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Abstract

Cerebrospinal fluid (CSF) flow is crucial for clearing metabolic waste from the
brain, a process whose dysregulation is linked to neurodegenerative diseases
like Alzheimer’s. Traditional approaches like particle tracking velocimetry
(PTV) are limited by their reliance on single-plane two-dimensional mea-
surements, which fail to capture the complex dynamics of CSF flow fully.
To overcome these limitations, we employ Artificial Intelligence Velocime-
try (AIV) to reconstruct three-dimensional velocities, infer pressure and wall
shear stress, and quantify flow rates. Given the experimental nature of the
data and inherent variability in biological systems, robust uncertainty quan-
tification (UQ) is essential. Towards this end, we have modified the baseline
AIV architecture to address aleatoric uncertainty caused by noisy experi-
mental data, enhancing our measurement refinement capabilities. We also
implement UQ for the model and epistemic uncertainties arising from the
governing equations and network representation. Toward this end, we test
multiple governing laws, representation models, and initializations. Our ap-
proach not only advances the accuracy of CSF flow quantification but also can
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be adapted to other applications that use physics-informed machine learning
to reconstruct fields from experimental data, providing a versatile tool for
inverse problems.

Keywords: Cerebrospinal fluid, data assimilation, physics-informed
machine learning, experimental methods.

1. Introduction

The cerebrospinal fluid (CSF) flow in the brain plays an important role
in transporting solutes, including clearing metabolic waste whose buildup
has been linked to Alzheimer’s disease [1, 2]. This system of solute trans-
port is often referred to as the glymphatic system and has been shown to
be altered with aging in mice and humans [3, 4]. It is hypothesized to be
changed with functional hyperemia [5], under different anesthetic states [6],
and in pathological scenarios such as stroke [7], hypertension [8], cerebral
amyloid angiopathy [9], and cerebral small vessel disease [10]. CSF is deliv-
ered rapidly around the brain’s surface in a network of channels adjacent to
surface (pial) arteries called perivascular spaces (PVSs) before it enters deep
into the brain tissue, where solute exchange occurs. Quantifying the flow
of CSF is essential to understanding glymphatic function, including building
models of glymphatic flow, designing drug delivery systems, and, eventually,
developing interventions to treat glymphatic-related pathologies. This work
focuses on quantifying the flow of CSF in surface PVSs.

Traditionally, CSF flow has been quantified using particle tracking ve-
locimetry (PTV) in surface PVSs, which only provides velocity data within
a single plane and can lead to misrepresenting the volumetric flow rate,
which is a more pertinent metric than velocity. To address these challenges,
physics-informed machine learning (PIML) has been explored as an alter-
native for modeling complex biological flows [11-13]. The PIML approach
uses a representation model, such as multilayer perceptrons or Kolmogorov-
Arnold networks, to approximate the solution of ordinary /partial differential
equations (ODE/PDE) by minimizing a multi-objective loss function that
attempts to fit any observable data while satisfying the underlying phys-
ical laws [11]. PIML flexibility makes it suitable for solving forward and
inverse problems[12, 14], and it has been shown in [15] that, for some lin-
ear problems such as Stokes flow, any neural network that sufficiently mini-
mizes the loss function is a good approximation to the true solution. Despite
their advantages, PIML effectiveness can be compromised by the nonlinear
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and chaotic nature of biological systems, so enhanced neural network archi-
tectures, transformational methods, and adaptive strategies are required to
maintain accuracy and reliability [16-26]. For instance, Boster et al. [13] used
AIV, enhanced with learning rate annealing[21], to model the CSF flow from
sparse 2D data and boundary conditions, obtaining volumetric flow rates and
other dynamical parameters. However, one limitation of their study was the
assumption of stationary boundaries, given the dynamic nature of boundary
movements driving CSF flow [8, 27, 28]. Despite the impressive reconstruc-
tion and inference capabilities of AIV [16, 22, 29|, neural networks are poor
at quantifying predictive uncertainty and tend to produce overconfident pre-
dictions [30], which can be harmful to biological or medical applications. Ad-
ditionally, complex deep-learning models usually lack interpretability. Thus,
the integration of uncertainty quantification (UQ) with deep learning (DL)
has emerged as the potential solution to improve the safety, interpretability,
and reliability of neural network predictions [31]. Psaros et al. [32] identified
that the uncertainties in PIML are sourced in several factors, which can be
roughly categorized into aleatoric, stemming from noisy or sparse data, epis-
temic, arising from the representation model (i.e., architecture, initialization,
etc.), and model uncertainty stemming from the governing equations.

To address the highlighted issues effectively, we extend the AIV frame-
work proposed in [13] by incorporating moving boundary conditions and
quantifying the uncertainties in quantities of interest, such as flow rate, pres-
sure gradient, and wall shear stress. To systematically quantify aleatoric
uncertainty, we introduce AIV-NLL, a refined scientific machine-learning
approach that combines AIV and a negative-log likelihood (NLL) criterion
30, 33, 34] to infer flow fields and their uncertainties associated with noisy ex-
perimental data. AIV-NLL enhances the model interpretability and provides
information on the confidence of the AIV framework in making predictions.
To quantify model and epistemic uncertainties, we employ an ensemble of
models (EoM) [30]. In this approach, multiple models are independently
trained to perform the same task. The predictive probabilities from these
models are then approximated by a Gaussian distribution, where the en-
semble’s mean and variance are used to represent the mean and variance
of this distribution, respectively, thus providing uncertainty estimates [30].
This method offers a robust and scalable framework for understanding how
variations in the model representation — such as parameter initialization,
model architecture, and governing equations — impact the results. It is im-
portant to note that when the EoM is applied to variations in parameter
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initialization, it aligns with the deep ensemble method [30].
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Figure 1: Schematic diagram of ATV-NLL. (A) The model is trained using in vivo particle
tracks, moving boundary conditions (MBCs), and collocation points (i.e., points used to
evaluate the PDE) sampled in the perivascular space (PVS). The PVS domain is rep-
resented in green, and the adjacent artery is represented in red. MBCs and collocation
points are clustered into training groups, from which ordered mini-batches are obtained.
2D velocity measurements are obtained by particle tracking velocimetry (PTV). (B) At
each iteration, the point coordinates are fed into two neural networks. The outputs from
the first neural network are the pressure and mean velocity fields, while the second network
predicts the standard deviation of each velocity component. Residuals for PTV, MBCs,
and equations are calculated. Residual-based attention (RBA) multipliers are updated us-
ing an exponentially weighted moving average of the residuals. The scaled residuals form
each loss subterm, namely the negative log-likelihood criterion for PTV and MBCs and
the mean-squared error for the equation residuals. The total loss updates the parameters,
resulting in continuous and differentiable pressure, mean velocity, and standard deviation
fields.

Through these strategies, our work aims to enhance the accuracy and
reliability of CSF flow quantification in surface PVSs and deepen our under-
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standing of our model capabilities by explicitly addressing and quantifying
the uncertainties associated with each component of the modeling process.
We show that the flow fields inferred by AIV, and precisely the volume flow
rate, pressure gradient, and shear stress at the wall, are relatively robust to
variations to the governing equations modeling the flow, significant changes
to the network architecture, and the initial conditions; in short, the combined
aleatoric, epistemic and model uncertainties are less than 30%.

2. Problem Description

To obtain the experimental data, Boster et al. [13] injected one-micron
fluorescent microspheres and dyes into the CSF, enabling visualization and
quantification of the flow velocity within the PVS. The position and velocity
of the microsphere particles over time were quantified using particle track-
ing velocimetry, and the 3D PVS geometry was reconstructed from a 3D
volume scan, as illustrated in Figure 1(A). In this study, we also add PVS
domain boundary motion, which we infer from the contraction of the adja-
cent vessel. To enhance the resolution of the PTV data, we consolidated PTV
data from multiple cardiac cycles into a single (phase-merged) cardiac cycle
of T'= 0.303s. Finally, to evaluate the PDE residuals required to enforce
the governing equation during training, we generated collocation points by
shrinking and combining the boundary conditions, as shown in Figure A.9.
This strategy allows us to control the spatial distribution of points within
our domain.

Based on these experimental data, we follow [13, 16] and use AIV to infer
three-dimensional (3D) velocities and pressure from two-dimensional (2D)
particle tracking velocimetry (PTV) data and 3D moving boundary condi-
tions. We train our model by optimizing a multi-objective loss function (£)
that minimizes the point-wise error (i.e., residuals) of the velocity data (ry),
boundary conditions (773), and governing equations (r.) (see Figure 1(B)). To
deal with the local imbalances related to optimizing £, we use residual-based
attention (RBA) weights (\;) as local multipliers to balance the point-wise
errors, enabling a uniform convergence along the analyzed domain [17, 35].
Using this approach, we obtain continuous and differentiable flow fields that
we use to compute quantities of interest such as flow rate, pressure gradient,
and wall shear stress, which are relevant to understanding the fluid dynam-
ics involved in glymphatic flows. Despite the impressive reconstruction and
inference capabilities of AIV [16, 22, 29], neural networks (NNs) often strug-
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Figure 2: Overview of training data. (a) Fluorescent particles and dyes are injected
into the mouse and imaged with two-photon microscopy. (b) A two-photon microscopy
image from a volumetric scan shows an axial view of the vessel (red) and surrounding
PVS (green). High temporal resolution imaging was acquired at planes A and B. (c)
Example particle tracks and (d) 3D boundaries of the PVS, with the moving portion of
the boundary indicated in red and the particles acquired from plane A. (e) Vessel diameter
was measured and then averaged over the cardiac cycle, as determined from simultaneous
electrocardiogram measurements. The vessel radius over a cardiac cycle was then inferred
by assuming axisymmetric vessel pulsations.

gle with quantifying prediction uncertainty. To address these challenges, we
quantify uncertainty in three quantities of interest: flow rate, pressure gra-
dient, and wall shear stress. To capture aleatoric uncertainty, we train a
second neural network that predicts the standard deviations of each veloc-
ity component, learning these values using a negative log-likelihood (NLL)
criterion [34] (see Figure 1(B)). For epistemic and model uncertainties, we
employ an ensemble of models [30], where multiple models are trained to
perform the same task. Specifically, to assess model uncertainty, we train six
networks constrained by different systems (e.g., PDEs, BCs, or additional
assumptions) that ideally govern the CSF flow and compute the uncertainty
in the three quantities of interest. Following a similar approach, we identify
epistemic uncertainty due to parameter initialization and neural network en-
hancements.
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3. Methods

3.1. Ezxperimental data collection

3.1.1. Mouse surgery, imaging, and particle tracking velocimetry

A cranial window was installed, and one-micron fluorescent particles and
dye were injected into the CSF in the cisterna magna (Fig. 2a) of a mouse
in vivo. A dextran dye was injected intravenously to indicate the location of
the blood vessel. The PVS geometry was reconstructed from a 3D volume
scan (see Fig. 1a). The motion of the fluorescent particles in a single plane
(plane A) was tracked using particle tracking velocimetry (PTV) (Fig. 2b,
c). Vessel motion was obtained from time-series images at a different cortical
depth (plane B) where more of the vessel was visible. We use Cartesian
coordinates (x,y,z), where z aligns with the depth direction on the microscope
and y roughly aligns with the mean flow direction. Further details regarding
mouse surgery, anesthesia, imaging, and particle tracking are described by
Boster et al. [13].

3.1.2. Mowving Boundaries

Arterial vessels pulse in synchrony with the cardiac cycle, and since the
vessel wall is directly adjacent to one side of the PVS, the vessel pulsatil-
ity moves the PVS boundary adjacent to the vessel. Other regions of the
PVS may also pulse with the cardiac cycle. Still, that motion is not well
characterized and cannot be determined from the time-series images of the
PVS because the PVS boundaries are not very distinct since they are only
indicated by the presence of a dye in the PVS lumen. Additionally, even if
the boundaries were clearly indicated (as possible with a transgenic mouse
labeled with a fluorescent protein that indicated the PVS boundaries), that
would still only provide motion in a single plane, and it is unclear how to
infer motion in three dimensions. In contrast, the vessel wall boundaries
are more distinct, and we can infer motion in three dimensions by assum-
ing axisymmetric vessel pulsatility. Therefore, we infer the motion of the
PVS boundaries adjacent to the vessel based on the vessel wall motion and
assume stationary boundaries elsewhere. The following paragraph describes
the procedure used to determine this motion.

Time-series images of the blood vessel and PVS was obtained from a plane
intersecting the vessel (plane B in Fig. 2b). The vessel width in plane B was
obtained using a Canny edge detection algorithm (the results shown in Fig.
2e). The time-series width measurement was phase-averaged over the cardiac
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cycle based on simultaneous ECG recordings. Based on the distance of plane
B from the vessel centerline, the phase-averaged vessel width was converted
into a vessel radius, and the vessel wall velocity was calculated by taking the
derivative of the radius with respect to time (Fig. 2f). The three-dimensional
boundaries of the vessel were determined from two-photon microscopy. We
fit a circle to the location of the vessel boundaries in axial slices spaced 0.6480
nm apart, as described by Raicevic et al. [36] (Fig. 2b). The contrast along
the bottom edge of the vessel is much worse than the rest of the vessel because
red blood cells attenuate the signal intensity, so we excluded points on the
bottom edge of the vessel. From the fit circle, we determined the vessel
centerline and calculated the position and velocity of the vessel boundary
points, assuming that the vessel pulsation was axisymmetric. In order to
decide which points on the PVS boundary were adjacent to the vessel, we
dilated the vessel by 4 pm. We classified all boundary points inside the dilated
vessel as moving and all other boundary points as stationary (Fig 2d). The
moving boundary points were assigned the same velocity magnitude as the
vessel, and the velocity direction was calculated with respect to the vessel’s
centerline.

3.2. Underlying Physical Laws

The flow of CSF in the PVS obeys the Navier-Stokes (NS) equations.
Therefore, we follow [12, 37, 38] and define momentum and mass conservation
equations as:

ou 1,
- . = — — 1
+(u-V)u Vp + Rev u (1)

ot
V-u=0 (2)
where u = (u,v,w) is the nondimensional velocity field, p is the nondimen-
sional pressure, and Re = 1.1 x 1072 is the Reynolds number [13].
Since Re < 1, the inertial terms (i.e., the terms 2% + (u - V)u on the
left-hand side of equation (1)) are negligible. This theoretical assumption

was verified in [29]. Consequently, in this study, we model this system using
Stokes flow:

Vp = Viu. (3)

This simplification eliminates the nonlinearities of the NS equation, which
enables the use of the negative log-likelihood criterion [30, 33, 34].
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3.2.1. Quantities of interest

Pressure gradient. The pressure gradient within the PVS is exciting from
a fluid dynamics standpoint because it drives the glymphatic flow. Once
our model is trained, we can calculate the axial pressure gradient g—z using
automatic differentiation.

Volume flow rate. The flow of CSF is typically the dominant mass transport
mechanism in surface PVSs and has most often been quantified using the
mean velocity (measured by PTV). However, the mean velocity calculated
from PTV will not reflect the average PVS velocity if the PTV imaging
plane is not close to the center of the PVS or if the measurement locations
are not uniformly distributed in the PVS, as shown by Boster et al. [13]. A
better metric is the volume flow rate (), which we calculate from the velocity
component v by sampling on a square grid (resolution 0.648 pm):

PR
Q= N ; Ui (4)
where A is the cross-sectional area and ¢ indexes the N individual velocity

inferences.

Shear stress. The shear stress is defined as
T =y, (5)
where 7 is the shear rate, calculated using the strain rate tensor E:
y=V2E:E,

1 (6)
E= §(Vu + (Vu)T).

As defined, 7 is a scalar magnitude accounting for all shear components, not
just the component-oriented downstream along the wall (often referred to as
“wall shear stress”). We expect that the magnitude, rather than a single
component, is likely the relevant quantity for aggregation and mechanical
signaling. While the role of PVS wall shear stress in glymphatic flows is not
known, wall shear stress plays a significant role in cardiovascular flows, and
quantifying the shear stress is the first step in elucidating its importance.
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3.8. Uncertainty Quantification

Given a set of paired noisy observations D = {x;, u;}, our goal is to con-
struct the probability distribution p(u|x, D, H) for predicting w at any new
location x, where x; = (t;, z;,y;, 2;) denotes the time and three-dimensional
coordinates and H denotes a set of assumptions such as neural network ar-
chitecture, governing equations, choice of the optimizer, etc. Following [32],
we assume that w(x;) is generated by a data-generating process comprising
a deterministic component @(x;) and an additive noise u'(x;), represent-
ing aleatoric uncertainty. For modeling this process, we assume a likelihood
function p(ul|x, 0), where 6 are the parameters to be inferred from the data,
introducing epistemic uncertainty regarding the representation model, and
model uncertainty stemming from the governing equations [32, 39-41].

We employ two approaches to quantify the uncertainty related to our
problem. To measure the aleatoric uncertainty, we combine AIV with the
negative log-likelihood method [33]. On the other hand, we use the ensemble
of models (EoM) to compute epistemic and model uncertainties [30] due to
the parameter initialization, model enhancements, and governing equations.
We chose EoM over traditional Bayesian methods due to the computational
challenges and potential inaccuracies of Bayesian neural networks (BNNs).
While BNNs use a prior distribution on parameters to compute a posterior for
predictive uncertainty, the need for approximations often compromises the
quality of uncertainty quantification [42, 43]. These approximations can yield
unreliable predictive uncertainties [44]. Furthermore, traditional Bayesian
methods, including Bayesian Model Averaging (BMA), are typically slower
to train and more challenging to implement than ensemble methods. Ensem-
bles provide a robust mechanism for capturing a broader spectrum of model
behaviors, particularly advantageous when the actual model may not align
with the predefined hypothesis class [30]. Our study leverages EoM to ex-
plore their effectiveness in estimating predictive uncertainty, demonstrating
their practical advantages in modeling complex systems.

3.8.1. Aleatoric Uncertainty

We use NLL to quantify the aleatoric uncertainty. Towards this end, we
assume that the velocities u = (u, v, w) can be decomposed into mean fields
u = (u,v,w) and fluctuations from the mean v’ = (v/,v’,w'), namely:

u=1u-+u (7)
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In this study, we assume that the mean fields follow the Stokes (S) equa-
tions and that the fluctuations are sampled from a normal distribution u’ ~
N(0, o) centered on zero and with standard deviation o = (0, 0y, 0,). Un-
der these assumptions, we can learn the data-driven mean velocities (u) and
their standard deviations (o) using the NLL criterion proposed in [30, 33, 34].
The NLL is described as follows:

loglo (05, x)? 7(0,, z)?

NLL(6,,602, ) = i (227 /] + 2;(52’7:;2 +C (8)
where & = (¢, x,y, z) are the non-dimensional inputs (i.e., time and position),
and 6, and 6, are two sets of trainable parameters from two independent neu-
ral networks (see Figure 1(B)). The residuals 7(6, ) = |u (01, ) —uy4| are the
absolute difference between the data u, and the predicted mean field w(6;, x).
Finally, C'is a positive constant and o (02, ) = (0,(02, ), 0,(02, ), 04y (62, ))
are the predicted standard deviations. Notice that the residual from the data
is scaled by the corresponding standard deviation; therefore, it behaves as an
attention mask that helps the model fit the data better. Thus, this technique
can also be considered as an optimization method.

We learn the mean fields u, v, w and their corresponding standard devia-
tions oy, 0, 0, by optimizing a combined loss function that minimizes errors
from data, boundary conditions, and equations. The data loss (Lp) controls
the mismatch between the network prediction and experimental observations
and is explicitly defined as:

Lp(Xp,bh,02) = Zmd()\fl’iNLL(rd(xi,Gl, 05))):, where x; € Qp,  (9)
d

where (-); is the mean operator and x; = (t;, z;, ¥i, 2;) is the i*® point from
batch Xp which was selected from the data domain p. The index d =
{u,v,w} identifies the specific variables constrained in the loss, where u, v, w
represent the velocities in the x,y, 2z directions, respectively. The residual
(i.e., point-wise error) r4(x;, 0) = |d(x;)—d(x;, 0)| quantifies the difference be-
tween the experimental observation CZ(XZ) and the network prediction d(x;, )
at point x; € Qp. We use residual-based attention weights (RBA) [16] as
local multipliers (Az;) to balance the point-wise contribution of the residual
rq(x;,0) and global weights (my) to scale the averaged value of component
d.

11


https://doi.org/10.1101/2024.08.29.610340
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.29.610340; this version posted August 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Similarly, the boundary conditions are imposed by the boundary loss Lp:

Lp(Xp,01,05) =Y my(A; ;NLL(ry(x;,01,065)));, where x; € Qp.  (10)
b

Here, Qg is the boundary domain corresponding to the walls of the PVS
channel. To impose the no-slip boundary conditions, we set b = {u,v,w},
with residuals ry(x;, ) = |b(x;,8)|, RBA weights ), ;, and global weights my,.

To enforce our governing equations, we rewrite equations 1 and 2 in their
residual form and impose them iteratively by minimizing the loss function
described in equation 11.

Lp(XEg, 0) = Zme()\ilrg(xl,@l)ﬁ, where x; € (). (11)

Here, e = {M,, M,, M., DF'} identifies the residuals M, ,, . from the momen-
tum equations in the {x,y, z} directions, respectively (i.e., equation 3), and
the residual DF from conservation of mass (i.e., equation 2). We define the
residual for subcomponent e and point x; € Q as r.(x;,0) = |e(x;,0)|, and
balance its point-wise and averaged contribution to L using RBA as local
multipliers A.; and global weights m,, respectively.

To stabilize the training process [16], ordered batches are generated based
on the spatial and temporal information (See Figure 1(A)). Finally, to speed
up convergence, we re-parameterize our network using weight normalization
(WN) [45]. The remaining details about the implementation are shown in
Appendix A.

Volume flow rate aleatoric uncertainty. Once the model is trained, we obtain
continuous and differentiable velocity fields. Then, following [13], we com-
pute the volume flow rate at planes near the inlet and outlet using equation 4.
Quantifying the uncertainties of this derived quantity is not straightforward
since it is unclear how the measurements are related. Nevertheless, by as-

suming that the values are perfectly correlated, we can compute an upper
bound:

AN
Q= Zam-, (12)
i=1

where A is the cross-sectional area, N is the number of points in the grid,
and o,; is the predicted standard deviation related to the v velocity for the
ith point.
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3.3.2. Epistemic Uncertainty

We quantify the epistemic uncertainty using EoM [30]. This method
leverages the variability among different models trained on the same data,
making it robust as it captures how different model configurations and train-
ing paths can lead to different predictions, thereby reflecting the uncertainty:.
Towards this end, we assume that differences in the final prediction due to
the representation model can be sourced from two main factors: parameter
initialization and model enhancements, as better optimization methods can
lead to different outcomes and introduce uncertainty.

To quantify the uncertainty from these three components, we train M
independent neural networks, varying one source of uncertainty at a time. We
predict the corresponding flow fields and compute the quantities of interest.
For ease of predicting predictive probabilities, we follow [30] and approximate
the ensemble prediction as a Gaussian distribution whose mean and variance
are, respectively, the mean and variance of the mixture:

B(z) = % Z B (2, 01,m, 02,m) (13)
o2 () = % S (B, s br.) — Blx))* (14)

where B = {Q, 2—577‘} are the quantities of interest, namely, flow rate @),

pressure gradient g—z and wall shear stress 7.

Initialization. Following [30], we independently train M = 5 identical models
initializing them with five different seeds. The initialization plays a signif-
icant role since it can lead to different local minima. For this case, we use
Stokes flow with moving boundary conditions, weight normalization, RBA,
and negative log-likelihood.

Model enhancements. To analyze the impact of the model enhancements, we
initialize our neural networks identically and train them using Stokes flow
(equations 3 and 2) with moving boundary conditions. Then we consider
the model enhancements, namely weight normalization (WN), residual-based
attention weights (RBA), and negative log-likelihood (NLL), and analyze the
following combinations:
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WN+RBA.
WN+NLL.
RBA+NLL.
WN+RBA-+NLL.
NLL

Gl W

3.3.3. Model Uncertainty

To assess the impact of the physical model (i.e., model uncertainty), we
initialize M = 6 models using the same random seed, weight normalization,
and RBA. Each of these models is trained independently using one of the
following physical systems (i.e., governing equations, boundary conditions,
and assumptions):

1. NS equations (i.e., equations 1 and 2) with moving boundary conditions
and NLL (NS+MBCs+NLL). Recall that under NLL, the velocities
are decomposed into mean and fluctuations, with only the mean fields
following the governing equations.

2. NS equations with moving boundary conditions (NS+MBCs).

3. NS equations with fixed boundary conditions (NS).

4. S flow (i.e., equations 3 and 2) with moving boundary conditions and
NLL (S+MBCs+NLL).

5. S flow with moving boundary conditions (S+MBCs).

6. S flow with fixed boundary conditions (S).

Notice that the same PDE with different boundary conditions induces
different solutions and can thus be considered a different model. Similarly,
when using NLL, we decompose the velocity into mean and fluctuations and
assume that our mean fields satisfy the governing equation. Therefore, the
same PDE under different assumptions can be considered a different physical
model.
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Figure 3: (A) Predicted pressure P, mean velocity magnitude V, and standard deviation
magnitude oy on the lower half domain, i.e., 2 < 0.5(2min + Zmaz) at two representative
times (first and second row). (B) Probability density functions (PDFSs) of two velocity
components from PTV data (blue) and predicted mean velocities at particle locations
(red) in the validation dataset. Predicted mean velocity fields (C) and their corresponding
standard deviations (D) on the boundaries at a representative time. (E) Probability den-
sity functions of two velocity components, from MBCs data (blue) and predicted velocities

(red).
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3.8.4. Combined uncertainty quantification
We calculate the combined uncertainty as follows:

2 _ 2 2 2
UA,combined — UA,a + UA,e + UA,m? (15>

where A = {Q, g—g,r}, are the quantities of interest, o4, is the standard

deviation calculated using equation 14, « is a subscript a = {a, e, m} used
to identify the aleatoric, epistemic and model uncertainty, respectively. The

epistemic uncertainty is defined as follows:
2 2 2
UA,e - UA,init + UA,me (16>

here the subscript e = {init, me} identifies the uncertainty from the param-
eter initialization and model enhancement, respectively.

4. Results

4.1. Aleatoric Uncertainty

===-inlet — outlet Aleatorlc
4 -4 3 .
=10 . %10 g’ 10 E 500
6 *ﬁ\lﬁ? =
k N =)
_ a|% #7 % Es 6 2150
2 1 (Lj'ﬁ' = _ T
" 2 ll i T = [
g i £ =X &4 2100
— 0 1 £ = >
Ll & 8 -
W :
-4 2 o0 2 9
0 0.5 1 0 50 100 0 0.5 1 = 0 0.01 0.02
vT y (pm) uT - (Pa)

Figure 4: Inferred volume flow rate @, pressure gradient OP/0y, shear stress at the wall
(1) during one cardiac cycle (T'), and the distribution of wall shear stresses. Since we only
have velocity measurements, we can only calculate the aleatoric uncertainty on the flow
rate. Shading indicates two standard deviations above and below the mean.

As shown in Figure 3(A), we can obtain high-resolution 3D pressure,
mean velocities, and velocity standard deviations. Notice that, using this
approach, we can get the standard deviation at any point inside the domain,
enabling us to compute the aleatoric uncertainty modeled as heteroscedastic
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Qin (%) | Qout (%) | OP/Oy (%) | T (%) | T (%)
Aleatoric 18 20.6 - — —
Initialization 3.4 3.1 1.6 1.1 2.9
Model Enhancements 11.1 14 8.1 6.8 11.3
Physical Model 9.8 13.8 5.3 5.4 8.4
Combined 24.8 29.7 9.9 8.8 14.8

Table 1: Average uncertainties (one standard deviation) as percentages of the mean for
the volume flow rate near the inlet and outlet (Q;, and Qoyt), pressure gradient (0P/dy),
and spatially averaged shear stress at the wall (7) and the shear stress distribution (7).

noise [30]. Following [13], we assess the capability of our method to re-
construct the velocity fields, and we compare the model predictions on the
validation dataset (i.e., 70% of the measured velocity data). Figure 3(B)
shows that the distribution of the PTV velocities agrees well with the val-
ues inferred by the neural network. Similarly, Figure 3(C) shows the model
predictions of the three velocity components on the boundaries. Figure 3(D)
shows that the predicted uncertainty is higher in the interface between the
moving and static regions. Finally, Figure 3(E) shows that the distributions
of the data and the predictions compare well. The relative L? errors (equa-
tion A.8) for the moving boundary conditions for v and w are 10.39% and
10.01%. Finally, the relative L? errors for the PTV data on the validation
dataset for u and v are 23.95% and 18.63%, respectively.

Since our model can infer continuous velocity and standard deviation
fields, we can calculate the aleatoric uncertainty on the related flow rate. Ad-
ditionally, following [13], we use automatic differentiation to obtain pressure
gradients and wall shear stress (See Figure 4 and Table 1). The conservative
estimate of the aleatoric uncertainty (one standard deviation) is around 20%.
Since we only have velocity measurements, obtaining the aleatoric uncertain-
ties related to the other quantities of interest is not viable.

4.2. Epistemic Uncertainty

4.2.1. Initialization

We use the deep ensemble [30] method to assess the epistemic uncertainty
due to the parameter initialization. Towards this end, we train M = 5 models
initialized using five different seeds and evaluate their performance in the
PTV validation dataset and on the moving boundary conditions.
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Figure 5: For volume flow rate @, pressure gradient dP/dy, and wall shear stress 7, the
epistemic uncertainty due to the parameter initialization (top row), model enhancement
(middle row), and the model uncertainty due to the physical model (bottom row). Shading
indicates two standard deviations above and below the mean.

The mean relative L? error over five independent runs on the validation
dataset for u and v are 23.25% and 19.11%, with uncertainty (i.e., one stan-
dard deviation) of 0.66% and 0.72%. Similarly, the mean relative L? error for
the moving boundary conditions for u and w are 10.75% and 10.45%, respec-
tively, with an uncertainty of 0.75% and 2.05%, respectively (see table A.5).
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Additionally, we compute the flow rate, pressure gradient, and wall shear
stress for each model and compute the respective mean value and standard
deviations using Equation 13 and 14. However, as shown in Figure 5 and
Table 1, the uncertainty related to the initialization is much smaller than the

other sources of uncertainty (less than 3.5%).

4.2.2. Model Enhancements

Another factor that impacts the inferred solution is the optimization
method or model enhancements, introducing possible variations in the pre-
dicted outcome. To determine the epistemic uncertainty due to model en-
hancement, we trained M = 5 models using various combinations of weight
normalization (WN) [45], residual-based attention (RBA) [16], and Negative

Log-Likelihood (NLL).

—— WN+RBA+NLL
—— WN+RBA
‘WN+NLL
—— RBA+4NLL
— NLL
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Figure 6: Relative L? error convergence history across different model enhancements for
the PTV velocity (top row) and moving boundary conditions (bottom row).
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Model UpTVv (%) VPTV (%) UBCs (%) WpRBCs (%)
WN+RBA+NLL 22.54% 19.14% 10.89% 10.80%
WN+RBA 28.97% 24.78% 52.20% 48.10%
WN+NLL 22.95% 22.50% 8.35% 9.61%
RBA-+NLL 21.16% 23.43% 13.32% 11.41%
NLL 23.68% 24.34% 9.70% 10.37%

Table 2: Relative L? errors as percentages for various model enhancements.

Table 2 displays the relative L? errors on the PTV validation dataset
and boundary conditions for the analyzed models. Figure 6 shows that WN
is essential for accelerating convergence. Notice that the NLL is crucial for
reducing the relative errors in the PTV, particularly for moving boundary
conditions, indicating that decomposing the flow field into mean fields and
noise is beneficial. Additionally, it can be observed that RBA boosts the
model’s performance since it induces residual homogeneity [16].

Figure 5 (middle row) displays the inferred flow rate, pressure gradient,
and wall shear stress for all the analyzed models. The uncertainty (two stan-
dard deviations above and below the mean) is represented by the shaded
region around the mean field, highlighting the epistemic uncertainty intro-
duced by the model enhancements. The volume flow rate waveform is slightly
rougher when RBA is included, which is a result of the model adhering more
closely to the noisy experimental training data.

4.3. Model Uncertainty

Model uprv (%) vpTV (%) UBCs (%) WPRCs (%)
NS+MBCs+NLL 23.14% 19.52% 10.73% 10.41%
NS+MBCs 26.25% 22.55% 83.66% 85.99%
NS 24.58% 20.84% N/A N/A
S+MBCs+NLL 22.54% 19.14% 10.89% 10.80%
S+MBCs 28.97% 24.78% 52.20% 48.10%
S 23.86% 20.58% N/A% N/A

Table 3: Relative L? errors as percentages for different physical models and components.
N/A stands for not applicable and is related to the models trained using fixed boundary

conditions.
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Finally, we analyze the model uncertainty due to the governing equations.
To this end, we use the EoM method with M = 6 models trained using differ-
ent physical models (i.e., PDEs, boundary conditions, or other assumptions)
that ideally govern the CSF flow. As shown in Table 3, the best-performing
models use NLL (i.e., assume that only the mean velocities follow the PDE).
These results suggest that the predicted fluctuations (i.e., noise from the ex-
perimental data) may be nonphysical. Hence, the proposed decomposition
reduces the relative error in the PTV data and boundary conditions.
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Figure 7: Relative L? error convergence history among different physical models for the
PTV velocity (top row) and moving boundary conditions (bottom row).

Additionally, Figures 5 and 7 show that the Stokes and Navier-Stokes
models yield comparable performance. This observation aligns with the the-
oretical assumption that the viscous terms are dominant for Re < 1 and
the results presented in [13]. However, since the Stokes flow (i.e., equation
3) does not require computing the nonlinear terms, each training iteration is
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approximately 30% faster than when using NS (i.e., equation 1).

Including moving boundaries (MBCs) did not change the quantities of
interest considerably (Fig. 5). The volume flow rate and axial pressure gra-
dient are directly calculated from and related to the downstream velocity v,
which is aligned with the direction of net flow, so it is unsurprising that the
volume flow rate and axial pressure gradient do not change appreciably with
the implementation of moving boundaries, which involve motion only in the
directions of u and w. The shear stress magnitude at the wall is calculated
from the second invariant of the stress tensor as described in Methods and
is thus related to all three flow components. However, as shown in Fig. 5
and Table 1, adding moving boundaries did not change the inferred shear
stress substantially either. The cross-stream velocity components, v and w,
are much smaller than the downstream component, v. We therefore expect
the stress magnitude to be dominated by the component proportional to the
wall-normal gradient of the downstream velocity. With respect to the vol-
ume flow rate, pressure gradient, and shear stress at the wall, little additional
insight is gained by including moving boundaries. For most purposes, using
stationary boundaries is appropriate and accurate.

4.4. Combined Uncertainty
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Figure 8: Combined uncertainty in the inferred volumetric flow rate (Q), axial pressure
gradient (OP/dy), average shear stress at the wall (7), and distribution of shear stresses
at the wall (7), for each type of uncertainty (aleatoric, physical model, and epistemic,
comprising two uncertainty types: initialization and representation). The average of the
inferred quantities of interest from each uncertainty type is shown in black, with shading
indicating the combined uncertainty ocombined as described in equation 15.
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We combine the model, epistemic, and aleatoric uncertainties as described
in equation 15 to get a sense of the overall uncertainty in the model (see
Figure 8 and Table 1). The combined uncertainty (one standard deviation)
for the volume flow rate is on the order of 30%, with the aleatoric uncertainty
accounting for the majority. The pressure gradient, average shear rate, and
shear distribution are less uncertain, with combined uncertainties less than
15%, essentially because aleatoric uncertainty cannot be calculated for those
quantities, thus it can not be measured. However, the volume flow rate is
also more sensitive to each type of epistemic and model uncertainties than
the pressure gradient or shear rate. The fact that aleatoric uncertainty is
substantially higher than the epistemic and model uncertainties suggests that
the most important thing to improve the accuracy of the inferred results is
to reduce the uncertainty associated with the experimental measurements.
However, when the aleatoric uncertainty is included, the 30% uncertainty is
accurate enough for most questions of physiological relevance.

5. Discussion and concluding remarks

We demonstrate that using the negative log-likelihood formulation for the
loss in artificial intelligence AIV (AIV-NLL) improves the accuracy of AIV
inferences and simultaneously quantifies the aleatoric uncertainty in AIV in-
ferred velocity fields and volume flow rates. We also quantify several sources
of epistemic uncertainty and model uncertainty in AIV, showing that for vol-
ume flow rate, pressure gradient, and wall shear stress, model initialization
results in uncertainty less than 3.5%, and modifications to the model (model
enhancement) and assumptions regarding the physical model introduce un-
certainties less than 15% of the mean. The combined aleatoric, epistemic,
and model uncertainty are less than 30% of the mean, demonstrating the
accuracy of AIV. We show that using Stokes equations to model the flow
reduces the training time by 30%, compared to the full Navier-Stokes equa-
tions, with a negligible change in model results.

Boster et al. [13] used an ensemble approach to show that the uncer-
tainty in volume flow rate, pressure gradient, and wall shear stress due to
the uncertainty in the 3D domain location (PVS boundaries) was less than
30%, similar to the combined uncertainty we report here for aleatoric, model
and epistemic uncertainty, and more significant than any single source of
uncertainty alone. This suggests that reducing the uncertainty in the PVS
boundaries would have the most significant impact on AIV accuracy and that
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reducing the uncertainty in PTV measurements would have the second most
significant impact. A straightforward approach to reduce the uncertainty in
the PVS domain boundaries would be to label the glia limitans (PVS outer
boundary) and the endothelial basement membrane (inner boundary), as
Raicevic et al. [36] did, rather than relying on the location of dye within the
lumen boundaries as Boster et al. [13] did. One simple approach to reduce
the uncertainty in the PTV measurements would be to use a smaller field
of view. The field of view in the original imaging was 332 by 332 pm, but
the AIV analysis was only performed on a smaller subdomain that was 91
by 91 pn. If the original field of view had been zoomed in to this size while
maintaining the same number of pixels in the image so that the resolution
increased, the uncertainty in the spatial position would have been reduced
from 65 nm to 27 nm, and the overall uncertainty would have been reduced
from 1.89 to 0.81 pm/s. Of course, two-photon microscopes have resolution
limits, but as far as those limits allow, greater magnification substantially
reduces uncertainty. Thus, small modifications to the experimental protocol
would result in significant improvements in AIV accuracy.

Wall shear stress plays an important role in cardiovascular flows, but
little is known about its role in shear in PVSs. Cibelli et al. [46] showed
that astrocytes can sense (eliciting a Ca?+ response) wall shear stresses that
are lower than 0.01 Pa, which is smaller than the highest shear stresses we
report here, suggesting that the wall shear stress in physiological glymphatic
flows may play an important role in controlling vasomotion and parenchymal
perfusion. Cibelli et al. [46] also showed that astrocytes are very sensitive to
the magnitude of the wall shear stress. Accordingly, the ability to not only
accurately infer wall shear stress but also accurately estimate the uncertainty
associated with those inferences becomes extremely important. Cibelli et
al. [46] estimated what PVS wall shear stresses would be based on PTV
measurements, but shear stress cannot be calculated from PTV directly due
to the sparsity of the measurements, and their estimation necessarily involved
simplifying assumptions. AIV is the only way to accurately infer 3D wall
shear stress measurements from in vivo measurements, and it does so with
very little additional computational cost since the derivatives of the flow
field are calculated in the network. This work showed that a Stokes flow
model with stationary boundaries can be used to infer wall shear stress with
very little loss of precision and that the results are insensitive to the initial
conditions. These points can inform future efforts to use AIV to infer wall
shear stress and further investigate and clarify the role of wall stress in PVSs.
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Glymphatic flow has been shown to vary not only with cardiac pulsatility
but also at much lower frequencies corresponding to slow vasomotion result-
ing from neurovascular coupling [5, 28, 47-49]. In order to have sufficient
PTV measurements to train the network, we merged velocity measurements
from different cardiac cycles together, thus enabling us to infer flow in a sin-
gle cardiac cycle. Since slow vasomotion cycles are much slower than cardiac
cycles, such phase merging may not be required, or at least not over as many
cycles. However, since cardiac pulsatility is always present, some approach to
disentangle the flow arising from slow vasomotion and that from the cardiac
pulsatility would likely be required. Spontaneous slow vasomotion activity is
absent in anesthetized mice but present in awake and naturally sleeping mice,
which may drive glymphatic flow. However, applying our methods to spon-
taneous vasomotion would require long imaging sessions of un-anesthetized
mice and, therefore, would be logistically challenging. It may be more re-
alistic to infer glymphatic flows due to vasomotion in response to a regular
stimulus, as Holstein et al. [5] did. Doing so would provide interesting in-
sight into the relative contributions of cardiac and other vessel wall motion
to glymphatic flows.

The AIV-NLL method has several features that distinguish it from the
approach used previously in [13]: (1) a modified architecture that predicts
the flow fields along with the standard deviations of velocities, (2) neural
network re-parameterization using weight normalization, which accelerates
convergence, (3) PDE reformulation into Stokes flow, which eliminates the
non-linearities and speeds up computation, (4) using negative log likelihood
(NLL) instead of mean squared error (MSE) to learn aleatoric uncertainty
and further improve model performance, (5) training on uniform batches,
which stabilizes the learning process, (6) using fixed global weights based on
the scale of the predicted values instead of learning rate annealing [21] to
learn the global weights, and (7) using Residual-Based Attention (RBA) as
local multipliers, which enables uniform convergence.

These modifications allowed us to reduce the relative L? error in u by ap-
proximately 10% in half the training iterations. Additionally, this approach
enabled us to obtain the aleatoric uncertainty, which could not be approxi-
mated using the previous approach. Nevertheless, the quantities of interest
inferred in this work are similar to those obtained by Boster et al. [13].
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Appendix A. Implementation Details

Appendiz A.1. Training Domain

A B C

Radial clustering

Isolated BCs 2 o

L SR Subdomains
g ¥ t._\

Axial clustering %G, %o

a; de As

PVS Subdomain Angular clustering Training groups

Figure A.9: (A) We obtain our boundary conditions (BCs) by isolating the PVS subdo-
main. (B) We cluster the BCs based on their spatial and temporal coordinates and obtain
Ny angular, N, axial subgroups. After that, we generate points inside the domain by
shrinking and combining boundary conditions. We classify these points into N, radial
sections. Finally, we tile them and classify them into N; temporal subgroups. (C) Based
on the classification, we obtain information on subdomains that define training groups
used to generate ordered mini-batches.

Following [13, 16], we train our model using 30% of the available PTV
data and use the remaining unseen data for validation. Given the scarce
amount of experimental data, we use full-batch training at every iteration.
However, we use ordered mini-batches by clustering the BCs and collocation
points. As described in Section 3.1.2, we obtain boundary conditions by
isolating a subdomain of PVS and defining the boundary motion. Since the
boundary points delimit the training domain, we follow [16] and generate
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our collocation points (to evaluate PDEs) from the BCs; see Figure A.9(B).
First, we split our boundaries into 25 angular subregions (Ny) and 15 axial
subregions (N,). Then, we shrink and combine these subregions to get an
equally spaced domain of 200 layers. After that, we split our domain into
seven radial groups (V,), tile them 101 times, and split the time domain into
20 temporal subregions (NV;). Consequently, the total number of training
groups (G.) for the Navier-Stokes (NS) equations is

Ge = Ny x N, x Ny x N, = 52500.

Similarly, we split the boundary conditions with Ny = 25, N, = 15, and
N; = 15, so the number of training groups is

Gy = N, x Ny x N, = 5625.

Notice that the total number of collocation points G, x Ny = 4.98 x 10°
and boundary condition points Gy x Ny = 5.34 x 10° approximately matches
the number of training points used in the previous study (i.e., 5 x 105 and
5 x 10°) [13].

Following this method, we obtained 95 ordered mini-batches used to train
our model. As described in [16], by this approach, each mini-batch contains
information about the whole domain, which accelerates and stabilizes the
model convergence.

Appendiz A.2. AIV-NLL

The training data comes from experimental measurements and thus has
inherent uncertainty. A conservative estimate of the uncertainty is 1.89
nm/s [13]. Though Boster et al. showed the uncertainty in the quanti-
ties of interest due to uncertainty in the boundary location, they used the
same velocity measurements for training, and the impact of the uncertainty
in the velocity measurements was not investigated. Here, we use AIV-NLL to
infer the uncertainty in the velocity measurements and how that uncertainty
affects the calculated volumetric flow rate.

Given the different scales of the predicted values, the mean fields u are
approximated as follows:

u(x) = usu(by, x) (A.1)
o(x) = vsu(0y, x) (A.2)
w(x) = wsw(y, x) (A.3)
p(x) = psp(fr, ), (A.4)
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where u, v, w, p are the outputs of the first neural network, which approx-
imates the mean velocity and pressure fields, scaled by wus,vs,w, and ps,
respectively. The corresponding standard deviations o,, o, and o, for the
velocity in x,y, and z are computed as

ou(x) = 0y(ba, ) + 0¢ (A.5)
oy(®) = 0y(ba,2) + 00 (A.6)
ow(T) = 04(02, ) + 09, (A.7)

where 0,,(62, @), 0.(02, ) and o,,(0, x) are the predicted standard deviations
and o is a positive number that defines a lower bound.

We evaluate our model performance using the relative L?, which is defined
as:

||Measured — Predicted||s
| Measured||s

relative L? =

(A.8)

Appendiz A.3. Additional Model Enhancements

Appendiz A.3.1. Weight Normalization

Weight Normalization is a re-parameterization technique that accelerates
convergence in PINNs [12]. In this scheme, the weight vectors’ length and
direction are decoupled to be trained separately [45]. Each neuron output is
defined as follows:

a=0(0-x+0b) (A.9)
— ﬁv, (A.10)

where « is the neuron output, o is the activation function, x is the input
vector, # is a weight vector, and b is the bias. As shown in equation A.10,
the weight vector 0 is redefined in terms of new trainable parameters, v
(direction) and ¢ (length). Notice that ||f||= g, so this re-parameterization
allows us to decouple the weight’s length and direction, which speeds up the
model convergence. Since g is a scalar, this modification induces minimal
computational overhead [45].

Appendiz A.3.2. Residual Based Attention (RBA)

Training neural networks often involves the challenge of residuals (i.e.,
point-wise errors) being overlooked when calculating the cumulative loss
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function, which typically involves the summation or mean of the residu-
als [16, 23]. To address this issue, several studies have proposed scaling the
loss terms using local multipliers [16, 20]. These local multipliers, such as
residual-based attention (RBA) weights [16] and self-adaptive weights [20],
have demonstrated remarkable performance in physics-informed neural net-
works (PINNs) and other supervised learning tasks. By balancing the contri-
bution of specific training points within each loss term, these weights induce
residual homogeneity [17].

RBA weights are based on the exponentially weighted moving average
of the residuals. Since the loss residuals contain information about high
error regions, the resulting multipliers act as an attention mask, helping the
optimizer focus on capturing the spatial or temporal characteristics of the
specific problem [16].

The update rule for RBA for any training point ¢ on iteration £ is given
by

|ri,oc
I7alloe”
where N is the number of training points, 7; , is the residual of the loss term
(cv) for point i, and 7 is a learning rate and v is a memory rate that enables
the model to eventually “forget” the previous iterations. This convergent
linear homogeneous recurrence relation bounds our RBA from zero to one

(Aia €10,n/(1 =7)]) [16, 17, 35].

A=\, 4 i€{0,1,...,N}, (A.11)

Appendiz A.4. Training

We approximate the mean 3D velocities (u, v, w) and pressure (p) as de-
scribed in equations A.1, A.2, A.3 and A.4, respectively. To ensure that
the model outputs have the same order of magnitude, we scale them using
(us, vs, ws, ps) = (0.1,1,0.1,100). Similarly, for the predicted uncertainties,
we use a constant og as a lower bound. oy = 1.9um/s is chosen based on the
minimum uncertainty related to the measurement technique.

We train our model during 2632 epochs (approximately 2.5e5 iterations)
using Adam Optimizer. During the first half of training, we focus on learn-
ing the mean fields using MSE in the data and boundary loss (i.e., equa-
tions 9, 10). In this stage, we use an auxiliary loss to initialize the uncertain-
ties to o, = 0, = 0, = 1. Notice that when & = 1 the mean NLL reduces
to MSE.

In the second stage, we learn the corresponding standard deviations by
using NLL in the data and boundary loss. Notice that in the NLL formulation
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(i.e., equation 8), we use a constant C' = log(op) that ensures that the loss
criterion for any point is always positive.

During training, we used global weights m, to balance the contribution
of each loss component. The specific global weights are chosen so that the
relative contribution of all loss terms is in the same order of magnitude.
The specific values were selected following the previous study [16] and are
described in Table A.4.

Loss term Global weight

No-slip BC in z 100

Non-slip BC in y 100

Non-slip BC in z 100

PTV velocity in z 50

PTV velocity in y 5
Conservation of Momentum in x 1
Conservation of Momentum in y 1
Conservation of Momentum in z 1
Conservation of Mass 10

Table A.4: Global weights for AIV-NLL

Appendiz A.4.1. Hyperparameter Settings

The remaining implementation details are selected based on our previous
studies [13, 16]. In particular, for both neural networks, we use a multilayer
perceptron (MLP) with eight hidden layers and 200 neurons per layer using
the sin(-) activation function. The initial learning rate is set to 2 x 1073,
which decays to a final learning rate of 1.5 x 10~% with a decay rate of 0.9.
We use RBA weights to scale the point-wise contribution inside the loss term
using a decay rate v = 0.999 and learning rates of 0.2 for PTV and Navier-
Stokes and 0.02 for BCs. As described in [16] we use a reduced learning
rate for the boundaries due to their high uncertainty as reported in [13]. The
machine learning framework used is Jax, and the computations are performed

on an Nvidia A100 GPU.
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Appendiz A.4.2. Additional Results

Seed | upry (%) | verv (%) | upcs (%) | wpes (%)
1 23.95% 18.63% 10.39% 10.01%
22.54% 19.14% 10.89% 10.80%
22.57T% 20.10% 11.06% 9.97%
24.10% 18.07% 10.15% 11.58%
23.09% 19.63% 10.90% 10.09%

O = W

Table A.5: Relative L2 errors as percentages for various parameter initialization. The
mean and standard deviation for each component: upry mean = 23.25%, std = 0.66%;
vpry mean = 19.11%, std = 0.72%; upcs mean = 10.75%, std = 0.25%; wpcs mean =

10.45%, std = 0.65%.

S 3
5 = 100
£ £
= 100 53
a a
~ ~
j5) (2]
B 2
= =
[}
& &

0 1000 2000 0 1000 2000
10' 10"
g g
g £
& 8
17 vl
g g
H 10 g 10%
S N
£ £
= =
& &
1
10-! : 10!
0 1000 2000 0 1000 2000

Tterations Tterations

Figure A.10: Relative L? error comparison among different parameter initialization for
the PTV velocity (top row) and moving boundary conditions (bottom row)
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