

A new *Betaflexivirus* species in *Ferraria crispa* plants

Rob J. Dekker, Wim C. de Leeuw, Marina van Olst, Wim A. Ensink, Selina van Leeuwen, Timo M. Breit[#], Martijs J. Jonker.

RNA Biology research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands.

#Corresponding author: Timo Breit, t.m.breit@uva.nl

Running title: *A new Betaflexivirus species*

Abstract

The global virome is still largely unknown. In this study we describe the discovery of a new *Betaflexivirus* species in *Ferraria crispa* plants. The plant samples were collected in an experiment of 25 *Asparagales* plants, obtained from an urban botanic garden in the Netherlands, and analyzed by smallRNA-seq as well as RNA-seq. The new *Betaflexivirus* only occurred in four *Ferraria crispa* plants and was tentatively named *Ferraria Betaflexivirus 1* (FerBfV-1). This *Betaflexivirus* showed an RNA genome structure characteristic for the genus *Capillovirus*, a single-stranded (+) RNA virus. The closest known *Capillovirus*es in GenBank showed a protein similarity less than 49%, which is well below the proposed demarcation value of species in this genus. Further comparison analysis of the *Capillovirus* genus revealed the possible presence of two groups.

Introduction

As far as we know, all living organisms must battle infections by one or more virus species (Greene and Reid, 2013). Hence, viruses play a crucial role in life on earth. However, aside from human pathogenic viruses, other viruses, including phytoviruses, are underrepresented in our life sciences studies and knowledge. This may be a consequence of the paradigm that viruses are not considered living organisms and thus have no place in “the tree of life” (Moreira and López-García, 2009). Yet, since viruses significantly impact the lives of living organisms, it is imperative to understand their functioning. For this, it is important to identify as many viruses as possible from the world-wide virome (Ignacio-Espinoza *et al.*, 2013). Fortunately, advancements in high-throughput sequencing technologies have greatly facilitated the discovery of viruses in all sorts of organisms (Villamor *et al.*, 2019).

Our research focus includes phytoviruses, and in our pursuit for new viruses, we wanted to investigate if urban botanic gardens, with their diverse collection of exotic plants, may serve as reservoirs for phytoviruses. To enhance our understanding of the global plant virome’s complexity, we conducted a study on 25 *Asparagales* plants, sourced directly from a botanical garden in Amsterdam, The Netherlands. Since most phytoviruses invoke an siRNA response in an infected plant, we sequenced the RNA of the plant samples using both smallRNA-seq and RNA-seq techniques.

In this report we describe a new single-stranded (+) RNA *Betaflexivirus* from the genus *Capillovirus* (Murphy *et al.*, 1995, Magome *et al.* 1997) that was present in several *Ferraria crispa* plants and is distinctly different from several recently reported *Betaflexivirus*es (Marais *et al.*, 2018; Roberts *et al.*, 2018; Li *et al.*, 2020; He *et al.*, 2023; Khan *et al.*, 2024). This new virus was identified alongside two other newly discovered viruses in the same set of samples (Dekker *et al.*, 2024a and 2024b).

Material and methods

Samples

Samples of leaves from 25 *Asparagales* plants were collected from Hortus Botanicus, a botanic garden in Amsterdam, the Netherlands, on February 14, 2019. Details about the plant genera can be found in [Supplemental Table ST1](#).

RNA isolation

Small-RNA was isolated by grinding a flash-frozen ± 1 cm² leaf fragment to fine powder using mortar and pestle, dissolving the powder in QIAzol Lysis Reagent (Qiagen) and purifying the RNA using the miRNeasy Mini Kit (Qiagen). Separation of the total RNA in a small (<200 nt) and large (>200 nt) fraction, including DNase treatment of the large RNA isolates, was performed as described in the manufacturer's instructions. The concentration of the RNA was determined using a NanoDrop ND-2000 (Thermo Fisher Scientific) and RNA quality was assessed using the 2200 TapeStation System with Agilent RNA ScreenTapes (Agilent Technologies).

RNA-sequencing

Barcoded smallRNA-seq and RNA-seq libraries were generated using a Small RNA-seq Library Prep Kit (Lexogen) and a TruSeq Stranded Total RNA with Ribo-Zero Plant kit (Illumina), respectively. The size distribution of the libraries with indexed adapters was assessed using a 2200 TapeStation System with Agilent D1000 ScreenTapes (Agilent Technologies). The smallRNA-seq libraries from samples S01 to S12 and from samples S14-S26 were clustered and sequenced at 2x75 bp and 1x75 bp, on a NextSeq 550 System using a NextSeq 500/550 Mid Output Kit v2.5 or a NextSeq 500/550 High Output Kit v2.5 (75 cycles or 150 cycles; Illumina), respectively. RNA-seq libraries were clustered and sequenced at 2x150 bp on a NovaSeq 6000 System using the NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles; Illumina).

Bioinformatics analyses

Sequencing reads were trimmed using trimmomatic v0.39 (Bolger *et al.*, 2014) [parameters: LEADING:3; TRAILING:3; SLIDINGWINDOW:4:15; MINLEN:19]. Mapping of the trimmed reads to the NCBI virus database was performed using Bowtie2 v2.4.1 (Langmead *et al.*, 2012). Contigs were assembled from smallRNA-seq data using all trimmed reads as input for SPAdes De Novo Assembler (Prjibelski *et al.*, 2020) with parameter settings: only-assembler mode, coverage depth cutoff 10, and kmer length 17, 18 and 21. Assembly of contigs from RNA-seq data was performed with default settings.

Scanning of contig sequences for potential RdRp-like proteins was performed using PalmScan (Babaian *et al.*, 2022) and LucaProt (Hou *et al.*, 2023).

Results and discussion

In our pursuit to discover yet unknown plant viruses, we analyzed 25 *Asparagales* plants covering six different genera from an urban botanic garden by smallRNA-seq and RNA-seq. For both deep-sequencing techniques, sufficient reads were obtained to start the bioinformatics virus-discovery exploration. In sample S16, analysis of both sequencing datasets revealed several RNA sequence contigs suggesting the presence of a potential new Betaflexivirus. After the final sequence assembly, we discovered a continuous RNA sequence of 6,313 nucleotides with a poly-A tail, displaying all the characteristic features of the *Betaflexiviridae* family (Figure 1; Adams *et al.*, 2012).

There appear to be two overlapping open reading frames (ORFs) oriented in the same direction: ORF1 (2,071 amino acids) encodes a polyprotein-coat protein, and ORF2 (395 amino acids) encodes a putative movement protein (Figure 1). Several conserved protein domains, such as RNA dependent RNA polymerase (RdRp) were recognized in ORF1: Polyprotein.

Figure 1. Schematic representation of the genome and proteins of the Ferraria betaflexivirus 1 virus. Indicated are the positions of the proposed polyprotein cleavage site for the coat protein (CP) and the translation start and stop sites for ORF1 (Polyprotein-CP) and ORF2 (movement protein, MP) of the Ferraria betaflexivirus 1 (FerBfV-1). Sizes of the mature protein are indicated in blue italics. Four putative conserved protein domains in ORF1 are shown in darker blue: viral methyltransferase (pfam 01660, *Met*); Carlavirus endopeptidase (pfam PF05379, *Ep*); Viral (Superfamily 1) RNA helicase (pfam PF01443, *Hel*); and RNA dependent RNA polymerase (pfam PF00978, *RdRp*). The complete genomic RNA sequence is deposited in NCBI GenBank (PQ073131).

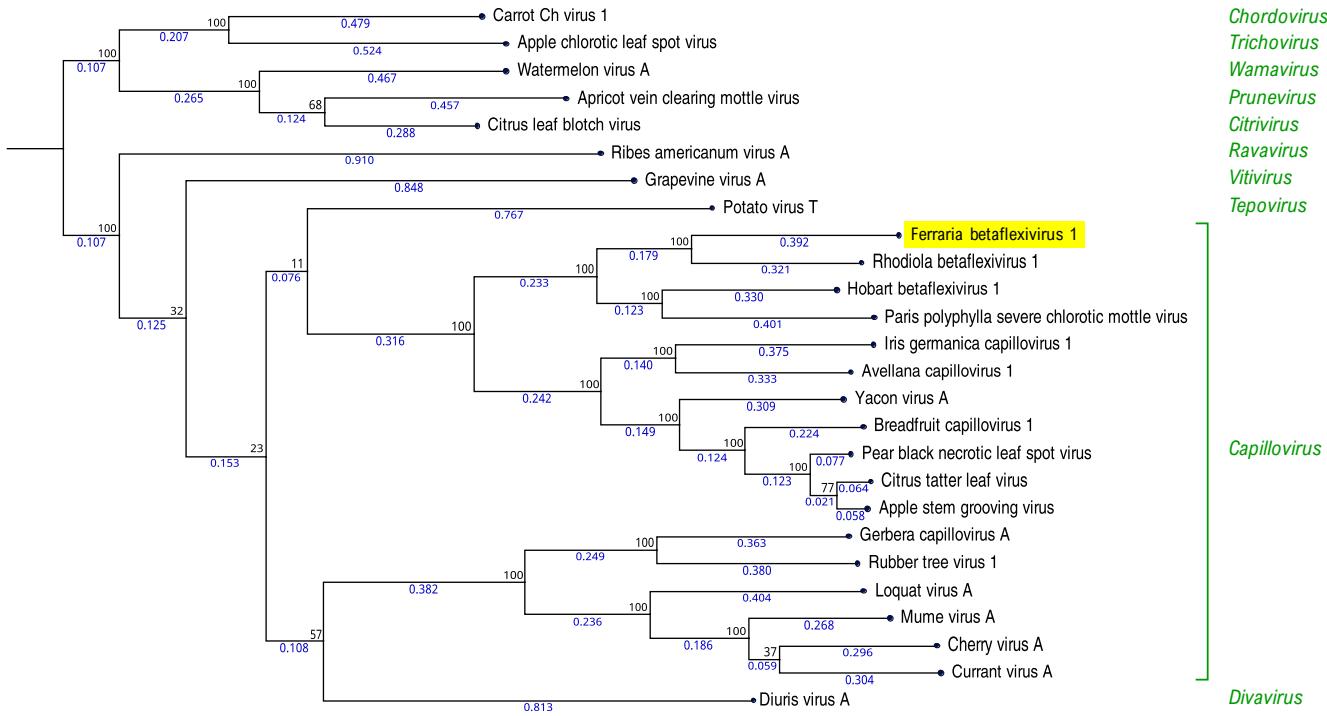

Comparison of the new *Betaflexivirus* protein sequences with all GenBank protein sequences revealed weak similarity to known *Capillovirus*es, a genus within the *Betaflexiviridae* family. The most similar known virus is Rhodiola Betaflexivirus 1, showing 48.5% similarity at the protein level and 67.3% similarity at the RNA level, but with only 33% coverage (Table 1). Both similarity values fall well below the proposed species demarcation thresholds for the *Capillovirus* genus, which require less than approximately 72% nucleotide identity or 80% amino acid identity between their coat protein or polymerase genes. (Adams *et al.*, 2012; Silva *et al.*, 2022). Therefore, this new *Capillovirus* represents a new species within the *Betaflexivirus* genus.

Table 1. Comparative analysis of RNA and protein sequences of FerBfV-1 and three closely related viruses. Comparison of the RNA and protein sequences of FerBfV-1 with three closely related viruses: Rhodiola betaflexivirus 1 (RhoBfV-1), Hobart betaflexivirus 1 (HobBfV-1), and Paris polyphylla severe chlorotic mottle virus (PpSCMV), obtained using the indicated NCBI GenBank accession numbers. The similarity of the complete viral genomes is expressed as ORF1/ORF2 (%).


Virus name	Accession	Size	FerBfV-1	RhoBfV-1	HobBfV-1
	Complete virus RNA sequence				
Rhodiola betaflexivirus 1	MW328730.1	6,260 nt	37% / 67.3%		
Hobart betaflexivirus 1	MG995738.1	6,468 nt	32% / 68.3%	35% / 67.7%	
Paris polyphylla severe chlorotic mottle virus	MW822017.1	6,408 nt	29% / 65.4%	26% / 66.3%	38% / 67.1%
ORF1 Poly protein sequence					
Rhodiola betaflexivirus 1	QQG34587.1	2,049 aa	48.5%		
Hobart betaflexivirus 1	AWK77906.1	2,050 aa	43.5%	47.1%	
Paris polyphylla severe chlorotic mottle virus	UVJ69094.1	2,049 aa	43.1%	43.1%	47.2%
ORF2 Movement protein sequence					
Rhodiola betaflexivirus 1	QQG34588.1	395 aa	41.8%		
Hobart betaflexivirus 1	AWK77907.1	401 aa	38.7%	37.4%	
Paris polyphylla severe chlorotic mottle virus	na	394 aa	37.2%	39.0%	40.4%

Backmapping the smallRNA-seq and RNA-seq reads of all samples to the new *Betaflexivirus*, clearly showed that this virus was only present in four samples (Supplemental Table ST2). Since all these samples were collected from *Ferraria crispa* plants, we have tentatively named this new virus Ferraria betaflexivirus 1 (FerBfV-1).

Building on the *Capillovirus* comparison by He *et al.* (2023), we constructed a phylogenetic tree using the complete ORF1 protein sequences from representative members of the *Capillovirus* species, other *Betaflexivirus* genera, and FerBfV-1 (Figure 2). As expected, FerBfV-1 clustered with other *Capillovirus*es. Additionally, we observed that the *Capillovirus* genus appears to divide into two distinct groups (Figure 2, Supplemental Table ST2). This was supported by protein sequence alignments of the N-termini and the RdRp motifs A, B, and C (Jia and Gong, 2019) from representative members of all *Capillovirus* species (Figure 3), which revealed distinct, conserved differences between the two *Capillovirus* groups.

Figure 2. Phylogenetic analysis of Ferraria Betaflexivirus 1 ORF1 protein. Ferraria betaflexivirus 1 (FerBfV-1), identified in this study (highlighted in yellow), is shown alongside 25 species from 10 different genera within the family *Betaflexiviridae* (highlighted in green) sourced from GenBank (see accession numbers in [Supplementary Table ST2](#)). The tree was constructed using CLC Genomics Workbench v24.0.1. Initially, amino acid sequences of the ORF1 protein were aligned with gap cost settings: open 5, extension 1, and end gap 'Free'. The CLC's Maximum Likelihood Phylogeny 1.4 tool was then used to construct the tree and estimate genetic distances with default settings. Tree robustness was assessed with 100 bootstrap replicates, and bootstrap values are shown in black adjacent to each node. Branch lengths are indicated in blue below each branch.

Figure 3. Comparison of conserved sequences in the Capillovirus ORF-1 polyprotein. Protein sequence alignment of the N-terminus and RdRp domain sequence motifs (A, B, and C) from representative members of the genus *Capillovirus* are shown. Amino acids that diverge from the consensus sequence for each *Capillovirus* group are highlighted in red. The top and bottom rows of asterisks represent conserved residues within groups A and B, respectively, with black vertical lines connecting conserved amino acids between both groups. Green asterisks denote residues that are distinctly conserved within one group and do not occur in the other group (Jia and Gong, 2019). Hallmark amino acids of the RdRp motifs are shaded blue.

Concluding remarks

With the discovery of a new *Betaflexivirus* species, we added a tiny piece to the global virome puzzle. Although metagenomic analysis can generate new virus sequences at a much higher rate than our detailed approach, it often results in numerous partial virus sequences and frequently lacks detailed annotation. However, we feel that both approaches have their merits and that global virome research benefits from both.

Although the *Ferraria crispa* plants containing the FerBfV-1 virus exhibit a disease phenotype, it cannot be attributed to this virus as these plants also harbored several other viruses.

The fact that we easily detected several new virus species in the samples from a botanic garden (Dekker *et al.*, 2024a and 2024b) supports our suggestion that these gardens may be rich reservoirs of plant viruses, many of them still unknown. This, plus the unique environment of (urban) botanic gardens, which could be considered 'green islands', have motivated us to conduct further follow-up experiments. These investigations promise not only more virus discoveries, but also valuable insights into virus evolution.

Acknowledgements

We would like to express our sincere gratitude to Sarina Veldman, Martin Smit, Iris van Kleinwee and Reinout Havinga from the Hortus Botanicus in Amsterdam, The Netherlands, for their invaluable support in providing us with plant leaf material for this study. This research was directly and indirectly funded by the Swammerdam Institute for Life Sciences of the University of Amsterdam.

Data availability

The raw sequence reads have been deposited in the NCBI Sequence Read Archive under BioProject accession number [PRJNA1137160](#). The *Ferraria betaflexivirus* 1 isolate NL1-16 genome sequence has been deposited in NCBI GenBank under accession [PQ073131](#).

References

Adams MJ, Candresse T, Hammond J, Kreuze JF, Martelli GP et al. Betaflexiviridae. In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. eds Virus Taxonomy, *Ninth Report of the International Committee on Taxonomy of Viruses* Cambridge: Elsevier Academic Press. 2012;920–941.

Babaian A, Edgar R. Ribovirus classification by a polymerase barcode sequence. *PeerJ*. 2022 Oct 13;10:e14055.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*. 2014; Aug 1;30(15):2114-20.

Dekker RJ, de Leeuw WC, van Olst M, Ensink WA, van Leeuwen S, Breit TM, Jonker MJ. Discovery of a new Phenuivirus species in Lachenalia plants reveals possible co-evolution between 5' and 3' RNA sequence motifs. *bioRxiv*. 2024a; doi.org/10.1101/2024.09.04.611151.

Dekker RJ, de Leeuw WC, van Olst M, Ensink WA, van Leeuwen S, Breit TM, Jonker MJ. A new Polerovirus species in plants from the Asparagaceae family. *bioRxiv*. 2024b; doi.org/10.1101/2024.09.10.608920.

Greene SE, Reid A. Viruses Throughout Life & Time: Friends, Foes, Change Agents: A Report on an American Academy of Microbiology Colloquium San Francisco. *American Society for Microbiology*. 2013;1:1-25.

He Q, Chen B, Zheng H, Cao Y, Hua M, Yin Y, Peng J, Li J, Chen J, Yan F, Song X, Lin L. Complete genome sequence of *Paris polyphylla* chlorotic mottle virus infecting *Paris polyphylla* var. *yunnanensis* in southwest China. *Arch Virol*. 2023;168(12):292.

Hou X, He Y, Fang P, Mei S-Q, Xu Z, Wu W-C, Tian J-H, Zhang S, Zeng Z-Y, Gou Q-Y, Xin G-Y, Le, Xia Y-Y, Zhou Y-L, Hui F-M, Pan Y-F, Eden J-S, Yang Z-H, Han C, Shu Y-L, Guo D, Li J, Holmes EC, Li Z-R, Shi M. Using artificial intelligence to document the hidden RNA virosphere, *bioRxiv*. 2023; doi.org/10.1101/2023.04.18.537342.

Ignacio-Espinoza JC, Solonenko SA, Sullivan MB. The global virome: not as big as we thought? *Curr Opin Virol*. 2013;3(5):566-71.

Jia H, Gong P. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. *Front Microbiol.* 2019;10:1945.

Khan ZA, Diksha D, Thapa P, Mailem YS, Sharma SK, Gupta N, Kishan G, Watpade S, Baranwal VK. Genome analysis of viruses of Phenuiviridae, Betaflexiviridae and Bromoviridae, and apple scar skin viroid in pear by high-throughput sequencing revealing host expansion of a rubodvirus and an ilarvirus. *Physiological and Molecular Plant Pathology.* 2024;129:102196.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.* 2012; Mar 4;9(4):357-9.

Li Z, Wang H, Zhao R, Zhang Z, Xia Z, Zhai J, Huang X. Complete genome sequence of a novel capillovirus infecting Hevea brasiliensis in China. *Arch Virol.* 2020;165(1):249-252.

Magome H, Yoshikawa N, Takahashi T, Ito T, Miyakawa T. Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear, and citrus trees. *Phytopathology.* 1997;87(4):389-96.

Marais A, Faure C, Theil S, Candresse T. Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (*Prunus mume*). *Viruses.* 2018;10(4):144.

Moreira D, López-García P. Ten reasons to exclude viruses from the tree of life. *Nat Rev Microbiol.* 2009;7(4):306-11.

Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD, eds. 1995. Virus Taxonomy: 6th Report of the International Committee on Taxonomy of Viruses. *Arch. Virol. Suppl.* 10

Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. *Curr Protoc Bioinformatics.* 2020; Jun;70(1).

Roberts JMK, Anderson DL, Durr PA. Metagenomic analysis of Varroa-free Australian honey bees (*Apis mellifera*) shows a diverse Picornavirales virome. *J Gen Virol.* 2018;99(6):818-826.

Silva JMF, Melo FL, Elena SF, Candresse T, Sabanadzovic S, Tzanetakis IE, Blouin AG, Villamor DEV, Mollov D, Constable F, Cao M, Saldarelli P, Cho WK, Nagata T. Virus classification based on in-depth sequence analyses and development of demarcation criteria using the Betaflexiviridae as a case study. *J Gen Virol.* 2022;103(11).

Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High Throughput Sequencing For Plant Virus Detection and Discovery. *Phytopathology.* 2019;109(5):716-725.

Supplemental information

Supplemental Table ST1. Read counts for mapping of smallRNA-seq and RNA-seq data to the Ferraria betaflexivirus-1 genomic RNA sequence. Read count indicates all reads that mapped to the Ferraria betaflexivirus-1 genome. Unique reads indicate the number of smallRNA-seq reads that mapped uniquely. Coverage indicates the breadth of coverage of the Ferraria betaflexivirus-1 genomic RNA sequence, expressed as a percentage. Coverages higher than 95% are indicated in yellow.

Sample ID	Host plant genus	smallRNA-seq			RNAseq
		Read count	Unique reads	Coverage (%)	Read count
S10	<i>Albuca canadensis</i>	219	112	1.9	624
S23	<i>Albuca canadensis</i>	1,013	455	1.7	95
S24	<i>Albuca canadensis</i>	1,209	515	1.7	499
S05	<i>Albuca canadensis</i> L FMLeight	380	175	2.6	1,806
S01	<i>Drimiopsis maculata</i> Lindl Paxton	1,851	527	1.8	1,281
S14	<i>Drimiopsis maculata</i> Lindl Paxton	4,984	1,073	4.0	1,035
S06	<i>Ferraria crispa</i> Burm	3,971	2,116	95.9	112,343
S16	<i>Ferraria crispa</i> Burm	42,317	9,417	99.9	65,388
S17	<i>Ferraria crispa</i> Burm	13,468	5,073	99.2	56,608
S18	<i>Ferraria crispa</i> Burm	10,274	4,565	98.8	7,504
S07	<i>Ferraria crispa</i> Burm subsp <i>crispa</i>	4,573	869	1.4	187
S08	<i>Ferraria crispa</i> Burm subsp <i>crispa</i>	318	179	1.4	1,782
S19	<i>Ferraria crispa</i> Burm subsp <i>crispa</i>	849	490	1.7	481
S20	<i>Ferraria crispa</i> Burm subsp <i>crispa</i>	971	525	1.4	4,286
S21	<i>Ferraria crispa</i> Burm subsp <i>crispa</i>	944	541	1.4	787
S12	<i>Gladiolus splendens</i> Sweet Herb	250	190	1.6	802
S15	<i>Lachenalia aloides</i> Asch Graebert var <i>luteola</i>	1,143	671	7.3	808
S02	<i>Lachenalia aloides</i> Asch Graebert var <i>quadricolor</i>	246	77	1.4	1,127
S03	<i>Lachenalia bulbifera</i> Cirillo Engl	97	73	1.6	1,148
S04	<i>Lachenalia bulbifera</i> Cirillo Engl	55	47	1.3	1,160
S25	<i>Lachenalia corymbosa</i> JCManning Goldblatt	180	134	1.4	1,048
S26	<i>Lachenalia kliprandensis</i> WF Barker	258	176	1.4	220
S09	<i>Lachenalia liliiflora</i> Jacq	551	262	1.3	595
S22	<i>Lachenalia stayneri</i> WF Barker	475	289	1.7	346
S11	<i>Tritonia pallida</i> Ker Gawl subsp <i>pallida</i>	47	42	1.2	213

Supplemental Table ST2. GenBank accession numbers for *Betaflexiviruses*. The new Ferraria Betaflexivirus 1 discovered in the current study is shown in red. Incomplete sequences are indicated with an asterisk.

Betaflexivirus name	Genus	Tentative subgroup	GenBank accession number	
			RNA genome	ORF-1 protein
Apple stem grooving virus	Capillovirus	1	D14995.2	BAA03639.1
Avellana capillovirus 1	Capillovirus	1	MW328729.1	QQG34585.1
Breadfruit capillovirus 1	Capillovirus	1	MW328738.1	QQG34607.1
Citrus tatter leaf virus	Capillovirus	1	AY646511.1	AAT44871.1
Ferraria Betaflexivirus 1	Capillovirus	1	PQ073131	XDG30081
Hobart betaflexivirus 1	Capillovirus	1	MG995738.1	AWK77906.1
Iris germanica capillovirus 1	Capillovirus	1	MW328757.1*	QQG34669.1*
Paris polyphylla severe chlorotic mottle virus	Capillovirus	1	MW822017.1	UVJ69094.1
Pear black necrotic leaf spot virus	Capillovirus	1	AY596172.1	AAT01925.1
Rhodiola betaflexivirus 1	Capillovirus	1	MW328730.1	QQG34587.1
Yacon virus A	Capillovirus	1	KU375548.1	ANR76370.1
Cherry virus A	Capillovirus	2	X82547.1	Q65980
Currant virus A	Capillovirus	2	KT763043.1	ALT08067.1
Gerbera capillovirus A	Capillovirus	2	OM525829.1	URZ62319.1
Loquat virus A	Capillovirus	2	MK936045.1	QGW49048.1
Mume virus A	Capillovirus	2	MG783575.1	AVR54644.1
Rubber tree virus 1	Capillovirus	2	MN047299.1	QGR26011.1
Carrot Ch virus 1	Chordovirus		KF533711.1	AHA85534.1
Citrus leaf blotch virus	Citrovirus		MK894852.1*	QFX74019.1*
Diuris virus A	Divavirus		JX173276.1	AFV57238.1
Apricot vein clearing mottle virus	Prunivirus		HG008921.2	CDF66416.2
Ribes americanum virus A	Ravavirus		MF166685.1	AXG24091.1
Potato virus T	Tepovirus		EU835937.1	ACF39932.1
Apple chlorotic leaf spot virus	Trichovirus		M58152.1	AAA42587.1
Grapevine virus A	Vitivirus		X75433.2	Q67704.1
Watermelon virus A	Wamavirus		MK292710.1	QEA69426.1