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Abstract 

The brain exhibits a gradual transition in responses to visual event duration and frequency 

through the visual processing hierarchy: from monotonically increasing to timing-tuned 

responses. Over their hierarchies, properties of both response types are progressively 

transformed. Here, we implement simulations based on artificial neural networks to 

investigate the requirements of neural systems for the emergence of such responses and their 

properties’ transformations. We see that recurrent networks develop monotonic responses 

whose properties’ progressions over network layers resemble those over brain areas. 

Furthermore, recurrent networks can further develop tuned responses, but only with training, 

a gradual transition between monotonic and tuned responses emerges. Particularly, if this 

training is done on predictable sequences, the tuned properties’ progressions resemble those 

observed in the brain. These results suggest that the emergence of visual timing-tuned 

responses and the subsequent hierarchical transformations of these responses result from 

recurrent neural computation and predictive processing of sensory event timing. 
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Introduction 

Perceiving the durations and frequency of sensory events is vital to understanding our dynamic 

environment. In the brain, early stages of visual processing show neural responses that 

monotonically increase in response amplitude with event duration and frequency, reflecting the 

inherent dynamics of sensory processing (Hendrikx et al., 2022; Stigliani et al., 2017; Zhou et 

al., 2018). Tuned responses peaking for specific durations and frequencies gradually emerge 

through the visual processing hierarchy, into temporal-occipital, parietal and frontal areas. This 

gradual emergence suggests that sensory timing representations may straightforwardly be 

derived from early sensory responses, rather than from dedicated processes responding to 

passing time. Once timing-tuned responses have emerged, the properties of these response 

functions progressively change in a hierarchy of timing maps. However, the computational 

mechanisms underlying these hierarchical changes of responses to event timing remain unclear. 

Responses to another sensory quantity, visual numerosity, show similar progressions. 

As with timing, early visual responses monotonically increase with numerosity (DeWind et al., 

2019; Park et al., 2016; Paul et al., 2022), while tuned responses to specific numerosities are 

found in temporal-occipital, parietal and frontal areas (Harvey et al., 2013; Harvey & 

Dumoulin, 2017; Nieder et al., 2002; Nieder & Miller, 2004). Computational studies reveal 

both monotonic and tuned responses to numerosity in artificial neural networks trained on a 

numerosity generation task (Stoianov & Zorzi, 2012; Zorzi & Testolin, 2018). The distribution 

of tuned responses changes with training to eventually match that seen in monkey parietal 

neurons (Viswanathan & Nieder, 2013; Zorzi & Testolin, 2018). Even deep convolutional 

networks with no training (i.e., random weights) show monotonically increasing responses to 

numerosity in earlier layers and numerosity-tuned responses in later layers (Kim et al., 2021), 

suggesting that this neural network architecture alone is sufficient to produce responses like 
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those seen in the brain. Could timing-tuned responses and their subsequent transformations 

similarly reflect the basic architecture of the brain’s neural networks? 

Numerosity and timing processing require quite different ways of integrating neural 

responses. For spatial quantities like numerosity, spatial integration of image features can be 

straightforwardly achieved by neurons with a spatial spread of their inputs, as in convolutional 

neural network models (Lecun et al., 1990). Conversely, integration of temporal responses (to 

event onsets, offsets and sustained responses to ongoing events) requires neurons to have 

information about past events. Recurrent connections in neural networks make the nodes’ 

current activity dependent on both ongoing input and their past activity, and therefore allow 

such temporal integration (Elman, 1990; Jordan, 1997). 

In the current work, we therefore asked whether monotonic and tuned responses to 

event timing, and the progressions of their response properties seen in the brain, could 

spontaneously emerge in multi-layer recurrent neural networks. We hypothesized that the 

combination of recurrent processing, between-layer integration of the resulting responses and 

training to predict upcoming inputs in predictable sequences could support the development of 

timing-tuned responses. This predicts that recurrent networks with two or more hidden layers 

would show more tuned responses in their final layers that networks with one hidden layer and 

have superior performance in this input prediction task. Furthermore, we hypothesized that 

recurrent and between layer interactions over multiple processing stages may result in the 

gradual transition from monotonic to tuned responses and the gradual transformations of 

properties of both types of responses that we have observed in the brain.  

  

Results 

Recurrent networks can predict upcoming events in repetitive sequences 
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We created two sets of artificial neural networks with one to five hidden layers with 

independent recurrent nodes (each node connected only to its own state on the previous time 

step; Li et al., 2018) and full connections between layers (IndRNNs). We chose this neural 

architecture over a recurrent neural network with recurrent connections to all nodes in each 

layer, because it makes each nodes’ responses easier to assess and it does not allow more 

complexity than a biological system (see Methods). In our ‘parameter-matched’ networks, the 

number of nodes in each layer was chosen to keep the total number of connection weights 

and biases as similar as possible between network depths, thereby separating effects of 

network depth and network complexity. However, this resulted in very few nodes in each 

layer of deeper networks. In our ‘layer-size-matched’ networks, the number of nodes in each 

layer was constant (at 16) regardless of network depth, so deeper networks were more 

complex. We also created five-layer networks without recurrent connections, which matched 

the number of connection weights and biases in the parameter-matched networks. For each of 

these network architectures we created 50 network repetitions each initialized with different 

random weights and trained these separately, allowing us to make statistical comparisons 

between architectures. We also investigated the responses of the same networks before 

training, separating the effects of network architecture and learning mechanisms.  

We trained these networks to predict the states of upcoming time steps in a time series 

consisting of repetitive events (henceforth: input sequence). This is a form of self-supervised 

learning, as the network was not trained to explicitly label the timing of the events in the 

input sequence (Hinton, 2007; Testolin & Zorzi, 2016), but rather to generate supervisory 

signals based on the difference between its predicted and actual states of future time steps in 

the sequence. Events consisted of consecutive “on” and consecutive “off” states. Different 

input sequences differed in event duration (consecutive time steps of an input state), event 

period (time steps between the onsets of consecutive events, i.e. the sum of the time steps in 
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the “on” duration and “off” duration), and phase (the time step of the first event onset) of the 

events (Fig. 1, top rows). We also trained the five-layer networks on shuffled versions of 

these input sequences, which lacked predictable timing but allow achieving some accuracy by 

predicting the most common input state. 

 

 

Fig. 1: An example input sequence, target predictions, outcomes of possible strategies, 

and responses of the networks. For the input sequence and the target predictions a black 

square represents the “on” state and white represents the “off” state at each time step 

(numbers). This input sequence has an event “on” duration of 9 time steps, an event period of 

20 time steps, and a phase shift of +8 time steps. Arrows indicate the location of state 

changes needed to establish the sequence’s predictability. Time steps used for per-event 

accuracy assessments are marked by red rectangles. Time steps used for per-state-change 

accuracy assessments are marked by blue rectangles. For the outcomes of possible strategies, 

and responses of the networks, the grayscale of the square indicates the proportion of network 

repetitions predicting an “on” output state. 

 

All networks improved their prediction performance with additional training epochs, 

eventually reaching convergence (Fig. S1). For the parameter-matched networks, the final 
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training loss of the one-layer network converged to a significantly higher loss than the other 

networks, while the two-layer network’s training loss was significantly lower than that of the 

four- and five-layer networks (H(4)=45.71, p=3×10-9, ε2=0.17; Table S1A). Networks without 

recurrent connections and networks trained on shuffled input sequences both exhibited far 

higher training loss than all recurrent networks (Fig. S1; Table S1B).  Layer-size-matched 

networks revealed that increased complexity led to decreased training loss (H(4)=148.38, 

p=5×10-31, ε2=0.58; Fig. S1; Table S1C). 

 Fig. 1 outlines the task’s requirements, some hypothetical strategies and some 

networks’ outputs for an example input sequence. A network that always predicts its current 

input, “on” time steps, “off” time steps, or random values should not improve its performance 

during processing of the sequence. A network that simply represents the proportion of “on” 

time steps can at best predict the most common input state; its accuracy should improve 

throughout the sequence, but remain low when the proportion of on and off states are similar 

(as in Fig. 1’s example). However, a network with an internal representation of the input 

sequence’s timing can predict the next time step specifically after three state changes (from 

“on” to “off” or from “off” to “on”) in the sequence. Only at this time step has the network 

processed one whole event input. Therefore, we assessed accuracy in predicting whole events 

after this this third state change (Fig. 1). 

After training, the predictions made by trained IndRNNs were consistent with an 

internal representation of the input sequences’ timing (Fig. 1). These networks initially 

predict similar values to their input. After three state changes, the networks’ predictions 

matched the target state rather than the network’s current input.  

The predictions of IndRNNs before training mimicked the hypothesized pattern for 

random predictions. Those of a neural network without recurrency mimicked the 

hypothesized pattern of “on”-only predictions. Those of a network trained on shuffled data 
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mimicked the hypothesized pattern for a network representing the proportion of “on” time 

steps, predicting the most common state seen before each time step. Therefore, recurrency, 

training, and temporal structure in the training sequences were all necessary for the network 

to develop an internal representation of event timing.  

 

Maximum accuracy improved with a second hidden layer 

We kept 20% of input sequences as a test set to evaluate each network’s performance in 

predicting times steps in unseen input sequences after training was complete. Time steps 

where the upcoming input state differed from the current input state particularly require an 

accurate event timing representation, but most upcoming time steps simply repeat the current 

input state. We therefore assessed accuracy first as the average accuracy across all of an 

event’s time steps (per-event accuracy) and second as the average accuracy across the time 

steps where the input sequence changes state (per-state-change accuracy).  

The mean prediction accuracy differed between network depths (parameter-matched: 

per-event: H(4)=38.73, p=8×10-8, ε2=0.14; per-state-change: H(4)=24.12, p=8×10-5, ε2=0.08; 

Fig. 2A, Table S2A). For the parameter-matched networks, the one-layer networks gave 

lower per-event accuracies than the other networks and lower per-state-change accuracies 

than the two-, three-, and five-layer networks. However, accuracy did not significantly 

improve with additional layers (beyond two) and indeed the two-layer networks gave a higher 

per-event accuracy than the four-layer networks.   
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Fig. 2: Best target prediction accuracies were greater and more consistent for recurrent 

networks with at least two hidden layers and did not resemble predictions of 

hypothetical strategies. (A) Per-event and per-state-change accuracies for various network 

depths for all 50 network repetitions of the parameter-matched networks. (B) Accuracies for 

the top 25 network repetitions of the parameter-matched networks. (C) Accuracies for all 50 

network repetitions of the layer-size-matched networks. White lines and circles indicate 

interquartile ranges and medians, respectively. Red circles indicate the mean. All violins’ 

maximum widths are kept the same. Brackets and stars show significant differences in 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 10 

multiple comparisons between all network depths: all brackets to the left of the star are 

significantly different from all brackets to the right of the star (two-sided Dunn’s test, 

corrected for multiple comparisons using Šidák-Holm, p < 0.05) (D) The per-event (top) and 

per-state-change (bottom) accuracies for the hypothetical strategies shown in Fig. 1. (E) Per-

state-change accuracies per timing for all 50 repetitions of the parameter-matched IndRNNs 

(per-event in Fig. S3A). (F) Per-state-change accuracies per timing for most accurate 25 

repetitions of the parameter-matched IndRNNs (per-event in Fig. S3B). Colors indicate the 

mean accuracy over repetitions and presentations of each timing in the test set. The test set 

contained 20% of the input sequences, so omitted some timings. The sizes of the squares 

scale with standard deviation of accuracy between network repetitions: more variable 

outcomes between repetitions are shown as smaller squares 

 

 

 

The parameter-matched networks with more layers had fewer nodes in each layer, 

which led to more variable accuracy in different repetitions with different random 

initializations (per-event: W=5.35, p=0.0004; per-state-change: W=4.57, p=0.001; Table S3; 

Fig. 2A). This variability could mask increases in maximum accuracy in deeper networks. 

We therefore assessed whether the networks’ maximum possible accuracy benefits from 

more layers by comparing the 25 (of 50) best-performing network repetitions for each 

network depth (Fig. 2B). Here, the one-layer networks gave a higher accuracy than all other 

depths (per-event: H(4)=61.03, p=2×10-12, ε2=0.23; per-state-change: H(4)=49.84, p=4×10-10, 

ε2=0.18; Table S2B), but there were no significant accuracy differences between other 

network depths.  

In the layer-size-matched networks, where the network complexity increased with 

depth, prediction accuracy increased with network depth (per-event: H(4)=147.29, p=8×10-31, 

ε2=0.58; per-state-change: H(4)=147.47, p=7×10-31, ε2=0.58; Fig. 2C; Table S2C). These 

networks lacked the issue of decreasing nodes in deeper networks and as such different 

network depths lacked significant differences in the variance of their accuracy (per-event: 

W=0.83, p=0.508; per-state-change: W=2.21, p=0.068).  
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The median accuracy of the neural networks without recurrency, IndRNNs before 

training, and the IndRNNs trained on shuffled data were significantly lower than those of the 

comparable five-layer IndRNN (Fig. S2, Table S4). 

Overall, multi-layer networks generally gave greater accuracy than one-layer 

networks. While more complex networks with more parameters also gave greater accuracy 

than simpler networks, increasing the number of layers above two without also increasing 

network complexity did not further increase accuracy. Furthermore, this accurate prediction 

required recurrency, training and predictable temporal structure in the input sequences. 

 

Two-layer networks allow high prediction accuracy at all event timings 

Next, we asked whether deeper parameter-matched networks achieved more consistent 

performance across event timing. Fig. 2D shows how accurately the hypothetical strategies 

shown in Fig. 1 predicted targets for each event timing. Although lacking any predictive 

process, these strategies gave a high per-event accuracy for specific event timings. 

Nevertheless, their per-state-change accuracy was low for all timings, demonstrating this 

accuracy measure is more sensitive to predictive power. Again, networks without recurrency, 

IndRNNs without any training, and the IndRNNs trained on shuffled data mimicked the 

accuracy patterns in these hypothetical situations (Fig. S3D).  

The one-layer networks had a higher variance in per-state-change accuracy across 

timings than the two-layer networks, but not other network depths (H(4)=14.44, p=0.006, 

ε2=0.04; Table S5A). Again, this lack of significant differences between one-layer networks 

and three-, four- or five-layer networks likely reflected the greater variability among 

repetitions of deeper parameter-matched networks. Indeed, among the most accurate 25 

repetitions, one-layer networks had a higher variance in per-state-change accuracy across 

timings than all other networks (H(4)=39.48, p=6×10-8, ε2=0.14; Table S5B).  Therefore, 
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networks with at least two layers allow more consistent target prediction accuracy across 

event timings. 

 

Transitions from monotonic to tuned responses in successive IndRNN layers 

Human brain recordings show different responses to event timing that either: (1) 

monotonically increase with event duration and frequency (following monotonic response 

functions); (2) peak for a particular combination of event duration and period (following 

tuned response functions); or (3) more ambiguously show characteristics of both response 

functions (mixed response functions). Monotonic responses predominate in early visual areas 

(Hendrikx et al., 2022; Stigliani et al., 2017; Zhou et al., 2018), while ambiguously and then 

clearly tuned responses gradually emerge through the visual hierarchy (Hendrikx et al., 

2022). Do recurrent networks trained for timing prediction likewise show a transition from 

monotonic to tuned responses? 

For each network node we analyzed the per-event activation for each timing, averaged 

across input sequences with the same duration and period but different phases. We fit the free 

parameters of both monotonic and tuned response functions on one half of the input 

sequences (Fig. 3, top) and used the complementary half (Fig. 3, second row) to evaluate the 

resulting functions’ predictions (Fig. 3, bottom rows). This determined which response 

function best captured each node’s response. Where tuned response functions predicted the 

response better but the peak of the response function was outside the range of timings used, 

these response functions had properties of both monotonic and tuned functions so were 

categorized as mixed responses. 
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Fig. 3: Responses and fit response functions for example nodes with diverse responses.  

The top row shows the node’s response for each timing (colors) in the half of input sequences 

used for response functions fitting. The second row shows the node’s responses in the 

complementary half of input sequences used for response function evaluation. The bottom 

rows show the fit monotonic and tuned response functions for each node, with the best 

evaluated response function marked in green. The left, middle and right columns follow 

monotonic, mixed and tuned nodes, respectively.   

 

For all multi-layer networks, the proportion of monotonic responses differed significantly 

between layers (Figs. 4A & S4; Table S6A). Post hoc comparisons (Tables S6B-C) generally 

show significant steady decreases in the proportion of monotonic responses through the 

networks’ successive layers. The proportion of mixed and tuned responses likewise differed 

between layers (Table S6A). In contrast to the monotonic responses, these proportions 

generally showed significant steady increases through each network’s successive layers. 
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Fig. 4: Progressive transitions from monotonic to mixed and tuned responses across 

network layers in trained IndRNNs. (A) Proportions of nodes classified as monotonic, 

mixed, or tuned in parameter-matched IndRNNs of 1, 2 and 5 layers (left) or layer-size-

matched IndRNNs of 3 and 5 layers (right). See Fig. S4A for other depths. (B) As for the 

five-layer network in (A) for IndRNNs trained on shuffled data. (C) As for the five-layer 

network in (A) for IndRNNs before training. (D) As for the five-layer network in (A) for NNs 

without recurrency. Format follows Fig. 2A. 

 

Five-layer IndRNNs trained on shuffled data showed similar transitions from 

monotonic to mixed and tuned responses, though less clearly (Fig. 4B; Tables S6A & S6D-

E). However, five-layer IndRNNs before training showed all types of responses and some 

significant differences in the proportion of monotonic responses (Fig. 4C; Tables S6A & 

S6F-G), but no clear increase or decrease over layers. In contrast to all trained IndRNNs, this 

untrained network also showed (in all layers) the highest proportion of monotonic responses, 
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fewer mixed responses and very few tuned responses. Five-layer neural networks without 

recurrency showed no response to any timing in most nodes. Their few responsive nodes 

again exhibited a higher proportion of monotonic responses in early layers (Fig. 4D; Table 

S6A & S6H-I), but extremely few mixed responses and no tuned responses in any layer. 

Therefore, tuned responses progressively emerged through the layers of trained 

IndRNNs, while monotonic responses progressively decreased. These progressions were 

clearer when trained on predictable input sequences and absent before training or without 

recurrency. No tuned responses (and very few mixed responses) were found without 

recurrency. 

 

Proportions of tuned responses depend on network complexity and between-layer integration.  

Both parameter-matched and layer-size-matched IndRNNs showed a progressive emergence 

of tuned responses and reduction of monotonic responses across network layers. Do 

successive layers of deeper IndRNNs eventually allow more tuned and mixed responses to 

emerge, or simply allow a more gradual transition to similar responses in their final layers? 

Comparing the proportions of monotonic, mixed and tuned responses in the final layers of 

parameter-matched and layer-size-matched IndRNNs with different depths separates effects 

of depth and complexity: Parameter-matched networks are similarly complex regardless of 

depth while layer-size-matched networks increase in complexity with depth. 

In parameter-matched IndRNNs, the proportion of monotonic, mixed and tuned 

responses in last layer of networks from two to five layers showed no significant differences 

(Fig. 5A, Table S7A). Only the last (and only) layer of one-layer networks had significantly 

more monotonic responses and fewer mixed responses than the last layer of all multi-layer 

networks. For tuned responses, no differences between network depths reached significance.  
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Conversely, in layer-size-matched IndRNNs from two to five layers, the proportions 

of monotonic, mixed, and tuned nodes generally differed between the last layers for many 

depths (Fig. 5B, Table S7B). The proportion of monotonic nodes decreased from two- to 

five-layer networks, while the proportions of tuned nodes increased. The proportion of mixed 

responses did not change from two- to five-layer networks. As in parameter-matched 

networks, one-layer networks again showed more monotonic responses and fewer mixed and 

tuned responses than multi-layer networks. 

Therefore, the pattern of responses in the final layer reflects the network’s complexity 

rather than the number of layers. One-layer networks allow more limited computations as 

they lack between-layer integration across nodes. Multi-layer parameter-matched networks 

always allow a similar set of computations and so similar final response properties. Only 

more complex (not deeper) networks allow further computations. These differences in the 

proportions of response types in each networks’ final layers mirror the differences in 

maximum task accuracy seen in Figures 2B-C. 

 

Fig. 5: Decrease in the proportion of final-layer monotonic responses and increase in the 

proportion of final-layer tuned responses follows network complexity in multi-layer 

networks. (A) Parameter-matched IndRNNs from two to five layers do not significantly 

differ in the proportions of monotonic, mixed or tuned nodes, while one-layer IndRNNs have 

more monotonic and fewer mixed nodes than these multi-layer IndRNNs. (B) In layer-size-

matched IndRNNs, where network complexity increases with depth, more complex five-layer 

networks show fewer monotonic nodes and more tuned nodes than simpler two-layer 

networks. Format follows Fig. 2A. 
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Monotonic parameters of IndRNNs follow similar progressions to the brain, regardless of 

training 

Next, we asked how parameters of the monotonic and tuned response functions differed 

between network layers, and whether these differences resembled differences in response 

function parameters between human brain areas. Here we used layer-sized-matched IndRNNs 

because these showed at least some tuned nodes in each layer, and their five-layer versions to 

reveal gradual progressions between layers more clearly. Nevertheless, other depths generally 

showed similar patterns, although sometimes less clearly (Fig. S5). To investigate how the 

progressions depended on training, we repeated these analyses in the same network 

architecture before training and that trained on shuffled input sequences. We also repeated 

this for networks without recurrent connections, but limited this to analysis of monotonic 

response function parameters because these networks showed no tuned responses. 

For the response functions of monotonic nodes, Kruskal-Wallis tests revealed 

significant differences between layers in the exponents on duration (Fig. 6A) for IndRNNs 

trained on repetitive events (H(4)=74.79, p=2×10-15, ε2=0.11), and also IndRNNs before 

training (H(4)=196.55, p=2×10-41, ε2=0.07) and those trained on shuffled data (H(4)=98.69, 

p=2×10-20, ε2=0.13). Generally, this exponent decreases from layers one to two in all of these 

IndRNNs, then does not differ significantly from layers two to five (Tables S8A-C). The 

network without recurrency also showed significant differences in this exponent between 

network layers (H(4)=22.76, p=0.0001, ε2=0.05, Table S8D), but unlike IndRNNs showed an 

increase over network layers. In the human brain, the exponent on duration of monotonic 

response functions differed between visual field maps (H(9)=52.29, p=2×10-5, ε2=0.10; Fig. 

6B; Table S8E), generally decreasing from earlier to later maps as between IndRNN layers. 
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Fig. 6: Monotonic parameter progressions in IndRNNs’ monotonic nodes resembled 

those in the human brain regardless of training regimen. (A & C) The exponents on 

duration (A) and period (C) decreased from the first layer to later layers in all five-layer 

IndRNNs, but not networks without recurrency. (B & D) These exponent similarly decreased 

through the visual field map hierarchy. (E) The ratio between the amplitudes of monotonic 

responses to duration and period also decrease from the first layer to later layers in all five-

layer IndRNNs, but not networks without recurrency. (F) This ratio similarly decreased 

through the visual field map hierarchy. In (E) and (F), the lines at 0 and ∞ represent nodes 

with responses only driven by period and duration, respectively. The width of corresponding 
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lines and maximum width of the corresponding violin scale with the number of nodes in their 

respective value range. The maximum width of all (whether of the line or the violin) are kept 

constant. n gives number of included nodes in each network layers, or the number of 

hemispheres per brain area. Brain data adapted from Hendrikx et al. (2022). Format follows 

Fig. 2A. 

 

We similarly found significant differences between layers in the exponent on period 

(Fig. 6C) for IndRNNs trained on repetitive events (H(4)=152.83, p=5×10-32, ε2=0.23), and 

also IndRNNs before training (H(4)=511.58, p=2×10-109, ε2=0.20) and those trained on 

shuffled data (H(4)=69.17, p=3×10-14, ε2=0.09).  Generally, this exponent decreases from 

layers one to two in all of these IndRNNs (Tables S8A-C), with a further decrease from 

layers two to five in IndRNNs trained on repetitive events and those before training. Again, 

the network without recurrency also showed significant differences in this exponent between 

network layers (H(4)=9.64, p=0.047, ε2=0.01, Table S8D), but unlike IndRNNs showed an 

increase over network layers. Again, in the human brain, the exponent on period of 

monotonic response functions differed between visual field maps (H(9)=122.94, p=4×10-18, 

ε2=0.25; Fig. 6D; Table S8E), generally decreasing from earlier to later maps as between 

IndRNN layers. Exponents on both duration and period were bimodally distributed in all 

networks (Table S9). 

The ratio between the amplitudes of monotonic responses to duration and period also 

differed between network layers (Fig. 6E) for IndRNNs trained on repetitive events 

(H(4)=189.32, p=7×10-40, ε2=0.29), those before training (H(4)=530.04, p=2×10-113, ε2=0.20) 

and those trained on shuffled data (H(4)=36.85, p=2×10-7, ε2=0.04). In all these networks, this 

ratio switches from strongly favoring the duration component (high ratio) in the first layer to 

a more equal contribution of the two components (ratio around one) in later layers (Tables 

S8A-C). Again, the network without recurrency also showed significant differences in this 

exponent between network layers (H(4)=23.28, p=0.0001, ε2=0.05, Table S8D), but unlike 
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IndRNNs showed ratios favoring the period component (below one) in the layers one to four 

to favoring the duration component (above one) in the last layer. Again, in the human brain 

this ratio differed between visual field maps (H(9)=90.08, p=6×10-12, ε2=0.18; Table S8E; Fig. 

6F) generally decreasing from earlier to later maps as between IndRNN layers, though 

including less extreme ratios. 

Therefore, all parameters of monotonic response functions progress through the layers 

on IndRNNs similarly to the progressions through the brain’s visual field maps regardless of 

training. Networks without recurrency lack these progressions. This suggests that recurrency, 

not training, allows the hierarchical transformations of monotonic responses seen through the 

brain’s visual hierarchy. 

 

Tuned parameter follow similar progressions to the brain only in IndRNNs trained on 

repeated events 

For the nodes fit best by the tuned model, we only analyzed the parameters of the tuned 

nodes. Here we excluded mixed nodes because parameters including peak responses outside 

the used timing range cannot be determined accurately. Here we used the brain’s timing maps 

(Harvey et al., 2020) (rather than visual field maps) for comparison as these each contain 

neural populations with a full range of timing preferences. These timing maps show 

progressive changes in several properties of their tuned neural populations’ response 

functions in a hierarchy from posterior and inferior to anterior and superior timing maps. 

The brain’s timing maps significantly differ in their average preferred durations 

(H(9)=28.41, p=0.0008, ε2=0.13; Fig. 7B) and periods (H(9)=30.46, p=0.0004, ε2=0.14; Fig. 

7D), as do the tuned nodes in different layers of IndRNNs trained on repetitive sequences 

(Preferred duration (Fig. 7A): H(4)=19.79, p=6×10-4, ε2=0.05. Preferred period (Fig. 7C): 

H(4)=32.96, p=1×10-6, ε2=0.08). Preferred duration and period lack clear and systematic 
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progressions from early to later brain areas, though the intermediate timing map TLS has 

slightly lower preferred durations and periods than the superior timing map (TPCS) (Table 

S8F). To an extent, tuned nodes of IndRNNs trained on repetitive sequences show similar 

differences, with intermediate layers (two and three) having significantly lower preferred 

durations and periods than later layers (Table S8A). Before training, the network nodes in 

each layer also showed differences in preferred duration (H(4)=28.91, p=8×10-6, ε2=0.34; Fig 

7A) and period (H(4)=20.23, p=0.0005, ε2=0.22; Fig 7C). However, unlike in the trained 

IndRNNs and the brain, both preferences increase starting from the first layer (Table S8B). 

After training on shuffled data, there are no significant differences in duration (H(4)=1.81, 

p=0.771, ε2=-0.01; Fig 7A) or period (H(4)=2.01, p=0.735, ε2=-0.01; Fig 7C) preferences 

between layers.  
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Fig. 7: Tuned parameter progressions between layers of IndRNNs trained on repetitive 

input sequences generally follow progressions through the brain’s visual timing maps 

and differ between training regimens. (A-D) Preferred duration and period in IndRNNs 

and the brain lack clear and systematic progressions from early to later timing maps. (E-F) 

The response function’s major extent decreased from early to later network layers (E), 
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regardless of training regimen, and also from early to later timing maps (F). (G-H) The 

response function’s minor extent decreased only in IndRNNs before training. (I-J) The ratio 

of the response function extents (the roundness of the response function) increased similarly 

to the brain’s timing map hierarchy only through the layers of IndRNNs trained on repetitive 

input sequences. (K-L) The angulation of the response function progressed similarly to the 

brain’s timing map hierarchy only through the layers of IndRNNs trained on repetitive input 

sequences. (M-N) The exponent on event period systematically decreased through the brain’s 

timing map hierarchy, but became increasingly bimodal through the layers only in IndRNNs 

trained on repetitive or shuffled input sequences. Brain data adapted from Harvey et al. 

(2020). Format follows Fig. 2A, except in (K) and (L) where red and white circles are 

circular means and median, and white lines show the 95% confidence interval of the circular 

median.  

 

 The extents of the response functions along their major axes differed considerably 

between IndRNN layers (H(4)=39.62, p=5×10-8, ε2=0.10; Fig.7E), decreasing from lower to 

higher network layers (Table S8A). However, the functions’ extent along their minor axes 

showed no change between layers (H(4)=1.63, p=0.804, ε2=-0.01; Fig. 7G). As the major 

extent differed while the minor extent was similar across layers, their ratio (the roundness of 

the response function) differed between layers (H(4)=32.18, p=2×10-6, ε2=0.08; Table S8A; 

Fig. 7I). This ratio increased (towards one) over layers, giving more rounded response 

functions in higher layers. The brain showed significance differences between timing maps in 

the response function’s major extent (H(9)=47.70, p=3×10-7, ε2=0.25; Fig. 7F), minor extent 

(H(9)=21.08, p=0.012, ε2=0.08; Fig. 7H) and their ratio (H(9)=60.92, p=9×10-10, ε2=0.34; Fig. 

7J). As between neural network layers, these timing maps showed a hierarchical decrease in 

the response functions’ major extents, no systematic change in the minor extents and an 

increasingly rounded response function (Table S8F). Before training, the IndRNN showed 

significant differences between layers in the response function’s major extent (H(4)=26.41, 

p=3×10-5, ε2=0.30; Fig. 7E), minor extent (H(4)=15.86, p=0.003, ε2=0.16; Fig. 7G) and their 

ratio (H(4)=22.87, p=0.0001, ε2=0.25; Fig. 7I). Again, the major extent decreased through the 

network layers, though less clearly than in trained IndRNNs and the brain’s timing maps. 

However, unlike in trained IndRNNs and the brain’s timing maps, the minor extent also 
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decreased and the ratio showed no systematic progression through the network layers (Table 

S8B). After training on shuffled data only the major extent differed significantly between 

layers (H(4)=14.53, p=0.006, ε2=0.05; Fig. 7E), again decreasing through the network layers, 

although less clearly than in trained IndRNNs and the brain’s timing maps. However, unlike 

in other IndRNNs and the brain’s timing maps, the minor extent (H(4)=1.51, p=0.825, ε2=-

0.01; Fig. 7G) and ratio (H(4)=5.06, p=0.281, ε2=0.00; Fig 7I) showed no significant 

differences between layers.  

In higher IndRNN layers, the response functions’ major axis was increasingly 

angulated towards the event duration dimension, though post hoc analyses of the difference 

between layers did not reach significance (P=10.42, p=0.034; Fig. 7K; Table S8A). Again, 

this progression resembled changes through the brain’s timing map hierarchy (P=37.00, 

p=3×10-5, Fig. 7L)(Table S8F). The nodes’ response function angulations did not 

significantly differ between layers in IndRNNs before training (P=1.62, p=0.806; Fig. 7K) or 

those trained on shuffled data (P=0.10, p=0.999; Fig. 7K). 

The exponent on event period (or frequency) captures a reduction in the response to 

repeated events in the input sequence. The humans brain’s hierarchy of visual timing maps 

shows a clear and highly significant decrease in this exponent (H(9)=93.84, p=3×10-16, 

ε2=0.55; Fig. 7N; Table S8F). Conversely, no IndRNNs show significant differences between 

exponents in different layers (Fig. 7M), whether trained in repetitive input sequences 

(H(4)=6.02, p=0.198, ε2=0.01), shuffled input sequences (H(4)=4.50, p=0.342, ε2=0.00), or 

before training (H(4)=8.75, p=0.068, ε2=0.07). Instead, in IndRNNs show increasingly 

bimodal distributions of exponents in higher layers when trained on repetitive input 

sequences (Table S9). As such, the compressive exponents of individual tuned IndRNN 

nodes do not follow the clear progressions of period exponents seen in the response functions 

of large grouped neural populations in the brain. 
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Discussion 

Responses to visual event timing in the human brain gradually transition from monotonic to 

tuned responses through the visual processing hierarchy (Hendrikx et al., 2022). Through the 

brain’s visual field map hierarchy, monotonic responses gradually transition from linearly to 

compressively increasing in amplitude with duration and frequency, and from depending 

primarily on event duration to being similarly dependent on duration and frequency. Once 

tuned responses emerge, the preferred timing, extent, shape, and orientation of their response 

functions progressively change through a hierarchy of timing-responsive brain areas (Harvey 

et al., 2020; Hendrikx et al., 2022). Here we asked whether these systematic changes between 

brain areas could result from the computations inherent in hierarchical recurrent neural 

networks. To assess which neural architectures produce responses tuned to event timing, we 

built neural networks of different depths and trained these to predict upcoming time steps in 

input sequences containing repetitive events. Given this training, recurrent networks of all 

depths performed the task accurately, and recurrent networks with multiple layers reached 

higher accuracies than a one-layer network. Untrained networks, networks trained on shuffled 

input sequences and networks without recurrent connection could not accurately predict the 

timing of repetitive events. Trained recurrent networks showed a gradual transition from 

monotonic to increasingly tuned and mixed responses across their successive layers, with 

networks trained on shuffled input sequences showing similar transitions but less clearly. 

Both training and recurrency were necessary to produce this emergence of tuned responses. 

Regardless of training, recurrent networks showed monotonic responses whose transitions 

through network layers resembled transitions of monotonic responses through the brain’s 

visual field map hierarchy. However, recurrent networks showed tuned response functions 

whose transitions through network layers resembled transitions of tuned responses through 

the brain’s visual timing map hierarchy only after training on predictable repetitive input 
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sequences. These results suggest that the emergence of visual timing-tuned responses and the 

subsequent hierarchical transformations of these responses result from recurrent neural 

architecture and predictive processing of sensory event timing. 

 Although we tested networks of up to five layers, networks with at least two layers 

did not significantly differ in their maximum prediction accuracy if the networks’ complexity 

(number of free parameters) was matched. However, one-layer networks showed significantly 

lower accuracy than all these multi-layer networks. Likewise, the proportions of tuned, 

monotonic and mixed-responses nodes in the final layer of networks from two to five layers 

did not differ, while one-layer networks showed fewer tuned and mixed response nodes and 

more monotonic nodes in their (final and only) layer. Therefore, only two network layers 

seem to be needed to predict upcoming time steps accurately and transition from monotonic 

to tuned responses. Five-layer networks primarily demonstrate that this transition from 

monotonic to tuned responses emerges gradually between network layers, as it does in the 

visual processing hierarchy (Hendrikx et al., 2022). 

 To separate effects of successive network operations between layers from effects of 

network complexity, we investigated the response properties of both parameter-matched (i.e. 

complexity-matched) networks and layer-size-matched networks, in which network 

complexity increases with network depth. Deeper parameter-matched networks had very few 

nodes in each layer, so greater variability between repetitions of the training process. Layer-

size-matched networks avoided this limitation and so allowed greater statistical power to 

investigate differences in response properties between the layers of deeper networks. In layer-

size-matched networks, the proportion of tuned nodes in the final layer increased with 

network depth. Likewise, the proportion of monotonic nodes in the final layer decreased with 

network depth and complexity, while the proportion of mixed response nodes did not differ 

between multi-layer networks. As these differences between final layers were absent in 
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parameter-matched networks, we attribute them to differences in complexity (i.e. the number 

of free parameters) between these networks. The human brain has far greater complexity than 

the networks we tested here. Our findings suggest that this increased complexity would allow 

emergence of tuned nodes on a larger scale in the brain, where tuned responses dominate 

higher-level responses to timing (Harvey et al., 2020; Hendrikx et al., 2022). 

 These progressive transitions from monotonic to tuned responses were absent in 

networks with the same architecture before training and networks without recurrent 

connections, suggesting that training and recurrent connections underlie the emergence of 

timing-tuned responses. Networks before training showed some tuned and mixed-response 

nodes, but far fewer than after training. Networks trained on shuffled input sequences, where 

upcoming time steps could not be predicted based on temporal structure but only based on the 

proportions of on and off states of the sequence input so far, showed transitions from 

monotonic to tuned responses though less clearly than networks with the intact training 

regimen.  

 Both monotonic and tuned responses have previously been shown in biological 

neurons and neural networks during timing tasks (Bi & Zhou, 2020; Merchant et al., 2011, 

2013; Mita et al., 2009). Monotonic responses alone may be enough to allow animals to make 

predictions and behavior (Bi & Zhou, 2020). However, tuned responses distribute sensory 

processing across diversely responding nodes. This increases neural networks’ sensory 

processing and memory capacity compared to monotonically increasing responses (Crespi, 

1999; Palm, 1984) which hold similar information in each node. In line with these findings, 

we see that more complex networks are more accurate and show more tuned and mixed-

response nodes. Together with our fMRI data, this parallel increase in tuning and accuracy in 

more complex networks also suggests tuned responses may have an important role in linking 

timing perception and prediction for motor planning, with the sensory and motor stages being 
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dominated by monotonic responses (Hendrikx et al., 2022; Merchant et al., 2011, 2013). 

Nevertheless, we tested for correlations between the proportion of tuned nodes in a training 

repetition and the accuracy of the resulting network and found no clear relationship. We also 

tested whether lesioning the (relatively few) tuned nodes in the final layer decreased accuracy 

more than lesioning other nodes and found no difference. So tuned nodes alone do not seem 

to specifically underlie accurate task performance. Instead, it may be that interactions 

between monotonic nodes (at the input and prediction-generative stages) and tuned nodes (at 

intermediate stages) are required for accurate performance, particularly considering that one-

layer networks would not allow such interactions. Alternatively, the large population of 

mixed-response nodes may support accurate performance even in the absence of strictly 

tuned nodes. 

 We see differences between network layers in the parameters of timing-tuned nodes’ 

response function that often parallel the differences between timing maps in the brain’s visual 

time processing hierarchy (Harvey et al., 2020). While the direction of changes between 

network layers is generally consistent with the direction of changes through the brain’s 

hierarchy, there are clear differences in the magnitude of the parameters involved. For 

example, the response function’s extent is several times larger and its angulation is closer to 

the period dimension than in fMRI data. In both cases, these parameters change to more 

brain-like magnitudes in higher levels of the network, so it may be that the magnitudes seen 

in the brain simply reflect the fact that the brain is a far deeper and more complex network 

than we model here. 

 The compressive exponents on event period showed very clear and progressive 

decreases through the brain’s hierarchy of visual field maps and timing maps for monotonic 

and tuned response functions respectively. This is much less clear in our network’s 

monotonic nodes, where instead we see bimodal distributions dominated by high exponents 
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in the first layer and low exponents in later layers. Likewise for the tuned nodes, we see 

transitions from high exponents to increasingly bimodal distributions of high and low 

exponents. Our fMRI data group the responses of the many neurons in each voxel, and then 

the many voxels in each map, into a single measurement. This is likely to obscure any 

bimodal distribution and bring the resulting averaged exponent down as the balance of any 

bimodal distribution shifts from high to low exponents. So, at the level accessible in fMRI 

data, such a transition from high exponents to bimodal high and low exponents may simply 

show the decreasing exponent through the hierarchy that we saw. 

 Conceptually, responses with high exponents (near one) describe independent 

responses to each event, while low exponents (near zero) describe a single response to the 

timing of a group of events regardless of their frequency. The top layer of our network was 

used to generate a timing prediction, so needed specific responses to each event and a high 

exponent. There was no such task in our fMRI experiments, so we would expect no such 

responses. The part of the distribution with exponents near zero, on the other hand, may give 

an abstract timing representation in both cases, which could be used to both understand the 

events’ timing and to generate input sequence predictions if needed. 

 In this study we focused on very simple networks to help reveal which neural 

processes are necessary to yield the emergence of timing-tuned neurons and the transitions of 

their response properties seen in the human brain’s visual timing map hierarchy.  As such, we 

did not aim to mimic the complex properties of human visual processing in detail. In the 

brain, visual processing is fundamentally spatial, while here we used an input sequence with 

no spatial dimension. Embedding recurrent processing in a spatial image representation may 

reveal further mechanisms of timing-selective responses. For example, our fMRI data showed 

that early visual monotonic responses are closely tied to the location of the visual input, while 

tuned components of later responses are location-invariant. Furthermore, embedding 
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recurrent processing in a spatial image representation would allow more biologically 

plausible neural architectures. The activity in recurrent units of our IndRNN model (Li et al., 

2018) is affected by their own activity in previous time step, but biological neurons don’t 

synapse with themselves. Likewise, in a more common simple RNN (Elman, 1990; Jordan, 

1997) the activity in each node is affected by the activity of all nodes in the same layer 

(including themselves) at the previous time step (akin to a fully connected neural network), 

but biological neurons also don’t synapse with all neurons in the same brain areas. If 

embedded in a spatial representation, the recurrent connections could be limit to nearby nodes 

within the network layer excluding themselves (akin to a convolutional neural network), a 

closer approximation of biological neural processing. Furthermore, here we model time in 

discrete steps. However, time progresses continuously, and biological neurons respond 

(spike) at specific moments in this timing continuum. To investigate responses to event 

timing in a biologically plausible way, spiking neural networks with spike timing dependent 

plasticity would reveal further details of the underlying mechanisms. Both of these properties 

are possible in neural network models and provide important directions for future research. 

 

Conclusion 

Artificial neural networks allow us to investigate the mechanisms underlying neural 

responses seen in the brain. Their unique ability to test how the network’s performance 

properties of these responses are affected by training, different training regimens and 

different architectures reveals which aspects of neural processing are required to produce 

these responses. In this case, this approach demonstrates that fundamental neural processes of 

recurrency and training to predict upcoming inputs are sufficient to explain the emergence of 

timing-tuned neural responses and the transitions in their response properties seen in the 

human brain. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 31 

Methods 

All used input sequences, scripts, and networks will be made available at publication. 

 

Input sequences 

The input sequence followed the event timings used in (Harvey et al., 2020; Hendrikx et al., 

2022 van Ackooij et al., 2022), adjusted to simplify training of our network. In Harvey et al. 

(2020) and Hendrikx et al. (2022) events consisted of black dots appearing and disappearing in 

random places on a gray background.. In both cases we used repetitive events with durations 

and periods varying from 50 to 1000 ms. We described fMRI voxels with timing-tuned 

response profiles and timing preferences within this range, together with timing preferences 

outside of this range and responses that monotonically varied with event timing.  

Our network’s input sequence here simply describes whether the input state was on 

(value 1, equivalent to a dot being shown) or off (value 0, equivalent to no dot being shown) 

during each time step (Fig. 1, top row). Each input sequence consisted of 80 time steps. We 

describe the consecutive time that the input was on as the “on” duration and the consecutive 

time that the input was off as the “off” duration. We describe the time from the start of one 

repeating event to the start of the next (i.e. the sum of the time steps in both the on and off 

states) as the event period (i.e., 1/frequency). In our previous fMRI experiments, the shortest 

duration or period was 50 ms, and their smallest increment was also 50 ms. Therefore, we see 

one time step in our input sequence here as equivalent to 50 ms in our fMRI stimuli, though 

this does not affect the interpretation of our results. We avoided event timings where event 

duration and period were equal, as this results in all input sequence being “on” regardless of 

the event period. Situations where duration is longer than period are not possible, as the 

duration is part of the period. This resulted in 190 combinations of duration and period, with 
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durations ranging between 1 and 19 time steps and periods ranging between 2 and 20 time 

steps.  

This range of periods results in the 80-time step input sequence containing between 4 

events (for a period of 20 time steps) and 40 events (for a period of 2 time steps). This could 

potentially introduce learning biases in favor of short events, as these are input more often into 

the network. To avoid this, we included all possible phases for each period, so that the time 

step of the first event could happen anywhere in the period. The number of possible phases 

corresponded to the period of the repetitive event, so overall we input a similar number of 

events with each timing into the network. This resulted in 2660 input sequences in total. 

 

Shuffled input sequences 

In input sequences with a strong imbalance between on and off states, like input sequences 

with a long “on” duration, upcoming input states can be predicted accurately even by a network 

with no timing representation. We therefore also trained our networks on input sequences 

without periodic events: the input sequences previously described with their time steps 

shuffled. These sequences keep the same imbalance between on and off states, but with no 

predictable events and so no specific event duration or period.  

 

Independent recurrent neural networks 

For a neural network to predict upcoming repetitive events, it requires information about 

previous time steps. Recurrent neural networks (RNNs) were specifically designed to 

combine information about current network inputs with information about the current and 

previous network state. At time step t, a RNN node receives information about the current 

network input (in layer 1) or network state (in higher layers) through feedforward 
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connections, and information about the network state in the previous time step (t-1) through 

recurrent connections. 

In a simple recurrent network (Fig. 8, right)(Elman, 1990; Jordan, 1997), each node 

has recurrent connections to itself and all other nodes in its layer. The activations of the nodes 

of a hidden layer can thus be described as: 

 

ht=σ(Wih×xt + bih + Whh×ht-1 + bhh)     (Eq. 1) 

where sigma is the activation function of the nodes in this layer; Wih is the weight matrix 

between the input nodes and the hidden nodes, which is multiplied by activations of these 

inputs (xt) using matrix multiplication; Whh is a matrix with recurrent weights between the 

hidden nodes in each layer, which is multiplied by the previous activations of these nodes (ht-

1) matrix multiplication; and bih and bhh are the input and recurrent biases, respectively.  

 

 

 

 

Fig. 8: An schematic overview of neural network architectures: a neural network 

without recurrent connections (left), an IndRNN (middle), and a simple RNN (right). All 

examples have two layers with three nodes (represented by squares). Gray arrows indicate 

between-layer connections and black arrows indicate recurrent connections. 

 

The dense recurrent connections make the nodes’ responses in a layer dependent on 

each other, making it hard to assess responses in individual nodes within a single layer. 

Furthermore, the simple RNN architecture has more complex within-layer connections than a 

biological system does. To illustrate, in the visual processing hierarchy, biological neurons’ 

activity depend on: 1) excitatory and inhibitory neurons that input into this neuron from 

previous visual field maps, which can be modeled using between-layer connections; 2) its 

own polarization that slowly decays unless it is depolarized through an action potential, 
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which can be modeled using recurrency between a node and itself; 3) lateral connections of 

neurons of the identical receptive field map (which grow over the hierarchy), which can be 

modeled as lateral non-recurrent connections between nodes within one layer; and 4) top-

down connections with inputs from brain areas later in the hierarchy. The third type of 

connections are significant in spatial location processing, however since we did not vary the 

spatial location of visual inputs they can be disregarded in our setup. The fourth type of 

connections were overly complex for the current setup: we will not model influence of 

attention or other higher-level processes in our networks. A network simulating a biological 

neural system should then allow complex interactions between layers, but limited interactions 

within layers. 

Therefore, for our predictive task we used a specific version of the RNN: the 

independent RNN (Fig. 8, middle)(Li et al., 2018). In the IndRNN, each node only has a 

recurrent connection with its own state at time step t-1. This makes the differences in responses 

of the nodes in different layers more transparent. Each node is also (fully) connected to all 

nodes in the previous layer (at time step t). The activations of the nodes of a hidden layers of 

the IndRNN we used can be described as follows (Eq. 2): 

 

ht=σ(Wih×xt + bih + whh * ht-1 + bhh)       (Eq. 2) 

Here, whh is a vector with recurrent weights from the hidden nodes in the layer back to 

themselves, that is multiplied by the previous activations of these nodes (ht-1) using the 

Hadamard product. We used a sigma activation function for the hidden nodes. 

 

Parameters of the IndRNN 

In the human brain, tuned responses to event timing gradually emerge through the visual 

processing hierarchy (Hendrikx et al., 2022). We therefore hypothesized that tuning in 

IndRNN layers may also emerge gradually, requiring multiple layers for timing tuned 

responses to develop. Therefore, we built IndRNNs with depths of one to five layers. To 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 35 

allow comparisons between networks of different depths, we focus on a set of networks with 

similar numbers of free parameters (i.e., the total number of weights and biases) for all 

network depths. We refer to these as the parameter-matched networks. Here, the one-layer 

IndRNN had 77 nodes per layer, the two-layer IndRNN had 16 nodes per layer, the three-

layer IndRNN had 12 nodes per layer, the four-layer IndRNN had 9 nodes per layer, and the 

five-layer IndRNN had 8 nodes per layer. 

 Deeper parameter-matched networks had few nodes in each layer, making it hard to 

compare the distribution of response properties over the nodes in their layers. To allow such 

comparisons, we also built a set of networks with 16 nodes per layer regardless of network 

depth. We refer to these as layer-size-matched networks. 

 We used a ReLU activation function on the hidden nodes. We used a batch size of 50 

input sequences. We initialized the weights of the network using He initialization (He et al., 

2015)(He et al., 2015) and the biases at 0. During training we applied Adam optimization 

with a weight decay of 10-8. The initial learning rate was set to 0.002. We used layer 

normalization for each hidden layer (Ba et al., 2016). We did not apply dropout, since we 

wanted to reduce the amount of necessary nodes per layer to a minimum and we do not 

expect the networks to generalize to other tasks. 

The target output is binary (“on” or “off”, i.e., 1 or 0), but the network nodes’ 

activations are continuous and 0 or positive (due to the ReLU activations). In order to 

transform the network’s output to a value between 0 and 1 we applied a sigmoidal activation 

function to the output node. Because the target output is binary, we applied a Binary Cross 

Entropy (BCE) loss function for back propagation. The BCE per batch was the mean loss 

over all time steps of all 50 input sequences. 

 

Neural networks without recurrency 
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To investigate whether recurrency is necessary for predicting event timing, we also built a 

five-layer network without recurrency (Fig. 8A). As this network cannot access network 

states from previous time steps, it should be unable to track the timing of its input sequence. 

We therefore predict such a network will be unable to develop tuned responses to the timing 

of this input sequence. We kept the parameters and settings for this network as similar as 

possible to the IndRNNs. Its number of free parameters matched that of the parameter-

matched networks, resulting in 9 nodes per layer. 

 

Training 

We trained each network for 10000 epochs using a train-test split of 0.8-0.2. Note that the 

same timings can be in the train and test set, but the same phases of this timing will never be 

present in both. This means that networks can be familiar with a specific timing, but their 

performance on predicting that timing will not hinge on their memory of an exact input 

sequence. 

Our fMRI experiments (Harvey et al., 2020; Hendrikx et al., 2022; van Ackooij et al., 

2022), typically vary the timing of stimuli gradually, to reduce the influence of possible 

adaptation effects. For neural network models, such carry-over effect are easily avoided by 

resetting the network nodes’ hidden states to 0 before presentation of every new input 

sequence. We therefore presented input sequences with different timings and phases in a 

random order. 

Due to their random initialization weights, networks with the same architecture vary 

in training loss, task performance, and node activations. To reliably determine these 

properties for a particular network architecture, we trained and tested each architecture 50 

times with different random initialization weights. We saved these initialization weights and 

used these same initial weights when training on shuffled input sequences (we used the 
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parameter-matched five-layer network for shuffled sequences). To minimize variability and 

facilitate comparisons between networks, we trained each network with the same train-test 

split. During training, each network was presented with a different randomized order of input 

sequences that was shuffled between epochs. 

 

Evaluation of timing prediction performance 

Training loss 

For each network we saved its training loss over epochs. We compared the loss on the last 

epoch of the parameter-matched IndRNNs and that of the layer-size-matched IndRNNs 

between different network depths using a Kruskal Wallis (scipy.stats; Kruskal & Wallis, 

1952) followed by pairwise Dunn’s tests for post hoc comparisons (scipy.stats; Dunn, 1964), 

with a Holm-Šidák multiple comparisons correction (Šidák, 1967). We used Wilcoxon 

signed-rank tests (scipy.stats; Wilcoxon, 1945) to compare the loss in the last epoch of the 

five-layer IndRNN to its initializations trained on shuffled input sequences. We used Mann 

Whitney U tests (scipy.stats; Mann & Whitney, 1947) to compare the loss in the last epoch of 

the five-layer IndRNN to the five-layer NN without recurrency. We also used Mann Whitney 

U tests to compare the loss of the parameter-matched and layer-size matched IndRNNs. 

 

Accuracy of timing prediction 

We assessed each network’s accuracy at predicting the upcoming time step of the input 

sequence on the test split of the input sequences. Because the input sequences could have 

only two states (on and off), here we binarized the networks’ predictions. Our accuracy score 

per time step is then 1 if this prediction is correct and 0 if it is incorrect. Here we noted that 

prediction is relatively trivial when the input sequence’s state does not change between time 

steps, but more difficult when the inputs in the current and upcoming time step differ. We 
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therefore assessed accuracy in two ways. First, per-event accuracy quantifies the average 

accuracy over the time steps encompassing an entire event, most of which will be relatively 

trivial in longer events where most of the time steps are unchanged from the previous time 

steps. Second, per-state-change accuracy quantifies the average accuracy only at the time 

steps where the input sequence changes state, which then always compares accuracy on two 

similarly difficult time steps regardless of the event’s timing. 

For both accuracy measures, we only assessed accuracy during whole events where 

the network could theoretically predict the next time step in the input sequence. At the first 

time step (e.g. time step 1 in Fig. 1), the network has no information about the input 

sequence’s timing. Time steps where the input changes state reveal the temporal structure of 

the event. The first state change (e.g., time step 8 in Fig. 1) does not give complete 

information about timing: it only reveals a lower bound for the length of the initial on or off 

state. The second state change (e.g., time step 17 in Fig. 1) unambiguously reveals the length 

of the second on or off state, but still does not reveal the length of the other state. The third 

state change (e.g., time step 28 in Fig. 1) reveals the length of the initial state. Only at this 

time step has the network had one whole event input, and so has enough information to make 

accurate predictions in all further time steps. So, from this third state change on, we can 

assess the network’s accuracy.  

 We only assess the accuracy of predictions of whole events. We do this because some 

parts of the event may be easier to predict than others, which may in turn bias the calculated 

accuracy score. We define the prediction of whole events as predictions encompassing an 

entire period, with the full set of the event’s consecutive “on” times steps followed by the full 

set of its consecutive “off” time steps, or vice versa. The first predicted event for which we 

assess the accuracy therefore starts at the state change in the predicted input sequence that 

follows the third state change of the input sequence (e.g., time step 36 in Fig. 1). From this 
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predicted event onwards, we assess all following predicted events that still encompass the 

entire period (e.g., last evaluated time step is time step 75 in Fig. 1). 

For each repetition we computed the mean accuracy over all input sequences. We 

compared per-event and per-state-change accuracy (separately) between networks of different 

depths using a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis, 1952) followed by post hoc 

pairwise Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Šidák correction (Šidák, 1967). 

For this and all other Kruskal-Wallis tests we computed effect size ε2 as (H-statistic – amount 

groups + 1) / (total amount datapoints – 1). To assess differences in maximum performance 

of the parameter-matched networks, we performed a similar comparison for only the best 25 

repetitions of each network depth. 

We compared the variance in accuracy over network repetitions between layers 

separately for the parameter-matched and layer-size-matched networks using a Brown-

Forsythe test (scipy.stats.levene; Brown & Forsythe, 1974) followed by posthoc pairwise 

Brown-Forsythe tests, corrected for multiple comparisons using a Holm-Šidák correction 

(statsmodels.stats; Šidák, 1967). 

We compared the accuracies of the five-layer IndRNN to the same network untrained 

initializations and those of the five-layer IndRNN to the same network initializations trained 

on shuffled input sequences using (paired) Wilcoxon signed-rank tests (scipy.stats; Wilcoxon, 

1945). We compared the accuracies of the five-layer IndRNN to the five-layer NN and those 

of the five-layer IndRNN with 8 nodes per layer to the five-layer IndRNN with 16 nodes per 

layer using a Mann Whitney U test (independent) (scipy.stats; Mann & Whitney, 1947). 

 

Stability of accuracy across timings 

To assess whether each event timing elicits a similar accuracy pattern or whether there are 

systematic differences in accuracy between event timings, we computed average per-event 
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and per-state-change accuracies for each timing present in the test set. We compared the 

variance of these average accuracies (i.e. how much accuracy varies with timing) between 

network depths, using a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis, 1952) followed 

by post hoc pairwise Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Šidák correction 

(Šidák, 1967). We again did a similar comparison for only the best 25 repetitions of each 

network depth. 

 

Parameterizing node response functions 

To parameterize the response functions of the nodes, we computed a per-event response for 

each timing. We used the same method of selecting the set of time steps as we used for 

computing the per-event accuracies, selecting only whole, predictable events. For each node 

we summed the activity across these time steps and divided this by the number of events 

during these time steps (giving the summed response in the average whole, predictable 

event). We fit monotonic and tuned response functions to these average per-event responses 

from all event timings. The response functions we used were the best-fitting response 

functions in previous studies of the human brain’s sensory event timing-selective responses 

(Harvey et al., 2020; Hendrikx et al., 2022; van Ackooij et al., 2022).  

Here we started with all possible input sequences (from both the training and the test 

sets used during training). We then split these into two halves, each containing every timing, 

but with differently shifted phases in each half. We fit each response function’s free 

parameters on one half of the data and evaluated the resulting function’s fit on the 

complementary half (using both halves for fitting and both for evaluation).  

We fit both functions to each node’s activation using scipy’s curve_fit in Python. 

Initially, each free parameter of the response function was randomly set within specified 

bounds (Table S11). These parameter values were optimized to minimize the sum of squared 
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residual to the measured activations. This was done with an ftol value (indicating the 

expected change in the cost function while improving the parameters) of 10-X where X=4 for 

the first iteration. X was increased by 1 on each iteration until X=14 or no solution could be 

found for larger values of X. If no solution could be found in the first iteration, this was 

repeated with a new random value of each free parameter until a solution was found. We used 

the resulting parameter values to compute the cross-validated variance explained (VE) of the 

resulting function on the complementary half of the data: the proportion of variance in 

complementary half of node response that was captured by the resulting response function. 

In order for ftol to have a similar effect in all nodes, we normalized each node’s 

response before (re)fitting the response functions. Nodes with the same per-event response 

for each timing were disregarded in the fitting process, as these responses have no variance 

for the response function fits to explain.  

 

Monotonic response functions 

Monotonic response functions have previously been demonstrated to capture effects of event 

timing on fMRI responses in early visual areas (Hendrikx et al., 2022). Following these 

results, the monotonic response function we used here has two independent components that 

scale with the duration of the “on” state of the stimulus sequence and the frequency of event 

onsets (Stigliani et al., 2017) i.e. 1/period, respectively. These two components each included 

a free parameters allowing a compressive exponential nonlinearity in the relationship 

between response amplitude and event duration or frequency (Zhou et al., 2018).  

 Note that to the network, events being “on” or “off” merely describes a value of the 

binary input. Therefore, responses could monotonically increase with either the event’s “on” 

or “off” duration. We therefore fit response functions that increased with either the “on” or 

“off” duration (as well as increasing with frequency) and chose whichever best predicted the 
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responses under cross-validation. For consistency with the tuned response functions, we 

describe the responses to each event as a function of its period (i.e. 1/frequency). So, our 

monotonic response functions can be expressed as:  

 

Amplitude ∝ βDuration × Duration expDuration  + βPeriod ×
Period

PeriodexpPeriod  (Eq. 3) 

Where Duration can represent the event’s “on” or “off” duration. Here, expDuration and 

expPeriod are the compressive exponent on the chosen duration and period respectively, in 

the range 0–1. βDuration and βPeriod capture the relative amplitudes of the chosen duration 

and period components, respectively. 

 

 The responses of the nodes in a network cannot be negative, as we are applying 

rectified linear activation functions. Therefore, for consistency with previous work, we did 

not allow the betas to become negative (though very similar results were found when we 

allowed this: Fig. S6 & Table S11). 

 

Tuned response functions 

Tuned response functions have previously been demonstrated to capture effects of event 

timing on fMRI responses in association cortices (Harvey et al., 2020; Hendrikx et al., 2022; 

Protopapa et al., 2019). Following these results, the tuned response function we used here is 

described by a two-dimensional anisotropic Gaussian function of the duration of each event’s 

“on” state and its period. The function describes the response amplitudes to each event 

separately. However, when assessing events over the entire input sequence, response 

amplitudes could also increase with event frequency. Because response amplitudes to each 

event in the input sequence may also be affected by their frequency (regardless of the 

parameters of the Gaussian function), we scaled the per-event response by a compressive 

exponent on frequency (Harvey et al., 2020).  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 43 

 Again, a node’s activations could vary as a Gaussian function of either the event’s 

“on” or “off” duration. We therefore fit response functions that depended on either “on” or 

“off” duration (as well as period) and chose whichever best predicted the activations under 

cross-validation. So, our tuned response functions can be expressed as: 

 

X = (Duration − Durationpref) × cos (𝜃) − (Period − Periodpref) × sin (𝜃)    (Eq. 4) 

Y = (Duration − Durationpref) × sin (𝜃) + (Period − Periodpref) × cos (𝜃)     (Eq. 5) 

Amplitude ∝ e
−0.5×((

X

𝜎min
)

2

+ (
Y

𝜎maj
)

2

) 

×
Period

PeriodexpPeriod                           (Eq. 6) 

 

Where Duration could represent the event’s “on” or “off” duration. The six free parameters of 

the response function are: the preferred duration (Durationpref) and the preferred period 

(Periodpref) around which the Gaussian function’s mean is centered; the standard deviations 

along its major and minor axes (σmaj and σmin, in the range 0–10); the angulation of its major 

axis (θ); and the compressive exponent on the period to which the response was scaled 

(expPeriod) to account for global effects of event frequency.  

 

Again, we do not allow the proportionality between the node activation and the response 

function (Eq. 6) to become negative (though very similar results were found when we 

allowed this: Fig. S6 & Table S11). 

 

Classification of response function types 

After fitting, we classified each node according to the response function with the highest 

cross-validated VE. For nodes fit best by the tuned response functions, nodes where the fit 

response function’s standard deviation along both axes reached their maximal allowed values 

do not show clear evidence of tuned responses as they closely resemble responses with no 

variance. We therefore did not classify these nodes into either response function category. 
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 Furthermore, nodes where the cross-validated VE of their best fitting response 

function was very low did not show clear evidence of either type of response function. 

Following previous fMRI studies (Hendrikx et al., 2022), we used a VE threshold of 0.2, 

below which we did not classify nodes into either response function category. A higher 

threshold of 0.8 produced very similar results (Fig. S7 & Table S12).  

For nodes best fit by the tuned response function, we classified those with particular 

combinations of tuned function parameters into a third category: mixed response function. 

This category was again inspired by fMRI results where many neural populations show 

characteristics of both monotonic and tuned response functions (Hendrikx et al., 2022). This 

mixed response function category contained nodes where the peak of the tuned response 

function (determined with scipy’s minimize) was outside the set of event timings that the 

network was trained to predict. For example, the responses of such a node may have a clear 

peak duration within the tested range, but no clear peak period. This can happen in two ways. 

First, the duration or period of the tuned response function’s peak could be below 1 time step 

or above 20 time steps, the tested range. Second, the peak state of the tuned response function 

could be larger than the peak period, an event timing which is impossible because the state is 

part of the period and so cannot be longer than the period. In both of these cases, we do not 

see this peak in the fit responses. However, the tuned response function can only outperform 

the monotonic response function because features of the response amplitudes within the 

tested range are consistent with a tuned response.  

 

Comparing proportions of response function types 

For each network repetition we assessed the proportion of nodes best fit by monotonic, 

mixed, or tuned response functions. Within each network depth, computed each response 

type as a proportion of nodes each network layer (including nodes that are not classified for 
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any of these response types), and compared the proportions between layers. We did these 

analyses for the parameter-matched IndRNNs, the IndRNNs trained on shuffled data, the 

untrained initializations of the IndRNNs and the networks without recurrency. Between 

network depths, we compared the proportion of nodes in the last layer. We did these analyses 

for the parameter-matched IndRNNs and the layer-size-matched IndRNNs. For each response 

function type separately, we performed a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis, 

1952), followed by post hoc Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Šidák 

correction (Šidák, 1967) to compare proportions between network layers, and Dunn’s tests 

(scipy.stats; Dunn, 1964) with a Holm-Šidák correction (Šidák, 1967) to compare proportions 

between network depths. 

 

Evaluating properties of the response functions of the nodes 

We assessed the parameters of the best-fitting response functions between different layers of 

the same network depths. 

For the monotonic responses, we assessed the compressive exponents on duration and 

period, and whether the ratio of contribution of duration and period components to the 

response (βduration/βperiod) differed between network depths and layers. In order to make a fair 

comparison, the betas were rescaled to be fit on normalized response components. Nodes 

with an exponent on duration of 0 or an exponent on period of 1 create the same activation 

for all durations or periods, respectively. Therefore, the beta ratio for these nodes was set to 0 

or infinite, respectively. Similarly, for nodes with a beta ratio of 0 or infinite, duration and 

period exponents were set to 0 or 1, respectively. All comparisons were performed using a 

Kruskal-Wallis (scipy.stats; Kruskal & Wallis, 1952) followed by Dunn’s post hoc 

(scipy.stats; Dunn, 1964) with Holm-Šidák correction (Šidák, 1967). To compare the patterns 

in the data, we also performed these tests on the nodes of the layer-size-matched networks 
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before training, layer-size-matched networks trained on shuffled data and parameter-matched 

networks without recurrency. Furthermore, we performed the same analysis on previously 

published data about monotonic parameters in visual field maps recorded with fMRI 

(Hendrikx et al., 2022) 

For the tuned responses, we assessed the preferred timings, the extents around these 

timings, the angulation of this preference towards the x-axis, and the exponent on period 

between layer-size-matched layers of networks before training, layer-size-matched networks 

trained on shuffled data and networks trained on repetitive events. For all parameters, except 

the angulation, we performed using a Kruskal-Wallis (scipy.stats; Kruskal & Wallis, 1952) 

followed by Dunn’s post hoc (scipy.stats; Dunn, 1964) with Holm-Šidák correction (Šidák, 

1967). Furthermore, we performed the same analysis on previously published data about 

tuned parameters in timing maps recorded with fMRI (Harvey et al., 2020).  

For the angulation parameter, we normalized the angulation angles between 0° and 

180°. We multiplied the angles by 2 to allow performing a circular common median test 

(pycircstat.tests.cmtest), followed by posthoc pairwise circular common median tests with 

Holm-Šidák correction (statsmodels.stats; Šidák, 1967).  

For the exponent of the monotonic and tuned response function, we assessed whether 

the data was bimodally distributed the dip test of unimodality (Hartigan & Hartigan, 1985). 

For each training regimen, we corrected for each layer’s statistical tests using an FDR 

correction (Benjamini & Hochberg, 1995).  

Note that the statistical tests and included datapoints presented here may slightly 

differ from the original studies in the brain (Harvey et al., 2020; Hendrikx et al., 2022), to 

create consistency with the statistical procedures used in the current study. However, the 

reported trends are very similar.  

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 47 

References 

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization. 

https://arxiv.org/abs/1607.06450v1 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series 

B (Methodological), 57(1), 289–300. https://doi.org/10.1111/J.2517-

6161.1995.TB02031.X 

Bi, Z., & Zhou, C. (2020). Understanding the computation of time using neural network 

models. Proceedings of the National Academy of Sciences of the United States of 

America, 117(19), 10530–10540. 

https://doi.org/10.1073/PNAS.1921609117/SUPPL_FILE/PNAS.1921609117.SAPP.PD

F 

Brown, M. B., & Forsythe, A. B. (1974). Robust Tests for the Equality of Variances. Journal 

of the American Statistical Association, 69(346), 364. https://doi.org/10.2307/2285659 

Crespi, B. (1999). Storage capacity of non-monotonic neurons. Neural Networks, 12(10), 

1377–1389. https://doi.org/10.1016/S0893-6080(99)00074-X 

DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in 

early visual cortex. Cortex, 114, 76–89. https://doi.org/10.1016/j.cortex.2018.03.027 

Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241. 

https://doi.org/10.2307/1266041 

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211. 

https://doi.org/10.1207/S15516709COG1402_1 

Hartigan, J. A., & Hartigan, P. M. (1985). The Dip Test of Unimodality. The annals of 

Statistics, 13(1), 70–84. https://doi.org/10.1214/AOS/1176346577 

Harvey, B. M., & Dumoulin, S. O. (2017). A network of topographic numerosity maps in 

human association cortex. Nature Human Behaviour, 1(2). 

https://doi.org/10.1038/s41562-016-0036 

Harvey, B. M., Dumoulin, S. O., Fracasso, A., & Paul, J. M. (2020). A Network of 

Topographic Maps in Human Association Cortex Hierarchically Transforms Visual 

Timing-Selective Responses. Current Biology, 30(8), 1424-1434.e6. 

https://doi.org/10.1016/j.cub.2020.01.090 

Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic 

representation of numerosity in the human parietal cortex. Science, 341(6150), 1123–

1126. https://doi.org/10.1126/science.1239052 

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing 

Human-Level Performance on ImageNet Classification. Proceedings of the IEEE 

International Conference on Computer Vision, 1026–1034. 

Hendrikx, E., Paul, J. M., van Ackooij, M., van der Stoep, N., & Harvey, B. M. (2022). 

Visual timing-tuned responses in human association cortices and response dynamics in 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 48 

early visual cortex. Nature Communications, 13(1), 1–19. 

https://doi.org/10.1038/s41467-022-31675-9 

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive 

Sciences, 11(10), 428–434. https://doi.org/10.1016/j.tics.2007.09.004 

Jordan, M. I. (1997). Serial Order: A Parallel Distributed Processing Approach. Advances in 

Psychology, 121(C), 471–495. https://doi.org/10.1016/S0166-4115(97)80111-2 

Kim, G., Jang, J., Baek, S., Song, M., & Paik, S. B. (2021). Visual number sense in untrained 

deep neural networks. Science Advances, 7(1). 

https://doi.org/10.1126/SCIADV.ABD6127 

Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. 

Journal of the American Statistical Association, 47(260), 583. 

https://doi.org/10.2307/2280779 

Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. 

D. (1990). Handwritten digit recognition with a back-propagation network. Morgan 

Kaufmann. https://nyuscholars.nyu.edu/en/publications/handwritten-digit-recognition-

with-a-back-propagation-network-2 

Li, S., Li, W., Cook, C., Zhu, C., & Gao, Y. (2018). Independently Recurrent Neural Network 

(IndRNN): Building a Longer and Deeper RNN (pp. 5457–5466). 

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables 

is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 

50–60. https://doi.org/10.1214/AOMS/1177730491 

Merchant, H., Pérez, O., Zarco, W., & Gámez, J. (2013). Interval tuning in the primate 

medial premotor cortex as a general timing mechanism. Journal of Neuroscience, 

33(21), 9082–9096. https://doi.org/10.1523/JNEUROSCI.5513-12.2013 

Merchant, H., Zarco, W., Pérez, O., Prado, L., & Bartolo, R. (2011). Measuring time with 

different neural chronometers during a synchronization-continuation task. Proceedings 

of the National Academy of Sciences of the United States of America, 108(49), 19784–

19789. https://doi.org/10.1073/pnas.1112933108 

Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., & Tanji, J. (2009). Interval time coding 

by neurons in the presupplementary and supplementary motor areas. Nature 

Neuroscience 2009 12:4, 12(4), 502–507. https://doi.org/10.1038/nn.2272 

Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual 

items in the primate prefrontal cortex. Science. https://doi.org/10.1126/science.1072493 

Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical 

information in the monkey. Proceedings of the National Academy of Sciences of the 

United States of America, 101(19), 7457–7462. 

https://doi.org/10.1073/PNAS.0402239101 

Palm, G. (1984). Local Synaptic Modification Can Lead to Organized Connectivity Patterns 

in Associative Memory. 229–242. https://doi.org/10.1007/978-3-642-69540-7_22 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/


 49 

Park, J., Dewind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and Direct 

Encoding of Numerosity in the Visual Stream. Cerebral Cortex. 

https://doi.org/10.1093/cercor/bhv017 

Paul, J. M., van Ackooij, M., ten Cate, T. C., & Harvey, B. M. (2022). Numerosity tuning in 

human association cortices and local image contrast representations in early visual 

cortex. Nature Communications, 13(1), 1–15. https://doi.org/10.1038/s41467-022-

29030-z 

Protopapa, F., Hayashi, M. J., Kulashekhar, S., Van Der Zwaag, W., Battistella, G., Murray, 

M. M., Kanai, R., & Bueti, D. (2019). Chronotopic maps in human supplementary motor 

area. PLoS Biology, 17(3), 1–34. https://doi.org/10.1371/journal.pbio.3000026 

Šidák, Z. (1967). Rectangular Confidence Regions for the Means of Multivariate Normal 

Distributions. Journal of the American Statistical Association, 62(318), 626. 

https://doi.org/10.2307/2283989 

Stigliani, A., Jeska, B., & Grill-Spector, K. (2017). Encoding model of temporal processing 

in human visual cortex. Proceedings of the National Academy of Sciences of the United 

States of America, 114(51), E11047–E11056. https://doi.org/10.1073/pnas.1704877114 

Stoianov, I., & Zorzi, M. (2012). Emergence of a “visual number sense” in hierarchical 

generative models. Nature Neuroscience. https://doi.org/10.1038/nn.2996 

Testolin, A., & Zorzi, M. (2016). Probabilistic models and generative neural networks: 

Towards an unified framework for modeling normal and impaired neurocognitive 

functions. Frontiers in Computational Neuroscience, 10(JULY), 211605. 

https://doi.org/10.3389/FNCOM.2016.00073/BIBTEX 

van Ackooij, M., Paul, J. M., van der Zwaag, W., van der Stoep, N., & Harvey, B. M. (2022). 

Auditory timing-tuned neural responses in the human auditory cortices. NeuroImage, 

258, 119366. https://doi.org/10.1016/J.NEUROIMAGE.2022.119366 

Viswanathan, P., & Nieder, A. (2013). Neuronal correlates of a visual “sense of number” in 

primate parietal and prefrontal cortices. Proceedings of the National Academy of 

Sciences of the United States of America, 110(27), 11187–11192. 

https://doi.org/10.1073/PNAS.1308141110 

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 

80. https://doi.org/10.2307/3001968 

Zhou, J., Benson, N. C., Kay, K. N., & Winawer, J. (2018). Compressive temporal 

summation in human visual cortex. Journal of Neuroscience, 38(3), 691–709. 

https://doi.org/10.1523/JNEUROSCI.1724-17.2017 

Zorzi, M., & Testolin, A. (2018). An emergentist perspective on the origin of number sense. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 

20170043. https://doi.org/10.1098/RSTB.2017.0043 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610320doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610320
http://creativecommons.org/licenses/by-nc/4.0/

