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Abstract 

Distraction is ubiquitous in human environments. Distracting input is often predictable, but we 
do not understand when or how humans can exploit this predictability. Here we ask whether 
predictable distractors are able to reduce uncertainty in updating the internal predictive model. 
We show that utilising a predictable distractor identity is not fully automatic but in part depends 
on available resources. In an auditory spatial n-back task, listeners (n = 33) attended to spoken 
numbers presented to one ear and detected repeating items. Distracting numbers presented 
to the other ear either followed a predictable (i.e., repetitive) sequence or were unpredictable. 
We used electroencephalography (EEG) to uncover neural responses to predictable versus 
unpredictable auditory distractors, as well as their dependence on perceptual and cognitive 
load. Neurally, pairs of targets and unpredictable distractors induced a sign-reversed 
lateralization of pre-stimulus alpha oscillations (~10 Hz) and larger amplitude of the stimulus-
evoked P2 event-related potential component. Under low versus high memory load, distractor 
predictability increased the magnitude of the frontal negativity component. Behaviourally, 
predictable distractors under low task demands (i.e., good signal-to-noise ratio and low 
memory load) made participants adopt a less biased response strategy. We conclude that 
predictable distractors decrease uncertainty and reduce the need for updating the internal 
predictive model. In turn, unpredictable distractors might mislead proactive spatial attention 
orientation, elicit larger neural responses, and put higher demand on memory. 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2024. ; https://doi.org/10.1101/2024.08.30.610431doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.30.610431
http://creativecommons.org/licenses/by/4.0/


Running title: Load limits the neural prediction of distraction 

 3 

1. Introduction 

Depending on our goals, some signals in the environment are relevant targets and others are 
irrelevant distractors. Selective attention enhances mental representations of targets and 
suppresses distraction. Research in psychology and neuroscience has revealed sensory and 
higher-order features that modulate distractor processing, as well as associated neural 
enhancement and suppression mechanisms (Chelazzi et al., 2019; Geng, 2014; Noonan et 
al., 2018; van Moorselaar & Slagter, 2020; Wöstmann et al., 2022). Sensory signals are often 
coined by statistical regularities that allow prediction. Here, to investigate how the human mind 
exploits distractor predictability, we leverage neural responses preceding and following 
predictable vs. unpredictable distractors in the electroencephalogram (EEG). To test the 
hypothesis that predicting distraction depends on available cognitive resources, we 
systematically vary load in an auditory spatial attention task. 

 Acoustic distraction is inescapable since humans cannot easily “hear away” or “close their 
ears” to avoid irrelevant sound. Behavioural and electrophysiological investigations have 
shown that cues about auditory deviants reduce distraction and modulate stimulus-evoked 
responses (e.g., Horváth et al., 2011; Sussman et al., 2003). There is a rich literature on the 
Mismatch Negativity (MMN) response in the EEG, which shows that the human auditory 
system extracts stimulus relations in a sequence of (task-irrelevant) sounds to form 
expectations about upcoming events (e.g., Bendixen et al., 2012; Wacongne et al., 2012; 
Winkler et al., 2009). While such post-stimulus neural responses can provide insights on the 
encoding of (un)predictable sound and their integration with previously formed expectations, 
pre-stimulus neural signatures are though to signify how the neural system prepares for an 
upcoming stimulus that can or cannot be predicted (van Moorselaar et al., 2020). The power 
of neural alpha oscillations (~10 Hz) is modulated both in anticipation of and following the 
presentation of competing auditory stimuli (Wöstmann et al., 2016). Alpha power modulation 
is sensitive to predictive benefits of acoustic input (Wilsch et al., 2015; Wöstmann et al., 2015), 
likely reflecting changes of neural enhancement versus suppression (Schneider et al., 2021). 
A comprehensive understanding of processing distractor predictability thus requires 
investigation of neural responses preceding and following distractors.  

 Putative distractor predictability effects are not expected to be fully automatic but instead to 
vary with levels of perceptual and cognitive load (Lavie, 2005). Molloy and colleagues (2019) 
found that processing of stochastic figure-ground patterns in task-irrelevant auditory stimuli 
decreases with higher visual perceptual load, suggesting a dependence on domain-general 
resources. If predicting distraction decreases under high load, this might have different 
implications. It could be that distractor predictability is not picked up under high load and 
preparatory processing is unnecessary. Alternatively, predictability might be used for 
preparatory processing, but high load prevents effective use of such preparation to modulate 
distractor processing. Here, we leverage pre- and post-distractor neural responses to 
distractors under varying levels of load to disentangle these alternative mechanisms. 

 Irrespective of task load, there are two competing views about processing distractor 
predictability, which will be contrasted in this study. First, predictability might increase saliency 
and enhance attention capture by the distractor (for an investigation challenging this view, see 
Southwell et al., 2017). This would increase neural responses to predictable distractors and 
potentially bias anticipatory attention to predictable distractors. Second, in line with predictive 
coding theory (Clark, 2013; Friston, 2010), predictable distractors might induce smaller 
prediction errors as the internal predictive model requires less updating. This would decrease 
neural responses to predictable distractors and potentially bias anticipatory attention to 
unpredictable rather than predictable distractors. 

 Benefits of spatial predictions (i.e., ‘predicting where’) and temporal predictions (i.e., 
‘predicting when’) have been studied in some detail. Visual attention research has shown that 
the human brain is sensitive to statistical regularities regarding the spatial occurrence of 
distractors. If presented at one location with higher probability, distractors induce lower 
processing cost (B. Wang & Theeuwes, 2018) and fewer saccades are made to the high-
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probability distractor location (B. Wang et al., 2019). This suggests suppression of the high-
probability distractor location. Temporally predictable (i.e., rhythmic) auditory distractors 
induce some benefits on target detection (Andreou et al., 2011; Makov & Zion Golumbic, 2020) 
and on secondary performance metrics (Lui & Wöstmann, 2022). However, identity predictions 
(i.e., ‘predicting what’; also referred to as ‘formal predictions’) are somewhat less well 
understood and induce dissociable auditory neural responses (Schwartze et al., 2013). 
Foreknowledge about the identity of an upcoming speech distractor reduces behavioural 
distraction cost (Röer et al., 2015). Furthermore, high-probability auditory distractors reduce 
interference with target detection (Daly & Pitt, 2021). These findings are compatible with the 
view that negative templates, which include distractor features, are employed for rejection 
(Arita et al., 2012). However, the associated neural mechanisms are at present largely unclear. 

We here employ an auditory spatial attention paradigm wherein the temporal onset and the 
spatial position of an upcoming distractor are fully predictable, whereas its identity is either 
predictable or not. We hypothesize that predictable distractors reduce attention capture by the 
distractor and lower the neural processing demand, especially if perceptual and cognitive 
resources are available under low task load. Our findings support the notion that predictable 
distractors reduce the need for updating the internal predictive model, but processing distractor 
predictability is not fully automatic and depends instead on the availability of domain-general 
resources. 

 

2. Methods 

2.1 Participants 

Thirty-three university students who were either native German speakers or non-native 
German speakers with high German language proficiency, participated in the EEG experiment 
for either course credits or €10/hour. One participant’s demographic information was lost but 
this participant’s data were included in all analyses. Participants (demographic information of 
remaining 32 participants: 25 females and 7 males, mean age = 24.25 years, SD = 3.89), 
provided written informed consent. According to self-report, they were right-handed (mean 
Edinburg Handedness Inventory score = 81.29; Oldfield, 1971), had normal hearing, and had 
no neurological or psychological disorders. All experimental procedures were approved by the 
local ethics committee of the University of Lübeck.  

2.2 Stimuli and Procedure 

Participants performed an auditory spatial n-back task (Fig. 1A) with manipulation of working 
memory load (1- vs. 2-back), perceptual load (target-to-distractor signal-to-noise ratio, SNR; 0 
dB vs. –10 dB), and distractor predictability (predictable vs. unpredictable). Auditory stimuli 
were German numbers from 1 to 8, spoken by a female talker, and were shortened to 350 ms 
using Praat (version 6.1.16).  

Before each block, a visual cue (arrow) was presented in the centre of the screen to indicate 
the to-be-attended side (left or right) and the working memory load in that block (arrow with 
one line: 1-back, arrow with two lines: 2-back). Target numbers were presented monaurally on 
the cued side and distractor numbers were presented monaurally on the other side. 
Participants were instructed to attend to the cued side (target stream) and ignore the other 
side (distractor stream). For each trial, the target and the distractor numbers were presented 
simultaneously. Onset-to-onset interval between two numbers of a stream was 2s. 

The working memory load was manipulated by the number of targets participants had to 
maintain in memory. In the target stream, a number sequence consisting of the target numbers 
was presented in pseudo-randomised order. Participants had to press the response button 
whenever the current target matched with the target 1 or 2 numbers prior to the current number 
in the 1-back and 2-back conditions, respectively. In each block, 20% of the presented 
numbers contained an n-back, where participants were supposed to press a button.  
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Figure 1. (A) Task design. Each block started with a spatial cue (arrow pointing left or right), indicating the to-be-
attended side and the to-be-performed task (1-back: single-arrow, 2-back: double-arrow). Participants were 
presented with two competing streams of spoken numbers. They had the task of pressing a button when the current 
number on the to-be-attended side matched the previous number (in the 1-back condition) or the penultimate 
number (in the 2-back condition). (B) Task load was manipulated along two dimensions. First, the signal-to-noise 
ratio (SNR) of the target relative to the distractor stream was either 0 or –10 dB (visually displayed as differences 
in font size). Second, memory load was higher when participants performed a 2-back compared to a 1-back task. 
Arrows indicate putative button presses corresponding to the n-back task. (C) The distractor stream could either be 
predictable (blue; repeating in cycles of four numbers) or unpredictable (red). Numbers on arrows indicate 
transitional probabilities. In the unpredictable distractor stream, a given number was selected with the constraints 
that it was different from the previous and penultimate number, resulting in p = .33 for the second item (i.e., one 
number selected at random from three alternatives) and p = .5 for all subsequent numbers (i.e., one number 
selected from two alternatives).  

 

Perceptual load was manipulated as the signal-to-noise ratio (SNR) between the target and 
distractor sound intensities (Fig. 1B), which was analogous to the noise manipulation in a visual 
study of perceptual load (Gutteling et al., 2022). Specifically, the target stream was either 
presented at the same intensity as the distractor stream at ~70 dB SPL or 10 dB SPL softer 
than the distractor stream. Participants were not informed about the SNR before each block. 
Instead, they were told prior to the main experiment that the stimulus intensity in the main 
experiment may vary from block to block. 

Distractor predictability was operationalised as the transition probability of the distractor 
numbers in each block (Fig. 1C). In a predictable block, a randomly generated four-number 
pattern was presented repeatedly over the block, resulting in a transition probability of 1 for 
each distractor number. In an unpredictable block, the same four numbers were presented in 
a pseudo-randomised order, with the constraints that each number was different from the 
previous and penultimate number. The constraints were implemented to avoid unwanted 
potential confounds such as repetition suppression (Grill-Spector et al., 2006) or negative 
priming (Tipper, 1985). This resulted in a transition probability of 0.5 for each distractor number 
after the first two numbers in a block. Importantly, participants were not informed about the 
distractor predictability manipulation prior to the experiment. 

There were 16 blocks in total, with each unique block (e.g., SNR 0 dB, 1-back, predictable 
distractors) repeating twice in the experiment. For each participant, the numbers 1 to 8 were 
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randomly sorted into two groups. In half of the blocks, one group of numbers served as targets 
while the other group served as distractors, and vice versa in the other half of the blocks with 
the same conditions. Similarly, participants attended to the left side in half of the blocks and to 
the right side in the other half of the blocks. There were 120 target/distractor pairs per block 
and 1920 target/distractor pairs for the whole experiment. The auditory materials were 
presented via Sennheiser headphones (HD 25-1 II). A response box (The Black Box Toolkit) 
was used to collect behavioural responses. Stimuli were presented with Psychtoolbox 
(Brainard, 1997) for Matlab (MathWorks, Inc., Natick, USA).  

2.3 Behavioural data analysis  

To study how distractor predictability modulates behavioural performance under different load 
conditions, we used signal detection theory (SDT) to compute sensitivity (d’), and criterion (i.e., 
bias; c), as implemented in the Palamedes toolbox (Prins & Kingdom, 2018). The first (for 1-
back block) or first two (for 2-back block) trials of each block were excluded in the behavioural 
analysis as there would be no previous number to be compared to. A hit was defined as a 
button press when the target number matched with the previous number (for 1-back) or the 
penultimate number (for 2-back) within the 2-s response window. A false alarm was defined 
as a button press when the current number did not match with the previous number (for 1-
back) or the penultimate number (for 2-back). 

Extreme hit or false alarm rates (0 or 1) were adjusted with a corrected value, which was 
computed by dividing 1 by 2 times the number of trials (Macmillan & Kaplan, 1985). A value of 
0 was replaced by the corrected value, while a rate of 1 was adjusted by subtracting the 
corrected value from 1. We employed repeated-measures ANOVAs with factors SNR, working 
memory load, and distractor predictability to investigate effects on hit rate, sensitivity, and 
criterion. For criterion, post-hoc paired samples t-tests were used to contrast pairs of 
conditions.  

2.4 EEG recording and pre-processing  

The experiment was executed in a sound-attenuated and electrically shielded room. EEG data 
were recorded using 64 Ag/Ag-Cl electrodes (actiCHamp, Brain Products, München, 
Germany) with an online bandpass filter from direct current (DC) to 280 Hz. The sampling rate 
was 1000 Hz. TP9 (left mastoid) and FPz served as online reference and ground electrodes, 
respectively. For all participants, the impedances of the electrodes were kept below 20 kOhm. 

 The EEG data were pre-processed using Matlab R2018a (MathWorks, Inc., Natick, USA) 
and the Fieldtrip toolbox (Oostenveld et al., 2010). First, continuous data were filtered (high-
pass filter: 0.1 Hz; low-pass filter: 100 Hz) and then segmented into epochs of 2 s (–1 to 1s; 
time-locked to the target/distractor pair onset). Then, an independent component analysis 
(ICA) was computed. Artefactual components related to eye blink and muscle activity were 
identified by visual inspection of components’ time courses, topographic maps, and frequency 
spectra and rejected. On average across participants, 30.21% of components were rejected 
(SD = 7.13%). Next, bad channels were visually identified and interpolated. Afterwards, trials 

containing absolute EEG amplitudes exceeding 160 V were excluded. EEG epochs were re-
referenced to the average of all electrodes. The first (for 1-back) or two (for 2-back) trials of 
each block, which were excluded in the behavioural analysis, were also excluded in the EEG 
analysis.  

2.5 ERP analysis  

The EEG epochs were first baseline corrected (–0.2 to 0 s) and re-referenced to the average 
of mastoid electrodes (i.e., TP9 and TP10). Then, EEG epochs were averaged to compute the 
event-related potential (ERP), for experimental conditions separately.  

 We studied the P2 and sustained negativity (SN) components in more detail. The P2 time 
window was determined by the mean amplitude around the peak of the grand average ERP 
waveform across all conditions and all participants. The positive peak in the grand average 
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ERP waveform was at 185 ms and the time window used to extract P2 amplitude was selected 
from 160–210 ms. As the effect of the sustained negativity was robust and stable across a 
relatively long time interval, the ERP data 400–800 ms were averaged to obtain SN amplitude. 
The electrode with the maximum amplitude for each ERP component, as well as the two 
adjacent electrodes to the left and right, were used to calculate the ERP amplitude. As a result, 
the P2 amplitude was calculated using electrodes FC1, FCz, and FC2, while the sustained 
negativity was calculated using electrodes F1, Fz, and F2.  

We examined the effects of perceptual load, working memory load, and distractor 
predictability on each ERP component using single-trial linear mixed-effects models (using the 
fitlme function in Matlab). For each trial, we averaged the amplitudes of the EEG data at the 
time windows and electrodes of interest. Then, we regressed the ERP amplitude on the main 
effects and interaction effects of the predictors and participant ID as a random intercept. 

2.6 Analysis of alpha lateralization  

Single-trial EEG data were decomposed into time-frequency representations via a fast Fourier 
transform (FFT) with a moving time window of 500 ms (Hanning taper). Complex Fourier 
coefficients were obtained from –.7 to .7 s (steps of 0.05 s) relative to target and distractor 
onset, and in a frequency range from 1 to 50 Hz in steps of 1 Hz.  

 The attentional modulation index (AMI) was calculated on absolute power to quantify spatial 
attention deployment, separately for different load and predictability conditions. First, trials 
belonging to respective attend-left or the attend-right conditions were averaged to increase the 
SNR (hence, no single-trial statistical analysis was carried out for alpha lateralization as 
opposed to the ERP analysis). Then, AMI was obtained according to Equation 1. 

 

AMI = (Powattend-left – Powattend-right) / (Powattend-left + Powattend-right)   (Eq. 1) 

 

To test alpha lateralisation statistically, we averaged AMI across frequencies within the 
alpha band (8–12 Hz) and separately across a selection of posterior electrodes on the left and 
right hemisphere (TP9/10, TP7/8, CP5/6, CP3/4, CP1/ 2, P7/8, P5/6, P3/4, P1/2, PO7/8, 
PO3/4, and O1/2), which were employed in a previous study using the same EEG acquisition 
system (Wöstmann et al., 2019). For trials with high and low distractor predictability separately, 
paired samples t-tests comparing average AMI across left versus right electrodes were run 
across all time points, followed by false discovery rate (FDR) correction. The time windows 
that were significant after FDR correction (i.e., –0.5 to –0.35 s for unpredictable distractor 
condition; 0.3 to 0.5 s for both predictable and unpredictable distractor condition) were selected 
for further analysis. 

 In addition to AMI, we contrasted alpha power at electrodes ipsi- versus contralaterally 
relative to the focus of attention to obtain a time-resolved measure of alpha lateralization 
(Wöstmann et al., 2016). The alpha lateralisation index (ALI) was calculated according to 
Equation 2.  

 

ALI = (Powipsi – Powcontra) / (Powipsi + Powcontra)   (Eq. 2) 

 

 The ALIs in the selected time windows (i.e., T1: –0.5 to –0.35 s; T2: 0.3 to 0.5 s) were 
averaged for further statistical testing. A repeated-measures ANOVA was conducted to test 
the interactive effects of perceptual load (SNR), memory load (n-back), time window (T1 versus 
T2), and predictability (predictable versus unpredictable distractors) on ALI. 

2.7 Effect sizes  
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For repeated-measures ANOVAs, we report partial eta-squared effect sizes (ηp
2). For t-tests, 

we report Cohen’s d. For mixed-effects models, we report the standardized partial effect size r for 

all relevant estimates, based on the t-value and the Sattherthwaite-approximated degrees of freedom 

(df) as shown in equation 3 (Carlson & Furr, 2009). 

r = √ (t2 / t2 + df)   (Eq. 3) 

 

3. Results 

The current study tested the effects of distractor predictability on the behavioural and neural 
dynamics of spatial attention, under varying levels of perceptual and cognitive load. 
Participants performed an auditory n-back task on a stream of target numbers presented via 
headphones to one ear (left or right), while a competing stream with predictable or 
unpredictable sequences of distracting numbers was presented to the other ear. Task load 
was manipulated along two dimensions: Perceptual load increased for low versus high target-
to-distractor sound intensity ratios (–10 dB versus 0 dB SNR) and memory load increased for 
2-back versus 1-back conditions. 

3.1 Small effect of distractor predictability on response bias  

Participants’ hit rates in the n-back task indicate good overall performance (Fig. 2A). Note that 
in n-back tasks of this kind, the number of items that are no n-back targets is high and only 
few of these non-targets are followed by a button press (i.e., small proportion of false alarms). 
Behavioural sensitivity (d’; Fig. 2B), which contrasts hit rate versus false alarm rate, is thus 
high. For completeness, we performed statistical analyses on both sensitivity and hit rate. 
Repeated-measures ANOVAs revealed better performance for 1- versus 2-back conditions (hit 
rate: F1,32 = 68.83, p < .001, ηp

2 = 0.683; sensitivity: F1,32 = 97.69, p < .001, ηp
2 = 0.753), but no 

main effects of perceptual load, predictability, or any interaction (all p > .13). 

 

 

Figure 2. Bars and lines show average and single-subject hit rate (A), sensitivity (B), and response bias (C) for 
the different experimental conditions, respectively. Colour is coding for predictable (blue) versus (unpredictable) 
distractor sequences. Low load conditions were engendered by –10 dB SNR (low perceptual load) and 1-back 
(low memory load), respectively (i.e., most leftward bars). Error bars show ±1 SEM. * p < .05; *** p < .001.   

Since response behaviour and metacognitive measures have recently been discussed to 
be sensitive to distraction effects (Kattner & Bryce, 2022; Lui & Wöstmann, 2022; Marsh et al., 
2024), we analysed the effects of load and predictability on participants’ response bias. Most 
participants showed a conservative bias (Fig. 2C), which means that they tended to miss more 
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n-back targets than to report target-presence erroneously. Response bias was more 
conservative for the 2- versus 1-back condition (F1,32 = 30.85, p < .001, ηp

2 = 0.491). 
Furthermore, distractor predictability exhibited a small but statistically significant interactive 
effect with memory load and perceptual load on response bias (F1,32 = 4.19, p = .049, ηp

2 = 
0.116). Response bias was closest to zero and relatively less conservative for predictable 
versus unpredictable distractors only in the easiest task condition with low perceptual load (i.e., 
0 dB SNR) and low memory load (i.e., 1-back; t32 = –2.06; p = .048; d = 0.359). 

3.2 Distractor predictability modulates neural dynamics of spatial attention  

A major neural outcome measure to probe the dynamics of spatial attention deployment is the 
hemispheric lateralization of ~10 Hz alpha oscillations. We found previously that the 
modulation of alpha lateralization over time relates to auditory spatial attention performance 
(Wöstmann et al., 2016) and is sensitive to explicit temporal cues (Wöstmann et al., 2021). 
Here, we tested whether lateralized alpha oscillations are sensitive to implicit manipulations of 
distractor predictability under varying levels of perceptual and cognitive load. 

Figure 3 shows the Alpha Lateralization Index (ALI), which contrasts alpha power at 
parieto-occipital electrodes ipsi- versus contra-lateral to the focus of spatial attention. In 
general, a positive ALI reflects the typical pattern of higher ipsi- than contra-lateral alpha power 
during spatial attention. Time-windows of interest (T1 and T2) were selected by testing alpha 
lateralization against zero (see Methods for details). A repeated-measures ANOVA revealed 
a significant main effect of time window (F1,32 = 34.31, p < .001, ηp

2 = 0.52), indicating that ALI 
was more positive in the later (T2) compared to the earlier time window (T1). Furthermore, the 
main effect of SNR was significant (F1,32 = 4.60, p = .04, ηp

2 = 0.13), as well as the time window 
x SNR x predictability interaction (F1,32 = 4.61, p = .04, ηp

2 = 0.13), the predictability x time 
window interaction (F1,32 = 8.09, p = .008, ηp

2 = 0.2) and SNR x time window interaction (F1,32 = 
4.65, p = .039, ηp

2 = 0.13). 

To resolve these interactions, we separated the data by time window. In the pre-stimulus 
time window (T1), there was a significant main effect of predictability (F1,32 = 7.55, p = .01, ηp

2 = 
0.19), indicating a more negative ALI for unpredictable distractors. Moreover, the main effect 
SNR was significant (F1,32 = 9.83, p = .004, ηp

2 = 0.24), reflecting more negative ALI for higher 
SNR. All other main effects and interactions were not significant (all p > 0.18). In the post-
stimulus time window (T2), there were no significant main effects or interactions of factors 
SNR, memory load, or predictability (all p > 0.14).   
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Figure 3. (A) Lines and shaded areas show the average Alpha Lateralization Index (ALI) ± 1SEM, respectively. 
Time windows T1 and T2 indicate pre-selected intervals wherein alpha lateralization differed from zero. (B) Bars 
and lines show average and single-subject ALI, respectively, for time windows T1 (top) and T2 (bottom), perceptual 
load conditions (low versus high SNR), and predictable (blue) versus unpredictable (red) distractors. Topographic 
maps show the alpha modulation index (AMI) for different conditions and time windows. 

 

3.3 Independent and interactive effects of distractor predictability and load in the event-
related potential  

While distractor predictability effects on alpha power were found before stimulus onset (see 
above), we next investigated effects on the stimulus-evoked (i.e., post-stimulus) potential. The 
ERP showed the obligatory earlier P1, N1, and P2 components at central electrodes and a 
later negativity at frontal electrodes (Fig. 4A). The P2 component was independently affected 
by all three of our task manipulations: P2 amplitude was larger (i) when the target-to-distractor 
sound intensity ratio was higher (t61928 = 8.46, p < .001, r = 0.034), (ii) when memory load was 
higher in the 2-back compared with the 1-back condition (t61928 = 2.34, p = .02), and (iii) when 
the distractor was unpredictable (t61928 = 2.76, p = .006, r = 0.0111). No interactive effects of the 
three manipulations on P2 amplitude were found (all p > .24). 

The frontal negativity is a long latency ERP component, which has previously been shown 
to relate to memory load in n-back tasks (e.g., Nowak et al., 2021). Here, we found that the 
magnitude of the frontal negativity increased (i.e., more negative amplitude) when SNR was 
high versus low (Fig. 4B; t61928 = 2.87, p = .004, r = 0.0115), as well as when memory load was 
low versus high (t61928 = 5, p < .001, r = 0.0201). Importantly, predictability modulated the frontal 
negativity interactively with memory load (t61928 = –2.25, p = .02, r = 0.009), meaning that 
predictability increased its magnitude when memory load was low (approaching statistical 

significance: t31076 = 1.83, p = .068, r = 0.0104) but the effect tended to reverse under high load 

(t30788 = –1.36, p = .174, r = 0.0078). No other interaction reached statistical significance (all p > 
.16). 
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Figure 4. (A) Event-related potential (ERP) time-locked to the onset of pairs of numbers at electrode FCz. Main 

effects of perceptual load (left), memory load (middle), and distractor predictability (right) on amplitude in the P2 
time window (highlighted in yellow) are shown. (B) The frontal negativity at electrode Fz (in time-window highlighted 
in yellow) was significantly modulated by perceptual load (SNR; left), memory load (right), as well as the memory 
load x predictability interaction. Topographic maps show average amplitude across all experimental conditions for 
the P2 (160– 210 ms) and frontal negativity (400–800 ms). * p < .05; ** p < .01; *** p < .001. 

 

4. Discussion 

Does the human brain predict the identity of distracting input? And if so, how do available 
perceptual and cognitive resources constrain these predictions? To answer these questions, 
we employed an auditory spatial n-back task with competing streams of target and distractor 
items. Perceptual load increased with concomitantly lower SNR of target to distractor stimuli, 
and memory load increased for 2-back versus 1-back conditions. We investigated neural 
responses preceding and following predictable/expected distractor stimuli (for a similar 
approach, see Moorselaar, Daneshtalab, et al., 2021; van Moorselaar, Lampers, et al., 2021). 
While much previous research focused on spatial or temporal predictions, we investigated the 
predictability of distractor identity. 

4.1 A spatial bias of attention to unpredictable distractors  

The hemispheric lateralization of neural alpha oscillations (~10 Hz) is a well-established 
signature of spatial attention across sensory modalities (auditory: Ahveninen et al., 2013; 
somatosensory: Haegens et al., 2011; visual: Worden et al., 2000). It has been suggested that 
supramodal alpha-band mechanisms in parietal cortical areas interact with sensory-specific 
control systems during spatial attention (Banerjee et al., 2011). Alpha power correlates 
negatively with neural activity assessed as the BOLD signal in functional magnetic resonance 
imaging (fMRI) in humans (Laufs et al., 2003) and with the firing rate of neurons in monkeys 
(Haegens, Nácher, et al., 2011). Thus, the implications of the contralateral decrease and 
ipsilateral increase in alpha power as respective reflections of target enhancement and 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2024. ; https://doi.org/10.1101/2024.08.30.610431doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.30.610431
http://creativecommons.org/licenses/by/4.0/


Running title: Load limits the neural prediction of distraction 

 12 

distractor suppression during spatial attention have been discussed (Peylo et al., 2021; 
Schneider et al., 2021; van Moorselaar & Slagter, 2020). However, recent research questions 
the role of lateralized alpha oscillations for modulating neural gain measured as the stimulus-
evoked response (Foster & Awh, 2019; Gundlach et al., 2020; Jensen, 2024; Morrow et al., 
2023). Furthermore, EEG recordings alone can arguably not reveal the precise relation of 
oscillations and the computations underlying cognition and behaviour, which reflect in local 
neuron spiking (Snyder et al., 2015). 

Although alpha lateralization is typically strongest in-between a spatial cue and stimulus 
onset (Wöstmann et al., 2019), we have shown post-stimulus modulation of alpha lateralization 
before, which eventually synchronized with the temporal structure of the acoustic input 
(Wöstmann et al., 2016, 2021). Here, we found two modulations of lateralized alpha power in 
pre- and post- stimulus time windows. First, higher ipsi- than contra-lateral alpha power 
approximately 400 ms after the onset of stimuli competing for spatial attention suggests spatial 
selection of target input and/or suppression of distraction (Wöstmann et al., 2016). Since this 
alpha modulation showed up after stimulus onset, it can be conceived as a neural signature of 
reactive attention deployment (Geng, 2014), potentially controlling the read-out of attended 
versus ignored sensory content. The absence of a distractor predictability effect on post-
stimulus alpha lateralization suggests that reactive attention deployment happens irrespective 
of distractor predictability. Critically, however, the present study presented target and distractor 
items simultaneously and spatially confounded, that is, whenever the target was presented on 
the left, the distractor was presented on the right and vice versa. Thus, in contrast to previous 
investigations of ours (e.g., Orf et al., 2023; Wöstmann et al., 2019) the present design does 
not enable unambiguous association of neural responses with processing of targets versus 
distractors. Also, one might argue that probing participants’ responses to infrequent n-back 
items in the distractor stream might be a means to study attentional processing of the distractor 
more directly in behaviour. However, such a manipulation would arguably turn the distractor 
stream into an additional target, which is why it was avoided in the present study. 

 Second, alpha lateralization reversed in direction (i.e. relatively higher contra- versus 
ipsilateral alpha power) approximately 400 ms before the onset of pairs of targets and 
unpredictable versus predictable distractors (except for predictable distractors under high 
perceptual load, i.e., low SNR). We have previously shown that predictability of auditory target 
stimuli modulates alpha oscillations (Wöstmann et al., 2015) and that lateralized alpha power 
fluctuates during spatial attention and eventually goes back to baseline in-between stimulus 
presentation (Wöstmann et al., 2021).  

 The observed reversal of alpha lateralization might speak to spatial attention being biased 
to the location of the unpredictable distractor. This finding is reminiscent of the “ignoring 
paradox” (Moher & Egeth, 2012), which implies that distractor suppression is under some 
circumstances preceded by enhanced neural representation of the distractor (Donohue et al., 
2018). Modulation of alpha lateralization accompanying involuntary shifts of spatial attention 
to task-irrelevant auditory deviants has been reported before (Weise et al., 2023). In theory, a 
bias of spatial attention to the location of an upcoming distractor can be considered sub-
optimal, as it potentially interferes with the task goal. Possibly, spatial attention was biased to 
the distractor location to reduce uncertainty about unpredictable distractors. 

 In aggregate, higher contra- than ipsilateral alpha power for the unpredictable distractor 
condition suggests (i) that human listeners do extract statistical regularities in the temporal 
sequence of auditory distractors (Addleman & Jiang, 2019), and (ii) that listeners exhibit a 
spatial attention bias to the upcoming distractor in case it can be less well predicted. 

4.2 Predictable distractors reduce neural processing demand  

In the present study, the stimulus-evoked P2 component was sensitive to perceptual and 
cognitive load manipulations. Although P2 and N1 amplitudes are often correlated in empirical 
studies, it has been argued that the P2 can be conceived as an independent ERP component 
(Crowley & Colrain, 2004). Larger P2 amplitude for higher sound intensity (here: 0 dB vs –10 
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dB SNR) has been reported previously (Paiva et al., 2016) and likely reflects increased activity 
in auditory information processing. Similar to a previous investigation that found higher N1-P2 
amplitude with higher memory load in an n-back task (Regenbogen et al., 2012), we found 
larger P2 amplitude for 2-back versus 1-back conditions. 

Of high relevance for our research questions, P2 amplitude was suppressed for pairs of 
targets and predictable versus unpredictable distractors. P2 suppression has been associated 
with predictability of sound (Schröger et al., 2015). For instance, P2 amplitude was found to 
be suppressed for audio-visual versus audio-only speech presentation (van Wassenhove et 
al., 2005), as well as for temporally cued tones (Sowman et al., 2012). A further exploratory 
analysis of our data revealed smaller P2 amplitude for n-back targets versus non-targets in the 
present study (t61900 = –3.12; p = 0.0018, r = 0.0125), which agrees with the view that P2 
suppression reflects a reduced prediction error. Lack of P2 suppression might be a signature 
of filling perceptual gaps (J. Wang et al., 2014), which explains larger P2 amplitude for pairs 
of targets and unpredictable distractor stimuli in the present study. Taken together, P2 
suppression for pairs of targets and predictable distractors speaks to reduced prediction error 
(Knolle et al., 2013) and thus lower processing demand. 

Starting approximately 400 ms after stimulus onset, a frontal negativity emerged in the ERP. 
This component is reminiscent of the sustained frontal/anterior negativity (SFN/SAN), which is 
a well-established signature of load during memory retention (e.g., Guimond et al., 2011; 
Lefebvre et al., 2013; Nolden et al., 2013). Sensitivity of the frontal negativity to memory has 
also been demonstrated in auditory n-back tasks, where its amplitude increased (Alain et al., 
2009; Rämä et al., 2000) or decreased with higher load (Nowak et al., 2021). Given that we 
observed higher amplitude of the frontal negativity when the task demand was lower due to a 
higher SNR of acoustic stimuli or lower memory load, we presume that the frontal negativity 
reflects integration of the present stimulus with the existing memory trace, which would benefit 
from better acoustics and lower memory load. Further increased amplitude of the frontal 
negativity for pairs of targets and predictable distractors under low memory load (1-back) might 
thus indicate a distractor predictability-induced memory processing benefit in the present task.  

4.3 Predicting distraction depends on available resources  

Here, we manipulated perceptual and memory load (i) to test whether distractor predictability 
processing is automatic (i.e., independent of load) or contingent on limitations of available 
resources, and (ii) to explore whether distractor predictability effects are modulated stronger 
by perceptual load (presumably favoring early attentional selection; Lavie, 2005) or memory 
load (presumably favoring late selection; Zhang et al., 2006). 

Distractor predictability effects in the present study were partly independent of load (pre-
stimulus alpha and P2 modulation) and partly larger under low load: Response bias was least 
conservative for predictable distractors when perceptual and memory load were low, and the 
distractor-predictability increase in the frontal negativity ERP component was larger under low 
memory load. These effects suggest that processing of distractor predictability is not fully 
automatic but requires resources that are not available in case of high load. Constraints of 
available cognitive resources for predictive language processing have been reported before 
(Ito et al., 2018; Ryskin & Nieuwland, 2023). The present findings might also explain the 
absence of distractor predictability effects in some of our own previous studies where memory 
load was high in all conditions (Lui & Wöstmann, 2022; Wöstmann & Obleser, 2016). 
Mechanistically, it appears that if resources are available to exploit distractor predictability (i.e., 
under low load), memory integration of target items is facilitated. 

Since distractor predictability effects in the present study interacted with perceptual and 
memory load, our results do not have strong implications about the exact type of resources 
necessary for distractor prediction. It has been debated to what extent perceptual load theory 
is applicable to attention in the auditory modality (Murphy et al., 2017) and whether SNR 
manipulations induce the same effect on perceptual load as other possible manipulations (such 
as increasing the number of items or target-distractor similarity). Of note, the high perceptual 
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load condition in the present study (with target intensity lowered relative to distractor intensity) 
used an overall reduced sound intensity, which might have counteracted potential effects. Our 
results suggest that the dependence of distractor predictability processing on resources is 
gradual rather than discrete (i.e. “all or nothing”). That is, while effects of predictability on 
memory integration (reflected by the frontal negativity in the ERP) and response bias were 
modulated by load, spatial attention bias (reflected by pre-stimulus alpha modulation) and 
suppression of the stimulus-evoked P2 were independent of load. 

One important design feature of the present study was that the temporal occurrence and 
spatial location of all stimuli were fully predictable in all experimental conditions. In this sense, 
distractor stimuli were highly predictable overall, whereas our main experimental manipulation 
only changed predictability along one dimension: distractor identity. Thus, one might speculate 
that distractor predictability effects would be larger in case of higher perceptual uncertainty 
about distractors in a context wherein the temporal occurrence and spatial position would vary 
unpredictably.    
 

5. Conclusion 

The present study shows that the listening brain does extract subtle statistical regularities from 
a sequence of irrelevant speech items. Prediction of distractors is not fully automatic but 
depends on the availability of perceptual and cognitive resources. As pre-stimulus oscillatory 
and post-stimulus evoked neural responses show, unpredictable distractors are more potent 
in misleading proactive spatial attention allocation and do increase subsequent distractor-
processing costs. These findings help understand the potential benefits of predictable 
distractors for goal-directed neural processing and its dependence on perceptual and cognitive 
resource limitations.  
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