

1 ***Are you talking to me? How the choice of speech register impacts***
2 ***listeners' hierarchical encoding of speech.***

3 Giorgio Piazza^{a,b,c*}, Sara Carta^d, Emily Ip^d, Jose Pérez-Navarro^a, Marina
4 Kalashnikova^{a,e†}, Clara D. Martin^{a,e,†}, Giovanni M. Di Liberto^{d,f,†}

5 ^a *Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.*

6 ^b *Department of Social Sciences and Law, UPV/EHU, Donostia-San Sebastián, Spain.*

7 ^c *Department of Developmental Psychology and Socialisation (DPSS), University of Padova,*
8 *Padova, Italy.*

9 ^d *School of Computer Science and Statistics, ADAPT Centre, Trinity College, The University of*
10 *Dublin, Ireland.*

11 ^e *Ikerbasque, Basque Foundation for Science, Bilbao, Spain.*

12 ^f *Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Ireland.*

13 [†] *These authors contributed equally to this work.*

14
15 * Corresponding author g.piazza@unipd.it; Via Venezia 8, 35131, Padova, Italy, CLA (Building
16 4), 5th Floor, Room 2018.

17
18
19
20

21

22 **Summary**

23 Speakers accommodate their speech to meet the needs of their listeners, producing
24 different speech registers. One such register is Foreigner-Directed Speech (FDS), which is the
25 way native speakers address non-native listeners, typically characterized by features such as
26 slow speech rate and phonetic exaggeration. Here, we investigated how register impacts the
27 cortical encoding of speech at different levels of language integration. Specifically, we tested the
28 hypothesis that enhanced comprehension of FDS compared with Native-Directed Speech
29 (NDS) involves more than just a slower speech rate, influencing speech processing from
30 acoustic to semantic levels. Electroencephalography (EEG) signals were recorded from Spanish
31 native listeners, who were learning English (L2 learners), and English native listeners (L1
32 listeners) as they were presented with audio-stories. Speech was presented in English in three
33 different speech registers: FDS, NDS and a control register (Slow-NDS) which is slowed down
34 version of NDS. We measured the cortical tracking of acoustic, phonological, and semantic
35 information with a multivariate temporal response function analysis (TRF) on the EEG signals.
36 We found that FDS promoted L2 learners' cortical encoding at all the levels of speech and
37 language processing considered. First, FDS led to a more pronounced encoding of the speech
38 envelope. Second, phonological encoding was more refined when listening to FDS, with
39 phoneme perception getting closer to that of L1 listeners. Finally, FDS also enhanced the TRF-
40 N400, a neural signature of lexical expectations. Conversely FDS impacted acoustic but not
41 linguistic speech encoding in L1 listeners. Taken together, these results support our hypothesis
42 that FDS accommodates speech processing in L2 listeners beyond what can be achieved by
43 simply speaking slowly, impacting the cortical encoding of sound and language at different
44 abstraction levels. In turn, this study provides objective metrics that are sensitive to the impact
45 of register on the hierarchical encoding of speech, which could be extended to other registers
46 and cohorts.

47

48 **1. Introduction**

49 When addressing second language (L2) learners, L1 speakers naturally tend to speak in a
50 particularly clear manner by using a speech register known as Foreigner Directed Speech
51 (FDS; Scarborough et al., 2007; Tarone, 1980; Uther et al., 2007; see Piazza et al., 2022 for a
52 review of the acoustic features of FDS). FDS is often studied in comparison with Native Directed
53 Speech (NDS), which is the register used between L1 speakers, without the intention of
54 enhancing intelligibility (Ferguson & Kewley-Port, 2002). FDS has also been referred to as “non-
55 native directed speech” (NNDS; e.g., Piazza et al., under review; 2023) since it is not limited to
56 foreign listeners, and as “L2 speech accommodation” because it is assumed to be the result of
57 the speaker’s accommodation to the listener’s low L2 proficiency and learning needs (Giles,
58 2016; Lindblom, 1990; Zhang & Giles, 2017). Few studies investigated directly the impact of
59 FDS use on L2 perception, comprehension, and learning (Piazza et al., 2022, 2023; Uther et al.,
60 2012; see Rothermich et al., 2019 for a review on impressions about FDS). For example, Piazza
61 et al. (2023) provided evidence of the positive impact of FDS on L2 perception and production in
62 a novel L2 word learning task. However, controlled manipulations such as novel word learning
63 do not reflect listeners’ naturalistic exposure to L2 speech, and it remains unknown whether
64 FDS supports perception and comprehension of continuous speech. Also, most studies that
65 investigated FDS perception (with controlled manipulations) employed behavioural experiments
66 (Piazza et al., 2023; Bobb et al., 2019; Kangatharan et al., 2023; but see Uther et al., 2012),
67 which can only provide indirect measures of L2 processing when it is already concluded.
68 Instead, using neurophysiological techniques (e.g., electroencephalography (EEG)), enables the
69 exploration of speech perception as it unfolds. Here, we probed the encoding of a hierarchy of
70 linguistic information in speech and language with EEG to explore whether and how FDS
71 promotes L2 learners’ processing of L2 sounds and discourse.

72 Accurate multidimensional models of L2 perception require understanding how speech
73 registers and acoustic features modulate brain mechanisms underlying L2 acquisition, including
74 speech perception and comprehension in naturalistic listening task. One way to inform such
75 models with ecological validity is by using EEG to measure cortical encoding (CE) of speech
76 features. We interpret CE as encompassing a broad range of speech features, both continuous
77 and non-continuous, and includes cortical tracking of the speech envelope—a dynamic
78 alignment of brain activity with the temporal modulations of speech (Giraud & Poeppel, 2012;
79 Kalashnikova et al., 2018; Obleser & Kayser, 2019). Cortical tracking of speech is widely
80 regarded as a marker of the linguistic processes involved in speech perception (Giraud &
81 Poeppel, 2012; Luo & Poeppel, 2007; Meyer, 2018), which is linked to enhanced speech clarity
82 and comprehension, particularly in L1 adult listeners (Ahissar et al., 2001; Ding & Simon, 2014;
83 Etard & Reichenbach, 2019; Keitel et al., 2018; Molinaro & Lizarazu, 2018; Peelle et al., 2013;
84 Riecke et al., 2018; but see Peña & Melloni, 2012 for opposite results).

85 The speech envelope is the low-frequency amplitude modulation of the broadband speech
86 signal, which carries acoustic information important for perceptual and linguistic encoding
87 (Attaheri et al., 2022). Speech envelope encoding is a broad measure of speech perception,
88 which is influenced by factors such as attention and engagement (Ding & Simon, 2014; Keitel et
89 al., 2018; O'Sullivan et al., 2015). Beyond the speech envelope, a growing number of studies
90 are investigating CE of speech at higher order phonological and semantic levels (Brodbeck et
91 al., 2022; Broderick et al., 2018, 2021; Pérez-Navarro et al., 2024). It is possible to do so by
92 mapping specific sets of speech features, both acoustic and abstract, to brain signals (Crosse et
93 al., 2016; Di Liberto et al., 2015, 2018, 2021). Some features of continuous speech have been
94 studied in the EEG response signals, usually within low-frequency bands (<8Hz), by using
95 encoding model estimations derived, for example, with multiple regression. Here we adopt the
96 multivariate Temporal Response Function approach (TRF; Crosse et al., 2016; Di Liberto et al.,

97 2015), which has been shown to enable the study of speech perception with tasks involving
98 continuous speech listening, probing the CE of both speech sounds and linguistic properties,
99 such as the CE of the acoustic envelope (Kalashnikova et al., 2018), phonological properties
100 (Brodbeck et al., 2018; Di Liberto et al., 2015; 2021; 2023; Gillis et al., 2023) and semantic
101 expectation (Broderick et al., 2018, 2021; Klimovich-Gray et al., 2023). Previous studies have
102 shown that it is possible to investigate phonemic processing and categorization across various
103 participant cohorts (Carta, et al., under review; Di Liberto, et al., 2015; 2018; 2021; Klimovich-
104 Gray et al., 2023). Within continuous speech, responses to phonetic features of speech and
105 phonemic categorical processing can be discriminated in the low-frequency EEG signals (Di
106 Liberto et al., 2015). This shows that it is possible to employ TRF to assess L2 learners'
107 phonological perception, which could be extended to the assessment of how such phonological
108 perception changes depending on the speech register (FDS or NDS). Using a similar approach
109 allowed us to measure phonological processing across different speech registers such as FDS
110 and NDS.

111 Previous CE research involves the use of semantic prediction features built with
112 computational models estimating how semantically surprising words are given their preceding
113 context (e.g., large language models). For instance, Klimovich-Gray et al. (2023) built a
114 multivariate model that accounted for both speech envelope and semantic surprisal. The TRF
115 weights results of the semantic surprisal regressor highlighted a TRF complex, with prominent
116 centro-parietal negativity, comparable to the classic semantic N400 (Broderick et al., 2018,
117 2022). For the present study's purposes, we combine comprehension questionnaire and EEG-
118 based semantic CE measures to test whether FDS promotes comprehension in L2 learners.
119 Furthermore, we carry out multivariate analyses to disentangle the cortical processing of speech
120 and language at the level of acoustics, phonology, and semantics, investigating whether and
121 how that processing is modulated by speech registers.

122 In addition, previous studies investigated CE of speech registers such as infant directed
123 speech (IDS), which is used to address infants and support their language acquisition (Burnham
124 et al., 2015; Kalashnikova et al., 2017; Kalashnikova & Burnham, 2018; Kuhl, 1997; Trainor &
125 Desjardins, 2002) and share some acoustic features with FDS (Piazza et al., 2022). Research
126 on IDS observed that infants – not adults – exhibited better CE of IDS as compared to other
127 speech registers (Kalashnikova et al., 2018; Menn et al., 2022; see also Attaheri et al., 2022 for
128 similar research). While acknowledging the inherent distinctions between adults and infants,
129 these findings indicate that listeners' CE is enhanced when listeners are exposed to speech
130 registers specifically intended for them. These results, along with acoustic features and didactic
131 function analogies drawn between IDS and FDS, suggest that L2 learners may benefit from
132 being exposed to FDS. However, these studies typically investigated CE of speech envelope
133 and prosody contours, which represent only one (although important) aspect of speech
134 processing that serves as a proxy of speech encoding. So far, there is a lack of studies that
135 directly measured cortical encoding across speech registers and encoding of various language
136 features (both acoustic and abstract).

137 Particularly relevant to our study, Verschueren and colleagues (2022) investigated (native)
138 linguistic speech processing as a function of varying speech rate. Their findings showed that
139 slower speech rate led to an increase in CE, suggesting a connection between how linguistic
140 representations are tracked and the reduction in speech rate. Given that the differences in
141 perception between FDS and NDS might arise from differences in speech rates (FDS being
142 slower than NDS), and that speech rate affects CE, in this study we decided to also investigate
143 CE of an artificial speech register serving as a control condition, which we call Slow-NDS. This
144 speech register had the same acoustic features of NDS but a speech rate that was made similar
145 to FDS (slower than NDS) by means of dynamic time warping (Müller, 2007). We expected
146 enhanced speech perception in L2 learners to be mainly due to acoustic feature

147 accommodation of FDS (Bobb et al., 2019; Piazza et al., 2022, 2023), as opposed to speech
148 rate.

149 Here, we investigated how the exposure to speech register impacts the CE of speech
150 across several levels of the processing hierarchy, by probing acoustic, phonological, and
151 semantic processing with EEG and multivariate encoding models. We presented two EEG
152 experiments involving English L2 learners (Spanish L1, henceforth L2L) and English native
153 speakers (English L1, henceforth L1L). During these experiments, EEG signals were acquired
154 as participants listened to continuous speech (stories), and were asked comprehension
155 questions. Stories were presented in three different speech registers: FDS, NDS, and Slow-
156 NDS. We expected CE to be enhanced in L2 learners exposed to FDS relative to both NDS and
157 Slow-NDS at various levels of the hierarchy (from acoustics to semantics). We also expected a
158 facilitatory effect of slow speech rate, thus CE to be more enhanced in Slow-NDS than NDS.
159 Conversely, since L1 listeners are not the intended addressees of FDS, which is not
160 accommodated to promote L1 speech perception, we hypothesized that slow speech rate in
161 FDS and Slow-NDS would only enhance CE of speech envelope, as compared to NDS. In
162 addition, we predicted FDS to promote L2L's phonological perception as compared to both
163 Slow-NDS and NDS. Then, for L2L we expected both higher comprehension scores and
164 increased semantic CE for FDS as compared to Slow-NDS and for Slow-NDS as compared to
165 NDS. Conversely, L1L, who have native proficiency of English, were expected to show close-to-
166 ceiling performance in understanding all stories. That is, they were not expected to benefit from
167 the exposure to any speech register in their comprehension accuracy and encoding of semantic
168 surprisal. Here, we aimed to elucidate whether high level metrics of cortical encoding can be
169 used to assess CE differences across speech registers.

170

1. Method

171 **2.1. Participants**

172 **2.1.1. Experiment 1 (L2L)**

173 A total of 28 participants, aged between 18-35, were recruited to take part in experiment 1.
174 They were L2 learners of English (L1 speakers of Spanish), with mid-low proficiency in English
175 (henceforth L2L; $M_{age} = 22.8$ y.o., $SD = 3.42$, Female = 21). L2L participants were tested for
176 their English level in an individual interview with an expert linguist, who assigned marks from 0.0
177 to 5.0 (0.0 = no knowledge; 1.0 = low; 5.0 = native-like). In the interview, fluency, vocabulary,
178 grammar, and pronunciation were evaluated, and altogether concurred in the overall mark. We
179 only recruited participants who obtained an overall mark between 1.0 and 3.0 ($M = 2.96$, $SD =$
180 0.34). Of the original L2L sample, 2 participants were excluded due to technical problems and 1
181 due to very low comprehension score (4% of correct responses), leaving the final cohort to 25
182 L2L. The experiment was carried out at the Basque Center on Cognition, Brain and Language
183 (Spain). The study was approved by the BCBL Ethics Committee. All participants signed an
184 informed consent form prior to the experiment. Participants were paid 20 euro for taking part in
185 the study.

186 **2.1.2. Experiment 2 (L1L)**

187 Twenty-seven native speakers of English (L1L), aged between 18-31, were recruited to
188 take part in the Experiment 2 and were tested at Trinity College Dublin (Ireland) ($M_{age} = 22.15$,
189 y.o., $SD = 3.05$, Female = 13). Two participants were excluded due to a technical issues,
190 leaving the final cohort to 25 participants. Of these, 22 were native listeners of Irish English, 2 of
191 American English, and 1 of British English. The study was approved by the School of
192 Psychology Ethics Committee at Trinity College Dublin. All participants signed an informed
193 consent form prior to the experiment. Participants were paid 20 euro for taking part in the study.

194 **2.2. Material**

195 **2.2.1 Experiment 1 and 2 (L2L and L1L)**

196 Continuous speech sounds were employed in this study (see Data and code availability
197 for stimuli and data). Speech sounds were pre-recorded for this experiment by a female native
198 speaker of British English in the form of storytelling. Each story was recorded in two speech
199 registers: one where the speaker was instructed to address a native English speaker (NDS),
200 and another where she was directed to speak as if addressing a Spanish-speaking novice
201 learner of English (FDS). It's important to note that the speaker was accustomed to addressing
202 L2 learners (Spanish L1) due to her teaching experience. We measured the vocalic area within
203 the /a/,/i/,/u/ corner vowels (Uther et al., 2007) and speech rate as the number of
204 syllables/second (Hazan et al., 2015; Kühnert & Antolík, 2017). In line with previous literature
205 (Lorge & Katsos, 2019; Piazza et al., under review; 2023; Uther et al., 2007), FDS stories were
206 pronounced with wider vocalic area (~ 30%) and lower speech rate (~ 30%) than the NDS
207 stories. The Slow-NDS register was created by applying dynamic time warping to the NDS
208 speech sounds (Müller, 2007), which kept the acoustic features (pitch height, vocalic area,
209 vowel formants) of the NDS stimuli constant but matched speech rate of the NDS stories to the
210 speech rate of the FDS stories (3/2>slope>2/3). This technique aims to find the optimal
211 alignment between two time-dependent sequences, which are warped in a nonlinear fashion to
212 match each other (see Data and code availability to check the audio stimuli).

213 Duration of FDS and Slow-NDS stories was about 15 minutes each, while the NDS stories
214 had a duration of about 11 minutes, due to higher speech rate. This option was adopted to
215 maintain the same content for the three stories. English multi-talker babble noise
216 (Krishnamurthy & Hansen, 2009) was added to all the stories (+16 dB SNR) to avoid
217 comprehension floor effect for L2L in experiment 1 and ceiling effect for L1L in experiment 2.
218 Babble noise was created in MATLAB 2014b with a custom script by mixing continuous speech

219 streams of 8 British English speakers (Females = 4). A single signal-to-noise ratio that was
220 avoiding such issues was chosen based on an online pilot study. This pilot study tested
221 comprehension of stories from +0 to +20 dB SNR (4 dB steps). The stimuli employed for
222 experiment 1 were also used for experiment 2. It is worth noting that the stories were recorded
223 by a native British English speaker, as this is the pronunciation most commonly taught in
224 Spanish schools (specifically Received Pronunciation; Vilaplana, 2009), making the recordings
225 more understandable to the L2L tested in experiment 1.

226 **2.3 Equipment**

227 **2.3.1. Experiment 1 (L2L)**

228 Electroencephalography (EEG) data were recorded using a 64 Ag-AgCl electrodes
229 standard setting (two actiCAP 64-channel systems, Brain Products GmbH, Germany) with
230 hardware amplification (BrainAmp DC, Brain Products GmbH, Germany). Signals were
231 bandpass filtered between 0.05 and 500 Hz, digitised using a sampling rate of 1000 Hz, and
232 online referenced to the left earlobe via hardware. PsychoPy 2021 Software (version 2.3; Peirce
233 et al., 2019) was employed to present the stimuli and send synchronization triggers. Triggers
234 were sent to indicate the start of each trial with contingent stimulus presentation and ensure
235 synchronization with EEG recordings.

236 **2.3.2. Experiment 2 (L1L)**

237 Data were acquired from 64 electrode position, digitized at 1024 Hz using an ActiveTwo
238 system (BioSemi B.V., Netherlands). An additional external electrode was placed on
239 participants' left earlobe for offline referencing. As for experiment 1, PsychoPy Software 2021
240 (2.3) was employed to present the stimuli and send triggers.

241 **2.4. Procedure**

242 **2.4.1. Experiment 1 and 2 (L2L and L1L)**

243 All EEG data were collected in dimly lit and sound-proof booths. Stimuli were presented at
244 a sampling rate of 44,100 Hz, monophonically, and at a comfortable volume from Xiaomi Hybrid
245 Mi In-Ear Pro HD headphones. Participants were asked to listen attentively to three stories while
246 EEG signal was recorded. They were asked to sit calmly and upright while looking at a fixation
247 cross, which was presented on the centre of a computer screen right in front of them (at ~80 cm
248 of distance from their eyes). During the experimental session, participants were presented with
249 one story per speech register, with counterbalanced order across participants. To avoid any
250 effects derived from specific relations between stories and speech registers (e.g., a certain story
251 is more interesting/easier to understand), each story was presented in all the speech registers
252 across participants (with Latin square counterbalanced story-register association). The
253 continuous narration of each story was divided into five consecutive shorter blocks of ~3
254 minutes each. At the end of each block, participants were asked 5 comprehension questions (15
255 questions per story, 45 questions in total). Experimental sessions lasted ~2 hours including
256 preparation and testing.

257 **2.5. Analysis**

258 **2.5.1. Behavioural data**

259 Behavioural data were analysed to identify and discard those participants with very low
260 accuracy, who did not pay a sustained level of attention throughout the experiment or who had
261 very low English proficiency (they could not understand most of the stories, N=1). In addition,
262 accuracy based on responses to the questionnaire was used as a proxy of participants'
263 comprehension. Each question could be scored a finite number ranging between 0 to 1, which
264 respectively represented wrong and correct answers. Most questions required to list multiple
265 answers, which together summed 1 (see Data and code availability for a complete question list).
266 If participants could recall only part of the possible answers (e.g., 1 out 4 elements) for a
267 completely correct answer, they got a fraction score of 1 (e.g., 0.25 points; since $0.25 \times 4 = 1$).

268 This was done in order to collect finer-grain accuracy score than binomial (correct/incorrect)
269 response.

270 **2.5.2. EEG pre-processing**

271 EEG signal analyses were performed on MATLAB Software (MathWorks, 2021b), using
272 custom scripts, Fieldtrip toolbox functions (Oostenveld et al., 2011), EEGLAB (Delorme &
273 Makeig, 2004), and CNSP resources (Di Liberto et al., 2024). Offline, the data were resampled
274 to 100 Hz and band-pass filtered between 1 and 8 Hz with a Butterworth zero-phase filter (order
275 2+2). Channels with variance 3 times larger than the channels median variance were rejected.
276 Channels contaminated by noise were recalculated by spline interpolating the surrounding clean
277 channels in EEGLAB. We had planned to discard from the analysis participants with more than
278 30% of rejected data or more than 4 contaminated electrodes, but no participants were
279 discarded for these reasons.

280 **2.5.3. EEG analysis**

281 The CE of speech in the different registers was estimated by measuring forward models,
282 or temporal response functions (TRF), capturing the linear relationship between continuous
283 stimulus features and the corresponding neural response. TRFs were calculated with the
284 mTRF-Toolbox (Crosse et al., 2016), which implements a linear regression mapping multiple
285 stimulus features to one EEG channel at a time. The regression included an L2 Tikhonov
286 regularization with parameter λ , and was solved through the closed formula $\beta = (X^T X + \lambda I)^{-1} X^T y$,
287 where β indicates the regression weights, X the stimulus features, I the identity matrix, and y an
288 EEG channel. The regularization parameter was selected through an exhaustive search on a
289 logarithmic parameter space from 10^{-2} to 10^8 . This selection was carried out via cross-validation
290 to maximize the EEG prediction correlation averaged across all channels, leading to TRF
291 models that optimally generalize to unseen data. The interaction between stimulus and recorded

292 brain responses is not instantaneous, as a sound stimulus at time t_0 can affect the brain signals
293 for a certain time-window $[t_1, t_1+t_{win}]$, with $t_1 \geq 0$ and $t_{win} > 0$. The TRF takes this into account by
294 including multiple time-lags between stimulus and neural signal, providing us with model
295 weights that can be interpreted in both space (scalp topographies) and time-lag (speech-EEG
296 latencies).

297 Stimulus and EEG time-series were split into folds of equal length. Leave-one-out cross-
298 validation procedure was employed to maximize the amount of data used for the model fit, at
299 the cost of additional computational time compared with a single train-test split. Each iteration
300 provided a prediction correlation coefficient (r -value) between each feature and the EEG
301 response (per channel). The prediction correlation coefficient is the estimate of how strongly an
302 EEG signal encodes a given set of stimulus features. An r -value of 1 would represent perfect
303 correspondence between EEG signal and TRF features, whereas r -value of 0 would indicate no
304 correlation whatsoever. It is important to stress that the prediction correlation values (Pearson's
305 r) were extracted from the EEG signal, which is inherently noisy. That is, prediction correlation
306 values have low values that are typically around ~ 0.05 or ~ 0.1 due to the large amount of
307 independent EEG noise and the lack of a ground truth for our evaluation, yet being significant
308 and informative (Brodbeck et al., 2018; Di Liberto et al., 2015, 2021).

309 **2.5.4. Encoding of speech features (TRF regressors)**

310 The CE of speech features of interest was estimated by relating those features with the
311 EEG signal with multivariate TRFs. The stimulus features considered here were the speech
312 envelope, phonetic feature categories, and semantic surprisal. The TRF procedure offers two
313 dependent measures that can be studied to infer the CE of the stimulus. First, the *TRF weights*
314 (i.e., linear regression weights, where a large weight, positive or negative, indicates a stimulus
315 feature and time-lag of particular importance for predicting the EEG signal). Second, *EEG*
316 *prediction correlations* are derived for each EEG channel, informing us on how informative a

317 feature is for predicting EEG signals at a particular scalp location. Here, TRF models were fit for
318 the three registers (and for each participant) separately, allowing us to compare the CE of
319 speech across different registers with both EEG prediction correlations and TRF weights
320 measures.

321 *Speech envelope.* The broadband sound envelope was extracted from the speech sounds
322 using the Hilbert transform (Crosse et al., 2021). Univariate TRF models were fit to describe the
323 linear mapping from the speech envelope to the EEG data. We called this the Env model. In this
324 case, the time window used to fit the TRF model was [-200, 600]ms, based on previous
325 research that found this time-lag window to be sufficient to capture the measurable EEG
326 response to the speech envelope (Broderick et al., 2018; Klimovich-Gray et al., 2023).

327 *Phonetic features.* Phonemic alignments of the speech material were obtained through
328 forced alignment, initially performed automatically using DARLA (Reddy & Stanford, 2015) and
329 subsequently verified manually with PRAAT (Boersma & Weenink, 2001). The alignments were
330 stored as time-series data, with ones marking phoneme onsets and zeros elsewhere. This time-
331 series representation was 19-dimensional, where the different dimensions corresponded to
332 phonetic articulatory features. Phonetic features indicated whether each phoneme was voiced,
333 voiceless (consonants), plosive, fricative, affricate, nasal, liquid, glide, front, back, central,
334 diphthong, close, open (vowels), bilabial, labiodental, dental, alveopalatal, velar-glottal
335 (Ladefoged, 2006). This way, each phoneme could be described as a particular linear
336 combination of phonetic features. A linear transformation matrix was derived to describe the
337 linear mapping from phonetic features to phonemes, which we used to rotate stimulus matrices
338 and TRF weights from phonetic features to the phoneme domain (Di Liberto et al., 2015; Liberto
339 et al., 2021). TRF were fit to describe the mapping of phonetic features to EEG signals. TRF
340 models were fit (with time-lag window [-200, 600]ms) by including phonetic features and
341 acoustic spectrogram (Sgram) simultaneously (PhFSgram multivariate TRF model). Sgram was

342 implemented in 8 frequency bands ranged between 250Hz and 8000Hz. Those bands were
343 defined based on the Greenwood equation that correlates the position of the hair cells in the
344 inner ear to the frequencies that stimulate their corresponding auditory neurons (Greenwood,
345 1990). Sgram was chosen instead of Env as it provides a richer representation of the speech
346 acoustics, offering in itself acoustic information that can distinguish different phonemes and
347 phonetic features, particularly in terms of frequency variations. For this reason, Sgram
348 expectedly serves a better purpose to control for acoustics than speech envelope when
349 investigating phonetic features. We projected TRF weights from phonetic feature to phoneme
350 domain, and calculated pair-wise Euclidean distances between phonemes for each group and
351 condition. These distances represent how different the encoding of two given phonemes is in
352 the EEG signal (Phoneme distance maps), and it has been associated with language
353 proficiency and nativeness (Di Liberto et al., 2021). These distances can also be visualized by
354 means of a multidimensional scaling analysis (see Supplementary Material figure A. Here, we
355 assessed how the phoneme distances maps are affected by speech register across the two
356 groups.

357 *Semantic surprisal.* For investigating encoding of semantic surprisal, we first calculated its
358 values as the negative logarithm of the probabilities extracted from the Generative Pre-trained
359 Transformer 2 (GPT-2). GPT-2 calculated the probability of the upcoming words of each
360 sentence of the stories given the previous context. Surprisal values were then coded into a
361 sparse time-vector, where non-zero values represent word onsets, and their values the surprise
362 of that word based on the preceding context. Then, we fit a multivariate TRF including semantic
363 surprisal values and speech envelope as input features (SemEnv TRF model). This was
364 implemented in order to account for the acoustics of speech, while investigating non-acoustic
365 features (Chalehchaleh et al., 2024; Di Liberto et al., 2021). The time window considered for this
366 model was -200 – 700ms based on previous literature showing that EEG responses to semantic

367 surprisal emerges with long latencies (Broderick et al., 2018; Di Liberto et al., 2021; Klimovich-
368 Gray et al., 2023), with longer latencies for L2 than L1 learners (Di Liberto et al., 2021;
369 Momenian et al., 2024; Mueller, 2005).

370 **2.6. Statistical analysis**

371 **2.6.1. Comprehension questionnaire**

372 To assess the effect of Speech register, statistical analyses were performed using
373 generalized linear mixed effect (*glme*) models with Poisson family, including fixed effect of
374 Speech register, random effect of participants (see Appendix 4.1 for a list of statistical models).
375 To determine significance of the models we used the type II Wald chi-square tests included in
376 the CAR package (Fox, 2015; Fox & Weisberg, 2019). For post-hoc analyses, we used the
377 *emmeans* package with Tukey HSD correction for multiple comparisons.

378 **2.6.2. TRF model performances**

379 Before our analyses of interest, we conducted control tests to assess that the model
380 regressors yielded EEG prediction correlations significantly greater than the null model.
381 Specifically, we assessed whether our features of interest were encoded in the EEG signals to
382 some extent. We conducted one-sample *t*-tests (one-tailed) against the null hypothesis
383 (prediction correlations were not greater than 0) for the speech envelope, phonetic features, and
384 semantic surprisal regressors. Whereas for the Env model we employed the EEG prediction
385 correlation (Pearson's *r*) of the final model, the phonetic features and semantic surprisal were
386 employed in multivariate models. Thus, we measured the unique contribution of phonetic
387 features and semantic surprisal on model performance by comparing the multivariate models
388 with the EEG prediction correlations for univariate models (Sgram and Env respectively) and
389 subtracted the *r*-values of those from that of the multivariate models. Thus, we assessed
390 whether the residual *r*-values were greater than 0 (Di Liberto et al., 2018; Di Liberto et al.,

391 2015). While there are caveats to this procedure (Daube et al., 2019), this was sufficient for our
392 purposes of studying the impact of speech register across L1L and L2L groups.

393 **2.6.3. TRF regression weights**

394 *Speech envelope.* After assessing model performances, we investigated the effect of
395 Speech Register on the TRF weights of the Env model via the TRF N1-P2 complex (peak-to-
396 peak) amplitude metric. This choice is in line with previous research and recommendations
397 (Carta et al., 2023; Di Liberto et al., 2018, 2021). Thus, we picked the most negative and
398 positive values of each electrode in the 30-180ms TRF time window and calculated the N1-P2
399 TRF complex of the Env model as the peak-to-peak difference (Crosse et al., 2016; Di Liberto et
400 al., 2015; Di Liberto et al., 2021). We then fitted an linear mixed effect (*lme*) model with Speech
401 Registers as fixed effects and participants as random effects, whereas significance was
402 assessed via type II Wald chi-square test.

403 *Phonetic features.* We derived the phoneme distance maps as described above by
404 employing multidimensional scaling (MDS) to project the TRF phoneme weights onto a
405 multidimensional space for each speech register. The result for each speech register was then
406 mapped to the average English Listeners' NDS space by means of a Procrustes analysis
407 (MATLAB function *procrustes*). Then, we calculated residual distance between these three L2L
408 phoneme representations and the reference maps of NDS-L1L (as in Di Liberto et al. 2021).
409 This analysis allowed us to project the L2 phoneme distance maps for the three speech
410 registers' perception to a common multidimensional space and to compare them quantitatively.
411 The results of the MDS were then fitted to a *lme* model (including participants as random
412 effects) to assess the difference across speech registers in the L2L group.

413 *Semantic surprisal.* From the SemEnv model, only the temporal weights of the semantic
414 surprisal feature (excluding Env) were analysed at the electrode level employing CBPT. We

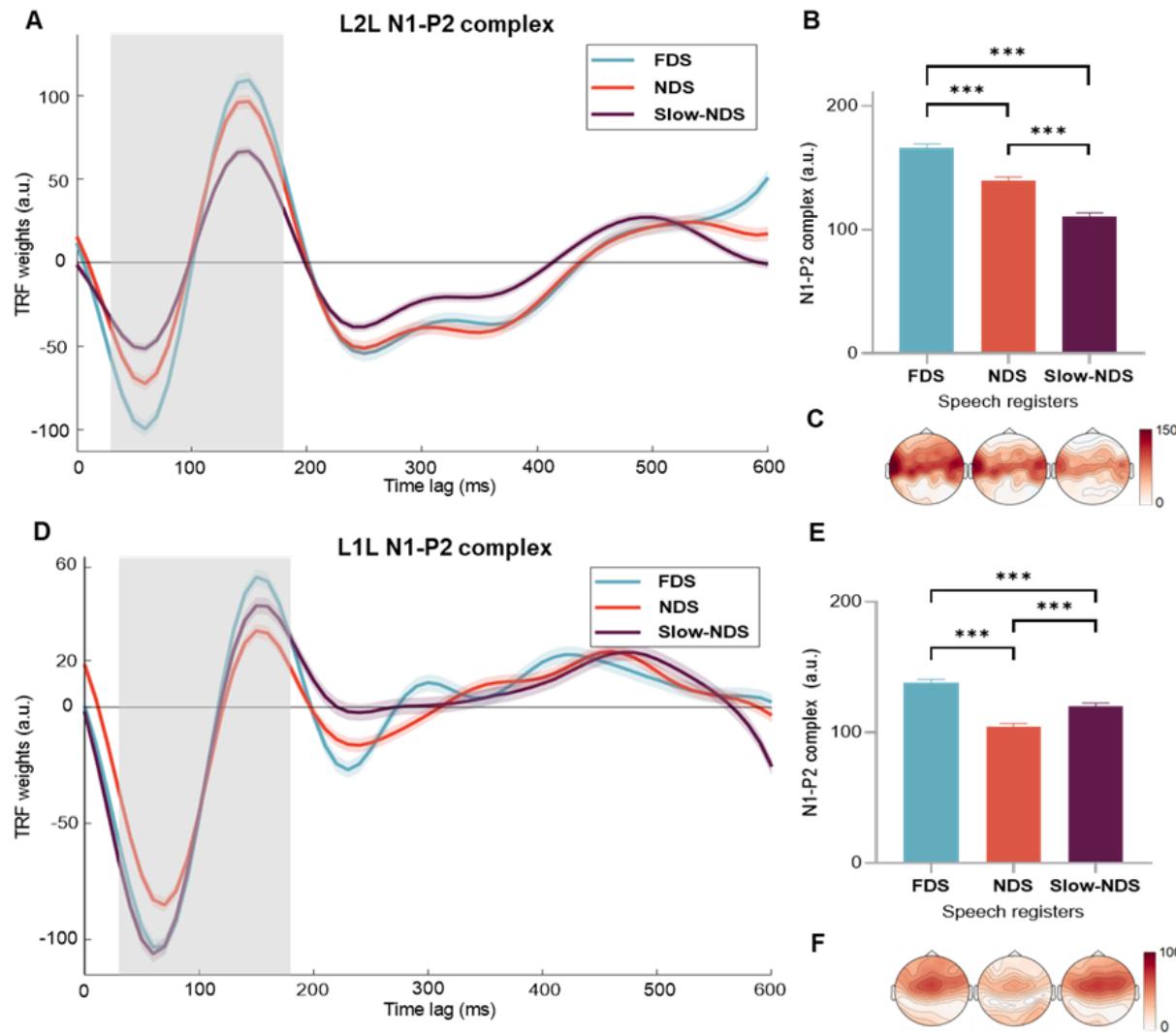
415 implemented this approach to avoid selecting a priori time window, as previous literature
416 showed various time windows of the N400 TRF complex (Broderick et al., 2018, 2021;
417 Klimovich-Gray et al., 2023).

418 The exact same pre-processing and analysis of experiment 1, both for behavioural and
419 EEG data, were conducted on the L1L data of experiment 2. Even though all these steps
420 overlapped between experiment 1 and 2, two separate analyses were conducted because data
421 were collected in two different laboratories and with different EEG recording systems
422 (Brainvision and Biosemi). In Experiment 2, the PhF regressor was primarily used to create L1L-
423 NDS phoneme maps for studying L2 phoneme perception in Experiment 1. We confirmed that
424 the PhF regressor in the PhFSgram model produced a significant EEG prediction correlation ($t =$
425 9.624, $p < .001$), indicating phonetic feature encoding by L1 listeners, but no further analysis
426 was conducted.

427 **3. Results**

428 **3.1. Speech envelope model**

429 *L2L*. We examined the EEG results of the speech envelope (Env) model performance and
430 whether Env TRF weights differed across speech registers (measured on N1-P2 complex, the
431 ERP equivalent is widely used in the literature; Lightfoot, 2016). Encoding univariate TRF model
432 Env yielded prediction correlations that were higher than zero ($t = 77.391$, $p < .001$),
433 demonstrating that speech envelope was encoded in the EEG signals. The N1-P2 complex
434 yielded a statistically significant effect of speech register ($\chi^2 = 408.99$, $p < .001$; Figure 1A-C).
435 Post-hoc analyses showed larger N1-P2 complex for FDS than NDS ($\beta = 25.9$, $z = 9.569$, $p >$
436 $.001$) and Slow-NDS ($\beta = 54.8$, $z = 20.214$, $p < .001$), which in turn exhibited reduced amplitude
437 as compared to NDS ($\beta = 28.8$, $z = 10.645$, $p < .001$).



438

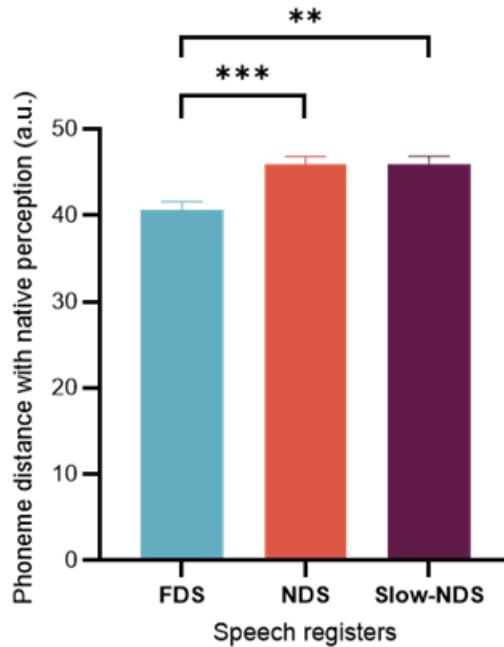
439 **Figure 1. Slow speech rate alone does not support acoustic processing.** A-C: L2L. D-
 440 F: L1L. **(A)** Mean TRF weights of the speech envelope model by Speech Register (FDS = Foreigner-
 441 Directed Speech, NDS = Native-Directed Speech, Slow-NDS = Slow-Native-Directed Speech) for Cz
 442 channel at post-stimulus time latencies from 0 to 600ms. Shaded lines indicate SEM across participants
 443 (on Cz). The grey area indicates the time window where the N1-P2 complex was measured. **(B)** Mean
 444 N1-P2 peak differences by Speech registers. Bars indicate SEM, asterisks indicate significant differences
 445 (*p < .05, **p < .01, ***p < .001). **(C)** Topographic distribution of the mean differences. **(D-F)** Same as A-C,
 446 but results of the L1 listeners.

447 L1L. Then, we repeated the same analysis on the L1L participants. The model
 448 performance one-sample *t*-test showed the Env model yielded prediction correlations higher
 449 than zero ($t = 70.952$, $p < .001$). The statistical model revealed a statistically significant effect of
 450 speech register ($\chi^2 = 274.35$, $p < .001$). Post-hoc analyses indicated a larger N1-P2 complex

451 amplitude when listening to FDS than NDS ($\beta = 33.5$, $z = 11.609$, $p < .001$) and Slow-NDS ($\beta =$
452 17.9 , $z = 6.209$, $p < .001$), with Slow-NDS showing larger a N1-P2 complex amplitude than NDS
453 ($\beta = 15.6$, $z = 5.400$, $p < .001$; see Figure 1D-F).

454 **3.2. Phoneme distance maps**

455 *L2L*. We investigated the L2 phoneme encoding results to determine whether the model's
456 performance accurately reflected phoneme processing, as indicated by prediction correlations
457 greater than zero. Additionally, we investigated whether the phoneme distance maps of L2L
458 listening to FDS were closer to native listeners' perception of NDS than the other two speech
459 registers. The model performance test (Spectrogram Sgram + Phonetic Features PhF
460 multivariate model – Sgram) yielded prediction correlations greater than zero ($t = 10.751$, $p <$
461 $.001$). We took the L1L EEG signals in NDS as a reference to build the model for the L2L
462 responses to phonemes. The model, fitted on multi-dimensional scaling (MDS) results of
463 phoneme (Ph) TRF weights, highlighted a significant main effect of Speech Register ($\chi^2 =$
464 22.18 , $p < .001$). Post-hoc analyses indicated that L2L exhibited phoneme representations
465 closer to L1L (NDS) phoneme perception when exposed to FDS as compared to NDS ($\beta = -$
466 5.237 , $z = -4.468$, $p < .001$) and Slow-NDS ($\beta = -4.505$, $z = -3.229$, $p = .004$) and no difference
467 between the latter two ($\beta = 0.732$, $z = 1.39$, $p = .859$; see Figure 2 and Figure A in
468 Supplementary Material for more detailed plots).



469

470 **Figure 2. FDS refines L2 phonological encoding.** Phoneme distance maps based on the
471 TRF Ph weights. Distance between English listeners' NDS and L2Ls' phonemes for each speech register.
472 Error bars indicate the SEM of the mean across phonemes. Asterisks indicate significant differences (*p
473 <.05, **p < .01, ***p < .001).

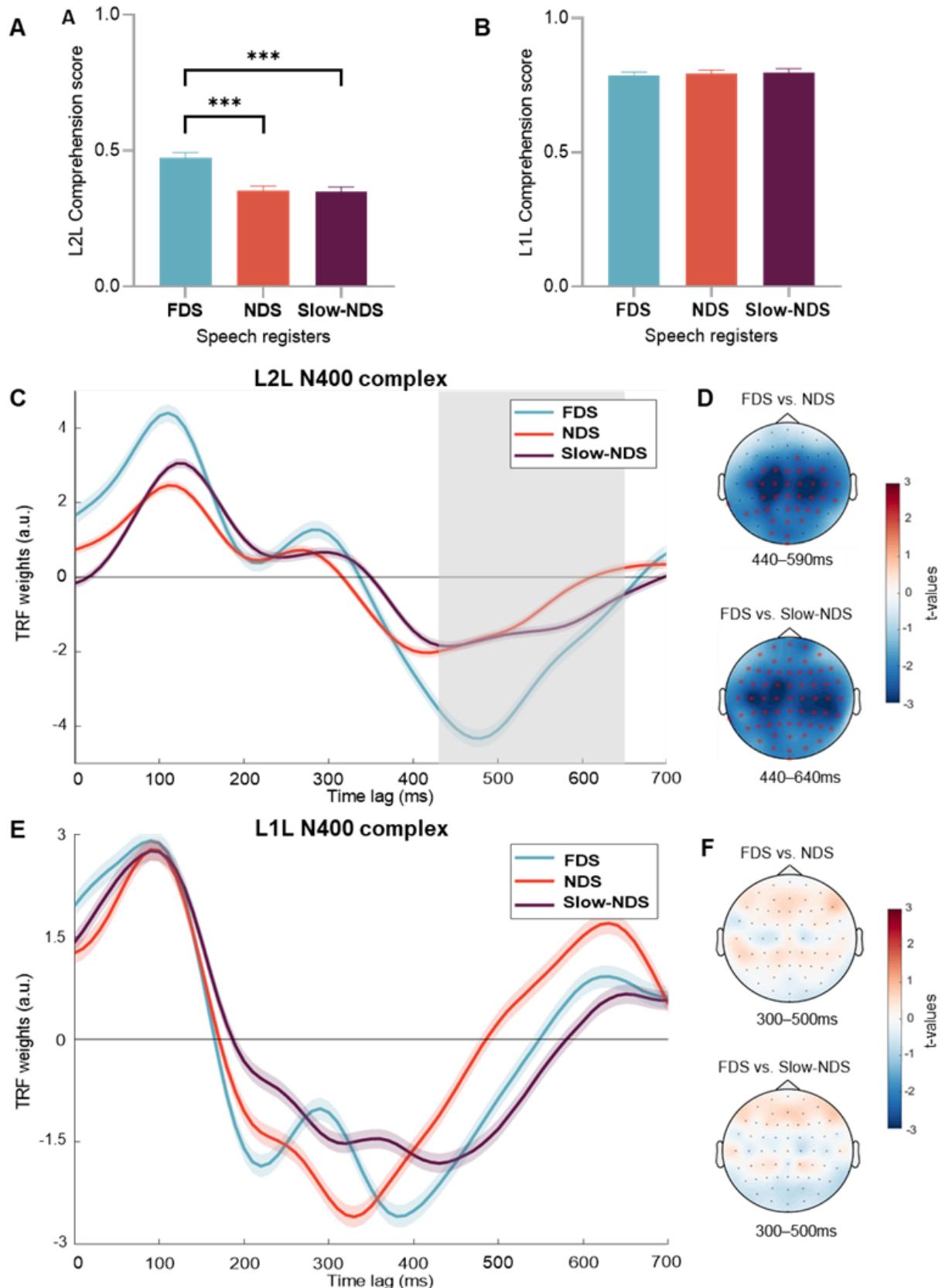
474 **3.3. Comprehension questionnaire**

475 *L2L.* Comprehension scores were compared across the three speech registers via *lme*
476 models. The model revealed a significant effect of Speech register on L2L's comprehension
477 accuracy ($\chi^2 = 34.685, p < .001$). Post-hoc analyses indicated that L2L exhibited higher
478 comprehension scores in FDS than NDS ($z = 4.793, p < .001$) and Slow-NDS ($z = 5.318, p <$
479 $.001$), whereas the latter two did not significantly differ ($z = 0.530, p = .857$; Figure 3A).

480 *L1L.* The statistical model did not yield a significant effect of Speech register ($\chi^2 = 0.495, p$
481 $= 0.976$), suggesting that L1L's comprehension did not benefit from exposure to any of the
482 speech registers (see Figure 3B). L1L response accuracy ranged between 66,7% to 91,6%
483 hinting a lack of ceiling effect.

484 **3.4. Semantic surprisal model**

485 *L2L*. Next, we examined whether the difference in register had an effect on the EEG
486 encoding of semantic information. To test this, we fitted a multi-variate encoding TRF model
487 including Semantic Surprisal and Envelope (SemEnv) as its features. The predictive
488 performance of the SemEnv model was significantly higher than that of a univariate model built
489 with the Envelope only (Env), suggesting a robust encoding of semantic information in the EEG
490 responses ($t = 6.506, p < .001$). To test the differences across speech registers we employed
491 the cluster-based permutation tests (CBPT; see Method for this rationale) on TRF semantic
492 surprisal weights of the SemEnv model. Results showed that participants exhibited more
493 negative amplitude when listening to FDS stories than NDS (cluster $t = -2040.5, p = .006, SD$
494 $= .001$) and Slow-NDS (cluster $t = -2081.6, p = .002, SD = .0004$) in the time window
495 corresponding to the N400 complex (respectively 440-590ms and 440-640ms; see Figure 3C-
496 D). We did not measure significant differences between NDS and Slow-NDS (cluster $p > .05$).



498 **Figure 3. FDS promotes L2 learners' comprehension accuracy and semantic**
499 **encoding. (A) L2Ls and (B) L1Ls'** mean comprehension score by Speech Register (FDS = Foreigner-
500 Directed Speech, NDS = Native-Directed Speech, Slow-NDS = Slow–Native-Directed Speech). Bars
501 indicate SEM. Asterisks indicate significant differences (* $p < .05$, ** $p < .01$, *** $p < .001$). **(C) L2L's** mean
502 TRF weight of semantic surprisal (*SemEnv* model) by Speech Registers for Cz channel at post-stimulus
503 time latencies from 0 to 700ms. Shaded lines indicate SEM across participants (on Cz) and grey area
504 indicates the significant time window (CBPT). **(D) L2L's** significant channels (red asterisks) and time
505 windows of pairwise comparison resulting from the CBPT (difference between speech registers). The
506 NDS vs. Slow-NDS comparison is non-significant and its topography is not reported here. **(E-F)** Same as
507 C-D but results of the **L1L**. The time window to report the topographies is picked arbitrarily as the CBPT
508 did not highlight any significant difference. The NDS vs. Slow-NDS comparison is non-significant and its
509 topography is not reported here.

510

511 *L1L*. Semantic encoding was tested with the same analysis on L1L participants. Also in
512 this cohort, the *SemEnv* model yielded a significant prediction gain compared to the univariate
513 Env model ($t = 3.353$, $p = 0.001$), indicating that semantic information was encoded by the L1Ls'
514 EEG signals. In contrast to L2L listeners, the amplitude of the N400-like response in the
515 semantic surprisal weights did not significantly differ across speech registers for L1L listeners
516 (cluster $p > .05$; see Figure 3E-F)

517 **4. Discussion**

518 In this study, we tested the hypothesis that FDS promotes L2 perception and
519 comprehension as compared to NDS and to slow-NDS, characterizing how the choice of speech
520 register impacts speech processing across the cortical processing hierarchy. We also
521 hypothesized that the benefit of FDS would emerge in L2L but not in L1L, the speech register
522 being specifically aimed to address L2L. Our hypotheses were grounded in previous work
523 suggesting that, in comparison with NDS, FDS supports various aspects of L2 acquisition, such
524 as improving L2 perception and comprehension during word learning (Piazza et al., 2022, 2023;
525 Uther et al., 2007). In addition, neurophysiology research on L2 processing had never assessed
526 L2L's perception in any register but NDS (Piazza et al., 2022; Rothermich et al., 2019, 2023).
527 Conversely, Brodbeck et al. (2024) showed that L2 accented speech can facilitate L2
528 processing. However, while this research investigates non-standard pronunciation, it does not

529 consider different speech registers, such as FDS. This represents a limitation to the
530 generalization of how L2 is processed in a naturalistic context, where the interlocutors adapt
531 their register to each other (Giles, 2016; Lindblom, 1990; Piazza et al., 2022). Here, we
532 measured EEG responses to NDS, Slow-NDS, and FDS in both L2 learners (L2L) and L1
533 listeners (L1L). Results showed that EEG signals reflected the encoding of all the speech
534 features considered (speech envelope, phoneme maps, and semantic surprisal), with that
535 encoding being substantially impacted by the speech register.

536 As we had anticipated, the EEG data supported our hypothesis that FDS promotes the
537 cortical encoding of speech in L2L but not L1L. Our results indicate that FDS promotes speech
538 processing in L2L, and that this effect is not due to the slower speech rate of this register.
539 Instead, L1L only exhibit a sensitivity to speech rate, while the other properties of FDS did not
540 impact the encoding of speech. Our results also indicate that Slow-NDS only alters the cortical
541 encoding of sound acoustics, but not the phonological and semantic encoding, in L1 listeners. In
542 sum, these results indicate that FDS (and not Slow-NDS) promotes L2 encoding at both
543 acoustic (speech envelope) and linguistic levels (phonology and semantics; Figure 1-4).

544 L2L showed more efficient CE of the speech envelope in FDS than NDS. This advantage
545 of FDS could not be attributed to its acoustic salience due to differences in the speech rate or
546 acoustic onset dynamics, since Slow-NDS and NDS have similar, more gentle rise times
547 compared to FDS (Figure B in Supplementary Material). L1L also showed an effect of register
548 but, contrarily to L2L, they showed significantly enhanced N1-P2 envelope responses due to a
549 slower speech rate, which is in line with previous findings on L1 speech perception (Kösem et
550 al., 2018; Verschueren et al., 2022). One challenge is that the envelope encoding can reflect a
551 variety of contributions and processes, from sound encoding to attention (Ding & Simon, 2012)
552 and even lexical prediction (e.g., attention and engagement; Broderick & Lalor, 2020; Hamouda,
553 2013). For example, the slower signal in Slow-NDS may be encoded differently acoustically, or

554 it may require less attention, as Slow-NDS is likely easier to process than NDS. And this could
555 be differently reflected on speech envelope CE in L1L and L2L. Note that Slow-NDS was
556 artificially created, but the L1L's N1-P2 results suggest that it is not perceived as unnatural
557 (Slow-NDS elicited responses comparable to FDS and greater than NDS). Furthermore, no
558 participants reported any issues with its naturalness and audio stimuli are available for
559 verification (Data and code availability section). Importantly, we included Slow-NDS to
560 disentangle the effects of low speech rate on cortical encoding of our regressors. Our results
561 highlight that slow speech rate, if not accompanied by other acoustic features tailored to L2L (as
562 in FDS), is not enough to boost L2Ls' perception and does not help at any level of the encoding
563 hierarchy.

564 To more directly uncover the impact of speech register on the encoding of speech, our
565 research probed the cortical encoding of phonological information, providing direct evidence for
566 an enhanced phonological processing among L2L exposed to FDS. Remarkably, our findings
567 revealed that L2L exposed to FDS (as compared to the other 2 registers) exhibited not only
568 better acoustic encoding, but also phoneme perception closer to that of native speakers
569 listening to NDS. In other words, FDS is not merely endowed with more salient acoustics than
570 other speech registers (Hazan et al., 2015; Knoll & Scharrer, 2007); instead, the resemblance of
571 L2Ls' FDS phoneme maps to L1 NDS maps suggests that L2L exhibit improved phoneme
572 recognition, approaching more native-like perception skills. This represents direct evidence of
573 the FDS impact on phoneme processing in L2L, isolating this factor from purely acoustic factors
574 (spectrogram) and the potential impact of FDS on acoustics. The phoneme map distance
575 analysis allowed us to compare L2Ls' phonological perception space across three speech
576 registers and contrast it with native perception of NDS. The reason for focusing on NDS
577 perception in L1L as a reference is that it is the register L1 listeners hear daily during peer-to-
578 peer conversations (not FDS), and they have no difficulty to perceive phonemes in this register.

579 By accounting for both acoustic and phonological features with multivariate TRFs, our
580 analysis could determine that FDS impacts L2 perception and comprehension beyond its
581 acoustic benefit. This approach was previously tested in adults (Di Liberto et al., 2015), children
582 (Di Liberto, et al., 2018b), hearing impaired listeners (Carta et al., under review), L2 listeners (Di
583 Liberto et al. 2021), and infants in their first year of life (Di Liberto et al., 2023), leading to EEG
584 indices of phonological processing that are sensitive to factors such as phonological awareness,
585 language development, proficiency in a second language, comprehension (Di Liberto et al.,
586 2018a), and native vs. non-native encoding of a language. Our finding sheds light on the L2
587 acquisition process and aligns with existing research supporting the efficacy of FDS in L2
588 acquisition, including perception of phonemic contrasts (Kangatharan et al., 2023; Piazza et al.,
589 2023; Uther et al., 2012).

590 On the comprehension-semantic level, we found evidence that FDS promotes L2
591 comprehension. We observed that L2L had a higher comprehension accuracy to questions
592 about the FDS stories than stories in the other two registers. Additionally, the mTRF analysis
593 was designed to probe semantic prediction mechanisms while accounting for potential
594 contamination from EEG responses to speech acoustics. In the L2L group, we found a
595 modulation of encoding of semantic information in FDS register with more negative N400 TRF
596 complex than in the other conditions (in line with previous research, e.g., Broderick et al., 2018;
597 Klimovich-Gray et al., 2023). This indicates that semantic integration improves when L2L are
598 exposed to FDS, supporting our hypothesis. Notably, the N400 peaked around 500ms,
599 consistent with previous findings and appearing later than typically observed in L1 listeners (Di
600 Liberto et al., 2021; Klimovich-Gray et al., 2023). On the other hand, L1L did not benefit from
601 any register in their comprehension scores. This behavioural null effect was unlikely due to
602 ceiling effects (average accuracy was ~80%, ranged between 66,7% and 91,6%). Additionally,
603 the semantic surprisal model did not highlight differences across speech registers for L1L, which

604 again suggests no semantic integration advantage in any register. Although L1L acoustic
605 perception was boosted by FDS (speech envelope model), their ability to respond correctly to
606 content questions, and also encode semantics, was not modulated by any register. Also,
607 experiment 2 with L1L employed L1 speakers of other English varieties (mostly Irish, see
608 Method) but the stimuli were presented in British English accent (see Method). We do not think
609 that this negatively affected our results. In fact, L1Ls' comprehension scores were high (□ 80%)
610 and, given the proximity between Dublin and England, contact with accents such as British
611 accent is highly frequent (especially at the University). Thus, we provided evidence that L2L's –
612 and not L1L's – comprehension and semantic encoding was boosted by listening to FDS. In our
613 view, such an advantage in L2L's semantic processing is likely hierarchically linked to the
614 phonological benefits of FDS, in a way that improved phonological encoding facilitates semantic
615 integration. Altogether, these findings support our view that FDS promotes hierarchical speech
616 encoding. Accordingly, speech registers, originated from speech accommodation, promote the
617 intended listeners' CE of speech at both the acoustic and linguistic levels.

618 Speakers are known to adapt their speech based on factors like listeners' language
619 proficiency and communicative intention (Lam et al., 2012; Piazza et al., under review;
620 Rothermich et al., 2023). Theoretical frameworks such as the Communication Accommodation
621 Theory (CAT; Giles, 2016; Giles et al., 1991; Zhang & Giles, 2017) delve into the
622 sociopsychological processes underlying communication, including L1-L2 interaction. CAT, for
623 instance, assumes *convergence* mechanisms, where verbal and nonverbal cues are adjusted to
624 minimize linguistic differences. Our findings provide evidence that speech accommodation
625 indeed impacts intended listeners' neurocognitive processing mechanisms. We provide
626 compelling evidence that listeners' CE of speech is enhanced when L2L are exposed to the
627 speech register specifically intended for them. As it seems, speech accommodation affects the
628 intended listeners' CE and perception of speech. The reason may be that accommodation is

629 particularly relevant for L2Ls' perception, given their low L2 proficiency. This emphasizes the
630 significance of considering the relationship between speech register and target audience when
631 investigating L1 and L2 processing and building models of speech communication. Auditory L2
632 speech perception models should integrate various aspects of speech perception including
633 facilitation derived from speech accommodation.

634 We think that these findings will inform future research on speech interaction.
635 Communication is a dynamic process wherein speakers and listeners cooperate to ensure
636 successful interaction. It is likely that listeners build models of the interlocutors and continuously
637 adjust these models based on contextual information (in line with similar assumptions, Costa et
638 al., 2008; Martin et al., 2016) to maximize communication success. Future research should
639 explore the neurocognitive mechanisms underlying these ongoing adaptation processes and
640 whether this is reflected in CE measures.

641 **5. Conclusion**

642 This study on cortical encoding of speech showed that FDS supports L2 learners' speech
643 processing and comprehension. We highlight the importance of adapting the speech register to
644 the target audience and demonstrate the differential effects of FDS and NDS on language
645 processing in both L2 and L1 listeners. That is, L2 learners process both semantics and
646 phonemes better when they are exposed to FDS than to other speech registers. This study
647 indicates that the speech register employed during communication significantly impacts the
648 degree to which listeners engage and process speech information. These findings have
649 implications for language learning and teaching, and the field of speech communication,
650 emphasizing the significance of tailoring language input to the intended audience.

651 **6. Data and code availability**

652 Audio stimuli, processed data (behavioural data, computed EEG metrics), experiment
653 script, statistical formula and analysis code can be found at
654 https://osf.io/ba3p4/?view_only=960986158dd94b92b3b31cca1839b58f. (Anonymized) EEG
655 data and stimuli will be available at <https://cnspworkshop.net/index.html> in the Continuous-event
656 Neural Data structure (CND format).

657 **7. CRediT statement**

658 G.P.: Conceptualisation, Formal analysis, Investigation, Data Curation, Visualisation,
659 Writing - Original Draft, Funding acquisition; S.C.: Formal analysis, Writing: Reviewing and
660 Editing; E.I.: Investigation, Writing: Reviewing and Editing; J.P.N: Resources, Writing:
661 Reviewing and Editing; M.K.: Conceptualisation, Supervision, Writing: Reviewing and Editing.
662 C.D.M.: Conceptualisation, Supervision, Writing: Reviewing and Editing, Funding acquisition;
663 G.D.L.: Conceptualisation, Supervision, Methodology, Writing: Reviewing and Editing, Funding
664 acquisition.

665 **8. Funding**

666 This research was supported by a Doctoral Fellowship (LCF/BQ/DI19/11730045) from the
667 “La Caixa” Foundation (ID 100010434), the Cognition and Natural Sensory Processing Initiative
668 (CNSP), a travel scholarship supported by mBrainTrain, and a Scientific Exchange grant from
669 the European Molecular Biology Organization (EMBO, number 9996) awarded to G.P. This
670 research was also supported by the Spanish Ministry of Science and Innovation through the
671 Ramon y Cajal Research Fellowship (RYC2018-024284-I) to M.K, by the Spanish Ministry of
672 Economy and Competitiveness (PID2020-113926GB-I00 and PID2023-148756NB-I00 to
673 C.D.M.), and the European Research Council (ERC) under the European Union’s Horizon 2020
674 research and innovation programme (grant agreement No 819093 to C.D.M.). This research
675 was supported by the Basque Government through the BERC 2022-2025 program and by the
676 Spanish State Research Agency through BCBL Severo Ochoa excellence accreditation
677 CEX2020-001010-S. This research was supported by the Science Foundation Ireland under
678 Grant Agreement No. 13/RC/2106_P2 at the ADAPT SFI Research Centre at Trinity College
679 Dublin. ADAPT, the SFI Research Centre for AI-Driven Digital Content Technology, is funded by
680 Science Foundation Ireland through the SFI Research Centres Programme.

681 **9. Declaration of Competing Interests**

682 The authors declare no competing interests.

683 **10. Supplementary Material**

684 Additional figures can be found at this link:

685 https://osf.io/ba3p4/?view_only=960986158dd94b92b3b31cca1839b58f.

686

687 **References**

688 Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M.
689 (2001). Speech comprehension is correlated with temporal response patterns recorded
690 from auditory cortex. *Proceedings of the National Academy of Sciences of the United
691 States of America*, 98(23), Article 23. <https://doi.org/10.1073/pnas.201400998>

692 Attaheri, A., Choisdealbha, Á. N., Di Liberto, G. M., Rocha, S., Brusini, P., Mead, N., Olawole-
693 Scott, H., Boutris, P., Gibbon, S., Williams, I., Grey, C., Flanagan, S., & Goswami, U.
694 (2022). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung
695 speech by infants. *NeuroImage*, 247, 118698.
696 <https://doi.org/10.1016/j.neuroimage.2021.118698>

697 Boersma, P., & Weenink, D. (2001). PRAAT, a system for doing phonetics by computer. *Glot
698 International*, 5, 341–345.

699 Brodbeck, C., Bhattachari, S., Cruz Heredia, A. A., Resnik, P., Simon, J. Z., & Lau, E. (2022).
700 Parallel processing in speech perception with local and global representations of
701 linguistic context. *eLife*, 11, e72056. <https://doi.org/10.7554/eLife.72056>

702 Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid Transformation from Auditory to
703 Linguistic Representations of Continuous Speech. *Current Biology*, 28(24), 3976-
704 3983.e5. <https://doi.org/10.1016/j.cub.2018.10.042>

705 Brodbeck, C., Kandylaki, K. D., & Scharenborg, O. (2024). Neural Representations of Non-
706 native Speech Reflect Proficiency and Interference from Native Language Knowledge.
707 *Journal of Neuroscience*, 44(1). <https://doi.org/10.1523/JNEUROSCI.0666-23.2023>

708 Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018).
709 Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of
710 Natural, Narrative Speech. *Current Biology*, 28(5), 803-809.e3.
711 <https://doi.org/10.1016/j.cub.2018.01.080>

712 Broderick, M. P., Di Liberto, G. M., Anderson, A. J., Rofes, A., & Lalor, E. C. (2021). Dissociable
713 electrophysiological measures of natural language processing reveal differences in
714 speech comprehension strategy in healthy ageing. *Scientific Reports*, 11(1), Article 1.
715 <https://doi.org/10.1038/s41598-021-84597-9>

716 Broderick, M. P., & Lalor, E. C. (2020). *Co-existence of prediction and error signals in*
717 *electrophysiological responses to natural speech* (p. 2020.11.20.391227). bioRxiv.
718 <https://doi.org/10.1101/2020.11.20.391227>

719 Burnham, E. B., Wieland, E. A., Kondaurova, M. V., McAuley, J. D., Bergeson, T. R., & Dilley, L.
720 C. (2015). Phonetic modification of vowel space in storybook speech to infants up to 2
721 years of age. *Journal of Speech, Language, and Hearing Research: JSLHR*, 58(2),
722 Article 2. https://doi.org/10.1044/2015_JSLHR-S-13-0205

723 Carta, S., Aličković, E., Zaar, J., Valdes, A. L., & Liberto, G. M. D. (2023). *Cortical over-*
724 *representation of phonetic onsets of ignored speech in hearing impaired individuals* (p.
725 2023.06.26.546549). bioRxiv. <https://doi.org/10.1101/2023.06.26.546549>

726 Carta, S., Mangiacotti, A. M. A., Valdes, A. L., Reilly, R. B., Franco, F., & Di Liberto, G. M.
727 (2023). The impact of temporal synchronisation imprecision on TRF analyses. *Journal of*
728 *Neuroscience Methods*, 385, 109765. <https://doi.org/10.1016/j.jneumeth.2022.109765>

729 Chalehchaleh, A., Winchester, M., & Liberto, G. M. D. (2024). *Robust assessment of the cortical*
730 *encoding of word-level expectations using the temporal response function* (p.
731 2024.04.03.587931). bioRxiv. <https://doi.org/10.1101/2024.04.03.587931>

732 Costa, A., Pickering, M. J., & Sorace, A. (2008). Alignment in second language dialogue.
733 *Language and Cognitive Processes*, 23(4), Article 4.
734 <https://doi.org/10.1080/01690960801920545>

735 Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The Multivariate Temporal
736 Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to
737 Continuous Stimuli. *Frontiers in Human Neuroscience*, 10.
738 <https://www.frontiersin.org/articles/10.3389/fnhum.2016.00604>

739 Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., & Lalor, E. C. (2021).
740 Linear Modeling of Neurophysiological Responses to Speech and Other Continuous
741 Stimuli: Methodological Considerations for Applied Research. *Frontiers in Neuroscience*,
742 15. <https://doi.org/10.3389/fnins.2021.705621>

743 Daube, C., Ince, R. A. A., & Gross, J. (2019). Simple Acoustic Features Can Explain Phoneme-
744 Based Predictions of Cortical Responses to Speech. *Current Biology*, 29(12), 1924-
745 1937.e9. <https://doi.org/10.1016/j.cub.2019.04.067>

746 Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial
747 EEG dynamics including independent component analysis. *Journal of Neuroscience*
748 *Methods*, 134(1), Article 1. <https://doi.org/10.1016/j.jneumeth.2003.10.009>

749 Di Liberto, G. M., Attaheri, A., Cantisani, G., Reilly, R. B., Ní Choisdealbha, Á., Rocha, S.,
750 Brusini, P., & Goswami, U. (2023). Emergence of the cortical encoding of phonetic
751 features in the first year of life. *Nature Communications*, 14(1), 7789.
752 <https://doi.org/10.1038/s41467-023-43490-x>

753 Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018). Cortical Measures of Phoneme-Level
754 Speech Encoding Correlate with the Perceived Clarity of Natural Speech. *eNeuro*, 5(2),
755 Article 2. <https://doi.org/10.1523/ENEURO.0084-18.2018>

756 Di Liberto, G. M., Nidiffer, A., Crosse, M. J., Zuk, N., Haro, S., Cantisani, G., Winchester, M. M.,
757 Igoe, A., McCrann, R., Chandra, S., Lalor, E. C., & Baruzzo, G. (2024). A standardised
758 open science framework for sharing and re-analysing neural data acquired to continuous
759 stimuli. *ArXiv*, arXiv:2309.07671v3.

760 Di Liberto, G. M., Nie, J., Yeaton, J., Khalighinejad, B., Shamma, S. A., & Mesgarani, N. (2021).
761 Neural representation of linguistic feature hierarchy reflects second-language
762 proficiency. *NeuroImage*, 227, 117586.
763 <https://doi.org/10.1016/j.neuroimage.2020.117586>

764 Di Liberto, G. M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., & Lalor, E. C. (2018).
765 Atypical cortical entrainment to speech in the right hemisphere underpins phonemic
766 deficits in dyslexia. *NeuroImage*, 175, 70–79.
767 <https://doi.org/10.1016/j.neuroimage.2018.03.072>

768 Di Liberto, G. M., O'Sullivan, J. A., & Lalor, E. C. (2015). Low-Frequency Cortical Entrainment to
769 Speech Reflects Phoneme-Level Processing. *Current Biology*, 25(19), Article 19.
770 <https://doi.org/10.1016/j.cub.2015.08.030>

771 Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: Functional roles and
772 interpretations. *Frontiers in Human Neuroscience*, 8.
773 <https://www.frontiersin.org/article/10.3389/fnhum.2014.00311>

774 Etard, O., & Reichenbach, T. (2019). Neural Speech Tracking in the Theta and in the Delta
775 Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise.
776 *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*,
777 39(29), Article 29. <https://doi.org/10.1523/JNEUROSCI.1828-18.2019>

778 Ferguson, S. H., & Kewley-Port, D. (2002). Vowel intelligibility in clear and conversational
779 speech for normal-hearing and hearing-impaired listeners. *J. Acoust. Soc. Am.*, 112(1),
780 Article 1.

781 Fox, J. (2015). *Applied Regression Analysis and Generalized Linear Models* (3° edizione).
782 SAGE Publications, Inc.

783 Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression* (3rd ed., 1–1). Sage.
784 <https://us.sagepub.com/en-us/nam/an-r-companion-to-applied-regression/book246125>

785 Giles, H. (2016). Communication Accommodation Theory. In *The International Encyclopedia of
786 Communication Theory and Philosophy* (pp. 1–7). American Cancer Society.
787 <https://doi.org/10.1002/9781118766804.wbict056>

788 Giles, H., Coupland, N., & Coupland, J. (1991). Accommodation theory: Communication,
789 context, and consequence. In *Contexts of accommodation: Developments in applied
790 sociolinguistics* (pp. 1–68). Editions de la Maison des Sciences de l'Homme.
791 <https://doi.org/10.1017/CBO9780511663673.001>

792 Gillis, M., Kries, J., Vandermosten, M., & Francart, T. (2023). Neural tracking of linguistic and
793 acoustic speech representations decreases with advancing age. *NeuroImage*, 267,
794 119841. <https://doi.org/10.1016/j.neuroimage.2022.119841>

795 Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging
796 computational principles and operations. *Nature Neuroscience*, 15(4), Article 4.
797 <https://doi.org/10.1038/nn.3063>

798 Greenwood, D. D. (1990). A cochlear frequency-position function for several species—29 years
799 later. *The Journal of the Acoustical Society of America*, 87(6), 2592–2605.
800 <https://doi.org/10.1121/1.399052>

801 Hamouda, A. (2013). *An Investigation of Listening Comprehension Problems Encountered by
802 Saudi Students in the EL Listening Classroom.*

803 <https://www.semanticscholar.org/paper/An-Investigation-of-Listening-Comprehension->
804 [by-in-Hamouda/b811984d6e30068a62a970b1f75b2e701e0b159e](https://www.semanticscholar.org/paper/An-Investigation-of-Listening-Comprehension-)

805 Hazan, V., Uther, M., & Granlund, S. (2015). How does foreigner-directed speech differ from
806 other forms of listener-directed clear speaking styles? *ICPhS 2015*.

807 Kalashnikova, M., & Burnham, D. (2018). Infant-directed speech from seven to nineteen months
808 has similar acoustic properties but different functions. *Journal of Child Language*, 45(5),
809 Article 5. <https://doi.org/10.1017/S0305000917000629>

810 Kalashnikova, M., Carignan, C., & Burnham, D. (2017). The origins of babytalk: Smiling,
811 teaching or social convergence? *Royal Society Open Science*, 4(8), Article 8.
812 <https://doi.org/10.1098/rsos.170306>

813 Kalashnikova, M., Peter, V., Di Liberto, G. M., Lalor, E. C., & Burnham, D. (2018). Infant-
814 directed speech facilitates seven-month-old infants' cortical tracking of speech. *Scientific
815 Reports*, 8(1), Article 1. <https://doi.org/10.1038/s41598-018-32150-6>

816 Kangatharan, D. J., Uther, P. M., & Gobet, P. F. (2023). The effect of clear speech to foreign-
817 sounding interlocutors on native listeners' perception of intelligibility. *Speech
818 Communication*. <https://doi.org/10.1016/j.specom.2023.04.005>

819 Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and
820 motor cortex reflects distinct linguistic features. *PLOS Biology*, 16(3), Article 3.
821 <https://doi.org/10.1371/journal.pbio.2004473>

822 Klimovich-Gray, A., Di Liberto, G., Amoruso, L., Barrena, A., Agirre, E., & Molinaro, N. (2023).
823 Increased top-down semantic processing in natural speech linked to better reading in
824 dyslexia. *NeuroImage*, 273, 120072. <https://doi.org/10.1016/j.neuroimage.2023.120072>

825 Knoll, M. A., & Scharrer, L. (2007). Acoustic and Affective Comparisons of Natural and
826 Imaginary Infant-, Foreigner- and Adult-Directed Speech. *INTERSPEECH 2007*, 4.

827 Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. (2018). Neural
828 Entrainment Determines the Words We Hear. *Current Biology*, 28(18), Article 18.
829 <https://doi.org/10.1016/j.cub.2018.07.023>

830 Krishnamurthy, N., & Hansen, J. H. L. (2009). Babble Noise: Modeling, Analysis, and
831 Applications. *IEEE Transactions on Audio, Speech, and Language Processing*, 17(7),
832 Article 7. <https://doi.org/10.1109/TASL.2009.2015084>

833 Kuhl, P. K. (1997). Cross-Language Analysis of Phonetic Units in Language Addressed to
834 Infants. *Science*, 277(5326), Article 5326. <https://doi.org/10.1126/science.277.5326.684>

835 Kühnert, B., & Kocjančič Antolík, T. (2017). Patterns of articulation rate variation in
836 English/French tandem interactions. In J. Volin & R. Skarnitzl (Eds.), *Pronunciation of*
837 *English by Speakers of Other Languages*. Cambridge Scholars Publishing.
838 <https://halshs.archives-ouvertes.fr/halshs-01505928>

839 Ladefoged, P. (2006). *A Course in Phonetics*. Thomson, Wadsworth.
840 https://books.google.es/books/about/A_Course_in_Phonetics.html?id=jRmoQgAACAAJ&redir_esc=y

842 Lam, J., Tjaden, K., & Wilding, G. (2012). Acoustics of Clear Speech: Effect of Instruction.
843 *Journal of Speech, Language, and Hearing Research*, 55(6), Article 6.
844 [https://doi.org/10.1044/1092-4388\(2012/11-0154\)](https://doi.org/10.1044/1092-4388(2012/11-0154))

845 Liberto, G. M. D., Nie, J., Yeaton, J., Khalighinejad, B., Shamma, S. A., & Mesgarani, N. (2021).
846 Neural representation of linguistic feature hierarchy reflects second-language
847 proficiency. *NeuroImage*, 227, 117586.
848 <https://doi.org/10.1016/j.neuroimage.2020.117586>

849 Lightfoot, G. (2016). Summary of the N1-P2 Cortical Auditory Evoked Potential to Estimate the
850 Auditory Threshold in Adults. *Seminars in Hearing*, 37(1), 1–8. <https://doi.org/10.1055/s-0035-1570334>

852 Lindblom, B. (1990). Explaining Phonetic Variation: A Sketch of the H&H Theory. In W. J.
853 Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (pp. 403–
854 439). Springer Netherlands. https://doi.org/10.1007/978-94-009-2037-8_16

855 Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate
856 speech in human auditory cortex. *Neuron*, 54(6), Article 6.
857 <https://doi.org/10.1016/j.neuron.2007.06.004>

858 Martin, C. D., Molnar, M., & Carreiras, M. (2016). The proactive bilingual brain: Using
859 interlocutor identity to generate predictions for language processing. *Scientific Reports*,
860 6(1), Article 1. <https://doi.org/10.1038/srep26171>

861 Meyer, L. (2018). The neural oscillations of speech processing and language comprehension:
862 State of the art and emerging mechanisms. *European Journal of Neuroscience*, 48(7),
863 Article 7. <https://doi.org/10.1111/ejn.13748>

864 Molinaro, N., & Lizarazu, M. (2018). Delta(but not theta)-band cortical entrainment involves
865 speech-specific processing. *The European Journal of Neuroscience*, 48(7), Article 7.
866 <https://doi.org/10.1111/ejn.13811>

867 Momenian, M., Vaghefi, M., Sadeghi, H., Momtazi, S., & Meyer, L. (2024). Language prediction
868 in monolingual and bilingual speakers: An EEG study. *Scientific Reports*, 14(1), 6818.
869 <https://doi.org/10.1038/s41598-024-57426-y>

870 Mueller, J. L. (2005). Electrophysiological correlates of second language processing. *Second
871 Language Research*, 21(2), 152–174. <https://doi.org/10.1191/0267658305sr256oa>

872 Müller, M. (Ed.). (2007). Dynamic Time Warping. In *Information Retrieval for Music and Motion*
873 (pp. 69–84). Springer. https://doi.org/10.1007/978-3-540-74048-3_4

874 Obleser, J., & Kayser, C. (2019). Neural Entrainment and Attentional Selection in the Listening
875 Brain. *Trends in Cognitive Sciences*, 23(11), Article 11.
876 <https://doi.org/10.1016/j.tics.2019.08.004>

877 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software
878 for advanced analysis of MEG, EEG, and invasive electrophysiological data.
879 *Computational Intelligence and Neuroscience*, 2011, 156869.
880 <https://doi.org/10.1155/2011/156869>

881 O'Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B.
882 G., Slaney, M., Shamma, S. A., & Lalor, E. C. (2015). Attentional Selection in a Cocktail
883 Party Environment Can Be Decoded from Single-Trial EEG. *Cerebral Cortex*, 25(7),
884 1697–1706. <https://doi.org/10.1093/cercor/bht355>

885 Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-Locked Responses to Speech in Human
886 Auditory Cortex are Enhanced During Comprehension. *Cerebral Cortex (New York, NY)*,
887 23(6), Article 6. <https://doi.org/10.1093/cercor/bhs118>

888 Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., &
889 Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. *Behavior
890 Research Methods*, 51(1), Article 1. <https://doi.org/10.3758/s13428-018-01193-y>

891 Peña, M., & Melloni, L. (2012). Brain Oscillations during Spoken Sentence Processing. *Journal
892 of Cognitive Neuroscience*, 24(5), Article 5. https://doi.org/10.1162/jocn_a_00144

893 Pérez-Navarro, J., Klimovich-Gray, A., Lizarazu, M., Piazza, G., Molinaro, N., & Lallier, M.
894 (2023). *Early language experience modulates the cortical tracking of speech* (p.
895 2023.09.14.557701). bioRxiv. <https://doi.org/10.1101/2023.09.14.557701>

896 Piazza, G., Kalashnikova, M., & Martin, C. D. (2023). Phonetic accommodation in non-native
897 directed speech supports L2 word learning and pronunciation. *Scientific Reports*, 13(1),
898 21282. <https://doi.org/10.1038/s41598-023-48648-7>

899 Piazza, G., Martin, C. D., & Kalashnikova, M. (2022). The Acoustic Features and Didactic
900 Function of Foreigner-Directed Speech: A Scoping Review. *Journal of Speech,
901 Language, and Hearing Research*. https://doi.org/10.1044/2022_JSLHR-21-00609

902 Reddy, S., & Stanford, J. (2015). A Web Application for Automated Dialect Analysis. In M.
903 Gerber, C. Havasi, & F. Lacatusu (Eds.), *Proceedings of the 2015 Conference of the*
904 *North American Chapter of the Association for Computational Linguistics: Demonstrations* (pp. 71–75). Association for Computational Linguistics.
905 <https://doi.org/10.3115/v1/N15-3015>

906 Riecke, L., Formisano, E., Sorger, B., Başkent, D., & Gaudrain, E. (2018). Neural Entrainment
907 to Speech Modulates Speech Intelligibility. *Current Biology*, 28(2), Article 2.
908 <https://doi.org/10.1016/j.cub.2017.11.033>

909 Rothermich, K., Baker, R., Falkins, S. M., Kum, J., Capps, M. R., & Bobb, S. C. (2023).
910 Reported Use of Second-Language Speech Accommodation in Everyday Interactions:
911 The Role of Individual Differences. *Journal of Speech, Language, and Hearing*
912 *Research*, 66(9), 3307–3327. https://doi.org/10.1044/2023_JSLHR-23-00167

913 Rothermich, K., Harris, H. L., Sewell, K., & Bobb, S. C. (2019). Listener impressions of
914 foreigner-directed speech: A systematic review. *Speech Communication*, 112, 22–29.
915 <https://doi.org/10.1016/j.specom.2019.07.002>

916 Scarborough, R., Dmitrieva, O., Hall-Lew, L., Zhao, Y., & Brenier, J. (2007). An acoustic study
917 of real and imagined foreigner-directed speech. *The Journal of the Acoustical Society of*
918 *America*, 121(5), Article 5. <https://doi.org/10.1121/1.4781735>

919 Tarone, E. (1980). Communication strategies, foreign talk, and repair in interlanguage.
920 *Language Learning*, 30(2), Article 2. <https://doi.org/10.1111/j.1467-1770.1980.tb00326.x>

921 Trainor, L. J., & Desjardins, R. N. (2002). Pitch characteristics of infant-directed speech affect
922 infants' ability to discriminate vowels. *Psychonomic Bulletin & Review*, 9(2), Article 2.
923 <https://doi.org/10.3758/BF03196290>

924 Uther, M., Giannakopoulou, A., & Iverson, P. (2012). Hyperarticulation of vowels enhances
925 phonetic change responses in both native and non-native speakers of English: Evidence

927 from an auditory event-related potential study. *Brain Research*, 1470, 52–58.

928 <https://doi.org/10.1016/j.brainres.2012.06.041>

929 Uther, M., Knoll, M. A., & Burnham, D. (2007). Do you speak E-NG-L-I-SH? A comparison of
930 foreigner- and infant-directed speech. *Speech Communication*, 49(1), Article 1.

931 <https://doi.org/10.1016/j.specom.2006.10.003>

932 Vilaplana, E. E. (2009). *Teach Yourself English Pronunciation: An Interactive Course for*
933 *Spanish Speakers*. Netbiblo.

934 Zhang, Y. B., & Giles, H. (2017). Communication Accommodation Theory. In *The International*
935 *Encyclopedia of Intercultural Communication* (pp. 1–14). American Cancer Society.

936 <https://doi.org/10.1002/9781118783665.ieicc0156>

937

938