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ABSTRACT  

Animal models are essential for assessing the preclinical efficacy of candidate drugs, but 

animal data often fails to replicate in human clinical trials. This translational gulf is due in part 

to the use of models that do not accurately replicate human disease processes and 

phenotyping strategies that do not capture sensitive, disease-relevant measures. To address 

these challenges with the aim of validating candidate neuroprotective drugs, we combined a 

mouse prion (RML scrapie) model that recapitulates the key common features of human 

neurodegenerative disease including bona fide neuronal loss, with unbiased and machine 

learning-assisted behavioural phenotyping. We found that this approach measured subtle, 

stereotyped, and progressive changes in motor behaviour over the disease time course that 

correlated with the earliest detectable histopathological changes in the mouse brain. To 

validate the utility of this model system, we tested whether the anti-diabetic drug pioglitazone 

could slow prion disease progression. Pioglitazone crosses the blood-brain-barrier and has 

been shown to reduce neurodegenerative disease severity in other mouse models. We found 

that in addition to significantly slowing the emergence of early-stage clinical signs of 

neurodegeneration, pioglitazone significantly improved motor coordination throughout the 

disease time course and reduced neuronal endoplasmic reticulum stress. Together, these 

findings suggest that pioglitazone could have neuroprotective properties in humans, confirm 

the utility of the scrapie mouse model of neurodegeneration, and provide generalisable 

experimental and analysis methods for the generation of data-rich behavioural data to 

accelerate and improve preclinical validation. 

 

INTRODUCTION 

Dementia remains one of the most significant unmet clinical needs facing an ageing world, 

with more than 70 million people currently affected and prevalence accelerating (Nichols et 

al., 2022; Livingston et al., 2024). Long term care is a significant economic burden, and 

existing therapies offer at best mild improvements in a subset of patients (Sims et al., 2023; 

Van Dyck et al., 2023). Radical, cost-effective preventative or mitigating interventions are 

required to reverse this trajectory.  

Small molecule drugs have diverse secondary pharmacology that may be beneficial in 

conditions they were not originally indicated. Drug repurposing for brain disorders using 

compounds that are safe and well understood in humans remains the fastest approach for the 

discovery of new treatments. However, there are a number of challenges to efficiently identify 

and validate candidate compounds in preclinical in vivo models, where large-scale screening 

is impractical and prohibitively expensive. Approximately 9,000 small molecules are thought 

to be broadly safe for human administration, of which 4-5000 small molecules are approved 
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for general clinical use (Gaulton et al., 2017; Mendez et al., 2019). Around 1000 of these have 

the chemical properties associated with penetration of the blood brain barrier (BBB) making 

them potentially suitable for targeting central nervous system (CNS) disorders (D. Segall, 

2012; Wager et al., 2016). When considering which drugs to repurpose for neurodegenerative 

disease, the number of candidate drugs can be further reduced by eliminating classes of 

drugs, such as antipsychotics, that tend to be unsuitable due to their kinetics or adverse 

reactions, for an elderly target patient population (Mok et al., 2024). Whilst the prioritisation of 

drugs for repurposing for neurodegenerative conditions is also informed by in vitro screening 

and mechanistic studies, it still requires strong preclinical data from animal models. The quality 

of both the animal model, and the data from animal studies, are essential for increasing the 

likelihood of successful clinical trials.  

Animal models commonly used in dementia research typically do not replicate all 

relevant features of human neurodegenerative disease. For example, some transgenic 

models based on familial mutations (e.g. 5xFAD) represent only a small subset of human 

cases, while over-expression models (e.g. APP-NF(F)) replicate only a subset of 

histopathological features (Sasaguri et al., 2017). Similarly, models combining rare variants 

and gene overexpression also have distinct aetiology and disease mechanisms than are seen 

in the majority of human patients. Furthermore, use of these transgenic lines requires 

expensive and time-consuming breeding paradigms that complicate pre-clinical validation 

(Voelkl et al., 2020). In contrast, mouse models of prion disease accurately phenocopy human 

prion disease (Watts and Prusiner, 2014), and undergo a stereotyped disease progression 

combining clear behavioural deficits such as progressive loss of motor coordination with the 

full suite of histopathological hallmarks of human neurodegeneration, including synaptic 

dysfunction and loss, endoplasmic reticulum (ER) stress, neuroinflammation, and neuronal 

loss (Mallucci, 2009; Watts and Prusiner, 2014). Prion models can be generated on any 

genetic background, and the use of strains such as Rocky Mountain Laboratory (RML) scrapie, 

that normally infects sheep and does not cross the species barrier into humans (Galassi, 

Henneberg and Rühli, 2016), makes them a powerful and tractable model for preclinical 

studies.  

Mouse models of neurodegenerative disease are typically phenotyped using a 

combination of behavioural scoring in standardised tests (e.g. rotarod, novel object 

recognition) and brain histology. Recently, advances in pose-estimation methods for animal 

tracking have made the extraction of feature-rich datasets from video recordings both practical 

and highly reliable (Mathis et al., 2018; Pereira et al., 2022) while the downstream application 

of machine learning methods to tracking data has allowed classification and phenotyping of 

animal behaviour (Biderman et al., 2023; Tillmann et al., 2024). This has been accompanied 
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by advances in unsupervised time-series analysis (Hsu and Yttri, 2021) and the use of 

variational autoencoders and semi-supervised methods for detecting motor sequences or 

motifs from tracking data (Wiltschko et al., 2020; Luxem et al., 2022; Weinreb et al., 2024).  

These methods have not yet been widely applied to systematic preclinical drug 

discovery but represent an exciting opportunity to test the potential neuroprotective role of 

drugs that target metabolic disease, which has been suggested to share mechanisms with 

neurodegenerative disease (Craft, 2009). 

Extensive observational data has suggested that effective treatment of diabetes 

reduces dementia risk (Whitmer, 2009; Biessels et al., 2014; Samaras et al., 2020; Chen et 

al., 2023). Our own work on metformin demonstrated direct evidence of neuroprotection 

separate from its anti-diabetic mechanism (Harding et al., 2023), but it is unclear if these 

results extend to other anti-diabetic drugs with different molecular mechanisms. We 

considered multiple drug candidates for this work and chose to focus on molecules that are 

well tolerated in the elderly patient population, likely to cross the BBB, and are orally 

bioavailable. Pioglitazone is one such compound and also a second-line treatment for 

diabetes. Often used together with metformin, it has a different mechanism of action as an 

agonist on the PPARγ receptor. This allows us to test the hypothesis of generalisable 

neuroprotection from this class of compounds without the involvement of the AMPK target of 

metformin.  

Here we show a preclinical pipeline using neural network-based pose estimation 

combined with traditional machine learning to speed up compound testing and validation. This 

approach provides unbiased quantification of motor signs and treatment efficacy, in mixed sex 

groups. Further, we show that these systems are more sensitive than traditional methods, 

detecting disease at an earlier time point and with less intra-animal variability.  

Finally, we show that this model can provide an unbiased detection of the potential 

neuroprotective effects of pioglitazone at earlier time points than is achievable with traditional 

methods. Overall, this system is designed to generalise to any mouse model with motor 

deficits and can be used efficiently for preclinical phenotyping at scale.  

 

RESULTS 

 

Scrapie-inoculated mice have stereotyped signatures of disease progression.  

To establish a scrapie mouse model for neuroprotective drug testing, we first characterised 

the time course and signs of neurodegenerative disease progression in our laboratory, since 

these can be modulated by genetic background, sex, and prion strain and preparation 

methods (Morales, Abid and Soto, 2007; Akhtar et al., 2011). We therefore unilaterally 
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inoculated the brains of 4-week old C57Bl6/J mice with either normal brain homogenate (NBH) 

or brain homogenate from mice carrying the RML strain of scrapie and characterised the time 

course of disease progression using traditional phenotyping approaches (Fig. 1A). We found 

that mice inoculated with RML lost a significant fraction of their body weight relative to controls 

starting around 14 weeks post-inoculation (wpi) (Fig. 1B), as previously described (Harding et 

al., 2023). We also found that RML mice started displaying overt signs of neurodegenerative 

disease starting at 17 wpi (Fig. 1C), including progressive loss of motor function that affected 

nearly all mice by week 20 (Fig. 1D). We corroborated these findings by recording the 

locomotor behaviour of NBH and RML mice and found that they displayed distinct locomotor 

behaviour by week 20, with RML mice showing hyperactivity and corner preferences (Fig. 1L 

and Supp. Fig. 1C), and turning behaviour (Supp. Fig. 1D).  

To correlate these physiological and behavioural changes with cellular changes in the 

brain, we performed immunohistochemistry on the brains of NBH- and RML-injected mice prior 

to the onset of overt behavioural phenotypes (12 wpi) and also after these phenotypes were 

present in the vast majority of RML mice (20 wpi). We focused on the CA1 region of the 

hippocampus contralateral to the injection site, since it is both close to the site of injection and 

clinically well associated with pathology in common dementias such as Alzheimer’s disease 

(Fig. 1A). Example histology is shown in Fig. 1E (i - vi). We observed an increase in 

immunoreactivity for glial fibrillary acidic protein (GFAP) by 12 wpi and 20 wpi (Fig. 1F), 

suggesting increased astrocyte reactivity over the course of disease progression (Smith et al., 

2020). These histological changes were accompanied by the increased immunoreactivity for 

the microglial marker IBA1 (Fig. 1G), as well as increased microglial soma size (Fig. 1H) and 

circularity (Fig. 1I) in RML mice, suggesting microglial activation (Clarke, Crombag and Hall, 

2021; Woodburn, Bollinger and Wohleb, 2021). High magnification images of microglia are 

shown in Fig. 1E (iv) with separate channels in Supp. Fig. 1A.  

Since prion-induced proteostatic stress is associated with ER stress, we 

immunostained for the ER stress marker pPERK (Hughes and Mallucci, 2019). We found that 

while pPERK levels were virtually undetectable in control animals, they were significantly 

higher in RML mice at 12 wpi and highly elevated by 20 wpi, indicating early and ongoing ER 

stress (Fig. 1K). This neuronal ER stress was accompanied by the modest but significant loss 

of NeuN-positive cells from the CA1 region of the hippocampus at 20 wpi (Fig. 1J), indicating 

neuronal loss. Separate channels are shown in Supp. Fig. 1B. 

Overall, these results are consistent with previous reports of progressively increasing 

inflammation associated with misfolding of the PrPsc that results in neuronal ER stress, 

synaptic loss and eventually death (Hughes and Mallucci, 2019). Specifically, the time course 

of these changes in C57Bl/6J mice confirms the utility of the RML scrapie model for studying 
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the full range of pathological features associated with many human neurodegenerative 

diseases (Freeman and Mallucci, 2016).   

 

Unbiased machine learning approaches can accurately classify scrapie disease 

progression.  

Classical assessment of ‘survival’ in neurodegenerative models including scrapie is based on 

the observed onset of early and/or confirmatory clinical signs, allowing disease endpoints to 

be determined before animals actually die. In addition to being more ethically sound, scoring 

signs related to motor impairment can help stage disease initiation and progression. The most 

common confirmatory sign in mice inoculated with RML scrapie is the impaired righting reflex, 

resulting largely from a one-sided weakness (contralateral to the inoculation site) in back-paw 

strength and coordination. This is preceded by the progressive loss of motor coordination that 

is sometimes detected as an early sign. However, it is challenging to consistently score 

complex movement, and standardisation relies heavily on the expertise and consistency of a 

trained observer. User-dependent and lab-dependent variation, along with high behavioural 

workloads and the challenges of group blinding (and unintended unblinding), create 

challenges for both the collection and interpretation of this type of data.  

To implement an automated clinical assessment of mice as they progressed through 

the clinical stages of scrapie, we recorded approximately 2500 videos of mouse behaviour at 

12, 16, and 20 wpi in a purpose-built frame designed to maintain consistent recording across 

different modalities (Figure 2A). To accurately capture variation in mouse movement, we 

recorded in three environments: an open field for top-down motion (Fig. 2B), on a clear 

platform for bottom-up gait analysis (Fig. 2C), and on a metal mesh to capture motor 

impairment and paw slipping (Fig. 2D). Recordings were designed to be efficient for large 

groups of 60 mice, as required in pre-clinical settings, utilising a short time window of 70 - 130 

seconds per mouse per recording session.  

Using these recordings, we could track detailed movement of the head, body, and 

limbs using neural network-based estimation, implemented with the DeepLabCut package 

(Mathis et al., 2018). X/Y coordinate data was converted into motor features to describe the 

motion of each mouse in metrics such as speed, arena position, mobility time, and other 

rationally defined features (~53). We then added combinatorial features for complex 

behaviour, including linear and non-linear combinations, to capture interactions (~1325 without 

duplicates) that might reveal differences between control and disease-associated motor 

behaviour. After removing highly correlated features, we were left with a dataset of 94 such 

features, of which 60% were complex and the remaining “rational” or simple features. 
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Using this data, we then trained machine learning-based classifiers on control or 

scrapie inoculated mice and selected the models that best predicted disease status to enable 

disease-associated feature selection (Fig. 2E). Our aim was to generate a model that could 

be used to estimate the efficacy of a potential drug either directly or by prioritising features 

that best describe disease progression. To this end, we chose to record data across three 

time points of disease, from asymptomatic (12 wpi) to clinical signs (20 wpi), where only 20 

wk data is used for training allowing for disease relevance of the model to be validated in 

previous timepoints in paired but asymptomatic mice (Fig. 2F). To ensure generalisation of 

the model, we trained it using a randomly selected subset (70%) of data from control or 

scrapie-injected mice at 20 wpi (Fig. 2G), the latest time point at which we recorded data, and 

then tested model performance on the remaining ‘holdout’ 30% of the data.   

We tested a variety of models and assessed the ability of these models to correctly 

classify mice into control or scrapie groups using receiver operating characteristic (ROC) 

analysis (Fig. 2H). We reasoned that natural motor behaviour would be the most generalisable 

across treatment groups and disease stages, whereas paw-slip data would have specific utility 

for later stages of motor coordination loss in scrapie animals. Thus, we compared models 

using data from both combinations benchmarked against generalised linear model 

equivalents.  

We found that a random forest model trained on motion-data alone had an ROC AUC 

of 0.87 and that including paw-slip data brought this value up to 0.95, indicating excellent 

discrimination that outperformed generalised linear models (AUC 0.73) trained on the same 

data (Fig. 2H). By comparing the classification probabilities for the scrapie and control groups 

with those from the holdout-test results, we were able to assess the extent of model overfitting. 

When trained on natural motion (Fig. 2I) or motion + paw-slip (Fig. 2J) data, with both models 

showing broadly consistent results, indicating good generalisation of the model to unseen 

data. To identify the most salient motor features extracted from recordings of open-field 

motion, and/or paw-slip, we employed recursive feature elimination in conjunction with the 

best random forest model to retain the motor features most informative about differences 

between control and scrapie mice at 20 wpi (Fig. 2K).  

To further establish the selectivity of our model for features of scrapie that was 

established at data collected at 20 wpi, we next examined data collected from the same mice 

at 12 wpi during their asymptomatic phase, and at 16 wpi as an intermediate phase. We 

reasoned that this approach would reveal any non-disease specific differences between 

groups, prior to the presentation of motor signs (e.g. 18 wpi), that would affect classification. 

The best-performing models, trained on either motion and motion + paw-slip data, were 

applied to these timepoints and classification probability plotted longitudinally. These data 
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strongly correlated with disease progression over time, starting with a mild skew towards the 

disease model over control (Fig. 2L). In the model including paw-slip data, we observed a 

stronger divergence, particularly in the control group, most likely because paw slipping is a 

rare event in these animals (Fig. 2M). The initial skew may have resulted from an imbalance 

in the data but did not alter classification. Lastly, the top performing features were used to 

visualise differences at 20 wpi using t-distributed stochastic neighbour embedding (tSNE) 

plots (Fig. 2N) 

Overall, our model allows the selection of features that classify neurodegenerative 

progression that importantly generalises over time, successfully predicting disease absence 

during the asymptomatic phase. Furthermore, we found this method to be more sensitive than 

canonical methods at detecting early signs of disease.  

 

Pioglitazone has optimal chemical properties and neuroprotective potential for 

repurposing. 

We have previously shown that the safe and widely available anti-diabetic drug metformin has 

neuroprotective properties in RML scrapie mice (Harding et al., 2023). Here, we tested 

whether our preclinical analysis methods for scrapie progression could reveal neuroprotective 

effects of other candidate drugs. To select these candidates, we considered compounds 

approved for use in humans for metabolic disease, and that had chemical properties 

suggesting that they would have good solubility and oral bioavailability, and would likely cross 

the BBB to reach the CNS (Rankovic, 2015). Specifically, we extracted the chemical properties 

of candidate compounds from the ChEMBL database and calculated their multiparameter 

optimisation (MPO) scores. We considered MPO scores above 4 (out of 6) to indicate 

compounds with good brain accessibility (Wager et al., 2016). As our values relied partially on 

calculated properties from the ChEMBL database (Mendez et al., 2019), we validated the 

predictions against known published MPO values of ~100 compounds. Where chemical 

features are known we predicted with complete accuracy (Wager et al., 2016). We then 

estimated compound solubility (LogS), using the general solubility equation (Ran and 

Yalkowsky, 2001), and considered scores between -2 and -4 to be sufficiently water soluble 

for oral availability. Specifically, we found that the anti-diabetic drugs pioglitazone and 

rosiglitazone have MPO scores of between 5.2 and 5.7 suggesting CNS penetrance and, have 

calculated LogS values around -3.5, are clinically available in tablet form, and have previously 

been associated with neuroprotective effects in humans and other model systems (Sato et al., 

2011; Gupta and Gupta, 2012; Seok et al., 2019). Since rosiglitazone has been suspended 

from some markets, we selected pioglitazone for further study. 
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Pioglitazone slows behavioural markers of scrapie in canonical and automated 

assessments of disease. 

To evaluate the anti-diabetic drug pioglitazone for neuroprotection over a long treatment time 

course, we added it to a mouse balanced control diet at 250 mg/kg for an estimated daily dose 

of 40 mg/kg/day for each mouse. We started treatment at 12 wpi, at the start of the behavioural 

studies and before the onset of clinical signs of prion disease, and continued treatment for the 

remaining time course of 8 weeks (Fig. 3A). Pioglitazone administration led to a modest 

increase in the body weight of both control and scrapie-inoculated groups (Supp. Fig. 2A-C), 

but all groups of mice reached similar mean body weights by 20 wpi.  

We next observed mice for clinical signs of scrapie (Fig. 3B) and found that treatment 

with pioglitazone substantially delayed their onset. We also found that the total number of 

indications (Fig. 3C), early signs combined with indicators of disease, were decreased, as well 

as the fraction of motor signs observed (Fig. 3D), Furthermore, the hazard rate to the 

development of the first observable sign was significantly longer in pioglitazone-treated groups 

(Fig. 3E). Overall, we found that pioglitazone treatment in RML scrapie-inoculated mice 

substantially slows clinical sign presentation.  

 To test if the results from subjective phenotyping for the appearance of clinical signs 

could be replicated and extended by automated behavioural phenotyping over the disease 

time course, we considered motor features that separated control and scrapie-injected 

animals (Fig. 2H). Specifically, we found that treatment with pioglitazone significantly reduced 

the number of paw slips by over 50% at 20 wpi and normalised the trajectory of motor 

coordination loss to approximately that of control animals (Fig. 3F). These findings were 

corroborated by a substantial decrease in the average duration of paw slips at both 16 wpi 

and 20 wpi, demonstrating that the beneficial effects of treatment are detectable substantially 

earlier than with classical observations (Fig. 3G). To corroborate these results, we found that 

a complex motor feature made from combinations of motor variables independent of paw-slip 

data, showed clear changes in disease trajectory over time (Fig. 3H). Complex features 

provide sensitive ways of capturing complex motor interactions without introducing conscious 

or unconscious bias about which features are likely to be experimentally important ahead of 

time. In all features shown, control (NBH) mice given pioglitazone were not different in weight 

from control (NBH) given vehicle treatment (Supp. Fig. 3A-C) 

 

Pioglitazone reduces markers of neuronal ER stress in scrapie mice 

The action of pioglitazone in these animals suggested a neuroprotective mechanism in the 

brain. We have previously shown that the action of metformin, in rescuing motor function in 

neurodegeneration (Harding et al., 2023), appeared to work directly on deep brain structures. 
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Similarly, other work has suggested a role of pioglitazone action directly on brain microglia 

that may aid in its neuroprotective properties (Ji et al., 2010; Zhao et al., 2016; Machado et 

al., 2019; Yeh et al., 2021).  

To gain mechanistic insight into the neuroprotective effects of pioglitazone, we 

perfused scrapie-inoculated mice treated with this drug or vehicle at 20 wpi to enable 

histological analysis of the brain. Since pioglitazone has been previously shown to act on 

microglia via PPARγ (Ji et al., 2010; Machado et al., 2019), we immunostained brains for 

proteins enriched in microglia (Iba1) and astrocytes (GFAP) (Fig. 4A). To our surprise, there 

was little evidence of a difference in these markers (Fig. 4B & C). However, staining for the 

ER stress marker pPERK showed a strong reduction (Fig. 4D & E) consistent with our previous 

data for metformin. Gene expression data by qPCR showed no changes in Cd68, Rbm3, 

Xbp1, Pikfyve and a slight increase in Atf6 (Supp. Fig. 4A-E). Together, these data suggest 

that pioglitazone may be achieving its neuroprotective effects by reducing neuronal stress 

rather than by reducing disease-associated neuroinflammation. 

 

Pioglitazone cell-autonomously alters microglial gene expression 

Since pioglitazone has previously been described to act on microglia (Ji et al., 2010; 

Machado et al., 2019), but we saw little evidence of this in our histological analysis in prion 

mice, we set out to directly test its potential cell-autonomous effects on glia to resolve this 

apparent discrepancy. To the end, we differentiated human iPSCs into microglia using 

established protocols (Washer et al., 2022), and exposed them to either vehicle or pioglitazone 

(Fig. 4F). Furthermore, we tested whether pioglitazone could affect microglial cell state when 

stimulated with the potent proinflammatory stimulus lipopolysaccharide (LPS). We found that, 

pioglitazone treatment did not alter expression of CD11B (ITGAM) alone, or affect its response 

to LPS (Fig. 4G). However, pioglitazone was able to significantly inhibit the LPS-induced 

upregulation of AIF1 (IBA1) (Fig. 4H), which is known to increase following microglial activation 

and plays an important role in phagocytosis (Streit et al., 2009). We observed an upregulation 

of CD68, a commonly used marker of functionally activated microglia, following pioglitazone 

treatment (Fig. 4I), consistent with reports that PPAR-γ activation promotes microglial 

phagocytosis (Krishna et al., 2021). We also noted large changes in cytokine and 

inflammasome-related genes in response to LPS treatment as expected, and found that 

pioglitazone treatment was unable to inhibit these changes and, in some cases, accentuated 

them (Fig. 4J-P), though the strong LPS stimulus may have obscured more physiologically 

relevant responses. Overall, we conclude that pioglitazone is able to act directly on human 

microglia to modify gene expression in both the un-stimulated and LPS-stimulated state, 
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suggesting microglia may be involved, at least in part, in the neuroprotective effects we 

observed.  
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DISCUSSION  

We have shown that preclinical testing of candidate drugs in mice can be automated using 

pose-estimation and machine learning to provide an unbiased assessment of drug efficacy 

and potentially greater sensitivity. We then show neuroprotective potential for pioglitazone in 

a scrapie model of aggressive neurodegeneration which we show reduces markers of 

neuronal ER stress. Here, we discuss our findings and the limitations and potential of our 

study in greater detail.  

 Selecting the appropriate animal model for preclinical testing is essential for 

interpreting phenotypes and increasing the likelihood that findings in animals will translate to 

humans. To model neurodegenerative disease, we therefore selected to work with RML 

scrapie since this model: 1) phenocopies human prion disease without genetic manipulation 

2) includes the full spectrum of pathological features common to many human 

neurodegenerative diseases including progressive synaptic loss, ER stress, 

neuroinflammation, and neuronal loss that are incompletely captured in other transgenic 

models (Richardson and Burns, 2002; Mallucci, 2009; Freeman and Mallucci, 2016), 3) is 

versatile since RML brain homogenate can be introduced on different genetic backgrounds, 

in different brain regions, and at different time-points, and 4) is relatively aggressive and shows 

stereotyped progression, allowing for neuroprotective effects to be determined with greater 

confidence over a shorter period of time than in alternative animal models (Yoshiyama et al., 

2007). RML scrapie is sometimes injected in transgenic animals overexpressing prion protein 

to further accelerate the disease time course (Watts and Prusiner, 2014), but here we selected 

to work with young adult male and female C57BL/6J mice to leverage the wealth of phenotypic 

data available on this genetic background and age group.  

 To characterise RML scrapie progression in this model histologically, we focused our 

molecular characterisation on the hippocampal CA1 region of these mice, since this brain 

region is involved in memory impairments seen in common neurodegenerative diseases such 

as Alzheimer's Disease. This brain region is also physically near the brain homogenate 

inoculation sites in the parietal cortex, allowing the early histological changes associated with 

scrapie disease progression to be detected. We found a stereotyped time course of 

histopathological features, starting with an increase in markers of reactive astrocytes with 

small increase in the ER stress as measured by pPERK at 12 wpi, during the asymptomatic 

phase of disease. This was followed by a sustained microglia activation and a further six-fold 

increase in ER stress by the clinical phase of 20 wpi, coinciding with neuronal loss. These 

significant and progressive histopathological hallmarks can be exploited for mechanistic 

understanding of disease, using longitudinal study designs that examine the effects of drug 

treatments on the molecular progression of disease.  
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 Survival assays have been a bedrock method in prion research for many decades and 

have been successfully used to reveal differences in infectivity between prion strains, the 

importance of species barriers in disease transmission, and the effectiveness of 

decontaminating agents (Taylor, 1999; Sakudo, Anraku and Itarashiki, 2020). However, 

confirmatory motor signs appear late in prion disease time course, so there is a clear 

advantage to have earlier indicators of disease progression that shorten experimental 

paradigms. In addition, we and others have observed bladder complications in some strains 

of female mice injected with scrapie that arise before confirmatory motor signs that 

complicates the use of both sexes in experiments where later disease stages must be reached 

for the assessment of clinical signs. 

To complement and extend traditional histological analysis and subjective scoring of 

behavioural signs of prion disease, we developed methods to objectively and longitudinally 

measure motor behaviours over the course of RML scrapie disease progression. We then 

employed a pose estimation and machine learning-based behavioural analysis pipeline to 

attempt to replace many scrapie clinical observations. Our aim was to produce a pipeline that 

would be inherently unbiased but at the same time would reduce the extensive labour of 

standard behaviour tests, reduce batch effects from being able to use larger well powered 

group sizes, allow frequent mixed sex groups, and have greater sensitivity due to the use of 

new computational tools.  

This innovation has several substantial benefits that increase the utility of the model. 

First, data collected and analysed in this manner are objective and therefore provide greater 

consistency than can be easily achieved between users or laboratories. For example, adding 

drugs to food or water can change its texture and/or appearance and be unintentionally 

unblinded. This method removes much of the challenge of blinding during experimentation as 

the scientist has little influence over the outcome and focuses instead on recording 

consistency.  

 Second, the use of standardised arenas, and standardised experimental design and 

recording methods, facilitates replication across experimental batches and across research 

groups. Third, the resulting behavioural data are rich in features and can readily be re-

analysed by other groups or by ourselves as analysis methods improve. Fourth, we found 

clear behavioural differences in prion disease several months before the appearance of 

confirmatory motor signs, enabling the inclusion of female mice that would otherwise have 

been excluded due to complicating bladder issues. We found that these early motor signs 

were predictive of scrapie disease progression in our previous work (Harding et al., 2023) and 

validated again here by the progressive accumulation of motor signs over time in an 

automated system. Finally, collecting longitudinal data allows neurodegenerative disease 
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progression to be followed in individual mice, providing greater confidence that treatment 

effects on disease progression are consistent despite inevitable inter-individual variability.  

We selected to test pioglitazone in this model system, since this drug is widely used 

around the world for the treatment of diabetes with clearly understood safety and therapeutic 

profile, and since it has previously been shown to have neuroprotective properties in other 

mouse models of neurodegenerative disease (Ji et al., 2010; Seok et al., 2019). Furthermore, 

we previously showed that metformin has direct neuroprotective properties in RML scrapie 

mice even at concentrations as low as ~250 nM (Harding et al., 2023), and both pioglitazone 

and metformin are used for the treatment of diabetes (frequently in combination), albeit via 

distinct mechanisms with  metformin acting (at least in part) via AMPK activation and 

pioglitazone via PPARγ activation. We found that RML scrapie mice treated with either 

metformin (Harding et al., 2023), or pioglitazone had a reduced rate of disease progression 

as assessed by slower acquisition of clinical signs of prion disease, and also reduced PERK 

phosphorylation in CA1 hippocampal pyramidal neurons. These findings suggest that both 

metformin and pioglitazone reduce neuronal ER stress and slow neurodegenerative disease 

progression, though the precise mechanisms are unclear. In this study, we extend these 

findings by showing that pioglitazone significantly slowed disease progression as determined 

by our unbiased preclinical behavioural pipeline, providing greater insight into the time frame 

and behavioural features of these neuroprotective effects, and providing a framework for future 

drug testing.  

To gain insight into the associated molecular and cellular features accompanying 

reduced neuronal ER stress and slower disease progression in response to pioglitazone 

treatment, we carried out histological analysis for markers for neuroinflammation. Previous 

studies have suggested that pioglitazone may act to suppress microglial activation (Ji et al., 

2010; Zhao et al., 2016), and metformin might act via cell-autonomous effects on microglia 

and astrocytes to suppress scrapie-associated neuroinflammation. We see consistency 

between the ability of metformin and pioglitazone to both reduce pPERK immunoreactivity and 

to delay motor symptoms. We did not observe significant differences in the immunoreactivity 

of microglial or astrocytic markers in the brains of vehicle or pioglitazone-treated mice. This 

was despite pioglitazone’s clear effect on expression of Cd11b, Aif1 (Iba1) and Cd68, when 

iPSC-derived microglia were challenged with LPS (Fig. 4). This suggests that reduced 

neuronal ER stress may be a common neuroprotective mechanism. However, the divergent 

effects on microglia and astrocytes between these treatment groups, suggests that 

neuroinflammation, at least how we define it histologically, is not as important an indicator of 

the state of disease progression or drug mechanism of action. 
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While further studies are needed to explore likely mechanisms of action, these findings 

suggest that pioglitazone is unlikely to reduce neuronal ER stress primarily by reducing 

neuroinflammation, suggesting either cell-autonomous protective mechanisms on neurons, or 

systemic effects such as improved glucose homeostasis that then support neuronal health 

and survival. Understanding these aspects are key to moving drugs like these into successful 

trials as the mechanism is a key part of appropriate clinical trial design. We note that largest 

study of pioglitazone for human dementia treatment we are aware of “TOMORROW” (Burns 

et al., 2021), used very low dose pioglitazone (0.8 mg  /day vs 40 mg / day) in healthy patients 

stratified by predicted risk. This study also faced other hurdles, without the use of biomarkers 

to enrich the patient cohort, and a change in futility end points during the study. We believe 

that better mechanistic understanding of these therapies will aid improve clinical trial design 

as well as the stratification of patients into cohorts most likely to benefit from treatment. 

 

Limitations 

There are some clear limitations to our study. We built it around a single neurodegenerative 

model, but the use of automated pre-clinical phenotyping has been designed to generalise to 

any model with mild or greater motor symptoms (e.g. PS19 mice, Yoshiyama et al., 2007) and 

could help automate and systematise pre-clinical drug testing. The use of machine learning 

and ensemble models in animal research is always a challenge due to the requirement for 

large group sizes. To address this challenge, we generated control groups of 82 mice in our 

first iteration, but recognise that model performance will increase as animal number increases 

in future studies. Indeed, such a dataset could also provide a more generalisable model that 

other groups can benchmark against and ultimately produce shareable datasets that make 

animal experiments more efficient and robust. We analysed behaviour in thousands of tests 

performed at three discrete time points. We recognise that additional time-points and types of 

behavioural analysis (e.g. cognitive tests) would improve our understanding of disease 

progression. Looking forward, 3D pose-estimation methods (Lauer et al., 2022), as well as 24-

hour recording in home cages would further enhance our ability to collect and rigorously 

analyse pre-clinical data.  

 The scrapie model is not commonly used in neurodegenerative disease research, 

although  requires only an inoculation of misfolded PrPsc into wild-type animals, and since it 

recapitulates bona fide neuronal loss preceded by progressive histopathological features 

common to many human neurodegenerative diseases that also have protein aggregation and 

ER stress as likely shared disease mechanisms. Although there are prion disease has distinct 

features as a proteinopathy (Meisl et al., 2021), misfolded protein are common to Alzheimer’s 

and Parkinson’s and both amyloid and tau pre-formed fibrils can seed and propagate in the 
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brains of mice and humans (He et al., 2018; McAllister et al., 2020; Condello et al., 2023), 

even in cases of Alzheimer's (Banerjee et al., 2024). We view misfolded protein as the first 

event in a cascade that causes neurodegeneration across multiple types of dementia, and 

identifying compounds that slow prion disease may therefore reveal neuroprotective agents 

that cut across neurodegenerative disease types.  

We propose that the mouse scrapie model and the methods we developed here 

provide unbiased and sensitive assessment of pre-clinical drug efficacy that can accelerate 

the rate of drug testing, and increase the likelihood that discoveries made in this model will 

translate into successful human clinical trials.  
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MATERIALS AND METHODS  

 

Animals and colony maintenance  

Animal work was performed under a Project Licence (PPL7597478) administered by the UK 

Home Office. University of Cambridge Animal Welfare and Ethics Review Board (AWERB) 

approved all procedures and protocols adhered to 3Rs and ARRIVE guidelines. All mice used 

in this study were of the C57BL/6J strain and were purchased from Charles River Laboratories 

(Saffron Walden, UK). Upon arrival, mice were fed a standard chow diet and group housed at 

3 or 5 mice per cage in individually ventilated cages for seven days to acclimatise them to the 

specific pathogen free facility. The animal facility was maintained on a standard 12-hour 

light/dark cycle and temperature was controlled at 22 ± 2°C. Water and food were available 

ad libitum.  

 

Inoculation with brain homogenates 

C57BL/6J male and female mice were acclimatised to the facility for one week in cages of 

three, and then randomly allocated for inoculation with either Rocky Mountain Laboratory 

(RML) prion or Normal Brain Homogenate (NBH) between the ages of 4 and 6 weeks. Mice 

were inoculated by injection in the parietal cortex with 30 µl of a 1% homogenate solution (gift 

from the laboratory of Prof. Giovanna Mallucci), while under isoflurane anaesthesia as 

previously reported (Halliday et al., 2017). Mice were monitored until recovered and then 

returned to their home cage.  

 

Diet and treatment group randomization and administration  

All mice were fed standard chow diet until 7 weeks old, before acclimatisation to balanced 

control diet (10% fat diet D12450Ji, Research Diets). Mice were weighed at least once weekly. 

Scrapie-inoculated and control mice were maintained on their allocated diets for approximately 

21 weeks post inoculation before culling at a fixed time point. In the week prior to culling, mice 

were provided with wet diet supplementation including M31 diet gel and hydrogel during the 

weight loss phase of the disease. Control mice were provided the same supplementation. 

Pioglitazone was added to control diet food (D23042701i) as purchased at 250 mg/kg diet for 

an average dose per mouse of 40 mg/kg/day.  

 

Terminal tissue and blood collection 

At the time of culling, a heparin-coated (375095, Sigma Aldrich) syringe with a 23G blunt-end 

needle was used to collect blood by cardiac puncture while under deep terminal anaesthesia, 

followed by cervical dislocation. Blood was transferred to tubes containing lithium heparin 
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(450537, Greiner Bio-One MiniCollect™) and plasma was separated by centrifugation at 800 

x g. Organs were then immediately dissected, snap-frozen on dry ice, and stored at -70°C. 

Brains were divided in two along the midline, with half micro-dissected into different brain 

regions and snap frozen as described above, and half reserved for histology by overnight 

fixation in 4% PFA followed by washes in PBS and storage in 30% sucrose the following day.  

 

Immunohistochemistry 

Prion-inoculated brains that had been fixed in 4% PFA overnight were decontaminated by 

complete immersion in >95% formic acid for at least 60 mins at room temperature, before 

washing in PBS and re-fixation in 4% PFA. For immunohistochemistry, 25-µm thick coronal 

brain sections were obtained using a Leica VT1000S vibratome (Leica Biosystems, Germany). 

Then, free-floating sections were subjected to antigen retrieval (Zur et al., 2024) in citrate 

buffer (pH 6) at +90°C (for pPERK staining) or autofluorescence quenching in 0.3% Sudan 

Black B (Oliveira VC, 2010) in 70% ethanol for 20 min (for Iba1/GFAP staining). Brains were 

treated with a blocking solution containing 10% NDS (Jackson ImmunoResearch Labs, USA), 

1% BSA (Miltenyi Biotec Ltd.), and 0.3% Triton X-100 (Sigma-Aldrich, USA) for 1 hour at room 

temperature, and then incubated overnight at +4°C with primary antibodies: rabbit anti-Iba1 

(1:750, Abcam, UK), chicken anti-GFAP (1:1500, Antibodies.com, UK), rabbit anti-NeuN 

(1:1000, Merck Millipore, USA), or rabbit anti-pPERK (1:250, Cell Signaling Technologies, 

USA). After washing with PBS, the sections were incubated with donkey anti-rabbit AF488, 

goat anti-chicken AF647, and donkey anti-rabbit AF555 secondary antibodies (1:1000; 

Invitrogen, USA) for 1.5 hours at room temperature in the dark. Samples were then rinsed in 

PBS, counterstained with NeuroTrace 640/660 (1:100; Thermo Fisher Scientific, USA) and 

Hoechst 33342 (1:10000; Invitrogen, USA), placed on histological slides, and mounted with 

Aqua/Poly-Mount medium (Polysciences, USA). Images of the hippocampal CA1 area were 

taken using a Leica SP8 confocal microscope (Leica Biosystems, Germany) at 20× or 60× 

magnification.  

 

Clinical observations  

Mice were assessed for prion disease by the development of early signs as previously 

described (Moreno et al., 2013; Halliday et al., 2017; Smith et al., 2020), and for additional 

indicators of loss of motor coordination (Harding et al., 2023). Prion observations were blind 

to any previous records of early signs, but could not be blinded to treatment variables as drug 

presence in the food was visually apparent. Normally, the presence of one early sign and a 

confirmatory clinical sign are sufficient to diagnose late-stage prion disease, leading to culling 

the mouse. Early signs such as motor coordination in canonical methods were classified on 
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the observation of paw slips. Specifically, Motor 1 (M1) was classified as any obvious foot slip 

on bars of the standard IVC homepage.  

Inoculated animals are known to be susceptible to bladder enlargement with female 

mice being particularly prone to this complication. All mice showing indicators of illness were 

first assessed for bladder enlargement and all mice were checked on autopsy for presence of 

gross pathology, including blood around the organs, bladder enlargement, or features of liver 

disease. On rare occasions mice with ‘large’ enlarged-bladders, detectable through the 

abdomen, presented with an inability to urinate and hunched posture. These mice were culled, 

confirmed to have bladder complications on autopsy and excluded from survival data (<5% 

mice).  

 

Pose estimation 

Pose estimation was performed using the DeepLabCut Package for single animals. Artificial 

neural networks using a pre-trained Resnet-50 were updated and trained on the University of 

Cambridge high performance cluster using training set images from our experimental arena. 

Separate networks were trained for motor, gait and paw-slip assays. Frames for labelling were 

selected by k means clustering with 4-6 frames per video and training for 400,000 iterations. 

For motor analysis, 152 frames were used with 8 for testing, resulting in a p-cutoff error of 1.88 

pixels. For gait analysis 254 frames were used, with 15 for testing resulting in a p-cutoff error 

of 6.01 pixels. For paw-slip detection frames selection was biased to RML data to increase 

slip numbers in the training set and slip variety. Frames were also selected using k-means 

clustering with additional frames showing various paw slips included through manual 

selection, resulting in 256 used for training with 14 frames used for testing resulting in a p-

cutoff of 5.49 pixels. 

 

Machine Learning 

XY coordinates from pose estimation of tracked body points were generated for three sets of 

behavioural features, locomotion (motor) features, paw slip features, and gait features. 

Missing (NA) values were interpolated using mice (3.16.0) in R with predictive mean matching, 

performing 5 imputations and 5 iterations, all with a constant seed value. Feature engineering 

incorporated domain-specific knowledge to create new features, as well as the generation of 

interaction and ratios of existing features. The three sets of behavioural features were first 

checked for non-zero variances. Data was partitioned into training and testing sets (70 / 30), 

which were standardised separately. Pearson correlation analysis was performed to remove 

highly correlated features (r > 0.85). Two classification models- logistic regression and random 

forest - were developed and evaluated using 5-fold repeated cross-validation (n=3). To 
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address multicollinearity, features were iteratively removed in logistic regression based on the 

variance inflation factor (<5), and random forest employed recursive feature elimination. 

Following hyperparameter tuning, the following was used for the respective models: a) - motor: 

mtry was 1 and ntree was 100, b) motor + gait: mtry was 6 and ntree was 100 and c) paw slip 

+ motor: mtry was 5 and ntree was 50. Modelling was performed in R using packages tidyverse 

(2.2.0), caret (6.0-94), and ggplot2 (3.5.1).  

 

Human iPSC-microglia 

Human iPSC-microglia were generated based on the previously published protocol (Washer 

et al., 2022). Briefly, iPSCs were cultured in Geltrex coated 6-well plates in OxE8 medium for 

maintenance. Following 1-2 passages, iPSCs were detached and collected as a single cell 

suspension. After centrifugation, 4 million cells were plated into Aggrewell 800 plates in 2 mL 

EB Induction medium (OxE8 medium + stem cell factor (SCF) + bone morphogenetic protein 

4 (BMP4) + vascular endothelial growth factor (VEGF)) per well to generate embryoid bodies 

(EBs). To allow the formation of EBs, cells remaining in AggreWell plates received daily 75% 

media change for 6 days. After 6 days, EBs were then harvested and equally distributed to 

two T175 flask containing 18 mL of EB Differentiation medium (X-Vivo 15 medium + Glutamax 

+ β-mercaptoethanol + interleukin 3 + macrophage colony-stimulating factor (M-CSF). The 

EBs were kept in EB Differentiation medium at 37°C and 5% CO2 with full media changes 

every 7 days. After 2-3 weeks, non-adherent microglial precursor cells (PreMac) were 

released into the medium from EBs. PreMacs were harvested and strained through a 40 µm 

cell strainer. Harvested PreMacs were pooled and sustained in EB Differentiation medium in 

T75 flasks with weekly media changes. Once sufficient cell numbers were collected, PreMacs 

were seeded onto 6-well plates at a density of 100,000 cells/cm2 in maturation medium 

(advanced DMEM-F12, Glutamax, penicillin-streptomycin, IL-34, granulocyte-macrophage 

colony-stimulating factor (GM-CSF), transforming growth factor beta 1 (TGFb1), and M-CSF) 

to differentiate and mature PreMacs to iMicroglia for 14 days. The iMicroglia were further 

matured for 14 days in maturation medium prior to experimentation. Matured iPSC-microglia 

was treated with either Pioglitazone (20 µM) or Vehicle (DMSO) 1 hour prior to vehicle or LPS 

(100 ng/ml) challenge for 24 hours.  

 

RT-qPCR 

Total RNA from treated iPSC-microglia was extracted using the RNeasy Plus Mini Kit (Qiagen) 

and half of the hippocampus from inoculated mice treated with vehicle or pioglitazone was 

extracted using the RNeasy Plus Universal kit (Qiagen) according to the manufacturer’s 

instructions. Extracted total RNA (0.6-1 µg) was reverse transcribed into cDNA using the 
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iScriptTM reverse transcription supermix. Target genes of interest were determined using the 

Taqman gene expression ‘assay-on-demandTM’ assays (Applied Biosystems, Foster City, CA) 

using FAM-labelled probes for target genes and ACTB (Hs01060665_g1) and GAPDH 

(Hs99999905_m1) as reference genes. The primer/probe targets were ITGAM 

(Hs00167304_m1), AIF1 (Hs01032552_m1), CD68 (Hs02836816_g1), NFKB1 

(Hs00765730_m1), TLR4 (Hs00152939_m1), NLRP3 (Hs00918082_m1), PYCARD 

(Hs01547324_gH), IL1B (Hs01555410_m1), CASP1 (Hs00354836_m1), and IL6 

(Hs00174131_m1). For the mouse experiments, Actb (Mm02619580_g1) and Gapdh 

(Mm99999915_g1) were used as reference genes, and primer/probe targets were Cd68 

(Mm03047343_m1), Atf6 (Mm01295319_m1), Xbp1 (Mm00457357_m1), Rbm3 

(Mm00812518_m1), and Pikfyve (Mm01257047_m1). The reactions were dispensed with 

Echo 525 Acoustic Liquid Handler (Beckman Coulter) and run on the QuantStudio™ 5 Real-

Time PCR System in 384-well plates (Thermo Fisher Scientific). All expression assays were 

normalised to the geometric mean of the reference genes GAPDH/Gapdh and ACTB/Actb for 

human/mouse experiments, respectively.   

 

Data Analysis 

Data was analysed in either Origin Pro or R using custom scripts. Time to event data including 

survival was analysed using the Kaplan Meyer plot and log rank test. Two group analysis was 

performed by two-way t-test (equal or unequal variance) or Mann Whitney U, three levels by 

one-way ANOVA and two-factor tests analysed by two-way ANOVA. Variance was determined 

by the F test. The Bonferoni-holm method was used for correction of multiple comparisons. 

Image analysis was performed in Fiji ImageJ 1.54f using custom macros for measuring Iba1+ 

(MaxEntropy Threshold) and NeuN+ (Huang Threshold) cell densities, as well as Iba1+ 

microglial soma area and circularity. The “Integrated Density” function was used to analyse 

GFAP+ and pPERK+ images after applying a fixed threshold.  
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Figure 1. Time course of scrapie pathogenesis from asymptomatic to clinical signs by 

20 weeks. (A) Experimental paradigm showing scrapie inoculation in 4-6 week old mice. 

Brains were collected at 12 and 20 weeks post inoculation (wpi) for histological analysis. (B) 

Mouse body weight in control (n=9) and scrapie mice (n=20) diverges from 12 weeks to 20 

wpi and the trajectory is not altered by provision of wet food as diet support. (C) Clinical signs 

start around 17 wpi and rapidly accumulate providing a clear distinction between control (n = 

28) and scrapie inoculated mice (n = 27). (D) Time to motor survival 1 (M1 see methods) starts 

at 17 wpi and is present in all scrapie inoculated mice by 21 wpi. (E) Histology panel for 

hippocampal CA1 region showing immunostaining for markers of microglia (Iba1), astrocytes 

(GFAP), neurons (NeuN) and ER stress (pPERK and NeuroTrace). Scale bars for respective 

images (i-iii) are 100 μm, (iv) is 20 μm, (v & vi) is 50 μm. (F) Integrated density of GFAP 

positive astrocytes per mm2. (G) Density of Iba1 positive microglia per mm2. (H) Iba1 positive 

soma area. (I) Iba1 cell circularity. (J) NeuN positive neuronal density per mm2 of CA1 

pyramidal layer. (K) Integrated density of pPERK in pyramidal neurons per mm2. (L) 5-min 

locomotion assay showing differences in movement between control (n = 9) and scrapie 

inoculated mice (n = 9) and differences in thigmotaxis (heatmaps). Error bars are mean ± 

S.E.M. P values are shown on the graphs unless < 0.0001, which are represented as ****. 
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Figure 2. Pose estimation and machine learning can be used for automated 

classification of NBH and RML at 20 wks. (A) Recording setup for consistent imaging during 

each behaviour test for pose estimation using the Deeplabcut package. (B) Example of motion 

features. (C) Example of gait features. (D) Example of motor coordination and paw slip 

features. (E) Schematic of machine learning pipeline from pose-estimation coordinate data 

from 20 wk data using random forest recursive feature elimination (RFE), model comparison 

using ROC curves and drug comparisons on the best features. (F) Drug validation pipeline 

schematic with three time points for longitudinal validation where mice at 12 wpi are not 

expected to be symptomatic. (G) Data from training phase on 20-week data used for model 

training. (H) Comparison of linear models and random forest models on motion/gait and paw-

slip data by ROC analysis. (I) Plot of classification probability for all mice vs the hold test set 

to assess overfitting for motion data. NBH and RML shown separately. (J) Plot of classification 

probability for all mice vs the hold test set to assess overfitting for motion + paw-slip data. NBH 

and RML shown separately. (K) Feature importance rank for the best model by RF-recursive 

feature elimination. (L) Plot of model (RF+Motion/gait) over time showing emergence of 

classification probability between control (n = 32) and scrapie inoculated (n = 55) in line with 

development of clinical signs. (M) Plot of model (RF+Motion/gait + paw slip) over time showing 

emergence of classification probability between control (n = 32) and scrapie inoculated (n = 

55) in line with development of clinical signs. (N) TSNE plot illustrating differences between 

groups using the top performing features at week 20. Error bars are mean ± S.E.M. P values 

and n numbers are shown on the graphs unless < 0.0001 represented as ****. Statistics are 

corrected for multiple comparisons.  
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Figure 3. Pioglitazone shows evidence for neuroprotection in canonical and automated 

assessments of disease. (A) Schematic of drug testing pipeline with male and female mice. 

Highlighted areas show the time course for the automated pipeline vs classical clinical signs. 

Pioglitazone treatment at an average 40 mg / kg / day for 8-wks is highlighted above. After 20 

wpi, mice used for behavioural analysis are culled for histological analysis. (B) Accumulation 

of all clinical signs and early indicators per mouse for each disease and drug treatment. (C) 

Total number of indications (signs + observations) of prion disease. (D) Total number of motor 

signs between disease and drug treated groups. (E) Time to first sign by hazard accumulation 

in normalised time. (F) Mean slips per mouse calculated from pose-estimation data over time. 

(G) Mean duration of slips over time between disease and drug treated groups. (H) Change 

in a complex movement feature over time between disease and drug treated groups. Error 

bars are mean ± S.E.M. P values and n numbers are shown on the graphs unless < 0.0001 

represented as ****.  
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Figure 4. Pioglitazone reduces pPERK expression in vivo and microglial gene 

expression in vitro. (A) Representative hippocampal histology comparing the brains of RML 

scrapie inoculated mice treated with vehicle or pioglitazone, and stained with Hoechst, and 

immunohistochemistry for markers of microglia (Iba1) and astrocytes (GFAP). (B-D) No. 

significant differences were observed in the intensity of cells immunopositive for GFAP (B), or 

Iba1 (C) but a significant reduction in pPERK was seen between vehicle (n=10) or pioglitazone 

(n=8) treated mouse brains (E) Example of pPERK expression in hippocampal pyramidal 

neurons also labelled with NeuroTrace. (F) Schematic of microglial differentiation from human 

iPSCs before treatment with vehicle or LPS (100 ng / mL) and vehicle or pioglitazone (20 μM). 

(G-P) Expression levels of the indicated genes, as quantified by RT-qPCR. n=6 

replicates/condition. Error bars are mean ± S.E.M. P values and n numbers are shown on the 

graphs unless < 0.0001 represented as ****.  
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Supplementary Figure 1. Microscopy images from brain histology and motor data 

(A) High magnification images of microglia from the brains of control of RML-inoculated mice 

counterstained with DAPI and visualised by Iba1 immunoreactivity. Scale bar represents 20 

μm (B) NeuroTrace staining and pPERK immunoreactivity. Scale bar represents 50 μm (C) 

Total distance moved in a locomotion experiment between control (n = 9) and scrapie (n = 18) 

mice at 20 wpi. (D) Total number of rotations between control (n = 9) and scrapie (n = 18) mice 

at 20 wpi. Error bars are mean ± S.E.M. P values and n numbers are shown on the graphs. 
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Supplementary Figure 2. Body weight of mice during the experimental time course. (A) 

Body weight per mouse shown over time from 4 to 20 wpi. RML_VEH and NBH_VEH also 

shown in Figure 1B duplicated here for visualisation without error bars. (B) Absolute body 

weight at 20 wpi for each group. (C) Body weight changes from 12 wpi to 20 wpi. Error bars 

are mean ± S.E.M. P values and n numbers are shown on the graphs. 
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Supplementary Figure 3. Pose-estimation data for control vs control with pioglitazone.  

(A) Mean number of paw-slips per mouse (B) duration of paw-slips per mouse calculated from 

pose estimation data over time for control vs control with drug treatment.  (C) Change in 

complex moment feature over time from pose estimation data over time for control vs control 

with drug treatment. Error bars are mean ± S.E.M. P values and n numbers are shown on the 

graphs. 
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Supplementary Figure 4. Pioglitazone-induced changes in gene expression in scrapie 

mice. Hippocampal samples collected at 20 wpi from RML-inoculated mice treated with 

vehicle or pioglitazone used to determine relative gene expression for A) Cd68, B) Atf6, C) 

Xbp1, D) Rbm3 and E) Pikfyve. Error bars are mean ± S.E.M. P values are shown graphs for 

significant results.  
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