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Highlights 12 

• Atlas-scale production of single-cell DNA methylation libraries in a single experiment 13 

• Protocols and evaluation using both Illumina and Ultima Genomics sequencing platforms 14 

• Compatibility of sciMETv3 with capture techniques to reduce sequencing burden 15 

• Compatibility of sciMETv3 with enzymatic conversion methods 16 

• Generation of an integrated >140,000 cell dataset from human middle frontal gyrus across four individuals 17 

• Ability to profile both ATAC and genome-wide DNA methylation from the same cells and integration with 18 

datasets from each modality 19 

• A novel implementation of the s3-ATAC technology that leverages a nanowell chip for increased 20 

throughput 21 

Motivation 22 

DNA methylation forms a basal layer of epigenomic regulatory control, shaping the genomic 23 

permissiveness of mammalian cells during lineage specification and development. Aberrant DNA methylation 24 

has been associated with myriad health conditions ranging from developmental disorders to cancer. The high 25 

cell type specificity necessitates analysis at the single-cell level, much like transcription or other epigenomic 26 

properties. However, robust and cost-effective techniques to produce atlas-scale datasets have not been 27 

realized for DNA methylation. Here, we directly meet this need by introducing sciMETv3, a high-throughput 28 

protocol capable of producing hundreds of thousands of single-cell DNA methylation profiles in a single 29 

experiment. 30 

Summary 31 

Single-cell methods to assess DNA methylation have not yet achieved the same level of cell 32 

throughput compared to other modalities. Here, we describe sciMETv3, a combinatorial indexing-based 33 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610369doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610369
http://creativecommons.org/licenses/by/4.0/


 
2 

technique that builds on our prior technology, sciMETv2. SciMETv3 achieves nearly a 100-fold improvement 34 

in cell throughput by increasing the index space while simultaneously reducing hands-on time and total costs 35 

per experiment. To reduce the sequencing burden of the assay, we demonstrate compatibility of sciMETv3 36 

with capture techniques that enrich for regulatory regions, as well as the ability to leverage enzymatic 37 

conversion which can yield higher library diversity. We showcase the throughput of sciMETv3 by producing 38 

a >140k cell library from human middle frontal gyrus split across four multiplexed individuals using both 39 

Illumina and Ultima sequencing instrumentation. This library was prepared over two days by one individual 40 

and required no expensive equipment (e.g. a flow sorter, as required by sciMETv2). The same experiment 41 

produced an estimated 650k additional cells that were not sequenced, representing the power of sciMETv3 42 

to meet the throughput needs of the most demanding atlas-scale projects. Finally, we demonstrate the 43 

compatibility of sciMETv3 with multimodal assays by introducing sciMET+ATAC, which will enable high-44 

throughput exploration of the interplay between two layers of epigenetic regulation within the same cell, as 45 

well as the ability to directly integrate single-cell methylation datasets with existing single-cell ATAC-seq. 46 
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Introduction 49 

Mammalian DNA methylation takes the form of a methyl group covalently added to the 5-carbon of 50 

cytosine residues in the genome and forms the most basal layer of gene regulatory control, with distinct 51 

programs that shape the permissible genomic landscape during development. Historically, DNA methylation 52 

has been profiled using ‘conversion’-based approaches, which leverage chemical or enzymatic processes to 53 

convert non-methylated cytosines to uracil. Converted bases are then sequenced as thymine, whereas 54 

methylated cytosines are protected from this process. The complexity of conversion protocols makes single-55 

cell approaches particularly challenging, with most methods requiring the deposition and processing of 56 

individual cells into their own reaction compartments for conversion and then initial processing steps1–5. We 57 

previously developed techniques to increase the cell throughput for profiling DNA methylation, sciMET6 and 58 

sciMETv2 7, which leverage single-cell combinatorial indexing to pre-index cells prior to conversion and the 59 

final stages of library preparation. This workflow enables the production of thousands of single-cell 60 

methylation libraries to be produced by a single individual and amortizes reagent costs over many pre-61 

indexed cells, substantially reducing costs per cell. We also demonstrated the ability to perform target capture 62 

on regulatory loci with high levels of expected cell type specific methylation variability (sciMET-cap) which 63 

reduces the number of sequencing reads required per cell to achieve cell type identification and robust cell 64 

type clustering8. 65 

 The sciMETv2 technology can achieve a modest scale of throughput, with typical experiments 66 

producing between 5 and 20 thousand single-cell profiles. This capacity is suitable for many applications; 67 
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however, to achieve the higher end of that range multiple plates of indexed tagmentation must be performed 68 

which can be cumbersome and expensive. Here, we directly address these remaining challenges by 69 

developing sciMETv3, which leverages an additional tier of cell barcoding to increase throughput by orders 70 

of magnitude. Final cell count is flexible and spans three orders of magnitude from ~1,000 to up to 10 million 71 

in increments of ~1,000 cells. This technology requires comparable hands-on time to sciMETv2 and produces 72 

an identical molecular structure, allowing for capture techniques to be carried out. We further demonstrate 73 

the ability to perform enzymatic conversion, as well as a modified workflow to enable libraries to be 74 

sequenced on the Ultima Genomics platform. We then combine datasets sequenced by both platforms to 75 

produce >140,000 cells from the middle frontal gyrus across four healthy human donors. Finally, we 76 

demonstrate a variant of the technology that employs two rounds of indexed tagmentation followed by 77 

sciMETv3 processing to capture ATAC plus genome-wide DNA methylation profiles from the same cells in 78 

high throughput. 79 

 
Figure 1. sciMETv3 technology development. A) Indexing and pooling schematic for sciMETv3. B) Molecular 
schematic. C) Strategy for sciMET-cap enrichment strategy. D) Experimental design schematic for initial sciMETv3 
development. E) Assessment of doublet rates and cell-cell crosstalk from human and mouse cells. F) UMAP of 
human cells from the initial experiment reveals clear clusters (top) with expected mCH patterns for glia and 
neurons (bottom). 
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Results 80 

sciMETv3 design 81 

 To achieve increased throughput for the sciMET platform, we devised a strategy to incorporate an 82 

additional round of indexing post tagmentation and prior to distribution into the final PCR-indexed wells (Fig. 83 

1A). This approach was based on a ligation workflow similar to that which was achieved for sci-ATAC-seq3 84 
9. Ligation adapters were designed to directly append to the transposase adapter sequence, completing the 85 

5’ half of the Illumina read 2 sequencing primer. These adapters also append a well-specific barcode and 86 

terminate with the Illumina flowcell primer sequence at the 5’ end. The final ligation product results in the 87 

same final molecular structure that is produced during PCR for the sciMETv2 workflow, retaining compatibility 88 

with downstream capture methods (Fig. 1B,C). The ligation adapters must survive bisulfite conversion and 89 

were therefore fully methylated at all cytosine positions. As an initial assessment, we leveraged a set of 96 90 

indexed primers, effectively increasing the throughput of the sciMETv2 platform by 96-fold. The workflow 91 

was carried out on four human brain specimens (cortex, BA 46; 90% of nuclei) and a mouse brain specimen 92 

(whole brain, C57BL/6; 10% of nuclei), allowing us to estimate our cell doublet rate while providing enough 93 

human cells for an initial analysis (Fig. 1D). We then processed a single final PCR well out of a total of 8 that 94 

were diluted, which produced 293 passing cell profiles with a mean unique read count of 354,763 and a 95 

mean coverage of 2.73 million total cytosines covered per cell. Of these, 269 were human and 24 were 96 

mouse, with zero cells identified as doublets, establishing a maximum doublet bound of 3.4% when factoring 97 

in the 10-fold skewing toward human cells (Fig. 1E). We next assessed crosstalk by measuring the 98 

percentage of cross-species aligned reads, also adjusting for the skewed species mixture, resulting in a 99 

maximum of 1.2%. Human cells were taken through windowing and clustering. Leveraging both mCG and 100 

mCH contexts produced two neuronal and three glial clusters which were annotated based on global CH 101 

methylation levels (Fig. 1F). 102 

sciMETv3 is compatible with enzymatic conversion methods as well as target capture 103 

 We next assessed the full workflow and platform versatility of sciMETv3 by carrying out a preparation 104 

on a human brain specimen (cortex, BA 46). We leveraged 96 tagmentation and ligation indexes and 105 

distributed a target of 750 pre-indexed nuclei into each well of a final plate (Fig. 2A). Unlike sciMETv2, the 106 

greater number of nuclei within each final well allows for dilution to be deployed as opposed to flow sorting, 107 

reducing the overall time of the experiment and eliminating the need for flow cytometry instrumentation. 108 

Dilution has been developed for a commercialized version of a combinatorial indexing based single-cell 109 

methylation workflow; however, the increased nuclei count of sciMETv3 provides greater robustness at this 110 

stage. Eight wells were taken through bisulfite conversion, reverse adapter ligation and PCR. All eight wells 111 

(estimated cell n = 6,000) were taken through the capture workflow followed by sequencing, producing 5,805 112 

QC-passing single-cell DNA methylation profiles with a comparable target fold enrichment to sciMET-cap 113 

(6.2-fold versus 7 to 10-fold8). 114 
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 The increased nuclei count per conversion well for sciMETv3 over sciMETv2 (96-fold greater) brings 115 

the total input within the recommended range for enzymatic conversion methods without the need for ultra-116 

low-input modifications. Enzymatic conversion methods have been shown to offer improved yields over the 117 

 
Figure 2. sciMETv3 is compatible with capture methods and enzymatic conversion. A) Experimental design 
schematic. B) UMAP of cells combined from both sciMET-cap using bisulfite conversion and non-captured 
enzymatic conversion preparations. C) mCH levels show expected patterns for neurons and glial cell populations. 
D) Identified clusters with inhibitory and excitatory neuron clusters highlighted. E) Cluster proportions are 
comparable between bisulfite + capture and enzymatic non-captured conditions. F) Global methylation patterns 
show expected trend with cells taken through capture exhibiting lower mCG levels due to the enrichment at 
regulatory loci with no impact on mCH levels. G) Sanger sequencing traces of enzymatic converted libraries show 
over-conversion of key bases present in the read 2 / index read 1 Illumina sequencing primer region that is 
appended during adapter ligation. 
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harsh chemical processes of bisulfite conversion10 and have been demonstrated previously in the context of 118 

other sciMET-like protocols11. Two wells of the final plate (estimated cell n = 1,500) were taken through 119 

enzymatic conversion followed by reverse adapter incorporation and PCR. Sequencing produced 1,525 QC-120 

passing single-cell methylomes. As anticipated, the insert size of library fragments from the enzymatic 121 

conversion library were greater than that of bisulfite methods (mean = 163 ± 121 vs 78 ± 69 bp for enzymatic 122 

and bisulfite, respectively; 2.1-fold increase). 123 

 We next aggregated cell profiles from both the bisulfite-converted sciMETv3-cap experiment and the 124 

non-capture enzymatic conversion dataset without deploying any bias correction methodologies, producing 125 

comparable results for the distribution of cells in a reduced dimension representation, CH methylation 126 

distribution, and cell type composition between the experiments (Fig. 2B-E). Consistent with our previous 127 

sciMET-cap datasets, CG methylation was reduced compared to the genome-wide dataset due to the 128 

enrichment of regulatory regions that frequently exhibit hypomethylation and not due to conversion biases, 129 

which showed comparable global CH methylation levels (Fig. 2F). 130 

 Despite the increased fragment size using enzymatic conversion methods, we noticed a decrease in 131 

sequencing run quality with fewer clusters passing filter (<50% vs >90% typically). We suspected that this 132 

may be due to the unintentional conversion of sequencing adapter bases for the read 2 / index read 1 primer 133 

site that lies on the ligation junction between the indexed tagmentation oligo and indexed ligation oligo. To 134 

evaluate this, we performed Sanger sequencing using outer primers that are appended via PCR and are not 135 

subjected to conversion. This revealed distinct cytosine conversion to uracil at adapter bases present within 136 

the read 2 sequencing primer region (Fig. 2G). This is likely due to the sequence specificity of the TET2 137 

catalytic domain, which biases its ability to protect methylated cytosines from conversion12. A possible 138 

solution to this problem would be the use of 5hmC (or other chemical modifications) in the adapter oligos to 139 

ensure protection; however, such modifications are costly and difficult to synthesize. Alternatively, the use of 140 

sequencing instruments that do not leverage this region for sequence read priming would eliminate the issue, 141 

such as a design compatible with the Ultima Genomics UG100TM instrument. 142 

Atlas-scale dataset production is possible with sciMETv3 on multiple sequencing platforms 143 

 To demonstrate the atlas-scale potential of sciMETv3, we performed a single preparation on human 144 

brain specimens of four individuals (cortex, BA 46; 6596, 6926, 6996, 6998) which were distributed across 145 

equal numbers of tagmentation indexes (n = 24 each), providing the sample index in addition to the first tier 146 

of cell barcoding. After pooling, splitting and adapter ligation, and then pooling again, we obtained enough 147 

nuclei to dilute into 11 full 96-well plates at a target dilution count of 1,000 per well for an estimated potential 148 

cell count of just over 1 million. In total we diluted nuclei into six plates, four of which were banked for possible 149 

future processing (Fig. 3A). One plate was carried through bisulfite conversion, adapter ligation and PCR 150 

using primers established in previous experiments that append Illumina sequencing primers. The second 151 

plate was processed using bisulfite conversion for 88 wells, and 8 wells carried through enzymatic 152 
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conversion. Adapter ligation was then performed followed by PCR using primers that append sequencing 153 

primers specific to the Ultima sequencing platform. Beyond alternate primer sequences, the other major 154 

design difference was to append the PCR index on the same side of the molecule as the tagmentation and 155 

ligation indexes so that the single-end reads produced by Ultima sequencing will read through all three 156 

indexes prior to the genomic DNA insert, maximizing the number of reads that will contain all three index 157 

sequences. 158 

 
Figure 3. sciMETv3 can produce atlas-scale datasets using Illumina or Ultima sequencing platforms. A) 
Experimental design schematic. B) Summary of sequencing depth for each platform. C) UMAP of Illumina-
sequenced cells split by four individuals and colored by cell type. D) UMAP of Ultima-sequenced cells. E) Strategy 
for matching cell coverage distribution between Illumina and Ultima sequenced cells for a direct comparison. F) 
UMAP of integrated coverage-matched cells from both platforms colored by cell type and split by platform (below). 
G) Comparable cell type proportions were achieved for each platform. H) Comparable global methylation statistics 
between platforms. 
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 The first plate was sequenced on a single S4 flowcell of an Illumina NovaSeq 6000TM instrument 159 

using a paired 200 cycle kit, producing 7.18 billion raw read pairs after demultiplexing. This resulted in 44,840 160 

total cells called with a median of 1.82 million cytosines covered per cell at a median read duplicate rate of 161 

13.98%, indicating that additional sequencing would yield greater coverage before reaching diminishing 162 

returns and increasing the total cell number with more cells reaching minimum coverage thresholds (Fig. 3B). 163 

Cells were split evenly across the four individuals (mean = 11,210 ± 6.4%) and clustering produced distinct 164 

primary cell types that were present in all individuals, consistent with previous observations that cell type 165 

specific methylation is the predominant signal that drives dimensionality reduction and clustering in brain 166 

single-cell DNA methylation datasets7,13 (Figs. 3C, S1). 167 

 The plate sequenced using the Ultima Genomics UG100TM instrument was processed over six wafers, 168 

yielding a total of 28.5 billion raw reads, 24.13 billion after demultiplexing. The increased read counts over 169 

the Illumina-sequenced plate resulted in an increased median number of cytosines covered per cell, at 2.58 170 

million with a commensurate increase in read duplicate rate, at 31.49%, producing 103,061 called cells (Fig. 171 

3B). Similarly, cells were distributed evenly across all four individuals (mean = 25,765 ± 9.0%) with clustering 172 

driven by cell type over inter-individual variation (Fig. 3D). The lack of a need to preserve sequence integrity 173 

over the Illumina sequencing primer region using the Ultima platform enabled us to process a subset of the 174 

final indexing plate (n = 8 wells) using enzymatic conversion, which produced comparable coverage and 175 

methylation statistics when compared to the bisulfite converted cells (Fig. S2). 176 

 To evaluate any potential biases driven by the sequencing platform, we took the highest-covered 177 

9,000 cells and then excluded the top 1,000 from each dataset, resulting in 8,000 cells for each platform. We 178 

then downsampled reads from the Ultima Genomics cells to achieve a matched distribution of cytosines 179 

covered per cell between each set (Fig. 3E). We then directly integrated the datasets without any batch 180 

correction methods, taking cells through windowing, dimensionality reduction and clustering, producing 181 

concordant distributions of cells across cell types for each platform, including enzymatic converted cells (Fig. 182 

3F,G). We next assessed global methylation levels, which produced comparable CH methylation across both 183 

platforms and conversion methods, and a slightly reduced CG methylation level for both Ultima-sequenced 184 

conditions compared to the Illumina-sequenced cells (Fig. 3H). Taken together, sequencing platform and 185 

conversion method do not appear to produce any significant bias in the datasets.  186 
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Integrated map of single-cell DNA methylation in the middle frontal gyrus from four individuals 187 

 We next leveraged all cells across both sequencing platforms to produce an integrated atlas of single-188 

cell DNA methylation in the human middle frontal gyrus across four individuals, leveraging Harmony14 to 189 

 
Figure 4. An atlas of single-cell DNA methylation in the human middle frontal gyrus. A) Combined UMAP 
across both sequencing platforms. B) Global mCH percentages for the combined dataset. C) Combined UMAP 
colored by cell type and split by individual (right). D) Marker gene body mCH levels by cluster. E) Cell type 
proportions across individual and sequencing platforms. F) mCG levels across marker genes show distinct cluster-
specific patterns. G) Enhancers exhibit highly cell type-specific hypomethylation compared to promoters. 
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account for the coverage differences between the two datasets (Fig. 4A,B). Clustering was performed 190 

followed by cell type assignment by correlation to a pre-existing atlas13 and assessing mCG patterns over 191 

canonical marker genes (Fig. 4C,D). The integrated atlas along with aggregated cell-type specific methylome 192 

profiles and all associated metadata is available as a downloadable R object for use as a reference map that 193 

enables interaction, visualization and integration using the Amethyst computational framework15. 194 

Cell type proportions were consistent across individuals as well as platforms, with the largest variance 195 

in the proportion of oligodendrocytes present (Fig. 4E). High-resolution aggregated CG methylation tracks 196 

were then generated for each cluster, providing a granular view of CG regulatory status genome-wide for 197 

each cell type. Similar to other epigenetic properties, such as ATAC-seq, DNA methylation status at 198 

promoters is varied across canonical marker genes, with some exhibiting cell type specific hypomethylation 199 

(e.g. MAG in oligodendrocytes), and others fully hypomethylated across all cell types. However, cell type-200 

specific methylation patterning throughout the gene can be highly variable, with hypomethylation extending 201 

beyond the promoter and into the gene body, or in the form of focal dips in methylation throughout the gene 202 

(Fig. 4F).  203 

 To characterize these distinct patterns, we assessed cell type clusters (n = 31) genome-wide for 204 

hypomethylated regions (HMRs; methods). In total, 155,110 distinct HMRs were identified with 65,161 205 

(42.0%) unique to a single cluster. Of these, 18,800 (12.1%) overlapped promoter regions with only 1,463 206 

(7.8% of promoter HMRs) unique to a cluster and a mean of 17.5 clusters exhibiting hypomethylation at 207 

HMRs, indicating a propensity for cross-cell type promoter hypomethylation, regardless of expression status. 208 

In contrast, of the 44,304 (28.6%) of enhancer-overlapping HMRs, 14,668 (33.1% of enhancer HMRs) were 209 

cell type specific and a mean of 4.7 cell types exhibited hypomethylation at these HMRs, suggesting 210 

increased cell type specificity versus promoter elements (Fig. 4G). 211 

Step-wise indexed tagmentation enables DNA Methylation plus ATAC in single cells 212 

 We previously described a technology that enables the assessment of chromatin accessibility (ATAC) 213 

alongside whole genome sequence (WGS) from the same cells (scATAC+WGS) by leveraging two rounds 214 

of indexed tagmentation16. The first round of tagmentation is performed on native nuclei, thus capturing the 215 

open chromatin landscape. Subsequent fixation and nucleosome disruption enables the second round of 216 

tagmentation to be performed on the rest of the genome using a different index. Nuclei were then loaded 217 

onto a 10x Genomics Chromium instrument for droplet-based barcoding. Here, we applied a similar concept 218 
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to our sciMETv3 workflow, performing an initial tagmentation on native human cortex nuclei using one set of 219 

8 indexed sciMET Tn5 complexes. After the first round of tagmentation to encode open chromatin, we then 220 

performed fixation, nucleosome disruption and then a second round of tagmentation using a different set of 221 

8 indexed complexes which are able to access the rest of the genome. Nuclei were then pooled and taken 222 
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through the remainder of the sciMETv3 workflow, targeting 90 nuclei for each final well of indexing for an 223 

expected 6,480 cell profiles (Fig. 5A). Raw sequence reads were demultiplexed using the three tiers of 224 

indexing, splitting out the paired ATAC and MET indexes from the first round with 4.79% of reads derived 225 

from the first (ATAC) tagmentation and the remaining 95.21% from the second (MET) tagmentation, roughly 226 

matching the proportion of accessible versus inaccessible chromatin17. In total, 5,305 cells met minimum 227 

unique passing read counts for both the ATAC and MET paired datasets with read-depth concordance 228 

between the modalities (Fig. 5B). 229 

 ATAC reads were processed using the standard sciMET processing workflow through alignment. As 230 

an initial assessment, peaks were called using Macs2 18, which produced 147,176 peaks from the 56.1 million 231 

total fragments, within the expected range for bulk ATAC-seq studies. Of these, 139,769 (95.00%) 232 

overlapped with previously identified accessible genomic loci, suggesting that the majority are likely bona 233 

fide candidate cis-regulatory elements19. Fragments were then used as input into SnapATAC2 20 for single-234 

cell level analysis. Transcription start site enrichment (TSSe) was relatively low (5.2; Fig. 5C) compared to 235 

typical single-cell ATAC-seq methods (~10-20)20; however, this is expected due to the double tagmentation 236 

nature of the assay. For a typical scATAC workflow, two proximal tagmentation events are required in order 237 

to produce a short fragment that can be taken through subsequent library processing, with spurious 238 

tagmentation events yielding long fragments that are not able to be amplified in the final PCR stage. In our 239 

assay, spurious tagmentation events during the ATAC tagmentation are subjected to shortening due to the 240 

subsequent genome-wide tagmentation after nucleosome disruption, making them viable for downstream 241 

processing. 242 

 One valuable utilization of the sciMET+ATAC assay is the ability to leverage the ATAC modality for 243 

integration with existing reference atlas datasets where a methylation reference may not be available. We 244 

therefore generated an s3-ATAC21 dataset from the same tissue specimen using a novel implementation of 245 

the workflow that utilizes the iCell8 instrument for post-tagmentation processing in a 5,184 nanowell chip, 246 

similar to previous workflows for sciATAC22. In total, we leveraged a 32 × 32 nanowell setup targeting just 247 

under 12 pre-indexed nuclei per well for a total target of 12,000 total s3-ATAC profiles. Sequence reads were 248 

processed as above, producing 9,101 passing cell profiles with a relatively low TSSe of 5.6, suggesting tissue 249 

preservation may be a factor. We next leveraged the s3-ATAC profiles, the ATAC modality from the 250 

sciMET+ATAC assay, and an additional annotated reference dataset of ~37 thousand cells, enriched for 251 

NeuN(-), (~85%)23 to produce integrated clustering and visualization, using the annotations from the 252 

Figure 5. sciMET+ATAC for joint single-cell DNA methylation and chromatin accessibility. A) 
sciMET+ATAC co-assay schematic. B) Concordant ATAC and methylation read counts per cell. C) TSSe for the 
ATAC modality is low, yet consistent for the tissue sampled. D) UMAP of ATAC modality including a reference 
atlas and s3-ATAC preparation, split by dataset. E) ATAC-based UMAP colored by cell type. F) DNA methylation 
modality integrated with sciMETv3 reference cells from the same individual and colored by cell type. G) Cross-
modality cell type concordance. H) ATAC profiles of marker genes split by DNA methylation-derived cell type. I) 
Called ATAC peaks at promoter regions exhibit less CG methylation variability between cell types versus putative 
enhancer peaks with higher cell type specificity. 
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reference atlas to assign cell types to each cluster (Figs. 5D,E, S3A). 253 

 We next processed the DNA methylation side, producing cell groupings similar to the assigned cell 254 

types from the ATAC modality (Fig. 5F). The methylation modality was combined with our previous sciMETv3 255 

dataset produced on the same individual, which produced substantial overlap except for a single cluster that 256 

was able to be filtered out using our doublet detection model, suggesting elevated noise in the dataset 257 

compared to the unimodal sciMETv3 workflow (Fig. S3B-D). We then leveraged the cluster identities from 258 

the unimodal dataset, as annotated in Figure 4, and performed label transfer to the sciMET+ATAC cells (Fig. 259 

5F). Using the ATAC and MET cell type classes, we next compared cross-modality assignments which were 260 

largely concordant, including when leveraging the higher-granularity methylation-based clusters, with the 261 

exception of modest crosstalk between oligodendrocyte and oligodendrocyte precursor (OPC) cell 262 

populations (Fig. 5G). 263 

 Paired ATAC and genome-wide DNA methylation enables the assessment of both open and closed 264 

chromatin for DNA methylation status, as opposed to methods that conduct bisulfite conversion only on 265 

ATAC-derived reads, providing insight into the regulatory status of loci across all cell types and not just those 266 

that exhibit open chromatin. To assess these interactions, we leveraged the methylation-based cell typing to 267 

produce aggregated ATAC tracks, producing distinct cell type-specific accessibility patterns at marker genes 268 

(Fig. 5H). We then assessed ATAC peaks called from the data for methylation status across cell types, 269 

splitting out the ATAC peaks by promoters and enhancers (Fig. 5I). Between these categories, methylation 270 

was less variable at promoter regions, with nearly all cell types exhibiting hypomethylation. This low-variance 271 

hypomethylation population was present in the enhancer peak set, yet only for a minority of peaks, with the 272 

large majority exhibiting higher methylation variance where a majority of cell types exhibited 273 

hypermethylation. 274 

Discussion 275 

 Here, we describe sciMETv3, a robust technology for the production of atlas-scale single-cell DNA 276 

methylation datasets capable of delivering library sizes in the 100’s of thousands of cells. We demonstrate 277 

that sciMETv3 is compatible with capture-based techniques which allow for a reduced amount of sequencing 278 

to produce robust cell type clustering. Our assessment allowed for approximately 8,000 single-cell libraries 279 

to be multiplexed within a single capture reaction without a reduction in on-target capture rate. Notably, the 280 

capture workflows produce sufficient off-target coverage to provide genome-wide methylation calls when 281 

cells are aggregated at the cluster level, mitigating the limitation of capture techniques where non-targeted 282 

regions are missed. 283 

 The higher cell counts in the final indexing stage of sciMETv3 (~600-1,000) over its predecessor, 284 

sciMETv2 (15-60), makes alternative means of C to T conversion viable, including EM-seq methods. We 285 

demonstrate the use of EM-seq on sciMETv3 libraries which produced a slightly larger fragment length which 286 
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is likely due to the gentler treatment of the DNA by enzymatic steps versus the harsh chemical treatment 287 

with sodium bisulfite. Resulting libraries produced comparable methylation profiles and did not exhibit any 288 

bias in clustering and cell type proportions when compared to standard bisulfite-based conversion libraries. 289 

This result was confirmed by leveraging enzymatic conversion for libraries prepared using protocols for 290 

Ultima Genomics sequencing, where results were again indistinguishable from bisulfite-based converted 291 

libraries. However, we observed over-conversion of sequencing adapters which impeded Illumina 292 

sequencing which was not a factor using the Ultima platform due to the use of alternate primer regions. 293 

 We then demonstrate the production of a large-scale dataset produced from four human cortex 294 

specimens (middle frontal gyrus). Libraries were sequenced on either an Illumina NovaSeq 6000TM or Ultima 295 

Genomics UG100TM instrument with no discernable bias observed between the platforms. Notably, the 296 

single-end long read length nature of the UG100 instrument allows for minimal over-sequencing of internal 297 

bases within library fragments that get sequenced twice using paired-end sequencing where paired reads 298 

overlap. Achieving a longer fragment length could mitigate this observation, though even with enzymatic 299 

conversion methods a substantial number of fragments would exhibit overlapping coverage using the paired 300 

200 bp sequencing format that we used in this study. Integration of all cells sequenced from this preparation 301 

yielded a high-resolution atlas of cell types in the human middle frontal gyrus, producing genome-wide maps 302 

of methylation profiles for each identified cell type. 303 

 Finally, we leverage a double-tagmentation workflow using two rounds of indexed Tn5 complexes 304 

with methylated adapters and an intervening nucleosome-disruption step. This workflow, sciMET+ATAC, 305 

enables the first tagmentation index to be leveraged for assessing chromatin accessibility, and the 306 

combination of both to be used as genome-wide DNA methylation. Overall, the data quality of sciMET+ATAC 307 

is lower for each modality than when performed on their own, as represented by a lower TSS enrichment 308 

value in the ATAC modality and the presence of noise in the methylation modality. However, the use of 309 

tailored quality control filtering allowed for distinct cell type identification, bolstered by integration with 310 

reference sciMETv3 cells from the same individual. Similarly, the ATAC modality integrated with an s3-ATAC 311 

dataset produced on the same tissue specimen using a novel nanowell chip-based implementation of the s3-312 

ATAC workflow, as well as with an annotated reference dataset, which enabled cell type label transfer to the 313 

sciMET+ATAC cells. Notably, the DNA methylation modality was able to produce a higher granularity of 314 

neuronal clusters, likely due to the richness of CH methylation across the genome and the high information 315 

content produced using the sciMET assay. Taken together, we believe that the sciMET+ATAC workflow will 316 

be a valuable for profiling a portion of cells in addition to the sciMETv3 workflow to bridge between datasets 317 

and facilitate cross-modality integration and cell type assignment.  318 
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Methods 425 

Tissue homogenization and nuclei isolation 426 

The brain tissue was dounce homogenized using cold NIB-Hepes buffer (10 mM Hepes, pH 7.5, 3 mM MgCl2, 427 

10 mM NaCl, 0.1% IGEPAL (v/v), 0.1% Tween-20 (v/v), 1x protease inhibitor) as in Nichols et al. 2022. The 428 

cell suspension was then spun down (5 minutes, 500xg, 4C). The pellet was then resuspended in NIB-Hepes 429 

for nuclei quantification. 430 

Nucleosome disruption 431 

Nuclei were quantified using a K2 Cellometer. Samples were separated into 1 million nuclei aliquots. Each 432 

aliquot was taken through the ScaleBio DNA Methylation Kit protocol for fixation and nucleosome disruption 433 

following manufacturer’s instructions. Afterwards nuclei were spun down at room temperature and 434 

resuspended in NIB-H. Aliquots were then recombined and quantified. 435 

Barcode 1: tagmentation 436 

We tagmented 10,000-50,000 nuclei per well in a 96-well plate using Tn5 loaded with adapters containing 437 

all methylated cytosines (ScaleBio Part No: 941770). Each well contained 10 µL tagmentation buffer 438 

(ScaleBio Part No: 941788). The plate was incubated at 55°C for 15 minutes and then placed on ice. All wells 439 
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were pooled and put into a 5 mL tube. 2 mL cold NIB-H was added, and the mixture was spun down at 500xG 440 

4C for 5 minutes. The supernatant was removed. The mixture was washed with cold NIB-H + 3 μL BSA, spun 441 

down, and the supernatant was removed. The nuclei were then resuspended in 110 µL cold NIB-H, 442 

quantified, and used for in situ ligation. 443 

Barcode 2: ligation 444 

To the 110 µL of nuclei, the following was added: 33 µL 10X Polynucleotide Kinase Buffer, 33 µL 10 mM 445 

ATP, 22 µL dH2O and 132 µL T4 Polynucleotide Kinase. The mixture was mixed by pipetting and distributed 446 

to a plate at 3 µL per well. The plate was incubated at 37°C for 30 minutes and then placed on ice. 2 µL of 447 

15 µM ligation barcodes were added to each well of the plate. The following was then added to each well of 448 

the plate: 6.2 µL 2X StickTogether Buffer, 0.3 µL 100 µM v3 ligation splint and 1.5 µL T7 DNA Ligase. In 449 

other versions/experiments, the nuclei were kept in a 1.5 mL tube for the PNK 37°C incubation, after which 450 

the ligation master mix was added and the nuclei distributed to the plate containing the 96 ligation barcodes. 451 

The plate was incubated at 25°C for 1 hour and then placed on ice and allowed to cool fully. A full list of 452 

ligation oligo sequences can be found in Supplementary File 1. 453 

Post-ligation & dilution 454 

All wells were pooled into a 5 mL tube. 3 mL NIB-H and 3 µL BSA were added. Nuclei were then spun down 455 

at 4°C 500xG for 5 minutes. The supernatant was removed. 3 mL NIB-H (with no protease inhibitors) was 456 

added. The tube was then spun down at 4°C 500xG for 5 minutes and resuspended in 100 µL NIB-H (no 457 

protease inhibitors). Nuclei were quantified and diluted to 750 nuclei per µL and 1 µL was added to each well 458 

of the final plates for bisulfite conversion using the ScaleBio Methylation Kit Met Bisulfite Conversion Module 459 

(Part No: 943631). Final plates or wells that used enzymatic conversion had 1 µL Qiagen Protease and 1 µL 460 

90 mM Tris. The plates were spun down briefly and frozen at -20°C. 461 

Bisulfite conversion (BSC), cleanup, and adapter ligation 462 

The plates for bisulfite conversion were defrosted and spun down briefly to collect the liquid to the bottom of 463 

the wells. Plates were then incubated at 50°C for 20 minutes to digest the nuclei and reverse cross-links. 464 

Bisulfite conversion, cleanup and reverse adapter ligation was carried out using manufacturers protocols for 465 

the ScaleBio Single-Cell DNA Methylation kit (ScaleBio Part No: 943631, 944302 and 944376). 466 

Enzymatic conversion, cleanup, and adapter ligation 467 

Enzymatic conversion was carried out using the NEBNext Enzymatic Methyl-seq Conversion Module. Plates 468 

were spun down and then incubated at 55°C for 15 minutes and 72°C for 20 minutes to inactivate the Qiagen 469 

Protease. Afterwards, the manufacturer’s protocol was followed for enzymatic conversion. Final elution was 470 

done using 10 µL EB and then carried through the ScaleBio Single-cell DNA Methylation Kit (ScaleBio Part 471 

No: 944376) workflow for adapter ligation. 472 
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Barcode 3: indexing PCR 473 

The indexing PCR was performed with the following recipe for each well of a 96-well plate: 10 µL 5X VeraSeq 474 

GC Buffer, 2 µL 10 mM dNTPs, 1.5 µL VeraSeq ULtra Polymerase, 24 µL dH2O, 0.5 µL EvaGreen 100X and 475 

1 µL 1 µM i7 Flow Cell primer for a total volume of 39 µL. 1 µL of barcoded i5 primers was added separately 476 

to each well. A full list of primers can be found in Supplementary File 1. The plate was mixed and placed on 477 

a qPCR with the following thermal conditions: 98°C initial denaturation for 30 seconds, 98°C for 30 seconds, 478 

57°C annealing for 20 seconds, 72°C extension for 20 seconds, 72°C plate read for 10 seconds (these last 479 

4 steps were cycled until exponential amplification was seen). After PCR, 10 µL of each well was pooled and 480 

the pool was column cleaned and SPRI cleaned with equal volume of product to SPRI beads. The resulting 481 

library was quantified using Qubit and TapeStation. Libraries were sequenced on an Illumina NextSeq 2000TM 482 

or Illumina NovaSeq 6000TM. 483 

Ultima indexing PCR 484 

For Ultima-compatible libraries, indexing PCR was carried out as above but substituting primers that ensure 485 

all indexes are on the same side of the molecule and that contain the Ultima Genomics outermost 486 

amplification and sequencing primers. A full list of primers can be found in Supplementary File 1. The final 487 

plate was pooled and sequenced on an Ultima Genomics UG100TM instrument using six wafers. 488 

sciMETv3 capture 489 

We pooled an 8-strip of sciMETv3 library in a volume of 16 µL of water. We performed capture with standard 490 

blockers and 300ng of library material. In a tube we combined 4 µL methylome panel (Twist Human 491 

Methylome Panel, Twist Bioscience, 105520), 8 µL Universal Blockers (also known as standard blockers, 492 

Twist Biosciences, 100578), 5 µL Blocker Solution (Twist Biosciences, 100578), 2 µL Methylation Enhancer 493 

(Twist Biosciences, 103557) and 1 µg of library in a volume of 7 µL in a 1.5 mL Eppendorf tube. Tubes were 494 

dried down on low heat in a speed-vac for 15’ and checked every 15’ for about an hour. 495 

A thermal cycler was programmed as follows: 95°C hold / 95°C 5’ / 60°C hold (lid 85°C). 20 µl of 65°C. Fast 496 

Hybridization Mix (Twist Biosciences, 104180) was added to tubes with dried down panel, library and 497 

blockers. The mixture was solubilized for an additional five minutes before transferring to a 0.2 mL PCR tube. 498 

30 µL of Hybridization Enhancer (Twist Biosciences, 104180) was added, the tube was pulse-spun and then 499 

transferred to the hot thermal cycler. The reaction was hybridized for 16 hrs to account for the large size of 500 

the methylome panel. Subsequent washing and PCR amplification was carried out according to 501 

manufacturer’s protocol, using a 63°C wash temperature. 502 

sciMETv3+ATAC 503 

Nuclei were isolated in the same way as above. We tagmented 100,000-500,000 nuclei per well in an 8-strip 504 

using Tn5 loaded with adapters containing all methylated cytosines (ScaleBio Part No: 941770). Each well 505 
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contained 10 µL tagmentation buffer (ScaleBio Part No: 941788). The 8-strip was incubated at 55°C for 10 506 

minutes with 400 RPM shaking and then placed on ice. Each well was transferred to its own 1.5 mL tube 507 

where they were fixed and nucleosome disrupted using the same protocol as for the full sciMETv3 version. 508 

After nucleosome disruption it is important to remove all of the supernatant without disturbing the pellet. For 509 

the second tagmentation a new set of 8 barcodes was used and the nuclei were tagmented using the same 510 

recipe as above. They were also tagmented at 55°C for 10 minutes with 400 RPM shaking and then placed 511 

on ice. All wells were then pooled and carried through all post-tagmentation steps of the sciMETv3 protocol. 512 

Final plates had 90 nuclei diluted per well. 513 

Read processing 514 

Raw sequence reads produced using Illumina instrumentation were carried through barcode demultiplexing 515 

using unidex (github.com/adeylab/unidex) to produce barcode-corrected read name paired fastq files. Reads 516 

were then taken through adapter trimming using ‘premethyst trim’ (github.com/adeylab/premethyst), which 517 

leverages Trim Galore. Sequence reads produced using the Ultima Genomics instrument were processed 518 

using the Ultima Genomics demultiplexing software to produce unaligned cram files containing the read with 519 

adapter bases trimmed and error-corrected indexes as a special field. These crams were then converted to 520 

fastq files with barcodes included within the read name for downstream compatibility. 521 

Alignment and methylation call extraction 522 

Fastq files were aligned using the ‘premethyst align’ wrapper using default parameters which leverages 523 

BSBolt24. Aligned bam files were deduplicated using ‘premethyst rmdup’ and then methylation call files were 524 

generated using ‘premethyst extract’, including a lenient minimum read count threshold of 10,000 since cells 525 

are later filtered using more stringent parameters at subsequent analysis steps. Call files were then packaged 526 

into h5 calls files using ‘premethyst export’. 527 

DNA Methylation analysis using Amethyst 528 

Cell metadata ‘cellInfo’ files produced from ‘premethyst extract’ along with methylation call h5 files were used 529 

to generate an Amethyst analysis object using amethyst (github.com/lrylaarsdam/amethyst)15 and then 530 

filtered to include cells meeting minimum cytosine coverage levels (1M for atlas dataset, 500k for other 531 

datasets). An hg38 reference annotation file was added for gene-level coordinates with the ‘makeRef()’ 532 

function. Site-level information in the h5 files were cataloged by chromosome using ‘indexChr’. Window 533 

methylation matrices were then generated with ‘makeWindows’, both for CG using metric = ‘score’ and CH 534 

using metric = ‘percent’. For the large-scale datasets produced using the Illumina NovaSeq 6000TM and 535 

Ultima Genomics UG100TM instruments, 100 kbp windows were leveraged, expanding to 200 kbp windows 536 

for all other smaller-scale datasets. We then estimated the number of IRLBA dimensions to calculate for the 537 

CG and CH contexts using ‘dimEstimate()’ followed by producing an IRLBA matrix using the specified number 538 

of recommended dimensions for each respective context using ‘runIrlba()’. Effects of coverage bias on the 539 
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irlba matrix were mitigated with ‘regressCovBias()’. From the result, distinct groups were identified with the 540 

Rphenograph-based ‘runCluster()’ function and umap coordinates were projected using ‘runUmap()’. Cell 541 

type identification of the resulting clusters was performed based on the consensus of the following modalities: 542 

mCG patterns over canonical marker genes using amethyst vis ualization functions ‘histograM()’ and 543 

‘heatMap()’; mCH levels over canonical marker genes using functions ‘dotM’ and ‘dimM’; and correlation of 544 

mCH levels over subtype-specific gene subset26 to a reference atlas produced by the Ecker Lab13. Integration 545 

of the Illumina and Ultima datasets was carried out using Harmony performed on the irlba matrix. Cell type 546 

annotation for the sciMET+ATAC dataset for the methylation modality was performed by integration of the 547 

sciMETv3 Illumina dataset for the same individual, leveraging the previously-annotated cell types to label-548 

transfer to the sciMET+ATAC cells using the amethyst function ‘clusterLabelTransfer()’. 549 

s3-ATAC sample extraction and barcoded tagmentation 550 

Frozen human brain tissue ID: 6996 was minced on dry ice and added to a Dounce homogenizer on ice 551 

along with cold 2 mL NIBH, containing fresh protease inhibitors. The tissue was homogenized with 7 strokes 552 

with the ‘A’ pestle, incubated for 10:00 on ice, then treated with 7 strokes with the ‘B’ pestle. The lysate was 553 

then filtered through 70 µm and 40 µm cell strainers (pluriSelect 43-50070 and 43-50030) and centrifuged at 554 

500rcfr for 6:00 to remove extranuclear debris. The pellet was resuspended in 0.5 mL NIBH and counted on 555 

a Revvity K2 cellometer.   556 

We performed tagmentation by adding 300 µL 4x TD Buffer and 12 µL 1M D-glucosamine (Sigma Aldrich), 557 

and an additional 388 µL NIBH to the nuclei for a final volume of 1.2 mL. We then distributed the nuclei into 558 

a 96-well PCR plate, at 10 µL per well, before adding 1.5 µL of barcoded tn5 (ScaleBio)21 and tagmenting at 559 

55°C for 15 minutes. The plate was then transferred to ice and incubated 5:00 before pooling the nuclei into 560 

a 5 mL tube and adding 3mL NIBH. The nuclei were then centrifuged for 6:30 at 500 rcf and washed with 3 561 

mL NIBH plus 3uL 100mg/ml BSA. After washing, the nuclei were resuspended in 100 µL, and counted on 562 

the K2 cellometer. Nuclei were diluted to 340 nuclei / µL for loading on the iCell8. 563 

s3-ATAC iCell8 loading protocol 564 

For this sample, all additions were in a 36×36 well format. Volumes should be doubled if running the protocol 565 

in 72×72 well mode to account for the additional wells. LNA/SDS mix21 was distributed into a 350v iCell8 chip 566 

(TakaraBio) at 35 nL per well. The chip was blotted, capped with RC film (TakaraBio) and centrifuged 10:00 567 

at 2500 rcf 4°C between every step unless otherwise specified. 50 nL diluted cells were then added, followed 568 

by incubation at 65°C for 10:00 and 72° for 10:00 (note: exact temperature settings for the modified BioRad 569 

T-1000 thermocycler included with the iCell8 were based on the conversion tables in Appendix G: Designing 570 

Thermocycler Programs, contained within the iCell8-CX User Manual).  571 

Following nuclear lysis, we dispensed the Quench/Linear Extension mix21 at 50 nL per well. The chip was 572 

then placed in the BioRad TC-1000 for the Adapter Extension step. Adapter switching conditions were: initial 573 
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extension of 72°C for 10 minutes, initial denaturation at 98°C for 30 seconds, then 10 cycles of 98°C for 10 574 

seconds, 59°C for 20 seconds, and 72°C for 1 minute, followed by a 72°C final extension for 1 minute and 575 

cooling to 10°C hold. 576 

35 nL each i7 TrueSeq and i5 Nextera barcoded PCR primers (15 µM) were added to each well, then 100 577 

nL PCR Master-mix21 was added to each well (note: this can be added in 1x100 nL dispense for 36x36 mode, 578 

but must be added in 2, 50 nL dispense steps for 72x72 well mode). Final amplification conditions were: 98°C 579 

for 45 seconds, then 13 cycles of 98° for 15 seconds, 57°C for 30 seconds, and 72°C for 30 seconds, finishing 580 

with a 72° final extension for 5 minutes. 581 

After extension, the PCR product was extracted from the iCell8 chip by centrifugation with the provided funnel 582 

from TakaraBio, and a 300µL aliquot was SPRI cleaned with a 1:1 sequential SPRI clean (sequentially adding 583 

100 µL 3 times to the aliquot with 2 minutes binding time between additions to improve the size selection 584 

effect), before being eluted in 30ul and quantified with Qubit DNA fluorometer HS kit (Invitrogen) and Aglient 585 

Tapestation D1000. 586 

The purified library was sequenced on a NextSeq 2000 P3 kit, with the following cycle numbers: Read 1: 89 587 

bp, Index 1: 10 bp, Index 2: 10 bp, Read 2: 129 bp. 588 

s3-ATAC analysis 589 

Sequencing data were demultiplexed with unidex and aligned with bwa mem25. The file was sorted by cell 590 

barcode, PCR duplicates were removed, and a custom python script was used to check the BAM file header 591 

for errors and add the cell barcode to the ‘CB’ BAM tag for each read to allow for faster ingest with 592 

SnapATAC2. A fragments file was created using SnapATAC2’s make_fragment_file function, and then an 593 

AnnData object was created with the import_data function with default parameters except for 594 

setting sorted_by_barcode to True. QC plots (fragment distribution and TSS enrichment) were generated as 595 

recommended in the SnapATAC2 documentation, and the dataset was filtered to remove cells with TSS-596 

enrichment less than 5. Feature selection, dimensionality reduction, and clustering were all performed 597 

according to the SnapATAC documentation’s recommended settings. 598 

For cell type assignment, we used the HGAP dataset23 and co-processed it with the human brain data 599 

described above, as well as with the ATAC data from the MET+ATAC coassay, using the same process 600 

described above, with the addition of removing batch effects with Harmony14. After clustering, the cell type 601 

information from the HGAP data was used to assign an implied cell types to the new datasets. As an 602 

additional validation, we use scanpy's tracksplots function to plot the accessibility of various brain cell type 603 

marker genes across the different clusters. The results were concordant with the annotation lift-over. 604 
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Figure S1. sciMETv3 sequenced on the Illumina platform. A) UMAP of cells colored by cell type. B) Cytosines 
covered per cell. C) Global mCH levels per cell. D) UMAP colored by individual. E) Cell type proportions by 
individual. F) Marker gene body mCH levels. G) Additional marker gene mCG methylation patterns with distinct 
cell type-specific hypomethylation regions. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610369doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610369
http://creativecommons.org/licenses/by/4.0/


 
24 

 606 

 
 

Figure S2. sciMETv3 sequenced on the Ultima platform. A) UMAP of cells colored by cell type. B) Cytosines 
covered per cell. C) Global mCH levels per cell. D) Cell type proportions by individual. E) Marker gene body mCH 
levels. F) mCH levels at the single-cell level projected onto the UMAP reveals inhibitory and excitatory neuron 
specificity. G) Additional marker gene mCG methylation patterns with distinct cell type-specific hypomethylation 
regions. 
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Figure S3. sciMET+ATAC cell typing and filtering. A) Marker gene tileplots for the ATAC modality. B) UMAP of 
sciMET+ATAC methylation cells reveals a population with a high doublet probability score. C) UMAP colored by 
cluster reveals that cluster 2 encompasses the high doublet score population. D) A score cutoff of 0.2 eliminates 
most of cluster 2 and other high-noise cells. E) Comparison of granular sciMET+ATAT DNA methylation-based 
cell types and ATAC-based cell types. 
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