

1 **Ultrastructural and transcriptional changes during a giant virus infection of a 2 green alga**

3
4 Andrian P. Gajigan ^{1,2}, Christopher R. Schvarcz ^{1,2}, Cecilia Conaco ³, Kyle F. Edwards ¹,
5 Grieg F. Steward ^{1,2}

6
7 ¹ Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822

8 ² Center for Microbial Oceanography Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822

9 ³ Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines

10 **Abstract**

11 The complete genome sequence of the *Oceanusvirus kaneohense* strain (Tetraselmis virus 1;
12 TetV-1) was previously reported, but little is known about the virus infection cycle. Using a
13 permissive *Tetraselmis* isolate (UHM1315), we estimated the eclipse period (4–8 hours), latent
14 period (16 hrs), and burst size (800–1000) of the virus and documented ultrastructural and
15 transcriptional changes in the host during infection. Putative viral factories and electron-dense
16 inclusion bodies appeared in the cytoplasm of infected cells by 8 and 16 h post-infection,
17 respectively. The nucleus and chloroplasts appeared to remain intact but reduced in size after 8 h.
18 Transcriptome sequencing suggests that the viral genome codes for 830 transcripts. Those
19 expressed early in infection (eclipse period at 0.25 and 4 hr) were related to the initiation of
20 transcription, DNA synthesis, translation, and host immune repression. During the later, post-
21 eclipse period (8, 12, 16 hr), virus structural genes were expressed. For the algal host, transcripts
22 related to lipid metabolism and endocytosis were upregulated during the early phase, while those
23 for protein modification/ turnover/ transport were downregulated. In the later period, host
24 transcripts associated with basic cellular processes were upregulated, while genes related to
25 morphogenesis/development were downregulated. Many of the most highly expressed virus and
26 host genes were of unknown function, highlighting a need for additional functional studies.

27
28
29 **Keywords:** transcriptome, mimivirus, green algae, ultrastructure, *Tetraselmis*

30 **ORCID**

31
32 APG: <https://orcid.org/0000-0001-9888-3718>

33
34 CRS: <https://orcid.org/0000-0003-3789-2033>

35
36 CC: <https://orcid.org/0000-0002-3594-2810>

37
38 KFE: <https://orcid.org/0000-0002-0661-3903>

39
39 GFS: <https://orcid.org/0000-0001-5988-0522>

40 **Introduction**

41
42 Viruses in the phylum *Nucleocytoviricota*, the new taxonomic designation for the
43 Nucleocytoplasmic Large DNA Viruses (NCLDVs), are characterized by their large double-
44 stranded DNA genomes (up to 2.5 Mbp) and large virion sizes (up to 1500 nm)¹⁻³. The largest
45 members in this phylum, often referred to colloquially as “giant viruses”⁴, contain hundreds of
46 genes that afford them a higher degree of autonomy compared to ‘smaller’ viruses⁵, the smallest
47 of which encode as few as two genes. In addition to a typical suite of DNA replication and
48 transcription machinery, giant virus genomes may encode a diverse suite of products involved in
49 metabolic functions previously only associated with cells. For example, some encode dozens of
50 tRNAs and hundreds of components of the translation machinery^{6,7}. Others may encode
51 rhodopsins^{8,9}, enzymes involved in the TCA cycle and glycolysis^{10,11}, histones^{12,13}, cytoskeletal
52 proteins (actin, kinesin, myosin)^{14,15} or, as was found for the virus studied here, TetV-1,
53 enzymes involved in fermentation¹⁶. In addition to the genes with diverse predicted functions,
54 giant viruses also encode many ORFans¹⁷ or genes with predicted amino acid sequences that are
55 so divergent from any characterized protein that their functions remain a mystery. Even for the
56 genes for which confident functions are assigned, how and when those genes are used by the
57 virus is not always clear.

58
59 Transcriptional analysis complements genome sequencing by providing detailed insights into the
60 operational program of a virus¹⁸. Transcriptome sequences can reveal errors in genome
61 sequencing and assembly¹⁷ and improve genome annotations. Genes not predicted *ab initio*, for
62 example, may be revealed by their presence in the transcript pool¹⁹⁻²¹. Conversely, initially
63 predicted genes may be absent from the transcriptome²². Transcriptional analysis can also shed
64 light on how gene expression is regulated, revealing, for example, changes in the promoter
65 motifs used at different stages of infection^{19,23}, alternative splicing^{24,25}, transcription start and
66 termination sites¹⁹, and transcription termination mechanisms^{18,26}. Transcriptomics also allows
67 for inferences about the interplay between virus and host metabolism^{23,27-29}. In some cases, host
68 genes are upregulated that carry out functions not encoded by the virus^{30,31}. In other cases, the
69 virus and host share homologous genes, but the version expressed (host vs virus) changes during
70 infection^{27,32}.

71
72 Inferences about the timing of replication based on transcriptional patterns can be corroborated
73 and augmented by observations of ultrastructural changes in infected cells. Electron microscopy
74 of thin sections provides information on the mechanisms of virion entry^{33,34}, the location of
75 replication and the formation of viral factories³⁵, the timing of the eclipse period, and other
76 virus-induced changes to cellular ultrastructure^{7,32}. In this study, we investigated the infection
77 cycle of the green alga-infecting *Tetraselmis* virus 1 (TetV-1) using both electron microscopy
78 and transcriptomics to (i) identify ultrastructural changes accompanying the infection
79 progression, (ii) temporal expression of viral genes, and (iii) host responses to infection.

80
81 **Results**

82
83 ***TetV-1* life history traits and ultrastructure**

84 In an initial experiment tracking the infection cycle of TetV-1, free virions remained consistently
85 low for the first 15.5 hours post-infection (hpi), began a rapid increase by 16 hpi, and plateaued

86 at 17–18 hpi (**Fig. 1**). Based on the number of new viruses produced and the host counts at the
87 beginning of the infection, and assuming all cells are lysed, the burst size was estimated to be
88 around 800–1000.

89
90 Examination of thin sections of uninfected algal cells by electron microscopy revealed the intact
91 organelles expected in a healthy cell such as the nucleus, nucleolus, chloroplasts, mitochondria,
92 vacuoles, pyrenoids, and an eyespot (**Fig. 2A**). Four basal bodies (base of flagella) are also
93 evident (**Supp Fig. 1**). For infected cells, the initial attachment and entry process of the virus was
94 not observed in any of the examined cells, likely because of the low temporal resolution of
95 sampling. Cells at 15 minutes and 4 hpi were similar to the uninfected cells, with no apparent
96 changes to subcellular structures or evidence of virion assembly (**Fig. 2B-C**). Intracellular
97 virions were first observed in samples taken at 8 hpi, which puts the eclipse period somewhere
98 between 4 and 8 hpi (**Fig. 2D**). By 8 hpi, there was also a change in the fine-scale structure of the
99 cytoplasm. At this point, organelles appeared to be compressed around the periphery of the cell,
100 the expanded area of cytoplasm was more granular, and putative viral factories (VFs) were
101 present. The VFs are localized areas within the cytoplasm with incomplete capsids near the
102 center and complete capsids further out. VFs were present for the remainder of the latent period,
103 (**Fig. 2E-F**), but multiple, well-defined, darker staining inclusion bodies (IBs) also appeared in
104 the cytoplasm by 16 hpi (**Fig. 2F**). At this point most cells were filled with virions, anticipating
105 the imminent lysis, which is evident from the rapid increase in free virions over the next two
106 hours (**Fig. 1**). Some intact cells at the late stages of infection with both VF and IB were still
107 observed at 20 hpi (**Fig. 2G-I**), either because of a non-synchronous start of infection, or
108 variation in latent period length. Higher magnification views of one such cell illustrate the
109 incomplete capsid structure at the core of the VF and a darker staining edge of the IB, suggesting
110 a membrane-bound compartment. (**Fig. 2G-I**).
111

112 **TetV-1 transcriptome**

113 The TetV-1 genome was sequenced previously and shown to contain 663 genes predicted using
114 Prodigal¹⁶. The current RNA-seq pipeline detected 830 transcripts, of which 167 (20%) are
115 multi-exon. Included in these are 292 transcripts that are longer than the Prodigal-predicted
116 genes, 27 that contain overlapping exons with Prodigal-predicted genes, one transcript that is
117 within an intron, and 10 transcripts contain exons that overlap with Prodigal-predicted genes but
118 are on the opposite strand.
119

120 The relative abundance of reads that map to TetV-1 steadily increased early in the infection and
121 peaked at 8 hpi, at which point they accounted for ~58% of the total reads (**Supp Fig. 2A**). The
122 proportion of viral reads subsequently decreased, presumably when transcription ceases and
123 other processes, such as DNA synthesis, packaging, and assembly predominate until lysis at
124 around 16 hpi (**Supp Fig. 2A**). The average RNA yield remained constant in the control sample,
125 while it seems to decrease in the infected samples (**Supp Fig. 2B**). Global clustering of TetV-1
126 gene expression profiles resulted in the earliest time points (15 mpi and 4 hpi) forming one
127 cluster and the three later time points (8–16 hpi) forming another (**Supp Fig. 3**). Given this
128 pattern and the limited temporal resolution of the sampling, we labeled genes in subsequent
129 analyses as either “early” or “late,” depending on when they were most highly expressed. These
130 categories are equivalent to eclipse and post-eclipse periods. After a filtering step to remove
131 transcripts that were relatively constant (those with a variance less than one across samples),

132 94% of the viral genes (782 out of 830) were retained. Nine of the top ten highly expressed genes
133 are of unknown function (TetV_630, 071, 278, 511, 015, 023, 024, 013, and 405) (**Fig. 3**).
134

135 **A. Early infection stage**

136 Expression of viral transcripts was detected at least as early as 15 min after infection (**Fig. 3**,
137 **Supp Fig. 4, Supp Table 1**). Four highly expressed transcripts at the 15 mins post infection have
138 no known or predicted function (TetV_026, 357, 104, and 431).
139

140 Several enzymes involved in carbohydrate metabolism are expressed early such as alpha-
141 galactosidase (TetV_601), glycosyl hydrolase (TetV_615), arabinose 5-phosphate isomerase
142 (TetV_403) and mannitol 1-phosphate dehydrogenase (M1DPH, TetV_320) (**Fig. 3**). A putative
143 host immune suppression gene, vMISTRA (TetV_113), and various RING domain-containing
144 proteins (TetV_277, 420, 434) that are implicated in apoptosis inhibition are also expressed early
145 as is the virus-encoded ribonuclease-3 gene (TetV_554) (**Fig. 3**). Most ubiquitination genes are
146 expressed throughout the infection (TetV_035, 358, 621) except one that seems to be expressed
147 early, E3 ubiquitin-protein ligase MIEL-1 like protein (TetV_138). The virus-encoded
148 fermentation genes, pyruvate formate-lyase (vPFL; TetV_428) and pyruvate formate lyase
149 activating enzyme (vPFLA; TetV_456) are somewhat higher in the early phase than in late
150 stages, but were essentially constitutively expressed (**Fig. 3**).
151

152 Expression of genes involved in transcription began in the early stage and expression of some
153 was sustained throughout the infection (**Fig. 3, Supp Fig. 4**). Transcription factors such as
154 transcription initiation factor TFIIB Brf1 (TetV_036), transcription activator SWIB/MDM2
155 (TetV_204), and TATA-box binding proteins (TetV_094 and 195) were among those expressed
156 early. In addition, transcription elongation factor TFIIS (TetV_526) and late transcription factor
157 VLTF3-like (TetV_254) were expressed early and were sustained throughout the infection (**Fig.**
158 **3**). Similarly, DNA-directed RNA polymerase subunits were expressed early and sustained in the
159 late stage. These included Rpb2 (TetV_196, 616), Rpb3/Rpb11 (TetV_250), Rpb5 (TetV_078),
160 Rpb6 (TetV_177), Rpb7 (TetV_286), and Rpb10/RpoN (TetV_156) (**Supp Fig. 4**). Expression
161 of mRNA capping enzymes (TetV_090 and 219) also began in the early stage (**Supp Fig. 4**).
162

163 Early genes involved in nucleotide synthesis included ribonucleoside-diphosphate reductase
164 subunit alpha (TetV_458) and beta (TetV_533), thymidylate kinase (TetV_225), thymidylate
165 synthase complementing protein (TetV_240), 5-(carboxyamino) imidazole ribonucleotide mutase
166 (TetV_495), and dUTP pyrophosphatase (TetV_595) (**Fig. 3**). Early genes involved in DNA
167 replication, synthesis and repair genes included DNA polymerase B (TetV_567), DNA
168 topoisomerase 2 (TetV_404), and DNA clamp, proliferating cell nuclear antigen (TetV_607)
169 (**Supp Fig. 4**). Genes involved in DNA repair (DNA repair exonuclease SbcCD, TetV_472;
170 DNA repair ATPase SbcC, TetV_662) appeared early, as did others that remained relatively high
171 through the late stages such as DNA mismatch repair ATPase MutS (TetV_243) and
172 deoxyribodipyrimidine photolyases (TetV_298 and 522) (**Supp Fig. 4**). Finally, initiation of
173 translation also starts at the early stages of infection based on the expression of eukaryotic
174 initiation factor 4E (TetV_117) and translation initiation factor 1A (TetV_059) (**Fig. 2**).
175
176
177

178 **B. Late infection stage**
179 Genes encoding proteins related to virion structure and packaging, such as the major capsid
180 protein (TetV_001) and VV A32-like virion packaging ATPase (TetV_186) (**Fig. 3**) were highly
181 expressed in late stage. Genes encoding a functional potassium ion channel (TetV_029)³⁶, a
182 large-conductance mechanosensitive channel (TetV_044), and a transmembrane protein/ion
183 channel (TetV_199) were also expressed in late stages (**Fig. 3**). Genes encoding some enzymes
184 were also expressed in the late stage such as glycosyltransferases (TetV_241 and 318), sulfatases
185 (TetV_008 and 050), lipid catabolic enzymes, lipase (TetV_056) and phosphatase (TetV_413),
186 proteases (TetV_461 and 556), and redox enzymes (TetV_019, 191, 236, and 626) (**Supp Fig.**
187 **4**). Different methylation genes appear to be expressed at distinct stages of the infection. There is
188 one methylation gene expressed early, the SET domain-containing protein (TetV_181), whereas
189 four methyltransferases are expressed in the late stage (TetV_211, 484, 501, 608) (**Supp Fig. 4**).
190

191 **Tetraselmis sp. (host) response**
192 Before the host transcriptome assembly, TetV-1 reads were removed, leaving 308 million paired-
193 end reads. Trinity *de novo* assembly yielded 159,006 transcripts corresponding to 69,817 genes
194 (**Supp Table 2**). The assembly is of high quality based on metrics such as N50 (3,244 bp), read
195 alignment (99%), and the presence of 96% of Chlorophyta single copy genes (**Supp Table 2**).
196 Two additional filtering steps were implemented: First, only transcripts with enough read support
197 according to TransRate were retained, leaving 91% of the genes. TransRate calculates contig
198 scores based on read mapping evidence, identifying contigs that are chimeric or misassembles,
199 among others. Second, only the highest expressed isoform per gene was retained for downstream
200 analysis (**Supp Table 3**). Of the remaining 63,860 genes, 83.7% are expressed at > 1 TPM
201 (transcripts per million transcripts), while only 37% are expressed at > 5 TPM. Around 14-15%
202 of the genes have BLAST/HMMER matches to SwissProt Uniprot and Pfam databases (**Supp**
203 **Fig. 5**). Out of the annotated genes, 46.4% are closely matching eukaryotic genes (the majority
204 being Viridiplantae homologs), while the rest are closely matching Bacteria (51.3%), Archaea
205 (1.6%), and viral (0.6%) genes (**Supp Fig. 5**).
206

207 We found seven host transcripts related to fermentation with homology to pyruvate formate lyase
208 activating enzyme (PFLA), but no transcripts related to pyruvate formate lyase (PFL) (**Supp Fig.**
209 **6**). Four host transcripts matched to formate acetyltransferase (PFLB) (not shown). Only one of
210 the seven host PFLA genes showed significant expression, and, like the viral-encoded PFLA, the
211 host PFLA seems to be expressed in high levels early in the infection.
212

213 To determine the host response to infection, differentially expressed genes were determined at
214 early (15 mpi, 4 hpi) and late (8 hpi, 12 hpi) stages of infection (**Fig. 4**). The control sample
215 corresponding to the 16 hpi sample was potentially cross-contaminated with viral reads so, this
216 time point was excluded from analysis (**Supp Fig. 2**). A gene ontology enrichment test was
217 performed to identify overrepresented functions in the differentially expressed genes. Few
218 differentially expressed genes were observed during the early stage (33 upregulated and 43
219 downregulated out of 63,860 genes). The upregulated gene set shows enriched GO terms for
220 carbohydrate and lipid metabolism and endocytosis (mainly attributable to adaptor protein
221 complex 4; AP4E gene) (**Fig. 4, Supp Fig 5A, Supp Table 4**). The downregulated gene set
222 includes GO terms related to protein modification/transport/turnover (ex. UPL6, E3 ubiquitin-
223 protein ligase; SC61A, transport protein Sec61 subunit), cytoskeleton (ex. Dynein heavy chain 7;

224 DYH7) and chlorophyll catabolic process (ex. NOL, Chlorophyll(ide) b reductase) (**Fig. 4, Supp**
225 **Fig 5B, Supp Table 5**).

226
227 A much greater proportion of genes were differentially expressed in the late stage (1,585
228 upregulated and 725 downregulated) (**Fig. 4**). Among the genes upregulated were those with GO
229 terms indicating involvement in immune and stress response, nucleotide, and lipid metabolism,
230 methylation, RNA processing and transcription, ion transport, protein modification, and cell
231 motility (**Fig. 5C, Supp Table 6**). Interestingly, putative endogenous major capsid proteins were
232 also upregulated in the *Tetraselmis* host (**Fig. 4-5, Supp Fig 7**). In the downregulated gene set,
233 enriched GO terms included stress/defense response, “plant-related morphogenesis,” and “cilium
234 assembly” (**Fig. 5D, Supp Table 7**).

235
236 Differentially expressed genes and enriched GO terms in samples representing light (11 am,
237 12:15 pm, 4 pm) vs. dark (8 pm, 12 am) cycles were determined in the uninfected (control) time
238 series (**Supp Fig. 8**). As expected, enriched GO terms in the *Tetraselmis* light cycle include
239 photosynthesis, thylakoid, and chloroplast, among others, while in the dark cycle, DNA and
240 nuclear processes are enriched (**Supp Fig. 9**).

241
242 **Discussion**

243
244 ***TetV-1 life history and ultrastructural changes***
245 With this study, we provide details of the life cycle of TetV-1 when infecting a marine coastal
246 strain of the green alga *Tetraselmis* sp. (UHM1315). Latent period and burst size are among the
247 most important to parameterize when modeling the spread of viral infections through
248 phytoplankton populations ³⁷. However, they are not fixed traits. A virus that infects a cell under
249 sub-optimal conditions (e.g., growth-limiting temperature, irradiance, or nutrient supply) may
250 present a significantly longer latent period and reduced burst size ³⁸. Despite the context-
251 dependence of these traits, our estimates for TetV-1 were very similar to those reported for its
252 closest cultivated relative *Pyramimonas orientalis* virus, or PoV-01B. Like TetV-1, PoV-01B is
253 a green-alga infecting virus in the family *Allomimiviridae*. The latent period (14–19 h) and burst
254 size (800-1000) reported for PoV-01B ³⁹ were indistinguishable from our findings for TetV-1,
255 despite the former being assayed at lower temperature (15 °C) and irradiance (40 μmol photons
256 per m⁻² s⁻¹). Undoubtedly these values would change for either virus under more stringent growth
257 limitations, but our objective in determining latent period in this study was primarily to
258 determine the endpoint of the virus life cycle as context for interpreting changes in ultrastructure
259 and gene expression under the same conditions. Under our controlled conditions, the latent
260 period accounted for more than a quarter, but less than half of the latent period and provided a
261 convenient visual break point for early (replication) and late (assembly) stages of infection.

262
263 The appearance of viral factories in the cytoplasm and the persistent integrity of the nucleus
264 during infection is similar to observations for some members of the families *Mimiviridae* and
265 *Poxviridae* ^{35,40}. The reduction in *Tetraselmis* chloroplast size during TetV-1 infection is similar
266 to observations in *Emiliania huxleyi* when infected with EhV, but in the latter case, the nucleus
267 was degraded ³². The putative VFs produced by TetV-1 are similar to structures that also have
268 been referred to variously as viroplasm, replication organelles, assembly sites, or inclusion
269 bodies in other virus-host systems ^{41–44}. VFs concentrate viral replication machinery ⁴⁵, which is

270 proposed to protect viruses from host defenses ^{41,44}. VFs are observed in other giant viruses, such
271 as ApMV ⁴⁶ and Tupanvirus ⁴⁷. In ApMV, the VF is the source of viral DNA and is associated
272 with empty virus capsids ⁴⁸. The vesicular or angular shapes of apparent capsid components seen
273 in TetV-1 virus factories are also present in PBCV-1 ⁴⁹. In addition to the VFs, we observed
274 other structures we refer to generically as inclusion bodies, which is a broad term for structures
275 that appear in most virus-infected cells, but little is known about them ⁴⁴. It remains to be seen if
276 the inclusion bodies play a specific role in TetV-1 replication, or they are simply a cytopathic
277 byproduct of the significant metabolic disruption caused by infections.
278

279 *TetV-1 transcriptional landscape*

280 Transcription is the first major biosynthetic step after infection with a dsDNA virus. Immediate
281 transcription is not unusual for giant viruses, with transcription happening within minutes in
282 some cases ^{28,50}. Transcription can even initiate within the virion prior to DNA unpackaging in
283 the cytoplasm ¹⁸. Rapid transcription is possible because transcriptional proteins are packaged
284 within the virion^{18,51,52}. Like other NCLDVs such as AaV, ApMV, PBCV-1, and CroV, all
285 known TetV-1 genes, as well as the 167 multi-exon transcripts discovered here, are expressed at
286 least once in the infection cycle. In TetV-1, tRNAs were also detected by a sequencing library
287 preparation method that enriched poly-A transcripts. This suggests that, unlike eukaryotic
288 cellular tRNAs, those in TetV-1 are polyadenylated, as has been reported for tRNAs of other
289 mimivirus ⁵³. This suggests that RNA polymerase II is used for transcribing both tRNAs and
290 protein-coding genes.
291

292 It has been hypothesized that the presence of exons and introns in viruses can disrupt nucleic
293 acid cleavage sites ⁵⁴ thereby providing protection from host nucleases, and this may be the case for
294 giant viruses. Another possibility is that splicing does not benefit the virus but is a remnant of
295 horizontally transferred genes that host spliceosomes recognize. Regardless of the selective
296 forces that lead to their presence, the existence of multi-exon transcripts and alternatively spliced
297 genes in TetV-1, and previous studies highlighting the rich alternative splicing repertoire of
298 NCLDVs ^{20,24,25}, emphasize that gene annotations based solely on genome sequences miss much
299 of the complexity that underlies viral replication.
300

301 As has been found in transcriptional analyses of other giant viruses, most of the genes showing
302 the highest expression are of unknown function ^{22,29,30,55}. For those with a predicted function, the
303 functional categories expressed in the loosely defined ‘early’ and ‘late’ stages of the TetV-1
304 infection were similar to those reported at similar stages of infection for many different NCLDVs
305 ^{18,20,23,26–30,55–58}.
306

307 *Early-stage viral genes*

308 Viral ‘early’ genes are typically initiation factors for DNA replication/transcription/translation,
309 immune evasion, or nucleotide metabolism genes, as was the case for TetV-1. Also apparent at
310 the early stages was the expression of enzymes that are likely involved in the
311 destruction/degradation of host cell wall (alpha-galactosidase, TetV_601; glycosyl hydrolase,
312 TetV_615), virion-cell recognition (arabinose 5-phosphate isomerase, TetV_403) or controlling
313 intracellular osmolarity (mannitol 1-phosphate dehydrogenase M1PHD, TetV_320) ⁵⁹ (**Fig. 2**).
314 Mannitol has also been shown to suppress ROS-based defense (reactive oxygen species) against
315 pathogens ⁶⁰, thus it is possible that the virus is increasing the mannitol pool to counter host

316 defenses. The early expression of nucleotide metabolism genes such as ribonucleotide reductase,
317 rNDP (TetV_458, 533) and thymidylate kinase (TetV_225) and synthase complementing protein
318 (TetV_240), is likely a response to the increased nucleotide demands of the virocell.
319

320 Other ‘early’ genes may be involved in evading the host’s innate immune response. The putative
321 immune suppression gene, vMISTRA (viral homolog of MItochondria STress Response Algae,
322 TetV_113), is hypothesized to counteract viral-induced apoptosis ⁶¹. In addition, RNase III
323 (ribonuclease III) is known for its role in gene silencing with the potential to shift virocell global
324 gene expression. Ubiquitination proteins (TetV_035, 358, 621) and other nucleases may play a
325 role in keeping host proteins and DNA at bay (**Fig. 2**). Various RING domain containing
326 proteins implicated in apoptosis inhibition, are also expressed early (TetV_27, 420, 434) (**Fig. 2**).
327 This is the case for the Ascovirus IAPs (Inhibitors of Apoptosis) gene which encodes an E3
328 ubiquitin ligase with RING domain ⁵⁸. TetV-1 encodes multiple copies of RING domain-
329 containing genes that might represent gene duplications. Expansions of viral genetic content
330 through gene duplication (i.e., a “gene accordion”) were suggested to be a mechanism by which
331 poxviruses adapt to host antiviral defenses as new, duplicated genes can freely acquire mutations
332 that facilitate virus evasion of the cellular immune system ⁶².
333

334 The highly expressed genes in the early stage of infection are located near each other (TetV_013,
335 015, 023, and 025) (**Fig. 2**). Spatial clustering of genes that show similar temporal expression
336 suggests that a nucleoprotein/histone-like structure or other epigenetic modification (ex.
337 methylation or acetylation) might govern their coordinated expression. Shared regulatory
338 sequences (e.g., a promoter or enhancer) or operon-like structuring that enables synchronized
339 gene expression can also explain this spatial clustering of genes. Spatial viral genome regulation
340 is observed in EhV wherein a specific subregion (EhV218-366) is highly expressed at 1 hpi ³²,
341 and in PBCV-1, the top 50 expressed genes at 7 mins post-infection are also co-located.
342 However, spatial clustering and temporally coordinated expression is not observed in other
343 NCLDV, such as the Marseillevirus ²⁹.
344

345 *Late-stage viral genes*

346 While the early phase of infection can be characterized as the preparation stage for viral
347 production, the late stage is characterized by transcripts suggesting sustained biosynthesis of
348 materials needed for viral assembly and egress. The late-stage transcripts are structural proteins,
349 DNA packaging materials, transcripts/proteins used for egress, or transcripts/proteins that may
350 be packaged in virus particles, among others.
351

352 Strikingly, most of the highly expressed late genes have unknown functions. These hypothetical
353 genes/proteins that are co-expressed with the major capsid protein in high relative abundance in
354 both transcriptome and virion proteome (TetV_511 and 630) are likely structural and excellent
355 candidates for further functional characterization (**Fig. 2, Supp Table 1**) ⁶³. It is also apparent
356 that there are genes with unknown functions that display low to moderate gene expression (**Supp**
357 **Table 1**) but are found in TetV-1 virion proteome such as TetV_155, 247, 258, 362, 378, 412,
358 463, 481, and 597 ⁶³. This could also be subject to further functional screening. Various
359 transmembrane proteins and ion channels are also expressed late (TetV_029, 044, 199) (**Fig. 2**).
360 These proteins are likely involved in controlling cellular ion concentration or pH and could be
361 involved in either virus entry or exit, depending on whether they are used in late-stage infection

362 or packaged inside the virions. If a given transmembrane protein is used in the late stage, its
363 function might be to alter cell osmotic pressure, facilitating exit. If packaged inside the virions,
364 an ion channel may act at the early stage of infection in a manner similar to that observed for
365 PBCV-1, where the potassium ion channel triggers depolarization and loss of ions, resulting in
366 lower cellular pressure and triggering injection of viral DNA into the host^{64,65}. Here, among the
367 three transmembrane proteins/ion channels, only the large conductance mechanosensitive
368 channel (TetV_044) seems to be packaged inside the virions, based on virion proteome⁶³. It
369 could also be possible that ion channels are crucial in controlling a balance of intracellular ions
370 favorable for viral protein activity or mediating calcium/potassium-dependent signaling^{36,66}.
371

372 The expression of thioredoxin in the late stage (**Supp Fig. 4**) can be attributed to its role in
373 regulating the cell redox state associated with cell death^{67,68}. In addition, late-stage
374 methyltransferases (TetV_211, 484, 501, 608) might be responsible for the methylation of newly
375 synthesized viral DNA (**Supp Fig. 4**). The sulfatase (TetV_008) that is highly expressed as
376 transcripts in the late stage and has a high proteome signal in the virion can suggest the
377 packaging of this specific enzyme (**Supp Fig. 4**). This enzyme can play a role in host surface or
378 cytoplasm remodeling, as it catabolizes sulfated algal polysaccharides and glycolipids⁶⁹.
379

380 Here, we used conventional bulk RNA-seq which can be considered as the average state of
381 virocell transcriptome. Because not all cells are infected at precisely the same time, there is some
382 loss of resolution in the timing of expression when bulk sampling, as illustrated by single-cell
383 transcriptomics of *E. huxleyi*-EhV²³. Furthermore, other RNA sequencing approaches could
384 offer additional insights. For instance, CAGE-seq and 3' RNA-seq will be required to ascertain
385 transcriptional start and termination sites¹⁹. Despite these limitations, our transcriptome analysis
386 allowed the delineation of gene boundaries, identification of spliced transcripts, and
387 determination of TetV-1 genes and their temporal profiles.
388

389 **Host metabolic reprogramming**

390 This study demonstrated host responses to infection by analyzing differential gene expression
391 and gene ontology enrichment analysis. These analyses paint a broad picture of host metabolic
392 reprogramming in response to the virus attack. Host reprogramming can be accomplished
393 through various mechanisms, such as viral-encoded nucleases that preferentially degrade host
394 mRNAs, viral methylases and epigenetic modification systems, and virus-encoded
395 transcriptional and post-transcriptional regulatory controls that affect host gene expression,
396 among others. Here, we cannot ascertain the mechanism of host reprogramming, but nonetheless
397 observed relative up- or downregulation of host genes as a response to giant virus infection.
398

399 In this study, few genes showed significant changes in expression during the early stage (76
400 genes out of 63,860 *Tetraselmis* genes). However, a host gene related to endocytosis, adaptor
401 protein complex 4 subunit epsilon (AP4E), was upregulated. Adaptor protein complexes are host
402 factors that interact with viruses to facilitate entry [reviewed in⁷⁰]. A related NCLDV, Vaccinia
403 virus, for example, was shown to interact with its host's adaptor protein complex 2 (AP2)⁷¹.
404 This circumstantial evidence suggests that AP4 may act as a critical host factor for TetV1
405 infection, although confirmatory tests are needed. A relatively higher number of host genes
406 (2,310) are differentially expressed in the late stage. During this stage, we observed extensive
407 changes in the ultrastructure, so, unsurprisingly, many cellular processes are disrupted relative to

408 the control. Putative endogenous MCPs are upregulated at the late stage, which agrees with a
409 recent survey that shows that protists, including various *Tetraselmis* species, express endogenous
410 MCPs⁷². We are unsure if these are functional capsids or are degraded or repurposed genes that
411 retained their transcriptional signals and are thus expressed upon infection. The lipid metabolism
412 genes upregulated in both early and late stages are presumably associated with cytoplasmic
413 rearrangement, creating lipid-rich virus factories⁴². Downregulated host genes across the
414 infection include those associated with the cytoskeleton, cilium/flagellar assembly,
415 morphogenesis, and development, which seems consistent with disruption of cellular structure in
416 favor of creating virus factories. It is worth noting, the constitutive expression of both viral and
417 host-encoded fermentation genes (PFL and PLFA). Host pyruvate formate-lyase (PFL) was not
418 detected in the transcriptome; however, *Tetraselmis striata*, the only *Tetraselmis* species with a
419 published genome, contains a PFL (Protein ID: 421160; TSEL_012203.t1)⁷³. Hence, it is
420 possible that PFL is also present in *Tetraselmis* sp. KB-FL45 but is below the detection limit of
421 our sequencing approach.

422

423 Conclusion

424

425 By tracking changes in the transcriptional activity and ultrastructure of a green alga infected with
426 an allomimivirus, several broad patterns emerged consistent with responses to infection seen in
427 other NCLDVs and viruses in general. Specifically, viral genes expressed early in infection were
428 those involved with carbohydrate degradation, immune evasion, transcription initiation, and
429 nucleotide metabolism, among others. In contrast, viral genes expressed later were structural
430 proteins and DNA packaging materials. Transcriptional changes in host genes in response to
431 infection suggested metabolic reprogramming to accommodate the production of virus factories
432 and disruption of host metabolism and development. The transcriptional data from this study
433 expands and improves the TetV-1 genome annotation while highlighting that many of the highly
434 expressed viral genes have unknown functions. These would be good candidates for functional
435 characterization to further improve our understanding of how giant viruses commandeer the host
436 metabolic machinery and facilitate their replication.

437

438 Materials and Methods

439

440 Virus and Algal culture

441 The virus *Tetraselmis* virus 1, or TetV-1 for short¹⁶, was isolated from Kāne‘ohe Bay
442 (21.42973° N, 157.7919° W), a coastal embayment on the northeast shore of O‘ahu, Hawai‘i that
443 is protected by a barrier reef. A unicellular green alga *Tetraselmis* sp. AL-FL03 (UHM1300)
444 isolated from open ocean waters of Station ALOHA (22.75° N, 158.00° W) in the North Pacific
445 Subtropical Gyre was the initial host used to isolate and propagate the virus, but other strains of
446 *Tetraselmis* isolated from Station ALOHA and Kāne‘ohe Bay are susceptible and permissive to
447 the virus¹⁶. In this study, a strain from Kāne‘ohe Bay, *Tetraselmis* sp. KB-FL45 (UHM1315)
448 was used for the experiments. The uni-algal (but not axenic) culture was maintained in an f/2
449 medium^{74,75} at 24 °C on a cycle of 12 h light:12 h dark with a photon flux of 250-280 μE m⁻² s⁻¹
450 during the light period (07:30–19:30 h). The virus was recently assigned to a new genus and
451 species, *Oceanusvirus kaneohense*, within the family Allomimiviridae⁷⁶.

452

453 Flow cytometry counts

454 Algal cells and virions were counted by flow cytometry (Attune™ NxT; Thermo Fisher
455 Scientific) using side scatter (SSC) and either chlorophyll autofluorescence for algae or DNA
456 fluorescence after staining with SYBR Green I (Thermo Fisher Scientific) for the virions to
457 discriminate populations. Autoclaved, filtered seawater was used as a control for the flow
458 cytometer measurements. TetV-1 counting followed the previously published protocol using
459 green fluorescence and side-scatter ⁷⁷.

460

461 *Latent period and burst size estimation*

462 For latent period determination, triplicate algal cultures in the exponential growth phase (238 mL
463 each at 1.2×10^5 cells mL⁻¹) were each inoculated 4.5 h into the light period with fresh lysate (~8
464 mL at $\sim 1.8 \times 10^8$ virions mL⁻¹) that had been filtered (0.45 µm Sterivex filter) to remove cell
465 debris, then swirled gently to mix. This resulted in a multiplicity of infection (m.o.i.) of
466 approximately 50. After inoculation, cultures were subsampled periodically up to 30 hours post
467 infection. The cultures, both infected and control, were mixed by swirling gently before
468 sampling. Subsamples (1 mL) were preserved with glutaraldehyde (0.5% v:v final conc.), flash
469 frozen in liquid nitrogen, then stored at -80 °C. Samples were thawed immediately prior to flow
470 cytometric analysis, as described above. Burst size estimates (viruses produced per cell) were
471 calculated by dividing the change in viral counts before (15 hr) and after (30 hr) latent period by
472 the host counts at the beginning of infection. We made the limiting assumption that all cells
473 contributed to viral production because cell debris and clumping at the end of the latent period
474 precluded accurate quantification of any residual unlysed cells. The burst size estimate may,
475 therefore, be somewhat underestimated.

476

477 *Experiment for ultrastructural and transcriptional analysis*

478 Guided by data from the first experiment, a second infection experiment was conducted to
479 analyze changes in ultrastructure and transcriptional activity through the latent period. Four
480 independent algal cultures (1350 mL each) were initiated (three experimental and one uninfected
481 control) and grown to exponential phase (approximately 1.48×10^5 cells mL⁻¹) under the routine
482 conditions noted above. Approximately 100 mL of filtered virus lysate at $\sim 1.0 \times 10^8$ virions mL⁻¹
483 was added to the three experimental cultures at noon (designated as t = 0 h) for an m.o.i of about
484 50 as above, and incubations continued for another 20 h. Sub-samples were collected from each
485 culture at t = -1, 0.25, 4, 8, 12, 16, and 20 hours post-infection (hpi) for analyses as follows. One
486 milliliter (1 mL) of the sub-sample was fixed with glutaraldehyde, frozen, and stored as
487 described above for flow cytometry. Fifty milliliters (50 mL) of the subsample were preserved
488 and processed for electron microscopy, as described below. Another 50 mL was immediately
489 filtered through a 2.0 µm polycarbonate filter by vacuum filtration to collect the cells. The filters
490 were transferred to a 2 mL cryovial, flash frozen, and stored at -80°C for subsequent RNA
491 extraction, as described below.

492

493 *Transmission electron microscopy (TEM)*

494 Samples for electron microscopy were preserved with a fixative (final concentration: 0.1 M
495 sodium cacodylate, 2% glutaraldehyde, 0.005 M CaCl₂, 0.06 g glucose/ml). Cells were pelleted
496 at 2,400 × g and embedded in ~3.3% agarose gel. The embedded samples were washed twice
497 with 0.1 M cacodylate buffer with 0.44 M sucrose for 20–30 minutes. The samples were then
498 post-fixed with 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 hr. Post-fixed samples
499 were dehydrated twice in a graded ethanol series (30%, 50%, 70%, 85%, 95%) for each dilution

500 and thrice in 100% ethanol for 10 minutes each. Samples were then substituted with propylene
501 oxide thrice for 10 minutes each and then infiltrated with 1:1 propylene oxide:epoxy resin
502 (LX112) overnight. They were then immersed in a freshly made 100% epoxy resin for 2 hours,
503 followed by another exchange for 3 hours. Finally, the samples were placed in molds with epoxy
504 resin and polymerized at 60 °C for 2–3 days. Ultrathin (60–80 nm) sections were generated on an
505 RMC MT6000-XL ultramicrotome, viewed unstained on a Hitachi HT7700 TEM at 100 kV, and
506 photographed with an AMT XR-41B 2k x 2k CCD camera. The EM image contrast was adjusted
507 for better clarity.

508

509 *RNA extraction and sequencing*

510 Total RNA was extracted from cells collected on filters using a Zymo Direct-zol RNA miniprep
511 kit following the manufacturer's protocol with the addition of bead beating with ZR bashing
512 beads at the TRIzol lysis step. RNA integrity was checked with gel electrophoresis. RNA
513 concentration was determined by fluorescence using a Qubit RNA High Sensitivity kit (Thermo
514 Fisher Scientific). Quality control using RNA ScreenTape, library preparations, poly-A selection,
515 and Illumina sequencing (HiSeq 2×150 bp) were performed by a commercial facility (Azenta
516 Life Sciences, NJ, USA). The triplicate infected samples at each time point were pooled equally
517 into one sequencing library. This translates to twelve sequencing libraries with one experimental
518 and one control library for each of six time points (-1, 0.25, 4-, 8-, 12- and 16 hours post-
519 infection).

520

521 *Virus transcriptome assembly and analysis*

522 Low quality sequencing reads were removed. Adapters and low quality bases were trimmed from
523 the ends of remaining sequences with Trimmomatic⁷⁸ using the following parameters
524 (IlluminaClip:TruSeq3-PE-2.fa:2:30:10:1:true Leading:30 Trailing:30 SlidingWindow:4:15
525 MinLen:30) and checked with FastQC⁷⁹. Genome-guided transcriptome assembly was
526 implemented using the Tuxedo protocol (HISAT2, StringTie and Ballgown)^{80–82}. Briefly, the
527 RNA-seq paired-end reads were aligned to the TetV-1 genome using HISAT2. StringTie
528 assembled and quantified expressed genes and transcripts and merged all transcripts from all
529 samples to create a reference set. These Tuxedo-based transcripts were compared to the TetV-1
530 reference annotation based on Prodigal¹⁶. The relative abundance of transcripts calculated as
531 fragments per kilobase of transcripts per million mapped reads (FPKM) were extracted using
532 Ballgown.

533

534 *Host transcriptome assembly and analysis*

535 The genome of *Tetraselmis* sp. KB-FL45 has not been sequenced, so a *de novo* transcriptome
536 assembly approach was implemented using Trinity⁸³ after removal of TetV-1 reads using
537 Bowtie2⁸⁴. To assess the completeness of the transcriptome, BUSCO was used to detect
538 Chlorophyta single copy genes⁸⁵. To ensure quality of transcripts, only those that passed
539 TransRate metrics were retained for further analysis⁸⁶. TransRate evaluates *de novo* assemblies
540 based on read mapping evidence to detect chimeras, structural and base errors, and incomplete
541 assemblies. Transcript and gene quantification were done using RSEM (RNA-seq by
542 Expectation-Maximization)⁸⁷, whereas differential expression analysis was performed using
543 DESeq2 in Trinity⁸⁸. Coding sequence identification and functional annotation were performed
544 using TransDecoder and Trinotate⁸⁹, respectively, using the following databases: UniProt
545 SwissProt⁹⁰ (Feb. 2021 release; accessed 04/09/21), Pfam⁹¹ (v34.0; accessed 04/09/21), Gene

546 Ontology ^{92,93} (Feb. 2021 release; accessed 04/09/21), EggnoG terms ⁹⁴ (v4.5; accessed
547 04/09/21). Finally, to assess the enriched functional categories in the differentially expressed
548 gene sets, gene ontology enrichment analysis was performed using topGO ⁹⁵.
549

550 **References**

- 551 1. Koonin, E. V. & Yutin, N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and
552 Convergent Origins of Viral Gigantism. *Adv. Virus Res.* **103**, 167–202 (2019).
- 553 2. Legendre, M. *et al.* Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a
554 pandoravirus morphology. *Proc. Natl. Acad. Sci.* **111**, 4274 (2014).
- 555 3. Philippe, N. *et al.* Pandoraviruses: Amoeba viruses with genomes up to 2.5 Mb reaching that of
556 parasitic eukaryotes. *Science* **341**, 281–286 (2013).
- 557 4. Aylward, F. O. & Moniruzzaman, M. Viral Complexity. *Biomolecules* **12**, 1061 (2022).
- 558 5. Moniruzzaman, M. *et al.* Virologs, viral mimicry, and virocell metabolism: the expanding scale of
559 cellular functions encoded in the complex genomes of giant viruses. *FEMS Microbiol. Rev.* **47**,
560 fuad053 (2023).
- 561 6. Abrahão, J. *et al.* Tailed giant Tupanvirus possesses the most complete translational apparatus of the
562 known virosphere. *Nat. Commun.* **9**, (2018).
- 563 7. Andreani, J. *et al.* Morphological and Genomic Features of the New Klosneuvirinae Isolate Fadolivirus
564 IHUMI-VV54. *Front. Microbiol.* **12**, 719703 (2021).
- 565 8. Needham, D. M. *et al.* A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular
566 marine predators. *Proc. Natl. Acad. Sci.* **116**, 20574–20583 (2019).
- 567 9. Santini, S. *et al.* Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the
568 largest known DNA viruses infecting eukaryotes. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 10800–10805
569 (2013).
- 570 10. Blanc-Mathieu, R. *et al.* A Persistent Giant Algal Virus, with a Unique Morphology, Encodes an
571 Unprecedented Number of Genes Involved in Energy Metabolism. *J. Virol.* **95**, (2021).
- 572 11. Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic
573 genome evolution and complex virocell metabolism of globally-distributed giant viruses. *Nat.*
574 *Commun.* **11**, 1–11 (2020).
- 575 12. Boyer, M. *et al.* Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of
576 chimeric microorganisms. *Proc. Natl. Acad. Sci.* **106**, 21848 (2009).
- 577 13. Yoshikawa, G. *et al.* Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water. *J.*
578 *Virol.* **93**, 25 (2019).
- 579 14. Da Cunha, V. *et al.* Giant Viruses Encode Actin-Related Proteins. *Mol. Biol. Evol.* **39**, msac022
580 (2022).
- 581 15. Ha, A. D., Moniruzzaman, M. & Aylward, F. O. High Transcriptional Activity and Diverse
582 Functional Repertoires of Hundreds of Giant Viruses in a Coastal Marine System. *mSystems* **6**, 15
583 (2021).
- 584 16. Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes.
585 *Virology* **518**, 423–433 (2018).
- 586 17. Claverie, J.-M. & Abergel, C. Mimivirus and its Virophage. *Annu. Rev. Genet.* **43**, 49–66 (2009).
- 587 18. Broyles, S. S. Vaccinia virus transcription. *J. Gen. Virol.* **84**, 2293–2303 (2003).
- 588 19. Cackett, G. *et al.* The African Swine Fever Virus Transcriptome. *J. Virol.* **94**, e00119-20,
589 /jvi/94/9/JVI.00119-20.atom (2020).
- 590 20. Legendre, M. *et al.* mRNA deep sequencing reveals 75 new genes and a complex transcriptional
591 landscape in Mimivirus. *Genome Res.* **20**, 664–674 (2010).
- 592 21. Legendre, M., Santini, S., Rico, A., Abergel, C. & Claverie, J.-M. Breaking the 1000-gene barrier for
593 Mimivirus using ultra-deep genome and transcriptome sequencing. *Virol. J.* **8**, 99 (2011).
- 594 22. Aherfi, S. *et al.* A Large Open Pangenome and a Small Core Genome for Giant Pandoraviruses.
595 *Front. Microbiol.* **9**, 1486 (2018).
- 596 23. Ku, C. *et al.* A single-cell view on alga-virus interactions reveals sequential transcriptional programs
597 and infection states. *Sci. Adv.* **6**, eaba4137 (2020).
- 598 24. Boratto, P. V. M. *et al.* Analyses of the Kroon Virus Major Capsid Gene and Its Transcript Highlight
599 a Distinct Pattern of Gene Evolution and Splicing among Mimiviruses. *J. Virol.* **92**, e01782-17
600 (2018).

601 25. Cherif Louazani, A., Baptiste, E., Levasseur, A., Colson, P. & La Scola, B. Faustovirus E12
602 Transcriptome Analysis Reveals Complex Splicing in Capsid Gene. *Front. Microbiol.* **9**, 2534
603 (2018).

604 26. Blanc, G. *et al.* Deep RNA Sequencing Reveals Hidden Features and Dynamics of Early Gene
605 Transcription in Paramecium bursaria Chlorella Virus 1. *PLoS ONE* **9**, e90989 (2014).

606 27. Derelle, E., Yau, S., Moreau, H. & Grimsley, N. H. Prasinovirus Attack of Ostreococcus Is Furtive by
607 Day but Savage by Night. *J. Virol.* **92**, 16 (2018).

608 28. Moniruzzaman, M., Gann, E. R. & Wilhelm, S. W. Infection by a Giant Virus (AaV) Induces
609 Widespread Physiological Reprogramming in *Aureococcus anophagefferens* CCMP1984 – A
610 Harmful Bloom Algae. *Front. Microbiol.* **9**, 752 (2018).

611 29. Rodrigues, R. A. L. *et al.* Analysis of a Marseillevirus Transcriptome Reveals Temporal Gene
612 Expression Profile and Host Transcriptional Shift. *Front. Microbiol.* **11**, 651 (2020).

613 30. Bachy, C. *et al.* Transcriptional responses of the marine green alga *Micromonas pusilla* and an
614 infecting prasinovirus under different phosphate conditions: Host-virus interactions under varied
615 nutrients. *Environ. Microbiol.* **20**, 2898–2912 (2018).

616 31. Rowe, J. M. *et al.* Global Analysis of Chlorella variabilis NC64A mRNA Profiles during the Early
617 Phase of Paramecium bursaria Chlorella Virus-1 Infection. *PLoS ONE* **9**, e90988 (2014).

618 32. Rosenwasser, S. *et al.* Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of
619 *Emiliania huxleyi*, a Bloom-Forming Alga in the Ocean. *Plant Cell* **26**, 2689–2707 (2014).

620 33. Ghigo, E. *et al.* Ameobal Pathogen Mimivirus Infects Macrophages through Phagocytosis. *PLoS*
621 *Pathog.* **4**, e1000087 (2008).

622 34. Rodrigues, R. A. L., Abrahão, J. S., Drumond, B. P. & Kroon, E. G. Giants among larges: how
623 gigantism impacts giant virus entry into amoebae. *Curr. Opin. Microbiol.* **31**, 88–93 (2016).

624 35. Mutsafi, Y., Zauberman, N., Sabanay, I. & Minsky, A. Vaccinia-like cytoplasmic replication of the
625 giant Mimivirus. *Proc. Natl. Acad. Sci.* **107**, 5978–5982 (2010).

626 36. Kukovetz, K. *et al.* A Functional K⁺ Channel from *Tetraselmis* Virus 1, a Member of the
627 Mimiviridae. *Viruses* **12**, 1107 (2020).

628 37. Flynn, K. J. *et al.* Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in
629 Phytoplankton. *Front. Mar. Sci.* **8**, 667184 (2021).

630 38. Zimmerman, A. E. *et al.* Metabolic and biogeochemical consequences of viral infection in aquatic
631 ecosystems. *Nat. Rev. Microbiol.* **18**, 21–34 (2020).

632 39. Sandaa, R.-A., Heldal, M., Castberg, T., Thyrhaug, R. & Bratbak, G. Isolation and Characterization
633 of Two Viruses with Large Genome Size Infecting *Chrysochromulina ericina* (Prymnesiophyceae)
634 and *Pyramimonas orientalis* (Prasinophyceae). *Virology* **290**, 272–280 (2001).

635 40. Mutsafi, Y., Fridmann-Sirkis, Y., Milrot, E., Hevroni, L. & Minsky, A. Infection cycles of large
636 DNA viruses: Emerging themes and underlying questions. *Virology* **466–467**, 3–14 (2014).

637 41. de Castro, I. F., Volonté, L. & Risco, C. Virus factories: biogenesis and structural design: Biogenesis
638 and architecture of virus factories. *Cell. Microbiol.* **15**, 24–34 (2013).

639 42. Netherton, C. L. & Wileman, T. Virus factories, double membrane vesicles and viroplasm generated
640 in animal cells. *Curr. Opin. Virol.* **1**, 381–387 (2011).

641 43. Novoa, R. R. *et al.* Virus factories: associations of cell organelles for viral replication and
642 morphogenesis. *Biol. Cell* **97**, 147–172 (2005).

643 44. Sagan, S. M. & Weber, S. C. Let's phase it: viruses are master architects of biomolecular
644 condensates. *Trends Biochem. Sci.* **48**, 229–243 (2023).

645 45. Katsafanas, G. C. & Moss, B. Colocalization of Transcription and Translation within Cytoplasmic
646 Poxvirus Factories Coordinates Viral Expression and Subjugates Host Functions. *Cell Host Microbe*
647 **2**, 221–228 (2007).

648 46. Suzan-Monti, M., Scola, B. L., Barrassi, L., Espinosa, L. & Raoult, D. Ultrastructural
649 Characterization of the Giant Volcano-like Virus Factory of *Acanthamoeba polyphaga* Mimivirus.
650 *PLoS ONE* **2**, e328 (2007).

651 47. Silva, L. C. F. *et al.* Microscopic Analysis of the Tupanvirus Cycle in *Vermamoeba vermiciformis*.
652 *Front. Microbiol.* **10**, 671 (2019).

653 48. Zauberman, N. *et al.* Distinct DNA Exit and Packaging Portals in the Virus *Acanthamoeba polyphaga*
654 *mimivirus*. *PLoS Biol.* **6**, e114 (2008).

655 49. Meints, R. H., Lee, K. & Van Etten, J. L. Assembly site of the virus PBCV-1 in a Chlorella-like
656 green alga: Ultrastructural studies. *Virology* **154**, 240–245 (1986).

657 50. Kawasaki, T., Tanaka, M., Fujie, M., Usami, S. & Yamada, T. Immediate early genes expressed in
658 chlorovirus infections. *Virology* **318**, 214–223 (2004).

659 51. Fischer, M. G., Kelly, I., Foster, L. J. & Suttle, C. A. The virion of *Cafeteria roenbergensis* virus
660 (CroV) contains a complex suite of proteins for transcription and DNA repair. *Virology* **466–467**, 82–
661 94 (2014).

662 52. Renesto, P. *et al.* Mimivirus Giant Particles Incorporate a Large Fraction of Anonymous and Unique
663 Gene Products. *J. Virol.* **80**, 11678–11685 (2006).

664 53. Byrne, D. *et al.* The polyadenylation site of Mimivirus transcripts obeys a stringent ‘hairpin rule’.
665 *Genome Res.* **19**, 1233–1242 (2009).

666 54. Chelkha, N., Levasseur, A., La Scola, B. & Colson, P. Host–virus interactions and defense
667 mechanisms for giant viruses. *Ann. N. Y. Acad. Sci.* **1486**, 39–57 (2021).

668 55. Zhang, R., Endo, H., Takemura, M. & Ogata, H. RNA Sequencing of Medusavirus Suggests
669 Remodeling of the Host Nuclear Environment at an Early Infection Stage. *Microbiol. Spectr.* **9**,
670 e00064-21 (2021).

671 56. Majji, S. *et al.* Transcriptome analysis of Frog virus 3, the type species of the genus Ranavirus,
672 family Iridoviridae. *Virology* **391**, 293–303 (2009).

673 57. Yanai-Balser, G. M. *et al.* Microarray Analysis of *Paramecium bursaria* Chlorella Virus 1
674 Transcription. *J. Virol.* **84**, 532–542 (2010).

675 58. Zaghoul, H. A. H., Hice, R., Arensburger, P. & Federici, B. A. Transcriptome Analysis of the
676 *Spodoptera frugiperda* Ascovirus *In Vivo* Provides Insights into How Its Apoptosis Inhibitors and
677 Caspase Promote Increased Synthesis of Viral Vesicles and Virion Progeny. *J. Virol.* **91**, (2017).

678 59. Sand, M. *et al.* Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional
679 enzymes for bacterial adaptation to osmotic stress. *Environ. Microbiol.* **17**, 711–719 (2015).

680 60. Meena, M., Prasad, V., Zehra, A., Gupta, V. K. & Upadhyay, R. S. Mannitol metabolism during
681 pathogenic fungal–host interactions under stressed conditions. *Front. Microbiol.* **6**, (2015).

682 61. Sorouri, M. *et al.* MISTR: A conserved MItochondrial STress Response network revealed by
683 signatures of evolutionary conflict. *bioRxiv* (2020) doi:10.1101/2020.01.25.919811.

684 62. Elde, N. C. *et al.* Poxviruses Deploy Genomic Accordions to Adapt Rapidly against Host Antiviral
685 Defenses. *Cell* **150**, 831–841 (2012).

686 63. Schvarcz, C. R. Cultivation and Characterization of Viruses Infecting Eukaryotic Phytoplankton
687 from the Tropical North Pacific Ocean. (2018).

688 64. Lee, S.-W., Lee, E.-H., Thiel, G., Van Etten, J. L. & Saraf, R. F. Noninvasive Measurement of
689 Electrical Events Associated with a Single Chlorovirus Infection of a Microalgal Cell. *ACS Nano* **10**,
690 5123–5130 (2016).

691 65. Thiel, G., Moroni, A., Dunigan, D. & Etten, J. L. Initial Events Associated with Virus PBCV-1
692 Infection of Chlorella NC64A. in *Progress in Botany*, Vol. 71 (eds. Lüttge, U. E., Beyschlag, W.,
693 Büdel, B. & Francis, D.) vol. 71 169–183 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010).

694 66. Zhou, Y., Frey, T. K. & Yang, J. J. Viral calcioomics: Interplays between Ca²⁺ and virus. *Cell*
695 *Calcium* **46**, 1–17 (2009).

696 67. Ueda, S. *et al.* Redox Control of Cell Death. *Antioxid. Redox Signal.* **4**, 405–414 (2002).

697 68. Masutani, H., Ueda, S. & Yodoi, J. The thioredoxin system in retroviral infection and apoptosis. *Cell*
698 *Death Differ.* **12**, 991–998 (2005).

699 69. Hettle, A. G., Vickers, C. J. & Boraston, A. B. Sulfatases: Critical Enzymes for Algal Polysaccharide
700 Processing. *Front. Plant Sci.* **13**, 837636 (2022).

701 70. Geljic, I. S. *et al.* Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among
702 Viral Species. *Int. J. Mol. Sci.* **22**, 5274 (2021).

703 71. Husain, M. & Moss, B. Role of Receptor-Mediated Endocytosis in the Formation of Vaccinia Virus
704 Extracellular Enveloped Particles. *J. Virol.* **79**, 4080–4089 (2005).

705 72. Bellas, C. *et al.* Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses.
706 *Proc. Natl. Acad. Sci.* **120**, e2300465120 (2023).

707 73. Steadman Tyler, C. R. *et al.* High-Quality Draft Genome Sequence of the Green Alga *Tetraselmis*
708 *striata* (Chlorophyta) Generated from PacBio Sequencing. *Microbiol. Resour. Announc.* **8**,
709 MRA.00780-19, e00780-19 (2019).

710 74. Guillard, R. R. L. Culture of Phytoplankton for Feeding Marine Invertebrates. in *Culture of Marine*
711 *Invertebrate Animals: Proceedings — 1st Conference on Culture of Marine Invertebrate Animals*
712 *Greenport* (eds. Smith, W. L. & Chanley, M. H.) 29–60 (Springer US, Boston, MA, 1975).
713 doi:10.1007/978-1-4615-8714-9_3.

714 75. Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms: I. *Cyrtella nana* hustedt,
715 and *Detonula confervacea* (Cleve) gran. *Can. J. Microbiol.* **8**, 229–239 (1962).

716 76. Aylward, F. O. *et al.* Taxonomic update for giant viruses in the order Imitervirales (phylum
717 Nucleocytoviricota). *Arch. Virol.* **168**, 283 (2023).

718 77. Brussaard, C. P. D., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by
719 flow cytometry. *Mar. Aquat. Viral Ecol.* 102–109 (2010) doi:10.4319/mave.2010.978-0-9845591-0-
720 7.102.

721 78. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence
722 Data. *Bioinformatics* (2014) doi:10.1093/bioinformatics/btu170.

723 79. Andrew, S. FastQC: a quality control tool for high throughput sequence data. (2010).

724 80. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis
725 of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat. Protoc.* **11**, 1650–1667 (2016).

726 81. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and
727 genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–915 (2019).

728 82. Frazee, A. C. *et al.* Ballgown bridges the gap between transcriptome assembly and expression
729 analysis. *Nat. Biotechnol.* **33**, 243–246 (2015).

730 83. Haas, B. J. *et al.* De novo transcript sequence reconstruction from RNA-seq using the Trinity
731 platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494–1512 (2013).

732 84. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359
733 (2012).

734 85. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation
735 Completeness. in *Gene Prediction* (ed. Kollmar, M.) vol. 1962 227–245 (Springer New York, New
736 York, NY, 2019).

737 86. Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: reference-free quality
738 assessment of de novo transcriptome assemblies. *Genome Res.* **26**, 1134–1144 (2016).

739 87. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without
740 a reference genome. *16* (2011).

741 88. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
742 seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

743 89. Bryant, D. M. *et al.* A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of
744 Limb Regeneration Factors. *Cell Rep.* **18**, 762–776 (2017).

745 90. The UniProt Consortium. UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* **45**,
746 D158–D169 (2017).

747 91. Finn, R. D. *et al.* Pfam: the protein families database. *Nucleic Acids Res.* **42**, D222–D230 (2014).

748 92. The Gene Ontology Consortium *et al.* The Gene Ontology resource: enriching a GOld mine. *Nucleic*
749 *Acids Res.* **49**, D325–D334 (2021).

750 93. Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**, 25–29
751 (2000).

752 94. Huerta-Cepas, J. *et al.* EGGNOG 4.5: A hierarchical orthology framework with improved functional
753 annotations for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Res.* **44**, D286–D293
754 (2016).

755 95. Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups from gene
756 expression data by decorrelating GO graph structure. *Bioinformatics* **22**, 1600–1607 (2006).

757

758

759 **Acknowledgments**

760 This project is funded by the US National Science Foundation to KFE and GFS (OCE #1559356 and OIA
761 #1736030), and a Simons Foundation Early Career Award to KFE. We are indebted to Tina Carvalho of
762 the Biological Electron Microscope Facility, Pacific Bioscience Research Center, for her assistance with
763 the transmission electron microscopy. The computational work in this paper was implemented at the
764 University of Hawai‘i High Performance Computer. The technical support and advanced computing
765 resources from the University of Hawaii Information Technology Services – Cyberinfrastructure, funded
766 partly by the National Science Foundation MRI award # 1920304, are gratefully acknowledged. We thank
767 Feresa Cabrera for assisting in one of the time series. We are also grateful to Rosie Alegado for valuable
768 suggestions on improving this manuscript. This work is supported by the Hawai‘i Institute of Geophysics
769 and Planetology Denise B. Evans Fellowship, CMAIKI (Center for Microbiome Analysis and
770 Investigation Graduate Research Competition Fund, UH Mānoa) and Uehiro Center for the Advancement
771 of Oceanography Graduate Student Fellowship to APG.

772

773 **Data Accessibility**

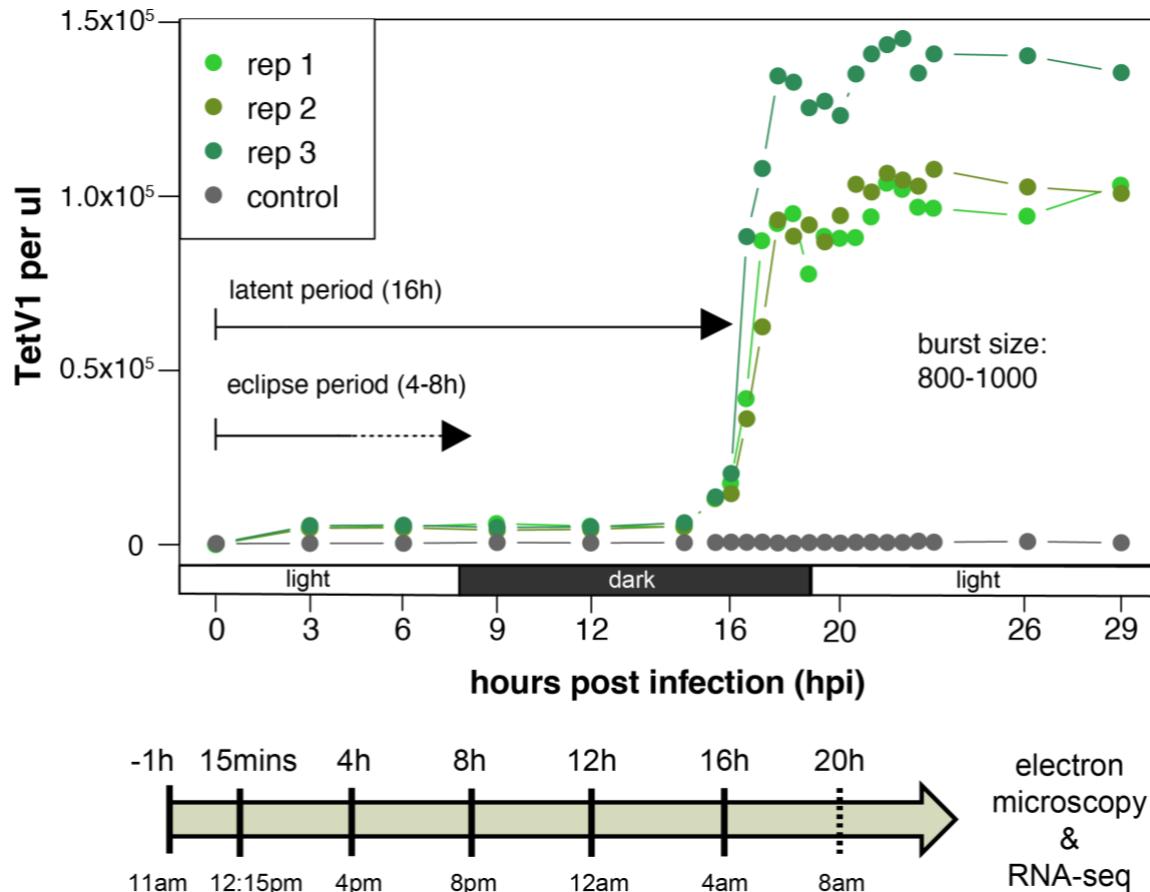
774 The raw sequencing reads used in this paper have been deposited in the NCBI Short Read Archive as
775 BioProject PRJNA1102674. Whereas the codes used in this study are deposited in GitHub
776 (https://github.com/andriangajigan/TetV_RNA/). The host transcriptome assembly, annotation, and
777 differential expression data are available at FigShare (<https://figshare.com/s/98d2742f5f1c1f3bf6fb>, and
778 <https://figshare.com/s/aad55ae781891e083b09>). All other data are available as supplementary material.

779

780 **Author Contributions**

781 APG, CRS, and GFS conceived of the paper. APG and CRS did the experiments. All authors (APG, CRS, CC,
782 KFE, GFS) contributed to the data analysis, writing, and approving the manuscript.

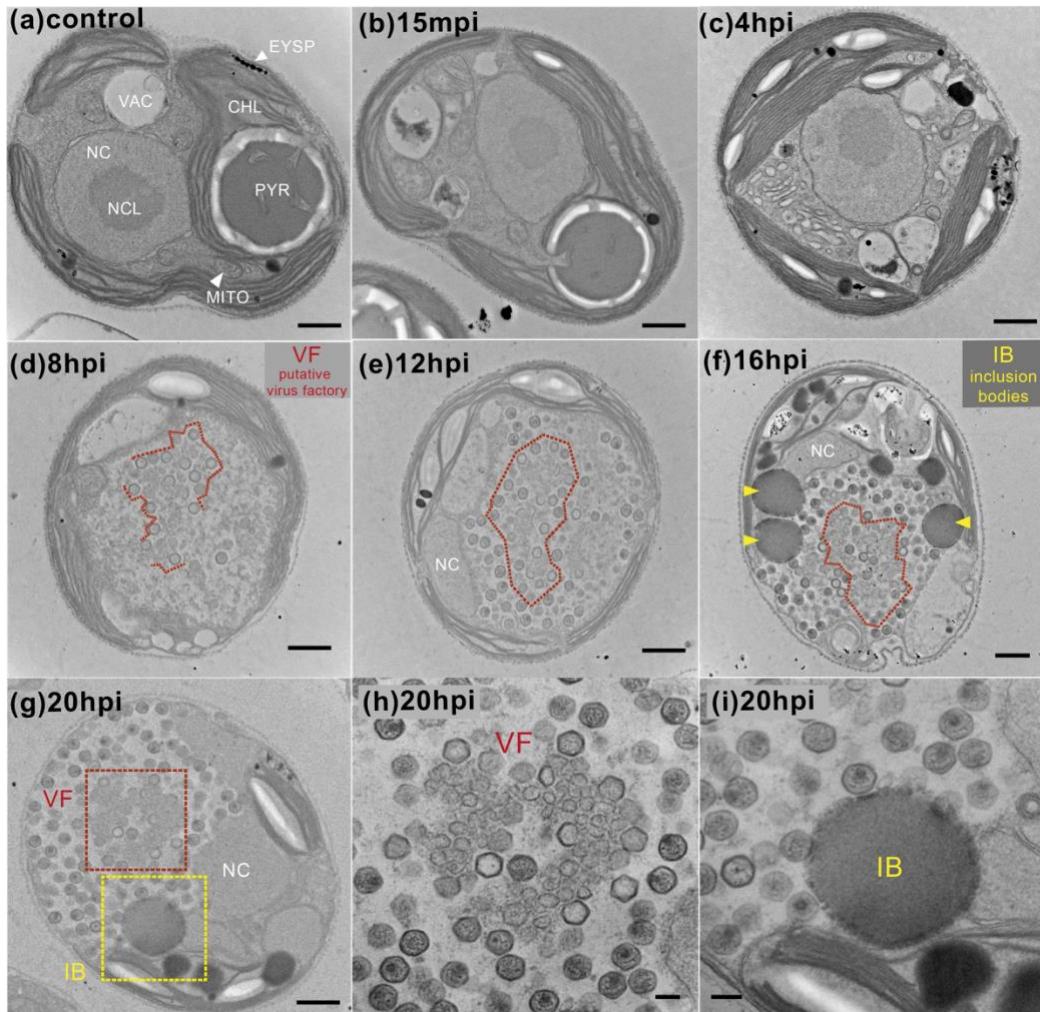
783


784 **Conflict of Interest**

785 The authors declare no conflict of interest.

786

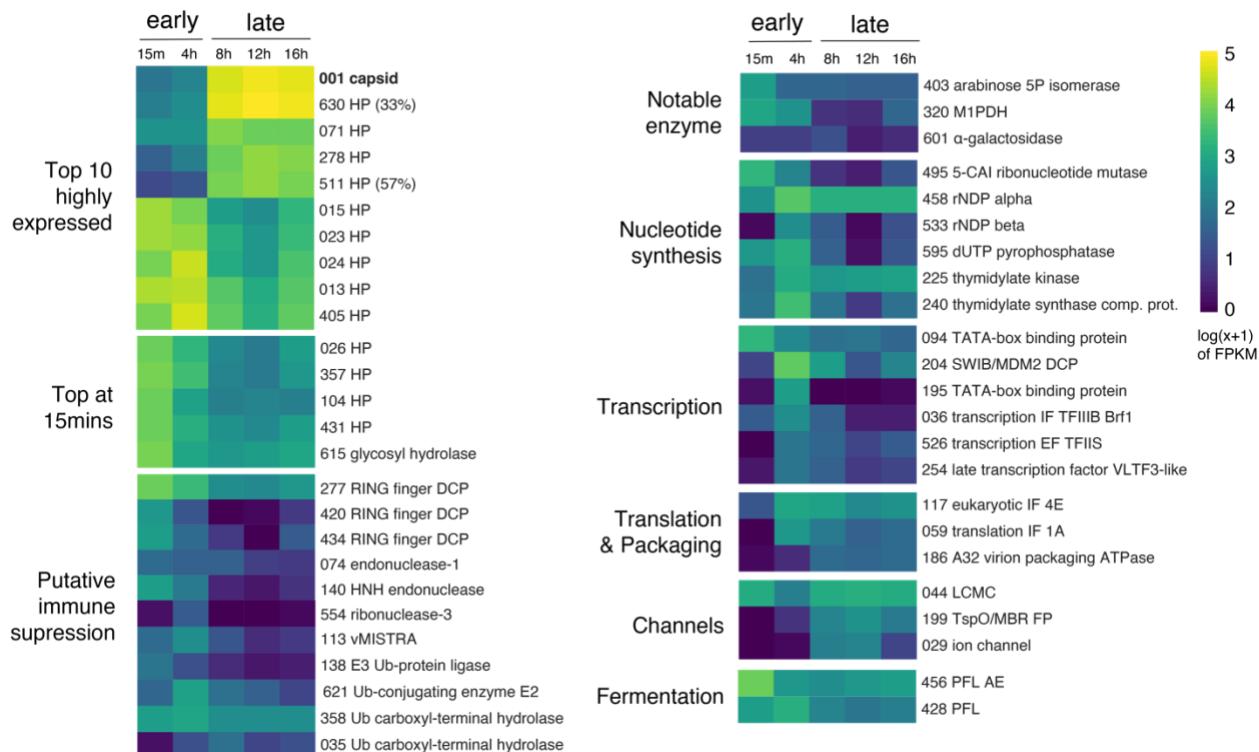
787
788
789
790


Figures and Legends

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

Figure 1. Tetraselmis-TetV1 infection cycle. Virus counts were measured using flow cytometry. Subsequently, estimates of the latent period and burst size were determined. Eclipse period was determined using electron micrographs. Samples for electron microscopy and RNA sequencing were obtained throughout the time series except at 20 hpi (solid lines on the arrow below the graph), where RNA sequencing was not implemented.

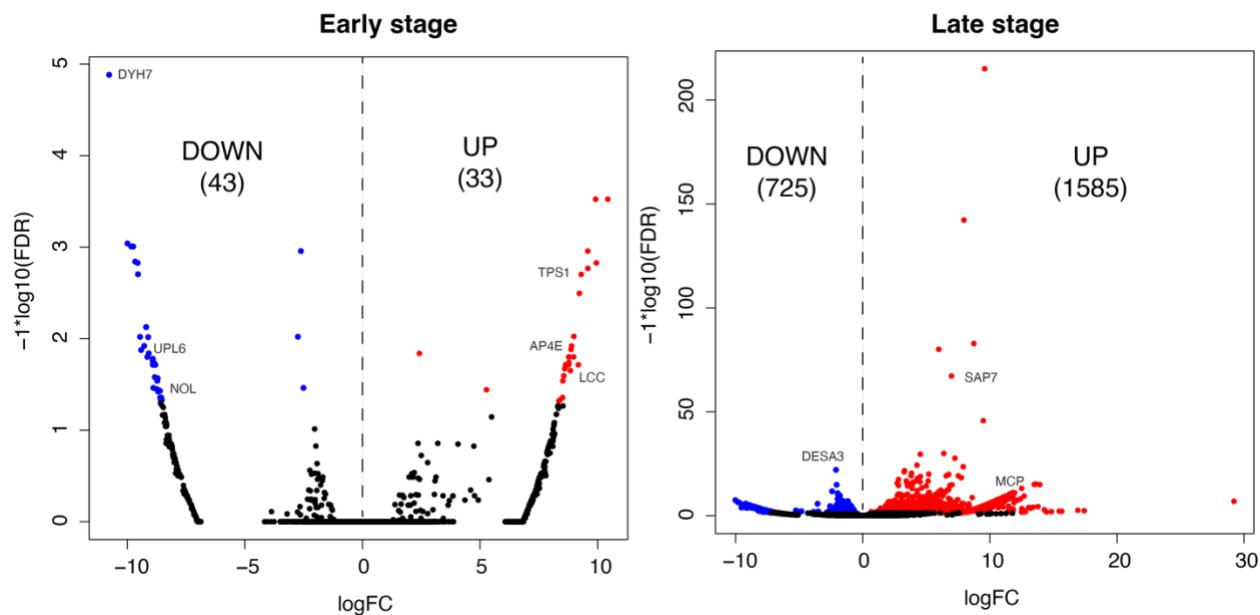
812
813
814
815
816



817
818

819 **Figure 2. Ultrastructural changes of *Tetraselmis*-TetV1 virocells across infection time course.** (a) Apparent in
820 the uninfected algae are typical organelles such as the nucleus (NC), nucleolus (NCL), chloroplast (CHL), vacuoles
821 (VAC), mitochondrion (MITO), as well as algae-specific photoreceptive organelles (eyespot; EYSP) and CO₂-
822 fixation center (pyrenoid; PYR). (b, c) No changes were observed in the early stages of infection (15 mins and 4
823 hpi). (c, d) Further inspection of electron micrographs showed the first appearance of intracellular virions at 8 hpi
824 but not 4 hpi, indicating an eclipse period between 4 and 8 hpi. (e, f, g) Representative images of the virocell close
825 to the latent period show the presence of (g, h) a putative virus factory (VF) and (i) inclusion bodies (IB). Scale bar
826 = 800 μ m (a–g) or 200 μ m (h, i).

827
828
829
830
831
832
833


834
835
836
837
838
839
840

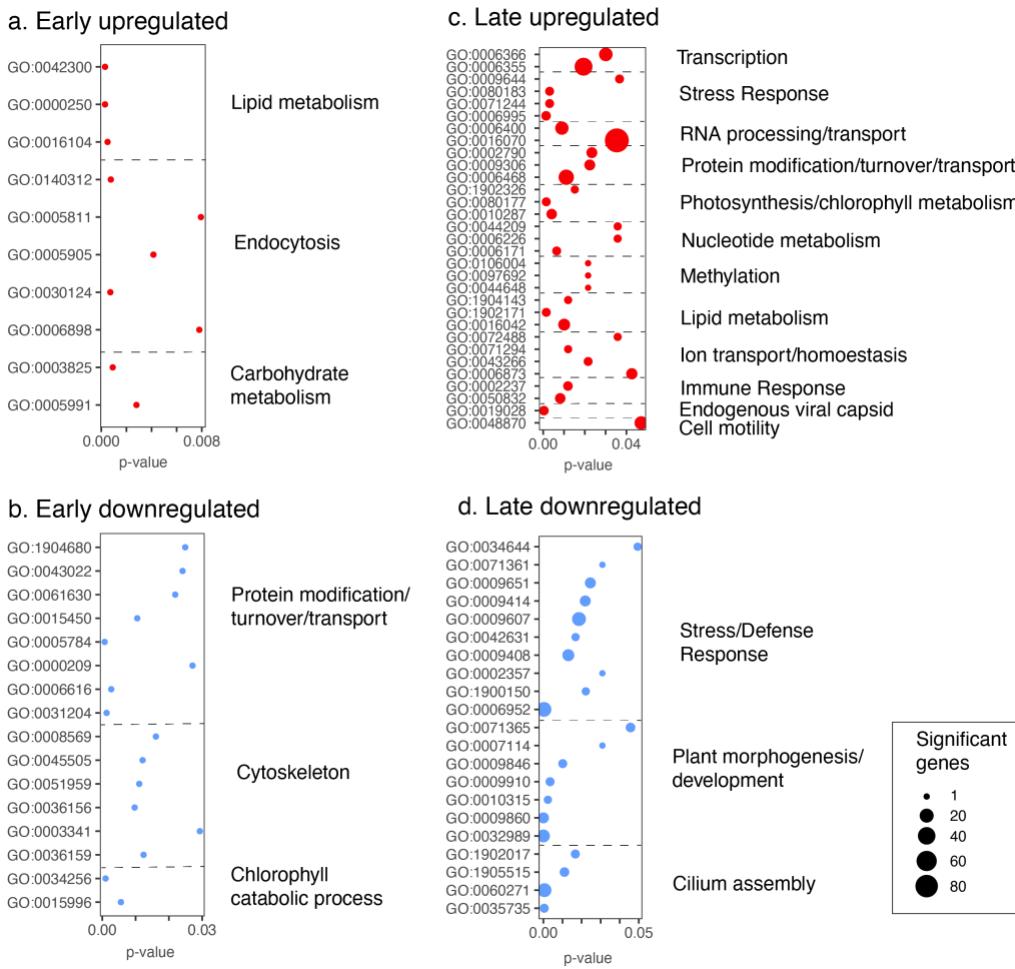

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

Figure 3. Temporal expression of select TetV1 genes. Genes are grouped based on their function, as described above. HP = hypothetical protein (percentage shows the relative abundance in proteome with respect to capsid), DCP = domain-containing protein, vMiSTRA = TetV-1 viral mitochondria stress response algae, Ub = Ubiquitin, M1DPH = mannitol 1-phosphate dehydrogenase, 5-CAI = 5-(carboxyamino)imidazole, rNDP = ribonucleoside-diphosphate reductase, IF = initiation factor, EF = elongation factor, LCMC = large conductance mechanosensitive channel, FP = family protein, PFL = pyruvate formate lyase, PFL AE = pyruvate formate lyase 1 activating enzyme, FPKM = Fragments Per Kilobase of transcript per Million mapped reads.

865
866
867
868
869
870
871
872
873
874
875
876
877

902
903
904
905
906
907
908
909
910
911

912
913
914
915

Figure 5. *Tetraselmis* sp. (host) response. Enriched GO (gene ontology) terms illustrating the functions that were either upregulated or downregulated during the early and late stages of the infection