO₂. 48-72 hours after virus inoculation, the cell culture medium
465 was collected, cell debris was removed by centrifugation for 10 min at 2500 rcf at 4°C. Supernatants
466 containing the virus were aliquoted and stored at -80°C until used. For use in ELISA or NK cell
467 activation assays, the virus stocks were further purified by incubation with Capto Core 700 (Cytiva)
468 and concentrated using centrifugal filter units (Amicon) following manufacturer's instructions.

469 *Enzyme-Linked Immunosorbent Assay*

470 Antibody binding to NA and RSV G was determined by Enzyme-Linked Immunosorbent Assay (ELISA).
471 NUNC MaxiSorp plates (Thermo Scientific) were coated with recombinant proteins or virus stocks
472 diluted in PBS with calcium and magnesium, and incubated overnight at 4°C. The plates were washed
473 three times with PBS + 0.05% Tween-20 and blocked for one hour with 3% bovine serum albumin and
474 0.1% Tween-20 in PBS. Serum samples, hybridoma supernatants, or purified recombinant mAbs were
475 serially diluted in blocking buffer, added to the plates, and incubated for two hours at room
476 temperature. After incubation, the plates were washed four times and then incubated for 1 hour with
477 secondary antibodies diluted in blocking buffer; for serum samples and hybridoma supernatants a mix
478 of HRP-conjugated anti-rat antibodies (IgG1; IgG2B; IgG2C) (Absea Biotechnology) was used, and for
479 human hIgG1 we used rabbit-anti-human-HRP (Dako). To control for the antigen coating levels,
480 separate wells were incubated with StrepMAB-classic HRP Conjugate (IBA) for one hour. Plates were
481 then washed three times and incubated with TMB (BioFX) for 3-5 minutes before stopping the reaction
482 with H₂SO₄. Read-out was performed using BioSPX 800 TS Microplate reader (BioTek) at 450 nm.
483 Where indicated, values were corrected for the antigen coating levels as determined based on the
484 StrepMAB values.

485 *NA peptide array analysis*

486 We determined the linear epitopes of the mAbs with an ELISA-based peptide array analysis. The
487 peptide arrays were derived from A/New York/18/2009 (H1N1) (NR-19249; BEI Resources) and
488 A/Perth/16/2009 (H3N2) (NR-19267; BEI Resources) and contained 13- to 15-meric peptides with 11

489 amino acids overlap spanning the whole NA sequences. We combined peptides into vertical and
490 horizontal pools (Table S1) and coated them in MaxiSorp plates (Thermo Scientific) to perform ELISAs
491 with the mAbs similar to described above. From the combined reactivity in the vertical and horizontal
492 pools we delineated the reactive peptides and confirmed the results by ELISA assays against the single
493 peptides using a dilution range of the mAbs.

494 *MUNANA NA inhibition assay*

495 To measure the ability of the mAbs to inhibit NA activity, we used a MUNANA assay, in which NA
496 hydrolyzes the substrate 2'-(4-methylumbelliferyl)- α -d-N-acetylneurameric acid (MUNANA; Sigma-
497 Aldrich) to the fluorescent 4-methylumbelliferon (4-MU).⁵⁷ Since it uses a small molecule substrate,
498 inhibition is only observed with antibodies that directly target the NA catalytic site. The mAbs were
499 serially diluted in NA reaction buffer (50 mM Tris-HCl, 4 mM CaCl₂, pH 6.0) in a flat-bottom 96-well
500 black plate (Greiner Bio-One). An equal volume of H1N1 or H3N2 virus (corresponding to 80%
501 maximum activity in MUNANA assay) diluted in the same buffer was added to each well and the plates
502 were incubated for 30 min at RT. After incubation of virus with the mAbs, reaction buffer containing
503 200 μ M MUNANA was added to each well and the plate was incubated at 37°C for one hour. The
504 reaction was terminated by adding the stop solution (0.1 M glycine, 25% ethanol, 0.1% Triton-X100
505 pH 10.7). Fluorescence was measured immediately after stopping the reaction using Promega GloMax
506 Explorer with excitation filter 365 nm and emission filter 415-445 nm.

507 *NA inhibition in ELLA*

508 The Enzyme-Linked Lectin Assay (ELLA) was used to measure the ability of the mAbs to inhibit NA
509 sialidase activity against a large substrate. Fetuin (Sigma) was coated in wells of MaxiSorp plates
510 (Thermo Scientific) and incubated overnight at 4°C. The plates were then washed three times with PBS
511 containing 0.05% Tween-20 (PBS-T) and blocked with 3% BSA for 1 hour. MAbs were serially diluted
512 in NA reaction buffer (50 mM Tris-HCl, 4 mM CaCl₂, pH 6.0) and mixed with an equal volume of the
513 H1N1 or H3N2 IAV viruses (diluted to concentrations corresponding to 80% maximum activity in ELLA
514 assay). The mAb/virus mixture was incubated for 30 min at RT, transferred to the fetuin-coated plates,
515 and incubated for 4 hours at 37°C. The plates were then washed three times with PBS-T and incubated
516 for 1 h with PNA-biotin (1:750 in PBS + 1% BSA). The plates were again washed three times with PBS-
517 T and incubated for 1 h with streptavidin-HRP (1:1000 in PBS + 1% BSA) After three washes with PBS-
518 T, TMB substrate was added, and the plates were incubated for 3-5 min before the reaction was
519 stopped by the addition of H₂SO₄. Absorbance was measured using BioSPX 800 TS Microplate reader
520 (BioTek) at 450 nm.

521 *Virus neutralization assays*

522 Virus neutralization was assessed using a luciferase reporter assay. HeLa R19 cells were seeded in 96
523 well plates (10⁴ cells/well). Cells were transfected the next day with the pHH-Gluc luciferase reporter
524 plasmid⁵⁸, using FuGENE transfection reagent (Promega) according to manufacturer's instructions.
525 The pHH-Gluc plasmid contains the gaussian luciferase gene, flanked by 3' and 5' untranslated regions
526 of the IAV NP genome segment, under control of the RNA polymerase I promoter in negative sense
527 orientation. Generation of luciferase-encoding mRNAs and thus of luciferase protein is only observed
528 after infection of transected cells with IAV. After a further 24 hour incubation at 37°C and 5% CO₂,
529 mAbs were serially diluted in Opti-MEM in a 96 well plate. H1N1 or H3N2 virus was diluted to a
530 concentration corresponding to 90% maximum signal and added to the mAbs. Virus-mAb mixture was
531 incubated for 15 min and meanwhile the luciferase-transfected cells were washed with PBS. The virus-
532 mAb mixture was transferred to the cells and incubated for 16 hours at 37°C and 5% CO₂.

533 *NK cell activation assay*

534 To assess the ability of the mAbs to induce NK cell activation, we coated plates with NA (recombinant
535 protein or virus), allowed the mAbs to bind the antigens, then incubated the NK cells and measured
536 CD107a in flow cytometry as a measure of activation.⁵⁹ Recombinant soluble NA proteins or purified
537 virus stocks were diluted in PBS with calcium and magnesium and incubated in MaxiSorp plates
538 (Thermo Scientific) overnight at 4°C. The plates were washed with PBS and blocked for 30 minutes at
539 37°C with 5% BSA in PBS. MAbs were serially diluted in PBS with 1% BSA, added to the plates, and
540 incubated for 1h at RT. NK92 cells were diluted to 10⁶ cells/ml in OptiMEM reduced serum medium
541 (Gibco) supplemented with 1x Protein Transport Inhibitor Cocktail (Invitrogen) and V450 mouse anti-
542 human CD107a (BD Biosciences; 1:400). Plates were washed with PBS and 100 µl of the cell suspension
543 was added per well. Cells were incubated in the plates for 5 hours at 37°C with 5% CO₂. After 5 hours,
544 the cells were washed and stained for flow cytometry with PE mouse anti-human CD56 (BD
545 Biosciences; 1:100) and LIVE/DEAD Fixable Near IR (876) stain (Invitrogen; 1:1000) diluted in FACS
546 buffer (PBS with 0.05% BSA and 0.02% NaN₃). The cells were incubated at 4°C for 45 min, then washed,
547 fixed with 3% paraformaldehyde for 10 min, and resuspended in FACS buffer. Measurements were
548 performed on a BC CytoFLEX LX (BD Biosciences) and results were analyzed using FlowJo. Events were
549 gated on single, viable and CD56 positive cells, and the percentage of CD107a positive cells was
550 determined within this population.

551 *Complement deposition assay*

552 The ability of the mAbs to induce complement activation was measured as the deposition of the C3b
553 complement protein on NA-coated microspheres.⁶⁰ Biotinylated NA proteins were conjugated to
554 neutravidin-labelled FluoSpheres 580/605 (Invitrogen) in a 1:1 ratio (µg antigen:µl microspheres) by
555 overnight incubation at 4°C while shaking. The microspheres were washed with 2% BSA in PBS and
556 resuspended in PBS with 0.1% BSA. 10⁶ microspheres were added per well to a 96-well plate containing
557 serial dilutions of the mAbs and incubated for 2h at 37°C to form immune complexes. The immune
558 complexes were then either incubated with anti-human IgG Alexa Fluor 647 (Invitrogen; 1:400,
559 incubated for 1h at 4°C) to determine the antibody binding levels or guinea pig complement (Sigma;
560 1:25, incubated for 15 min at 37°C) followed by washing in FACS buffer and labelling with FITC goat
561 anti-guinea pig complement C3 (MP Biomedicals; 1:100, incubated for 30 min at 4°C). The
562 microspheres were washed twice with PBS, fixed with 3% paraformaldehyde for 15 min at RT, washed
563 again, and resuspended in FACS buffer. Acquisition was performed on a BC CytoFLEX LX (BD
564 Biosciences). Events were gated on single microspheres and the median fluorescence intensity of the
565 FITC (C3 binding) or Alexa Fluor 647 (antibody binding) signals was determined as a final readout.

566 *Phagocytosis assay*

567 Phagocytosis induced by mAb binding was assessed by determining phagocytic uptake of
568 microsphere-based immune complexes by THP-1 cells, a human monocyte cell line. Immune
569 complexes were prepared as described above for the complement deposition assay. Then, 5x10⁴ THP-
570 1 cells in RPMI-1640 (ADCC) were added to each well and the cells were incubated with the immune
571 complexes for 1h at 37°C and 5% CO₂. All plates were washed twice with PBS and fixed with 3%
572 paraformaldehyde for 15 min at RT. Then, the beads were washed and resuspended in FACS buffer.
573 Acquisition was performed on a BC CytoFLEX LX (BD Biosciences). Events were gated for single cells
574 and cells containing the fluorescent microspheres (% beads⁺ cells). The median fluorescence intensity
575 of the beads in the beads positive cell population was determined (gMFI (beads⁺ cells)). A phagoscoring
576 was calculated with the following equation:

577
$$\text{Phagoscoring} = \frac{\text{gMFI (beads+ cells)} \times (\% \text{ beads+ cells})}{10.000}$$

578 *In vivo challenge studies*

579 Six- to 8-week-old female BALB/c mice (Charles River) were housed under specific-pathogen-free
580 conditions with food and water *ad libitum*. One day prior to virus challenge, mice were treated with
581 mAbs by intranasal administration. The day after, mice were weighed to obtain baseline
582 measurements, before being challenged with a 2LD₅₀ or 4LD₅₀ dose of mouse-adapted Bel/09 or X47
583 virus. Influenza virus inoculations were performed under sedation with a mixture of ketamine
584 (Eurovet, Netamik, 10 mg/kg) and xylazine (Bayer, Rompun, 60 mg/kg) administered intraperitoneal,
585 and a total of 50 µl was instilled equally into the nostrils of the mouse. After infection, the body weight
586 of the mice was determined daily for two weeks. Animals that had lost ≥25% of their original body
587 weight were humanely euthanized by cervical dislocation. The mouse challenge experiments were
588 conducted according to the Belgian legislation (Belgian Law 14/08/1986 and Belgium Royal Decree
589 06/04/2010) and European legislation on protection of animals used for scientific purposes (EU
590 directives 2010/63/EU and 86/609/EEC). Experimental protocols were all approved by the Ethics
591 Committee of the Vlaams Instituut voor Biotechnologie (VIB), Ghent University, Faculty of Science
592 (permit numbers EC2021-032 and EC2022-104).

593 Statistical analysis

594 Relative body weights, expressed as a percentage of baseline body weight on the day of infection,
595 were calculated for each mouse at various time points post-infection (days 1-14; dpi). These data were
596 presented using GraphPad version 8.00, with a mean (n=6) and error bar (s.e.m) displayed for each
597 group at each time point.

598 Relative body weights were analyzed as repeated measurements using the method of residual
599 maximum likelihood (REML) as implemented in Genstat v22 (VSN International). Briefly, a linear mixed
600 model with treatment, time and the treatment × time interaction as fixed terms, and the mouse ×
601 time interaction term set as random term, was fitted to data. The term mouse × time represents the
602 residual error term with dependent errors because the repeated measurements are taken of the same
603 mouse, causing correlations among observations. The autoregressive correlation model of order 1
604 (AR1) with times of measurement set at equal intervals, was selected as the best-fitted model based
605 on Akaike's information criterion coefficient. The AR1 covariance model assumes that the correlation
606 between observations decays as the measurements are collected further apart in time. The first order
607 refers to the fact that recent (t-1) observations affect the current observations made at timepoint t.
608 Additional options selected to get a best-fitting model included an allowance of unequal variances
609 across time. The significance of the fixed terms in the model and the significance of changes in the
610 difference between treatment effects over time were assessed using an approximate F-test as
611 implemented in Genstat v22 (VSN International).

612 Mice that had lost ≥25% body weight were considered as death events at the measuring time point.
613 Survival data were fit into the survival table format in GraphPad version 8.00. Differences in survival
614 were determined using the Mantel-Cox log-rank test.

615 *Immunofluorescence imaging*

616 To determine binding of the mAbs to full-length, membrane-bound NA, we infected MDCK cells,
617 stained with the mAbs, and imaged using confocal microscopy. MDCK cells were seeded in 18-well
618 glass-bottom chambers (Ibidi) and incubated at 37°C and 5% CO₂. After 24 hours the cells were
619 infected with H1N1pdm09 or H3N2 VI75 viruses in OptiMEM. Cells were incubated for 8 hours at 37°C
620 and 5% CO₂, then washed with PBS and fixed with 4% paraformaldehyde in PBS for 20 minutes at RT.
621 Cells were then washed three times with PBS containing 10 mM glycine, blocked with 2% BSA in PBS

622 for 30 minutes, and washed again with PBS containing 10 mM glycine. Cells were stained with the NA
623 mAbs at 10 µg/ml, followed by goat anti-human IgG AlexaFluor 488 (Invitrogen), both for 1 hour at RT.
624 Then, cells were stained with anti-influenza nucleoprotein monoclonal antibody (HB65) harvested
625 from hybridoma H16-L10-4R5 (ATCC), followed by donkey anti-mouse IgG Alexa Fluor 647 (Invitrogen).
626 Nuclei were labelled with DAPI (Invitrogen). Cells were washed in between staining steps and after
627 the last incubation and imaging buffer was added (2x SSC buffer with 10mM Tris (pH = 8), 0,4% glucose
628 (w/v) supplemented with glucose oxidase (Sigma-Aldrich) and catalase (Sigma-Aldrich)). For
629 intracellular staining of NA, cells were permeabilized by incubation with 0.2% Triton X-100 in PBS for
630 5 minutes prior to the incubation with the NA mAbs. For surface staining of NA, the permeabilization
631 was performed right before addition of the anti-nucleoprotein mAb. Imaging was performed using the
632 Olympus SpinSR spinning disc system with SoRa disk and a 60x oil immersion 1.5NA objective with
633 additional 3.2x magnification. Images were analyzed using Fiji ImageJ.

634 **References**

635 1. Andrews, S. F. *et al.* Immune history profoundly affects broadly protective B cell responses to
636 influenza. *Science Translational Medicine* **7**, 316ra192-316ra192 (2015).

637 2. Nachbagauer, R. & Krammer, F. Universal influenza virus vaccines and therapeutic antibodies.
638 *Clinical Microbiology and Infection* **23**, 222–228 (2017).

639 3. Kotey, E. *et al.* Current and Novel Approaches in Influenza Management. *Vaccines* **7**, 53 (2019).

640 4. McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E. & McKimm-Breschkin, J. L. Influenza
641 Virus Neuraminidase Structure and Functions. *Front Microbiol* **10**, 39 (2019).

642 5. Ng, S. *et al.* Novel correlates of protection against pandemic H1N1 influenza A virus infection.
643 *Nat Med* **25**, 962–967 (2019).

644 6. Memoli, M. J. *et al.* Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as
645 Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. *mBio* **7**,
646 e00417-00416 (2016).

647 7. Couch, R. B. *et al.* Antibody correlates and predictors of immunity to naturally occurring
648 influenza in humans and the importance of antibody to the neuraminidase. *J Infect Dis* **207**, 974–
649 981 (2013).

650 8. Monto, A. S. *et al.* Antibody to Influenza Virus Neuraminidase: An Independent Correlate of
651 Protection. *The Journal of Infectious Diseases* **212**, 1191–1199 (2015).

652 9. Maier, H. E. *et al.* Pre-existing Antineuraminidase Antibodies Are Associated With Shortened
653 Duration of Influenza A(H1N1)pdm Virus Shedding and Illness in Naturally Infected Adults.
654 *Clinical Infectious Diseases* **70**, 2290–2297 (2020).

655 10. DiLillo, D. J., Palese, P., Wilson, P. C. & Ravetch, J. V. Broadly neutralizing anti-influenza
656 antibodies require Fc receptor engagement for in vivo protection. *J Clin Invest* **126**, 605–610
657 (2016).

658 11. Job, E. R. *et al.* Fcγ Receptors Contribute to the Antiviral Properties of Influenza Virus
659 Neuraminidase-Specific Antibodies. *mBio* **10**, e01667-19 (2019).

660 12. Yasuhara, A. *et al.* Antigenic drift originating from changes to the lateral surface of the
661 neuraminidase head of influenza A virus. *Nat Microbiol* **4**, 1024–1034 (2019).

662 13. Ana-Sosa-Batiz, F. *et al.* Influenza-Specific Antibody-Dependent Phagocytosis. *PLoS One* **11**,
663 e0154461 (2016).

664 14. Vanderven, H. A. & Kent, S. J. The protective potential of Fc-mediated antibody functions against
665 influenza virus and other viral pathogens. *Immunology & Cell Biology* **98**, 253–263 (2020).

666 15. Rattan, A. *et al.* Synergy between the classical and alternative pathways of complement is
667 essential for conferring effective protection against the pandemic influenza A(H1N1) 2009 virus
668 infection. *PLoS Pathog* **13**, e1006248 (2017).

669 16. Pincetic, A. *et al.* Type I and type II Fc receptors regulate innate and adaptive immunity. *Nat*
670 *Immunol* **15**, 707–716 (2014).

671 17. DiLillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk–
672 specific antibodies require FcγR interactions for protection against influenza virus in vivo. *Nat*
673 *Med* **20**, 143–151 (2014).

674 18. Krammer, F. *et al.* NAction! How Can Neuraminidase-Based Immunity Contribute to Better
675 Influenza Virus Vaccines? *mBio* **9**, e02332-17 (2018).

676 19. Stadlbauer, D. *et al.* Broadly protective human antibodies that target the active site of influenza
677 virus neuraminidase. *Science* **366**, 499–504 (2019).

678 20. Yasuhara, A. *et al.* A broadly protective human monoclonal antibody targeting the sialidase
679 activity of influenza A and B virus neuraminidases. *Nat Commun* **13**, 6602 (2022).

680 21. Momont, C. *et al.* A pan-influenza antibody inhibiting neuraminidase via receptor mimicry.
681 *Nature* 1–8 (2023) doi:10.1038/s41586-023-06136-y.

682 22. Job, E. R. *et al.* Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model
683 of Influenza. *Journal of Virology* **92**, e01584-17 (2018).

684 23. Gilchuk, I. M. *et al.* Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies
685 Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. *Cell Host & Microbe* **26**,
686 715-728.e8 (2019).

687 24. Gulati, U. *et al.* Antibody Epitopes on the Neuraminidase of a Recent H3N2 Influenza Virus
688 (A/Memphis/31/98). *Journal of Virology* **76**, 12274–12280 (2002).

689 25. Wan, H. *et al.* Structural characterization of a protective epitope spanning A(H1N1)pdm09
690 influenza virus neuraminidase monomers. *Nat Commun* **6**, 6114 (2015).

691 26. Hansen, L. *et al.* Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus
692 infection broadly inhibit HxN1 viruses in vitro and in vivo. *Immunity* **0**, (2023).

693 27. Lederhofer, J. *et al.* Protective human monoclonal antibodies target conserved sites of
694 vulnerability on the underside of influenza virus neuraminidase. *Immunity* **57**, 574-586.e7
695 (2024).

696 28. Lei, R. *et al.* Leveraging vaccination-induced protective antibodies to define conserved epitopes
697 on influenza N2 neuraminidase. *Immunity* **56**, 2621-2634.e6 (2023).

698 29. Pascha, M. N. *et al.* Nanoparticle display of neuraminidase elicits enhanced antibody responses
699 and protection against influenza A virus challenge. *npj Vaccines* **9**, 1–14 (2024).

700 30. Dai, M. *et al.* Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of
701 Influenza Virus H5N1 Neuraminidase Proteins. *Journal of Virology* **90**, 9457–9470 (2016).

702 31. Pascha, M. N. *et al.* Nanoparticle Display of Neuraminidase Elicits Enhanced Antibody Responses
703 and Protection against Influenza A Virus Challenge in Mice.

704 <https://www.researchsquare.com/article/rs-3579434/v1> (2024) doi:10.21203/rs.3.rs-
705 3579434/v1.

706 32. Bruun, T. U. J., Andersson, A.-M. C., Draper, S. J. & Howarth, M. Engineering a Rugged
707 Nanoscaffold To Enhance Plug-and-Display Vaccination. *ACS Nano* **12**, 8855 (2018).

708 33. Zakeri, B. *et al.* Peptide tag forming a rapid covalent bond to a protein, through engineering a
709 bacterial adhesin. *Proc Natl Acad Sci U S A* **109**, E690-697 (2012).

710 34. Dekkers, G. *et al.* Affinity of human IgG subclasses to mouse Fc gamma receptors. *MAbs* **9**, 767–
711 773 (2017).

712 35. Overdijk, M. B. *et al.* Crosstalk between human IgG isotypes and murine effector cells. *J Immunol*
713 **189**, 3430–3438 (2012).

714 36. Du, W. *et al.* Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1
715 Neuraminidase Contributes to Enzymatic Activity. *Journal of Virology* **92**, 10.1128/jvi.01243-18
716 (2018).

717 37. Lo, M. *et al.* Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce
718 Toxicity in Mice *. *Journal of Biological Chemistry* **292**, 3900–3908 (2017).

719 38. Shields, R. L. *et al.* Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to
720 Human Fc γ RIII and Antibody-dependent Cellular Toxicity *. *Journal of Biological Chemistry* **277**,
721 26733–26740 (2002).

722 39. von Horsten, H. H. *et al.* Production of non-fucosylated antibodies by co-expression of
723 heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. *Glycobiology* **20**, 1607–1618 (2010).

724 40. Bianchi, M. *et al.* Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal
725 Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. *Immunity* **49**, 288-300.e8
726 (2018).

727 41. Ständer, S., R. Grauslund, L., Scarselli, M., Norais, N. & Rand, K. Epitope Mapping of Polyclonal
728 Antibodies by Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS). *Anal. Chem.* **93**,
729 11669–11678 (2021).

730 42. Oostindie, S. C., Lazar, G. A., Schuurman, J. & Parren, P. W. H. I. Avidity in antibody effector
731 functions and biotherapeutic drug design. *Nat Rev Drug Discov* **21**, 715–735 (2022).

732 43. He, W. *et al.* Epitope specificity plays a critical role in regulating antibody-dependent cell-
733 mediated cytotoxicity against influenza A virus. *Proceedings of the National Academy of Sciences*
734 **113**, 11931–11936 (2016).

735 44. Golay, J., Andrea, A. E. & Cattaneo, I. Role of Fc Core Fucosylation in the Effector Function of
736 IgG1 Antibodies. *Frontiers in Immunology* **13**, (2022).

737 45. Hiatt, A. *et al.* Glycan variants of a respiratory syncytial virus antibody with enhanced effector
738 function and in vivo efficacy. *Proc Natl Acad Sci U S A* **111**, 5992–5997 (2014).

739 46. Braster, R. *et al.* Afucosylated IgG Targets FcγRIV for Enhanced Tumor Therapy in Mice. *Cancers*
740 (*Basel*) **13**, 2372 (2021).

741 47. Mao, C., Near, R., Zhong, X. & Gao, W. Cross-species higher sensitivities of FcγRIIIA/FcγRIV to
742 afucosylated IgG for enhanced ADCC. *Antibody Therapeutics* **4**, 159–170 (2021).

743 48. Bournazos, S., Corti, D., Virgin, H. W. & Ravetch, J. V. Fc-optimized antibodies elicit CD8
744 immunity to viral respiratory infection. *Nature* **588**, 485–490 (2020).

745 49. He, W. *et al.* Alveolar macrophages are critical for broadly-reactive antibody-mediated
746 protection against influenza A virus in mice. *Nat Commun* **8**, 846 (2017).

747 50. Boudreau, C. M. *et al.* Antibody-mediated NK cell activation as a correlate of immunity against
748 influenza infection. *Nat Commun* **14**, 5170 (2023).

749 51. Dai, M. *et al.* Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase
750 Reveals Entanglement of Different Phenotypic Characteristics. *mBio* **12**, e00287-21 (2021).

751 52. Widjaja, I. *et al.* Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV)
752 Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV.
753 *J Virol* **90**, 5965–5977 (2016).

754 53. Du, W. *et al.* An ACE2-blocking antibody confers broad neutralization and protection against
755 Omicron and other SARS-CoV-2 variants of concern. *Science Immunology* **7**, eabp9312 (2022).

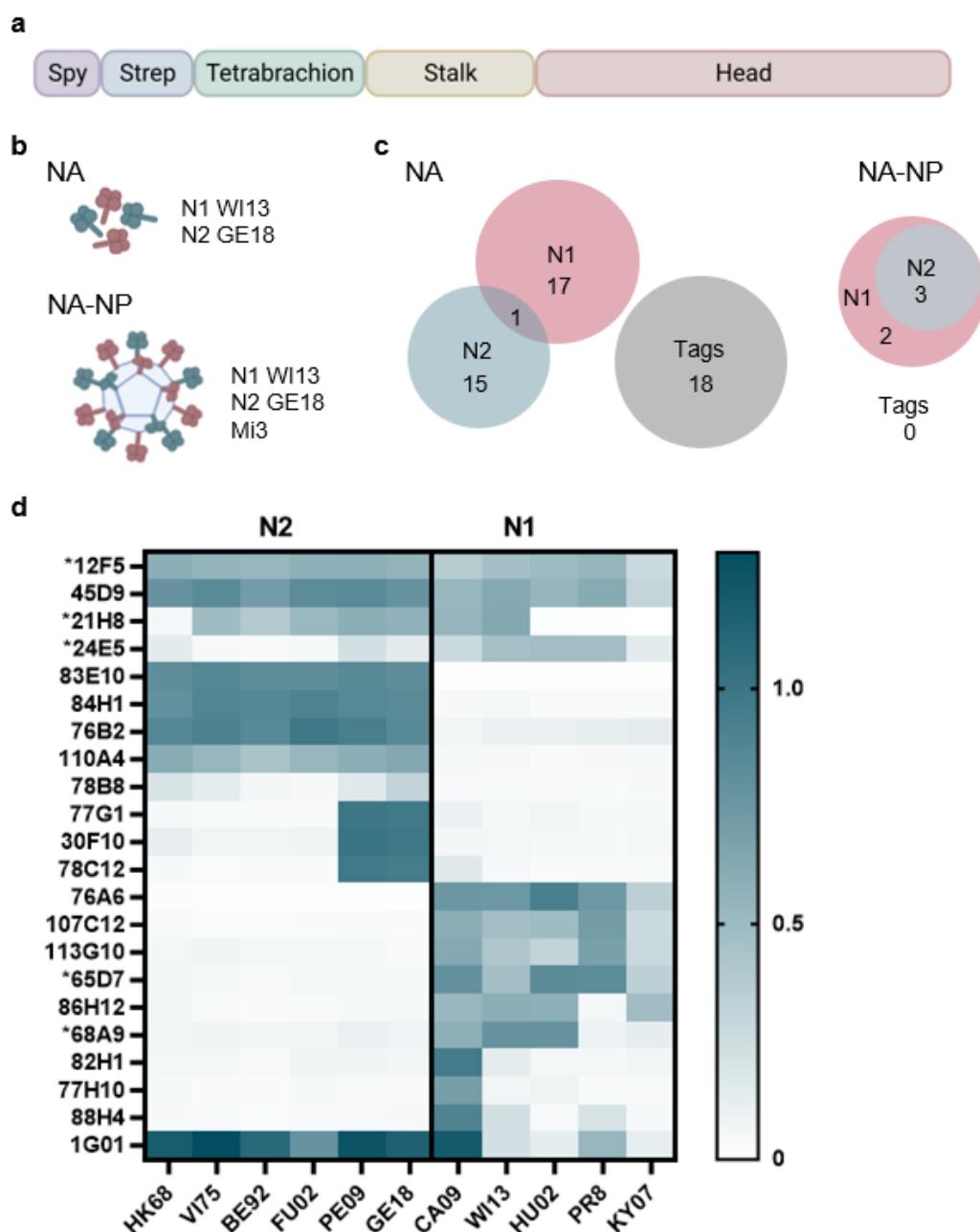
756 54. Wang, C. *et al.* A human monoclonal antibody blocking SARS-CoV-2 infection. *Nat Commun* **11**,
757 2251 (2020).

758 55. Rigter, A. *et al.* A protective and safe intranasal RSV vaccine based on a recombinant prefusion-
759 like form of the F protein bound to bacterium-like particles. *PLoS One* **8**, e71072 (2013).

760 56. Widjaja, I. *et al.* Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad
761 Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like
762 Characteristics. *PLoS One* **10**, e0130829 (2015).

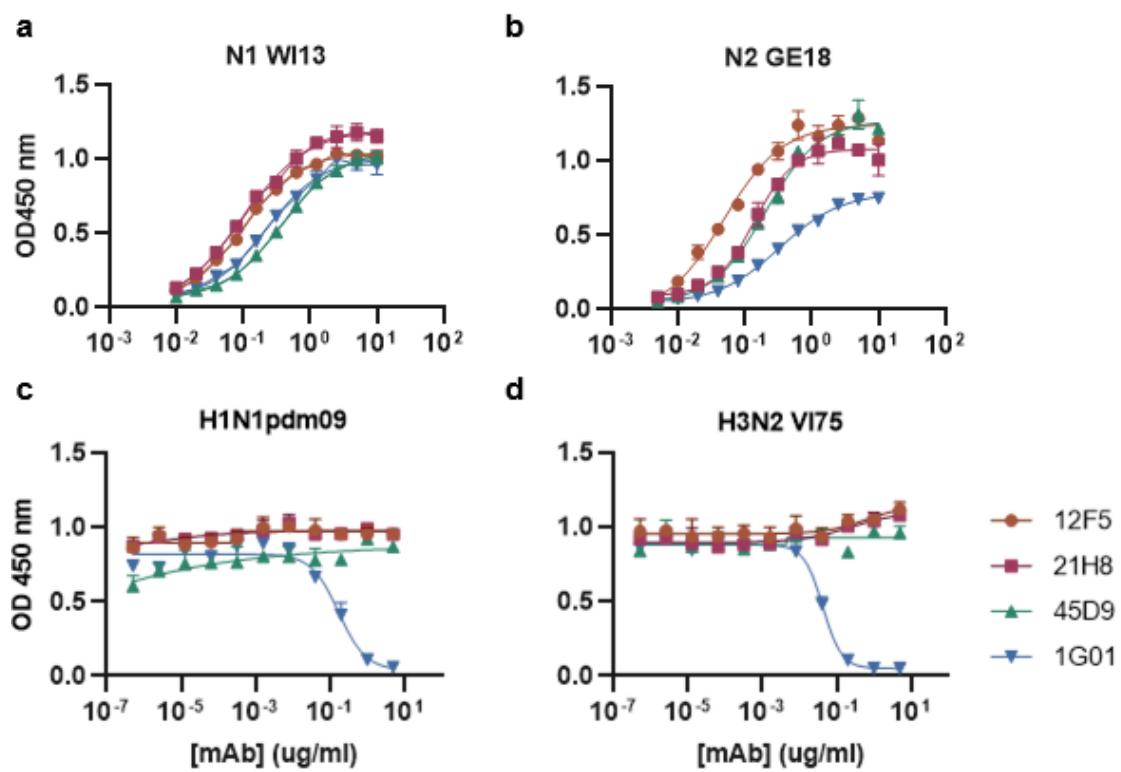
763 57. Potier, M., Mameli, L., Bélisle, M., Dallaire, L. & Melançon, S. B. Fluorometric assay of
764 neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate.
765 *Anal Biochem* **94**, 287–296 (1979).

766 58. de Vries, E. *et al.* Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis
767 as an Alternative Entry Pathway. *PLoS Pathog* **7**, e1001329 (2011).

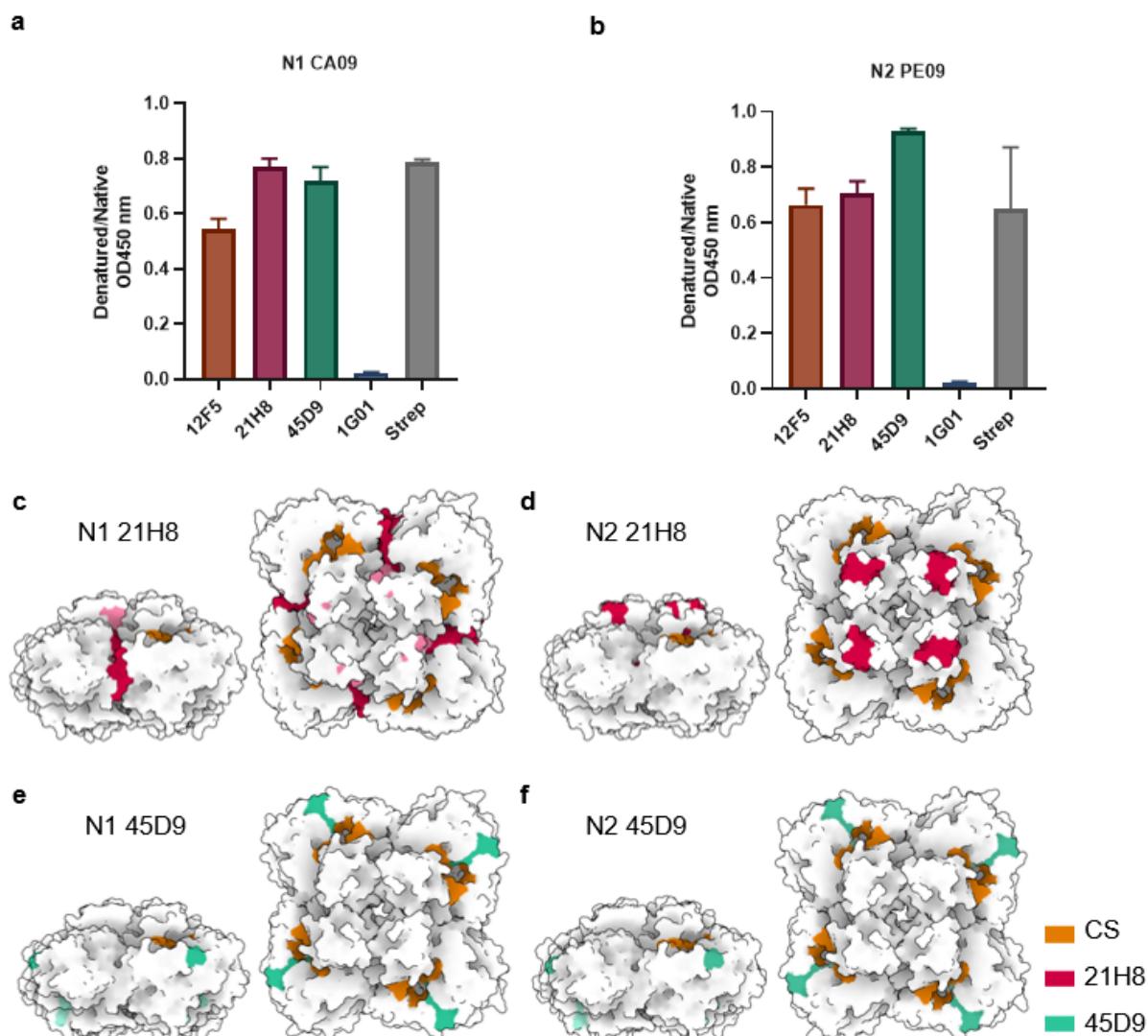

768 59. Jegaskanda, S. *et al.* Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity
769 antibodies in the absence of neutralizing antibodies. *J Immunol* **190**, 1837–1848 (2013).

770 60. Fischinger, S. *et al.* A high-throughput, bead-based, antigen-specific assay to assess the ability of
771 antibodies to induce complement activation. *J Immunol Methods* **473**, 112630 (2019).

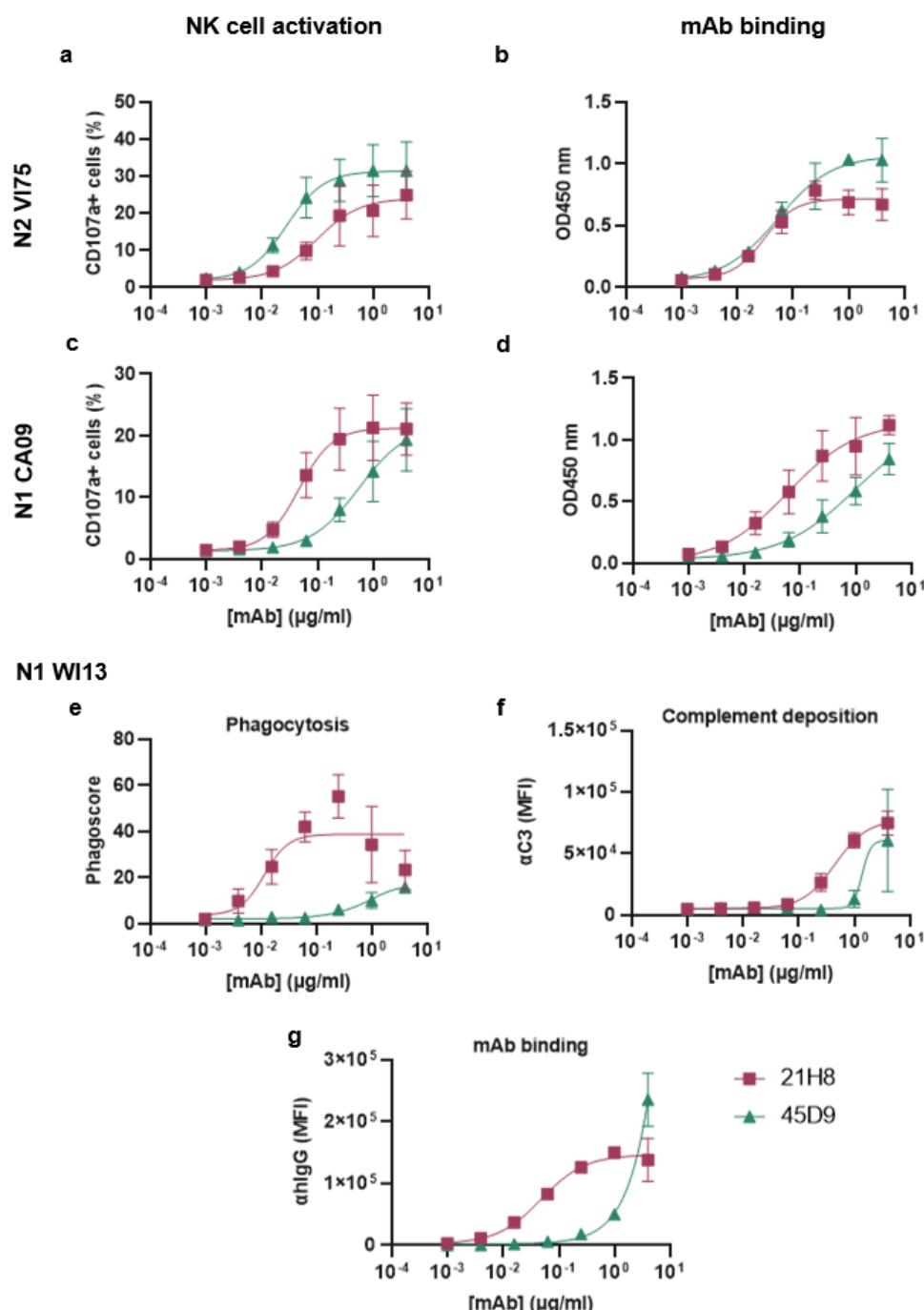
772


773

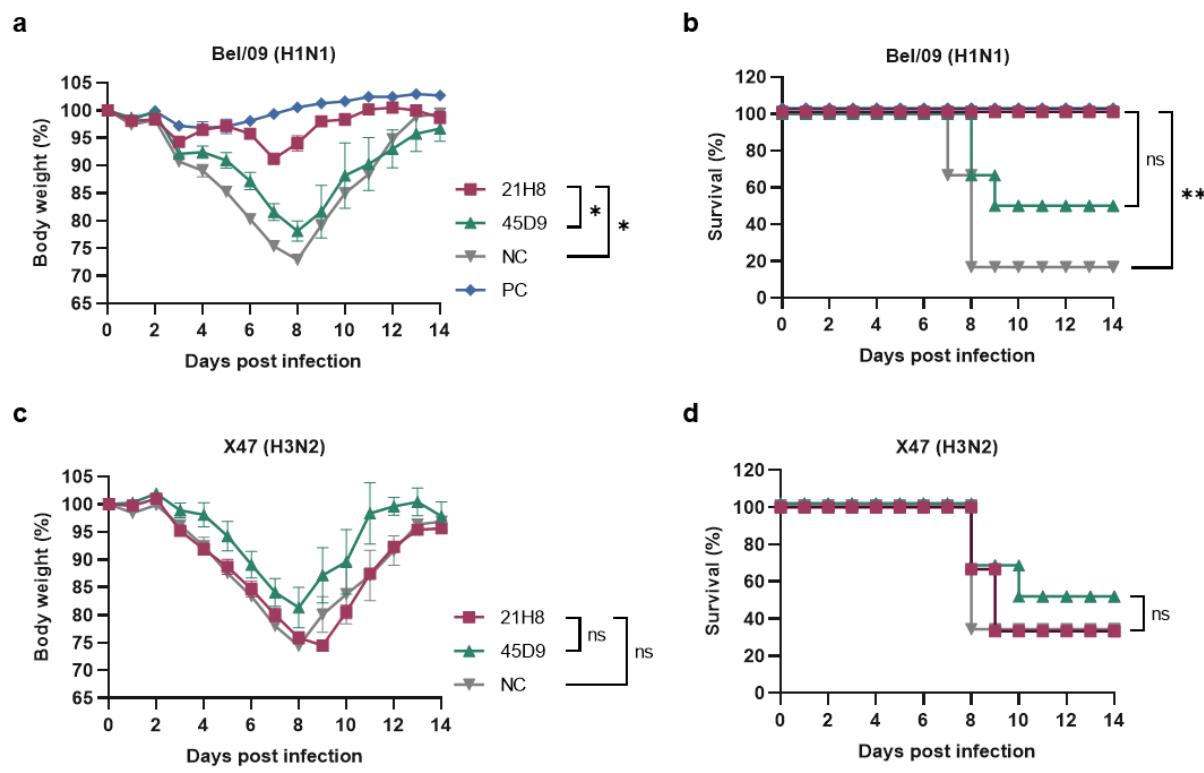
774


775

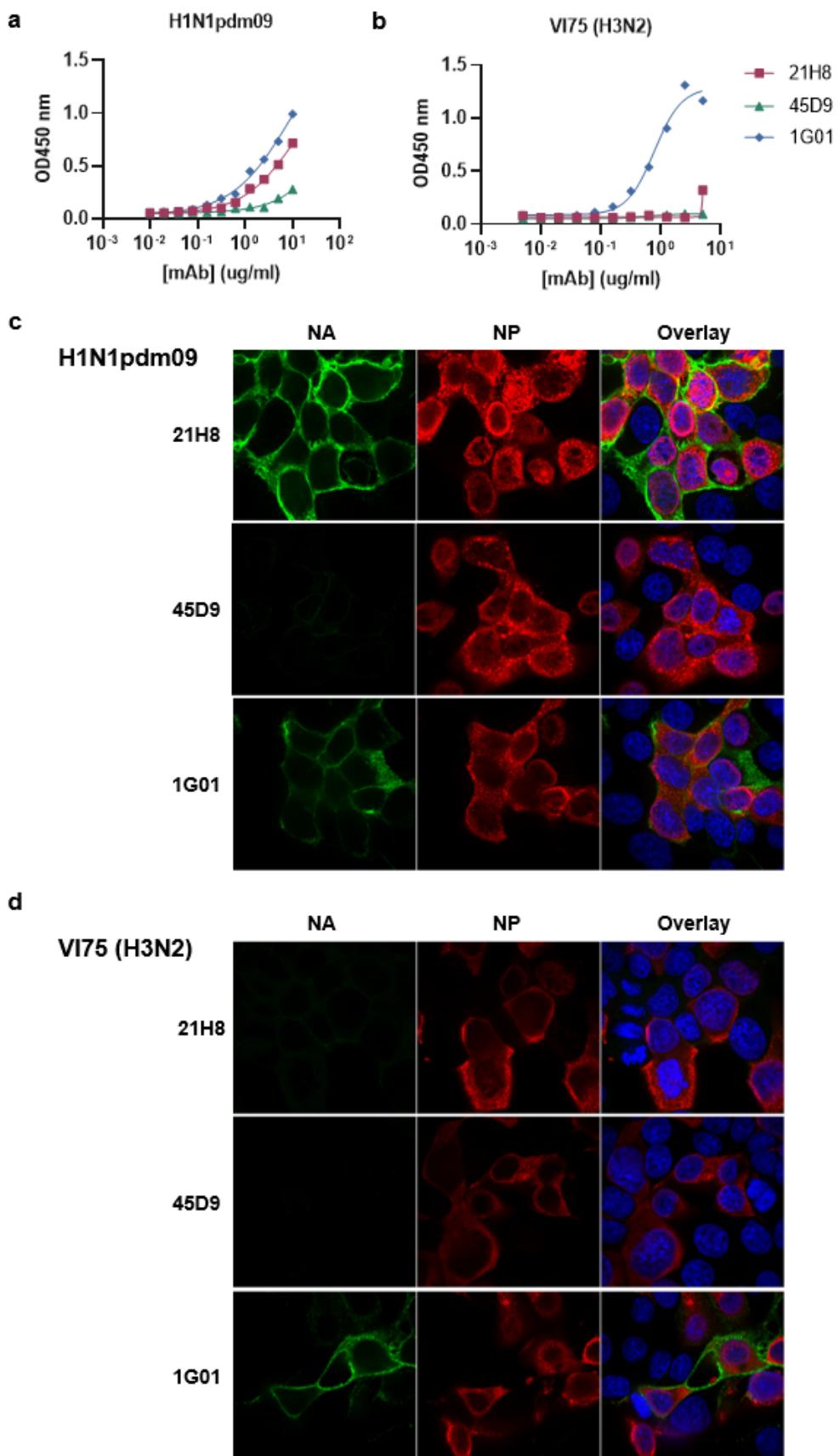
776 **Figure 1. NA antigen design and antibody specificity.** Recombinant tetrameric N1 and N2 NA antigens
777 were produced and used to immunize H2L2 transgenic mice. (a) Schematic representation of the NA
778 construct design. The constructs consist of the full NA ectodomain including the head and stalk, with
779 an N-terminal tetrabrachion tetramerization domain, Twin-Strep-tag, and SpyTag. (b) Schematic of the
780 immunogens. The mice received a mixture of equimolar amounts of N1 WI13 and N2 GE18
781 recombinant NAs, either unconjugated (NA) or conjugated to self-assembling protein nanoparticles
782 (NA-NP). (c) Antigen specificity of hybridomas generated from immunized mice. Numbers indicate the
783 amount of hybridomas positive for the indicated antigen in an ELISA assay. Tags refers to hybridoma
784 supernatants binding the SpyTag, Strep-tag, or tetramerization domain. (d) Reactivity of purified
785 antibodies (1 µg/ml) against N1 and N2 NAs of different strains measured in ELISA (OD at 450 nm,
786 corrected for antigen coating as described in Materials and Methods, mean of 3 replicates). Strain
787 identities are indicated in the Materials and Methods section. 1G01: control cross-reactive mAb
788 [Stadlbauer]; * antibody isolated from mice immunized with NA-NP.


789

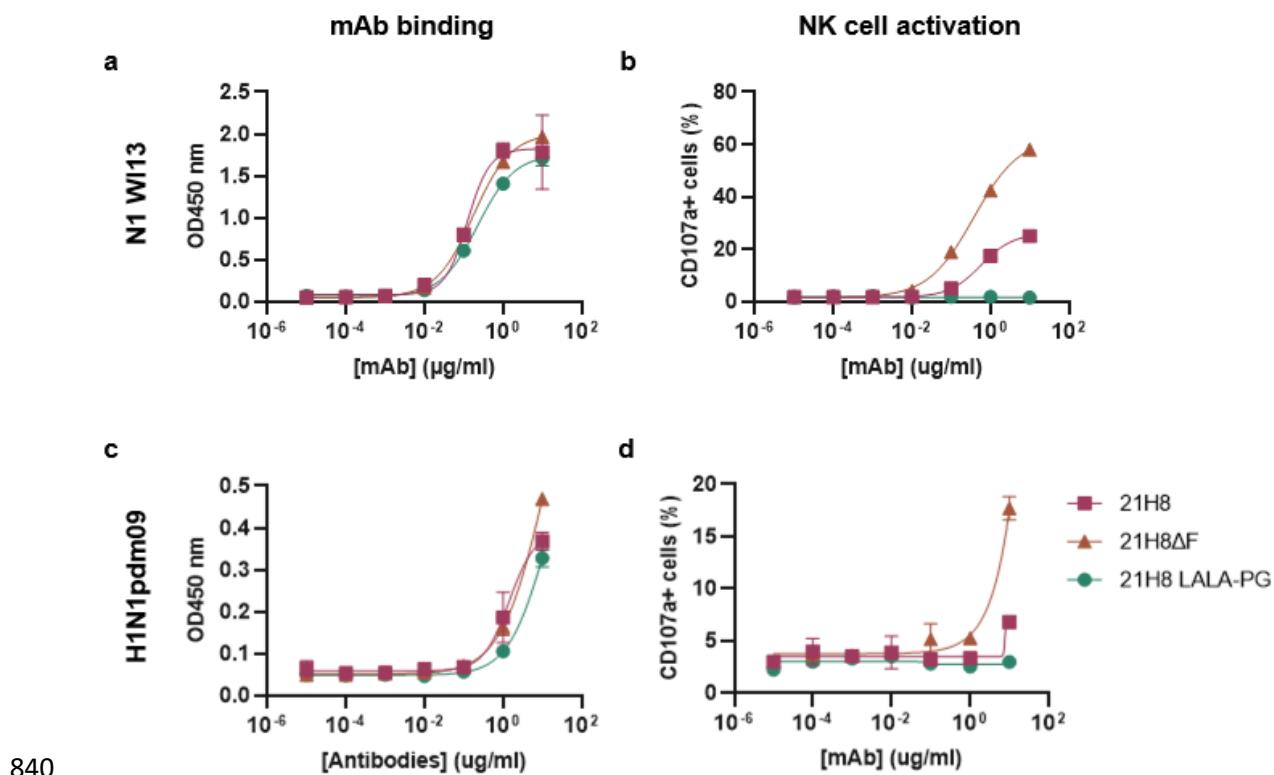
790 **Figure 2. Binding- and functional characterization of cross-reactive IgG1 mAbs.** Recombinant
791 purified human IgG1 mAbs (12F5, 21H8, 45D9, and positive control mAb 1G01) were further
792 characterized. Binding reactivity was quantified in an ELISA against N1 WI13 (a) and N2 GE18 (b)
793 (representative data of two independent experiments, mean \pm SD of two replicates). Inhibition of NA
794 activity was determined in an ELLA with H1N1pdm09 (c) and H3N2 VI75 (d) (mean \pm SD of three
795 replicates).


796

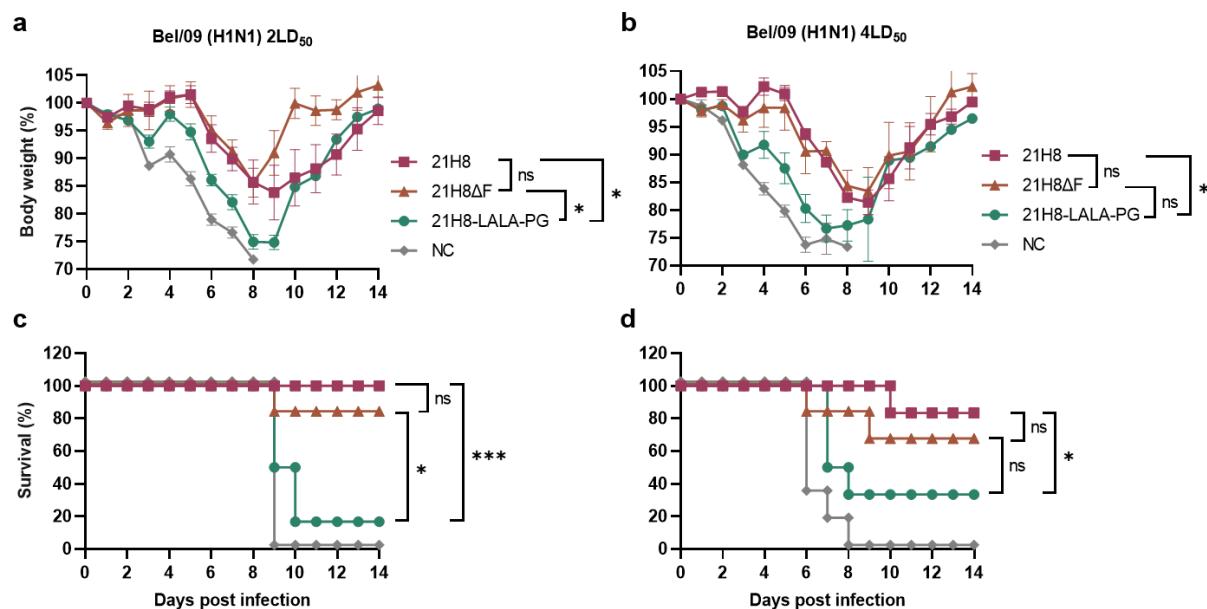
797 **Figure 3. Cross-reactive mAbs bind linear epitopes on N1 and N2.** (a and b) Binding of mAbs to
798 denatured recombinant NA proteins (a, N1 CA09; b, N2 PE09) was analyzed relative to their binding
799 to the proteins in their native conformation in ELISA to determine whether mAbs bound
800 conformational or linear epitopes (mean \pm SD of three replicates). 1G01: NA mAb binding a
801 conformational epitope; Strep: mAb binding the linear sequence of the StrepTag. (c to f) Residues
802 corresponding with peptides recognized by mAbs 21H8 and 45D9 in peptide arrays (Fig. S5 and S6) are
803 indicated on the structures of N1 and N2. Catalytic site (CS) indicated in orange, epitopes in pink
804 (21H8) and green (45D9). When the antibodies recognized two peptides, the overlapping sequence is
805 indicated with a darker shade and the remaining parts of the sequences with a lighter shade.
806 Sequences of the peptides are indicated in Fig. S7. N1 structure: PDB 3NSS [Li Nat Struct Mol Biol
807 2010]. N2 structure: PDB 4GZP [Zhu J Virol 2012].


809 **Figure 4. 21H8 and 45D9 induce Fc effector functions *in vitro*.** (a-d) The ability of the mAbs to induce
 810 activation of NK92 cells was determined following the incubation of the cells in plates coated with N1
 811 CA09 or N2 VI75 in the absence or presence of the mAbs. The amount of activated cells was measured
 812 as CD107a⁺ cells in flow cytometry and graphed as a percentage of the total NK cells (a and c). Binding
 813 of the mAbs to the NAs was measured in ELISA (b and d). (e to g) The induction of phagocytosis and
 814 complement deposition by the mAbs was determined in flow cytometry-based assays using
 815 microspheres. (e) Phagocytosis of microsphere-based immune complexes containing N1 WI13 and the
 816 mAbs by THP-1 monocytes was measured by flow cytometry. The phagoscores were calculated based
 817 on the percentage of THP-1 cells positive for the uptake of microspheres and the gMFI of that
 818 population as detailed in the Materials and Methods section. (f) Deposition of complement protein C3
 819 on the microsphere-based immune complexes was measured by flow cytometry. (g) mAb binding to

820 the N1-coated microspheres measured by flow cytometry. Data shown represent the mean \pm SD of in
821 total four replicates from two independent experiments combined.


822

823 **Figure 5. *In vivo* prophylactic effect of 21H8 and 45D9 against IAV challenge in mice.** Challenge with
824 2LD₅₀ of mouse-adapted H1N1 (Bel/09) and H3N2 (X47) virus after prophylactic administration of 50
825 µg 21H8, 45D9, isotype control mAb (anti-RSV hIgG1; NC), or positive control mAb (N1-C4; PC) one
826 day prior. BALB/c mice (6 per group) were monitored daily for body weight (a and c; weight relative
827 to baseline, displayed as mean ± SEM) and survival (b and d; expressed as percentage of the group)
828 for 14 dpi. Body weight data were analyzed using the method of residual maximum likelihood (REML)
829 for repeated measurements (ns, not significant; *, p < 0.001), and survival data were analysed using
830 the Mantel-Cox log-rank test (ns, not significant; *, p < 0.05; **, p < 0.002; ***, p < 0.0002).



832 **Figure 6. Binding of 21H8 and 45D9 to full-length NA in membranes of viruses and infected cells.** (a
833 and b) Binding of the mAbs to NA of H1N1pdm09 (a) and H3N2 VI75 (b) determined in ELISA with
834 whole viruses adsorbed to the plates (representative results of two independent experiments are
835 shown). (c and d) Immunofluorescence analysis of MDCK cells infected with H1N1pdm09 (c) and H3N2
836 VI75 (d). Surface staining with the NA-targeting mAbs (green) and intracellular staining with a mAb
837 targeting the nucleoprotein (NP; red). Nuclei are labelled with dapi (blue). Representative pictures are
838 shown.

839

840 **Figure 7. Fc modifications modulate NK cell activation by 21H8.** 21H8 produced with reduced
841 fucosylation (21H8ΔF) for enhanced Fc γ R engagement or mutated to abolish Fc γ R engagement (21H8
842 LALA-PG). Binding of the 21H8 variants against recombinant soluble N1 WI13 (a) and H1N1pdm09
843 virus (c) was quantified in ELISA. (b and d) The ability of the modified antibodies to activate NK cells
844 upon binding to recombinant soluble N1 WI13 (b) or H1N1pdm09 virus (d) was quantified in flow
845 cytometry as the percentage of CD107a $^{+}$ NK cells. Representative data of two independent
846 experiments are shown (mean \pm SD of two replicate measurements).
847

848 **Figure 8. In vivo prophylactic effect of Fc modified 21H8 against H1N1 challenge in mice.** Challenge
849 with mouse-adapted H1N1 (Bel/09) virus at 2LD₅₀ or 4LD₅₀ after prophylactic administration of 10 μ g
850 21H8, 21H8ΔF, 21H8-LALA-PG, or isotype control IgG (anti-RSV hIgG1; NC) one day prior to infection.
851

852 BALB/c mice (6 per group) were monitored daily for body weight (a and b; weight relative to baseline,
853 displayed as mean \pm SEM) and survival (c and d; expressed as percentage of the group) for 14 dpi.
854 Body weight data were analyzed using the method of residual maximum likelihood (REML) for
855 repeated measurements (ns, not significant; *, F pr. < 0.001), and survival data were analysed using
856 the Mantel-Cox log-rank test (ns, not significant; *, p < 0.05 ; ***, p < 0.0002).