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Abstract

The brain exhibits a gradual transition in responses to visual event duration and frequency
through the visual processing hierarchy: from monotonically increasing to timing-tuned
responses. Over their hierarchies, properties of both response types are progressively
transformed. Here, we implement simulations based on artificial neural networks to
investigate the requirements of neural systems for the emergence of such responses and their
properties’ transformations. We see that recurrent networks develop monotonic responses
whose properties’ progressions over network layers resemble those over brain areas.
Furthermore, recurrent networks can further develop tuned responses, but only with training,
a gradual transition between monotonic and tuned responses emerges. Particularly, if this
training is done on predictable sequences, the tuned properties’ progressions resemble those
observed in the brain. These results suggest that the emergence of visual timing-tuned
responses and the subsequent hierarchical transformations of these responses result from

recurrent neural computation and predictive processing of sensory event timing.
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Introduction
Perceiving the durations and frequency of sensory events is vital to understanding our dynamic
environment. In the brain, early stages of visual processing show neural responses that
monotonically increase in response amplitude with event duration and frequency, reflecting the
inherent dynamics of sensory processing (Hendrikx et al., 2022; Stigliani et al., 2017; Zhou et
al., 2018). Tuned responses peaking for specific durations and frequencies gradually emerge
through the visual processing hierarchy, into temporal-occipital, parietal and frontal areas. This
gradual emergence suggests that sensory timing representations may straightforwardly be
derived from early sensory responses, rather than from dedicated processes responding to
passing time. Once timing-tuned responses have emerged, the properties of these response
functions progressively change in a hierarchy of timing maps. However, the computational
mechanisms underlying these hierarchical changes of responses to event timing remain unclear.
Responses to another sensory quantity, visual numerosity, show similar progressions.
As with timing, early visual responses monotonically increase with numerosity (DeWind et al.,
2019; Park et al., 2016; Paul et al., 2022), while tuned responses to specific numerosities are
found in temporal-occipital, parietal and frontal areas (Harvey et al., 2013; Harvey &
Dumoulin, 2017; Nieder et al., 2002; Nieder & Miller, 2004). Computational studies reveal
both monotonic and tuned responses to numerosity in artificial neural networks trained on a
numerosity generation task (Stoianov & Zorzi, 2012; Zorzi & Testolin, 2018). The distribution
of tuned responses changes with training to eventually match that seen in monkey parietal
neurons (Viswanathan & Nieder, 2013; Zorzi & Testolin, 2018). Even deep convolutional
networks with no training (i.e., random weights) show monotonically increasing responses to
numerosity in earlier layers and numerosity-tuned responses in later layers (Kim et al., 2021),

suggesting that this neural network architecture alone is sufficient to produce responses like
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those seen in the brain. Could timing-tuned responses and their subsequent transformations
similarly reflect the basic architecture of the brain’s neural networks?

Numerosity and timing processing require quite different ways of integrating neural
responses. For spatial quantities like numerosity, spatial integration of image features can be
straightforwardly achieved by neurons with a spatial spread of their inputs, as in convolutional
neural network models (Lecun et al., 1990). Conversely, integration of temporal responses (to
event onsets, offsets and sustained responses to ongoing events) requires neurons to have
information about past events. Recurrent connections in neural networks make the nodes’
current activity dependent on both ongoing input and their past activity, and therefore allow
such temporal integration (Elman, 1990; Jordan, 1997).

In the current work, we therefore asked whether monotonic and tuned responses to
event timing, and the progressions of their response properties seen in the brain, could
spontaneously emerge in multi-layer recurrent neural networks. We hypothesized that the
combination of recurrent processing, between-layer integration of the resulting responses and
training to predict upcoming inputs in predictable sequences could support the development of
timing-tuned responses. This predicts that recurrent networks with two or more hidden layers
would show more tuned responses in their final layers that networks with one hidden layer and
have superior performance in this input prediction task. Furthermore, we hypothesized that
recurrent and between layer interactions over multiple processing stages may result in the
gradual transition from monotonic to tuned responses and the gradual transformations of

properties of both types of responses that we have observed in the brain.

Results

Recurrent networks can predict upcoming events in repetitive sequences
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We created two sets of artificial neural networks with one to five hidden layers with
independent recurrent nodes (each node connected only to its own state on the previous time
step; Li et al., 2018) and full connections between layers (INdRNNSs). We chose this neural
architecture over a recurrent neural network with recurrent connections to all nodes in each
layer, because it makes each nodes’ responses easier to assess and it does not allow more
complexity than a biological system (see Methods). In our ‘parameter-matched’ networks, the
number of nodes in each layer was chosen to keep the total number of connection weights
and biases as similar as possible between network depths, thereby separating effects of
network depth and network complexity. However, this resulted in very few nodes in each
layer of deeper networks. In our ‘layer-size-matched’ networks, the number of nodes in each
layer was constant (at 16) regardless of network depth, so deeper networks were more
complex. We also created five-layer networks without recurrent connections, which matched
the number of connection weights and biases in the parameter-matched networks. For each of
these network architectures we created 50 network repetitions each initialized with different
random weights and trained these separately, allowing us to make statistical comparisons
between architectures. We also investigated the responses of the same networks before
training, separating the effects of network architecture and learning mechanisms.

We trained these networks to predict the states of upcoming time steps in a time series
consisting of repetitive events (henceforth: input sequence). This is a form of self-supervised
learning, as the network was not trained to explicitly label the timing of the events in the
input sequence (Hinton, 2007; Testolin & Zorzi, 2016), but rather to generate supervisory
signals based on the difference between its predicted and actual states of future time steps in
the sequence. Events consisted of consecutive “on” and consecutive “off” states. Different
input sequences differed in event duration (consecutive time steps of an input state), event

period (time steps between the onsets of consecutive events, i.e. the sum of the time steps in
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the “on” duration and “off” duration), and phase (the time step of the first event onset) of the
events (Fig. 1, top rows). We also trained the five-layer networks on shuffled versions of
these input sequences, which lacked predictable timing but allow achieving some accuracy by

predicting the most common input state.

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

state change 1 state change 2 slale changa 3 first predictable state change,
ot sgonce EEEENEN 00 W ] 1]
Targed prediction EEEEEE | | HEN [T NN | | ][

Only “off" |||| |||||||| u
Random IZ-II\FII-—IIIIIII-ZE-:E-II-IIH
HEEEEEE @ |

Propotion of “on™

1-layer IndRNN
2-layer IndRNN
3-layer IndRNN
4-layer IndRNN
S-layer IndRNN

S-layer IndRNN shuffled lraininq I I I | I I I | I I I .

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

FI
[

%

]
u
]
L]

Input sequence

Target prediction EEEEEE === SBEEEEEEEEEE 2= EEEEE
only ‘o EIEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEE EEEEE
Cnly “off" LTI L1110 1] NN EEEEEEEEEEE .
Random LT [T T 11 [ 111 1
Proportion of “on” I I I | ‘ I | I I I I ‘ I I | I |r|

1-layer IndRNN HEREN [T 1T 1]
2-layer IndRNN D:D:D ED:D
3-layer IndRNN EI:I:I:I:‘ Dj:l:‘
4-layer IndRNN

5-layer IndRNN

5-layer IndRNN before training ififi (11|

S—IayerlndRNNshufﬂedlrainind I I I |

S-layer NN without recurrency

Fig. 1: An example input sequence, target predictions, outcomes of possible strategies,
and responses of the networks. For the input sequence and the target predictions a black
square represents the “on” state and white represents the “off” state at each time step
(numbers). This input sequence has an event “on” duration of 9 time steps, an event period of
20 time steps, and a phase shift of +8 time steps. Arrows indicate the location of state
changes needed to establish the sequence’s predictability. Time steps used for per-event
accuracy assessments are marked by red rectangles. Time steps used for per-state-change
accuracy assessments are marked by blue rectangles. For the outcomes of possible strategies,
and responses of the networks, the grayscale of the square indicates the proportion of network
repetitions predicting an “on” output state.

All networks improved their prediction performance with additional training epochs,

eventually reaching convergence (Fig. S1). For the parameter-matched networks, the final
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training loss of the one-layer network converged to a significantly higher loss than the other
networks, while the two-layer network’s training loss was significantly lower than that of the
four- and five-layer networks (Hw)=45.71, p=3x107, £2=0.17; Table S1A). Networks without
recurrent connections and networks trained on shuffled input sequences both exhibited far
higher training loss than all recurrent networks (Fig. S1; Table S1B). Layer-size-matched
networks revealed that increased complexity led to decreased training loss (H4)=148.38,
p=5x10-3!, £2=0.58; Fig. S1; Table S1C).

Fig. 1 outlines the task’s requirements, some hypothetical strategies and some
networks’ outputs for an example input sequence. A network that always predicts its current
input, “on” time steps, “off” time steps, or random values should not improve its performance
during processing of the sequence. A network that simply represents the proportion of “on”
time steps can at best predict the most common input state; its accuracy should improve
throughout the sequence, but remain low when the proportion of on and off states are similar
(as in Fig. 1’s example). However, a network with an internal representation of the input
sequence’s timing can predict the next time step specifically after three state changes (from
“on” to “off” or from “off” to “on”) in the sequence. Only at this time step has the network
processed one whole event input. Therefore, we assessed accuracy in predicting whole events
after this this third state change (Fig. 1).

After training, the predictions made by trained INndRNNs were consistent with an
internal representation of the input sequences’ timing (Fig. 1). These networks initially
predict similar values to their input. After three state changes, the networks’ predictions
matched the target state rather than the network’s current input.

The predictions of INdRNNs before training mimicked the hypothesized pattern for
random predictions. Those of a neural network without recurrency mimicked the

hypothesized pattern of “on”-only predictions. Those of a network trained on shuffled data
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mimicked the hypothesized pattern for a network representing the proportion of “on” time
steps, predicting the most common state seen before each time step. Therefore, recurrency,
training, and temporal structure in the training sequences were all necessary for the network

to develop an internal representation of event timing.

Maximum accuracy improved with a second hidden layer

We kept 20% of input sequences as a test set to evaluate each network’s performance in
predicting times steps in unseen input sequences after training was complete. Time steps
where the upcoming input state differed from the current input state particularly require an
accurate event timing representation, but most upcoming time steps simply repeat the current
input state. We therefore assessed accuracy first as the average accuracy across all of an
event’s time steps (per-event accuracy) and second as the average accuracy across the time
steps where the input sequence changes state (per-state-change accuracy).

The mean prediction accuracy differed between network depths (parameter-matched:
per-event: H)=38.73, p=8x1078, £2=0.14; per-state-change: H)=24.12, p=8x107, £2=0.08;
Fig. 2A, Table S2A). For the parameter-matched networks, the one-layer networks gave
lower per-event accuracies than the other networks and lower per-state-change accuracies
than the two-, three-, and five-layer networks. However, accuracy did not significantly
improve with additional layers (beyond two) and indeed the two-layer networks gave a higher

per-event accuracy than the four-layer networks.
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Fig. 2: Best target prediction accuracies were greater and more consistent for recurrent
networks with at least two hidden layers and did not resemble predictions of
hypothetical strategies. (A) Per-event and per-state-change accuracies for various network
depths for all 50 network repetitions of the parameter-matched networks. (B) Accuracies for
the top 25 network repetitions of the parameter-matched networks. (C) Accuracies for all 50
network repetitions of the layer-size-matched networks. White lines and circles indicate
interquartile ranges and medians, respectively. Red circles indicate the mean. All violins’
maximum widths are kept the same. Brackets and stars show significant differences in
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multiple comparisons between all network depths: all brackets to the left of the star are
significantly different from all brackets to the right of the star (two-sided Dunn’s test,
corrected for multiple comparisons using Sidak-Holm, p < 0.05) (D) The per-event (top) and
per-state-change (bottom) accuracies for the hypothetical strategies shown in Fig. 1. (E) Per-
state-change accuracies per timing for all 50 repetitions of the parameter-matched INndRNNs
(per-event in Fig. S3A). (F) Per-state-change accuracies per timing for most accurate 25
repetitions of the parameter-matched INdRNNs (per-event in Fig. S3B). Colors indicate the
mean accuracy over repetitions and presentations of each timing in the test set. The test set
contained 20% of the input sequences, so omitted some timings. The sizes of the squares
scale with standard deviation of accuracy between network repetitions: more variable
outcomes between repetitions are shown as smaller squares

The parameter-matched networks with more layers had fewer nodes in each layer,
which led to more variable accuracy in different repetitions with different random
initializations (per-event: W=5.35, p=0.0004; per-state-change: W=4.57, p=0.001; Table S3;
Fig. 2A). This variability could mask increases in maximum accuracy in deeper networks.
We therefore assessed whether the networks” maximum possible accuracy benefits from
more layers by comparing the 25 (of 50) best-performing network repetitions for each
network depth (Fig. 2B). Here, the one-layer networks gave a higher accuracy than all other
depths (per-event: H=61.03, p=2x10"2, £2=0.23; per-state-change: H)=49.84, p=4x1010,
€2=0.18; Table S2B), but there were no significant accuracy differences between other
network depths.

In the layer-size-matched networks, where the network complexity increased with
depth, prediction accuracy increased with network depth (per-event: H=147.29, p=8x10-3!,
€2=0.58; per-state-change: H=147.47, p=7x1073!, £2=0.58; Fig. 2C; Table S2C). These
networks lacked the issue of decreasing nodes in deeper networks and as such different
network depths lacked significant differences in the variance of their accuracy (per-event:

W=0.83, p=0.508; per-state-change: W=2.21, p=0.068).
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The median accuracy of the neural networks without recurrency, INndRNNs before
training, and the INndRNNSs trained on shuffled data were significantly lower than those of the
comparable five-layer INndRNN (Fig. S2, Table S4).

Overall, multi-layer networks generally gave greater accuracy than one-layer
networks. While more complex networks with more parameters also gave greater accuracy
than simpler networks, increasing the number of layers above two without also increasing
network complexity did not further increase accuracy. Furthermore, this accurate prediction

required recurrency, training and predictable temporal structure in the input sequences.

Two-layer networks allow high prediction accuracy at all event timings

Next, we asked whether deeper parameter-matched networks achieved more consistent
performance across event timing. Fig. 2D shows how accurately the hypothetical strategies
shown in Fig. 1 predicted targets for each event timing. Although lacking any predictive
process, these strategies gave a high per-event accuracy for specific event timings.
Nevertheless, their per-state-change accuracy was low for all timings, demonstrating this
accuracy measure is more sensitive to predictive power. Again, networks without recurrency,
IndRNNSs without any training, and the IndRNN's trained on shuffled data mimicked the
accuracy patterns in these hypothetical situations (Fig. S3D).

The one-layer networks had a higher variance in per-state-change accuracy across
timings than the two-layer networks, but not other network depths (H)=14.44, p=0.006,
£2=0.04; Table S5A). Again, this lack of significant differences between one-layer networks
and three-, four- or five-layer networks likely reflected the greater variability among
repetitions of deeper parameter-matched networks. Indeed, among the most accurate 25
repetitions, one-layer networks had a higher variance in per-state-change accuracy across

timings than all other networks (H=39.48, p=6x108, £2=0.14; Table S5B). Therefore,
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networks with at least two layers allow more consistent target prediction accuracy across

event timings.

Transitions from monotonic to tuned responses in successive INdRNN layers

Human brain recordings show different responses to event timing that either: (1)
monotonically increase with event duration and frequency (following monotonic response
functions); (2) peak for a particular combination of event duration and period (following
tuned response functions); or (3) more ambiguously show characteristics of both response
functions (mixed response functions). Monotonic responses predominate in early visual areas
(Hendrikx et al., 2022; Stigliani et al., 2017; Zhou et al., 2018), while ambiguously and then
clearly tuned responses gradually emerge through the visual hierarchy (Hendrikx et al.,
2022). Do recurrent networks trained for timing prediction likewise show a transition from
monotonic to tuned responses?

For each network node we analyzed the per-event activation for each timing, averaged
across input sequences with the same duration and period but different phases. We fit the free
parameters of both monotonic and tuned response functions on one half of the input
sequences (Fig. 3, top) and used the complementary half (Fig. 3, second row) to evaluate the
resulting functions’ predictions (Fig. 3, bottom rows). This determined which response
function best captured each node’s response. Where tuned response functions predicted the
response better but the peak of the response function was outside the range of timings used,
these response functions had properties of both monotonic and tuned functions so were

categorized as mixed responses.
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Fig. 3: Responses and fit response functions for example nodes with diverse responses.
The top row shows the node’s response for each timing (colors) in the half of input sequences
used for response functions fitting. The second row shows the node’s responses in the
complementary half of input sequences used for response function evaluation. The bottom
rows show the fit monotonic and tuned response functions for each node, with the best
evaluated response function marked in green. The left, middle and right columns follow
monotonic, mixed and tuned nodes, respectively.

For all multi-layer networks, the proportion of monotonic responses differed significantly
between layers (Figs. 4A & S4; Table S6A). Post hoc comparisons (Tables S6B-C) generally
show significant steady decreases in the proportion of monotonic responses through the
networks’ successive layers. The proportion of mixed and tuned responses likewise differed

between layers (Table S6A). In contrast to the monotonic responses, these proportions

generally showed significant steady increases through each network’s successive layers.
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Fig. 4: Progressive transitions from monotonic to mixed and tuned responses across
network layers in trained INndRNNSs. (A) Proportions of nodes classified as monotonic,
mixed, or tuned in parameter-matched INdRNNs of 1, 2 and 5 layers (left) or layer-size-
matched INdRNNs of 3 and 5 layers (right). See Fig. S4A for other depths. (B) As for the
five-layer network in (A) for INndRNNs trained on shuffled data. (C) As for the five-layer
network in (A) for INndRNNSs before training. (D) As for the five-layer network in (A) for NNs
without recurrency. Format follows Fig. 2A.

Five-layer INdRNNSs trained on shuffled data showed similar transitions from
monotonic to mixed and tuned responses, though less clearly (Fig. 4B; Tables S6A & S6D-
E). However, five-layer INdRNNSs before training showed all types of responses and some
significant differences in the proportion of monotonic responses (Fig. 4C; Tables S6A &

S6F-G), but no clear increase or decrease over layers. In contrast to all trained INndRNNS, this

untrained network also showed (in all layers) the highest proportion of monotonic responses,
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fewer mixed responses and very few tuned responses. Five-layer neural networks without
recurrency showed no response to any timing in most nodes. Their few responsive nodes
again exhibited a higher proportion of monotonic responses in early layers (Fig. 4D; Table
S6A & S6H-I), but extremely few mixed responses and no tuned responses in any layer.
Therefore, tuned responses progressively emerged through the layers of trained
IndRNNSs, while monotonic responses progressively decreased. These progressions were
clearer when trained on predictable input sequences and absent before training or without
recurrency. No tuned responses (and very few mixed responses) were found without

recurrency.

Proportions of tuned responses depend on network complexity and between-layer integration.

Both parameter-matched and layer-size-matched IndRNNs showed a progressive emergence
of tuned responses and reduction of monotonic responses across network layers. Do
successive layers of deeper INdRNNs eventually allow more tuned and mixed responses to
emerge, or simply allow a more gradual transition to similar responses in their final layers?
Comparing the proportions of monotonic, mixed and tuned responses in the final layers of
parameter-matched and layer-size-matched INndRNNs with different depths separates effects
of depth and complexity: Parameter-matched networks are similarly complex regardless of
depth while layer-size-matched networks increase in complexity with depth.

In parameter-matched IndRNNS, the proportion of monotonic, mixed and tuned
responses in last layer of networks from two to five layers showed no significant differences
(Fig. 5A, Table S7A). Only the last (and only) layer of one-layer networks had significantly
more monotonic responses and fewer mixed responses than the last layer of all multi-layer

networks. For tuned responses, no differences between network depths reached significance.
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Conversely, in layer-size-matched IndRNNs from two to five layers, the proportions
of monotonic, mixed, and tuned nodes generally differed between the last layers for many
depths (Fig. 5B, Table S7B). The proportion of monotonic nodes decreased from two- to
five-layer networks, while the proportions of tuned nodes increased. The proportion of mixed
responses did not change from two- to five-layer networks. As in parameter-matched
networks, one-layer networks again showed more monotonic responses and fewer mixed and
tuned responses than multi-layer networks.

Therefore, the pattern of responses in the final layer reflects the network’s complexity
rather than the number of layers. One-layer networks allow more limited computations as
they lack between-layer integration across nodes. Multi-layer parameter-matched networks
always allow a similar set of computations and so similar final response properties. Only
more complex (not deeper) networks allow further computations. These differences in the
proportions of response types in each networks’ final layers mirror the differences in

maximum task accuracy seen in Figures 2B-C.
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Fig. 5: Decrease in the proportion of final-layer monotonic responses and increase in the
proportion of final-layer tuned responses follows network complexity in multi-layer
networks. (A) Parameter-matched IndRNNs from two to five layers do not significantly
differ in the proportions of monotonic, mixed or tuned nodes, while one-layer INndRNNs have
more monotonic and fewer mixed nodes than these multi-layer INdRNNSs. (B) In layer-size-
matched INdRNNSs, where network complexity increases with depth, more complex five-layer
networks show fewer monotonic nodes and more tuned nodes than simpler two-layer
networks. Format follows Fig. 2A.
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Monotonic parameters of INndRNNs follow similar progressions to the brain, reqgardless of

training

Next, we asked how parameters of the monotonic and tuned response functions differed
between network layers, and whether these differences resembled differences in response
function parameters between human brain areas. Here we used layer-sized-matched INndRNNs
because these showed at least some tuned nodes in each layer, and their five-layer versions to
reveal gradual progressions between layers more clearly. Nevertheless, other depths generally
showed similar patterns, although sometimes less clearly (Fig. S5). To investigate how the
progressions depended on training, we repeated these analyses in the same network
architecture before training and that trained on shuffled input sequences. We also repeated
this for networks without recurrent connections, but limited this to analysis of monotonic
response function parameters because these networks showed no tuned responses.

For the response functions of monotonic nodes, Kruskal-Wallis tests revealed
significant differences between layers in the exponents on duration (Fig. 6A) for INdRNNs
trained on repetitive events (H=74.79, p=2x107%, £2=0.11), and also INndRNNs before
training (H2=196.55, p=2x10*4, £2=0.07) and those trained on shuffled data (H(2=98.69,
p=2x10?° £270.13). Generally, this exponent decreases from layers one to two in all of these
INdRNNSs, then does not differ significantly from layers two to five (Tables S8A-C). The
network without recurrency also showed significant differences in this exponent between
network layers (H=22.76, p=0.0001, £2=0.05, Table S8D), but unlike INdRNNs showed an
increase over network layers. In the human brain, the exponent on duration of monotonic
response functions differed between visual field maps (H(g=52.29, p=2x10%, £2=0.10; Fig.

6B; Table S8E), generally decreasing from earlier to later maps as between INndRNN layers.
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Fig. 6: Monotonic parameter progressions in INdRNNS’ monotonic nodes resembled
those in the human brain regardless of training regimen. (A & C) The exponents on
duration (A) and period (C) decreased from the first layer to later layers in all five-layer
INdRNNSs, but not networks without recurrency. (B & D) These exponent similarly decreased
through the visual field map hierarchy. (E) The ratio between the amplitudes of monotonic
responses to duration and period also decrease from the first layer to later layers in all five-
layer INdRNNSs, but not networks without recurrency. (F) This ratio similarly decreased
through the visual field map hierarchy. In (E) and (F), the lines at 0 and o represent nodes
with responses only driven by period and duration, respectively. The width of corresponding
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lines and maximum width of the corresponding violin scale with the number of nodes in their
respective value range. The maximum width of all (whether of the line or the violin) are kept
constant. n gives number of included nodes in each network layers, or the number of
hemispheres per brain area. Brain data adapted from Hendrikx et al. (2022). Format follows
Fig. 2A.

We similarly found significant differences between layers in the exponent on period
(Fig. 6C) for IndRNN's trained on repetitive events (H#=152.83, p=5x10-2, £2=0.23), and
also INdRNNSs before training (H)=511.58, p=2x10"1%, £2=0.20) and those trained on
shuffled data (H=69.17, p=3x104, £2=0.09). Generally, this exponent decreases from
layers one to two in all of these INdRNNSs (Tables SBA-C), with a further decrease from
layers two to five in INdRNNS trained on repetitive events and those before training. Again,
the network without recurrency also showed significant differences in this exponent between
network layers (H4=9.64, p=0.047, £2=0.01, Table S8D), but unlike INndRNNs showed an
increase over network layers. Again, in the human brain, the exponent on period of
monotonic response functions differed between visual field maps (H9=122.94, p=4x1078,
¢2=0.25; Fig. 6D; Table S8E), generally decreasing from earlier to later maps as between
INdRNN layers. Exponents on both duration and period were bimodally distributed in all
networks (Table S9).

The ratio between the amplitudes of monotonic responses to duration and period also
differed between network layers (Fig. 6E) for INdRNNs trained on repetitive events
(H#)=189.32, p=7x10"°, £2=0.29), those before training (H)=530.04, p=2x10113, £2=0.20)
and those trained on shuffled data (H)=36.85, p=2x107, £2=0.04). In all these networks, this
ratio switches from strongly favoring the duration component (high ratio) in the first layer to
a more equal contribution of the two components (ratio around one) in later layers (Tables
S8A-C). Again, the network without recurrency also showed significant differences in this

exponent between network layers (H@)=23.28, p=0.0001, £2=0.05, Table S8D), but unlike
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INdRNNs showed ratios favoring the period component (below one) in the layers one to four
to favoring the duration component (above one) in the last layer. Again, in the human brain
this ratio differed between visual field maps (H=90.08, p=6x101?, £2=0.18; Table S8E; Fig.
6F) generally decreasing from earlier to later maps as between IndRNN layers, though
including less extreme ratios.

Therefore, all parameters of monotonic response functions progress through the layers
on IndRNNs similarly to the progressions through the brain’s visual field maps regardless of
training. Networks without recurrency lack these progressions. This suggests that recurrency,
not training, allows the hierarchical transformations of monotonic responses seen through the

brain’s visual hierarchy.

Tuned parameter follow similar progressions to the brain only in IndRNNSs trained on

repeated events

For the nodes fit best by the tuned model, we only analyzed the parameters of the tuned
nodes. Here we excluded mixed nodes because parameters including peak responses outside
the used timing range cannot be determined accurately. Here we used the brain’s timing maps
(Harvey et al., 2020) (rather than visual field maps) for comparison as these each contain
neural populations with a full range of timing preferences. These timing maps show
progressive changes in several properties of their tuned neural populations’ response
functions in a hierarchy from posterior and inferior to anterior and superior timing maps.
The brain’s timing maps significantly differ in their average preferred durations
(H©=28.41, p=0.0008, £2=0.13; Fig. 7B) and periods (H(=30.46, p=0.0004, £?=0.14; Fig.
7D), as do the tuned nodes in different layers of INndRNNSs trained on repetitive sequences
(Preferred duration (Fig. 7A): H@)=19.79, p=6x10"*, £2=0.05. Preferred period (Fig. 7C):

H#=32.96, p=1x10, £2=0.08). Preferred duration and period lack clear and systematic
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progressions from early to later brain areas, though the intermediate timing map TLS has
slightly lower preferred durations and periods than the superior timing map (TPCS) (Table
S8F). To an extent, tuned nodes of INARNNSs trained on repetitive sequences show similar
differences, with intermediate layers (two and three) having significantly lower preferred
durations and periods than later layers (Table S8A). Before training, the network nodes in
each layer also showed differences in preferred duration (H=28.91, p=8x10, £2=0.34; Fig
7A) and period (H=20.23, p=0.0005, £2=0.22; Fig 7C). However, unlike in the trained
INdRNNSs and the brain, both preferences increase starting from the first layer (Table S8B).
After training on shuffled data, there are no significant differences in duration (H)=1.81,
p=0.771, £2=-0.01; Fig 7A) or period (H=2.01, p=0.735, £2=-0.01; Fig 7C) preferences

between layers.
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Fig. 7: Tuned parameter progressions between layers of INndRNNSs trained on repetitive
input sequences generally follow progressions through the brain’s visual timing maps
and differ between training regimens. (A-D) Preferred duration and period in INndRNNs
and the brain lack clear and systematic progressions from early to later timing maps. (E-F)
The response function’s major extent decreased from early to later network layers (E),
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regardless of training regimen, and also from early to later timing maps (F). (G-H) The
response function’s minor extent decreased only in IndRNNs before training. (1-J) The ratio
of the response function extents (the roundness of the response function) increased similarly
to the brain’s timing map hierarchy only through the layers of INdRNNs trained on repetitive
input sequences. (K-L) The angulation of the response function progressed similarly to the
brain’s timing map hierarchy only through the layers of INndRNNSs trained on repetitive input
sequences. (M-N) The exponent on event period systematically decreased through the brain’s
timing map hierarchy, but became increasingly bimodal through the layers only in INndRNNs
trained on repetitive or shuffled input sequences. Brain data adapted from Harvey et al.
(2020). Format follows Fig. 2A, except in (K) and (L) where red and white circles are
circular means and median, and white lines show the 95% confidence interval of the circular
median.

The extents of the response functions along their major axes differed considerably
between IndRNN layers (H2=39.62, p=5x108, £2=0.10; Fig.7E), decreasing from lower to
higher network layers (Table S8A). However, the functions’ extent along their minor axes
showed no change between layers (H)=1.63, p=0.804, £2=-0.01; Fig. 7G). As the major
extent differed while the minor extent was similar across layers, their ratio (the roundness of
the response function) differed between layers (H=32.18, p=2x10, £2=0.08; Table S8A,
Fig. 71). This ratio increased (towards one) over layers, giving more rounded response
functions in higher layers. The brain showed significance differences between timing maps in
the response function’s major extent (H)=47.70, p=3x107, £2=0.25; Fig. 7F), minor extent
(H©=21.08, p=0.012, £2=0.08; Fig. 7H) and their ratio (H=60.92, p=9x101°, £2=0.34; Fig.
7J). As between neural network layers, these timing maps showed a hierarchical decrease in
the response functions’ major extents, N0 systematic change in the minor extents and an
increasingly rounded response function (Table S8F). Before training, the IndRNN showed
significant differences between layers in the response function’s major extent (H4)=26.41,
p=3x10?, £2=0.30; Fig. 7E), minor extent (H=15.86, p=0.003, £2=0.16; Fig. 7G) and their
ratio (H#=22.87, p=0.0001, £2=0.25; Fig. 71). Again, the major extent decreased through the
network layers, though less clearly than in trained IndRNNs and the brain’s timing maps.

However, unlike in trained IndRNNs and the brain’s timing maps, the minor extent also
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decreased and the ratio showed no systematic progression through the network layers (Table
S8B). After training on shuffled data only the major extent differed significantly between
layers (H@)=14.53, p=0.006, £2=0.05; Fig. 7E), again decreasing through the network layers,
although less clearly than in trained IndRNNs and the brain’s timing maps. However, unlike
in other IndRNNs and the brain’s timing maps, the minor extent (H)=1.51, p=0.825, &?=-
0.01; Fig. 7G) and ratio (H=5.06, p=0.281, £2=0.00; Fig 71) showed no significant
differences between layers.

In higher INdRNN layers, the response functions’ major axis was increasingly
angulated towards the event duration dimension, though post hoc analyses of the difference
between layers did not reach significance (P=10.42, p=0.034; Fig. 7K; Table S8A). Again,
this progression resembled changes through the brain’s timing map hierarchy (P=37.00,
p=3x10", Fig. 7L)(Table S8F). The nodes’ response function angulations did not
significantly differ between layers in INdRNNSs before training (P=1.62, p=0.806; Fig. 7K) or
those trained on shuffled data (P=0.10, p=0.999; Fig. 7K).

The exponent on event period (or frequency) captures a reduction in the response to
repeated events in the input sequence. The humans brain’s hierarchy of visual timing maps
shows a clear and highly significant decrease in this exponent (H(=93.84, p=3x101,
¢2=0.55; Fig. 7N; Table S8F). Conversely, no IndRNNs show significant differences between
exponents in different layers (Fig. 7M), whether trained in repetitive input sequences
(H#=6.02, p=0.198, £2=0.01), shuffled input sequences (H)=4.50, p=0.342, £2=0.00), or
before training (H(4=8.75, p=0.068, £2=0.07). Instead, in INdRNNs show increasingly
bimodal distributions of exponents in higher layers when trained on repetitive input
sequences (Table S9). As such, the compressive exponents of individual tuned INndRNN
nodes do not follow the clear progressions of period exponents seen in the response functions

of large grouped neural populations in the brain.
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Discussion

Responses to visual event timing in the human brain gradually transition from monotonic to
tuned responses through the visual processing hierarchy (Hendrikx et al., 2022). Through the
brain’s visual field map hierarchy, monotonic responses gradually transition from linearly to
compressively increasing in amplitude with duration and frequency, and from depending
primarily on event duration to being similarly dependent on duration and frequency. Once
tuned responses emerge, the preferred timing, extent, shape, and orientation of their response
functions progressively change through a hierarchy of timing-responsive brain areas (Harvey
et al., 2020; Hendrikx et al., 2022). Here we asked whether these systematic changes between
brain areas could result from the computations inherent in hierarchical recurrent neural
networks. To assess which neural architectures produce responses tuned to event timing, we
built neural networks of different depths and trained these to predict upcoming time steps in
input sequences containing repetitive events. Given this training, recurrent networks of all
depths performed the task accurately, and recurrent networks with multiple layers reached
higher accuracies than a one-layer network. Untrained networks, networks trained on shuffled
input sequences and networks without recurrent connection could not accurately predict the
timing of repetitive events. Trained recurrent networks showed a gradual transition from
monotonic to increasingly tuned and mixed responses across their successive layers, with
networks trained on shuffled input sequences showing similar transitions but less clearly.
Both training and recurrency were necessary to produce this emergence of tuned responses.
Regardless of training, recurrent networks showed monotonic responses whose transitions
through network layers resembled transitions of monotonic responses through the brain’s
visual field map hierarchy. However, recurrent networks showed tuned response functions
whose transitions through network layers resembled transitions of tuned responses through

the brain’s visual timing map hierarchy only after training on predictable repetitive input
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sequences. These results suggest that the emergence of visual timing-tuned responses and the
subsequent hierarchical transformations of these responses result from recurrent neural
architecture and predictive processing of sensory event timing.

Although we tested networks of up to five layers, networks with at least two layers
did not significantly differ in their maximum prediction accuracy if the networks’ complexity
(number of free parameters) was matched. However, one-layer networks showed significantly
lower accuracy than all these multi-layer networks. Likewise, the proportions of tuned,
monotonic and mixed-responses nodes in the final layer of networks from two to five layers
did not differ, while one-layer networks showed fewer tuned and mixed response nodes and
more monotonic nodes in their (final and only) layer. Therefore, only two network layers
seem to be needed to predict upcoming time steps accurately and transition from monotonic
to tuned responses. Five-layer networks primarily demonstrate that this transition from
monotonic to tuned responses emerges gradually between network layers, as it does in the
visual processing hierarchy (Hendrikx et al., 2022).

To separate effects of successive network operations between layers from effects of
network complexity, we investigated the response properties of both parameter-matched (i.e.
complexity-matched) networks and layer-size-matched networks, in which network
complexity increases with network depth. Deeper parameter-matched networks had very few
nodes in each layer, so greater variability between repetitions of the training process. Layer-
size-matched networks avoided this limitation and so allowed greater statistical power to
investigate differences in response properties between the layers of deeper networks. In layer-
size-matched networks, the proportion of tuned nodes in the final layer increased with
network depth. Likewise, the proportion of monotonic nodes in the final layer decreased with
network depth and complexity, while the proportion of mixed response nodes did not differ

between multi-layer networks. As these differences between final layers were absent in
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parameter-matched networks, we attribute them to differences in complexity (i.e. the number
of free parameters) between these networks. The human brain has far greater complexity than
the networks we tested here. Our findings suggest that this increased complexity would allow
emergence of tuned nodes on a larger scale in the brain, where tuned responses dominate
higher-level responses to timing (Harvey et al., 2020; Hendrikx et al., 2022).

These progressive transitions from monotonic to tuned responses were absent in
networks with the same architecture before training and networks without recurrent
connections, suggesting that training and recurrent connections underlie the emergence of
timing-tuned responses. Networks before training showed some tuned and mixed-response
nodes, but far fewer than after training. Networks trained on shuffled input sequences, where
upcoming time steps could not be predicted based on temporal structure but only based on the
proportions of on and off states of the sequence input so far, showed transitions from
monotonic to tuned responses though less clearly than networks with the intact training
regimen.

Both monotonic and tuned responses have previously been shown in biological
neurons and neural networks during timing tasks (Bi & Zhou, 2020; Merchant et al., 2011,
2013; Mita et al., 2009). Monotonic responses alone may be enough to allow animals to make
predictions and behavior (Bi & Zhou, 2020). However, tuned responses distribute sensory
processing across diversely responding nodes. This increases neural networks’ sensory
processing and memory capacity compared to monotonically increasing responses (Crespi,
1999; Palm, 1984) which hold similar information in each node. In line with these findings,
we see that more complex networks are more accurate and show more tuned and mixed-
response nodes. Together with our fMRI data, this parallel increase in tuning and accuracy in
more complex networks also suggests tuned responses may have an important role in linking

timing perception and prediction for motor planning, with the sensory and motor stages being
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dominated by monotonic responses (Hendrikx et al., 2022; Merchant et al., 2011, 2013).
Nevertheless, we tested for correlations between the proportion of tuned nodes in a training
repetition and the accuracy of the resulting network and found no clear relationship. We also
tested whether lesioning the (relatively few) tuned nodes in the final layer decreased accuracy
more than lesioning other nodes and found no difference. So tuned nodes alone do not seem
to specifically underlie accurate task performance. Instead, it may be that interactions
between monotonic nodes (at the input and prediction-generative stages) and tuned nodes (at
intermediate stages) are required for accurate performance, particularly considering that one-
layer networks would not allow such interactions. Alternatively, the large population of
mixed-response nodes may support accurate performance even in the absence of strictly
tuned nodes.

We see differences between network layers in the parameters of timing-tuned nodes’
response function that often parallel the differences between timing maps in the brain’s visual
time processing hierarchy (Harvey et al., 2020). While the direction of changes between
network layers is generally consistent with the direction of changes through the brain’s
hierarchy, there are clear differences in the magnitude of the parameters involved. For
example, the response function’s extent is several times larger and its angulation is closer to
the period dimension than in fMRI data. In both cases, these parameters change to more
brain-like magnitudes in higher levels of the network, so it may be that the magnitudes seen
in the brain simply reflect the fact that the brain is a far deeper and more complex network
than we model here.

The compressive exponents on event period showed very clear and progressive
decreases through the brain’s hierarchy of visual field maps and timing maps for monotonic
and tuned response functions respectively. This is much less clear in our network’s

monotonic nodes, where instead we see bimodal distributions dominated by high exponents
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in the first layer and low exponents in later layers. Likewise for the tuned nodes, we see
transitions from high exponents to increasingly bimodal distributions of high and low
exponents. Our fMRI data group the responses of the many neurons in each voxel, and then
the many voxels in each map, into a single measurement. This is likely to obscure any
bimodal distribution and bring the resulting averaged exponent down as the balance of any
bimodal distribution shifts from high to low exponents. So, at the level accessible in fMRI
data, such a transition from high exponents to bimodal high and low exponents may simply
show the decreasing exponent through the hierarchy that we saw.

Conceptually, responses with high exponents (near one) describe independent
responses to each event, while low exponents (near zero) describe a single response to the
timing of a group of events regardless of their frequency. The top layer of our network was
used to generate a timing prediction, so needed specific responses to each event and a high
exponent. There was no such task in our fMRI experiments, so we would expect no such
responses. The part of the distribution with exponents near zero, on the other hand, may give
an abstract timing representation in both cases, which could be used to both understand the
events’ timing and to generate input sequence predictions if needed.

In this study we focused on very simple networks to help reveal which neural
processes are necessary to yield the emergence of timing-tuned neurons and the transitions of
their response properties seen in the human brain’s visual timing map hierarchy. As such, we
did not aim to mimic the complex properties of human visual processing in detail. In the
brain, visual processing is fundamentally spatial, while here we used an input sequence with
no spatial dimension. Embedding recurrent processing in a spatial image representation may
reveal further mechanisms of timing-selective responses. For example, our fMRI data showed
that early visual monotonic responses are closely tied to the location of the visual input, while

tuned components of later responses are location-invariant. Furthermore, embedding
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recurrent processing in a spatial image representation would allow more biologically
plausible neural architectures. The activity in recurrent units of our INdRNN model (Li et al.,
2018) is affected by their own activity in previous time step, but biological neurons don’t
synapse with themselves. Likewise, in a more common simple RNN (Elman, 1990; Jordan,
1997) the activity in each node is affected by the activity of all nodes in the same layer
(including themselves) at the previous time step (akin to a fully connected neural network),
but biological neurons also don’t synapse with all neurons in the same brain areas. If
embedded in a spatial representation, the recurrent connections could be limit to nearby nodes
within the network layer excluding themselves (akin to a convolutional neural network), a
closer approximation of biological neural processing. Furthermore, here we model time in
discrete steps. However, time progresses continuously, and biological neurons respond
(spike) at specific moments in this timing continuum. To investigate responses to event
timing in a biologically plausible way, spiking neural networks with spike timing dependent
plasticity would reveal further details of the underlying mechanisms. Both of these properties

are possible in neural network models and provide important directions for future research.

Conclusion

Artificial neural networks allow us to investigate the mechanisms underlying neural
responses seen in the brain. Their unique ability to test how the network’s performance
properties of these responses are affected by training, different training regimens and
different architectures reveals which aspects of neural processing are required to produce
these responses. In this case, this approach demonstrates that fundamental neural processes of
recurrency and training to predict upcoming inputs are sufficient to explain the emergence of
timing-tuned neural responses and the transitions in their response properties seen in the

human brain.
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Methods

All used input sequences, scripts, and networks will be made available at publication.

Input sequences

The input sequence followed the event timings used in (Harvey et al., 2020; Hendrikx et al.,
2022 van Ackooij et al., 2022), adjusted to simplify training of our network. In Harvey et al.
(2020) and Hendrikx et al. (2022) events consisted of black dots appearing and disappearing in
random places on a gray background.. In both cases we used repetitive events with durations
and periods varying from 50 to 1000 ms. We described fMRI voxels with timing-tuned
response profiles and timing preferences within this range, together with timing preferences
outside of this range and responses that monotonically varied with event timing.

Our network’s input sequence here simply describes whether the input state was on
(value 1, equivalent to a dot being shown) or off (value 0, equivalent to no dot being shown)
during each time step (Fig. 1, top row). Each input sequence consisted of 80 time steps. We
describe the consecutive time that the input was on as the “on” duration and the consecutive
time that the input was off as the “off” duration. We describe the time from the start of one
repeating event to the start of the next (i.e. the sum of the time steps in both the on and off
states) as the event period (i.e., 1/frequency). In our previous fMRI experiments, the shortest
duration or period was 50 ms, and their smallest increment was also 50 ms. Therefore, we see
one time step in our input sequence here as equivalent to 50 ms in our fMRI stimuli, though
this does not affect the interpretation of our results. We avoided event timings where event
duration and period were equal, as this results in all input sequence being “on” regardless of
the event period. Situations where duration is longer than period are not possible, as the

duration is part of the period. This resulted in 190 combinations of duration and period, with
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durations ranging between 1 and 19 time steps and periods ranging between 2 and 20 time
steps.

This range of periods results in the 80-time step input sequence containing between 4
events (for a period of 20 time steps) and 40 events (for a period of 2 time steps). This could
potentially introduce learning biases in favor of short events, as these are input more often into
the network. To avoid this, we included all possible phases for each period, so that the time
step of the first event could happen anywhere in the period. The number of possible phases
corresponded to the period of the repetitive event, so overall we input a similar number of

events with each timing into the network. This resulted in 2660 input sequences in total.

Shuffled input sequences

In input sequences with a strong imbalance between on and off states, like input sequences
with a long “on” duration, upcoming input states can be predicted accurately even by a network
with no timing representation. We therefore also trained our networks on input sequences
without periodic events: the input sequences previously described with their time steps
shuffled. These sequences keep the same imbalance between on and off states, but with no

predictable events and so no specific event duration or period.

Independent recurrent neural networks

For a neural network to predict upcoming repetitive events, it requires information about
previous time steps. Recurrent neural networks (RNNs) were specifically designed to
combine information about current network inputs with information about the current and
previous network state. At time step t, a RNN node receives information about the current

network input (in layer 1) or network state (in higher layers) through feedforward
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connections, and information about the network state in the previous time step (t-1) through
recurrent connections.

In a simple recurrent network (Fig. 8, right)(Elman, 1990; Jordan, 1997), each node
has recurrent connections to itself and all other nodes in its layer. The activations of the nodes

of a hidden layer can thus be described as:

ht=o(WinxXt + binh + Whhxh.1 + bhn) (Eq. 1)

where sigma is the activation function of the nodes in this layer; Win is the weight matrix
between the input nodes and the hidden nodes, which is multiplied by activations of these
inputs (xt) using matrix multiplication; Whn is a matrix with recurrent weights between the
hidden nodes in each layer, which is multiplied by the previous activations of these nodes (h:
1) matrix multiplication; and binh and bnn are the input and recurrent biases, respectively.

2y 2%
%) %)
oy 2y

Fig. 8: An schematic overview of neural network architectures: a neural network
without recurrent connections (left), an INndRNN (middle), and a simple RNN (right). All
examples have two layers with three nodes (represented by squares). Gray arrows indicate
between-layer connections and black arrows indicate recurrent connections.

The dense recurrent connections make the nodes’ responses in a layer dependent on
each other, making it hard to assess responses in individual nodes within a single layer.
Furthermore, the simple RNN architecture has more complex within-layer connections than a
biological system does. To illustrate, in the visual processing hierarchy, biological neurons’
activity depend on: 1) excitatory and inhibitory neurons that input into this neuron from

previous visual field maps, which can be modeled using between-layer connections; 2) its

own polarization that slowly decays unless it is depolarized through an action potential,
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which can be modeled using recurrency between a node and itself; 3) lateral connections of
neurons of the identical receptive field map (which grow over the hierarchy), which can be
modeled as lateral non-recurrent connections between nodes within one layer; and 4) top-
down connections with inputs from brain areas later in the hierarchy. The third type of
connections are significant in spatial location processing, however since we did not vary the
spatial location of visual inputs they can be disregarded in our setup. The fourth type of
connections were overly complex for the current setup: we will not model influence of
attention or other higher-level processes in our networks. A network simulating a biological
neural system should then allow complex interactions between layers, but limited interactions
within layers.

Therefore, for our predictive task we used a specific version of the RNN: the
independent RNN (Fig. 8, middle)(Li et al., 2018). In the IndRNN, each node only has a
recurrent connection with its own state at time step t-1. This makes the differences in responses
of the nodes in different layers more transparent. Each node is also (fully) connected to all
nodes in the previous layer (at time step t). The activations of the nodes of a hidden layers of

the INdRNN we used can be described as follows (Eq. 2):

hi=o(WinxXt + binh + Whh * ht1 + bhn) (Eg. 2)
Here, whn is a vector with recurrent weights from the hidden nodes in the layer back to

themselves, that is multiplied by the previous activations of these nodes (ht.1) using the
Hadamard product. We used a sigma activation function for the hidden nodes.

Parameters of the INndRNN

In the human brain, tuned responses to event timing gradually emerge through the visual
processing hierarchy (Hendrikx et al., 2022). We therefore hypothesized that tuning in
INdRNN layers may also emerge gradually, requiring multiple layers for timing tuned

responses to develop. Therefore, we built INdRNNs with depths of one to five layers. To
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allow comparisons between networks of different depths, we focus on a set of networks with
similar numbers of free parameters (i.e., the total number of weights and biases) for all
network depths. We refer to these as the parameter-matched networks. Here, the one-layer
INdRNN had 77 nodes per layer, the two-layer INdRNN had 16 nodes per layer, the three-
layer INdRNN had 12 nodes per layer, the four-layer INdRNN had 9 nodes per layer, and the
five-layer INdRNN had 8 nodes per layer.

Deeper parameter-matched networks had few nodes in each layer, making it hard to
compare the distribution of response properties over the nodes in their layers. To allow such
comparisons, we also built a set of networks with 16 nodes per layer regardless of network
depth. We refer to these as layer-size-matched networks.

We used a ReLU activation function on the hidden nodes. We used a batch size of 50
input sequences. We initialized the weights of the network using He initialization (He et al.,
2015)(He et al., 2015) and the biases at 0. During training we applied Adam optimization
with a weight decay of 108, The initial learning rate was set to 0.002. We used layer
normalization for each hidden layer (Ba et al., 2016). We did not apply dropout, since we
wanted to reduce the amount of necessary nodes per layer to a minimum and we do not
expect the networks to generalize to other tasks.

The target output is binary (“on” or “off”, i.e., 1 or 0), but the network nodes’
activations are continuous and 0 or positive (due to the ReLU activations). In order to
transform the network’s output to a value between 0 and 1 we applied a sigmoidal activation
function to the output node. Because the target output is binary, we applied a Binary Cross
Entropy (BCE) loss function for back propagation. The BCE per batch was the mean loss

over all time steps of all 50 input sequences.

Neural networks without recurrency
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To investigate whether recurrency is necessary for predicting event timing, we also built a
five-layer network without recurrency (Fig. 8A). As this network cannot access network
states from previous time steps, it should be unable to track the timing of its input sequence.
We therefore predict such a network will be unable to develop tuned responses to the timing
of this input sequence. We kept the parameters and settings for this network as similar as
possible to the INARNNSs. Its number of free parameters matched that of the parameter-

matched networks, resulting in 9 nodes per layer.

Training

We trained each network for 10000 epochs using a train-test split of 0.8-0.2. Note that the
same timings can be in the train and test set, but the same phases of this timing will never be
present in both. This means that networks can be familiar with a specific timing, but their
performance on predicting that timing will not hinge on their memory of an exact input
sequence.

Our fMRI experiments (Harvey et al., 2020; Hendrikx et al., 2022; van Ackooij et al.,
2022), typically vary the timing of stimuli gradually, to reduce the influence of possible
adaptation effects. For neural network models, such carry-over effect are easily avoided by
resetting the network nodes’ hidden states to 0 before presentation of every new input
sequence. We therefore presented input sequences with different timings and phases in a
random order.

Due to their random initialization weights, networks with the same architecture vary
in training loss, task performance, and node activations. To reliably determine these
properties for a particular network architecture, we trained and tested each architecture 50
times with different random initialization weights. We saved these initialization weights and

used these same initial weights when training on shuffled input sequences (we used the
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parameter-matched five-layer network for shuffled sequences). To minimize variability and
facilitate comparisons between networks, we trained each network with the same train-test
split. During training, each network was presented with a different randomized order of input

sequences that was shuffled between epochs.

Evaluation of timing prediction performance

Training loss

For each network we saved its training loss over epochs. We compared the loss on the last
epoch of the parameter-matched INdRNNSs and that of the layer-size-matched IndRNNs
between different network depths using a Kruskal Wallis (scipy.stats; Kruskal & Wallis,
1952) followed by pairwise Dunn’s tests for post hoc comparisons (scipy.stats; Dunn, 1964),
with a Holm-Sidak multiple comparisons correction (Sidak, 1967). We used Wilcoxon
signed-rank tests (scipy.stats; Wilcoxon, 1945) to compare the loss in the last epoch of the
five-layer INdRNN to its initializations trained on shuffled input sequences. We used Mann
Whitney U tests (scipy.stats; Mann & Whitney, 1947) to compare the loss in the last epoch of
the five-layer INdRNN to the five-layer NN without recurrency. We also used Mann Whitney

U tests to compare the loss of the parameter-matched and layer-size matched IndRNNSs.

Accuracy of timing prediction

We assessed each network’s accuracy at predicting the upcoming time step of the input
sequence on the test split of the input sequences. Because the input sequences could have
only two states (on and off), here we binarized the networks’ predictions. Our accuracy score
per time step is then 1 if this prediction is correct and O if it is incorrect. Here we noted that
prediction is relatively trivial when the input sequence’s state does not change between time

steps, but more difficult when the inputs in the current and upcoming time step differ. We
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therefore assessed accuracy in two ways. First, per-event accuracy quantifies the average
accuracy over the time steps encompassing an entire event, most of which will be relatively
trivial in longer events where most of the time steps are unchanged from the previous time
steps. Second, per-state-change accuracy quantifies the average accuracy only at the time
steps where the input sequence changes state, which then always compares accuracy on two
similarly difficult time steps regardless of the event’s timing.

For both accuracy measures, we only assessed accuracy during whole events where
the network could theoretically predict the next time step in the input sequence. At the first
time step (e.g. time step 1 in Fig. 1), the network has no information about the input
sequence’s timing. Time steps where the input changes state reveal the temporal structure of
the event. The first state change (e.g., time step 8 in Fig. 1) does not give complete
information about timing: it only reveals a lower bound for the length of the initial on or off
state. The second state change (e.g., time step 17 in Fig. 1) unambiguously reveals the length
of the second on or off state, but still does not reveal the length of the other state. The third
state change (e.g., time step 28 in Fig. 1) reveals the length of the initial state. Only at this
time step has the network had one whole event input, and so has enough information to make
accurate predictions in all further time steps. So, from this third state change on, we can
assess the network’s accuracy.

We only assess the accuracy of predictions of whole events. We do this because some
parts of the event may be easier to predict than others, which may in turn bias the calculated
accuracy score. We define the prediction of whole events as predictions encompassing an
entire period, with the full set of the event’s consecutive “on” times steps followed by the full
set of its consecutive “off” time steps, or vice versa. The first predicted event for which we
assess the accuracy therefore starts at the state change in the predicted input sequence that

follows the third state change of the input sequence (e.g., time step 36 in Fig. 1). From this
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predicted event onwards, we assess all following predicted events that still encompass the
entire period (e.g., last evaluated time step is time step 75 in Fig. 1).

For each repetition we computed the mean accuracy over all input sequences. We
compared per-event and per-state-change accuracy (separately) between networks of different
depths using a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis, 1952) followed by post hoc
pairwise Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Sidak correction (Sidak, 1967).
For this and all other Kruskal-Wallis tests we computed effect size 2 as (H-statistic — amount
groups + 1) / (total amount datapoints — 1). To assess differences in maximum performance
of the parameter-matched networks, we performed a similar comparison for only the best 25
repetitions of each network depth.

We compared the variance in accuracy over network repetitions between layers
separately for the parameter-matched and layer-size-matched networks using a Brown-
Forsythe test (scipy.stats.levene; Brown & Forsythe, 1974) followed by posthoc pairwise
Brown-Forsythe tests, corrected for multiple comparisons using a Holm-Sidak correction
(statsmodels.stats; Sidak, 1967).

We compared the accuracies of the five-layer INdRNN to the same network untrained
initializations and those of the five-layer INdRNN to the same network initializations trained
on shuffled input sequences using (paired) Wilcoxon signed-rank tests (scipy.stats; Wilcoxon,
1945). We compared the accuracies of the five-layer INdRNN to the five-layer NN and those
of the five-layer INdRNN with 8 nodes per layer to the five-layer INdRNN with 16 nodes per

layer using a Mann Whitney U test (independent) (scipy.stats; Mann & Whitney, 1947).

Stability of accuracy across timings

To assess whether each event timing elicits a similar accuracy pattern or whether there are

systematic differences in accuracy between event timings, we computed average per-event
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and per-state-change accuracies for each timing present in the test set. We compared the
variance of these average accuracies (i.e. how much accuracy varies with timing) between
network depths, using a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis, 1952) followed
by post hoc pairwise Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Sidak correction
(Sidék, 1967). We again did a similar comparison for only the best 25 repetitions of each

network depth.

Parameterizing node response functions

To parameterize the response functions of the nodes, we computed a per-event response for
each timing. We used the same method of selecting the set of time steps as we used for
computing the per-event accuracies, selecting only whole, predictable events. For each node
we summed the activity across these time steps and divided this by the number of events
during these time steps (giving the summed response in the average whole, predictable
event). We fit monotonic and tuned response functions to these average per-event responses
from all event timings. The response functions we used were the best-fitting response
functions in previous studies of the human brain’s sensory event timing-selective responses
(Harvey et al., 2020; Hendrikx et al., 2022; van Ackooij et al., 2022).

Here we started with all possible input sequences (from both the training and the test
sets used during training). We then split these into two halves, each containing every timing,
but with differently shifted phases in each half. We fit each response function’s free
parameters on one half of the data and evaluated the resulting function’s fit on the
complementary half (using both halves for fitting and both for evaluation).

We fit both functions to each node’s activation using scipy’s curve_fit in Python.
Initially, each free parameter of the response function was randomly set within specified

bounds (Table S11). These parameter values were optimized to minimize the sum of squared
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residual to the measured activations. This was done with an ftol value (indicating the
expected change in the cost function while improving the parameters) of 10 where X=4 for
the first iteration. X was increased by 1 on each iteration until X=14 or no solution could be
found for larger values of X. If no solution could be found in the first iteration, this was
repeated with a new random value of each free parameter until a solution was found. We used
the resulting parameter values to compute the cross-validated variance explained (VE) of the
resulting function on the complementary half of the data: the proportion of variance in
complementary half of node response that was captured by the resulting response function.
In order for ftol to have a similar effect in all nodes, we normalized each node’s
response before (re)fitting the response functions. Nodes with the same per-event response
for each timing were disregarded in the fitting process, as these responses have no variance

for the response function fits to explain.

Monotonic response functions

Monotonic response functions have previously been demonstrated to capture effects of event
timing on fMRI responses in early visual areas (Hendrikx et al., 2022). Following these
results, the monotonic response function we used here has two independent components that
scale with the duration of the “on” state of the stimulus sequence and the frequency of event
onsets (Stigliani et al., 2017) i.e. 1/period, respectively. These two components each included
a free parameters allowing a compressive exponential nonlinearity in the relationship
between response amplitude and event duration or frequency (Zhou et al., 2018).

Note that to the network, events being “on” or “off” merely describes a value of the
binary input. Therefore, responses could monotonically increase with either the event’s “on”
or “off” duration. We therefore fit response functions that increased with either the “on” or

“off” duration (as well as increasing with frequency) and chose whichever best predicted the
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responses under cross-validation. For consistency with the tuned response functions, we
describe the responses to each event as a function of its period (i.e. 1/frequency). So, our

monotonic response functions can be expressed as:

Period

; : expDuration
Amphtude X BDuration X Duration €*P + BPeriod X W (Eq 3)

Where Duration can represent the event’s “on” or “off” duration. Here, expDuration and
expPeriod are the compressive exponent on the chosen duration and period respectively, in
the range 0—1. Bpuration @Nd Bperiog Capture the relative amplitudes of the chosen duration
and period components, respectively.

The responses of the nodes in a network cannot be negative, as we are applying
rectified linear activation functions. Therefore, for consistency with previous work, we did

not allow the betas to become negative (though very similar results were found when we

allowed this: Fig. S6 & Table S11).

Tuned response functions

Tuned response functions have previously been demonstrated to capture effects of event
timing on fMRI responses in association cortices (Harvey et al., 2020; Hendrikx et al., 2022;
Protopapa et al., 2019). Following these results, the tuned response function we used here is
described by a two-dimensional anisotropic Gaussian function of the duration of each event’s
“on” state and its period. The function describes the response amplitudes to each event
separately. However, when assessing events over the entire input sequence, response
amplitudes could also increase with event frequency. Because response amplitudes to each
event in the input sequence may also be affected by their frequency (regardless of the
parameters of the Gaussian function), we scaled the per-event response by a compressive

exponent on frequency (Harvey et al., 2020).
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Again, a node’s activations could vary as a Gaussian function of either the event’s
“on” or “off” duration. We therefore fit response functions that depended on either “on” or
“off” duration (as well as period) and chose whichever best predicted the activations under

cross-validation. So, our tuned response functions can be expressed as:

X = (Duration — Durationy,er) X cos (8) — (Period — Periodef) X sin (8)  (Eq. 4)

Y = (Duration — Durationy,ef) X sin (8) + (Period — Periodyer) X cos (8)  (Eq. 5)

X \? ( Y 2)
—-0.5% + .
Amplitude e <(ami“> amaj> x —reriod (Eq. 6)

PeriodéxpPeriod

b (13

Where Duration could represent the event’s “on” or “off” duration. The six free parameters of
the response function are: the preferred duration (Durationpref) and the preferred period
(Periodpref) around which the Gaussian function’s mean is centered; the standard deviations
along its major and minor axes (omsj and omin, in the range 0-10); the angulation of its major
axis (6); and the compressive exponent on the period to which the response was scaled
(expPeriod) to account for global effects of event frequency.

Again, we do not allow the proportionality between the node activation and the response
function (Eq. 6) to become negative (though very similar results were found when we

allowed this: Fig. S6 & Table S11).

Classification of response function types

After fitting, we classified each node according to the response function with the highest
cross-validated VE. For nodes fit best by the tuned response functions, nodes where the fit
response function’s standard deviation along both axes reached their maximal allowed values
do not show clear evidence of tuned responses as they closely resemble responses with no

variance. We therefore did not classify these nodes into either response function category.
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Furthermore, nodes where the cross-validated VE of their best fitting response
function was very low did not show clear evidence of either type of response function.
Following previous fMRI studies (Hendrikx et al., 2022), we used a VE threshold of 0.2,
below which we did not classify nodes into either response function category. A higher
threshold of 0.8 produced very similar results (Fig. S7 & Table S12).

For nodes best fit by the tuned response function, we classified those with particular
combinations of tuned function parameters into a third category: mixed response function.
This category was again inspired by fMRI results where many neural populations show
characteristics of both monotonic and tuned response functions (Hendrikx et al., 2022). This
mixed response function category contained nodes where the peak of the tuned response
function (determined with scipy’s minimize) was outside the set of event timings that the
network was trained to predict. For example, the responses of such a node may have a clear
peak duration within the tested range, but no clear peak period. This can happen in two ways.
First, the duration or period of the tuned response function’s peak could be below 1 time step
or above 20 time steps, the tested range. Second, the peak state of the tuned response function
could be larger than the peak period, an event timing which is impossible because the state is
part of the period and so cannot be longer than the period. In both of these cases, we do not
see this peak in the fit responses. However, the tuned response function can only outperform
the monotonic response function because features of the response amplitudes within the

tested range are consistent with a tuned response.

Comparing proportions of response function types

For each network repetition we assessed the proportion of nodes best fit by monotonic,
mixed, or tuned response functions. Within each network depth, computed each response

type as a proportion of nodes each network layer (including nodes that are not classified for
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any of these response types), and compared the proportions between layers. We did these
analyses for the parameter-matched IndRNNs, the INdRNNs trained on shuffled data, the
untrained initializations of the INndRNNSs and the networks without recurrency. Between
network depths, we compared the proportion of nodes in the last layer. We did these analyses
for the parameter-matched INndRNNSs and the layer-size-matched INndRNNs. For each response
function type separately, we performed a Kruskal-Wallis test (scipy.stats; Kruskal & Wallis,
1952), followed by post hoc Dunn’s tests (scipy.stats; Dunn, 1964) with a Holm-Sidak
correction (Sidak, 1967) to compare proportions between network layers, and Dunn’s tests
(scipy.stats; Dunn, 1964) with a Holm-Sidak correction (Sidak, 1967) to compare proportions

between network depths.

Evaluating properties of the response functions of the nodes

We assessed the parameters of the best-fitting response functions between different layers of
the same network depths.

For the monotonic responses, we assessed the compressive exponents on duration and
period, and whether the ratio of contribution of duration and period components to the
response (Bduration/Pperiod) differed between network depths and layers. In order to make a fair
comparison, the betas were rescaled to be fit on normalized response components. Nodes
with an exponent on duration of 0 or an exponent on period of 1 create the same activation
for all durations or periods, respectively. Therefore, the beta ratio for these nodes was set to 0
or infinite, respectively. Similarly, for nodes with a beta ratio of 0 or infinite, duration and
period exponents were set to 0 or 1, respectively. All comparisons were performed using a
Kruskal-Wallis (scipy.stats; Kruskal & Wallis, 1952) followed by Dunn’s post hoc
(scipy.stats; Dunn, 1964) with Holm-Sidak correction (Sidék, 1967). To compare the patterns

in the data, we also performed these tests on the nodes of the layer-size-matched networks
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before training, layer-size-matched networks trained on shuffled data and parameter-matched
networks without recurrency. Furthermore, we performed the same analysis on previously
published data about monotonic parameters in visual field maps recorded with fMRI
(Hendrikx et al., 2022)

For the tuned responses, we assessed the preferred timings, the extents around these
timings, the angulation of this preference towards the x-axis, and the exponent on period
between layer-size-matched layers of networks before training, layer-size-matched networks
trained on shuffled data and networks trained on repetitive events. For all parameters, except
the angulation, we performed using a Kruskal-Wallis (scipy.stats; Kruskal & Wallis, 1952)
followed by Dunn’s post hoc (scipy.stats; Dunn, 1964) with Holm-Sidék correction (Sidak,
1967). Furthermore, we performed the same analysis on previously published data about
tuned parameters in timing maps recorded with fMRI (Harvey et al., 2020).

For the angulation parameter, we normalized the angulation angles between 0° and
180°. We multiplied the angles by 2 to allow performing a circular common median test
(pycircstat.tests.cmtest), followed by posthoc pairwise circular common median tests with
Holm-Sidék correction (statsmodels.stats; Sidak, 1967).

For the exponent of the monotonic and tuned response function, we assessed whether
the data was bimodally distributed the dip test of unimodality (Hartigan & Hartigan, 1985).
For each training regimen, we corrected for each layer’s statistical tests using an FDR
correction (Benjamini & Hochberg, 1995).

Note that the statistical tests and included datapoints presented here may slightly
differ from the original studies in the brain (Harvey et al., 2020; Hendrikx et al., 2022), to
create consistency with the statistical procedures used in the current study. However, the

reported trends are very similar.
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