

1 **A workflow for practical training in ecological genomics using Oxford Nanopore long-read
2 sequencing**

3 Robert Foster*¹, Heleen De Weerd*¹, Nathan Medd^{1,2}, Tim Booth¹, Caitlin Newman¹, Helen Ritch¹,
4 Javier Santoyo-Lopez¹, Urmi Trivedi¹, Alex D. Twyford^{2,3†}

5 ¹Edinburgh Genomics, University of Edinburgh, Edinburgh, Scotland, UK EH9 3FL, UK

6 ²Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, Scotland, UK EH9 3FL, UK

7 ³Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LR, Edinburgh, UK

8

9 *Equal contribution

10 †Corresponding author

11

12 **Short title:** Training for long-read plant genomics

13

14 **Abstract**

15

16 Long-read single molecule sequencing technologies continue to grow in popularity for genome
17 assembly and provide an effective way to resolve large and complex genomic variants. However,
18 uptake of these technologies for teaching and training is hampered by the complexity of high
19 molecular weight DNA extraction protocols, the time required for library preparation and the costs for
20 sequencing, as well as challenges with downstream data analyses. Here, we present a full long-read
21 workflow optimised for teaching, that covers each stage from DNA extraction, to library preparation
22 and sequencing, to data QC and genome assembly and characterisation, that can be completed in
23 under two weeks. We use a specific case study of plant identification, where students identify an
24 anonymous plant sample by sequencing and assembling the genome and comparing it to other
25 samples and to reference databases. In testing, long-read genome skimming of nine wild-collected

26 plant species extracted with a modified kit-based approach produced an average of 8Gb of Oxford
27 Nanopore data, enabling the complete assembly of plastid genomes, and partial assembly of nuclear
28 genomes. In the classroom, all students were able to complete the protocols, and to correctly identify
29 their plant samples based on BOLD searches of barcoding loci extracted from the plastid genome,
30 coupled with phylogenetic analyses of whole plastid genomes. We supply all the learning material and
31 raw data allowing this to be adapted to a range of teaching settings.

32

33 **Keywords:** Long-read sequencing; Nuclear genome; Oxford Nanopore; Plastid genome; Species
34 identification

35 **Introduction**

36

37 Long-read sequencing has become a mainstay of genomics, with benefits including the generation of
38 reads of sufficient length to read through complex repeat regions, and decreasing costs making it
39 increasingly accessible for a diverse range of genomic applications (De Coster et al., 2021; Glinos et
40 al., 2022; Logsdon et al., 2020). Long-read sequencing was hailed as Nature's Method of the Year
41 2022 due to developments increasing its utility across genomics (Marx, 2023). Major innovations
42 include ultra-long-reads of over 4Mb with Oxford Nanopore Technologies (ONT) Ultra-Long DNA
43 Sequencing Kit, and 'near perfect' highly accurate long-reads with Pacific Biosciences (PacBio) High
44 Fidelity (HiFi) data. Long-read sequencing has underpinned major new research, such as the
45 publication of the first gapless telomere-to-telomere assembly for all 22 human autosomes and the X
46 chromosome (Nurk et al., 2022). These technologies make the prospect of sequencing reference
47 genomes for the diversity of eukaryotic life increasingly possible (Lewin et al., 2022).

48

49 While long-read sequencing is now commonly used for research, what is the best approach to bring
50 long-read sequencing into the classroom? There is a huge demand to train the next generation of
51 genome scientists, however most teaching and training still relies on short-read sequencing and
52 typically focuses on 'easy' species for sequencing and assembly such as bacteria (Drew & Triplett,
53 2008; Hotaling et al., 2018). Providing training that is more representative of the challenges faced by
54 researchers working with non-model species is extremely valuable, and where this has been done it
55 has proved successful, such as with the *de novo* assembly and analysis of earwig genomes by
56 students in Chile (Kobayashi et al., 2023). However, such training is far from routine, and often needs
57 to overcome issues at each stage of the workflow. Before sequencing, issues include extracting a
58 suitable quantity and quality of DNA in a classroom setting without dangerous chemicals and laborious
59 protocols, and preparing suitable high-quality libraries. Both good quality DNA and libraries are
60 essential, and have a major impact on the quality of the sequencing data that is generated. In terms of
61 the sequencing, the ONT MinION has been widely used for teaching (Kamathewatta et al., 2019;

62 Watsa et al., 2019; Zaaijer et al., 2016) but the output remains relatively low and expensive per Gb,
63 while the output of many long-read production sequencers, such as the PacBio Revio and the ONT
64 PromethION, while relatively cheap per Gb, have a high unit cost necessitating a degree of
65 multiplexing that can be hard to manage. As such, careful consideration needs to be given to the
66 sequencing strategy. Finally, the management and analysis of large sequence datafiles, and the
67 complexity of downstream analyses (including *de novo* genome assembly and comparative genomic
68 analyses), all pose difficulties.

69

70 Here, we focus on developing training in the application of long-read genomics to organismal
71 identification, with a case study in plants. Organismal identification is central to many questions in
72 molecular ecology, from profiling species diversity and abundance in microbial samples with
73 metagenomics, to the authentication of herbal and medicinal products with DNA barcoding
74 (Hollingsworth et al., 2016). This application is ideal for teaching as it is conceptually simple compared
75 to many other areas of molecular ecology (e.g. it does not rely on background knowledge of
76 theoretical population genetics), but has the benefits of involving a representative range of tasks
77 common to other research activities. Our case study uses plants as they are frequently overlooked in
78 laboratory teaching activities in favour of more experimentally tractable groups such as bacteria. This
79 is in part due to their complexity in terms of lab protocols (e.g. frequent need for species-specific
80 protocols to overcome issues such as diverse secondary compounds, Schalamun et al., 2019), and in
81 downstream analyses (i.e. no single barcoding region provides universal species-level resolution,
82 CBOL Plant Working Group, 2009). However, the key role of plants in natural ecosystems, their ease
83 of collection and fewer ethical considerations than many animal groups, and the huge potential of
84 genomic sequencing to improve species identification over DNA barcoding, makes them an excellent
85 case study (Antonelli et al., 2020). In particular, we use common plant species collected at a site in
86 Scotland, allowing us to tie our work into the Darwin Tree of Life Project, which aims to sequence high
87 quality reference genomes for all species in Britain and Ireland (DToL Consortium, 2022).

88

89 We teach the principles of species identification focusing on plastid genomes, due to their small size,
90 low repeat content, and abundance in genomic DNA datasets that make them easy to assemble, as
91 well as the extensive availability of plastid data in DNA barcoding reference databases, and the
92 manageable size of plastid genomes for comparative genomic analyses (Twyford & Ness, 2017). We
93 adopt a ‘long-read genome skim’ approach, i.e. generate low coverage long-read data, which proves
94 more affordable than the generation of high coverage data, and still teaches similar principles and
95 would be anticipated to provide similarly high quality plastid genomes. While plastid genome assembly
96 is relatively simple, there are still a number of notable challenges (Turudić et al., 2021). Most plastids
97 are composed of a long single copy (LSC) region, two identical inverted repeats (IRs) and a small
98 single copy (SSC) region. The two identical IRs pose a problem for most standard genome assembly
99 pipelines, which typically assemble circular plastid genomes into three contigs. Secondly, plastids
100 exist as two isomers in the cell, with alternating SSC orientation (Walker et al., 2015). Many genome
101 assemblers report one or other assembly orientation, in a non-standardised fashion, posing an issue
102 for comparative analyses between plastid genomes. These two issues in particular are why various
103 plastid specific genome assembly algorithm have been developed (Dierckxsens et al., 2017; Jin et al.,
104 2020).

105

106 Here, we develop an applied practical genomics course aimed at early career researchers, such as
107 first year PhD students. The expectation is that these students will be familiar with some laboratory
108 methods such as PCR, and will have a working knowledge of computing, but have not previously
109 performed genomic sequencing or bioinformatic analyses. The course is intended to fit within a two-
110 week full-time teaching period, such as a short summer school, run with a small cohort of ~12
111 students. Our training development aimed to take students through each stage of the genomics
112 workflow, providing a balance of training in wet lab skills and bioinformatics. For the lab work, we
113 chose to use Oxford Nanopore sequencing because: (1) there is an active user community and a
114 range of easy to implement protocols; (2) there is flexibility in sequencing output for small test runs on
115 the Flongle and MinION to production sequencing on the PromethION; (3) ONT has the potential to

116 generate the longest reads out of currently available technologies, making it excellent for teaching
117 long-read sequencing and of high value for many projects such as in *de novo* genome assembly, (4)
118 skills learnt in training can be directly transferred into individual laboratories as many groups own
119 MinIONs. To make our protocol interactive, we gave each student an anonymous (unlabelled) plant
120 sample, with the aim of using the genomic sequencing and bioinformatic analyses taught in the class
121 to provide a correct identification. We first document the development of our training material,
122 including laboratory and bioinformatic methods. We then report the results from training two cohorts of
123 ecological genomics students. Finally, we consider how this teaching provides benefits over other
124 training options, and the potential future utility of long-read sequencing for plant identification.

125

126 **Methods**

127

128 **Wet lab protocol development**

129

130 To develop a protocol suitable for the classroom, we focused on testing various protocols that could
131 streamline delivery relative to standard long-read workflows, namely: (1) the utility of silica dried plant
132 material, which may compromise read length due to drying that causes fragmentation, but is easy to
133 handle and removes the requirement for liquid nitrogen; (2) kit based extractions, including both the
134 DNeasy Plant Mini Kit, which is popular for Sanger sequencing and Illumina short read sequencing,
135 and the Nucleon PhytoPure kit, which has been used in a range of genomics applications; (3) the use
136 of additional cleanups to compensate for the more rapid extraction protocol that may include coeluting
137 compounds. The performance of these methods was judged based both on DNA and library QC as
138 well as sequencing quality on different ONT platforms.

139

140 We sampled commonly cultivated or wild plant species at the King's Buildings' Campus of the University
141 of Edinburgh, UK (coordinates 55.924, -3.173). The campus covers 35 hectares and includes a wide
142 range of ornamental trees, shrubs and herbaceous plants, as well as native species in artificial meadows

143 and growing as weeds. Species for sequencing were chosen for their phylogenetic diversity, being
144 diploids with relatively small genome sizes (haploid genome sizes <2Gb), based on available genome
145 size estimates in the Plant DNA C-value database (Table 1 (Pellicer & Leitch, 2020)). Leaf material was
146 collected during the growth season into desiccating silica material. Identical samples were used in
147 testing and in the taught courses, apart from *Antirrhinum majus* which was replaced with *Antirrhinum*
148 *hispanicum* for teaching.

149

150 Table 1. Species used for protocol development. Genome sizes from the Plant DNA C-value database.

151

Species	Family	Expected haploid genome size (GS, picograms)	Performance
<i>Antirrhinum majus</i> (unknown cultivar)	Plantaginaceae	0.6	Passed DNA extraction QC
<i>Betula pendula</i>	Betulaceae	0.5	Failed DNA extraction QC
<i>Buddleja davidii</i>	Scrophulariaceae	1.4	Passed DNA extraction QC
<i>Centaurea nigra</i>	Asteraceae	1.1	Passed DNA extraction QC
<i>Cotinus coggygria</i>	Anacardiaceae	0.3	Passed DNA extraction QC
<i>Hedera helix</i>	Araliaceae	1.5	Passed DNA extraction QC

			Passed DNA extraction
<i>Ligustrum ovalifolium</i>	Oleaceae	1.5	QC
			Passed DNA extraction
<i>Lotus corniculatus</i>	Fabaceae	0.6	QC
			Passed DNA extraction
<i>Plantago lanceolata</i>	Plantaginaceae	1.45	QC
			Passed DNA extraction
<i>Quercus robur</i>	Fagaceae	0.9	QC
			Failed DNA extraction
<i>Rhododendron luteum</i>	Ericaceae	0.7	QC
			Failed DNA extraction
<i>Tilia cordata</i>	Malvaceae	1.3	QC

152

153 Firs, we tested DNA extraction using the Qiagen DNeasy Plant Mini Kit following the manufacturer's
154 instructions. Dried leaf tissue weighing 10.3 - 27.5 mg was ground to a fine powder using a
155 PowerMasher II device and BioMasher II tubes (Nippi) placed in dry ice. DNA concentrations were
156 estimated using a Qubit HS dsDNA Assay kit, and size distributions checked with a Femto Pulse using
157 a Genomic DNA 165 kb kit (Agilent). A 15-minute incubation at room temperature with a 1:1 volume
158 ratio of AMPure XP beads (Beckman Coulter) was performed to concentrate samples. Two 80% ethanol
159 washes were performed on a magnet, with samples eluted in 48ul of nuclease-free water.

160

161 Second, we tested the Nucleon PhytoPure kit (Cytiva), paired with the DNeasy PowerClean Pro Cleanup
162 Kit (Qiagen) to remove polysaccharides and polyphenols which may inhibit sequencing. Dry leaf tissue

163 weighing 13.3 - 16.0 mg was used as an input, extractions and cleanups were performed following
164 manufacturer's instructions, and samples were eluted in 50ul EB.

165

166 Third, we performed small-scale testing of the Qiagen DNeasy Plant Mini Kit as used initially, but
167 additionally with the DNeasy PowerClean Pro Cleanup Kit. This was performed on two test species,
168 following the approaches described above.

169

170 The concentration and purity of the extractions was checked using a Qubit HS dsDNA Assay kit and
171 Qubit HS RNA kit, the absorption ratio measurements taken with a NanoDrop ND-1000, and the size
172 distribution checked using a Tapestation 2200 and Genomic DNA ScreenTape and Reagents. Three
173 sampled species that performed poorly were excluded due to low DNA concentrations (Table 1, see
174 Results). Sequencing libraries were prepared from 1ug of concentrated DNA extraction per species (or
175 all the DNA available if <1ug), using the ligation sequencing kit (SQK-LSK109) with native Barcoding
176 Expansion (PCR-free, EXP-NBD104 and EXP-NBD114), following the manufacturer's protocol. A 700
177 ng library pool was prepared using a different amount of input DNA for each species, based on their
178 genome sizes (Table S1). Pools were QC'd using the Femto Pulse and Qubit HS dsDNA assay, as
179 above. Pools for trial 1 (multi-species Qiagen DNeasy Plant Mini) and 2 (multi-species Nucleon
180 PhytoPure + cleanup) were prepared and loaded on a PromethION flow cell (version 9.4.1), while the
181 third trial (two-species Qiagen DNeasy Plant Mini + cleanup) was run on a Flongle flowcell in a MinION.

182

183 **Bioinformatics protocol development**

184

185 Overall, our aim with the bioinformatics teaching was to introduce the Linux command shell, then
186 guide students through data QC, nuclear genome and plastid genome assembly, and comparative
187 sequence analysis and phylogenetic analyses. At the end students should have sufficient evidence to
188 identify their species. Teaching material was adapted to provide a background to Linux and the Bash
189 shell. Introductory topics were prepared as an interactive demo, followed by self-led tutorials. The

190 course materials covered filesystem navigation and paths, obtaining on-line help, copying and moving
191 files, gzip compression, viewing and searching in text files, and shell pipelines.

192

193 Initial preparation involved installing the NanoPack (De Coster & Rademakers, 2023) software using
194 Bioconda (Grüning et al., 2018) and MambaForge (<https://github.com/conda-forge/miniforge>). The raw
195 ONT data was basecalled with Guppy version 6.3.8 with default parameters, for use in downstream
196 genome assemblies.

197

198 Primary QC of the read data was performed with NanoPlot (version 1.41), part of the NanoPack
199 package, and reports examined, particularly with regard to the length and quality distribution of their
200 reads. The mean quality score reported was used to set the quality trimming cutoff used with chopper
201 (version 0.5.0, also part of NanoPack), and reads under 500bp were also filtered out. Then NanoPlot
202 was re-run on the filtered reads to confirm the results of filtering.

203

204 For nuclear genome assemblies, we aimed to illustrate how to run the pipeline and the increasing
205 ease of accessing the nuclear genome, however given the relatively low sequence coverage per
206 sample the assemblies run on our data are expected to be fragmented and incomplete. The trimmed
207 reads were assembled using Redbean (version 2.5, Ruan & Li, 2020). The quality of the assemblies
208 were assessed with QUAST (version 5.2, Gurevich et al., 2013), and corrected using Racon.

209

210 Plastid assembly was performed using ptGAUL (version 1.0.5, Zhou et al., 2023). We used a plastid
211 reference database from NCBI refseq version 2.1, with samples chosen to possess the same
212 orientation of the Small Single Copy (SSC), which can be in one of two orientations in plastid
213 genomes, to map the reads as part of the pipeline. The edges created were compared to sequences
214 for the reference library to identify any issues, which were fixed manually. These edges were
215 combined with combine_gfa.py script provided by ptGAUL pipeline and used to generate two paths
216 (i.e. plastid isomers, with the SSC in one of two directions).

217

218 PGA (Qu et al., 2019) was used for the annotation of the plastids. A reference plastid of the species or
219 a related species was downloaded for each species from NCBI and used as a reference (Table S4).

220

221 Species identity was initially assessed from the sequence data by extracting two widely used plant
222 DNA barcoding regions, *matK* and *rbcL*, based on the plastid genome annotation. These sequences
223 were searched in BOLD (Ratnasingham & Hebert, 2007), with matches in the search table providing
224 the first evidence of the potential identity of the species, and giving high certainty as to the plant family
225 it belongs.

226

227 The 9 plant species sequenced belong to 8 different plant families; for each family up to 15 related
228 plastid sequences were downloaded from NCBI (Table S5). These were intended to provide
229 contextual sequence information and a range of genetic distances in phylogenetic analyses, rather
230 than represent comprehensive sampling of the whole family. If the focal species had been sequenced
231 before then the previous assembly was included. Based on the DNA barcoding analysis, above, which
232 was used to infer the family, the user could then select the relevant family alignment and add in their
233 plastid genome assembly using mafft (v7.520, Katoh & Standley, 2013). To test the impact of SSC
234 orientation on alignment quality the option was given to include both paths (e.g. forward and reverse
235 SSC orientation). Tree building was performed with the graphical user interface software ugene for
236 (Okonechnikov et al., 2012) for student cohort 1, and the command line software IQ-Tree 2 (Minh et
237 al., 2020) using automated model selection for student cohort 2. Trees were also constructed using a
238 k-mer based approach with SANS serif v2.3_3A (Rempel & Wittler, 2021), which is suitable for closely
239 related taxa, such as here with a species-level alignment of low-variation plastid sequences. SANS
240 serif provides a quick introduction to k-mers, and also partly overcomes issues with incorrect SSC
241 orientation (i.e. only mismatching k-mers spanning the SSC-IR junction rather than the whole SSC will
242 provide conflicting phylogenetic signal).

243

244 **Course delivery and evaluation**

245

246 We delivered the course to two classes of students (12 or 14 students) in 2023. Students were
247 recruited based on their training needs, and ensuring inclusion from underrepresented groups. Most
248 students were studying for PhDs, though there were some undergraduates, MSc, postdocs and Junior
249 PIs, and students had a range of expertise, from beginners to more experienced users in either the lab
250 or in bioinformatics. The course was taught over six days of a two-week period, with three days in the
251 wet lab to start, followed by a break when data were generated on the PromethION, then three days of
252 bioinformatic analysis. Students were each randomly assigned one silica dried plant sample, without
253 being given its species identity, with some students assigned the same species. DNA extractions were
254 performed with the best performing extraction approach (see Results), followed by library preparation
255 (ONT Kit 109 for cohort 1, updated to Kit 14 for cohort 2). Pools of student libraries were made by
256 Edinburgh Genomics facility staff, before being used in demonstrations of loading a sequencer, using
257 ONT Flongles. Pools were then run on the ONT PromethION to generate sufficient data for assembly.
258 Basecalling was done by facility staff ready for the students to analyse following the bioinformatics
259 methods, above.

260

261 For the bioinformatics, each learner on the course was assigned an individual virtual machine (VM)
262 running on the Amazon EC2 commercial cloud service. The VM's are configured to present a remote
263 XFCE4 desktop via TigerVNC server as well as having some key packages and data pre-installed. For
264 the first day of teaching (introduction to linux and data QC) the t3.medium size (2vCPU, 4GiB RAM)
265 was adequate, but to enable nuclear and plastid genome assembly we modified the VM size to
266 c4.8xlarge (36vCPU, 60GiB RAM) providing sufficient resources for rapid analysis. The cloud hosting
267 service enables the size of the VM's to be altered at any time, albeit with the proviso that all VM
268 instances are shut down and rebooted.

269

270 Full information on both the wet lab and bioinformatics student-led protocols are provided in the
271 Supplementary Materials (Supplementary Protocol 1 and Supplementary Protocol 2).

272

273 Each student completed the full lab and bioinformatic exercise. Interpretation of the species identity
274 was initially based on the BOLD database comparison table for *matK* and *rbcL* extracted from the
275 whole plastid genome assembly, and subsequently on the placement of the focal species in the two
276 phylogenetic trees. For the second cohort, data on inferred species ID was gathered after the BOLD
277 searches, and after all analyses were completed. After the classes were complete, we assessed the
278 quality of the plastid genomes for each group (test data, cohort 1 and cohort 2) by aligning the
279 assemblies with previously published assemblies (if available) using mafft, and calling SNPs using
280.snp-dists (<https://github.com/tseemann/snp-dists>). Based on this we recorded the number of
281 mismatches (SNP variants or indels). Manual curation was required for assemblies where errors were
282 present; in particular we altered sequencing coverage used by ptGAUL, and reorientated scaffolds.
283 Regions were also reverse complemented to be in the same orientation as other sequences in the
284 alignment.

285

286 Once the course was complete, evaluation surveys were sent to participants.

287

288 **Results**

289

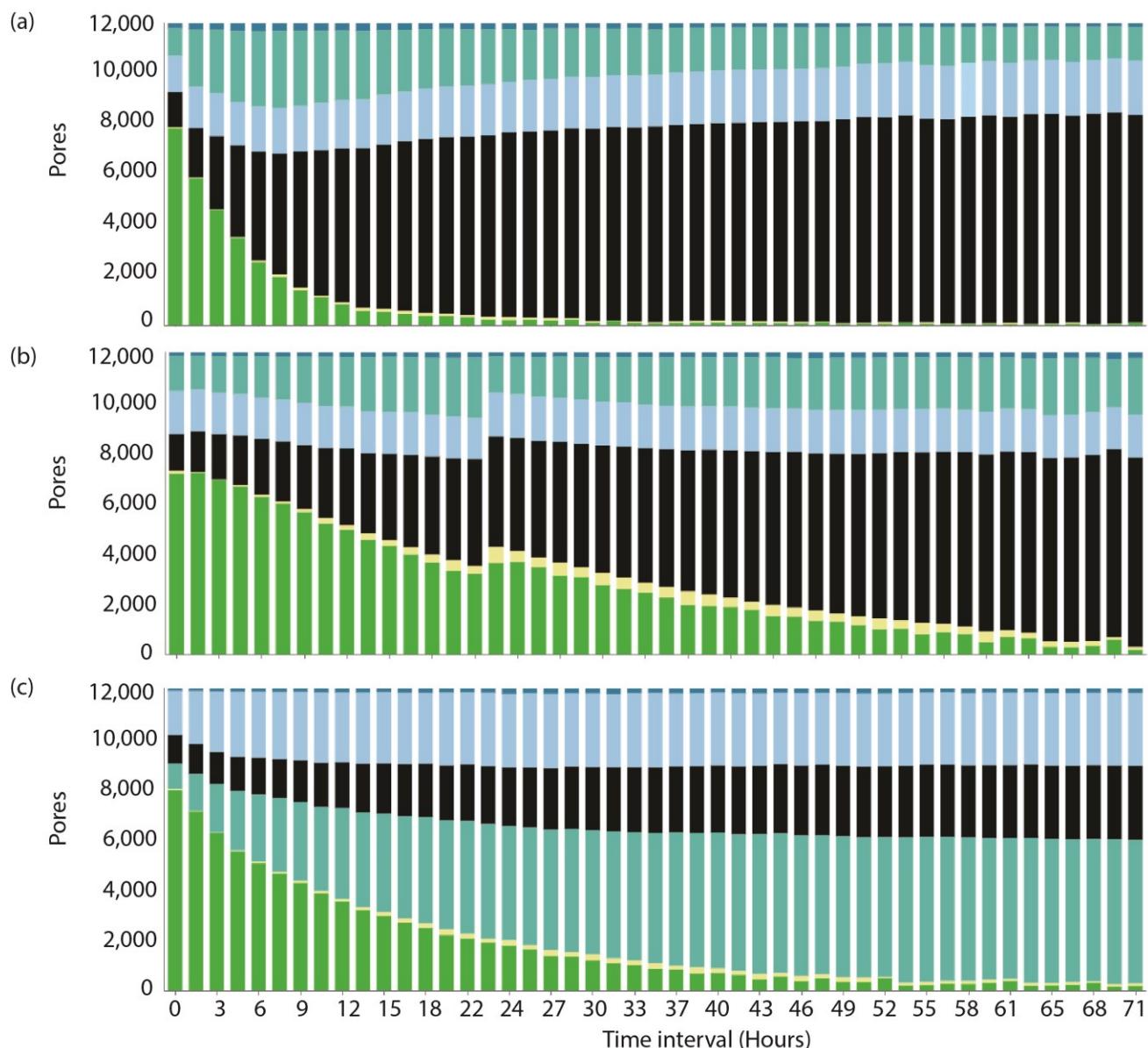
290 **Wet lab protocol development**

291

292 Leaves from the 12 species extracted with the Qiagen DNeasy Plant Mini Kit revealed substantial
293 variation in the quantity and quality of DNA (Table 2). There was a ~67-fold difference in total yield,
294 from 0.1ug to 6.8ug, from a ~3-fold difference in tissue input. The average molecular weight of the
295 DNA extracted was generally low (<20kb) from the perspective of starting a long-read library
296 preparation; however, this DNA did not require additional shearing. Levels of impurities inferred from

297 Nanodrop ratios were highly variable, and ranged from acceptable for *Knapweed centaurea*, to high
298 and likely to be problematic for *Tilia cordata*. Based on these DNA QC results, it was decided to
299 exclude *T. cordata* and continue with library preparation and sequencing for the other species.
300

301 Table 2. Quality Control of DNA Extractions from the DNeasy Plant Mini Kit.
302


Species	Dry weight	Concentration (ng/μl)	Total Yield (ng)	Average Size (bp)	Nanodrop Conc. (ng/μl)	A260/A ₂₈₀	A260/A ₂₃₀
<i>Antirrhinum majus</i>	20.4	8.1	893	17835	11	1.53	4.38
<i>Betula pendula</i>	21.8	9.1	1091	13851	13.6	1.49	1.63
<i>Buddleja davidii</i>	25	15.1	1816	11639	19.2	1.52	1.57
<i>Cotinus coggygria</i>	10.6	30.5	3355	16412	32.3	1.87	2.98
<i>Hedera helix</i>	20.9	6.8	812	21113	9.4	1.41	1.31
<i>Knapweed centaurea</i>	22.4	33.8	6760	30148	30.5	1.76	2.34
<i>Ligustrum ovalifolium</i>	23.5	29.8	3278	18218	32.2	1.68	2.63

<i>Lotus</i> <i>corniculatus</i>	22.9	34.1	4086	14918	48.2	1.75	1.95
<i>Plantago</i> <i>lanceolata</i>	26.7	5.5	1108	13734	6.8	1.52	1.82
<i>Quercus</i> <i>robur</i>	20	16.1	1771	19766	20.5	1.57	2.07
<i>Rhododendr</i> <i>on luteum</i>	10.5	3.5	388	13248	5.9	1.79	1.84
<i>Tilia cordata</i>	10.3	0.9	101	42977	2.7	0.95	0.57

303

304

305 Library preparations with the standard ONT protocols at the time (kit v109) and native barcoding
306 expansion was performed for the 11 species, with a 700ng pool weighting samples by their expected
307 genome sizes adapter-ligated and run on a PromethION R9.4.1 flowcell. The results were very poor,
308 with low sequencing yield (<12 Gb). This was due to a rapid accumulation of saturated (blocked)
309 pores (Figure 1a), with fewer than 2,000 active pores after 12 hours, potentially indicating the
310 presence of co-eluting compounds in the DNA extracts and libraries.

311

312

313

314 Figure 1. Sequence data generation for (a) Qiagen DNeasy extractions run on the ONT PromethION
315 without cleanup, (b) Nucleon PhytoPure extractions plus Powerclean Pro cleanup, with nuclease wash
316 and library reloaded after 24 hours, (c) Qiagen Dneasy extraction with cleanup, generated by class 1
317 students. Note how data without cleanup in (a) have fewer active pores. Pores are classified at each
318 time point into: green, pore available for sequencing and black, pores saturated. Additional colours
319 represent: light blue, zero, no current; turquoise, unavailable (may be partially with a nuclease wash

320 and re-loading); dark blue, inactive, no longer suitable for sequencing; yellow, reserved pore, will
321 return to sequencing when required.

322

323 Following these issues with extracting DNA using the Qiagen kit alone, we tested an alternative of the
324 Nucleon PhytoPure kit (Cytiva) followed by cleanups with the PowerClean Pro kit (Qiagen). This
325 extraction method generally gave very good results (Table S2), though *Tilia cordata*, *Betula pendula*
326 and *Rhododendron luteum* performed poorly and were excluded from further testing. This library pool
327 was then run on the ONT PromethION, and was optimised for high output for use as test data for
328 bioinformatics protocol development, and thus included a nuclease flush and reloading with fresh library
329 resulting in pore recovery after ~24 hours (Fig 2b). A total of 82.3Gb of data were generated, with the
330 statistics per species summarized in Table S3. However, this kit requires chloroform and
331 mecaptoethanol, which are poorly suited to a classroom setting, so we explored whether cleanups with
332 the PowerClean Pro kit (Qiagen) alone might rescue Qiagen DNeasy extractions.

333

334 We performed a small-scale test of whether the PowerClean Pro columns may recover DNA from the
335 DNeasy Plant Mini kit, using two of the better performing species from the previous run. The samples
336 had a high purity following the cleanup, with a great improvement in the A260/A280 ratios, indicating
337 these samples should be suitable for nanopore sequencing. Pooled libraries were loaded on a
338 Flongle, which displayed only a small, gradual increase in the number of saturated pores across the
339 run. Therefore, this approach was adopted for the course.

340

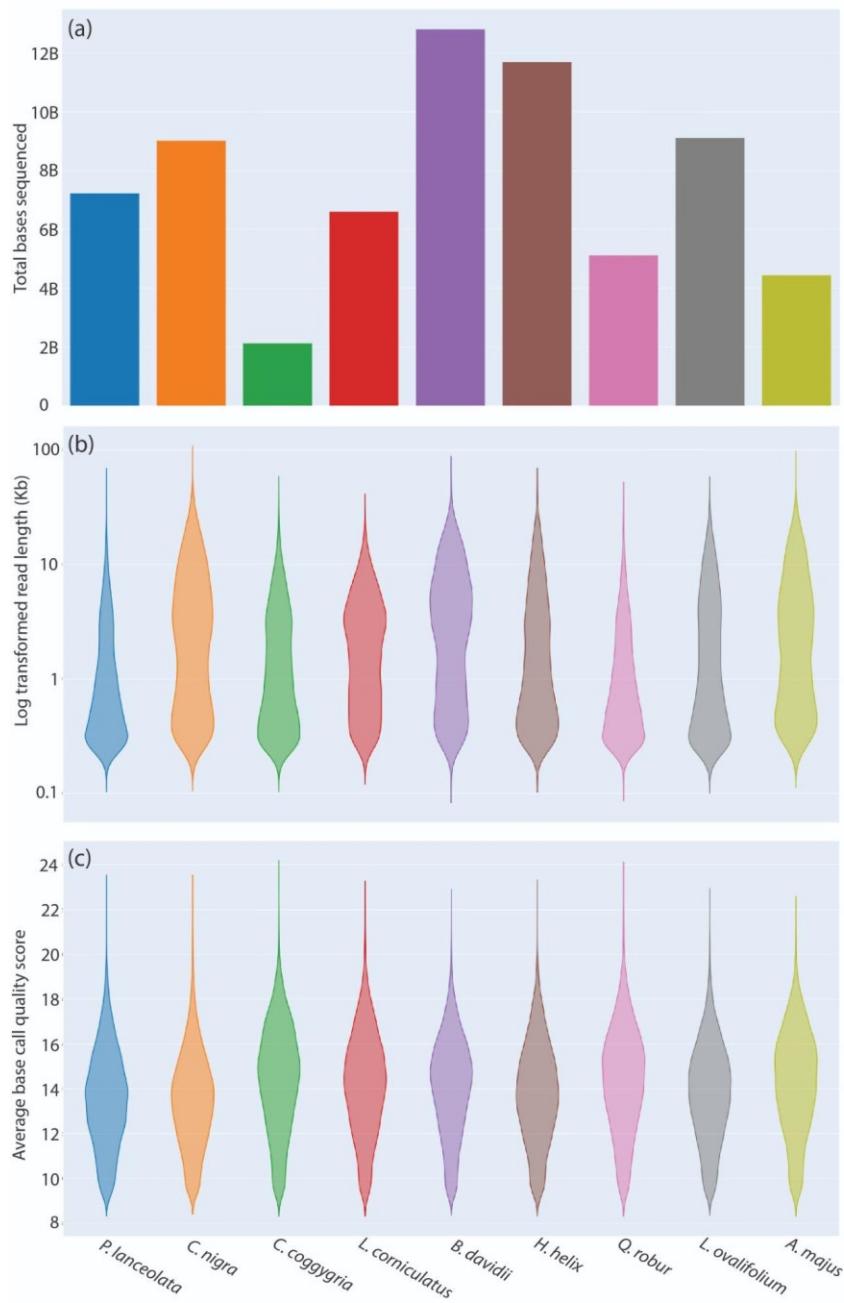
341 **Wet lab course delivery**

342

343 Following successful testing, the Qiagen DNeasy Plant Mini kit followed by the PowerClean Pro
344 columns were subsequently used for the two taught classes. Cohort 1 had 11 out of 12 students
345 successfully extract suitable DNA (with the student with a failed extraction supplied a replacement

346 DNA sample), while Cohort 2 had 12 out of 14 students successfully extract suitable DNA (2 supplied
347 with replacement DNA).

348


349 All students successfully managed to generate sequence data from their libraries. The total data
350 generated by cohort 1 was 33.1 Gb, with a mean of 2.8Gb for each of 12 samples, while cohort 2
351 generated 43.0 Gb giving a mean of 3.0Gb for each of 14 samples (representative sequence run
352 output in Figure 1C). This ONT sequence output from student data, which included a cleanup
353 treatment, indicated over double the number of active pores after 9 hours than the initial development
354 test that used a Qiagen extraction without a cleanup. Further data QC was performed as the first
355 stage of bioinformatics delivery (below).

356

357 **Bioinformatics protocol development**

358

359 We used the multi-species Nucleon PhytoPure + cleanup sequencing run as test data for bioinformatics
360 protocol development; this run included between 2.13 and 12.81 Gb of data per sample, with read length
361 averages per sample ranging from 1.55 to 4.64 Kb (read N50 3.6 - 10.3Kb), though there were some
362 outliers (with a longest read of 309 Kb, Figure 2). Base quality was relatively uniform across sequencing
363 libraries, with a mean of 13, Figure 2c).

364

365 Figure 2. Sequence properties from the Oxford Nanopore sequencing of plant samples in the test
366 data. (a) Total sequencing output in bases, (b) Log transformed read length, (c) Average base quality.
367
368 Nuclear genome assemblies based on the filtered long-read data took less than 30 minutes using
369 RedBean, with the assemblies being characterized by ~5 - 27,000 scaffolds with a span of 55 - 641
370 Mb (Table 3). These assemblies represent partial nuclear genomes, spanning on average 32.7% of

371 the size of the nuclear genome based on previously published flow cytometry estimates for the
372 species. However, two assemblies spanned less than 20% of the genome size (*Plantago lanceolata*
373 3.8%, *Quercus robur* 11.3%), with these taxa the two with the shortest read lengths as well as being at
374 the larger end of the distribution of genome sizes sequenced.

375

376 Table 3. Nuclear genome assembly statistics for the plant samples sequenced with ONT in the test
377 run.

378

Species	Number of	Largest		GC (%)	N50	L50
	contigs	contig	Total length			
<i>A. majus</i>	9,624	364,924	284,004,051	34.33	47376	1771
<i>B. davidii</i>	17,987	798,919	600,547,147	35.01	68914	2133
<i>C. coggygria</i>	5,464	269,542	73,214,531	34.22	17676	1284
<i>C. nigra</i>	21,160	326,088	487,465,112	35.53	36697	3701
<i>H. helix</i>	24,231	256,826	563,301,186	31.25	35334	4699
<i>L. corniculatus</i>	13,167	354,996	243,082,846	35.58	27288	2626
<i>L. ovalifolium</i>	26,622	810,908	640,508,770	32.85	36177	5507
<i>P. lanceolata</i>	7,057	138,393	54,576,997	36.9	9528	1743
<i>Q. robur</i>	10,545	96,505	101,572,099	33.81	12777	2517

379

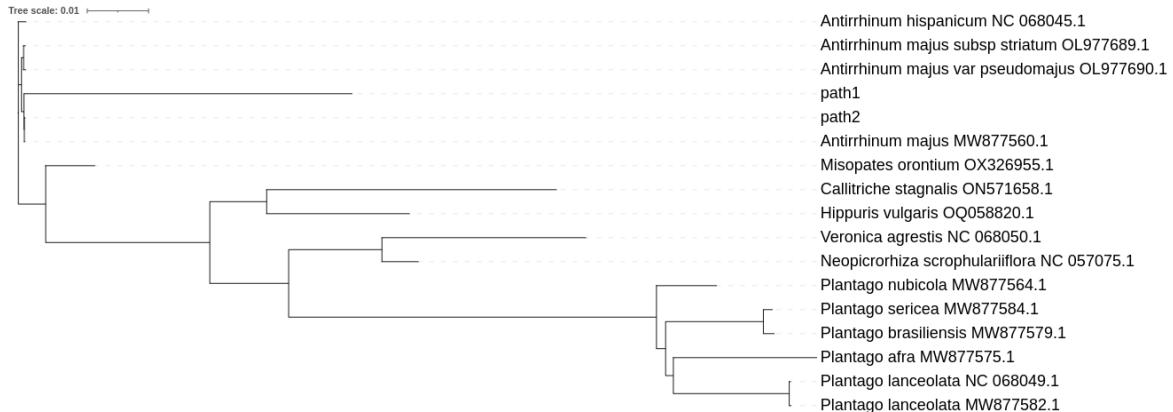
380 Plastid genomes assembled directly from the long-read data using ptGAUL resulted in complete
381 assemblies for all 9 test samples (Table 4). Despite the relatively low total sequencing coverage,
382 plastid data were highly represented in all libraries, with coverage between 998-fold and 5281-fold,
383 representing 6.8 - 34.3% of reads per dataset. The intermediate assembly files included three contigs
384 corresponding to the LSC, IR, and SSC, with these being effectively stitched together to produce a
385 single circular contig 150-167Kb in length.

386

387 Table 4. Plastid genome assembly summary statistics for the samples sequenced in the test run.

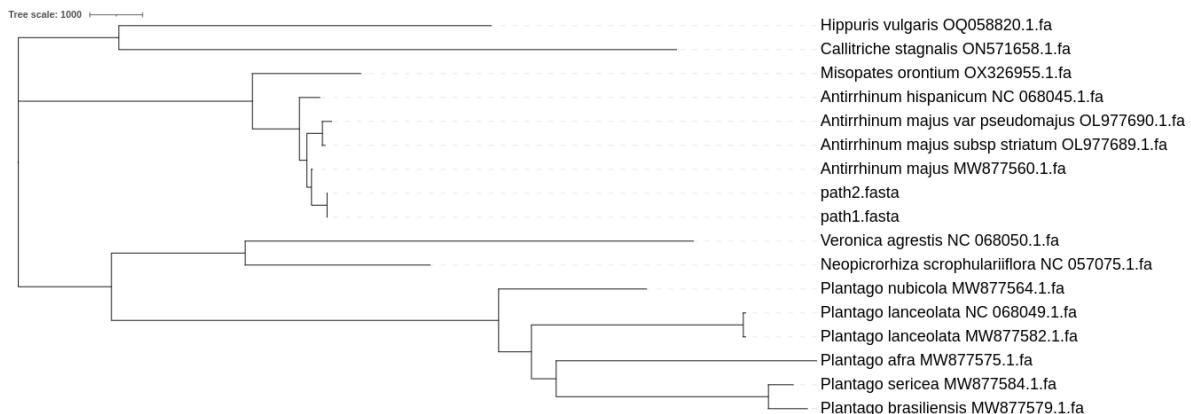
388 Reads aligned refers to the percentage of reads in the total dataset that map to the finished plastome
389 assembly.

390


	Intermediate number of contigs	Reads			Final	
		Largest contig	aligned (%)	Coverage	Final contigs	assembly size
<i>A. majus</i>	3	117,658	20.32	2110.84	1	152541
<i>B. davidii</i>	3	107,307	6.83	1803.05	1	154049
<i>C. coggygria</i>	3	107,985	34.33	2988.47	1	159592
<i>C. nigra</i>	3	116,312	8.45	1559.06	1	152990
<i>H. helix</i>	3	114,264	7.78	2006.1	1	156628
<i>L.</i>						
<i>corniculatus</i>	3	95,619	15.73	3621.18	1	150784
<i>L. ovalifolium</i>	3	117,414	9.23	2046.61	1	166719
<i>P. lancelota</i>	3	98,291	17.04	5281.45	1	149679
<i>Q. robur</i>	3	119,521	7.81	997.323	1	161016

391

392


393 The reference sequence alignments of plastids varied from 158 Kb in Scrophulariaceae, to 175Kb in
394 Fabaceae (Tables S6 and S7). Phylogenetic analyses incorporating the newly generated plastomes
395 were quick to perform, either with ugene, or with IQ-Tree including model finding (Table S8), and
396 generally resulted in the clear placement of the newly generated sequences, often with path 1 and
397 path 2 (alternative SSC arrangement) clustering together, with the alternative arrangement on a long
398 branch. In many cases the newly generated plastid came out sister to the correct species (if included)
399 or a near relative (if the focal species has not previously been sequenced/represented in the reference

400 alignment). K-mer based trees were generally highly consistent with the maximum likelihood
401 phylogeny, with shorter branch lengths between alternative paths (Figure 3).
402

403

404

405

406 Figure 3. Example phylogenetic trees based on newly assembled plastid genomes, here for the focal
407 taxon *Antirrhinum majus*. Both orientations of the SSC are included (labelled path1 and path2). (a) IQ-
408 Tree analysis using the sequence alignment, (b) SANS serif analysis based on k-mers.

409

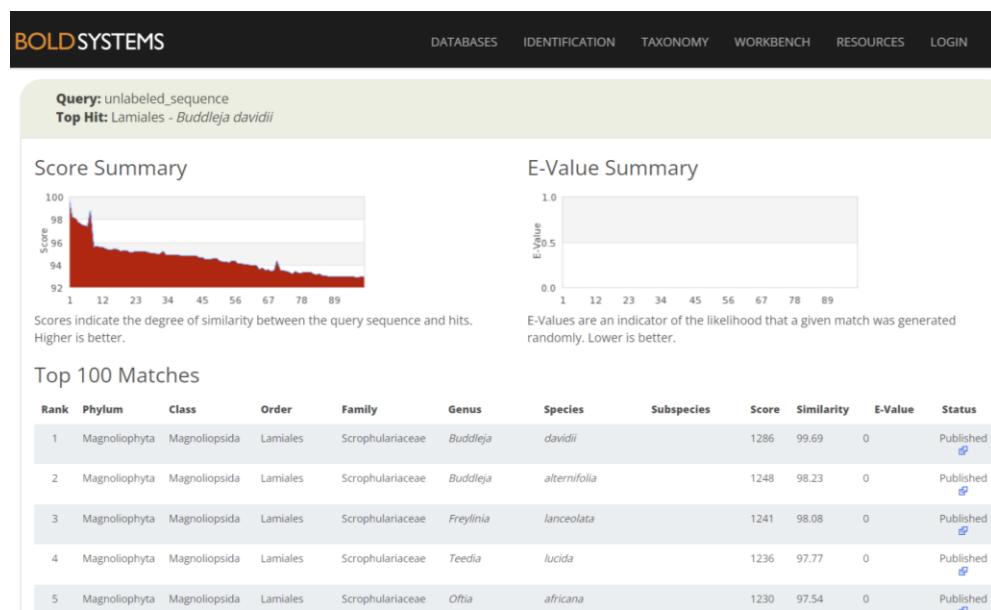
410 Bioinformatics course delivery

411

412 Cohort 1 produced on average 2.7Gb of ONT data per sample, with average read lengths between 1.4
413 and 3 Kb, and with an average quality of 13, with the longest read being 785Kb (Table S9). In contrast
414 cohort 2 generated more data per sample but with shorter reads, with on average 3Gb of data per

415 sample, an average read length between 0.7 and 2.8Kb, and an average quality of 12, with the
416 longest read being 292Kb (Table S10). The most notable difference between the test data and the
417 student cohorts were in read length, with a read length N50 across samples in the test data being
418 6.8Kb, while the student cohorts were 5.0Kb and 3.2Kb for cohort 1 and cohort 2 respectively. Both
419 the test data and student data used the same plant species and the same silica dried material, thus
420 differences are due to the extraction and cleanup approach, or the user.

421


422 Nuclear genome assemblies based on the filtered student long-read data were characterized by as
423 few as 653 scaffolds for the smallest genome (~0.3Gb *C. coggyna*, Cohort 1) to 14,836 for the
424 largest genome (*Ligustrum ovalifolium*, 1.5Gb, Tables S11 and S12). The assemblies partially span
425 the nuclear genome, and are mostly fragmented into thousands of contigs, with some large contigs.
426 While there is considerable variation between samples that were sequenced on multiple occasions,
427 there are some general features, for example four replicate sequencing libraries of the larger genome
428 of *L. ovalifolium* had the longest contig lengths of any samples in the datasets (~800Kb).

429

430 Plastid assemblies from student data were notably variable (Tables S13 & S14), with a number being
431 erroneously large (e.g. all in cohort 1 were >159 Kb and with one outlier of *C. coggyna* being 197Kb;
432 when most land plant plastids are expected to be in the ~155Kb size range). This resulted in
433 mismatches between student assemblies and the reference data assemblies we generated, above
434 (Table S15 and S16). In cases where student plastid assemblies were characterised by
435 misassembles, typically due to low coverage and short read lengths, these erroneous assemblies still
436 clustered with their nearest relative in k-mer based tree building. In contrast, ML trees led to longer
437 branch lengths making evolutionary relationships and taxon identity harder to interpret. However,
438 further work identified errors are only present in the full assemblies, and not the intermediate
439 sequence scaffolds. Almost all errors were resolved through manual curation of the scaffolds. Once
440 scaffolds were in the correct order and overlaps between sequences correctly identified, the curated

441 assemblies were the correct size. Despite some assembly errors all student plastid genomes had
442 99.6+% sequence similarity to the reference after curation.
443
444 All students successfully annotated the plastid genomes, including the barcoding genes *matK* and
445 *rbcL*. Barcode searches using the BOLD identification engine were more likely to be good matches
446 (returning higher similarity scores, and hitting the correct species) for *matK* than *rbcL*, with the
447 combined evidence from both loci giving reliable family level inference for all samples. In many cases
448 hits were to the correct genus and species, too, though there were some errors and conflicting signal
449 between loci (Figure 4). For cohort 2, where information was collated on the predictions of species
450 identity, 7 students correctly inferred the species based on just the BOLD matches of *matK* and *rbcL*,
451 5 others identified the correct genus, and 2 others only identified the correct family. After tree building,
452 twelve out of thirteen students who entered their final guess were correct (with one student naming the
453 correct species plus an alternative congeneric taxon).

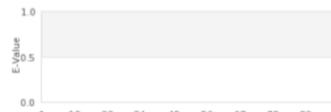
454

455

456

BOLD SYSTEMS

DATABASES IDENTIFICATION TAXONOMY WORKBENCH RESOURCES LOGIN


Query: unlabeled_sequence
Top Hit: Lamiales - *Scrophularia umbrosa*

Score Summary

Scores indicate the degree of similarity between the query sequence and hits.
Higher is better.

E-Value Summary

E-Values are an indicator of the likelihood that a given match was generated randomly.
Lower is better.

Top 100 Matches

Rank	Phylum	Class	Order	Family	Genus	Species	Subspecies	Score	Similarity	E-Value	Status
1	Magnoliophyta	Magnoliopsida	Lamiales	Scrophulariaceae	Scrophularia	umbrosa		1262	98.54	0	Published
2	Magnoliophyta	Magnoliopsida	Lamiales	Scrophulariaceae	Scrophularia	nodosa		1260	98.46	0	Published
3	Magnoliophyta	Magnoliopsida	Lamiales	Scrophulariaceae	Scrophularia	nodosa		1260	98.46	0	Published
4	Magnoliophyta	Magnoliopsida	Lamiales	Oleaceae	Olea	europaea	europaea	1260	98.46	0	Private
5	Magnoliophyta	Magnoliopsida	Lamiales	Oleaceae	Olea	europaea		1259	98.46	0	Private

457

458

459 Figure 4. Representative screenshots from BOLD for searches made for the barcoding sequences
460 extracted from the newly assembled *Buddleja davidii* plastome. Top is *matK* and bottom *rbcL*. Note in
461 this case *matK* and *rbcL* have conflicting top hits.

462

463 Course questionnaires revealed a high degree of satisfaction, with most students rating the course
464 'excellent', and highlighting different favorite parts (either with the lab, bioinformatics or the whole
465 workflow). An area highlighted for improvement was offering each student to load a MinION to gain
466 individual experience with sequencing.

467

468 Discussion

469

470 We have developed a long-read sequencing workflow for plant genomics, and successfully delivered
471 the course to two cohorts of students. By combining multiple readily available laboratory kits, and a
472 range of bioinformatic tools, we have produced a full sample-to-sequence-to-analysis workflow
473 suitable for the classroom. This development has required careful consideration to overcome
474 challenges associated with working with plants, in particular selecting species with small genome

475 sizes, and focusing downstream analyses on plastid genomes that are highly represented in genomic
476 DNA extracts. Below, we consider the wider utility, potential limitations, and areas for future
477 development.

478

479 **Development and delivery of a long-read sequencing workflow for the classroom**

480

481 DNA extraction kits have been widely adopted for first- and second-generation sequencing
482 approaches for their ease of use and reliability in recovering large quantities of clean DNA. However,
483 newer third generation sequencing methods typically require more DNA and a higher quality (Kang et
484 al., 2023). These quality requirements can be hard to assess, for example seemingly suitable high
485 molecular weight DNA may be nicked and this may only become apparent when the library is
486 sequenced, resulting in short reads of limited value

487 (<https://www.molecularecologist.com/2018/04/26/dna-extraction-for-pacbio-sequencing/>). We have
488 shown that while the widely used Qiagen Plant DNA kit may not be suitable on its own for *de novo*
489 genome sequencing with ONT, due to co-eluting compounds that block the sequencing pores, the
490 DNA can be partially recovered using a cleanup column. While the read lengths are not optimal for
491 applications such as generating chromosomally complete genome assemblies, it proved highly
492 effective in a classroom setting, avoiding the cost, time and use of dangerous chemicals required in
493 many HMW protocols, and resulted in useful genomic data.

494

495 While overall our protocol fulfilled our aims, the biggest issue remaining is reliably generating sufficient
496 sequencing output per sample given the relatively large size of flowering plant genomes compared to
497 other species usually used for laboratory training. To minimise costs, multiplexing on a high
498 throughput platform such as the PromethION is necessary. Our approach allowed us to be relatively
499 cost effective, at under £250 per sample, including library preparation and sequencing consumable
500 costs of around £200, and computing costs of around £14. However, ONT is highly variable in its
501 sequencing output, with flow cells producing an order of magnitude of variation. This is hard to predict

502 and depends on sample-specific attributes such as DNA fragment length and the abundance and
503 types of co-eluting secondary compounds. We partly circumvented the need for high coverage by
504 focusing our efforts on analysing the plastid genome, which is naturally enriched in genomic DNA
505 extractions. However even here we encountered issues particularly with the lower coverage student
506 data (see below). Future work should aim to ensure multiplexing that recovers sufficient coverage,
507 either through reducing the number of samples per flowcell, using smaller genome size species, or
508 optimising data output from the sequencing platform (e.g. cleaner DNA blocking fewer pores, size
509 selection to remove small fragments, or wash flow cells and rerun with fresh library samples).
510 Alternatively, lower coverage may prove suitable if the sequencing quality is higher, for example with
511 improvements with ONT data such as duplex sequencing, or by using PacBio HiFi.

512

513 **Application of long-read sequencing in plant identification**

514

515 Our course focused on the specific application of plant identification, an important field that often relies
516 on low quality degraded material (e.g. old herbarium specimens or mixed environmental samples).
517 While most research in this area relies on DNA barcoding loci, we found a significant improvement
518 when moving from BOLD searches with *matK* and *rbcL*, to phylogenetic analysis using complete
519 plastid genomes. Here, the larger number of sequence characters coupled with the contextual
520 information provided by tree building helped in the identification of these common plant species. As
521 such, whole plastid genomes may prove particularly useful when nuclear data is hard to recover, and
522 can provide discrimination gains relative to standard barcodes such as in diverse floras and some
523 large genera (Song et al., 2023). While promising in certain settings, plastid genomes alone will prove
524 ineffective for species ID when there is insufficient reference data, and will not resolve identification
525 challenges in more complex groups where plastid genomes do not track species boundaries (e.g. due
526 to hybridization, Wang et al., 2018).

527

528 Plastid genomes are widely used in a range of applications such as studies of degraded herbarium
529 specimens, environmental DNA sequencing and broad-scale phylogenetics. Here, genome skimming
530 is usually performed with short reads (Straub et al., 2012), which often produce complete and largely
531 error free plastid assemblies (Twyford & Ness, 2017). In contrast, our long-read assemblies, perhaps
532 counterintuitively, were less accurate and required more curation. This is due to various reasons,
533 including those that are general to the approach as well as those specific to our samples/data. Firstly,
534 a number of attributes of the data generated were suboptimal. We found sequencing coverage to be
535 critical, with our initial test data generating sufficient data to be largely error free following curation,
536 while lower coverage student data produced erroneously large plastid assemblies, which had to be
537 corrected by altering coverage thresholds followed by manual curation. Read length is also important,
538 with the ptGAUL paper reporting reliable assembly results can be achieved with long-reads (>5Kb
539 N50, Zhou et al., 2023), however this read length threshold was only met by two students out of
540 fourteen in our second cohort. Secondly, short-read data typically have few errors (often Q30) while
541 most current ONT data is more error prone (Q10), translating into errors in the assemblies. For the
542 second cohort of students, we used the new ONT v14 chemistry, which should allow duplex reads and
543 therefore give lower errors, however only 2.5% of reads were duplex reads. Thirdly, the bioinformatic
544 pipelines for plastid genome assembly from short-read data are more mature and have developed
545 over the years to account for a wide range of potential issues (such as heteroplasmy, Dierckxsens,
546 Mardulyn, & Smits, 2020), whereas long-read plastid assembly pipelines are still in their infancy.
547 Despite this, the ptGAUL paper reports most assembly issues are encountered with PCR based library
548 methodologies such as plastid capture or long range PCR rather than whole genome sequencing
549 (Zhou et al., 2023), and long-read specific pipelines for organelle assembly are improving at a rapid
550 pace (Uliano-Silva et al., 2023).
551
552 A major benefit of genome skimming is the possibility to not only assemble plastid genomes, but also
553 other regions such as mitochondrial genomes, nuclear ribosomal DNA and high copy nuclear repeats,
554 while questions remain as to the utility of genome skimming for recovering other nuclear genomic data

555 (Straub et al., 2012). Here, we show that 5-11X nuclear genome data provides sufficient coverage to
556 generate a de novo assembly representing approximately a third of the nuclear genome. While these
557 partial genome assemblies may prove problematic for comparative genomic analyses due to
558 mismatched missing data across samples and lack of coverage to correct errors, they may still prove
559 valuable for genome profiling applications such as repeat characterisation, as well as for preliminary
560 marker development. Here again, improvements in sequencing read quality of long-read data will
561 make these types of data increasingly useful for rapid plant genomic characterisation without a
562 reference.

563

564 Our work focused on plant identification from a single site, where our plastid genome approach works
565 well and species prove mostly easy to identify. In many cases this represents an easy test case,
566 particularly as the British flora is intensely studied, with a well-worked out taxonomy and an extensive
567 barcode database (Jones et al., 2021). Moreover, the British flora contains ~1500 flowering plant
568 species from ~500 genera, therefore there are relatively few congeners in most groups (except groups
569 such as sedges, which were not included in sequencing). For more diverse sites and genera, the
570 approach used here could be adapted from species identification, to species discovery and
571 documentation. This would be particularly useful in underexplored taxa with no existing genomic data.

572

573 **Citations**

574

575 Antonelli, A., Smith, R., Fry, C., Simmonds, M. S., Kersey, P. J., Pritchard, H., . . . Ainsworth, A.
576 (2020). *State of the World's Plants and Fungi*. Royal Botanic Gardens (Kew); Sfumato
577 Foundation.

578 CBOL Plant Working Group (2009). A DNA barcode for land plants. *Proceedings of the National
579 Academy of Sciences*, 106(31), 12794-12797.

580 De Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read
581 sequencing data. *Bioinformatics*, 39(5), btad311. doi:10.1093/bioinformatics/btad311.

582 De Coster, W., Weissensteiner, M. H., & Sedlazeck, F. J. (2021). Towards population-scale long-read
583 sequencing. *Nature Reviews Genetics*, 22(9), 572-587. doi:10.1038/s41576-021-00367-3.

584 Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: de novo assembly of organelle
585 genomes from whole genome data. *Nucleic acids research*, 45(4), e18-e18.

586 Dierckxsens, N., Mardulyn, P., & Smits, G. (2020). Unraveling heteroplasmy patterns with
587 NOVOPlasty. *NAR Genomics and Bioinformatics*, 2(1), lqz011.

588 Drew, J. C., & Triplett, E. W. (2008). Whole Genome Sequencing in the Undergraduate Classroom:
589 Outcomes and Lessons from a Pilot Course. *Journal of Microbiology & Biology Education*,
590 9(1), 3-11. doi:doi:10.1128/jmbe.v9.89

591 DToL Consortium (2022). Sequence locally, think globally: The Darwin tree of life project. *Proceedings
592 of the National Academy of Sciences*, 119(4), e2115642118.

593 Glinos, D. A., Garborcauskas, G., Hoffman, P., Ehsan, N., Jiang, L., Gokden, A., . . . Garimella, K.
594 (2022). Transcriptome variation in human tissues revealed by long-read sequencing. *Nature*,
595 608(7922), 353-359.

596 Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H., . . . The Bioconda,
597 T. (2018). Bioconda: sustainable and comprehensive software distribution for the life sciences.
598 *Nature Methods*, 15(7), 475-476. doi:10.1038/s41592-018-0046-7

599 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for
600 genome assemblies. *Bioinformatics*, 29(8), 1072-1075. doi:10.1093/bioinformatics/btt086

601 Hollingsworth, P. M., Li, D.-Z., van der Bank, M., & Twyford, A. D. (2016). Telling plant species apart
602 with DNA: from barcodes to genomes. *Phil. Trans. R. Soc. B*, 371(1702), 20150338.

603 Hotaling, S., Slabach, B. L., & Weisrock, D. W. (2018). Next-generation teaching: a template for
604 bringing genomic and bioinformatic tools into the classroom. *Journal of Biological Education*,
605 52(3), 301-313. doi:10.1080/00219266.2017.1357650

606 Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., DePamphilis, C. W., Yi, T.-S., & Li, D.-Z. (2020).
607 GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes.
608 *Genome Biology*, 21, 1-31.

609 Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C., Davies, H., Forrest, L. L., . . . Hollingsworth, P. M.
610 (2021). Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers
611 of the United Kingdom. *Molecular ecology resources*, 21(6), 2050-2062.

612 Kamathewatta, K. I., Bushell, R. N., Young, N. D., Stevenson, M. A., Billman-Jacobe, H., Browning, G.
613 F., & Marenda, M. S. (2019). Exploration of antibiotic resistance risks in a veterinary teaching
614 hospital with Oxford Nanopore long read sequencing. *PLOS ONE*, 14(5), e0217600.
615 doi:10.1371/journal.pone.0217600

616 Kang, M., Chanderbali, A., Lee, S., Soltis, D. E., Soltis, P. S., & Kim, S. (2023). High-molecular-weight
617 DNA extraction for long-read sequencing of plant genomes: An optimization of standard
618 methods. *Applications in Plant Sciences*, 11(3), e11528.
619 doi:<https://doi.org/10.1002/aps3.11528>

620 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
621 improvements in performance and usability. *Molecular Biology and Evolution*, 30(4), 772-780.

622 Kobayashi, S., Maldonado, J. E., Gaete, A., Araya, I., Aguado-Norese, C., Cumplido, N., . . . School
623 Earwig Genome, C. (2023). DNA sequencing in the classroom: complete genome sequence of
624 two earwig (Dermaptera; Insecta) species. *Biological Research*, 56(1), 6. doi:10.1186/s40659-
625 023-00414-9

626 Lewin, H. A., Richards, S., Lieberman Aiden, E., Allende, M. L., Archibald, J. M., Bálint, M., . . .
627 Bertorelle, G. (2022). The earth BioGenome project 2020: Starting the clock. In (Vol. 119, pp.
628 e2115635118): National Acad Sciences.

629 Logsdon, G. A., Vollger, M. R., & Eichler, E. E. (2020). Long-read human genome sequencing and its
630 applications. *Nature Reviews Genetics*, 21(10), 597-614.

631 Marx, V. (2023). Method of the year: long-read sequencing. *Nature Methods*, 20(1), 6-11.
632 doi:10.1038/s41592-022-01730-w

633 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., &
634 Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in
635 the genomic era. *Molecular Biology and Evolution*, 37(5), 1530-1534.

636 Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., . . . Phillippy, A. M.
637 (2022). The complete sequence of a human genome. *Science*, 376(6588), 44-53.
638 doi:doi:10.1126/science.abj6987

639 Okonechnikov, K., Golosova, O., Fursov, M., & Team, U. (2012). Unipro UGENE: a unified
640 bioinformatics toolkit. *Bioinformatics*, 28(8), 1166-1167.

641 Pellicer, J., & Leitch, I. J. (2020). The Plant DNA C-values database (release 7.1): an updated online
642 repository of plant genome size data for comparative studies. *New phytologist*, 226(2), 301-
643 305.

644 Qu, X.-J., Moore, M. J., Li, D.-Z., & Yi, T.-S. (2019). PGA: a software package for rapid, accurate, and
645 flexible batch annotation of plastomes. *Plant Methods*, 15(1), 50. doi:10.1186/s13007-019-
646 0435-7

647 Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System (<http://www.barcodinglife.org>). *Molecular Ecology Notes*, 7(3), 355-364.

648 Rempel, A., & Wittler, R. (2021). SANS serif: alignment-free, whole-genome-based phylogenetic
649 reconstruction. *Bioinformatics*, 37(24), 4868-4870.

650 Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. *Nature Methods*, 17(2),
651 155-158. doi:10.1038/s41592-019-0669-3

652 Schalamun, M., Nagar, R., Kainer, D., Beavan, E., Eccles, D., Rathjen, J. P., . . . Schwessinger, B.
653 (2019). Harnessing the MinION: An example of how to establish long-read sequencing in a
654 laboratory using challenging plant tissue from *Eucalyptus pauciflora*. *Molecular ecology
655 resources*, 19(1), 77-89. doi:https://doi.org/10.1111/1755-0998.12938

656 Song, F., Li, T., Yan, H.-F., Feng, Y., Jin, L., Burgess, K. S., & Ge, X.-J. (2023). Plant DNA barcode
657 library for native flowering plants in the arid region of northwestern China. *Molecular ecology
658 resources*, 23(6), 1389-1402. doi:https://doi.org/10.1111/1755-0998.13797

659 Straub, S. C., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the
660 tip of the genomic iceberg: Next-generation sequencing for plant systematics. *American
661 Journal of Botany*, 99(2), 349-364.

663 Turudić, A., Liber, Z., Grdiša, M., Jakše, J., Varga, F., & Šatović, Z. (2021). Towards the well-
664 tempered chloroplast DNA sequences. *Plants*, 10(7), 1360.

665 Twyford, A. D., & Ness, R. W. (2017). Strategies for complete plastid genome sequencing. *Molecular*
666 *ecology resources*, 17(5), 858-868.

667 Uliano-Silva, M., Ferreira, J. G. R. N., Krasheninnikova, K., Blaxter, M., Mieszkowska, N., Hall, N., . . .
668 Darwin Tree of Life, C. (2023). MitoHiFi: a python pipeline for mitochondrial genome assembly
669 from PacBio high fidelity reads. *BMC Bioinformatics*, 24(1), 288. doi:10.1186/s12859-023-
670 05385-y

671 Walker, J. F., Jansen, R. K., Zanis, M. J., & Emery, N. C. (2015). Sources of inversion variation in the
672 small single copy (SSC) region of chloroplast genomes.

673 Wang, X., Gussarova, G., Ruhsam, M., de Vere, N., Metherell, C., Hollingsworth, P. M., & Twyford, A.
674 D. (2018). DNA barcoding a taxonomically complex hemiparasitic genus reveals deep
675 divergence between ploidy levels but lack of species-level resolution. *AoB PLANTS*, 10(3),
676 ply026-ply026. doi:10.1093/aobpla/ply026

677 Watsa, M., Erkenswick, G. A., Pomerantz, A., & Prost, S. (2019). Genomics in the jungle: using
678 portable sequencing as a teaching tool in field courses. *bioRxiv*, 581728. doi:10.1101/581728

679 Zaaijer, S., Columbia University Ubiquitous Genomics, c., & Erlich, Y. (2016). Using mobile
680 sequencers in an academic classroom. *eLife*, 5, e14258. doi:10.7554/eLife.14258

681 Zhou, W., Armijos, C. E., Lee, C., Lu, R., Wang, J., Ruhlman, T. A., . . . Jones, C. D. (2023). Plastid
682 Genome Assembly Using Long-read data. *Molecular ecology resources*, 23(6), 1442-1457.
683 doi:<https://doi.org/10.1111/1755-0998.13787>

684

685 **Data accessibility**

686

687 The full bioinformatics learning materials for the course are available as Jupyter notebooks on the
688 Edinburgh Genomics Github: https://github.com/EdinburghGenomics/NERC_EcologicalGenomics. A
689 static version of the wet laboratory and bioinformatics guides used for teaching are available in the

690 Supporting Information. All data associated with the project are available on ENA in project
691 PRJEB76543.

692

693 **Benefit sharing**

694

695 All resources developed for this course are openly available and teachers are encouraged to adopt
696 any part for their own classes.

697

698 All plant samples were collected at the University of Edinburgh, with permission.

699

700 **Acknowledgements**

701

702 We thank all of the participants in the two NERC Advanced Training in Ecological Genomics Courses
703 (April and June 2023) for their involvement, feedback and allowing us to share their data. We also
704 thank Edinburgh Genomics staff for preparing materials and assisting in delivery, in particular Ana
705 Vieira, Matt Arno and Stewart Laing. Thanks to Katerina Guschanski for supporting course
706 developments and ranking applications. We also thank ONT for providing reagents.

707

708 **Funding**

709

710 Funding was provided by a NERC grant, Edinburgh Ecological Genomics Advanced Training,
711 NE/X00922X/1.

712

713 **Conflicts of interest**

714

715 Library preparation and sequencing consumables were supplied free of charge by Oxford Nanopore
716 Technologies. However, ONT had no involvement in course design, delivery or in the writing of the
717 manuscript.

718

719 **Author contributions**

720 Alex Twyford conceived the study and secured funding. Robert Foster led the development of the wet
721 lab protocols. Heleen De Weerd, Nathan Medd, Tim Booth and Urmilla Trivedi developed the bioinfor-
722 matics protocols. All authors contributed to the delivery of the teaching. Alex Twyford drafted the pa-
723 per with input from co-authors.

724 **Figures and Table legends**

725

726 **Figure 1.** Sequence data generation for (a) Qiagen DNeasy extractions run on the ONT PromethION
727 without cleanup, (b) Nucleon PhytoPure extractions plus Powerclean Pro cleanup, with nuclease wash
728 and library reloaded after 24 hours, (c) Qiagen Dneasy extraction with cleanup, generated by class 1
729 students. Note how data without cleanup in (a) have fewer active pores. Pores are classified at each
730 time point into: green, pore available for sequencing and black, pores saturated. Additional colours
731 represent: light blue, zero, no current; turquoise, unavailable (may be partially with a nuclease wash
732 and re-loading); dark blue, inactive, no longer suitable for sequencing; yellow, reserved pore, will
733 return to sequencing when required.

734 **Figure 2.** Sequence properties from the Oxford Nanopore sequencing of plant samples in the test
735 data. (a) Total sequencing output in bases, (b) Log transformed read length, (c) Average base quality.

736 **Figure 3.** Example phylogenetic trees based on newly assembled plastid genomes, here for the focal
737 taxon *Antirrhinum majus*. Both orientations of the SSC are included (labelled path1 and path2). (a) IQ-
738 Tree analysis using the sequence alignment, (b) SANS serif analysis based on k-mers.

739 **Figure 4.** Representative screenshots from BOLD for searches made for the barcoding sequences
740 extracted from the newly assembled *Buddleja davidii* plastome. Top is *matK* and bottom *rbcL*. Note in
741 this case *matK* and *rbcL* have conflicting top hits.

742 **Table 1.** Species used for protocol development. Genome sizes from the Plant DNA C-value database.

743 **Table 2.** Quality Control of DNA Extractions from the DNeasy Plant Mini Kit.

744 **Table 3.** Nuclear genome assembly statistics for the plant samples sequenced with ONT in the test
745 run.

746 **Table 4.** Plastid genome assembly summary statistics for the samples sequenced in the test run.

747 Reads aligned refers to the percentage of reads in the total dataset that map to the finished plastome
748 assembly.