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ABSTRACT 41 

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy characterized by 42 

high rates of induction failure and relapse, and effective targeted immunotherapies are lacking. 43 

Despite promising clinical progress with genome-edited CD7-directed CAR-T cells, which 44 

present significant logistical and regulatory issues, CAR-T cell therapy in T-ALL remains 45 

challenging due to the shared antigen expression between malignant and healthy T cells. This 46 

can result in CAR-T cell fratricide, T cell aplasia, and the potential for blast contamination 47 

during CAR-T cell manufacturing. Recently, CAR-T cells have been described that target non-48 

pan-T antigens, absent on healthy T cells but expressed on specific T-ALL subsets. These 49 

antigens include CD1a (NCT05679895), which is expressed in cortical T-ALL, and CCR9. We 50 

show that CCR9 is expressed on >70% of T-ALL patients (132/180) and is maintained at 51 

relapse, with a safe expression profile in healthy hematopoietic and non-hematopoietic 52 

tissues. Further analyses showed that dual targeting of CCR9 and CD1a could benefit ~86% 53 

of patients with T-ALL, with a greater blast coverage than single CAR-T cell treatments. We 54 

therefore developed, characterized, and preclinically validated a novel humanized CCR9-55 

specific CAR with robust and specific antileukemic activity as a monotherapy in vitro and in 56 

vivo against cell lines, primary T-ALL samples, and patient-derived xenografts. Importantly, 57 

CCR9/CD1a dual-targeting CAR-T cells showed higher efficacy than single-targeting CAR-T 58 

cells, particularly in T-ALL cases with phenotypically heterogeneous leukemic populations. 59 

Dual CCR9/CD1a CAR-T therapy may prevent T cell aplasia and obviate the need for 60 

allogeneic transplantation and regulatory-challenging genome engineering approaches in T-61 

ALL.   62 
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INTRODUCTION 63 

T cell acute lymphoblastic leukemia (T-ALL) is a clonal hematologic malignancy characterized 64 

by a block in differentiation, resulting in the accumulation of T cell lineage lymphoblasts, and 65 

often presents with leukocytosis, cytopenias, and extramedullary infiltration1. It is a highly 66 

heterogeneous disease both phenotypically and genetically, with recurrent mutations in 67 

transcription factors and signaling pathways involved in hematopoietic homeostasis and T cell 68 

development2-4. T-ALL accounts for ~15% and ~25% of all pediatric and adult ALL cases, 69 

respectively. Treatment is based on intensive multi-agent cytotoxic chemotherapy1. Despite a 70 

cure rate of ~80% in children2,3, long-term survival is <40% in adult patients who can tolerate 71 

intensive chemotherapy4. More than half of patients relapse or fail to respond to standard 72 

therapy, resulting in a very poor prognosis. Median overall survival for patients with 73 

relapsed/refractory (R/R) disease is ~8 months5. For R/R T-ALL, the standard approach to 74 

achieve remission typically requires intensive re-induction chemotherapy followed by 75 

allogeneic hematopoietic stem cell transplantation (alloHSCT). However, this is associated 76 

with significant toxicity and high failure rates, highlighting the urgent need for new targeted 77 

and safe therapeutic strategies for patients with R/R T-ALL. 78 

Unlike B cell malignancies, which have effective immunotherapy target antigens such as 79 

CD19, CD22, or CD20, the are currently no approved immunotherapies for T-ALL6–9. A major 80 

challenge in the development of immunotherapies against T cell malignancies is the lack of 81 

safe and actionable tumor-specific antigens10,11. The high phenotypic similarity between 82 

effector T cells and leukemic lymphoblasts not only complicates the manufacture of 83 

autologous CAR-T cells directed against pan-T antigens such as CD7 or CD5, but also 84 

induces fratricide and T cell aplasia12–16. Recent clinical studies have addressed these 85 

limitations by using either genome-edited or expression blocker-engineered CD7-directed 86 

CAR-T cells17–22. While elegant, these strategies present significant logistical and regulatory 87 

challenges, and are limited to the use of allogeneic effector T cells and to patients with a donor 88 

available for rescue therapy with alloHSCT. 89 

A solution to these limitations is to direct CAR-T cells against non-pan-T antigens, which are 90 

expressed on blasts but not on healthy T lymphocytes. This strategy would facilitate the 91 

manufacture of autologous CAR-T cells while also avoiding both fratricide and immune 92 

toxicity23–28. In this context, we previously identified CD1a as an immunotherapeutic target for 93 

the treatment of cortical T-ALL with a safe profile in non-hematopoietic and hematopoietic 94 

tissues, including normal T cells. This allowed us to generate and validate CD1a-directed 95 

CAR-T cells, which are now being tested in a phase I clinical trial (NCT05679895)25,29. 96 

However, CD1a is expressed solely in cortical T-ALL cases, a subtype that accounts for only 97 
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~30% of all T-ALL cases, while sparing other T-ALL subtypes that are critically associated with 98 

higher refractoriness and relapse rates. 99 

Expression of the chemokine receptor CCR9, a G protein-coupled receptor for the ligand 100 

CCL25, has recently been suggested to be restricted to two-thirds of T-ALL cases, and CAR-101 

T cells targeting CCR9 were resistant to fratricide and had potent antileukemic activity in 102 

preclinical studies30,31,27. Here, we show that dual targeting of CCR9 and CD1a may benefit a 103 

large proportion of T-ALL cases, with greater blast coverage than treatment with single-104 

targeting CAR-T cells. We preclinically validate a novel humanized CCR9-specific CAR with 105 

robust and specific antileukemic activity as a monotherapy in vitro and in vivo and demonstrate 106 

the advantage of dual CCR9- and CD1a-targeting CAR-T cells, particularly in T-ALL cases 107 

with phenotypically heterogeneous leukemic populations. We propose a highly effective CAR-108 

T cell strategy for T-ALL that may prevent T cell aplasia and circumvent the need for alloHSCT 109 

and regulatory-challenging genome engineering approaches.  110 
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METHODS 111 

Donor and patient samples 112 

Research involving human samples was approved by the Clinical Research Ethics Committee 113 

(HCB/2023/0078, Hospital Clínic, Barcelona, Spain). Thymus (n=4), peripheral blood (PB, 114 

n=18), and bone marrow (BM, n=13) samples were obtained from healthy individuals. BM 115 

samples were sourced from healthy donor transplantation leftovers and thymuses were 116 

obtained from patients undergoing thymectomy from thoracic surgeries. Diagnostic and 117 

relapse primary T-ALL samples (n=180) were obtained from the sample collections of the 118 

participating hospitals after informed consent (IGTP Biobank, PT17/0015/0045). 119 

 120 

Cell lines 121 

MOLT4, SupT1, and MV4;11 cell lines were purchased from the DSMZ cell line bank and 122 

cultured in RPMI 1640 supplemented with 10% fetal bovine serum (FBS). CCR9-knockout 123 

(KO) and CD1a KO MOLT4 cells were generated by CRISPR-mediated genome editing. 124 

500,000 cells were electroporated using the Neon Transfection System (Thermo Fisher 125 

Scientific) with a Cas9/crRNA:tracrRNA complex (IDT). A crRNA guide was designed for each 126 

gene: CCR9 5’-GAAGTTAACGTAGTCTTCCATGG-3’ and CD1A 5’-127 

TATTCCGTATACGCACCATTCGG-3’. After electroporation, cells were recovered, and the 128 

different KO clones were FACS-sorted and purity confirmed (>99%). 129 

 130 

CCR9 monoclonal antibody and generation of a humanized scFv  131 

Monoclonal antibodies (mAbs) reactive with human CCR9 were generated using hybridoma 132 

technology (ProteoGenix). Anti-CCR9 antibody-producing hybridomas were generated by 133 

immunizing mice with different peptides derived from the human extracellular N-terminal 134 

region of human CCR9 fused to a KLH carrier protein to improve stability and the immune 135 

response. After hybridoma subcloning and initial ELISA screenings, supernatants from 136 

individual clones were analyzed by flow cytometry for reactivity against CCR9-expressing 137 

MOLT4 and 300.19-hCCR9 cells and their respective negative controls (MOLT4 CCR9 KO 138 

and wild type 300.19 cells). One hybridoma (clone #115, IgG1 isotype) was selected, its 139 

productive IgG was sequenced, and the VH and VL regions were used to derive the murine 140 

single-chain variable fragment (scFv) using the Mouse IgG Library Primer Set (Progen), as 141 

described25,32. 142 

For humanization, a sequence search was performed in the IMGT database33 to identify 143 

immunoglobulin genes with the highest identity to both the VH and VL domains of murine 144 

antibody #155. The highest murine-human sequence identities were IGHV1-3*01 for VH (60% 145 

identity) and IGKV2D-29*02 for VL (82% identity); the number of different residues (with 146 
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different levels of conservation) excluding the complementarity-determining regions (CDRs) 147 

was 32 and 13, respectively. The CDRs, including the Vernier regions, were grafted onto the 148 

human scaffolds. A structural model of the murine scFv was used to identify other structurally 149 

important residues in the antibody that differed from the corresponding positions in the 150 

humanized versions and should be retained (e.g., buried residues, residues located at the 151 

interface, etc.). Two humanized candidates were generated, each with different degrees of 152 

residue substitution at non-conserved positions. The sequence-based humanized candidate 153 

#1 (H1) aimed to have only the changes necessary to transfer CDRs, Vernier, and structurally 154 

important residues to the human scaffold, while the humanized candidate #2 (H2) allowed for 155 

some additional changes to be made to better match the human sequence. 156 

 157 

CAR design and vectors, lentiviral production, and T cell transduction 158 

Single scFvs (CD1a H and CCR9 M, H1, and H2), all possible configurations of tandem CAR 159 

constructs (n=8) and four different configurations of bicistronic CAR, were cloned into the 160 

clinically validated pCCL lentiviral backbone containing the human CD8 hinge and 161 

transmembrane (TM) domains, 4-1BB and CD3ζ endodomains, and a T2A-eGFP reporter 162 

cassette. All constructs contain the signal peptide (SP) derived from CD8α (SP1) upstream 163 

(5’) of the first scFv. Two different SPs derived from either human IgG1 (SP2) or murine IgG1 164 

(SP3) were used for the second CAR in bicistronic constructs. Third-generation lentiviral 165 

vectors were generated in 293T cells by co-transfection of the different pCCL expression 166 

plasmids, pMD2.G (VSV-G) envelope, and pRSV-Rev and pMDLg/pRRE packaging plasmids 167 

using polyethylenimine (Polysciences)34. Viral particle-containing supernatants were collected 168 

at 48 and 72 h after transfection and concentrated by ultracentrifugation. 169 

PB mononuclear cells were isolated from buffy coats of healthy donors by density-gradient 170 

centrifugation using Ficoll-Paque Plus (Merck). Buffy coats were sourced from the Catalan 171 

Blood and Tissue Bank. T cells were activated for 2 days in plates coated with anti-CD3 172 

(OKT3) and anti-CD28 (CD28.2) antibodies (BD) and transduced with CAR-encoding lentiviral 173 

particles at a multiplicity of infection (MOI) of 10. T cells were expanded in RPMI 1640 medium 174 

containing 10% heat-inactivated FBS, penicillin-streptomycin, and 10 ng/mL interleukin (IL)-7 175 

and IL-15 (Miltenyi Biotec). Expression of CAR molecules in T cells was detected by flow 176 

cytometry using the eGFP reporter signal and biotin-SP goat anti-mouse IgG, F(ab’)2 (Jackson 177 

ImmunoResearch) and PE-conjugated streptavidin (Thermo Fisher Scientific). Vector copy 178 

number (VCN) was determined by qPCR using Light Cycler 480 SYBRGreen I Master (Roche) 179 

using primers designed against the WPRE proviral sequence, as described35,36. Absolute 180 
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quantification was used to determine VCN/genome, adjusted to the percentage of transduction 181 

of each CAR as determined by flow cytometry analysis. 182 

 183 

In vitro cytotoxicity and cytokine secretion assays 184 

Target cells (100,000 to 300,000 cells/well) were labeled with eFluor 670 dye (Thermo Fisher 185 

Scientific) and incubated in a 96-well round bottom plate with untransduced or CAR-186 

transduced T cells at the indicated effector:target (E:T) ratios for 24 h. Cytotoxicity was 187 

assessed by flow cytometric analysis of residual live target cells (eFluor 670+ 7-AAD–). For 188 

primary T-ALL blasts, the absolute number of live target cells was also determined using 189 

Trucount tubes (BD). Additional wells containing only target cells (“no effector”; NE) were 190 

always plated as controls. Transduction percentages were adjusted across conditions when 191 

comparing multiple CAR constructs. Quantification of the pro-inflammatory cytokines IFN-γ, 192 

TNF-α, and IL-2 was performed by ELISA using BD OptEIA Human ELISA kits (BD) on 193 

supernatants collected after 24 h of target cell exposure. 194 

 195 

Flow cytometry 196 

The fluorochrome-conjugated antibodies against CD1a (HI149), CD3 (UCHT1), CD4 (SK3), 197 

CD7 (M-T701), CD8 (SK1 and RPA-T8), CD14 (MφP9), CD19 (HIB19), CD34 (8G12), CD38 198 

(HIT2), CD45 (HI30, 2D1), HLA-ABC (G46-2.6), mouse IgG1, κ isotype control (X40) and the 199 

7-AAD cell viability solution were purchased from BD. Antibodies against CCR9 (L053E8), 200 

TCRαβ (IP26), His tag (J095G46), and mouse IgG2a, κ isotype control (MOPC-173) were 201 

purchased from BioLegend. Antibodies against CD4 (13B8.2), CD34 (581), and TCRγδ 202 

(IMMU510) were purchased from Beckman Coulter. Alexa Fluor 647-conjugated anti-mouse 203 

IgG (H+L) was purchased from Cell Signaling Technology. Samples were stained with mAbs 204 

(30 min at 4ºC in the dark) and erythrocytes were lysed (when applicable) using a FACS lysing 205 

solution (BD). Isotype-matched nonreactive fluorochrome-conjugated mAbs were used as 206 

controls. Cell acquisition was performed on a FACSCanto II and analyzed using FACSDiva 207 

and FlowJo v10 software (BD). All gating strategies and analyses are shown in Fig. S1. 208 

 209 

In vivo assessment of CAR-T cell efficacy in T-ALL models 210 

In vivo experiments were performed in the Barcelona Biomedical Research Park (PRBB) 211 

animal facility. All procedures were approved by and performed according to the guidelines of 212 

the PRBB Animal Experimentation Ethics Committee in agreement with the Generalitat de 213 

Catalunya (DAAM11883). All mice were housed under specific pathogen-free conditions. 214 

Seven- to twelve-week-old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (The Jackson 215 

Laboratory) were sublethally irradiated (2 Gy) and systemically transplanted with 1×106 T-ALL 216 
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patient-derived xenograft (PDX) cells via the tail vein. Two to three weeks later, PB and BM 217 

samples were collected to assess the leukemic burden and establish the different treatment 218 

groups prior to CAR-T cell injection (3-4×106 cells) via the tail vein. For in vivo studies with 219 

MOLT4 cell lines, phenotypically heterogeneous MOLT4 cells (CCR9+CD1a+, CCR9–CD1a+, 220 

CCR9+CD1a–; 1:1:1 ratio, 1×106 cells) were transplanted three days before CAR-T cell 221 

administration. Tumor burden was monitored weekly by flow cytometry of PB samples. For 222 

luciferase-expressing T-ALL models MOLT4 and ALL-84337, tumor growth was monitored 223 

weekly by bioluminescence measurement after intraperitoneal administration of 60 mg/kg of 224 

D-luciferin (PerkinElmer). Bioluminescence was evaluated using Living Image software 225 

(PerkinElmer). Mice were sacrificed when signs of disease were evident. Spleens were 226 

manually dissected, and a single-cell suspension was obtained using a 70 µm strainer. 227 

Samples were stained and processed for flow cytometry as described above. 228 

 229 

Statistical analysis 230 

For CAR-T cell expansion, cytotoxicity, and in vivo studies, two-way ANOVA with Tukey’s 231 

multiple comparison adjustments was used to compare the different groups, with 232 

untransduced T cells serving as controls. For cytokine release assays, a one-way ANOVA with 233 

Dunnett’s multiple comparison adjustment was used. All statistical tests were performed using 234 

Prism 6 (GraphPad Software). The number of biological replicates is indicated in the figure 235 

legends. Significance was considered when p-values were lower than 0.05 (ns, not significant; 236 

*p<0.05; **p<0.01; ***p<0.001).  237 
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RESULTS 238 

CCR9 is a safe and specific target for T-ALL 239 

Apart from CD1a, there are no other non-pan-T safe markers available for targeting T cell 240 

tumors with adoptive cellular immunotherapy. Ideally, immunotherapy targets should be 241 

expressed in tumor cells but not in healthy tissues, including T cells. We first analyzed CCR9 242 

expression by flow cytometry in a cohort of 180 T-ALL samples (Fig. 1a). Consistent with a 243 

previous report from the Great Ormond Street Hospital/University College London group27, we 244 

found that 73% (132/180) of T-ALL samples were CCR9+, with variable levels of expression 245 

(using a cut-off of ≥20% expression for positivity) (Fig. 1a, S1a). Importantly, non-leukemic 246 

CD4+ and CD8+ T cells from the same patients remained CCR9–. This proportion of CCR9 247 

positivity in T-ALL was maintained (64-76%) when patients were stratified into different 248 

maturation subtypes according to the EGIL immunophenotypic classification38 (Fig. 1b). 249 

Notably, the proportion of CCR9+ T-ALL cases increased considerably in relapse samples 250 

(92%, 12/13), with a much higher blast coverage than observed at diagnosis (Fig. 1c). 251 

An immunotherapeutic target must meet a stringent safety profile, ensuring that it is not 252 

expressed in other hematopoietic or non-hematopoietic cell types. To assess the safety profile 253 

of CCR9, we first examined its expression in the Tabula Sapiens single-cell RNAseq dataset, 254 

a human reference atlas comprising 24 different tissues and organs from adult healthy 255 

donors39. We found a complete absence of CCR9 expression in all tissues except for minor 256 

subsets of thymic cells and small intestinal resident lymphocytes (Fig. 1d,e). We confirmed 257 

the expression of CCR9 in all thymocyte subpopulations along T cell development by flow 258 

cytometric analysis of postnatal thymuses (n=4, Fig. 1f, S1b). However, the same analysis of 259 

healthy pediatric and adult PB (n=18) and BM (n=13) samples revealed that, with the 260 

exception of expression in 10-30% of B cells, CCR9 was minimally expressed in all major 261 

leukocyte subpopulations analyzed, including CD34+ hematopoietic stem/progenitor cells 262 

(HSPCs) and resting and CD3/CD28-activated T cells (Fig. 1g,h; S1c,d). In sum, CCR9 is 263 

expressed in a high proportion of T-ALL patients, particularly at relapse, while exhibiting a 264 

safety profile characterized by low or absent expression in healthy tissues, CD34+ HSPCs, 265 

and T lymphocytes. This highlights its potential as a target for the development of CCR9-266 

directed, fratricide-resistant, safe CAR-T cell therapy. 267 

 268 

CCR9 CAR-T cells are highly effective against T-ALL blasts 269 

Next, we sought to develop a humanized CCR9-directed CAR for the treatment of R/R T-ALL. 270 

The highly hydrophobic nature and insolubility of the CCR9 protein led us to use the CCR9 N-271 

terminal extracellular tail for mouse immunization and subsequent generation of murine CCR9 272 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.610843doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610843
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

antibody-producing hybridomas. After hybridoma subcloning and individual testing for CCR9 273 

reactivity, one clone (#115) demonstrated specificity (Fig. 2a). The productive IgG was 274 

sequenced and the VH and VL regions were used to derive the murine scFv for CAR design. 275 

Two additional humanized scFvs were generated by structural fitting and modeling of the 276 

CDRs and neighboring regions into human IgG scaffolds (Fig. S2a). Epitope mapping using 277 

overlapping peptides from the CCR9 N-terminus revealed the CCR9 epitope recognized by 278 

the clone #115 scFv (Fig. S2b). The murine (M) and both humanized (H1 and H2) CCR9 279 

scFvs were cloned into the clinically validated pCCL-based second-generation CAR lentiviral 280 

backbone, including a T2A-eGFP reporter cassette (Fig. 2b). Primary T cells were 281 

successfully transduced, and CAR expression detected by anti-F(ab’)2 staining, which 282 

correlated with the eGFP signal (Fig. 2c). All CCR9 CAR-T cells showed identical expansion 283 

to untransduced T cells, demonstrating the absence of fratricide (Fig. 2d). 284 

The T-ALL cell lines MOLT4 and SupT1 (with high and dim expression of CCR9, respectively) 285 

and the control (CCR9 negative) acute myeloid leukemia cell line MV4;11, as well as two 286 

independent T-ALL PDX samples (Fig. 2e,f), were used to assess the in vitro cytotoxicity of 287 

CCR9 CAR-T cells (Fig. 2g,h). Cytotoxic activity was assessed in 24-h co-cultures with 288 

untransduced/CAR-T cells at different E:T ratios. CCR9 M and H2 CAR-T cells displayed 289 

similar robust and specific cytotoxicity in an antigen density-dependent manner. By contrast, 290 

H1 CAR-T cells exhibited slightly inferior killing, particularly with CCR9dim SupT1 cells and, to 291 

a lesser extent, with PDX1 blasts (Fig. 2g,h). IFN-γ secretion in the co-culture supernatants, 292 

used as a surrogate for CAR-T cell activation and cytotoxicity, was highest in CCR9 M and H2 293 

CAR-T cells (Fig. 2i). 294 

To test CAR-T cell function in vivo, we used two different T-ALL PDX models. In the first model, 295 

we compared untransduced and all three CAR-T cells (M, H1, and H2) using a slow growing 296 

T-ALL PDX model (PDX2) (Fig. 2j). In contrast to untransduced T cells, all three treatment 297 

groups were able to control leukemia progression, as assessed by flow cytometry 10-week 298 

follow-up in BM, PB, and spleen (Fig. 2k, gating strategies in Fig. S1e). However, while all 299 

mice treated with CCR9 M or H2 CAR-T cells achieved complete response, 2 of 6 mice treated 300 

with CCR9 H1 CAR-T cells showed detectable leukemic burden at the endpoint (Fig. 2k). This 301 

further supports the in vitro data demonstrating the higher anti-leukemia efficacy of CCR9 H2 302 

CAR over H1 CAR. Accordingly, CCR9 H2 CAR-T cells were selected for further experiments. 303 

To additionally test the robustness of CCR9 H2 CAR-T cells, we used a second, highly 304 

aggressive CCR9+ luciferase-bearing PDX (ALL-843) (Fig. 2l). Bioluminescence follow-up 305 

showed disease remission in 4 out of 5 mice (80%) at week 2 post-treatment in the CCR9 H2 306 

CAR-T-treated group, in contrast to disease progression in all control mice (Fig. 2m). Disease 307 

progression was also monitored by flow cytometric analysis of BM, PB, and spleen, confirming 308 
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leukemia control in mice treated with CCR9 H2 CAR-T cells but not in control-treated mice 309 

(Fig. 2n), even in this highly aggressive model. Thus, the humanized CCR9 H2 CAR is highly 310 

effective against T-ALL blasts in vitro and in vivo using several T-ALL cell lines and different 311 

PDX models. 312 

 313 

Humanized CCR9 and CD1a dual targeting CAR-T cells for T-ALL 314 

Our group has previously proposed a CD1a-directed CAR for the treatment of patients with 315 

CD1a+ cortical T-ALL25,29. Since both CD1a and CCR9 are safe non-pan-T targets that bypass 316 

both fratricide and T cell aplasia, we next immunophenotyped the 180 T-ALL samples for 317 

CD1a and CCR9 co-expression (Fig. 3a). Using a 20% expression cut-off for each marker, 318 

we observed that 51% and 73% of the patients expressed either CD1a or CCR9, respectively 319 

(Fig. 3a). Remarkably, however, we observed highly heterogeneous leukemic populations for 320 

CCR9 and CD1a, with each patient showing a unique co-expression profile, predominating in 321 

either CCR9+ or CD1a+ blasts (Fig. 3a,b). Strikingly, the analysis of all patients with >20% 322 

expression of either antigen revealed that 86% (155/180) of cases could benefit from dual 323 

CCR9/CD1a CAR-T cell therapy. 324 

The malleable nature of many markers has been demonstrated in various subtypes of acute 325 

leukemia40,41. To gain insight into the clinical-biological impact of the intratumoral phenotypic 326 

heterogeneity of CD1a and CCR9, we performed in vivo experiments whereby the CD1a+/– 327 

and CCR9– leukemic fractions from primary T-ALLs were FACS-sorted and transplanted into 328 

NSG immunodeficient mice to evaluate the phenotype of the resulting engraftment (Fig. S3). 329 

These experiments showed that both CD1a– and CCR9– fractions were capable of engrafting 330 

and, importantly, that the graft reproduced the initial leukemia phenotype, where positive and 331 

negative populations for CD1a and CCR9 coexist (Fig. S3). This marker plasticity suggests 332 

that patients with even <20% positive blasts for each marker could benefit from dual treatment 333 

(Fig 3a,b), thereby increasing not only the number of patients eligible for treatment but also 334 

the blast coverage per patient, which would likely contribute to lower immune escape rates.  335 

We therefore generated dual CAR-T cells targeting both CCR9 and CD1a. Several molecular 336 

strategies to achieve dual targeting were tested, including eight configurations of tandem 337 

CARs (two scFvs in a single CAR molecule), four bicistronic CARs (two independent CAR 338 

molecules encoded in one lentiviral vector), and co-transduction with two single CAR-339 

encoding lentiviral vectors simultaneously (Fig. 3c,d). A comparison of the transduction 340 

efficiency and cytotoxic efficacy for each strategy revealed that the co-transduction strategy 341 

achieved significantly higher transduction levels and specific cytotoxic performance using T-342 

ALL cells with combinatorial CCR9/CD1a phenotypes (wt, CCR9 KO, CD1a KO, and double 343 
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KO) (Fig. 3e,f). Thus, co-transduction with single CCR9 CAR and CD1a CAR viral vectors 344 

was selected as our dual-targeting CAR-T strategy of choice. 345 

Using combinatorial phenotypes for both antigens of T-ALL cells, we then tested the specificity 346 

and efficiency of dual CCR9/CD1a-directed CAR-T cells generated by co-transduction. In 347 

contrast to single CAR-T cells, dual CCR9/CD1a CAR-T cells were able to eliminate all target 348 

cells in 24-h co-cultures at low E:T ratios as long as one of the antigens remained expressed 349 

(Fig. 4a,b).  350 

Next, we tested the in vivo efficacy of dual CCR9/CD1a CAR-T cells in a “stress” model against 351 

PDX cells expressing both antigens by injecting fewer therapeutic T cells (Fig. 4c, S1e). 352 

Weekly flow cytometry follow-up in the PB revealed that all CAR-T cell treatments controlled 353 

the disease for up to 4-5 weeks. However, when mice were allowed to relapse, the dual CAR-354 

T therapy offered slightly higher rates of complete response (defined as <1% of blasts) in PB 355 

and spleen (Fig. 4d). In addition, immunophenotyping of the CAR-resistant T-ALL blasts 356 

analyzed at the endpoint (week 8) revealed partial downregulation of CD1a in mice treated 357 

with CD1a-directed CAR-T cells (both single CD1a or dual CCR9/CD1a CAR-Ts), whereas no 358 

downregulation was observed with CCR9 targeting (Fig. 4e). Taken together, the 359 

immunophenotyping data and the in vitro and in vivo experimental results support the potential 360 

for treating R/R T-ALL with CAR-T cells targeting both CCR9 and CD1a, generated by co-361 

transduction with two single CARs. 362 

 363 

CCR9 and CD1a dual targeting CAR-T cells efficiently eliminate T-ALL with 364 

phenotypically heterogeneous leukemic populations 365 

Next, we sought to evaluate the efficiency of co-transduced dual CCR9/CD1a CAR-T cells in 366 

the context of phenotypically heterogeneous leukemias. Intratumor phenotypic heterogeneity 367 

was recreated by mixing CCR9/CD1a combinatorial phenotypes (CCR9+CD1a+, CCR9+CD1a–368 

, and CCR9–CD1a+) of MOLT4 T-ALL cells in a 1:1:1 ratio (Fig. 5a). Time-course cytotoxicity 369 

assays revealed complete ablation of the entire leukemic population with dual CAR-T cells, 370 

whereas, as expected, single CAR-T cells were unable to eliminate those T-ALL cells that 371 

were negative for the corresponding target antigen, leading to leukemic escape (Fig. 5b). 372 

Identical results were obtained with a MOI of 5+5 and 10+10 for each single CAR vector for 373 

the dual strategy in terms of cytotoxicity (Fig. S4a), although the number of viral integrations 374 

per genome was higher at an MOI of 10+10 (Fig. S4b). Similar levels of the pro-inflammatory 375 

cytokines IFN-γ, TNF-α, and IL-2 were observed for each treatment (Fig. 5c). Finally, we 376 

tested the efficacy of dual CCR9/CD1a CAR-T cells in an in vivo setting using mixed 377 

phenotypes of MOLT4 target cells (Fig. 5d). Bioluminescence imaging and BM flow cytometric 378 
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analysis revealed massive disease control of the highly aggressive heterogeneous MOLT4 379 

cells with respect to both single CAR-T treatments (Fig. 5e,f). Taken together, our data 380 

highlights the superior efficacy of dual CCR9/CD1a CAR-T cells over single-targeting CAR-T 381 

cells in the treatment of T-ALL with phenotypically heterogeneous leukemic populations. 382 

383 
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DISCUSSION 384 

The clinical management of R/R T cell leukemias and lymphomas represents an unmet clinical 385 

need. While various immunotherapy strategies such as bispecific antibodies and CAR-T cells 386 

have revolutionized the treatment of B cell leukemias, lymphomas, and multiple myeloma, with 387 

several products approved by the FDA/EMA, these immunotherapies are much less advanced 388 

and have not been approved for T cell malignancies11. The primary challenge for the 389 

implementation of adoptive immunotherapies in T cell malignancies is the shared expression 390 

of surface membrane antigens between tumoral cells and healthy/non-leukemic T cells. This 391 

implies that the expression of a CAR targeting any pan-T antigen would most likely result in 392 

toxicities such as CAR-T fratricide and T cell aplasia11,42. Additionally, the shared expression 393 

of antigens between effector and tumor T cells may complicate the manufacturing process of 394 

autologous T cell therapies due to blast contamination of the leukapheresis products10. Clinical 395 

trials with CD7 CAR-T cells often employ stringent inclusion criteria, including a maximum 396 

allowable blast threshold (NCT06064903). This threshold is established to ensure that the 397 

CAR-T cell production is free of tumor cells, thereby preventing accidental CAR transduction 398 

of tumoral T cells and avoiding potential interference from blasts during the activation and 399 

expansion phases of the CAR-T cell product. 400 

To overcome these drawbacks, the current trend is to use allogeneic T lymphocytes to bypass 401 

potential blast contamination. However, this strategy requires multiple CRISPR/Cas9-402 

mediated gene edits to eliminate molecules such as the target antigen and the T cell receptor 403 

(TCR), thereby preventing fratricide and GvHD15,16. This strategy is only feasible with “off-the-404 

shelf” effector cells, as the technical and regulatory complexity of CRISPR/Cas9-mediated 405 

genome editing makes it difficult to implement with autologous T cells derived from patients in 406 

critical clinical states. Crucially, previous studies have demonstrated the negative impact of 407 

TCR elimination and genomic manipulation of T cells on the persistence of CAR-T cells and 408 

their genomic/chromosomal stability43,44. This point is very important in light of recent clinical 409 

studies and subsequent FDA investigations into the occurrence of neoplasms secondary to 410 

CAR-T therapy45–49. 411 

To circumvent the limitations of adoptive cell therapies for T cell malignancies, it would be 412 

ideal to redirect effector cells against non-pan-T targets present in the tumor but absent in 413 

healthy tissues. This approach facilitates the manufacture of autologous CAR-T cells and 414 

avoids both fratricide and immune toxicity23–28. In this context, we previously identified CD1a 415 

as a bona fide immunotherapeutic target for the treatment of cortical T-ALL with a safe profile 416 

in non-hematopoietic and hematopoietic tissues25,29. This led us to generate and preclinically 417 

validate CD1a-directed CAR-T cells, which are now being tested in a phase I clinical trial 418 
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(NCT05679895). However, CD1a only covers cases of cortical T-ALL, a subtype that accounts 419 

for ~30% of all diagnosed T-ALL cases, while sparing other T-ALL subtypes associated with 420 

higher refractoriness and relapse rates1,27,50,51. Here, we identify CCR9 as a target expressed 421 

in ~72% of diagnostic T-ALL cases and, importantly, in ~92% of relapses. Of note, Maciocia 422 

and colleagues previously proposed CCR9 as a target for T-ALL and elegantly reported similar 423 

expression and safety data27. Importantly, these expression rates are maintained in subtypes 424 

with poor prognosis and very high rates of refractoriness and relapse, such as early T cell 425 

progenitor ALL, an entity with unmet clinical need52. Crucially, CCR9 is not expressed on 426 

normal circulating T cells or other hematopoietic or non-hematopoietic tissues, with the 427 

exception of a subset of B cells, thymocytes, and a small fraction of intestinal-resident 428 

lymphocytes. This was expected, as CCR9 expression plays a key role in the homing of 429 

specific immune cells to the thymus and small intestine53–55. Although it has not been reported 430 

that CAR-T cells can reach the thymus, this could be of great therapeutic benefit in the case 431 

of CCR9 CAR T cells given that many pre-leukemic clones and leukemic-initiating cells in T-432 

ALL are present at very early developmental stages56. Furthermore, many studies in non-433 

oncological pediatric and adult patients who have undergone thymectomy have demonstrated 434 

immune memory and a complete T cell repertoire57,58. In addition, the CCL25-CCR9 axis has 435 

been shown to play a role in inflammatory bowel disease, and previous clinical trials have 436 

used CCR9 small molecule inhibitors with no reported serious therapy-related toxicities, 437 

further supporting the safety of CCR9 as a therapeutic target59–62. Collectively, these data 438 

support CCR9 as a safe target with promising potential for a large proportion of R/R T-ALL 439 

cases. 440 

A major strength of our work is the immunophenotypic characterization of CCR9 and CD1a 441 

expression in a cohort of 180 primary T-ALL cases. This analysis revealed the existence of 442 

significant intratumoral phenotypic heterogeneity, with double-positive, single-positive, and 443 

double-negative fractions coexisting within the same sample. This suggests that dual CAR-T 444 

cell therapy targeting both antigens expressed in heterogeneous leukemias, as is the case in 445 

a large percentage of R/R T-ALL cases, would increase the number of patients eligible for 446 

treatment, provide greater blast coverage, and potentially reduce the likelihood of 447 

phenotype/antigen escape. In addition, transplantation of CCR9- and CD1a-negative fractions 448 

into immunodeficient mice demonstrated that leukemic engraftment reproduces the 449 

phenotypic heterogeneity of the original leukemia regardless of the input. This provides clear 450 

evidence of the plasticity of these antigens and extends the applicability of such dual-targeting 451 

immunotherapy to patients without the need for high antigen positivity rates to achieve deep 452 

responses. Overall, these results highlight the benefit of a dual-targeting strategy even in 453 

patients with leukemic populations that are only partially positive for one of the markers. 454 
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Based on these clinico-biological data, we generated a CCR9-specific hybridoma and derived 455 

the scFv sequence to generate a second-generation CAR. The murine scFv was humanized 456 

by CDR grafting, and one of the humanized CAR candidates (H2) proved to be as potent as 457 

the murine CAR and was ultimately selected to minimize potential immunogenicity in humans. 458 

We next leveraged our humanized CD1a H CAR and CCR9 H2 CAR to generate dual-459 

targeting strategies. Of the various possible molecular strategies to direct T cells against two 460 

molecules63, we focused on three: co-transduction with two lentiviral vectors each encoding a 461 

different single-targeting CAR, multiple configurations of tandem CARs (two scFvs within the 462 

same CAR molecule), and bicistronic CARs (two separate CAR molecules with different 463 

specificities encoded in one lentiviral vector). Despite our previous experience in generating 464 

tandem CARs targeting other antigens36, none of the possible tandem CAR configurations 465 

worked, possibly due to the biochemical properties and steric hindrance associated with these 466 

specific scFvs, or perhaps due to the nature and mechanisms of recognition of the receptors, 467 

where CCR9 is largely embedded in the cell membrane and CD1a has a fully exposed and 468 

large ectodomain that makes the tandem CAR configuration unsuitable. Both co-transduction 469 

and bicistronic CAR strategies showed efficacy, but we chose co-transduction for further study 470 

due to the higher rates of transduction achieved. We then demonstrated the functional 471 

advantage of dual-targeting CAR-T cells generated by co-transduction with CCR9- and CD1a-472 

directed CARs over single-targeting CAR-T cells for the treatment of phenotypically 473 

heterogeneous T-ALL cases. Our study provides an exhaustive molecular comparative study 474 

of all dual-targeting CAR-T cell strategies, confirms that the development of dual strategies is 475 

not trivial, and establishes a unique foundation and knowledge for the applicability of our 476 

strategy and that of future constructs. 477 

In conclusion, the proposed CAR-T cell strategy targeting two non-pan-T antigens that are 478 

absent in normal T cells and barely expressed in other healthy tissues may achieve a large 479 

blast coverage and benefit a very significant proportion of R/R T-ALL patients, while preventing 480 

T cell fratricide and aplasia, and will obviate the need for regulatory-challenging genome 481 

engineering approaches and alloHSCT in patients after CAR-T therapy to rescue T cell 482 

aplasia. The fact that CCR9 is also highly expressed in several subtypes of solid tumors with 483 

poor prognosis64–71, together with the fact that CCR9 is the only canonical receptor of the 484 

chemokine CCL25, opens up enormous possibilities for the adoptive immunotherapy of 485 

cancers beyond T-ALL using either antibody scFv-based or CCL25 zetakine-based CARs72,73. 486 
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LEGENDS TO FIGURES 519 

 520 

Figure 1. CCR9 is a safe and specific target for T-ALL. (a) Flow cytometry analysis of CCR9 521 

in patient-matched leukemic blasts and normal (n) CD4+ and CD8+ T cells in 180 T-ALL 522 

patients. Left panels, representative flow cytometry plot. (b,c) Expression of CCR9 in the 523 

cohort, with T-ALL samples classified by developmental stage (b) or disease stage, at 524 

diagnosis (Dx) or relapse (Rel) (c). Three cases with Dx-Rel matched samples are color-525 

coded. (d) UMAP representation showing organ/tissue annotation and CCR9 expression 526 

levels in 483,152 cells from human healthy tissues (Tabula Sapiens scRNAseq dataset). (e) 527 

Violin plots for CCR9 expression levels across tissues identified in (d). (f-h) CCR9 expression 528 

in the indicated leukocyte populations in relevant hematological tissues: thymus (f, n=4), PB 529 

(g, n =18), and BM (h, n=13). 530 

 531 

Figure 2. CCR9 CAR-T cells are highly effective against T-ALL. (a) Anti-CCR9 hybridoma 532 

specifically stains CCR9-expressing cells. (b) Cartoon of second-generation CAR constructs. 533 

Three scFv versions were generated: scFv derived from the murine (M) hybridoma, and two 534 

humanized candidates (H1 and H2). SP, signal peptide; VH and VL, heavy and light chains; L, 535 

linker; TM, CD8 transmembrane domain. (c) Representative flow cytometry plot showing 536 

successful detection of transduced CAR-T cells as measured by co-expression of surface 537 

F(ab’)2 (scFv) and eGFP reporter. (d) Proliferation curves for untransduced (UT) and the 538 

indicated CCR9 CAR-transduced T cells (n=3). (e) CCR9 expression in the target T-ALL cell 539 

lines MOLT4 (CCR9high) and SupT1 (CCR9dim) and the CCR9neg AML cell line MV4;11. Isotype 540 

control stainings in gray. (f) CCR9 expression in two T-ALL PDXs. (g) 24 h cytotoxicity 541 

mediated by the different murine and humanized CCR9 CAR-T cells against the indicated cell 542 

lines at different effector:target (E:T) ratios (n=5). NE, no effector T cells. (h) Absolute numbers 543 

of live target PDX cells after co-culture with untransduced (UT) or the indicated CCR9 CAR-T 544 

cells for 24 h at an E:T ratio of 1:1 (n=3). (i) IFN-γ production by the indicated CCR9 CAR-T 545 

cells upon 24 h co-culture with PDXs (E:T 1:1, n=3 per PDX). (j) In vivo experimental design 546 

for the assessment of the efficacy of the three indicated CCR9 CAR-T cells against a T-ALL 547 

PDX (PDX2, n=4-6 mice/group). (k) Flow cytometry follow-up of tumor burden in BM, PB, and 548 

spleen in the different treatment groups indicated in (j). (l) In vivo experimental design for the 549 

assessment of the efficacy of the selected CCR9 H2 CAR-T cells against a highly aggressive 550 

Luciferase-bearing T-ALL PDX (ALL-843, n=4-5 mice/group). (m) Weekly bioluminescence 551 

imaging of mice. Left panel, bioluminescence images. Right panel, bioluminescence 552 

quantification. (n) Flow cytometry follow-up of tumor burden in BM, PB, and spleen after 553 

treatment with UT or CCR9 H2 CAR-T cells. Plots show mean ± SEM. 554 

 555 
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Figure 3. Co-expression of CCR9 and CD1a in T-ALL and molecular strategies for dual 556 

targeting with CAR-T cells. (a) Flow cytometric analysis of CCR9 and CD1a expression in 557 

blasts from 180 T-ALL primary samples, 20% expression cut-off was set to define positivity for 558 

each marker. (b) CCR9 and CD1a immunophenotypes in 24 representative T-ALL patient 559 

samples. Cut-off thresholds for antigen positivity were determined using isotype controls. (c) 560 

Scheme depicting the generation of dual-targeting CAR-T cells through lentiviral co-561 

transduction of single CARs. (d) Cartoons of all CAR constructs tested. Top panels, eight 562 

different configurations of tandem CAR constructs with different arrangements of the 563 

humanized scFvs (CCR9-CD1a vs. CD1a-CCR9 and VH-VL vs. VL-VH). Bottom panels, four 564 

distinct configurations of bicistronic CAR constructs (CCR9-CD1a vs. CD1a-CCR9). Different 565 

signal peptides (SP) derived from CD8α (SP1), human IgG1 (SP2), and murine IgG1 (SP3) 566 

were used for bicistronic CARs. The CCR9 H2 scFv was used in all versions. (e) Transduction 567 

efficiencies of single, co-transduced, tandem, and bicistronic CAR-T cells. (f) Cytotoxicity 568 

assays comparing the specificity and efficiency of the different single, co-transduced, tandem, 569 

and bicistronic CAR-T cells against combinatorial phenotypes of MOLT4 T-ALL cells at a 1:1 570 

E:T ratio after 24h of co-culture (n=3-6). UT T cells were used as controls. Plots show mean ± 571 

SEM. 572 

 573 

Figure 4. Efficacy of CAR-T cells co-transduced with single CARs. (a) Flow cytometry 574 

analysis of the MOLT4 cells CRISPR/Cas9-engineered to express combinatorial CCR9/CD1a 575 

phenotypes (+/+, –/+, +/–, –/–). (b) In vitro cytotoxicity assays of the different phenotypes of 576 

MOLT4 cells with single CAR (CD1a H or CCR9 H2) T cells or CCR9/CD1a dual-targeting 577 

CAR-T cells at different E:T ratios after 24 h of co-culture (n=3). (c) In vivo experimental design 578 

for the assessment of the efficacy of CCR9- and CD1a-targeting CAR-T cells against a 579 

CCR9+CD1a+ T-ALL PDX (PDX2) (n=8-14 mice/group). (d) Flow cytometry follow-up of tumor 580 

burden in PB, spleen, and BM after treatment with the indicated CAR treatments. Frequencies 581 

of relapsing mice (>1% blasts) for each tissue are indicated. (e) Expression of CCR9 and 582 

CD1a in CAR-T-resistant blasts. Plots show mean ± SEM. 583 

 584 

Figure 5. Superior efficacy of dual CCR9 and CD1a CAR-T cells for the treatment of T-585 

ALL with phenotypically heterogeneous leukemic populations. (a) Combinatorial 586 

phenotypes (CCR9+CD1a+, CCR9+CD1a–, CCR9–CD1a+) of T-ALL cells were mixed at a ratio 587 

of 1:1:1 to reproduce phenotypically heterogenous leukemic samples. (b) Relative (left) and 588 

absolute (right) numbers of live mixed target cells after a time-course cytotoxicity with UT, 589 

single CAR (CCR9 H2 or CD1a H) or CCR9/CD1a dual-targeting CAR-T cells at a 1:1 E:T 590 
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ratio (n=3). (c) Cytokine production by the indicated CAR-T cells upon 24 h co-culture with 591 

target cells (n=3). (d) In vivo experimental design for the assessment of CCR9- and CD1a-592 

targeting dual CAR-T cells against phenotypically heterogeneous Luc-bearing T-ALL target 593 

cells (n=6 mice/group). (e) Weekly bioluminescence imaging of mice (n=6 mice/group). Left 594 

panel, bioluminescence (BLI) images. Right panel, BLI quantification. (f) Flow cytometry 595 

analysis of BM tumor burden at the endpoint. Plots show mean ± SEM. 596 

 597 

Suppl Fig1. Gating strategies for flow cytometry analyses. (a) Flow cytometry 598 

gating strategies for T-ALL primary samples. Blasts were identified as CD7+CD45dim 599 

and were further gated based on CD4 and CD8 expression to exclude healthy (single 600 

CD4+ and single CD8+) T cells from the analysis. (b-d) Flow cytometry gating 601 

strategies for the indicated cell populations within healthy thymus (b), PB and total BM 602 

(c), and MACS-enriched BM CD34+ HSPCs (d). (e) Flow cytometry gating strategies 603 

for in vivo PDX assays. A representative phenotype of PDX2 is included. 604 

 605 

Suppl Fig2. CCR9 binder characterization. (a) Protein sequence alignment of the 606 

original murine heavy (VH) and light (VL) chains with their humanized counterparts (H1 607 

and H2) and the most structurally similar human immunoglobulin gene. CDRs are 608 

highlighted in red, and only mutated residues in the humanized sequences are shown. 609 

(b) Epitope mapping of the anti-CCR9 binder. Overlapping peptides were derived from 610 

the extracellular N-terminus tail of CCR9 and tested for binding to recombinant anti-611 

CCR9 H2 scFv by ELISA (ProteoGenix). The consensus sequence is indicated. 612 

 613 

Suppl Fig3. Expression plasticity of CD1a and CCR9. Two primary T-ALL samples 614 

with variable expression of CD1a (a) and CCR9 (b) were sorted, and the purified 615 

CD1a+/– or CCR9– fractions (purity: 81-98%) were transplanted into NSG mice. 616 

Leukemic grafts were followed up biweekly and mice were sacrificed for leukemia 617 

immunophenotyping upon graft detection in PB. 618 

 619 

Suppl Fig4. Impact of MOI in co-transduced dual CAR-T cell assays. (a) Time-620 

course cytotoxicity comparing co-transduced dual CAR-T cells using a MOI of 5 versus 621 

10 for each CAR against mixed target cells at a 1:1 E:T ratio (n=3), as described in 622 
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Fig. 5a. (b) Vector copy number (VCN) in co-transduced dual CAR-T cells using a MOI 623 

of 5 versus 10 for each CAR (n=3).  624 
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