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Summary 22 

Speakers accommodate their speech to meet the needs of their listeners, producing 23 

different speech registers. One such register is Foreigner-Directed Speech (FDS), which is the 24 

way native speakers address non-native listeners, typically characterized by features such as 25 

slow speech rate and phonetic exaggeration. Here, we investigated how register impacts the 26 

cortical encoding of speech at different levels of language integration. Specifically, we tested the 27 

hypothesis that enhanced comprehension of FDS compared with Native-Directed Speech 28 

(NDS) involves more than just a slower speech rate, influencing speech processing from 29 

acoustic to semantic levels. Electroencephalography (EEG) signals were recorded from Spanish 30 

native listeners, who were learning English (L2 learners), and English native listeners (L1 31 

listeners) as they were presented with audio-stories. Speech was presented in English in three 32 

different speech registers: FDS, NDS and a control register (Slow-NDS) which is slowed down 33 

version of NDS. We measured the cortical tracking of acoustic, phonological, and semantic 34 

information with a multivariate temporal response function analysis (TRF) on the EEG signals. 35 

We found that FDS promoted L2 learners’ cortical encoding at all the levels of speech and 36 

language processing considered. First, FDS led to a more pronounced encoding of the speech 37 

envelope. Second, phonological encoding was more refined when listening to FDS, with 38 

phoneme perception getting closer to that of L1 listeners. Finally, FDS also enhanced the TRF-39 

N400, a neural signature of lexical expectations. Conversely FDS impacted acoustic but not 40 

linguistic speech encoding in L1 listeners. Taken together, these results support our hypothesis 41 

that FDS accommodates speech processing in L2 listeners beyond what can be achieved by 42 

simply speaking slowly, impacting the cortical encoding of sound and language at different 43 

abstraction levels. In turn, this study provides objective metrics that are sensitive to the impact 44 

of register on the hierarchical encoding of speech, which could be extended to other registers 45 

and cohorts.  46 
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 47 

1. Introduction 48 

When addressing second language (L2) learners, L1 speakers naturally tend to speak in a 49 

particularly clear manner by using a speech register known as Foreigner Directed Speech  50 

(FDS; Scarborough et al., 2007; Tarone, 1980; Uther et al., 2007; see Piazza et al., 2022 for a 51 

review of the acoustic features of FDS). FDS is often studied in comparison with Native Directed 52 

Speech (NDS), which is the register used between L1 speakers, without the intention of 53 

enhancing intelligibility (Ferguson & Kewley-Port, 2002). FDS has also been referred to as “non-54 

native directed speech” (NNDS; e.g., Piazza et al., under review; 2023) since it is not limited to 55 

foreign listeners, and as “L2 speech accommodation” because it is assumed to be the result of 56 

the speaker’s accommodation to the listener’s low L2 proficiency and learning needs (Giles, 57 

2016; Lindblom, 1990; Zhang & Giles, 2017). Few studies investigated directly the impact of 58 

FDS use on L2 perception, comprehension, and learning (Piazza et al., 2022, 2023; Uther et al., 59 

2012; see Rothermich et al., 2019 for a review on impressions about FDS). For example, Piazza 60 

et al. (2023) provided evidence of the positive impact of FDS on L2 perception and production in 61 

a novel L2 word learning task. However, controlled manipulations such as novel word learning 62 

do not reflect listeners’ naturalistic exposure to L2 speech, and it remains unknown whether 63 

FDS supports perception and comprehension of continuous speech. Also, most studies that 64 

investigated FDS perception (with controlled manipulations) employed behavioural experiments 65 

(Piazza et al., 2023; Bobb et al., 2019; Kangatharan et al., 2023; but see Uther et al., 2012), 66 

which can only provide indirect measures of L2 processing when it is already concluded. 67 

Instead, using neurophysiological techniques (e.g., electroencephalography (EEG)), enables the 68 

exploration of speech perception as it unfolds. Here, we probed the encoding of a hierarchy of 69 

linguistic information in speech and language with EEG to explore whether and how FDS 70 

promotes L2 learners’ processing of L2 sounds and discourse. 71 
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Accurate multidimensional models of L2 perception require understanding how speech 72 

registers and acoustic features modulate brain mechanisms underlying L2 acquisition, including 73 

speech perception and comprehension in naturalistic listening task. One way to inform such 74 

models with ecological validity is by using EEG to measure cortical encoding (CE) of speech 75 

features. We interpret CE as encompassing a broad range of speech features, both continuous 76 

and non-continuous, and includes cortical tracking of the speech envelope—a dynamic 77 

alignment of brain activity with the temporal modulations of speech (Giraud & Poeppel, 2012; 78 

Kalashnikova et al., 2018; Obleser & Kayser, 2019). Cortical tracking of speech is widely 79 

regarded as a marker of the linguistic processes involved in speech perception (Giraud & 80 

Poeppel, 2012; Luo & Poeppel, 2007; Meyer, 2018), which is linked to enhanced speech clarity 81 

and comprehension, particularly in L1 adult listeners (Ahissar et al., 2001; Ding & Simon, 2014; 82 

Etard & Reichenbach, 2019; Keitel et al., 2018; Molinaro & Lizarazu, 2018; Peelle et al., 2013; 83 

Riecke et al., 2018; but see Peña & Melloni, 2012 for opposite results).  84 

The speech envelope is the low-frequency amplitude modulation of the broadband speech 85 

signal, which carries acoustic information important for perceptual and linguistic encoding 86 

(Attaheri et al., 2022). Speech envelope encoding is a broad measure of speech perception, 87 

which is influenced by factors such as attention and engagement (Ding & Simon, 2014; Keitel et 88 

al., 2018; O’Sullivan et al., 2015). Beyond the speech envelope, a growing number of studies 89 

are investigating CE of speech at higher order phonological and semantic levels (Brodbeck et 90 

al., 2022; Broderick et al., 2018, 2021; Pérez-Navarro et al., 2024). It is possible to do so by 91 

mapping specific sets of speech features, both acoustic and abstract, to brain signals (Crosse et 92 

al., 2016; Di Liberto et al., 2015, 2018, 2021). Some features of continuous speech have been 93 

studied in the EEG response signals, usually within low-frequency bands (<8Hz), by using 94 

encoding model estimations derived, for example, with multiple regression. Here we adopt the 95 

multivariate Temporal Response Function approach (TRF; Crosse et al., 2016; Di Liberto et al., 96 
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2015), which has been shown to enable the study of speech perception with tasks involving 97 

continuous speech listening, probing the CE of both speech sounds and linguistic properties, 98 

such as the CE of the acoustic envelope (Kalashnikova et al., 2018), phonological properties 99 

(Brodbeck et al., 2018; Di Liberto et al., 2015; 2021; 2023; Gillis et al., 2023) and semantic 100 

expectation (Broderick et al., 2018, 2021; Klimovich-Gray et al., 2023). Previous studies have 101 

shown that it is possible to investigate phonemic processing and categorization across various 102 

participant cohorts (Carta, et al., under review; Di Liberto, et al., 2015; 2018; 2021; Klimovich-103 

Gray et al., 2023). Within continuous speech, responses to phonetic features of speech and 104 

phonemic categorical processing can be discriminated in the low-frequency EEG signals (Di 105 

Liberto et al., 2015). This shows that it is possible to employ TRF to assess L2 learners’ 106 

phonological perception, which could be extended to the assessment of how such phonological 107 

perception changes depending on the speech register (FDS or NDS). Using a similar approach 108 

allowed us to measure phonological processing across different speech registers such as FDS 109 

and NDS.  110 

Previous CE research involves the use of semantic prediction features built with 111 

computational models estimating how semantically surprising words are given their preceding 112 

context (e.g., large language models). For instance, Klimovich-Gray et al. (2023) built a 113 

multivariate model that accounted for both speech envelope and semantic surprisal. The TRF 114 

weights results of the semantic surprisal regressor highlighted a TRF complex, with prominent 115 

centro-parietal negativity, comparable to the classic semantic N400 (Broderick et al., 2018, 116 

2022). For the present study’s purposes, we combine comprehension questionnaire and EEG-117 

based semantic CE measures to test whether FDS promotes comprehension in L2 learners. 118 

Furthermore, we carry out multivariate analyses to disentangle the cortical processing of speech 119 

and language at the level of acoustics, phonology, and semantics, investigating whether and 120 

how that processing is modulated by speech registers.  121 
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In addition, previous studies investigated CE of speech registers such as infant directed 122 

speech (IDS), which is used to address infants and support their language acquisition (Burnham 123 

et al., 2015; Kalashnikova et al., 2017; Kalashnikova & Burnham, 2018; Kuhl, 1997; Trainor & 124 

Desjardins, 2002) and share some acoustic features with FDS (Piazza et al., 2022). Research 125 

on IDS observed that infants – not adults – exhibited better CE of IDS as compared to other 126 

speech registers (Kalashnikova et al., 2018; Menn et al., 2022; see also Attaheri et al., 2022 for 127 

similar research). While acknowledging the inherent distinctions between adults and infants, 128 

these findings indicate that listeners' CE is enhanced when listeners are exposed to speech 129 

registers specifically intended for them. These results, along with acoustic features and didactic 130 

function analogies drawn between IDS and FDS, suggest that L2 learners may benefit from 131 

being exposed to FDS. However, these studies typically investigated CE of speech envelope 132 

and prosody contours, which represent only one (although important) aspect of speech 133 

processing that serves as a proxy of speech encoding. So far, there is a lack of studies that 134 

directly measured cortical encoding across speech registers and encoding of various language 135 

features (both acoustic and abstract).  136 

Particularly relevant to our study, Verschueren and colleagues (2022) investigated (native) 137 

linguistic speech processing as a function of varying speech rate. Their findings showed that 138 

slower speech rate led to an increase in CE, suggesting a connection between how linguistic 139 

representations are tracked and the reduction in speech rate. Given that the differences in 140 

perception between FDS and NDS might arise from differences in speech rates (FDS being 141 

slower than NDS), and that speech rate affects CE, in this study we decided to also investigate 142 

CE of an artificial speech register serving as a control condition, which we call Slow-NDS. This 143 

speech register had the same acoustic features of NDS but a speech rate that was made similar 144 

to FDS (slower than NDS) by means of dynamic time warping (Müller, 2007). We expected 145 

enhanced speech perception in L2 learners to be mainly due to acoustic feature 146 
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accommodation of FDS (Bobb et al., 2019; Piazza et al., 2022, 2023), as opposed to speech 147 

rate.   148 

Here, we investigated how the exposure to speech register impacts the CE of speech 149 

across several levels of the processing hierarchy, by probing acoustic, phonological, and 150 

semantic processing with EEG and multivariate encoding models. We presented two EEG 151 

experiments involving English L2 learners (Spanish L1, henceforth L2L) and English native 152 

speakers (English L1, henceforth L1L). During these experiments, EEG signals were acquired 153 

as participants listened to continuous speech (stories), and were asked comprehension 154 

questions. Stories were presented in three different speech registers: FDS, NDS, and Slow-155 

NDS. We expected CE to be enhanced in L2 learners exposed to FDS relative to both NDS and 156 

Slow-NDS at various levels of the hierarchy (from acoustics to semantics). We also expected a 157 

facilitatory effect of slow speech rate, thus CE to be more enhanced in Slow-NDS than NDS. 158 

Conversely, since L1 listeners are not the intended addressees of FDS, which is not 159 

accommodated to promote L1 speech perception, we hypothesized that slow speech rate in 160 

FDS and Slow-NDS would only enhance CE of speech envelope, as compared to NDS. In 161 

addition, we predicted FDS to promote L2L’s phonological perception as compared to both 162 

Slow-NDS and NDS. Then, for L2L we expected both higher comprehension scores and 163 

increased semantic CE for FDS as compared to Slow-NDS and for Slow-NDS as compared to 164 

NDS. Conversely, L1L, who have native proficiency of English, were expected to show close-to-165 

ceiling performance in understanding all stories. That is, they were not expected to benefit from 166 

the exposure to any speech register in their comprehension accuracy and encoding of semantic 167 

surprisal. Here, we aimed to elucidate whether high level metrics of cortical encoding can be 168 

used to assess CE differences across speech registers.  169 
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1. Method 170 

2.1. Participants 171 

2.1.1. Experiment 1 (L2L) 172 

A total of 28 participants, aged between 18-35, were recruited to take part in experiment 1. 173 

They were L2 learners of English (L1 speakers of Spanish), with mid-low proficiency in English 174 

(henceforth L2L; Mage = 22.8 y.o., SD = 3.42, Female = 21). L2L participants were tested for 175 

their English level in an individual interview with an expert linguist, who assigned marks from 0.0 176 

to 5.0 (0.0 = no knowledge; 1.0 = low; 5.0 = native-like). In the interview, fluency, vocabulary, 177 

grammar, and pronunciation were evaluated, and altogether concurred in the overall mark. We 178 

only recruited participants who obtained an overall mark between 1.0 and 3.0 (M = 2.96, SD = 179 

0.34). Of the original L2L sample, 2 participants were excluded due to technical problems and 1 180 

due to very low comprehension score (4% of correct responses), leaving the final cohort to 25 181 

L2L. The experiment was carried out at the Basque Center on Cognition, Brain and Language 182 

(Spain). The study was approved by the BCBL Ethics Committee. All participants signed an 183 

informed consent form prior to the experiment. Participants were paid 20 euro for taking part in 184 

the study. 185 

2.1.2. Experiment 2 (L1L) 186 

Twenty-seven native speakers of English (L1L), aged between 18-31, were recruited to 187 

take part in the Experiment 2 and were tested at Trinity College Dublin (Ireland) (Mage = 22.15, 188 

y.o., SD = 3.05, Female = 13). Two participants were excluded due to a technical issues, 189 

leaving the final cohort to 25 participants. Of these, 22 were native listeners of Irish English, 2 of 190 

American English, and 1 of British English. The study was approved by the School of 191 

Psychology Ethics Committee at Trinity College Dublin. All participants signed an informed 192 

consent form prior to the experiment. Participants were paid 20 euro for taking part in the study. 193 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.610805doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610805
http://creativecommons.org/licenses/by-nc/4.0/


 

9 

 

2.2. Material 194 

2.2.1 Experiment 1 and 2 (L2L and L1L) 195 

Continuous speech sounds were employed in this study (see Data and code availability 196 

for stimuli and data). Speech sounds were pre-recorded for this experiment by a female native 197 

speaker of British English in the form of storytelling. Each story was recorded in two speech 198 

registers: one where the speaker was instructed to address a native English speaker (NDS), 199 

and another where she was directed to speak as if addressing a Spanish-speaking novice 200 

learner of English (FDS). It's important to note that the speaker was accustomed to addressing 201 

L2 learners (Spanish L1) due to her teaching experience. We measured the vocalic area within 202 

the /a/,/i/,/u/ corner vowels (Uther et al., 2007) and speech rate as the number of 203 

syllables/second (Hazan et al., 2015; Kühnert & Antolík, 2017). In line with previous literature 204 

(Lorge & Katsos, 2019; Piazza et al., under review; 2023; Uther et al., 2007), FDS stories were 205 

pronounced with wider vocalic area (~ 30%) and lower speech rate (~ 30%) than the NDS 206 

stories. The Slow-NDS register was created by applying dynamic time warping to the NDS 207 

speech sounds (Müller, 2007), which kept the acoustic features (pitch height, vocalic area, 208 

vowel formants) of the NDS stimuli constant but matched speech rate of the NDS stories to the 209 

speech rate of the FDS stories (3/2>slope>2/3). This technique aims to find the optimal 210 

alignment between two time-dependent sequences, which are warped in a nonlinear fashion to 211 

match each other (see Data and code availability to check the audio stimuli).  212 

Duration of FDS and Slow-NDS stories was about 15 minutes each, while the NDS stories 213 

had a duration of about 11 minutes, due to higher speech rate. This option was adopted to 214 

maintain the same content for the three stories. English multi-talker babble noise 215 

(Krishnamurthy & Hansen, 2009) was added to all the stories (+16 dB SNR) to avoid 216 

comprehension floor effect for L2L in experiment 1 and ceiling effect for L1L in experiment 2. 217 

Babble noise was created in MATLAB 2014b with a custom script by mixing continuous speech 218 
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streams of 8 British English speakers (Females = 4). A single signal-to-noise ratio that was 219 

avoiding such issues was chosen based on an online pilot study. This pilot study tested 220 

comprehension of stories from +0 to +20 dB SNR (4 dB steps). The stimuli employed for 221 

experiment 1 were also used for experiment 2. It is worth noting that the stories were recorded 222 

by a native British English speaker, as this is the pronunciation most commonly taught in 223 

Spanish schools (specifically Received Pronunciation; Vilaplana, 2009), making the recordings 224 

more understandable to the L2L tested in experiment 1. 225 

2.3 Equipment 226 

2.3.1. Experiment 1 (L2L) 227 

Electroencephalography (EEG) data were recorded using a 64 Ag-AgCl electrodes 228 

standard setting (two actiCAP 64-channel systems, Brain Products GmbH, Germany) with 229 

hardware amplification (BrainAmp DC, Brain Products GmbH, Germany). Signals were 230 

bandpass filtered between 0.05 and 500 Hz, digitised using a sampling rate of 1000 Hz, and 231 

online referenced to the left earlobe via hardware. PsychoPy 2021 Software (version 2.3; Peirce 232 

et al., 2019) was employed to present the stimuli and send synchronization triggers. Triggers 233 

were sent to indicate the start of each trial with contingent stimulus presentation and ensure 234 

synchronization with EEG recordings.  235 

2.3.2. Experiment 2 (L1L) 236 

Data were acquired from 64 electrode position, digitized at 1024 Hz using an ActiveTwo 237 

system (BioSemi B.V., Netherlands). An additional external electrode was placed on 238 

participants’ left earlobe for offline referencing. As for experiment 1, PsychoPy Software 2021 239 

(2.3) was employed to present the stimuli and send triggers.  240 

2.4. Procedure 241 

2.4.1. Experiment 1 and 2 (L2L and L1L)  242 
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All EEG data were collected in dimly lit and sound-proof booths. Stimuli were presented at 243 

a sampling rate of 44,100 Hz, monophonically, and at a comfortable volume from Xiaomi Hybrid 244 

Mi In-Ear Pro HD headphones. Participants were asked to listen attentively to three stories while 245 

EEG signal was recorded. They were asked to sit calmly and upright while looking at a fixation 246 

cross, which was presented on the centre of a computer screen right in front of them (at ~80 cm 247 

of distance from their eyes). During the experimental session, participants were presented with 248 

one story per speech register, with counterbalanced order across participants. To avoid any 249 

effects derived from specific relations between stories and speech registers (e.g., a certain story 250 

is more interesting/easier to understand), each story was presented in all the speech registers 251 

across participants (with Latin square counterbalanced story-register association). The 252 

continuous narration of each story was divided into five consecutive shorter blocks of ~3 253 

minutes each. At the end of each block, participants were asked 5 comprehension questions (15 254 

questions per story, 45 questions in total). Experimental sessions lasted ~2 hours including 255 

preparation and testing. 256 

2.5. Analysis 257 

2.5.1. Behavioural data 258 

Behavioural data were analysed to identify and discard those participants with very low 259 

accuracy, who did not pay a sustained level of attention throughout the experiment or who had 260 

very low English proficiency (they could not understand most of the stories, N=1). In addition, 261 

accuracy based on responses to the questionnaire was used as a proxy of participants’ 262 

comprehension. Each question could be scored a finite number ranging between 0 to 1, which 263 

respectively represented wrong and correct answers. Most questions required to list multiple 264 

answers, which together summed 1 (see Data and code availability for a complete question list). 265 

If participants could recall only part of the possible answers (e.g., 1 out 4 elements) for a 266 

completely correct answer, they got a fraction score of 1 (e.g., 0.25 points; since 0.25 x 4 = 1). 267 
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This was done in order to collect finer-grain accuracy score than binomial (correct/incorrect) 268 

response. 269 

2.5.2. EEG pre-processing 270 

EEG signal analyses were performed on MATLAB Software (MathWorks, 2021b), using 271 

custom scripts, Fieldtrip toolbox functions (Oostenveld et al., 2011), EEGLAB (Delorme & 272 

Makeig, 2004), and CNSP resources (Di Liberto et al., 2024). Offline, the data were resampled 273 

to 100 Hz and band-pass filtered between 1 and 8 Hz with a Butterworth zero-phase filter (order 274 

2+2). Channels with variance 3 times larger than the channels median variance were rejected. 275 

Channels contaminated by noise were recalculated by spline interpolating the surrounding clean 276 

channels in EEGLAB. We had planned to discard from the analysis participants with more than 277 

30% of rejected data or more than 4 contaminated electrodes, but no participants were 278 

discarded for these reasons. 279 

2.5.3. EEG analysis 280 

The CE of speech in the different registers was estimated by measuring forward models, 281 

or temporal response functions (TRF), capturing the linear relationship between continuous 282 

stimulus features and the corresponding neural response. TRFs were calculated with the 283 

mTRF-Toolbox (Crosse et al., 2016), which implements a linear regression mapping multiple 284 

stimulus features to one EEG channel at a time. The regression included an L2 Tikhonov 285 

regularization with parameter λ, and was solved through the closed formula β=(X⊤X+λI)−1X⊤y, 286 

where β indicates the regression weights, X the stimulus features, I the identity matrix, and y an 287 

EEG channel. The regularization parameter was selected through an exhaustive search on a 288 

logarithmic parameter space from 10−2 to 108. This selection was carried out via cross-validation 289 

to maximize the EEG prediction correlation averaged across all channels, leading to TRF 290 

models that optimally generalize to unseen data. The interaction between stimulus and recorded 291 
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brain responses is not instantaneous, as a sound stimulus at time t0 can affect the brain signals 292 

for a certain time-window [t1, t1+twin], with t1 ≥0 and twin >0. The TRF takes this into account by 293 

including multiple time-lags between stimulus and neural signal, providing us with model 294 

weights that can be interpreted in both space (scalp topographies) and time-lag (speech-EEG 295 

latencies).  296 

Stimulus and EEG time-series were split into folds of equal length. Leave-one-out cross-297 

validation procedure was employed to maximize the amount of data used for the model fit, at 298 

the cost of additional computational time compared with a single train-test split. Each iteration 299 

provided a prediction correlation coefficient (r-value) between each feature and the EEG 300 

response (per channel). The prediction correlation coefficient is the estimate of how strongly an 301 

EEG signal encodes a given set of stimulus features. An r-value of 1 would represent perfect 302 

correspondence between EEG signal and TRF features, whereas r-value of 0 would indicate no 303 

correlation whatsoever. It is important to stress that the prediction correlation values (Pearson’s 304 

r) were extracted from the EEG signal, which is inherently noisy. That is, prediction correlation 305 

values have low values that are typically around ~ 0.05 or ~0.1 due to the large amount of 306 

independent EEG noise and the lack of a ground truth for our evaluation, yet being significant 307 

and informative (Brodbeck et al., 2018; Di Liberto et al., 2015, 2021).  308 

2.5.4. Encoding of speech features (TRF regressors) 309 

The CE of speech features of interest was estimated by relating those features with the 310 

EEG signal with multivariate TRFs. The stimulus features considered here were the speech 311 

envelope, phonetic feature categories, and semantic surprisal. The TRF procedure offers two 312 

dependent measures that can be studied to infer the CE of the stimulus. First, the TRF weights 313 

(i.e., linear regression weights, where a large weight, positive or negative, indicates a stimulus 314 

feature and time-lag of particular importance for predicting the EEG signal). Second, EEG 315 

prediction correlations are derived for each EEG channel, informing us on how informative a 316 
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feature is for predicting EEG signals at a particular scalp location. Here, TRF models were fit for 317 

the three registers (and for each participant) separately, allowing us to compare the CE of 318 

speech across different registers with both EEG prediction correlations and TRF weights 319 

measures. 320 

Speech envelope. The broadband sound envelope was extracted from the speech sounds 321 

using the Hilbert transform (Crosse et al., 2021).  Univariate TRF models were fit to describe the 322 

linear mapping from the speech envelope to the EEG data. We called this the Env model. In this 323 

case, the time window used to fit the TRF model was [-200, 600]ms, based on previous 324 

research that found this time-lag window to be sufficient to capture the measurable EEG 325 

response to the speech envelope (Broderick et al., 2018; Klimovich-Gray et al., 2023). 326 

Phonetic features. Phonemic alignments of the speech material were obtained through 327 

forced alignment, initially performed automatically using DARLA (Reddy & Stanford, 2015) and 328 

subsequently verified manually with PRAAT (Boersma & Weenink, 2001).  The alignments were 329 

stored as time-series data, with ones marking phoneme onsets and zeros elsewhere. This time-330 

series representation was 19-dimensional, where the different dimensions corresponded to 331 

phonetic articulatory features. Phonetic features indicated whether each phoneme was voiced, 332 

voiceless (consonants), plosive, fricative, affricate, nasal, liquid, glide, front, back, central, 333 

diphthong, close, open (vowels), bilabial, labiodental, dental, alveopalatal, velar-glottal 334 

(Ladefoged, 2006). This way, each phoneme could be described as a particular linear 335 

combination of phonetic features. A linear transformation matrix was derived to describe the 336 

linear mapping from phonetic features to phonemes, which we used to rotate stimulus matrices 337 

and TRF weights from phonetic features to the phoneme domain (Di Liberto et al., 2015; Liberto 338 

et al., 2021). TRF were fit to describe the mapping of phonetic features to EEG signals. TRF 339 

models were fit  (with time-lag window [-200, 600]ms) by including phonetic features and 340 

acoustic spectrogram (Sgram) simultaneously (PhFSgram multivariate TRF model). Sgram was 341 
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implemented in 8 frequency bands ranged between 250Hz and 8000Hz. Those bands were 342 

defined based on the Greenwood equation that correlates the position of the hair cells in the 343 

inner ear to the frequencies that stimulate their corresponding auditory neurons (Greenwood, 344 

1990). Sgram was chosen instead of Env as it provides a richer representation of the speech 345 

acoustics, offering in itself acoustic information that can distinguish different phonemes and 346 

phonetic features, particularly in terms of frequency variations. For this reason, Sgram 347 

expectedly serves a better purpose to control for acoustics than speech envelope when 348 

investigating phonetic features. We projected TRF weights from phonetic feature to phoneme 349 

domain, and calculated pair-wise Euclidean distances between phonemes for each group and 350 

condition. These distances represent how different the encoding of two given phonemes is in 351 

the EEG signal (Phoneme distance maps), and it has been associated with language 352 

proficiency and nativeness (Di Liberto et al., 2021). These distances can also be visualized by 353 

means of a multidimensional scaling analysis (see Supplementary Material figure A. Here, we 354 

assessed how the phoneme distances maps are affected by speech register across the two 355 

groups.  356 

Semantic surprisal. For investigating encoding of semantic surprisal, we first calculated its 357 

values as the negative logarithm of the probabilities extracted from the Generative Pre-trained 358 

Transformer 2 (GPT-2). GPT-2 calculated the probability of the upcoming words of each 359 

sentence of the stories given the previous context. Surprisal values were then coded into a 360 

sparse time-vector, where non-zero values represent word onsets, and their values the surprise 361 

of that word based on the preceding context. Then, we fit a multivariate TRF including semantic 362 

surprisal values and speech envelope as input features (SemEnv TRF model). This was 363 

implemented in order to account for the acoustics of speech, while investigating non-acoustic 364 

features (Chalehchaleh et al., 2024; Di Liberto et al., 2021). The time window considered for this 365 

model was -200 – 700ms based on previous literature showing that EEG responses to semantic 366 
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surprisal emerges with long latencies (Broderick et al., 2018; Di Liberto et al., 2021; Klimovich-367 

Gray et al., 2023), with longer latencies for L2 than L1 learners (Di Liberto et al., 2021; 368 

Momenian et al., 2024; Mueller, 2005). 369 

2.6. Statistical analysis 370 

2.6.1. Comprehension questionnaire 371 

To assess the effect of Speech register, statistical analyses were performed using 372 

generalized linear mixed effect (glme) models with Poisson family, including fixed effect of 373 

Speech register, random effect of participants (see Appendix 4.1 for a list of statistical models). 374 

To determine significance of the models we used the type II Wald chi-square tests included in 375 

the CAR package (Fox, 2015; Fox & Weisberg, 2019). For post-hoc analyses, we used the 376 

emmeans package with Tukey HSD correction for multiple comparisons. 377 

2.6.2. TRF model performances 378 

Before our analyses of interest, we conducted control tests to assess that the model 379 

regressors yielded EEG prediction correlations significantly greater than the null model. 380 

Specifically, we assessed whether our features of interest were encoded in the EEG signals to 381 

some extent. We conducted one-sample t-tests (one-tailed) against the null hypothesis 382 

(prediction correlations were not greater than 0) for the speech envelope, phonetic features, and 383 

semantic surprisal regressors. Whereas for the Env model we employed the EEG prediction 384 

correlation (Pearson’s r) of the final model, the phonetic features and semantic surprisal were 385 

employed in multivariate models. Thus, we measured the unique contribution of phonetic 386 

features and semantic surprisal on model performance by comparing the multivariate models 387 

with the EEG prediction correlations for univariate models (Sgram and Env respectively) and 388 

subtracted the r-values of those from that of the multivariate models. Thus, we assessed 389 

whether the residual r-values were greater than 0 (Di Liberto et al., 2018; Di Liberto et al., 390 
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2015). While there are caveats to this procedure (Daube et al., 2019), this was sufficient for our 391 

purposes of studying the impact of speech register across L1L and L2L groups. 392 

2.6.3. TRF regression weights  393 

Speech envelope. After assessing model performances, we investigated the effect of 394 

Speech Register on the TRF weights of the Env model via the TRF N1-P2 complex (peak-to-395 

peak) amplitude metric. This choice is in line with previous research and recommendations 396 

(Carta et al., 2023; Di Liberto et al., 2018, 2021). Thus, we picked the most negative and 397 

positive values of each electrode in the 30-180ms TRF time window and calculated the N1-P2 398 

TRF complex of the Env model as the peak-to-peak difference (Crosse et al., 2016; Di Liberto et 399 

al., 2015; Di Liberto et al., 2021). We then fitted an linear mixed effect (lme) model with Speech 400 

Registers as fixed effects and participants as random effects, whereas significance was 401 

assessed via type II Wald chi-square test. 402 

Phonetic features. We derived the phoneme distance maps as described above by 403 

employing multidimensional scaling (MDS) to project the TRF phoneme weights onto a 404 

multidimensional space for each speech register. The result for each speech register was then 405 

mapped to the average English Listeners’ NDS space by means of a Procrustes analysis 406 

(MATLAB function procrustes). Then, we calculated residual distance between these three L2L 407 

phoneme representations and the reference maps of NDS-L1L (as in Di Liberto et al. 2021). 408 

This analysis allowed us to project the L2 phoneme distance maps for the three speech 409 

registers’ perception to a common multidimensional space and to compare them quantitatively. 410 

The results of the MDS were then fitted to a lme model (including participants as random 411 

effects) to assess the difference across speech registers in the L2L group.  412 

Semantic surprisal. From the SemEnv model, only the temporal weights of the semantic 413 

surprisal feature (excluding Env) were analysed at the electrode level employing CBPT. We 414 
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implemented this approach to avoid selecting a priori time window, as previous literature 415 

showed various time windows of the N400 TRF complex (Broderick et al., 2018, 2021; 416 

Klimovich-Gray et al., 2023). 417 

The exact same pre-processing and analysis of experiment 1, both for behavioural and 418 

EEG data, were conducted on the L1L data of experiment 2. Even though all these steps 419 

overlapped between experiment 1 and 2, two separate analyses were conducted because data 420 

were collected in two different laboratories and with different EEG recording systems 421 

(Brainvision and Biosemi). In Experiment 2, the PhF regressor was primarily used to create L1L-422 

NDS phoneme maps for studying L2 phoneme perception in Experiment 1. We confirmed that 423 

the PhF regressor in the PhFSgram model produced a significant EEG prediction correlation (t = 424 

9.624, p < .001), indicating phonetic feature encoding by L1 listeners, but no further analysis 425 

was conducted. 426 

3. Results 427 

3.1. Speech envelope model 428 

L2L. We examined the EEG results of the speech envelope (Env) model performance and 429 

whether Env TRF weights differed across speech registers (measured on N1-P2 complex, the 430 

ERP equivalent is widely used in the literature; Lightfoot, 2016). Encoding univariate TRF model 431 

Env yielded prediction correlations that were higher than zero (t = 77.391, p < .001), 432 

demonstrating that speech envelope was encoded in the EEG signals. The N1-P2 complex 433 

yielded a statistically significant effect of speech register (χ2 = 408.99, p < .001; Figure 1A-C). 434 

Post-hoc analyses showed larger N1-P2 complex for FDS than NDS (β = 25.9, z = 9.569, p > 435 

.001) and Slow-NDS (β = 54.8, z = 20.214, p < .001), which in turn exhibited reduced amplitude 436 

as compared to NDS (β = 28.8, z = 10.645, p < .001). 437 
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 438 

Figure 1. Slow speech rate alone does not support acoustic processing. A-C: L2L. D-439 

F: L1L. (A) Mean TRF weights of the speech envelope model by Speech Register (FDS = Foreigner-440 

Directed Speech, NDS = Native-Directed Speech, Slow-NDS = Slow-Native-Directed Speech) for Cz441 

channel at post-stimulus time latencies from 0 to 600ms. Shaded lines indicate SEM across participants442 

(on Cz). The grey area indicates the time window where the N1-P2 complex was measured. (B) Mean443 

N1-P2 peak differences by Speech registers. Bars indicate SEM, asterisks indicate significant differences444 

(*p <.05, **p < .01, ***p < .001). (C) Topographic distribution of the mean differences. (D-F) Same as A-C,445 

but results of the L1 listeners. 446 

L1L. Then, we repeated the same analysis on the L1L participants. The model447 

performance one-sample t-test showed the Env model yielded prediction correlations higher448 

than zero (t = 70.952, p < .001). The statistical model revealed a statistically significant effect of449 

speech register (χ2 = 274.35, p < .001). Post-hoc analyses indicated a larger N1-P2 complex450 
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amplitude when listening to FDS than NDS (β = 33.5, z = 11.609, p < .001) and Slow-NDS (β = 451 

17.9, z = 6.209, p < .001), with Slow-NDS showing larger a N1-P2 complex amplitude than NDS 452 

(β = 15.6, z = 5.400, p < .001; see Figure 1D-F). 453 

3.2. Phoneme distance maps 454 

L2L. We investigated the L2 phoneme encoding results to determine whether the model's 455 

performance accurately reflected phoneme processing, as indicated by prediction correlations 456 

greater than zero. Additionally, we investigated whether the phoneme distance maps of L2L 457 

listening to FDS were closer to native listeners’ perception of NDS than the other two speech 458 

registers. The model performance test (Spectrogram Sgram + Phonetic Features PhF 459 

multivariate model – Sgram) yielded prediction correlations greater than zero (t = 10.751, p < 460 

.001). We took the L1L EEG signals in NDS as a reference to build the model for the L2L 461 

responses to phonemes. The model, fitted on multi-dimensional scaling (MDS) results of 462 

phoneme (Ph) TRF weights, highlighted a significant main effect of Speech Register (χ2 = 463 

22.18, p < .001). Post-hoc analyses indicated that L2L exhibited phoneme representations 464 

closer to L1L (NDS) phoneme perception when exposed to FDS as compared to NDS (β = -465 

5.237, z = -4.468, p < .001) and Slow-NDS (β = -4.505, z = -3.229, p = .004) and no difference 466 

between the latter two (β = 0.732, z = 1.39, p = .859; see Figure 2 and Figure A in 467 

Supplementary Material for more detailed plots).  468 
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 469 

Figure 2. FDS refines L2 phonological encoding. Phoneme distance maps based on the470 

TRF Ph weights. Distance between English listeners’ NDS and L2Ls’ phonemes for each speech register.471 

Error bars indicate the SEM of the mean across phonemes. Asterisks indicate significant differences (*p472 

<.05, **p < .01, ***p < .001).  473 

3.3. Comprehension questionnaire 474 

L2L. Comprehension scores were compared across the three speech registers via lme475 

models. The model revealed a significant effect of Speech register on L2L’s comprehension476 

accuracy (χ2 = 34. 685, p < .001). Post-hoc analyses indicated that L2L exhibited higher477 

comprehension scores in FDS than NDS (z = 4.793, p < .001) and Slow-NDS (z = 5.318, p <478 

.001), whereas the latter two did not significantly differ (z = 0.530, p = .857; Figure 3A).  479 

L1L. The statistical model did not yield a significant effect of Speech register (χ2 = 0.495, p480 

= 0.976), suggesting that L1L’s comprehension did not benefit from exposure to any of the481 

speech registers (see Figure 3B). L1L response accuracy ranged between 66,7% to 91,6%482 

hinting a lack of ceiling effect. 483 
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3.4. Semantic surprisal model 484 

L2L. Next, we examined whether the difference in register had an effect on the EEG 485 

encoding of semantic information. To test this, we fitted a multi-variate encoding TRF model 486 

including Semantic Surprisal and Envelope (SemEnv) as its features. The predictive 487 

performance of the SemEnv model was significantly higher than that of a univariate model built 488 

with the Envelope only (Env), suggesting a robust encoding of semantic information in the EEG 489 

responses (t = 6.506, p < .001). To test the differences across speech registers we employed 490 

the cluster-based permutation tests (CBPT; see Method for this rationale) on TRF semantic 491 

surprisal weights of the SemEnv model. Results showed that participants exhibited more 492 

negative amplitude when listening to FDS stories than NDS (cluster t = -2040.5, p = .006, SD 493 

=.001) and Slow-NDS (cluster t = -2081.6, p = .002, SD = .0004) in the time window 494 

corresponding to the N400 complex (respectively 440-590ms and 440-640ms; see Figure 3C-495 

D). We did not measure significant differences between NDS and Slow-NDS (cluster p > .05). 496 
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Figure 3. FDS promotes L2 learners’ comprehension accuracy and semantic 498 

encoding. (A) L2Ls and (B) L1Ls’ mean comprehension score by Speech Register (FDS = Foreigner-499 

Directed Speech, NDS = Native-Directed Speech, Slow-NDS = Slow–Native-Directed Speech). Bars 500 

indicate SEM. Asterisks indicate significant differences (*p <.05, **p < .01, ***p < .001). (C) L2L’s mean 501 

TRF weight of semantic surprisal (SemEnv model) by Speech Registers for Cz channel at post-stimulus 502 

time latencies from 0 to 700ms. Shaded lines indicate SEM across participants (on Cz) and grey area 503 

indicates the significant time window (CBPT). (D) L2L’s significant channels (red asterisks) and time 504 

windows of pairwise comparison resulting from the CBPT (difference between speech registers). The 505 

NDS vs. Slow-NDS comparison is non-significant and its topography is not reported here. (E-F) Same as 506 

C-D but results of the L1L. The time window to report the topographies is picked arbitrarily as the CBPT 507 

did not highlight any significant difference. The NDS vs. Slow-NDS comparison is non-significant and its 508 

topography is not reported here. 509 

 510 

L1L. Semantic encoding was tested with the same analysis on L1L participants.  Also in 511 

this cohort, the SemEnv model yielded a significant prediction gain compared to the univariate 512 

Env model (t = 3.353, p = 0.001), indicating that semantic information was encoded by the L1Ls’ 513 

EEG signals. In contrast to L2L listeners, the amplitude of the N400-like response in the 514 

semantic surprisal weights did not significantly differ across speech registers for L1L listeners 515 

(cluster p > .05; see Figure 3E-F) 516 

4. Discussion 517 

In this study, we tested the hypothesis that FDS promotes L2 perception and 518 

comprehension as compared to NDS and to slow-NDS, characterizing how the choice of speech 519 

register impacts speech processing across the cortical processing hierarchy. We also 520 

hypothesized that the benefit of FDS would emerge in L2L but not in L1L, the speech register 521 

being specifically aimed to address L2L. Our hypotheses were grounded in previous work 522 

suggesting that, in comparison with NDS, FDS supports various aspects of L2 acquisition, such 523 

as improving L2 perception and comprehension during word learning (Piazza et al., 2022, 2023; 524 

Uther et al., 2007). In addition, neurophysiology research on L2 processing had never assessed 525 

L2L’s perception in any register but NDS (Piazza et al., 2022; Rothermich et al., 2019, 2023). 526 

Conversely, Brodbeck et al. (2024) showed that L2 accented speech can facilitate L2 527 

processing. However, while this research investigates non-standard pronunciation, it does not 528 
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consider different speech registers, such as FDS. This represents a limitation to the 529 

generalization of how L2 is processed in a naturalistic context, where the interlocutors adapt 530 

their register to each other (Giles, 2016; Lindblom, 1990; Piazza et al., 2022). Here, we 531 

measured EEG responses to NDS, Slow-NDS, and FDS in both L2 learners (L2L) and L1 532 

listeners (L1L). Results showed that EEG signals reflected the encoding of all the speech 533 

features considered (speech envelope, phoneme maps, and semantic surprisal), with that 534 

encoding being substantially impacted by the speech register.  535 

As we had anticipated, the EEG data supported our hypothesis that FDS promotes the 536 

cortical encoding of speech in L2L but not L1L. Our results indicate that FDS promotes speech 537 

processing in L2L, and that this effect is not due to the slower speech rate of this register. 538 

Instead, L1L only exhibit a sensitivity to speech rate, while the other properties of FDS did not 539 

impact the encoding of speech. Our results also indicate that Slow-NDS only alters the cortical 540 

encoding of sound acoustics, but not the phonological and semantic encoding, in L1 listeners. In 541 

sum, these results indicate that FDS (and not Slow-NDS) promotes L2 encoding at both 542 

acoustic (speech envelope) and linguistic levels (phonology and semantics; Figure 1-4).  543 

L2L showed more efficient CE of the speech envelope in FDS than NDS. This advantage 544 

of FDS could not be attributed to its acoustic salience due to differences in the speech rate or 545 

acoustic onset dynamics, since Slow-NDS and NDS have similar, more gentle rise times 546 

compared to FDS (Figure B in Supplementary Material). L1L also showed an effect of register 547 

but, contrarily to L2L, they showed significantly enhanced N1-P2 envelope responses due to a 548 

slower speech rate, which is in line with previous findings on L1 speech perception (Kösem et 549 

al., 2018; Verschueren et al., 2022). One challenge is that the envelope encoding can reflect a 550 

variety of contributions and processes, from sound encoding to attention (Ding & Simon, 2012) 551 

and even lexical prediction (e.g., attention and engagement; Broderick & Lalor, 2020; Hamouda, 552 

2013). For example, the slower signal in Slow-NDS may be encoded differently acoustically, or 553 
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it may require less attention, as Slow-NDS is likely easier to process than NDS. And this could 554 

be differently reflected on speech envelope CE in L1L and L2L. Note that Slow-NDS was 555 

artificially created, but the L1L’s N1-P2 results suggest that it is not perceived as unnatural 556 

(Slow-NDS elicited responses comparable to FDS and greater than NDS). Furthermore, no 557 

participants reported any issues with its naturalness and audio stimuli are available for 558 

verification (Data and code availability section). Importantly, we included Slow-NDS to 559 

disentangle the effects of low speech rate on cortical encoding of our regressors. Our results 560 

highlight that slow speech rate, if not accompanied by other acoustic features tailored to L2L (as 561 

in FDS), is not enough to boost L2Ls’ perception and does not help at any level of the encoding 562 

hierarchy. 563 

To more directly uncover the impact of speech register on the encoding of speech, our 564 

research probed the cortical encoding of phonological information, providing direct evidence for 565 

an enhanced phonological processing among L2L exposed to FDS. Remarkably, our findings 566 

revealed that L2L exposed to FDS (as compared to the other 2 registers) exhibited not only 567 

better acoustic encoding, but also phoneme perception closer to that of native speakers 568 

listening to NDS. In other words, FDS is not merely endowed with more salient acoustics than 569 

other speech registers (Hazan et al., 2015; Knoll & Scharrer, 2007); instead, the resemblance of 570 

L2Ls’ FDS phoneme maps to L1 NDS maps suggests that L2L exhibit improved phoneme 571 

recognition, approaching more native-like perception skills. This represents direct evidence of 572 

the FDS impact on phoneme processing in L2L, isolating this factor from purely acoustic factors 573 

(spectrogram) and the potential impact of FDS on acoustics. The phoneme map distance 574 

analysis allowed us to compare L2Ls' phonological perception space across three speech 575 

registers and contrast it with native perception of NDS. The reason for focusing on NDS 576 

perception in L1L as a reference is that it is the register L1 listeners hear daily during peer-to-577 

peer conversations (not FDS), and they have no difficulty to perceive phonemes in this register. 578 
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By accounting for both acoustic and phonological features with multivariate TRFs, our 579 

analysis could determine that FDS impacts L2 perception and comprehension beyond its 580 

acoustic benefit. This approach was previously tested in adults (Di Liberto et al., 2015), children 581 

(Di Liberto, et al., 2018b), hearing impaired listeners (Carta et al., under review), L2 listeners (Di 582 

Liberto et al. 2021), and infants in their first year of life (Di Liberto et al., 2023), leading to EEG 583 

indices of phonological processing that are sensitive to factors such as phonological awareness, 584 

language development, proficiency in a second language, comprehension (Di Liberto et al., 585 

2018a), and native vs. non-native encoding of a language. Our finding sheds light on the L2 586 

acquisition process and aligns with existing research supporting the efficacy of FDS in L2 587 

acquisition, including perception of phonemic contrasts (Kangatharan et al., 2023; Piazza et al., 588 

2023; Uther et al., 2012).  589 

On the comprehension-semantic level, we found evidence that FDS promotes L2 590 

comprehension. We observed that L2L had a higher comprehension accuracy to questions 591 

about the FDS stories than stories in the other two registers. Additionally, the mTRF analysis 592 

was designed to probe semantic prediction mechanisms while accounting for potential 593 

contamination from EEG responses to speech acoustics. In the L2L group, we found a 594 

modulation of encoding of semantic information in FDS register with more negative N400 TRF 595 

complex than in the other conditions (in line with previous research, e.g., Broderick et al., 2018; 596 

Klimovich-Gray et al., 2023). This indicates that semantic integration improves when L2L are 597 

exposed to FDS, supporting our hypothesis. Notably, the N400 peaked around 500ms, 598 

consistent with previous findings and appearing later than typically observed in L1 listeners (Di 599 

Liberto et al., 2021; Klimovich-Gray et al., 2023). On the other hand, L1L did not benefit from 600 

any register in their comprehension scores. This behavioural null effect was unlikely due to 601 

ceiling effects (average accuracy was ~80%, ranged between 66,7% and 91,6%). Additionally, 602 

the semantic surprisal model did not highlight differences across speech registers for L1L, which 603 
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again suggests no semantic integration advantage in any register. Although L1L acoustic 604 

perception was boosted by FDS (speech envelope model), their ability to respond correctly to 605 

content questions, and also encode semantics, was not modulated by any register. Also, 606 

experiment 2 with L1L employed L1 speakers of other English varieties (mostly Irish, see 607 

Method) but the stimuli were presented in British English accent (see Method). We do not think 608 

that this negatively affected our results. In fact, L1Ls' comprehension scores were high ( � 80%) 609 

and, given the proximity between Dublin and England, contact with accents such as British 610 

accent is highly frequent (especially at the University). Thus, we provided evidence that L2L’s – 611 

and not L1L’s – comprehension and semantic encoding was boosted by listening to FDS. In our 612 

view, such an advantage in L2L’s semantic processing is likely hierarchically linked to the 613 

phonological benefits of FDS, in a way that improved phonological encoding facilitates semantic 614 

integration. Altogether, these findings support our view that FDS promotes hierarchical speech 615 

encoding. Accordingly, speech registers, originated from speech accommodation, promote the 616 

intended listeners’ CE of speech at both the acoustic and linguistic levels.  617 

Speakers are known to adapt their speech based on factors like listeners’ language 618 

proficiency and communicative intention (Lam et al., 2012; Piazza et al., under review; 619 

Rothermich et al., 2023). Theoretical frameworks such as the Communication Accommodation 620 

Theory (CAT; Giles, 2016; Giles et al., 1991; Zhang & Giles, 2017) delve into the 621 

sociopsychological processes underlying communication, including L1-L2 interaction. CAT, for 622 

instance, assumes convergence mechanisms, where verbal and nonverbal cues are adjusted to 623 

minimize linguistic differences. Our findings provide evidence that speech accommodation 624 

indeed impacts intended listeners' neurocognitive processing mechanisms. We provide 625 

compelling evidence that listeners' CE of speech is enhanced when L2L are exposed to the 626 

speech register specifically intended for them. As it seems, speech accommodation affects the 627 

intended listeners’ CE and perception of speech. The reason may be that accommodation is 628 
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particularly relevant for L2Ls’ perception, given their low L2 proficiency. This emphasizes the 629 

significance of considering the relationship between speech register and target audience when 630 

investigating L1 and L2 processing and building models of speech communication. Auditory L2 631 

speech perception models should integrate various aspects of speech perception including 632 

facilitation derived from speech accommodation.   633 

We think that these findings will inform future research on speech interaction. 634 

Communication is a dynamic process wherein speakers and listeners cooperate to ensure 635 

successful interaction. It is likely that listeners build models of the interlocutors and continuously 636 

adjust these models based on contextual information (in line with similar assumptions, Costa et 637 

al., 2008; Martin et al., 2016) to maximize communication success. Future research should 638 

explore the neurocognitive mechanisms underlying these ongoing adaptation processes and 639 

whether this is reflected in CE measures. 640 

5. Conclusion 641 

This study on cortical encoding of speech showed that FDS supports L2 learners’ speech 642 

processing and comprehension. We highlight the importance of adapting the speech register to 643 

the target audience and demonstrate the differential effects of FDS and NDS on language 644 

processing in both L2 and L1 listeners. That is, L2 learners process both semantics and 645 

phonemes better when they are exposed to FDS than to other speech registers. This study 646 

indicates that the speech register employed during communication significantly impacts the 647 

degree to which listeners engage and process speech information. These findings have 648 

implications for language learning and teaching, and the field of speech communication, 649 

emphasizing the significance of tailoring language input to the intended audience. 650 

6. Data and code availability 651 
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Audio stimuli, processed data (behavioural data, computed EEG metrics), experiment 652 

script, statistical formula and analysis code can be found at 653 

https://osf.io/ba3p4/?view_only=960986158dd94b92b3b31cca1839b58f. (Anonymized) EEG 654 

data and stimuli will be available at https://cnspworkshop.net/index.html in the Continuous-event 655 

Neural Data structure (CND format).  656 
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