

1 **Genomically recoded *Escherichia coli* with optimized functional phenotypes**

2  
3 **Colin Hemez<sup>1,2,4</sup>, Kyle Mohler<sup>1,3</sup>, Felix Radford<sup>1,2</sup>, Jack Moen<sup>1,3</sup>, Jesse Rinehart<sup>1,3</sup>, Farren J.**  
4 **Isaacs<sup>1,2,4</sup>**

5  
6 <sup>1</sup> Systems Biology Institute, Yale University, West Haven, CT 06516

7 <sup>2</sup> Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520

8 <sup>3</sup> Department of Cellular & Molecular Physiology, Yale University School of Medicine, New  
9 Haven, CT 06520

10 <sup>4</sup> Department of Biomedical Engineering, Yale University, New Haven CT 06520

11  
12 **Abstract (word count: 167)**

13 Genomically recoded organisms hold promise for many biotechnological applications, but they  
14 may exhibit substantial fitness defects relative to their non-recoded counterparts. We used  
15 targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness  
16 impairment in a model recoded organism, *Escherichia coli* C321.ΔA. We found that defects in  
17 isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12  
18 lineage strains, elicited profound fitness impairments in C321.ΔA, suggesting that genome  
19 recoding exacerbates suboptimal traits present in precursor strains. By correcting these and  
20 other C321.ΔA-specific mutations, we engineered C321.ΔA strains with doubling time  
21 reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral  
22 C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-  
23 standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.ΔA  
24 lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and  
25 that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy  
26 for the rapid and precise phenotypic optimization of genomically recoded organisms and other  
27 engineered microbes.

28

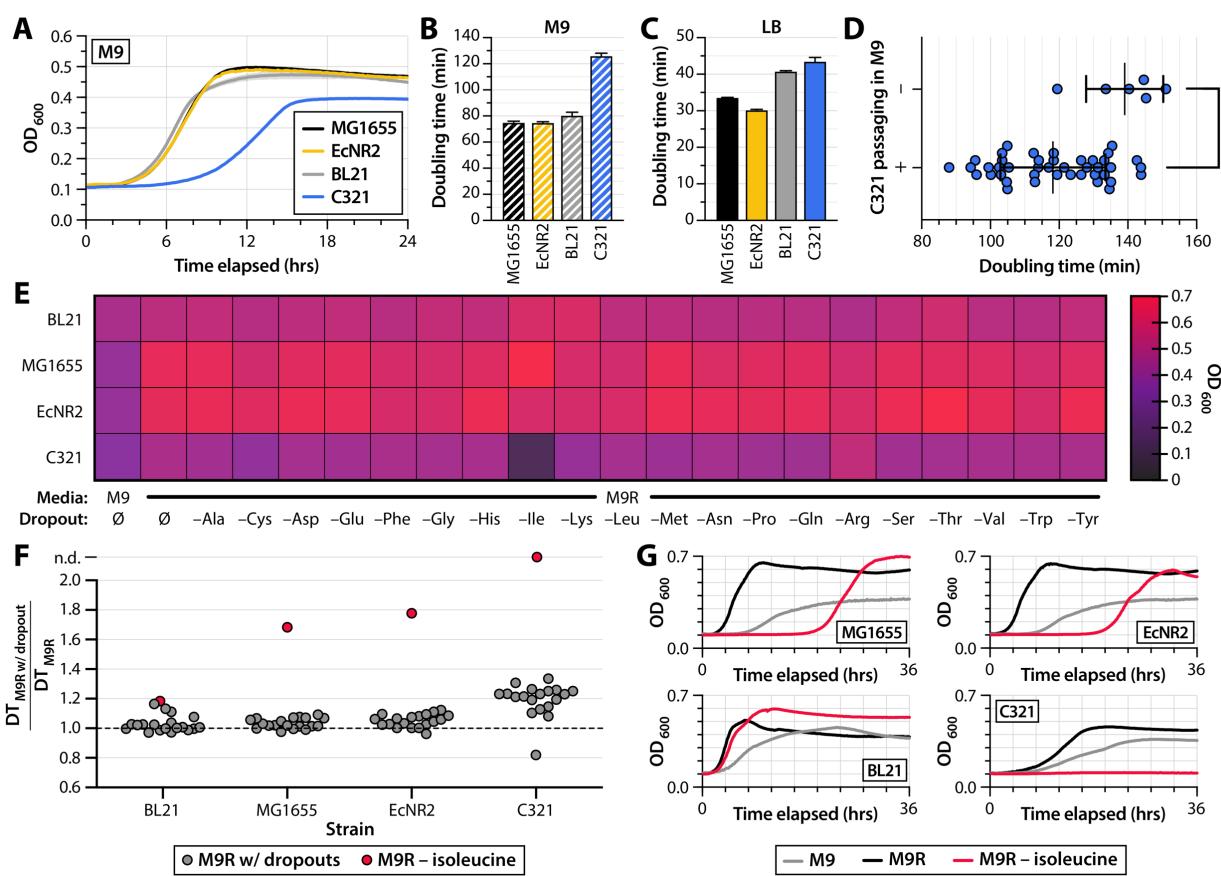
1 **Main text**

2 **Introduction**

3 Genome recoding—the replacement of all occurrences of a codon within an organism’s  
4 genome with a synonymous codon—constitutes a promising strategy for constructing strains  
5 with broad utility in biomedicine, environmental engineering, and industrial biosynthesis<sup>1-3</sup>.  
6 One model recoded organism is C321.ΔA (hereafter abbreviated C321), a K-12 lineage  
7 *Escherichia coli* strain that lacks all 321 instances of UAG stop codons as well as release factor  
8 1 (RF1), which catalyzes the ribosomal release of peptides encoded by UAG- and UAA-ending  
9 mRNAs<sup>4</sup>. C321 shows enhanced ribosomal nonstandard amino acid (nsAA) incorporation<sup>5</sup>,  
10 broad resistance to horizontal gene transfer<sup>6,7</sup>, and robust biocontainment when engineered to  
11 depend on exogenously-supplied nsAAs<sup>8,9</sup>. However, C321 and other genomically recoded  
12 strains<sup>10,11</sup> show substantial fitness defects, as measured by growth rate in both rich and  
13 minimal media, compared to their non-recoded counterparts. This limits their utility in  
14 numerous research and industrial settings. For instance, existing recoded strains could exhibit  
15 impairment for synthesizing biochemicals and biologic medications at industrial scales,  
16 wherein the robust growth of host strains is a highly desirable trait<sup>12</sup>, despite their expanded  
17 biosynthetic capabilities.

18 The origins of the phenotypic impairments observed in genomically recoded strains  
19 remain unclear. Whole-genome codon reassignment may carry intrinsic fitness costs by  
20 shifting the balance between codon abundance and codon-associated translational machinery  
21 (tRNAs for proteinogenic codons and release factors for stop codons)<sup>13</sup> or by inducing poorly-  
22 tolerated changes in the transcriptional or translational activity of crucial genes<sup>14</sup>.  
23 Alternatively, secondary mutations acquired over the course of recoded strain construction  
24 could be responsible for phenotypic impairments. The nature of fitness reductions seen in  
25 existing genomically recoded strains has implications for more extensive codon reassignment  
26 efforts that are currently underway in *E. coli*<sup>10,11</sup> and other organisms<sup>15-17</sup>. If recoding  
27 introduces intrinsic fitness costs, there may be a ceiling to the amount of codon reassignment  
28 that an organism can tolerate; if secondary mutations are the primary cause of the observed  
29 fitness defects, then codon reassignment may be a broadly generalizable strategy for  
30 engineering synthetic organisms with diverse capabilities. Elucidating the precise genetic  
31 causes of phenotypic impairment in C321 would thus inform design strategies for ongoing and  
32 upcoming codon reassignment campaigns.

33 Past studies have sought to reduce the growth impairments of C321 using targeted  
34 mutagenesis and adaptive evolution. Kuznetsov et al. used multiplex genome engineering  
35 (MAGE)<sup>18,19</sup> to correct a subset of the 360 secondary point mutations that arose during the  
36 construction of C321<sup>4,20</sup>. This modified strain, C321.ΔA.opt (abbreviated C321.OPT), showed  
37 a ~30% improvement in growth rate relative to ancestral C321 in rich medium (LB). Wannier  
38 et al. passaged C321 in glucose-supplemented minimal medium (M9) for ~1100 generations  
39 and isolated a strain, C321.ΔA.M9adapted (abbreviated C321.M9), that showed a ~200%  
40 improvement in growth rate relative to ancestral C321 in M9<sup>21</sup>. However, the methodologies  
41 used to improve phenotype in these studies have several disadvantages. Targeted mutagenesis


1 enables the precise reversion of desired mutations, but is limited in scope because researchers  
2 must select mutations for reversion *a priori*. Adaptive evolution does enable mutational  
3 sampling at the whole-genome scale, but runs the risk of selecting for a phenotype that is  
4 optimal under evolution conditions at the expense of other desired traits due to the acquisition  
5 of off-target and compensatory mutations<sup>22</sup>. Neither strategy identifies the underlying genetic  
6 cause(s) of phenotype impairment.

7 In this study, we build on past strain optimization efforts by precisely identifying and  
8 rectifying growth-impairing mutations in C321 using metabolic profiling, genetic analysis, and  
9 proteomic analysis. We hypothesized that mutations within genes encoding essential  
10 biosynthetic pathways would have a high likelihood of contributing to growth impairments  
11 in C321. By culturing C321 in minimal medium supplemented with combinations of amino  
12 acids, nucleotides, essential cofactors, and trace minerals, we identified metabolites whose  
13 omission reduces C321 growth. We found a deficiency in isoleucine biosynthesis that has a  
14 strong deleterious impact on growth and that is caused by a frameshifting two-nucleotide  
15 deletion in the *ilvG* gene common to all K-12 *E. coli* lineage strains<sup>23</sup>. Reverting this deletion  
16 dramatically improved C321 strain fitness, and installing additional fitness-improving  
17 mutations to *ilvG*-reverted strains led to C321 variants with superior growth kinetics and  
18 enhanced nsAA incorporation in both rich and minimal media.

19 We also performed comparative proteomics on non-recoded *E. coli* strain EcNR2, C321,  
20 and our fitness-enhanced C321 derivatives to characterize the metabolic pathways of recoded  
21 strains in detail. Compared against its non-recoded counterpart, C321 exhibited numerous  
22 deficiencies in metabolic pathways involving amino acid, nucleotide, and siderophore  
23 biosynthesis. Many of these deficiencies were corrected in enhanced C321 variants, suggesting  
24 that the small number of mutations targeted for reversion have far-ranging phenotypic effects.  
25 Our findings indicate that preexisting metabolic deficiencies play strong roles in impairing the  
26 fitness of genetically recoded strains, and that fitness impairments associated with codon  
27 reassignment may be low relative to fitness impairments caused by secondary mutation  
28 acquisition. The strategy outlined in this study enables precise and rapid phenotype  
29 optimization following genome-scale codon reassignment and could be applied to other  
30 extensively engineered microbes.

31

1



2  
3

4 **Figure 1 – C321 shows growth impairments in rich and minimal media.** (A) Growth curves  
5 of MG1655 (black), EcNR2 (yellow), non-K12 strain BL21 (grey), and C321 (blue) in M9  
6 minimal medium ( $n = 3$  for all strains). (B-C) Doubling times of MG1655, EcNR2, BL21, and  
7 C321 in M9 minimal medium (B) and LB rich medium (C). (D) Doubling times of individual  
8 C321 clones with and without serial passaging in M9 for  $\sim 53$  generations. Values are  
9 normalized to the mean doubling time for clones grown without serial passaging (comparison  
10 of means by Welch's  $t$ -test;  $p = 0.0038$ ). (E) Maximum OD<sub>600</sub> reached for strains grown in M9,  
11 M9 medium supplemented with 20 amino acids (M9R), or M9R dropout medium lacking one  
12 of 20 amino acids. (F) Doubling times of strains in M9 dropout medium. Values are normalized  
13 to the doubling time of each strain in M9R. The normalized doubling time for each strain  
14 grown in M9R with an isoleucine dropout is highlighted in red; n.d. denotes that no growth  
15 was observed. (G) Growth curves for strains grown in M9 (grey), M9R (black), and M9R with  
16 an isoleucine dropout (red).

17  
18

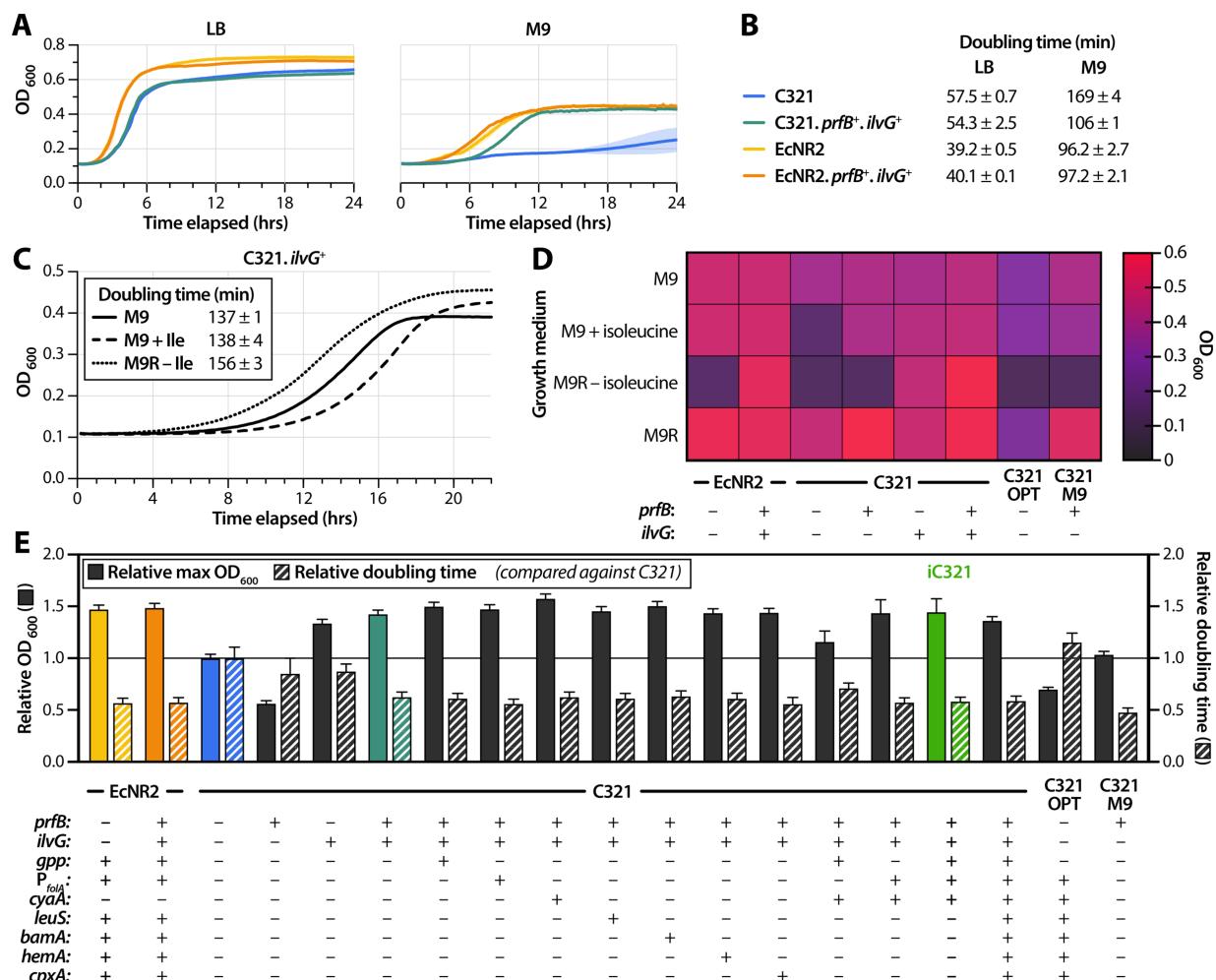
## Results

19 **C321 is growth impaired in both rich and minimal media:** We compared the growth of C321  
20 against ancestral K-12 strains and non-K-12 lineage strains (Supplementary table 1). C321

1 shows growth impairments when compared against its *E. coli* K-12 ancestors EcNR2<sup>19</sup>,  
2 MG1655, and the non-K-12 strain BL21 in both minimal (**Figure 1A**) and rich (**Supplementary**  
3 **data figure 1**) medium. C321 shows more substantial growth impairments in minimal medium  
4 relative to rich medium: the doubling time of the strain is 70% greater than that of EcNR2 in  
5 minimal medium ( $126 \pm 2$  min vs.  $75 \pm 0.8$  min; **Figure 1B**) and is 40% greater than that of  
6 EcNR2 in rich medium ( $43.5 \pm 1$  min vs.  $30.3 \pm 0.1$  min; **Figure 1C**).

7 We passaged cultures of C321 in M9 and LB to determine if the strain evolves faster  
8 growth rates via adaptive evolution. After approximately 53 generations, single colonies of  
9 C321 passaged in M9 showed a 15% reduction in mean doubling time compared to un-passaged  
10 single colonies (**Figure 1D**; Welch's *t*-test for difference in means:  $p = 0.0038$ ; F-test for  
11 difference in variances:  $p = 0.51$ ). Single colonies of C321 passaged in LB demonstrated a more  
12 modest (5.4%) reduction in mean doubling time after 66 generations (**Supplementary data**  
13 **figure 2**; Welch's *t*-test:  $p = 0.014$ ; F-test:  $p = 0.97$ ). The rapidly-emerging and substantial  
14 improvements in growth rate we observed after serial passaging in M9 suggested that large  
15 fitness improvements could be engineered into C321 with relatively few genetic mutations.  
16 Rather than pursue an adaptive evolution approach that could compound mutations on a  
17 mutant genotype, we were motivated to search for mutations within C321's genome that have  
18 strongly deleterious impacts on growth rate in M9.

19  
20 *A deficiency in isoleucine biosynthesis contributes to growth impairments in C321:* C321's  
21 conspicuous growth impairment in M9 compared to LB suggests a deficiency in the ability to  
22 synthesize one or greater biomolecules that are absent in minimal medium. These include  
23 amino acids, nucleobases, and essential enzyme cofactors. We reasoned that identifying the  
24 metabolic underpinnings of C321's growth impairment would help us to identify regions of  
25 the *E. coli* metabolome that may be dysregulated in C321. Mutations in genes within these  
26 pathways would have a high likelihood of contributing to C321's growth impairments and  
27 would be pertinent targets for reversion.


28 We grew C321 and ancestral strains in M9 supplemented with combinations of the 20  
29 proteinogenic amino acids (20AA), nucleobases (ACGU), and/or essential cofactors and trace  
30 metals (vitamin mix) (supplements are detailed in **Supplementary table 2**). We observed  
31 profound reductions in maximum OD<sub>600</sub> when C321 was grown in media lacking a 20-amino  
32 acid supplement, but not when lacking a nucleobase supplement or vitamin mix  
33 (**Supplementary data figure 3**). This suggested that a deficiency in amino acid biosynthesis  
34 contributes strongly to C321's growth impairment in minimal media. To determine which  
35 amino acid(s) were responsible, we next grew C321 and ancestral strains in M9 media  
36 supplemented with all 20 amino acids (designated M9 rich medium; M9R) and in M9R dropout  
37 media lacking one of each amino acid (**Figure 1E**; growth curves shown in **Supplementary**  
38 **data figure 4**). C321 did not grow in M9R lacking isoleucine.

39 Whereas the omission of one amino acid from M9R led to modest, if any, increases in  
40 doubling time for most dropouts, the omission of isoleucine from M9R led to increases in  
41 doubling time for all strains (**Figure 1F**). Notably, increases in doubling time for isoleucine

1 dropout medium were higher for K-12 lineage strains MG1655 and EcNR2 (70% and 80%  
2 increases relative to growth in M9R, respectively) than they were for BL21 (20% increase  
3 relative to growth in M9R). MG1655 and EcNR2 also showed profound delays in time taken  
4 to reach mid-log phase after inoculation compared to BL21 (**Figure 1G**). These observations  
5 raised the possibility that the growth defect observed in C321 is attributable to dysregulated  
6 isoleucine biosynthesis caused by a mutation that is also present in K-12 ancestral strains. As  
7 has been noted in early published *E. coli* complete genome sequences<sup>23</sup>, all K-12 lineage strains,  
8 including C321, have two-nucleotide deletion—Δ(A979-T980)—in the isoleucine biosynthesis  
9 gene *ilvG*, which encodes the catalytic subunit of acetolactate synthase. The frameshift  
10 introduced by this deletion places a TGA stop codon one residue downstream of its occurrence,  
11 effectively truncating 221 C-terminal residues from the IlvG protein.

12  
13 *K-12 lineage mutations targeted for reversion in C321*: Prior work demonstrated that  
14 correcting the Δ(A979-T980) frameshift in *ilvG* eliminates the metabolic oscillatory behavior  
15 observed in K-12 strains and reduces growth impairments in media containing glucose as a  
16 sole carbon source<sup>24</sup>. We hypothesized that the same correction in C321 would alleviate the  
17 strain’s growth defects, and we sought to identify additional K-12 mutations for targeted  
18 reversion in C321. We suspected that an alanine-to-threonine substitution in position 246 of  
19 UAA-/UGA-release factor 2, encoded by *prfB* and common to all K-12 strains, could contribute  
20 to C321’s growth impairments. PrfB.A246T variants show a reduction in the release rate of  
21 UAA codons *in vitro*<sup>25</sup>, and prior adaptive evolution of C321 in minimal medium demonstrated  
22 spontaneous reversion of the A246T mutation<sup>21</sup>.

23



**Figure 2 – Reversion of K-12 lineage mutations alleviates growth impairments in C321. (A)** Growth curves of EcNR2 and C321 with and without reversion of K-12 lineage mutations (*prfB* and *ilvG*) in LB (left panel) and M9 (right panel). (B) Doubling times of strains shown in panel A (n = 3). (C) Growth curves of C321.*ilvG<sup>r</sup>* in M9 (solid line), M9 supplemented with isoleucine (dashed line), and M9R with an isoleucine dropout (dotted line). (D) Maximum OD<sub>600</sub> reached for strains with reversions in K-12 lineage mutations grown in M9 with a variety of amino acid supplements. C321.OPT denotes an engineered C321 variant reported by Kuznetsov et al. 2017, and C321.M9 denotes an evolved C321 variant reported by Wannier et al. 2018. (E) Maximum OD<sub>600</sub> and doubling time relative to C321 for engineered C321 strains in M9 (n = 3 biological replicates). The solid line denotes the maximum OD<sub>600</sub> and doubling time of C321. One-way ANOVA for comparisons between all strains is given in Supplementary table 6.

*Reversions of K-12 lineage mutations in prfB and ilvG are sufficient to alleviate growth impairments in C321:* We first investigated the role that K-12 lineage mutations played in the growth impairments of C321. We used multiplex genome engineering (MAGE)<sup>19</sup> to correct

1 mutations in *prfB* and *ilvG* in both EcNR2 and C321. EcNR2 harboring these reverions  
2 (designated EcNR2.*prfB<sup>r</sup>.ilvG<sup>r</sup>*) demonstrated no improvements in growth phenotype (Figure  
3 2A). C321 with *prfB* and *ilvG* corrections (designated C321.*prfB<sup>r</sup>.ilvG<sup>r</sup>*) showed a modest  
4 growth improvement in rich medium (5.5% reduction in doubling time relative to C321)  
5 (Figure 2B). However, the corrections led to a near-complete recovery of growth in minimal  
6 medium, reducing doubling time relative to C321 by 37%. The doubling time of  
7 C321.*prfB<sup>r</sup>.ilvG<sup>r</sup>* in minimal media is 110% that of EcNR2.

8 C321 with a single reversion in *ilvG* (designated C321.*ilvG<sup>r</sup>*) did not show an extended  
9 lag phase after inoculation when cultured in isoleucine dropout medium (Figure 2C, dotted  
10 line). This suggests correction of dysregulated isoleucine biosynthesis. Furthermore,  
11 C321.*ilvG<sup>r</sup>* exhibited similar growth characteristics when grown in M9 without (doubling  
12 time: 137 ± 1 min) and with (doubling time: 138 ± 4 min) isoleucine supplementation (Figure  
13 2C, solid and dashed lines). This indicates that restoring IlvG function is sufficient for  
14 eliminating the strain's isoleucine dependence.

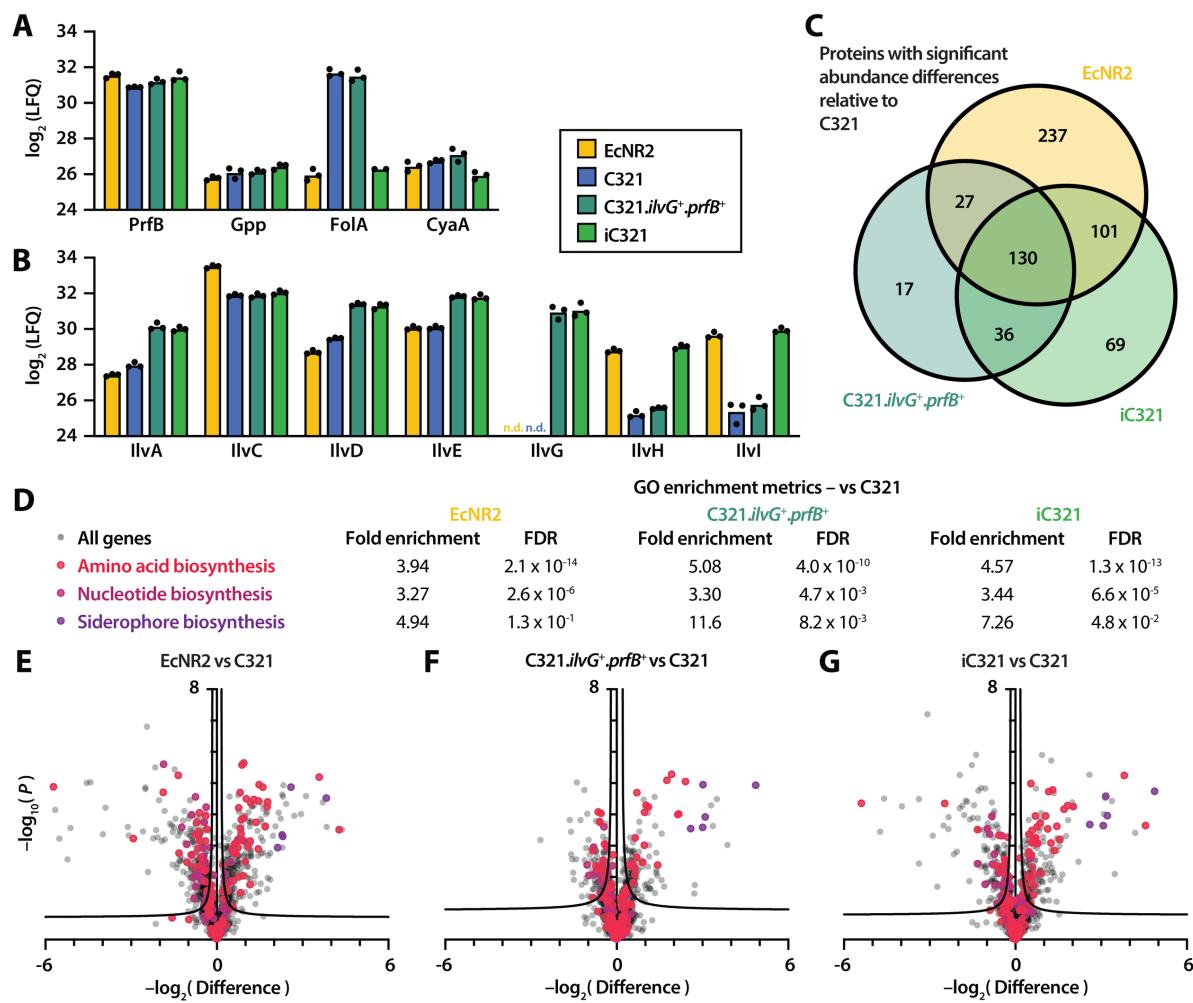
15 We investigated the effects of single reverions of *prfB* and *ilvG* on the growth  
16 characteristics of C321 by measuring maximum OD<sub>600</sub> in minimal media and supplemented  
17 derivatives. We observed an epistatic pattern whereby *prfB* reversion only has an appreciable  
18 effect on growth if isoleucine starvation was alleviated, either through exogenous  
19 supplementation or by reversion of *ilvG* (Figure 2D). While *ilvG* reversion is sufficient to  
20 restore regulation of isoleucine biosynthesis, *prfB* reversion enables growth to a higher optical  
21 density in a manner unrelated to isoleucine metabolism, as C321 with a single reversion in  
22 *prfB* (designated C321.*prfB<sup>r</sup>*) grows more robustly than does C321 in minimal medium  
23 supplemented with all 20 amino acids (M9R). As with its recoded counterpart,  
24 EcNR2.*prfB<sup>r</sup>.ilvG<sup>r</sup>* was capable of growth in M9R lacking isoleucine, indicating restoration of  
25 dysregulated isoleucine biosynthesis. We also compared the maximum OD<sub>600</sub> values reached  
26 by C321.*prfB<sup>r</sup>.ilvG<sup>r</sup>* against those reached by previously reported optimized C321 strains:  
27 C321.OPT and C321.M9<sup>20,21</sup>. C321.*prfB<sup>r</sup>.ilvG<sup>r</sup>* outgrew both of these strains in all media types  
28 tested (Figure 2D).  
29

| Site                 | Mutation         | Lineage | Function                          |
|----------------------|------------------|---------|-----------------------------------|
| <i>ilvG</i>          | Δ(A979-T980)     | K-12    | Isoleucine biosynthesis           |
| <i>prfB</i>          | Ala246Thr        | K-12    | UGA/UAA release factor            |
| <i>gpp</i>           | Arg134His        | C321    | Stringent response                |
| <i>folA</i> promoter | promoter -35 box | C321    | Tetrahydrofolate biosynthesis     |
| <i>cyaA</i>          | Pro301Leu        | C321    | cAMP biosynthesis and signaling   |
| <i>leuS</i>          | Val613Phe        | C321    | Leucine aminoacyl tRNA synthetase |
| <i>bamA</i>          | Pro763Ser        | C321    | Outer membrane protein assembly   |
| <i>hemA</i>          | Leu196Pro        | C321    | Porphyrin biosynthesis            |
| <i>cpxA</i>          | Trp184Arg        | C321    | Inner membrane stress response    |

1 **Table 1** – Mutations targeted for correction in C321. K-12 lineage mutations are present in all  
2 K-12 derived strains, and C321 lineage mutations are unique to C321 and its derivatives.

---

3  
4 *C321-specific mutations targeted for reversion in C321:* While C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* shows more  
5 favorable growth characteristics than other optimized C321 variants, the strain nonetheless  
6 demonstrates doubling times that are 35% slower in rich medium and 10% slower in minimal  
7 medium compared to the analogous unrecoded EcNR2.*prfB<sup>+</sup>.ilvG<sup>+</sup>*. We hypothesized that  
8 reversion of C321 lineage-specific mutations could further recover the remaining growth  
9 deficit in C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>*. Analysis of single nucleotide substitutions in the protein-coding  
10 regions of the C321 genome (**Supplementary table 3**) revealed a R134H substitution in Gpp, a  
11 phosphatase that metabolizes pppGpp to ppGpp and plays a key role in mobilizing the stringent  
12 response that upregulates amino acid biosynthesis under starvation conditions<sup>26</sup>. Strains  
13 deficient in ppGpp show a reduced ability to regulate biosynthetic genes when grown in media  
14 lacking isoleucine<sup>27</sup>. We targeted six additional mutations—previously identified through  
15 targeted mutagenesis and adaptive evolution—that have been shown to recover 59% of the  
16 doubling time deficit of C321 in rich medium (**Supplementary table 4**)<sup>20</sup>. Targeting a limited  
17 set of seven C321-specific mutations for reversion (**Table 1**) allowed us to investigate the  
18 combinatorial effects of reversions on growth phenotype and to construct optimized strains in  
19 a minimal number of generations, thereby avoiding the accumulation of carrier mutations.  
20


21 *C321-specific reversions further recover phenotype in rich and minimal media:* We used  
22 MAGE to generate C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* derivatives with single reversions, intermediate  
23 combinations of reversions, and all reversions of C321-specific mutations. We assessed strain  
24 fitness using 96-well microplate assays to measure maximum OD<sub>600</sub> and doubling time in LB  
25 and M9, and benchmarked these metrics against those obtained for C321 (**Supplementary**  
26 **table 5**). All engineered variants showed modest phenotype improvements compared to the  
27 improvements demonstrated by C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* in both minimal medium (**Figure 2E**) and  
28 rich medium (**Supplementary data figure 5**). One-way ANOVA for all strain-by-strain  
29 comparisons is detailed in **Supplementary table 6**.

30 Our optimized strains demonstrate differing degrees of phenotypic improvement  
31 compared to C321 in rich and minimal medium. C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* recovers 17% of the doubling  
32 time deficit relative to EcNR2 in rich medium and 87% of the doubling time deficit relative to  
33 EcNR2 in minimal medium. We identified an intermediate strain—C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* with  
34 reversions of mutations in *gpp*, the *folA* promoter, and *cyaA*—that recovers 3.4% of the  
35 doubling time deficit relative to EcNR2 in rich medium and 97% of the doubling time deficit  
36 relative to EcNR2 in minimal medium. We designated this strain iC321, an abbreviation for  
37 “improved C321,” to reflect the substantial growth rate improvements it exhibits in minimal  
38 medium.

39 C321.*prfB<sup>+</sup>.ilvG<sup>+</sup>* with all seven C321-specific mutation reversions likewise showed a  
40 similar improvement of doubling time in M9, but reached a lower maximum OD<sub>600</sub> than did

1 iC321. iC321 has a slower doubling time in LB than both C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> and C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>  
 2 with all seven C321-specific mutation reversions, suggesting epistasis among the alleles that  
 3 confer faster growth rates in rich medium. We did not observe the same epistatic pattern for  
 4 growth rates in minimal medium. C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> with all seven C321-specific mutation  
 5 reversions recovers 54% of the doubling time deficit relative to EcNR2 in rich medium and  
 6 95% of the doubling time deficit relative to EcNR2 in minimal medium. Our phenotype-  
 7 optimized strains do not show reductions in maximum OD<sub>600</sub>, which we observed in the  
 8 growth profiles of previously reported optimized strains C321.OPT and C321.M9 in both M9  
 9 (Figure 2E) and LB (Figure 2F).

10



11

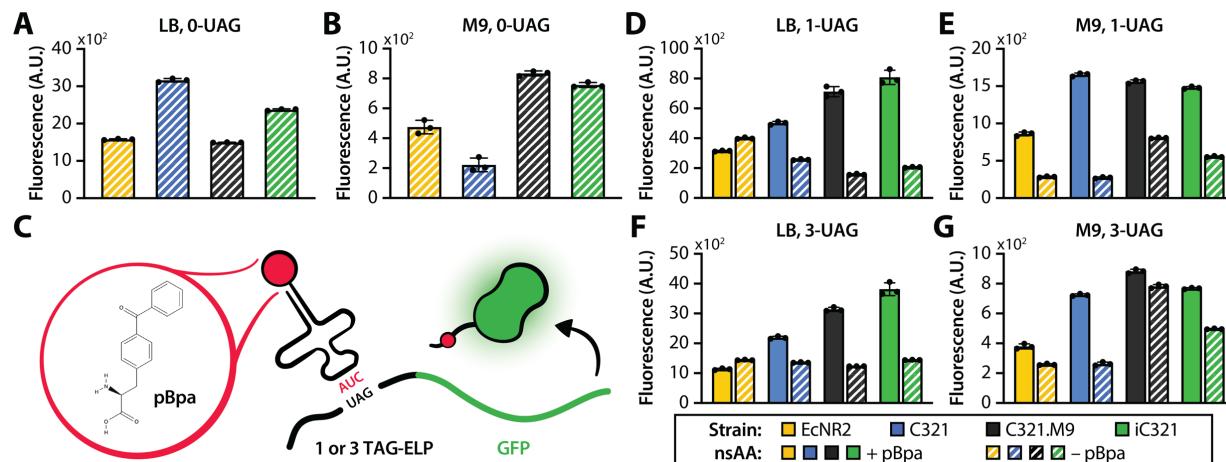
12

13 **Figure 3 – Proteomic analysis of C321 and phenotype-enhanced variants.** (A) Label-free  
 14 quantification (LFQ) intensities for peptides whose genes were targeted for mutation reversion  
 15 (n = 3 biological replicates). (B) LFQ intensities for peptides in the *ilv* gene family; n.d.  
 16 indicates that the peptide was not detected. (C) Set analysis of proteins with significant  
 17 differences in abundance compared to C321. Regions of overlap indicate proteins with a  
 18 significant difference in abundance in greater than one strain. (D) Gene ontology (GO)

1 enrichment analysis for genes involved in amino acid biosynthesis (GO:0008652), nucleotide  
2 biosynthesis (GO:0009165), and siderophore biosynthesis (GO:0019290). FDR: False discovery  
3 rate. (E-G) Volcano plots showing whole-proteome comparisons between C321 and EcNR2  
4 (E), C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> (F), and iC321 (G) (mean of n = 3 biological replicates). Proteins whose  
5 genes belong to GO categories of interest are shaded according to (D).

---

6  
7 *Phenotype-optimized C321 strains show improved proteomic profiles:* C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> and  
8 iC321 exhibit profound phenotypic improvements over C321 in minimal medium. To  
9 understand the physiologic basis for these improvements, we performed proteomic analysis on  
10 C321, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>, iC321, and EcNR2 grown in minimal medium. We used label-free  
11 quantification (LFQ) to determine the abundances of proteins encoded by genes targeted for  
12 reversion in iC321 (**Figure 3A; Supplementary table 7**) as well as proteins encoded by genes  
13 in the isoleucine biosynthesis (*ilv*) family (**Figure 3B**). FolA showed a much lower abundance  
14 in EcNR2-genotype strains (EcNR2 and iC321) compared to mutated strains (C321 and  
15 C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>). The mutation found in C321 comprises a C-to-T transition within the -35  
16 box of the *folA* promoter (TTGACG in C321 versus TCGACG in EcNR2 and other K-12  
17 strains). The C321 genotype is in closer alignment with the consensus sigma  $\sigma$ -binding  
18 sequence TTGACA; this likely increases protein abundance by raising the rate of *folA*  
19 transcription. Reverting the mutation in iC321 reduces FolA abundance to a level comparable  
20 with that measured in EcNR2.


21 Proteins encoded by *ilv* family genes showed diverse responses to mutation reversion  
22 (**Figure 3B**). Full-length IlvG was undetectable in EcNR2 and C321, but was present in both  
23 C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> and iC321. Compared against C321, both C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> and iC321  
24 demonstrated increases in the abundances of IlvA/D/E. Because *ilvG* is the first gene of an  
25 operon that also encodes *ilvA*, *ilvD*, and *ilvE*, we suspect that reversion of the *ilvG* frameshift  
26 increases the expression of downstream genes through translational coupling, which has been  
27 observed within the operon between *ilvA* and *ilvD*<sup>8</sup>. iC321, but not C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>, showed  
28 increases in the abundances of IlvH/I, the functionally redundant analogues of IlvG/M. This  
29 may be attributable to the influence of intracellular (p)ppGpp concentrations on *ilvH/I*  
30 expression<sup>29,30</sup>; reversion of the C321-specific *gpp* mutation restores IlvH/I abundance to levels  
31 comparable to those measured in EcNR2. IlvC is encoded in its own single-gene operon whose  
32 activity is not known to be influenced by ppGpp signaling, and its abundance does not change  
33 appreciably in C321 strains with *ilvG* and *gpp* mutation reversions. This observation is  
34 consistent with our hypothesis that *ilvG* reversion affects the expression of downstream genes  
35 within its operon and that *gpp* reversion affects the expression of IlvI/H via modulation of the  
36 stringent response.

37 The genetic changes made to C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> and iC321 have far-reaching effects on  
38 the strains' proteomes. We identified all genes in EcNR2, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>, and iC321 whose  
39 protein products showed significant differences in abundance compared to C321 (**Figure 3C;**  
40 **Supplementary table 8**). Of the 210 proteins found to have significant abundance differences

1 in C321, *prfB*<sup>+</sup>, *ilvG*<sup>+</sup> compared to C321, 157 (75%) were also found to be significant in EcNR2.  
2 Likewise, 231 of 336 proteins (69%) with significant abundance differences in iC321 were  
3 found to be significant in EcNR2. This suggests that the proteomic profiles of C321, *prfB*<sup>+</sup>, *ilvG*<sup>+</sup>  
4 and iC321 are more similar to that of EcNR2 than they are to that of C321.

5 C321, *prfB*<sup>+</sup>, *ilvG*<sup>+</sup> and iC321 have markedly improved biosynthetic capabilities over  
6 C321 when cultured in minimal media. We performed a gene ontology (GO) enrichment  
7 analysis<sup>31</sup> on the genes with significant abundance differences compared to C321 for each  
8 strain (Figure 3D; Supplementary tables 9-10). We found that genes involved in amino acid  
9 biosynthesis (GO:0008652) and nucleotide biosynthesis (GO:0009165) were overrepresented  
10 in C321, *prfB*<sup>+</sup>, *ilvG*<sup>+</sup> and iC321 as well as in EcNR2. We also found that the protein products of  
11 genes associated with siderophore biosynthesis (GO:0019290) were very strongly expressed in  
12 all three strains compared to C321 (Figures 3E-G, deep purple). These findings suggest that  
13 the predominant basis for C321's growth impairment in minimal media is the dysregulation of  
14 key biosynthetic pathways as well as a deficiency in iron scavenging ability. The mutations  
15 implemented in iC321 partially restore the expression of these biosynthetic pathways,  
16 enabling higher growth rates in minimal medium.

17



20 **Figure 4 – Protein production and non-standard amino acid incorporation in iC321.** (A-B)  
21 non-OD-normalized GFP fluorescence for EcNR2, C321, and optimized C321 variants  
22 cultured in LB medium (A) or M9 medium (B) (n = 3 biological replicates). (C) nsAA  
23 incorporation into elastin-like polypeptide (ELP) chains fused to GFP. An orthogonal  
24 tRNA/synthetase pair encodes *para*-benzoyl-L-phenylalanine (pBpa) at UAG codons placed  
25 within the ELP sequence. (D-F) OD-normalized GFP fluorescence for EcNR2, C321, and  
26 optimized C321 variants expressing ELP-GFP constructs that contain 1 (D-E) or 3 (E-F) TAG  
27 codons within their coding sequences. Strains were cultured in LB medium (D, F) or M9  
28 medium (E, G). Solid fills indicate the inclusion of 1 mM pBpa in the growth medium; striped  
29 fills indicate the omission of pBpa (n = 3 biological replicates).

30

1 *Enhanced nsAA incorporation with iC321:* A key application for genomically recoded  
2 organisms is the efficient multisite incorporation of nonstandard amino acids (nsAAs) into  
3 proteins and protein polymers<sup>2,4,5,32</sup>. C321 strains lack in-frame UAG codons as well as release  
4 factor 1, which is responsible for translation termination at UAG codons. This permits the  
5 incorporation of nsAAs using aminoacyl tRNA synthetases that charge nsAAs onto tRNAs  
6 with cognate UAG codons. C321 exhibits higher specificity for multi-site nsAA incorporation  
7 compared to EcNR2<sup>5</sup> in rich medium. However, C321's fitness impairments lead to reduced  
8 total protein yields, especially in minimal medium<sup>21</sup>. We hypothesized that the favorable  
9 growth and proteomic characteristics of iC321 would enable high-specificity and high-yield  
10 nsAA incorporation in both rich and minimal medium.

11 The efficient production of nsAA-containing proteins requires a host strain with high  
12 protein production capacity and high specificity for nsAA incorporation. To assess protein  
13 production capacity, we measured non-OD-normalized fluorescence generated from the  
14 expression of ELP-GFP cassettes containing no in-frame UAG codons (**Figure 4A-B**). We  
15 compared iC321 against ancestral C321, the previously reported optimized strain C321.M9<sup>21</sup>,  
16 and non-recoded EcNR2 in both rich and minimal medium (we were unable to transform  
17 plasmids into C321.OPT). iC321 exhibited higher fluorescence than EcNR2 and C321.M9—  
18 but lower fluorescence than C321—in rich medium. Such differences could be due to broadly  
19 dysregulated protein synthesis pathways in C321 that are partly restored in iC321. Both iC321  
20 and C321.M9 exhibited much higher fluorescence than C321 in minimal medium, suggesting  
21 that the mutations implemented have stronger effects on protein production capacity in  
22 minimal medium than they do in rich medium.

23 To assess nsAA incorporation specificity, we constructed anhydrotetracycline (aTc)-  
24 inducible expression cassettes consisting of an elastin-like polypeptide (ELP) fused to the N-  
25 terminus of GFP. UAG codons placed within structurally permissive sites of the ELP chain  
26 encode nsAAs; the abundance of GFP detected via fluorescence serves as a measure of overall  
27 nsAA incorporation<sup>5</sup>. We expressed ELP-GFP cassettes containing one or three in-frame UAG  
28 codons alongside with a synthetase/tRNA pair that charges the photo-crosslinkable nsAA *para*-  
29 benzoyl-L-phenylalanine (pBpa) onto tRNAs with a cognate UAG codon (**Figure 4C**)<sup>33</sup> and  
30 measured OD-normalized fluorescence in both rich and minimal medium (**Figures 4D-G**). We  
31 found that the fluorescence output of iC321 was higher than all other strains when expressing  
32 1- and 3-UAG ELP-GFP in rich medium (**Figures 4D, F**). iC321 showed nsAA incorporation  
33 activity comparable to those of C321 and C321.M9 in minimal medium (**Figures 4E, G**).  
34 Notably, fluorescence generated by the optimized strains iC321 and C321.M9 was elevated  
35 when expressing 1- and 3-UAG ELP-GFP in minimal medium without pBpa supplementation  
36 (**Figures 4E, G**, dashed bars). This suggests that the nsAA incorporation specificity of  
37 optimized strains is reduced in minimal medium, possibly due to increased rates of UAG near-  
38 cognate suppression. As has been shown previously, near-cognate suppression can trigger  
39 ribosomal rescue mechanisms that tag nascent proteins for degradation, reducing overall  
40 yields<sup>6</sup>.

41

1 **Discussion**

2 Genomically recoded organisms exhibit numerous unique traits—including enhanced  
3 ribosomal nsAA incorporation, resistance to horizontal gene transfer, and biocontainment  
4 through nsAA auxotrophy—that make them appealing for a wide range of biotechnological  
5 applications<sup>1-3</sup>. However, C321 and other genomically recoded strains show impaired fitness  
6 compared to their non-recoded counterparts, which limits their utility. This observation has  
7 prompted unresolved questions concerning the degree to which genomic recoding imposes  
8 intrinsic fitness burdens on organisms, and thus the extent to which organisms can tolerate  
9 whole-genome codon reassignment.

10 To address this, we leveraged targeted metabolic screens to identify and rectify  
11 deleterious mutations in C321. We found that mutations common to all K-12 lineage strains—  
12 a two-nucleotide deletion in *ilvG* and a nonsynonymous substitution in *prfB*—play strong  
13 roles in C321’s fitness impairment in both rich and minimal media. IlvG-deficient *E. coli*  
14 strains oscillate between states of isoleucine starvation and production in media containing  
15 glucose as a sole carbon source<sup>24</sup>. This may be due to unchecked activity of IlvM, which  
16 functions as a regulatory subunit of full-length IlvG but can also interact with the redundant  
17 acetolactate synthase IlvI<sup>34</sup>. K-12 lineage *prfB* mutants show reduced UAA codon release rates  
18 *in vitro*<sup>25</sup>, and adaptive laboratory evolution of C321.ΔA led to the spontaneous reversion of  
19 *prfB* to a variant with higher catalytic activity<sup>21</sup>.

20 We observed an epistatic relationship for the *prfB* and *ilvG* mutations in minimal  
21 medium, whereby *prfB* correction only improved the growth phenotype of C321 in an *ilvG*-  
22 corrected background, but *ilvG* correction did improve the strain’s growth phenotype even in  
23 the absence of *prfB* correction (Figure 2D). We are unaware of studies that report a direct  
24 mechanistic link between PrfB and IlvG. We hypothesize that this epistatic pattern may be  
25 due to the relative demands for isoleucine and PrfB during translation—whereas virtually all  
26 proteins necessitate numerous isoleucine-charged tRNAs within their coding domains for  
27 complete synthesis, PrfB only plays a role in the termination of fully-synthesized proteins.  
28 Deficiencies in isoleucine production due to *ilvG* mutation thus mask deficiencies in  
29 translational termination due to *prfB* mutation. We constructed a phenotype-optimized strain,  
30 termed iC321, by correcting *ilvG* and *prfB* mutations alongside three C321-specific mutations  
31 (in *gpp*, *cyaA*, and the *folA* promoter). iC321 shows more favorable growth kinetics than  
32 previously reported optimized C321 derivatives in a range of media<sup>20,21</sup>, as well as an improved  
33 proteomic profile and enhanced nsAA incorporation in rich medium.

34 Insertion-deletion (indel) mutations are approximately 10 times less frequent per  
35 genome replication event than are single nucleotide substitutions in mismatch-repair-deficient  
36 strains like EcNR2 and C321<sup>35</sup>. The relative rarity of spontaneous indels helps to explain why  
37 Wannier and colleagues never observed reversion of the K-12 *ilvG* frameshift after passaging  
38 C321 in minimal medium for >1000 generations<sup>21</sup>. They nonetheless found that C321 exhibited  
39 appreciable reductions in doubling time after propagating in minimal medium for as few as  
40 ~50 generations, a finding reproduced here (Figure 1C). Such a rapid recovery of growth  
41 impairment suggests that numerous compensatory mutations exist for *ilvG* deficiency in K-12

1 lineages, and that the accumulation of mutationally accessible compensatory mutations is more  
2 likely than the reversion of a single defect-inducing mutation. This pattern is consistent with  
3 past observations of compensatory evolution in diverse biological systems, including  
4 mutational trajectories taken by peptides in response to protein-protein interface-altering  
5 substitutions<sup>36</sup>, by mitochondrial tRNAs in response to canonical base-pair disruption<sup>37</sup>, and  
6 by bacterial pathogens in response to the acquisition of fitness-reducing antibiotic resistance  
7 alleles<sup>38,39</sup>.

8 Mutagenesis using MAGE can generate strains with optimized phenotypes in far fewer  
9 generations, but do so at the cost of low throughput and high expense. Kuznetsov and  
10 colleagues targeted 127 of 360 known C321-specific mutations for reversion via MAGE<sup>20</sup>.  
11 Assuming that the generation of each reversion is independent of all others, this corresponds  
12 to a mutational space of  $\sim 10^{38}$  genotypes to explore. For comparison, there exist an estimated  
13  $10^{30}$  living prokaryotic cells on Earth<sup>40</sup>. Targeted mutagenesis at the whole-genome scale is  
14 thus unlikely to generate sufficient diversity to adequately sample all—or even a small fraction  
15 of—possible genotypes.

16 Strain engineering via targeted mutagenesis necessarily involves passaging cell cultures,  
17 which also permits off-target carrier and compensatory mutations to arise within lineages,  
18 albeit to a lesser degree than does adaptive evolution. The accumulation of carrier mutations  
19 during strain construction likely plays a role in reducing the versatility of recoded strains, as  
20 inadvertent adaptive evolution optimizes fitness under the conditions of strain construction at  
21 the expense of fitness in other settings. By prefacing our strain engineering efforts with a study  
22 on the metabolic basis for C321's growth impairment, we narrowed the scope of our  
23 engineering efforts to high-impact mutations and minimized the opportunity for unintended  
24 adaptive evolution to occur. We generated C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> in five MAGE cycles and iC321 in  
25 10 MAGE cycles, corresponding to approximately 30 and 60 generations, respectively (one  
26 MAGE cycle amounts to  $\sim 6$  bacterial generations, on average<sup>4</sup>). This is on par with the  $\sim 28$   
27 generations taken to construct the rationally-designed C.OPT—which showed poor growth  
28 characteristics in our studies—and is far fewer than the  $>1000$  generations taken to generate  
29 C.M9 by adaptive evolution.

30 The findings from our study suggest that genome-scale codon reassignment may have  
31 smaller intrinsic fitness defects than is often assumed and that only a small subset of  
32 unintended mutations confer a dramatic impact on phenotype. The substantial fitness defects  
33 seen in recoded strains may instead be due to the exacerbation of dysregulated (as is the case  
34 for *ilvG*.  $\Delta$ (A979-T980)) or suboptimal (as is the case for *prfB*.A246T) traits already present  
35 within ancestral strains. The mechanisms by which codon reassignment elicits this effect  
36 remain unclear, but our finding that reverting two K-12 lineage mutations leads to a substantial  
37 resolution of C321's growth impairments suggests that recoding unmasks these metabolic  
38 idiosyncrasies. For this reason, we recommend that future recoding efforts be based off of high-  
39 fitness strains. The advantages (*i.e.* smaller genome size, absence of transposable genomic  
40 elements) and disadvantages (*i.e.* metabolic insufficiencies, physiological impairments) of

1 organisms with minimal genomes<sup>11,41</sup> should be carefully considered before using such strains  
2 as starting points for genome-scale engineering.

3

4 *Conclusion*

5 Genomically recoded organisms hold promise for diverse biotechnological applications, but  
6 also exhibit fitness impairments that limit their utility. Here, we used targeted metabolic  
7 screening to inform the construction of engineered C321 derivatives with improved functional  
8 phenotypes. In addition to demonstrating superior growth kinetics in rich (**Supplementary**  
9 **data figure 5**) and minimal (**Figure 2E**) media, iC321 exhibits an EcNR2-like proteomic profile  
10 (**Figure 3C**), enhanced protein expression in minimal medium (**Figure 4B**), and high nsAA  
11 incorporation specificity in rich medium (**Figures 4D, F**). We anticipate that the strain will be  
12 useful for a wide variety of applications under a diverse range of growth conditions. However,  
13 iC321 does not outperform other recoded strains in all categories: C321 shows higher nsAA  
14 incorporation specificity in minimal medium than do iC321 and C321.M9 (**Figures 4E, G**), and  
15 C321.M9 grows faster than iC321 in minimal medium (**Figure 2E**). We suspect that the diverse  
16 metabolic and phenotypic characteristics of C321 derivatives will render certain strains more  
17 suitable for a particular application than others. iC321, given its improved growth kinetics and  
18 proteomic profile in minimal medium, may be particularly suitable for applications involving  
19 glucose metabolism. The favorable growth kinetics of C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> with all seven C321  
20 lineage reversions in rich medium may make it particularly suitable as a host strain for  
21 biofermentation. We recommend that as many strains as possible—both engineered and  
22 unoptimized—be tested when using genomically recoded organisms for any desired  
23 application, and that organisms constructed through future genomic recoding efforts undergo  
24 phenotype optimization to maximize their utility.

25

26 *Materials and methods*

27 *Materials, strains and media:* All strains engineered in this study are derived from *Escherichia*  
28 *coli* EcNR2 (Addgene ID 26931) and C321.ΔA (Addgene ID 48998). *E. coli* strains MG1655 and  
29 BL21 were obtained from the Coli Genetic Stock Center (CGSC# 6300 and 12504,  
30 respectively). C321.OPT and C321.M9 were obtained from the laboratory of Dr. George  
31 Church via Addgene (Addgene IDs 87359 and 98568, respectively). LB min media from  
32 AmericanBio (Canton, MA) was used for routine strain growth and cloning. M9 minimal  
33 medium was supplemented with 0.4% (w/v) glucose as a carbon source, 0.083 nM thiamine,  
34 and 5 nM biotin; additional supplements added to M9 for dropout experiments are detailed in  
35 **Supplementary table 2** and are based on concentrations used in Neidhardt rich defined  
36 medium<sup>42</sup>. 50 µg/mL carbenicillin was used to maintain cultures of EcNR2 and engineered  
37 derivatives, C321 and engineered derivatives, and C321.M9. 5 µg/mL gentamycin was used to  
38 maintain cultures of C321.OPT. MG1655 and BL21 were grown in antibiotic-free media. All  
39 cultures were grown at 34 °C.

40

1 *Serial passaging:* Single colonies of C321 were picked from LB agar plates and inoculated into  
2 3 mL LB or M9 supplemented with 50  $\mu$ g/mL carbenicillin. Cultures were grown to saturation  
3 (*i.e.* overnight) and back-diluted 1:100 into 3 mL fresh media. This process was repeated daily  
4 for 10 days (for LB passaging) or 8 days (for M9 passaging). After passaging, single colonies  
5 were isolated by plating on LB agar and were analyzed via growth assays (detailed below).

6  
7 *Plate-based growth assays:* To determine kinetic growth parameters, we isolated single  
8 colonies of strains by plating cultures on LB medium containing appropriate antibiotics.  
9 Colonies (n = 3) were then inoculated into 3 mL LB and grown to an OD<sub>600</sub> of 0.4-0.6. 1 mL of  
10 culture was washed by centrifugation (12,000 x *g*, 1 min) and resuspended in 1 mL M9 medium  
11 to remove residual nutrients from rich medium. Washed cultures were then diluted 1:100 into  
12 the wells of a flat-bottom 96-well bioassay plate containing 148.5  $\mu$ L media and the appropriate  
13 antibiotics. Cultures were grown at 34 °C in a Biotek Synergy HT microplate reader and OD<sub>600</sub>  
14 was measured every 10 minutes.

15  
16 *Calculation of growth parameters:* Growth curves derived from 96-well microplate assays were  
17 analyzed in MATLAB (**Supplementary file 1**; also available as a GitHub repository  
18 (<https://github.com/colinfromtherandomforest/cell-in-a-well>)). Doubling times were  
19 calculated by determining growth rate with the exponential phase of bacterial growth curves  
20 (*i.e.* when a log-transform of the growth curve is linear). The slope of the steepest portion of  
21 the log-transformed growth curve over 7 consecutive timepoints (*i.e.* one hour) is used to  
22 determine growth rate.

23 A common practice when calculating growth rates using this method is to blank all  
24 wells of a plate by subtracting the mean OD of several control wells containing media but no  
25 bacterial culture<sup>20</sup>. However, baseline OD<sub>600</sub> values vary between wells on the same plate  
26 (variance ~5% of mean), so the subtraction of a constant baseline from all plate wells affects  
27 doubling time calculations differently for each well. Furthermore, the subtraction of empty  
28 well OD values can lead to the calculation of artificially low doubling times as the steepest  
29 portion of the log-transformed OD curve falls in a region within which the OD measured by  
30 the plate reader is nonlinear with respect to cell number (**Supplementary data figure 6**).

31 To avoid these artifacts, growth curves from all wells of a plate were adjusted to the  
32 same starting OD at the first timepoint. We set the appropriate starting OD for LB- and M9-  
33 containing wells separately by determining the threshold OD value below which the nonlinear  
34 effects of plate reader signal gain become significant, and setting a starting OD above this  
35 threshold (0.030 for LB and 0.020 for M9) (**Supplementary data figure 6**, dashed red lines).  
36 Doubling times are reported in minutes for experiments in which all strains were cultured  
37 within the same 96-well plate (*i.e.* **Figure 1B, 1C**). For experiments spanning multiple plates  
38 (*i.e.* **Figure 2E, 2F**), control wells containing EcNR2 and C321 were included in each plate to  
39 enable comparisons, and doubling times are reported as values normalized to those calculated  
40 for C321 in each plate. Raw and normalized growth parameters for these experiments are

1 available in **Supplementary table 5**. OD<sub>600</sub> values are reported as obtained by the plate reader  
2 and are not normalized to a 1cm path length.

3  
4 *Strain engineering with targeted mutagenesis*: We used MAGE<sup>18,19</sup> to engineer all targeted  
5 genomic changes described in the study. Combinatorial genetic changes were implemented by  
6 performing three rounds of MAGE using pools of 90-mer single-stranded DNA  
7 oligonucleotides encoding the desired mutation (**Supplementary table 4**). Cultures were then  
8 plated on LB agar to isolate single bacterial colonies, which were screened for genotype using  
9 multiplex allele-specific colony PCR<sup>18</sup>. Additional rounds of MAGE were performed as needed  
10 to obtain desired genotypes. All genotypes were confirmed via Sanger sequencing.

11  
12 *Cell culture for proteomics*: Single colonies of strains analyzed in proteomics experiments were  
13 isolated by plating overnight on LB. Colonies (n = 3) were picked, inoculated into 3 mL M9  
14 medium, and grown to mid-log phase (OD<sub>600</sub> 0.4-0.6). Upon reaching mid-log, 1 mL of culture  
15 was transferred to 99 mL of pre-warmed M9 medium in a 250 mL culture flask. Flasks were  
16 incubated at 34 °C with shaking until cultures reached an OD<sub>600</sub> of 0.5 to 0.6; because growth  
17 rates differ among strains, each flask was monitored for OD<sub>600</sub> and removed from individually.  
18 Because C321 reaches lower maximum OD<sub>600</sub> than other strains in minimal medium (**Figure**  
19 **1A**), C321 cultures were removed at OD<sub>600</sub> = 0.35. Cultures were concentrated into 1.5 mL  
20 microcentrifuge tubes and pellets were frozen at -80 °C prior to proteomic work-up.

21  
22 *Digestion of intact E. coli for shotgun proteomics*: For cell lysis and protein digest, cell pellets  
23 were thawed on ice and 2 µL of cell pellet was transferred to a microcentrifuge tube containing  
24 40 µL of lysis buffer (10 mM Tris-HCl pH 8.6, 10 mM DTT, 1 mM EDTA, and 0.5 % ALS). Cells  
25 were lysed by vortex for 30 seconds and disulfide bonds were reduced by incubating the  
26 reaction for 30 min. at 55°C. The reaction was briefly quenched on ice and 16 µL of a 60 mM  
27 IAA solution was added. Alkylation of cysteines proceeded for 30 min in the dark. Excess IAA  
28 was quenched with 14 µL of a 25 mM DTT solution and the sample was then diluted with 330  
29 µL of 183 mM Tris-HCl buffer pH 8.0 supplemented with 2 mM CaCl<sub>2</sub>. Proteins were digested  
30 overnight using 12 µg sequencing grade trypsin. Following digestion, the reaction was then  
31 quenched with 12.5 µL of a 20% TFA solution, resulting in a sample pH ~2. Remaining ALS  
32 reagent was cleaved for 15 min at room temperature. The sample (~30 µg protein) was desalting  
33 by reverse phase clean-up using C18 MicroSpin columns (The Nest Group #SEM SS18V).  
34 Briefly, the column was conditioned twice with 400 µL 80% ACN, 0.1% TFA and twice with  
35 400 µL 0.1% TFA by centrifugation. Samples were pelleted at 2000g for 1 minute before  
36 applying lysate to the column. Columns were then washed twice with 400 µL 0.1% TFA and  
37 eluted twice with 200 µL 80% ACN, 0.1% TFA. The desalting peptides were dried at room  
38 temperature in a rotary vacuum centrifuge and reconstituted in 30 µL 70% formic acid 0.1%  
39 TFA (3:8 v/v) for peptide quantitation by UV280. The sample was diluted to a final  
40 concentration of 0.2 µg/µL with 5 µL (1 µg) injected for LC-MS/MS analysis.

41

1 *Proteomics data acquisition and analysis:* LC-MS/MS was performed using an ACQUITY UPLC  
2 M-Class (Waters) and Thermo Q Exactive Plus mass spectrometer. The analytical column  
3 employed was a 65-cm-long, 75- $\mu$ m-internal-diameter PicoFrit column (New Objective)  
4 packed in-house to a length of 50 cm with 1.9  $\mu$ m ReproSil-Pur 120  $\text{\AA}$  C18-AQ (Dr. Maisch)  
5 using methanol as the packing solvent. Peptide separation was achieved using mixtures of 0.1%  
6 formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B) with a 90-min  
7 gradient 0/1, 2/7, 60/24, 65/48, 70/80, 75/80, 80/1, 90/1; (min/%B, linear ramping between  
8 steps). Gradient was performed with a flowrate of 250 nL/min. A single blank injection (5  $\mu$ L  
9 2% B) was performed between samples to eliminate peptide carryover on the analytical  
10 column. 100 fmol of trypsin-digested BSA or 100 ng trypsin-digested wildtype K-12 MG1655  
11 *E. coli* proteins were run periodically between samples as quality control standards. The mass  
12 spectrometer was operated with the following parameters: (MS1) 70,000 resolution, 3e6 AGC  
13 target, 300–1,700 m/z scan range; (data dependent-MS2) 17,500 resolution, 1e6 AGC target,  
14 top 10 mode, 1.6 m/z isolation window, 27 normalized collision energy, 90s dynamic exclusion,  
15 unassigned and +1 charge exclusion. Data was searched using Maxquant version 1.6.10.43 with  
16 Deamidation (NQ) and Oxidation (M) as variable modifications and Carbamidomethyl (C) as  
17 a fixed modification with up to 3 missed cleavages, 5 AA minimum length, and 1% FDR against  
18 targeted libraries. *E. coli* proteome searches were run against a modified Uniprot *E. coli*  
19 database (taken on February 9, 2021), including full length IlvG. Proteome search results were  
20 analyzed with Perseus version 1.6.2.2 using a two-tailed Student's t-test. If a protein was not  
21 detected in two of three replicate runs, it was designated as "not detected;" if the protein was  
22 not detected in one of three replicate runs, the non-detected sample was dropped from  
23 analysis. The MS proteomics data have been deposited to the ProteomeXchange Consortium  
24 via the PRIDE<sup>43</sup> partner repository.

25  
26 *Gene enrichment analysis:* We performed Gene Ontology (GO) enrichment analysis on  
27 significant gene sets using the PANTHER classification system ([www.pantherdb.org](http://www.pantherdb.org))<sup>31</sup> using  
28 the *E. coli* all-gene reference list and the GO biological process annotation list. Enrichment  
29 analysis searches for GO terms that are over- and under-represented within input gene sets.  
30 The inputs for our analyses were the sets of all genes in EcNR2, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>, and iC321  
31 whose protein products showed significant differences in abundance compared to C321  
32 (**Supplementary table 8**). Complete results of the enrichment analyses are given in  
33 **Supplementary table 9**.

34  
35 *Plasmids for protein production and OTS activity assays:* The pEVOL-pBpA plasmid, which  
36 encodes MjTyrRS/tRNA pair for incorporation of pBpA into proteins in *E. coli* in response to  
37 the amber codon (UAG), was obtained from the laboratory of Peter Schultz (Addgene #31190).  
38 pEvol-pBpA was maintained with 20  $\mu$ g/mL chloramphenicol and induced using 0.2% w/v  
39 arabinose. ELP-0UAG-GFP, ELP-1UAG-GFP and ELP-3UAG-GFP fluorescence reporters<sup>5</sup>  
40 were synthesized as gBlocks by IDT and inserted into plasmid backbones with a CloDF13  
41 origin of replication and a spectinomycin resistance cassette using Gibson isothermal assembly

1 (New England Biolabs, Boston, MA). Reporter plasmids were maintained using 95 µg/mL  
2 spectinomycin and induced using 30 ng/mL anhydrotetracycline (aTc).

3  
4 *Endpoint protein production and OTS activity assays*: ECNR2, C321, C321.M9, and  
5 iC321 cells were transformed with the following plasmid pairs: (1) pEvol-pBpA and ELP-  
6 0UAG-GFP, (2) pEvol-pBpA and ELP-1UAG-GFP, (3) pEvol-pBpA and ELP-3UAG-GFP. All  
7 transformed strains were grown at 34°C in LB medium supplemented with 20 µg/mL  
8 chloramphenicol and 95 µg/mL of spectinomycin. Wells of a 96-well plate were filled with 150  
9 µL of LB medium supplemented with 20 µg/mL chloramphenicol and 95 µg/mL of  
10 spectinomycin. The wells were inoculated with colonies from each plasmid combination above  
11 (n = 3 biological replicates), and incubated at 34°C for 16 h with shaking. For endpoint protein  
12 production measurements, clear bottom wells of another 96-well plate were filled with 150 µL  
13 LB medium or M9 medium supplemented with 20 µg/mL chloramphenicol, 95 µg/mL of  
14 spectinomycin, and 30 ng/mL aTc to induce ELP-GFP expression. For measurement of OTS  
15 activity, clear bottom wells of a 96-well plate were filled with 150 µL of LB medium, or M9  
16 medium, supplemented with 20 µg/mL chloramphenicol, 95 µg/mL of spectinomycin, 0.2%  
17 arabinose and 30 ng/mL aTc to induce OTS and ELP-GFP expression, respectively, and/or  
18 supplemented with 1mM *para*-benzoyl-L-phenylalanine (pBpa), where indicated. Cells from  
19 overnight growth were washed twice by centrifugation in 1X PBS to remove residual nutrients  
20 from rich medium, and 2 µL of culture was inoculated into the assay plates. Assay plates were  
21 incubated with linear shaking (731 cycles per min) for 16 h at 34°C on a Bioteck Synergy H1  
22 plate reader, with measurements of cell density (OD<sub>600</sub>) and GFP fluorescence (excitation at  
23 485 nm and emission 528 nm with sensitivity setting at 70) taken at 10-minute intervals.

24  
25 **Data availability**  
26 Whole-genome sequencing data for precursor and engineered C321 strains (C321.ΔA,  
27 C321.*prfB*<sup>+</sup>, C321.*ilvG*<sup>+</sup>, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>.*gpp*<sup>+</sup>,  
28 C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>.*folA*<sup>+</sup>,  
29 C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup>.*cyaA*<sup>+</sup>, iC321, C321.*prfB*<sup>+</sup>.*ilvG*<sup>+</sup> with 7 C321-specific mutation reversions,  
30 C321.OPT, and C321.M9) have been deposited to the Sequence Read Archive under the  
31 temporary accession SUB10261001. Mass spectrometry and proteomics data have been  
32 deposited to the ProteomeXchange Consortium via the PRIDE<sup>43</sup> partner repository with the  
33 identifier PXD030359.

34 **Funding**  
35 Research reported in this publication was supported by the National Science Foundation (EF-  
36 1935120 to F.J.I.), National Institutes of Health (R01GM1404810 to F.J.I. and J.R.), and Yale  
37 University. F.R. is funded by the NIH T32GM067543 predoctoral training grant.

38  
39 **Conflict of interest disclosure**  
40 F.J.I. is a co-founder of Pearl Bio. J.R. is on the scientific advisory board and has an equity  
41 interest in Pearl Bio. The authors declare no other competing interests.

1

2 ***Acknowledgements***

3 The authors would like to acknowledge the members of the Isaacs and Rinehart labs for their  
4 insightful comments on this study.

5

1    **References**

2    1    des Soye, B. J., Patel, J. R., Isaacs, F. J. & Jewett, M. C. Repurposing the translation  
3    apparatus for synthetic biology. *Current Opinion in Chemical Biology* **28**, 83-90,  
4    doi:10.1016/j.cbpa.2015.06.008 (2015).

5    2    Ostrov, N. *et al.* Synthetic genomes with altered genetic codes. *Current Opinion in  
6    Systems Biology* **24**, 32-40, doi:10.1016/j.coisb.2020.09.007 (2020).

7    3    Singh, T., Yadav, S. K., Vainstein, A. & Kumar, V. Genome recoding strategies to  
8    improve cellular properties: mechanisms and advances. *Abiotech*, 1-17,  
9    doi:10.1007/s42994-020-00030-1 (2020).

10   4    Lajoie, M. J. *et al.* Genomically recoded organisms expand biological functions. *Science  
11   (New York, N.Y.)* **342**, 357-360, doi:10.1126/science.1241459 (2013).

12   5    Amiram, M. *et al.* Evolution of translation machinery in recoded bacteria enables  
13   multi-site incorporation of nonstandard amino acids. *Nat Biotechnol* **33**, 1272-1279,  
14   doi:10.1038/nbt.3372 (2015).

15   6    Ma, N. J., Hemez, C. F., Barber, K. W., Rinehart, J. & Isaacs, F. J. Organisms with  
16   alternative genetic codes resolve unassigned codons via mistranslation and ribosomal  
17   rescue. *eLife* **7**, e34878, doi:10.7554/eLife.34878 (2018).

18   7    Ma, N. J. & Isaacs, F. J. Genomic Recoding Broadly Obstructs the Propagation of  
19   Horizontally Transferred Genetic Elements. *Cell Syst* **3**, 199-207,  
20   doi:10.1016/j.cels.2016.06.009 (2016).

21   8    Rovner, A. J. *et al.* Recoded organisms engineered to depend on synthetic amino acids.  
22   *Nature* **518**, 89-93, doi:10.1038/nature14095 (2015).

23   9    Mandell, D. J. *et al.* Biocontainment of genetically modified organisms by synthetic  
24   protein design. *Nature* **518**, 55-60, doi:10.1038/nature14121 (2015).

25   10   Ostrov, N. *et al.* Design, synthesis, and testing toward a 57-codon genome. *Science  
26   (New York, N.Y.)* **353**, 819-822, doi:10.1126/science.aaf3639 (2016).

27   11   Fredens, J. *et al.* Total synthesis of Escherichia coli with a recoded genome. *Nature* **569**,  
28   514-518, doi:10.1038/s41586-019-1192-5 (2019).

29   12   Zhang, Y., Zhu, Y., Zhu, Y. & Li, Y. The importance of engineering physiological  
30   functionality into microbes. *Trends Biotechnol* **27**, 664-672,  
31   doi:10.1016/j.tibtech.2009.08.006 (2009).

32   13   Lajoie, M. J. *et al.* Probing the limits of genetic recoding in essential genes. *Science  
33   (New York, N.Y.)* **342**, 361-363, doi:10.1126/science.1241460 (2013).

34   14   Napolitano, M. G. *et al.* Emergent rules for codon choice elucidated by editing rare  
35   arginine codons in Escherichia coli. *Proceedings of the National Academy of Sciences  
36   of the United States of America* **113**, E5588-5597, doi:10.1073/pnas.1605856113 (2016).

37   15   Lau, Y. H. *et al.* Large-scale recoding of a bacterial genome by iterative recombineering  
38   of synthetic DNA. *Nucleic Acids Res* **45**, 6971-6980, doi:10.1093/nar/gkx415 (2017).

39   16   Richardson, S. M. *et al.* Design of a synthetic yeast genome. *Science (New York, N.Y.)*  
40   **355**, 1040-1044, doi:10.1126/science.aaf4557 (2017).

1 17 Chen, Y. *et al.* Multiplex base editing to convert TAG into TAA codons in the human  
2 genome. 2021.2007.2013.452007 (2021).

3 18 Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of  
4 bacterial genomes using libraries of synthetic DNA. *Nat Protoc* **9**, 2301-2316,  
5 doi:10.1038/nprot.2014.082 (2014).

6 19 Wang, H. H. *et al.* Programming cells by multiplex genome engineering and accelerated  
7 evolution. *Nature* **460**, 894-898, doi:10.1038/nature08187 (2009).

8 20 Kuznetsov, G. *et al.* Optimizing complex phenotypes through model-guided multiplex  
9 genome engineering. *Genome Biology* **18**, 100, doi:10.1186/s13059-017-1217-z (2017).

10 21 Wannier, T. M. *et al.* Adaptive evolution of genomically recoded *Escherichia coli*.  
11 *Proceedings of the National Academy of Sciences* **115**, 3090-3095,  
12 doi:10.1073/pnas.1715530115 (2018).

13 22 Dragosits, M. & Mattanovich, D. Adaptive laboratory evolution -- principles and  
14 applications for biotechnology. *Microb Cell Fact* **12**, 64, doi:10.1186/1475-2859-12-64  
15 (2013).

16 23 Blattner, F. R. *et al.* The complete genome sequence of *Escherichia coli* K-12. *Science*  
17 (*New York, N.Y.*) **277**, 1453-1462, doi:10.1126/science.277.5331.1453 (1997).

18 24 Andersen, D. C., Swartz, J., Ryll, T., Lin, N. & Snedecor, B. Metabolic oscillations in an  
19 *E. coli* fermentation. *Biotechnology and Bioengineering* **75**, 212-218,  
20 doi:10.1002/bit.10018 (2001).

21 25 Uno, M., Ito, K. & Nakamura, Y. Functional specificity of amino acid at position 246 in  
22 the tRNA mimicry domain of bacterial release factor 2. *Biochimie* **78**, 935-943,  
23 doi:10.1016/S0300-9084(97)86715-6 (1996).

24 26 Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of  
25 *Escherichia coli*. *Nature* **221**, 838-841, doi:10.1038/221838a0 (1969).

26 27 Traxler, M. F. *et al.* The global, ppGpp-mediated stringent response to amino acid  
27 starvation in *Escherichia coli*. *Molecular Microbiology* **68**, 1128-1148,  
28 doi:10.1111/j.1365-2958.2008.06229.x (2008).

29 28 Harms, E., Higgins, E., Chen, J. W. & Umbarger, H. E. Translational coupling between  
30 the ilvD and ilvA genes of *Escherichia coli*. *J Bacteriol* **170**, 4798-4807,  
31 doi:10.1128/jb.170.10.4798-4807.1988 (1988).

32 29 Durfee, T., Hansen, A.-M., Zhi, H., Blattner, F. R. & Jin, D. J. Transcription profiling of  
33 the stringent response in *Escherichia coli*. *J Bacteriol* **190**, 1084-1096,  
34 doi:10.1128/JB.01092-07 (2008).

35 30 Baccigalupi, L., Marasco, R., Ricca, E., De Felice, M. & Sacco, M. Control of ilvIH  
36 transcription during amino acid downshift in stringent and relaxed strains of  
37 *Escherichia coli*. *FEMS Microbiol Lett* **131**, 95-98, doi:10.1111/j.1574-  
38 6968.1995.tb07760.x (1995).

39 31 Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function  
40 analysis with the PANTHER classification system. *Nat Protoc* **8**, 1551-1566,  
41 doi:10.1038/nprot.2013.092 (2013).

1 32 Arranz-Gibert, P., Vandeschuren, K. & Isaacs, F. J. Next-generation genetic code  
2 expansion. *Current Opinion in Chemical Biology* **46**, 203-211,  
3 doi:10.1016/j.cbpa.2018.07.020 (2018).

4 33 Chin, J. W., Martin, A. B., King, D. S., Wang, L. & Schultz, P. G. Addition of a  
5 photocrosslinking amino acid to the genetic code of *Escherichiacoli*. *Proceedings of the*  
6 *National Academy of Sciences of the United States of America* **99**, 11020-11024,  
7 doi:10.1073/pnas.172226299 (2002).

8 34 Vyazmensky, M. *et al.* Interactions between large and small subunits of different  
9 acetohydroxyacid synthase isozymes of *Escherichia coli*. *Biochemistry* **48**, 8731-8737,  
10 doi:10.1021/bi9009488 (2009).

11 35 Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of  
12 spontaneous mutations in the bacterium *Escherichia coli* as determined by whole-  
13 genome sequencing. *Proceedings of the National Academy of Sciences* **109**, E2774-  
14 E2783, doi:10.1073/pnas.1210309109 (2012).

15 36 Aakre, C. D. *et al.* Evolving new protein-protein interaction specificity through  
16 promiscuous intermediates. *Cell* **163**, 594-606, doi:10.1016/j.cell.2015.09.055 (2015).

17 37 Kern, A. D. & Kondrashov, F. A. Mechanisms and convergence of compensatory  
18 evolution in mammalian mitochondrial tRNAs. *Nat Genet* **36**, 1207-1212,  
19 doi:10.1038/ng1451 (2004).

20 38 Reynolds, M. G. Compensatory Evolution in Rifampin-Resistant *Escherichia coli*.  
21 *Genetics* **156**, 1471-1481, doi:10.1093/genetics/156.4.1471 (2000).

22 39 Merker, M. *et al.* Compensatory evolution drives multidrug-resistant tuberculosis in  
23 Central Asia. *eLife* **7**, e38200, doi:10.7554/eLife.38200 (2018).

24 40 Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in  
25 biofilms. *Nature Reviews Microbiology* **17**, 247-260, doi:10.1038/s41579-019-0158-9  
26 (2019).

27 41 Pósfai, G. *et al.* Emergent properties of reduced-genome *Escherichia coli*. *Science (New*  
28 *York, N.Y.)* **312**, 1044-1046, doi:10.1126/science.1126439 (2006).

29 42 Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture Medium for Enterobacteria. *J*  
30 *Bacteriol* **119**, 736-747 (1974).

31 43 Perez-Riverol, Y. *et al.* The PRIDE database and related tools and resources in 2019:  
32 improving support for quantification data. *Nucleic Acids Res* **47**, D442-D450,  
33 doi:10.1093/nar/gky1106 (2019).

34

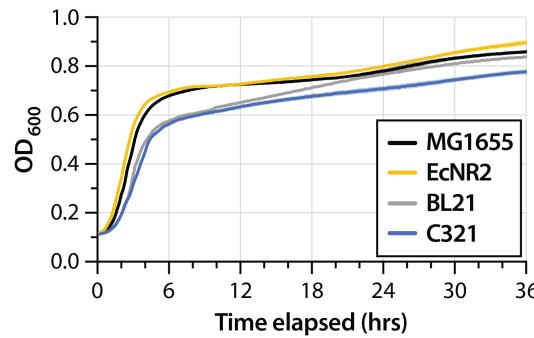
1    ***Supplementary data figures***

- 2    • **Supplementary data figure 1** – Growth curves of MG1655, EcNR2, non-K12 strain  
3    BL21, and C321 in LB rich media.
- 4    • **Supplementary data figure 2** – Doubling times of individual C321 clones with and  
5    without serial passaging in LB for ~66 generations.
- 6    • **Supplementary data figure 3** – Maximum OD<sub>600</sub> reached for C321 and related strains  
7    when grown in media supplemented with proteinogenic amino acids, nucleobases,  
8    and/or cofactors and trace metals.
- 9    • **Supplementary data figure 4** – Growth curves for strains grown in M9, M9 medium  
10    supplemented with 20 amino acids (M9R), or M9R dropout medium lacking one of 20  
11    amino acids.
- 12    • **Supplementary data figure 5** – Growth kinetics for engineered C321 strains in LB.
- 13    • **Supplementary data figure 6** – Effect of growth curve baseline correction on calculated  
14    doubling times.

15   

16    ***Supplementary tables***

- 17    • **Supplementary table 1** – Genotypes of strains used in this study.
- 18    • **Supplementary table 2** – Components and concentrations of M9 supplements used in  
19    this study. M9R denotes M9 medium supplemented with all 20 proteinogenic amino  
20    acids in the concentrations listed. Components and concentrations were derived from  
21    those used in Neidhardt defined rich medium<sup>42</sup>.
- 22    • **Supplementary table 3** – List of off-target mutations in C321 (adapted from Lajoie et  
23    al 2013<sup>4</sup>).
- 24    • **Supplementary table 4** – Descriptions of mutations targeted for reversion; MAGE  
25    oligos, MASC primers, and Sanger sequencing primers for targeted mutation reversions.
- 26    • **Supplementary table 5** – Fitness analysis of C321 and engineered derivatives (data  
27    represented in Figures 2E and 2F).
- 28    • **Supplementary table 6** – One-way ANOVA for growth metrics reported in Figure 2E  
29    (growth kinetics in M9) and Supplementary data figure 5 (growth kinetics in LB).
- 30    • **Supplementary table 7** – LFQ scores and strain comparison data for whole-cell  
31    proteomics experiments.
- 32    • **Supplementary table 8** – Genes contained within set analysis of proteins with  
33    significant differences in abundance compared to C321 (data represented in Figure 3C).
- 34    • **Supplementary table 9** – Complete results from GO enrichment analysis on sets of  
35    genes with significant abundance differences between C321 and selected strains.
- 36    • **Supplementary table 10** – Genes within selected GO categories (amino acid  
37    biosynthesis, GO:0008652; nucleotide biosynthesis, GO:0009165; siderophore  
38    biosynthesis, GO:0019290) with significant abundance differences between C321 and  
39    selected strains.
- 40    • **Supplementary table 11** – Protein quantification for full-length IlvG.

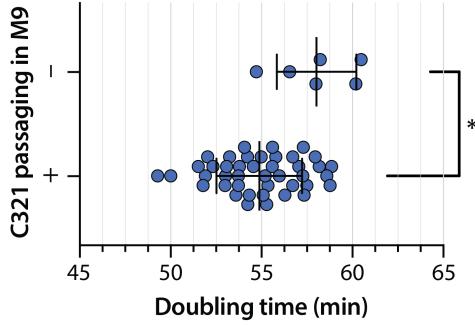

1     *Supplementary files*

2       • **Supplementary file 1** – Raw and analyzed plate reader data for all experiments reported  
3        in this study.

4       • **Supplementary file 2** – MATLAB scripts used to analyze plate reader data; also  
5        available as a GitHub repository ([https://github.com/colinfromtherandomforest/cell-  
6        in-a-well](https://github.com/colinfromtherandomforest/cell-in-a-well)).

1    **Supplementary data figures**

2

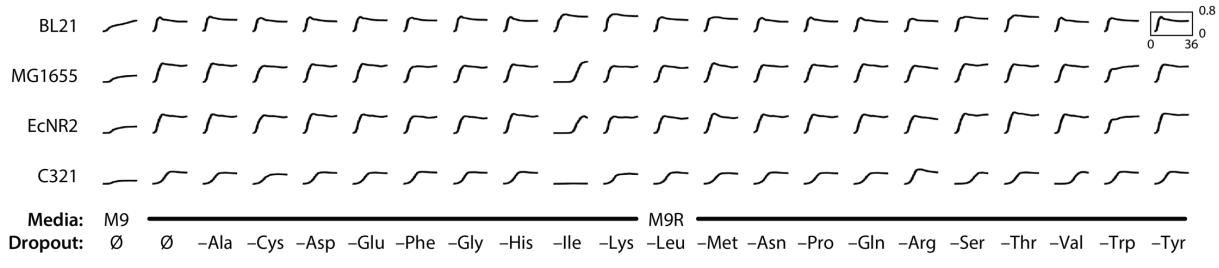



3


4

5    **Supplementary data figure 1 – Growth curves of MG1655 (black), EcNR2 (yellow), non-**  
6    **K12 strain BL21 (grey), and C321 (blue) in LB rich media (n = 3 for all strains).**

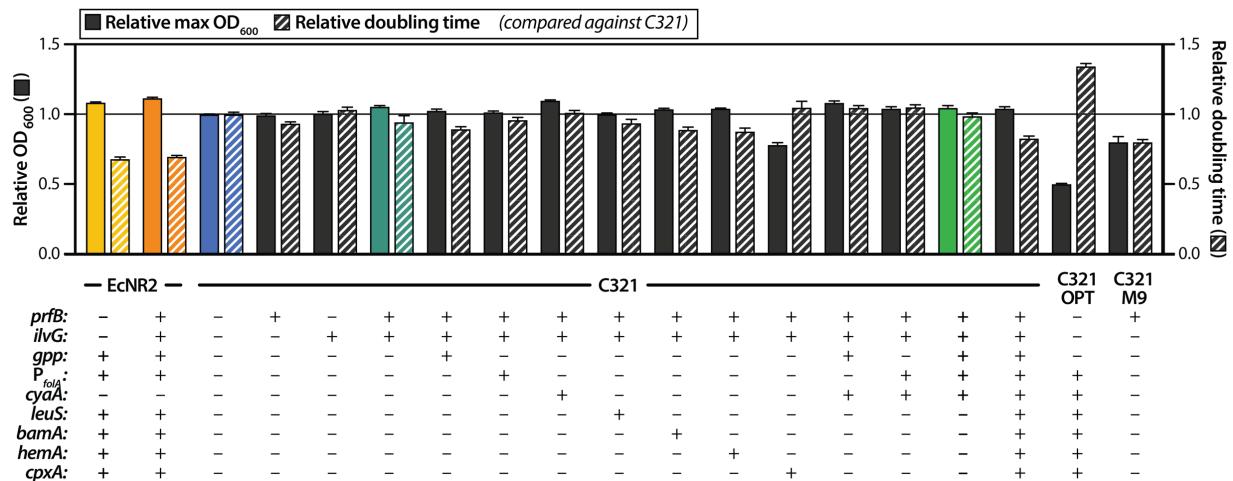
7




1  
2  
3 **Supplementary data figure 2 – Doubling times of individual C321 clones with and without**  
4 **serial passaging in LB for ~66 generations.** Comparison of means by Welch's *t*-test; *p* = 0.014.  
5



1  
2  
3  
4  
5  
6


Supplementary data figure 3 – Maximum OD<sub>600</sub> reached for C321 and related strains when  
grown in minimal media supplemented with 20 proteinogenic amino acids (20AA), 4  
nucleobases (ACGU), and/or cofactors and trace metals (vitamin mix).




1  
2

3 **Supplementary data figure 4 – Growth curves for strains grown in M9, M9 medium**  
4 **supplemented with 20 amino acids (M9R), or M9R dropout medium lacking one of 20**  
5 **amino acids.** Each curve represents a 36-hour time course in a 96-well plate reader. All curves  
6 are scaled to a maximum OD<sub>600</sub> of 0.8. The maximum OD<sub>600</sub> reached in each condition is  
7 represented as a heatmap in main text figure 1D.

8



**Supplementary data figure 5 – Maximum OD<sub>600</sub> and doubling time relative to C321 for engineered C321 strains in LB.** The solid horizontal line denotes the maximum OD<sub>600</sub> and doubling time of C321. One-way ANOVA for comparisons between all strains is given in Supplementary table 6.



1

2

3 **Supplementary data figure 6 – Effect of growth curve baseline correction on calculated**

4 **doubling times.** Doubling times were calculated for three replicates each of four strains in LB

5 (top panel) and M9 (bottom panel) by shifting the growth curve to a defined starting OD value.

6 Lines show calculated doubling times for each individual replicate. For all plate reader

7 experiments reported in this study, growth curves were set to a baseline of 0.030 in LB and

8 0.020 in M9, represented by the dashed red lines.

9