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ABSTRACT: 16 

Humans and many animals rapidly and accurately perceive numerosity, the number of objects, in a 17 
visual image. The numerosity of recently viewed images influences our perception of the current 18 
image’s numerosity: numerosity adaptation. How does numerosity adaptation affect responses to 19 
numerosity in the brain? Recent studies show both early visual responses that monotonically increase 20 
with numerosity, and later numerosity-tuned responses that peak at different (preferred) numerosities 21 
in different neural populations. We have recently shown that numerosity adaptation affects the 22 
preferred numerosity of numerosity-tuned neural populations. We have also shown that early visual 23 
monotonic responses reflect image contrast, which follows numerosity closely. Here we ask how 24 
monotonic responses in the early visual cortex are affected by adaptation to different numerosities, 25 
using ultra-high field (7T) fMRI and neural model-based analyses. FMRI response amplitudes 26 
increased monotonically with numerosity throughout the early visual field maps (V1-V3, hV4, LO1-27 
LO2 & V3A/B). This increase in response amplitudes becomes less steep after adaptation to higher 28 
numerosities, with this effect becoming stronger through the early visual hierarchy. This suppression 29 
of responses to numerosity is consistent with perceptual effects where adaptation to high numerosities 30 
reduces the perceived numerosity. These results imply that numerosity adaptation effects in later 31 
numerosity-tuned neural populations may originate in early visual areas that respond to image contrast 32 
in the adapting image. 33 
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Introduction 35 
Numerical cognition leverages aspects of perception, attention and working memory to construct a 36 
quantitative understanding of the world that eventually allows advanced abilities like mathematics. 37 
Numerical cognition’s simplest stages require only an ability to estimate and perceive object number, 38 
or numerosity, often called the ‘number sense’. This simple numerosity perception is found in many 39 
animals, including humans (Burr & Ross, 2008; Jevons, 1871) and non-human primates (Nieder et al., 40 
2002), but also birds (Scarf et al., 2011), amphibians (Krusche et al., 2010), fish (Miletto Petrazzini et 41 
al., 2016), and insects (Howard et al., 2018). Numerosity perception may provide a selective 42 
advantage in any animal by helping to forage for food, like finding the plant with the most fruits 43 
(Nieder, 2021, 2022). Some have proposed that numerosity perception reflects non-numerical image 44 
features that are often correlated with numerosity, like density (Durgin, 2008) or contrast energy at 45 
high spatial frequencies (Dakin et al., 2011). However, extensive recent evidence demonstrates that 46 
humans perceive numerosity itself more quickly and accurately than these non-numerical features 47 
(Cicchini et al., 2016; DeWind et al., 2015; Testolin et al., 2020). 48 
 Which neural responses underlie numerosity perception? Two broad classes of responses have 49 
been described: numerosity-tuned responses and monotonically changing responses. In numerosity-50 
tuned neural populations, the response peaks at a specific (preferred) numerosity and gradually 51 
decreases with distance from this numerosity (Nieder et al., 2002) (Nieder & Miller, 2003). 52 
Numerosity-tuned responses have been found in single neurons in  monkeys (Nieder et al., 2002; 53 
Nieder & Miller, 2003), humans (Kutter et al., 2018), crows (Ditz & Nieder, 2016) and chickens 54 
(Kobylkov et al., 2022). We have also revealed the numerosity tuning of neural populations 55 
throughout the human brain by combining ultra-high field (7T) functional magnetic resonance 56 
imaging (fMRI) and neural model-based analyses (Cai et al., 2021; Harvey et al., 2013; Harvey & 57 
Dumoulin, 2017). Numerosity-tuned responses are located in the association cortices of humans 58 
(Harvey & Dumoulin, 2017) and monkeys (Nieder & Miller, 2004). Their responses closely predict 59 
numerosity perception across trials (Nieder & Miller, 2003; Tudusciuc & Nieder, 2007) and across 60 
individuals (Kersey & Cantlon, 2017; Lasne et al., 2019; Piazza et al., 2004), positioning them as an 61 
important basis of numerosity perception (Tsouli et al., 2022). 62 
 The second class of  neural populations increase their response amplitude monotonically as 63 
numerosity increases. Such monotonic responses, sometimes called summation coding (Roggeman et 64 
al., 2007; Zorzi & Testolin, 2018), have long been predicted as an intermediate stage in computational 65 
models for the derivation of downstream numerosity-tuned responses (Dehaene & Changeux, 1993; 66 
Kim et al., 2021; Stoianov & Zorzi, 2012; Verguts & Fias, 2004; Zorzi & Testolin, 2018). 67 
Monotonically responding populations have been described using EEG and fMRI (DeWind et al., 68 
2019; Park et al., 2015; Paul et al., 2022). These responses were found in early visual cortex 69 
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(including V1 (Paul et al., 2022), V2, and V3 (Fornaciai & Park, 2018a; Paul et al., 2022)) with very 70 
short latencies (Park et al., 2015), indicating that these monotonic responses are implicated in the 71 
earlier stages of feedforward visual processing. Surprisingly for early visual responses, these 72 
responses to numerosity are not strongly affected by non-numerical features like item size and spacing 73 
(DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). How can such early responses already 74 
encompass numerosity information? 75 

These early visual responses may be explained by close relationships between numerosity and 76 
aggregate Fourier power in the stimuli used in most experiments (Paul et al., 2022). This aggregate 77 
Fourier power follows numerosity closely, with little effect of item size or spacing. Indeed, 78 
monotonically increasing responses in early visual areas follow the logarithm of aggregate Fourier 79 
power more closely than the logarithm of numerosity (Paul et al., 2022). As such, the established 80 
response properties of the early visual cortex give a population-level monotonic response to Fourier 81 
power from which numerosity can be straightforwardly computed. This allows for numerosity-tuned 82 
populations to emerge in lateral occipital cortex (Paul et al., 2022) and propagate throughout the 83 
association cortices. In sum, while numerosity estimation can be described as a relatively simple 84 
perceptual ability beginning at the earliest stages of vision, the resulting numerosity representation 85 
may be used for higher-order cognitive processes throughout the brain (Harvey & Dumoulin, 2017; 86 
Paul et al., 2022). 87 
 Like many visual features, numerosity perception is affected by adaptation (Burr & Ross, 88 
2008), where perceived numerosity is repelled from previously-presented numerosities. For example, 89 
after repeatedly viewing a high numerosity, lower numerosities are underestimated. How does 90 
numerosity adaptation affect neural responses to numerosity? First, in fMRI repetition suppression 91 
paradigms, repeated presentation of a single numerosity suppresses parietal neural responses to 92 
similar numerosities more than responses to more different numerosities (Piazza et al., 2004). This is 93 
seen as evidence for numerosity-tuned responses in human parietal cortex and suggests that adaptation 94 
strongly affects numerosity-tuned responses. Similarly, numerosity adaptation strongly reduces the 95 
ability to distinguish between the patterns of activity evoked by different numerosities in parietal 96 
cortex using multivariate classification methods, suggesting adaptation suppresses or changes the 97 
patterns of response to specific numerosities (Castaldi et al., 2016; Eger et al., 2009). Finally, we have 98 
shown that numerosity tuning in neural populations with numerosity preferences near the adaptor is 99 
repelled from the adapted numerosity while that in neural populations with numerosity preferences 100 
further from the adaptor is attracted toward the adapted numerosity (Tsouli et al., 2021). This mixed 101 
change in numerosity preferences occurs in all numerosity-tuned responses throughout the association 102 
cortices and suggests some form of normalization across the whole set of numerosity-tuned responses. 103 

However, it remains unclear whether early visual monotonic responses to numerosity are 104 
affected by adaptation and may therefore contribute to later adaptation effects on numerosity-tuned 105 
responses. Here, we therefore analyzed these early visual monotonic responses in an ultra-high field 106 
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(7T) fMRI data set where we have previously shown numerosity adaptation effects on numerosity-107 
tuned responses (Tsouli et al., 2021). During fMRI scanning, participants viewed the same changing 108 
sequence of numerosities (to map numerosity preferences) under conditions of low numerosity 109 
adaptation, high numerosity adaptation and changing numerosity adaptation. In the current study, we 110 
compared the amplitudes of responses to these conditions in the early visual cortex. Higher 111 
numerosities produce a stronger neural response in early visual cortex than lower numerosities. We 112 
therefore hypothesized that adaptation to a higher numerosity would more strongly suppress the 113 
monotonic response to subsequently viewed displays, by more strongly reducing the sensitivity of the 114 
responsive neural populations. 115 
 116 

Results 117 
Monotonic responses to numerosity displays in the early visual cortex 118 
During fMRI scanning, participants viewed sequences of progressively increasing and decreasing 119 
numerosities (from one to seven and back) to quantify response amplitudes to different numerosities. 120 
These progressively changing numerosity displays were presented in three different adaption 121 
conditions (Fig. 1): 1) Preceded by displays containing one item (low adaptor condition); 2) Preceded 122 
by displays containing twenty items (high adaptor condition); 3) Preceded by displays of the same 123 
changing numerosity (changing adaptor condition). In the changing adaptor condition, the changing 124 
numerosity was therefore presented twice as frequently as other conditions and so will produce larger 125 
monotonic responses. 126 
 127 
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 128 
Figure 1: Numerosity stimuli. (A) Schematic description of the numerosity response mapping 129 
stimuli shown in the ascending progression of one stimulus cycle. Each fMRI time frame (TR) 130 
contained an adaptor numerosity (left, colored border), which differed between conditions, followed 131 
by a changing numerosity (right, black border). In all three conditions the changing numerosities 132 
increases from 1 through 7, followed by a baseline of 20 dots. In the low and high adaptor conditions, 133 
the adaptor was constant at numerosities of 1 and 20 respectively. In the changing adaptor condition, 134 
the changing numerosities were also shown as the adaptor. In all conditions, the same pair of adaptor 135 
and changing numerosities was repeated three times (across three TRs) to ensure strong fMRI 136 
responses. (B) Example displays presented in a single TR in each condition. 137 
 138 
We used a changing adaptor condition (Fig. 1), without adaptation to a fixed numerosity, to identify 139 
responses to changes in numerosity as we have used this stimulus design in previous studies (Harvey 140 
et al., 2013; Harvey & Dumoulin, 2017; Paul et al., 2022; Tsouli et al., 2021) and it maximizes the 141 
neural response amplitude and goodness of fit of our models. We explained responses in all 142 
conditions using a monotonic response model where the amplitudes of the neural response underlying 143 
the fMRI response was proportional to the logarithm of the aggregate Fourier power of the changing 144 
numerosity display shown during each fMRI time frame. As previously shown (Paul et al., 2022), 145 
many recording sites showed such responses in the representation of the central visual field (where the 146 
numerosity mapping stimulus was displayed) in visual field maps V1-V3, hV4, V3A/B, LO1 and LO2 147 
(Fig. 2). We selected recording sites in each visual field map where preferred visual position 148 
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eccentricity was below 1°, where a monotonic response increasing with aggregate Fourier power 149 
explained at least 10% of response variance, and where this monotonic response model explained 150 
more variance than a numerosity-tuned model. 151 

 152 
Figure 2: Locations of monotonic responses to numerosity. (A) Blue recording sites show 153 
responses that monotonically increased in proportion to the logarithm of aggregate Fourier power, 154 
while red recording sites show numerosity-tuned responses. Here, the best-fitting response model 155 
explained at least 0.1 (cross-validated R2) of response variance. (B) The preferred visual field position 156 
polar angle of each recording site (obtained from visual field mapping data) let us localize visual field 157 
map borders at reversals in polar angle progressions. Dashed lines show visual field map borders at 158 
the upper vertical meridian (blue) lower vertical meridian (red) and horizontal meridian (green). (C) 159 
Each recording site’s preferred visual field position eccentricity. We used this to localize sites with a 160 
preferred eccentricity below 1°, whose population receptive fields included the numerosity mapping 161 
stimulus area.  162 
 163 
Changes in early visual monotonic responses during numerosity adaptation 164 
We first asked whether the change in response amplitudes over the course of a scan in the recording 165 
sites differed between the adaptor conditions. The fMRI responses of recording sites in the early 166 
visual cortex increased following the aggregate Fourier power (and so the numerosity) of the 167 
presented displays in all adaptation conditions (Fig. 3A). However, the monotonic change in response 168 
amplitudes was greater in the low than in the high adaptor condition. Note that this change in response 169 
amplitude was greater still in the changing adaptor condition. A likely explanation for this is that the 170 
adaptor in the changing adaptor condition contains the same changes in numerosity as the changing 171 
numerosity stimulus does. This effectively doubles the changes in numerosity between fMRI time 172 
frames. For example, the difference between the total numerosity in the first and second displays in 173 
Fig. 1 is two ((2+2)-(1+1)) in the changing adaptor condition but only one in the high adaptor 174 
condition (20+2)-(20+1) and low adaptor (1+2)-(1+1) conditions.   175 
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 In our response model, the response amplitude of each recording site in each condition was 176 
captured by a slope (beta) parameter. This quantified how much the amplitude of the neural response 177 
underlying the fMRI signal increased when the logarithm of the aggregate Fourier power of the 178 
stimuli increased by one (Fig 3B). Our response model included the effect of the adaptor stimuli. This 179 
was constant in the low and high adaptor condition, so could not explain any response variance, but 180 
changed with the changing numerosity in the changing adaptor condition. After including responses to 181 
these changes, the amplitude slope in the changing adaptor condition fell between those of the low 182 
and high adaptor conditions. 183 

 184 

 185 
Figure 3. The response of an example recording site (voxel) in V1 to a numerosity mapping 186 
stimulus differs with numerosity adaptation. (A) As the stimulus’ changing numerosity 187 
progressively increased and decreased (top inset), the fMRI BOLD response in all adaptation 188 
conditions (colored dots) increased and decreased, after a hemodynamic delay. The responses in all 189 
conditions were closely fit by the predictions of the monotonic responses to the aggregate Fourier 190 
power of the stimulus (colored lines), scaled with different amplitudes. The range of response 191 
amplitudes was greater in the low adaptor condition than the high adaptor condition. The range of 192 
response amplitudes in the changing adaptor condition was greater still, because both the adaptor 193 
numerosity and the changing numerosity changed in the same way so the changing numerosity is 194 
presented twice as frequently. The variance explained (R2) followed this range of response 195 
amplitudes, as a lower amplitude decreases the signal-to-noise ratio of the response. (B) We explained 196 
these responses using neural response models in which neural responses monotonically increase 197 
proportionally to the aggregate Fourier power of the displays, which follows numerosity closely (Paul 198 
et al., 2022). We fit the slope of this proportionality (i.e. the increase in amplitude of the neural 199 
response when aggregate Fourier power increases by one, Dpower=1) using a general linear model. 200 
This slope was greatest in the low adaptor condition, intermediate in the changing adaptation 201 
condition, and smallest in the high adaptor condition. In a response model of the changing adaptor 202 
condition that ignored responses to the adaptor (green dashed line), the slope doubled compared to the 203 
model that considered responses to the adaptor (green solid line).  204 

1 3 52 4 67 20
Changing numerosity

0
0.5
1.0
1.5
2.0
2.5

3.5

4.5

3.0

4.0

5.0
5.5

R
es

po
ns

e 
am

pl
itu

de
 (%

BO
LD

)
0.5 1 1.5 2 2.5 3 3.5 4

Aggregate Fourier power

Δpower=1
Response slope

0 10 20 30 40 50 60 70 80 90
Time (s)

-3

-2

-1

0

1

2

3

BO
LD

 S
ig

na
l c

ha
ng

e 
(%

)

1 2 3 4 5 6 7 20 7 6 5 4 3 2 1 20
Changing numerosityA B

High adaptation
Changing adaptation
Low adaptation

R2=0.57
R2=0.89
R2=0.83

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610311doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


 205 
To summarize the response change in each visual field map, we first calculated the response slope in 206 
each adaptation condition for recording sites throughout the early visual cortex (from V1 to LO2 and 207 
V3A/B) (Fig 4A-C). Notably, some later visual field maps (LO1, LO2, V3A/B) include recording 208 
sites with both monotonic and tuned responses: our analyses included only recording sites whose 209 
responses are better explained (better fit under cross-validation) by our monotonic response model in 210 
the changing adaptor condition. For each visual field map, we took the average slope in each 211 
condition across these recording sites in every hemisphere and used these hemisphere averages for 212 
statistical comparisons. The slope was significantly above zero in all adaptation conditions in all 213 
visual field maps, so all conditions yielded monotonically increasing response to aggregate Fourier 214 
power (and so to numerosity) in all visual field maps (Fig. 4D). In each visual field map, this slope 215 
was significantly greater in the low adaptor condition than the changing adaptor condition, which in 216 
turn had a greater slope than the high adaptor condition (Fig. 4D). This reduction in slopes from lower 217 
to higher adaptor conditions reflects neural adaptation of monotonic responses to increasing 218 
numerosities and is also consistent with perceptual numerosity adaptation effects, where adaptation to 219 
higher numerosities decreases the perceived numerosity of lower numerosity stimuli.  220 
 221 
Progressive increases in adaptation effects through the early visual hierarchy 222 
We then compared the strength of this neural adaptation effect between visual field maps. We first 223 
computed a measure of relative slope change; specifically, we subtracted the slope in a high adaptor 224 
condition from the slope in a low adaptor condition, and divide by the slope of the changing adaptor 225 
condition (Fig. 4E). This metric reflects how much shallower the slope (of responses to increasing 226 
numerosities) becomes when preceded by a high compared to a low adaptor, quantifying the relative 227 
strength of the neural adaptation effect in each visual field map. An ANOVA (with visual field map as 228 
a fixed factor and participant as a random factor) found significant differences between maps in this 229 
proportional reduction in response slope (F(6,85)=11.4, p=2.5x10-9). Post-hoc multiple comparisons 230 
revealed a progressive increase in the strength of the neural adaptation effect from earlier to later 231 
visual field maps (Fig. 4F). Therefore, the effect of numerosity adaptation on neural response 232 
amplitudes increased through the early visual hierarchy.  233 
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 234 
Figure 4: Neural adaptation of monotonic responses increased through the visual hierarchy. (A-235 
C) The fMRI BOLD responses increased monotonically with aggregate Fourier power in recording 236 
sites throughout the central visual field representations of the early visual field maps, in the low (A), 237 
changing (B) and high (C) adaptor conditions. (D) In the average across the recording sites in each 238 
visual field map of each hemisphere, the slope of the monotonic response increase with the logarithm 239 
of aggregate Fourier power was significantly positive in all conditions and all visual field maps 240 
(colored stars). This slope was greatest in the low adaptor condition, intermediate in the changing 241 
adaptor condition, and lowest in the high adaptor condition (black stars show comparisons between 242 
conditions in each visual field map) *p<0.05, **p<0.01, ***p<0.001. Colored markers (linked with 243 
colored lines) show the mean in the visual field map example in each hemisphere and condition. (E) 244 
To compare this reduction in monotonic response amplitude between visual field maps, we calculated 245 
the change in response slope between adaptation conditions (here: low minus high) in each recording 246 
site, as a proportion of the slope in the changing adaptor condition. (F) This proportional decrease in 247 
response amplitude from low to high adaptor conditions (i.e., the neural adaptation effect strength) 248 
became greater through the visual processing hierarchy. Visual field maps marked with brackets to the 249 
right of the stars showed significantly stronger proportional decreases than those with brackets to the 250 
left of the starts.  251 
 252 
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Discussion 253 
In the current study, we asked whether numerosity adaptation affects the responses of the early visual 254 
cortex. First, we found that the monotonically increasing neural response to numerosity occurred 255 
regardless of numerosity adaptation. These effects began by V1 and continued through the early 256 
hierarchy to V2, V3, hV4, V3A/B, and LO1-LO2. Second, in all these visual field maps, the 257 
amplitude of this monotonic increase (slope) was reduced when the adapting numerosity was higher. 258 
This is consistent with the perceptual effect where perceived numerosity is reduced during high 259 
numerosity adaptation. Third, the proportion by which the response slope was reduced during higher 260 
compared to lower numerosity adaptation (i.e., the magnitude of the adaptation effect) increased 261 
hierarchically from V1 onward. 262 

In this study, we focus on the early visual neural response that monotonically increases with 263 
numerosity (DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). We have explained these 264 
findings by the close relationship between numerosity and contrast energy in the spatial frequency 265 
domain (Paul et al., 2022). At a fixed contrast, this aggregate Fourier power follows numerosity 266 
closely but nonlinearly, with little effect of size or spacing, and predicts population responses in V1 267 
and computational models (Kim et al., 2021; Stoianov & Zorzi, 2012) more closely than numerosity 268 
does (Paul et al., 2022). This provides a signal from which numerosity itself may be straightforwardly 269 
derived. Indeed, responses in the numerosity-tuned populations of the association cortices are more 270 
closely predicted by numerosity than aggregate Fourier power (Paul et al., 2022). Therefore, we 271 
describe the monotonic responses in the current study as responses to contrast and the tuned responses 272 
as responses to numerosity. However, we found a very similar pattern of results if we model the early 273 
visual responses as functions of the log(numerosity), rather than as functions of aggregate Fourier 274 
power, of our displays.  275 

Adaptation effects on numerosity perception (Burr & Ross, 2008) have always been assumed 276 
to reflect changes in the responses of numerosity-tuned neurons. This is a reasonable assumption for 277 
several reasons. First, when adaptation of numerosity perception was first described, numerosity-278 
tuned neurons had recently been found in macaque parietal and frontal cortices (Nieder et al., 2002; 279 
Nieder & Miller, 2004), and tuned effects of repetition suppression were found in human parietal 280 
cortex (Piazza et al., 2004). Early visual monotonic responses to numerosity were only described 281 
years later (DeWind et al., 2019; Park et al., 2015). Second, adaptation effects are often found for 282 
image features with tuned neural representations, like orientation (Dragoi et al., 2000) and motion 283 
direction (Mather, 1980). Third, adaptation to a low numerosity has been shown to increase perceived 284 
numerosity (Aulet & Lourenco, 2023; Burr & Ross, 2008), as well as adaptation to high numerosity 285 
decreasing perceived numerosity. The bidirectionality of this repulsive effect seems likely to reflect 286 
effects on numerosity-tuned neural populations with different numerosity preferences. Specifically, 287 
adaptation to a numerosity below the numerosity preference of a numerosity-tuned neuron should 288 
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suppress responses to lower numerosities more than responses to higher numerosities. This should 289 
thereby increase the numerosity yielding the largest response (the numerosity preference) (Tsouli et 290 
al., 2022). Accordingly, we have recently shown (using the present data set) that tuned neural 291 
numerosity preferences are affected by adaptation (Tsouli et al., 2021).  292 

However, converging evidence also suggests that the neural effects of numerosity adaptation 293 
begin at early visual processing stages, with spatially specific responses to image contrast. First, 294 
perceptual numerosity adaptation is highly spatially specific (limited to the adapted location) (Burr & 295 
Ross, 2008), while numerosity-tuned neurons have large spatial receptive fields and their response to 296 
numerosity does not depend on the stimulus falling within that receptive field (Harvey et al., 2015; 297 
Harvey & Dumoulin, 2017; Paul et al., 2022; Viswanathan & Nieder, 2020). Second, perceptual 298 
numerosity adaptation is weaker when the adaptor and test displays differ in color (Grasso et al., 299 
2022) or other low-level visual features (Caponi et al., 2024). Different low-level features activate 300 
distinct neural populations in early visual processing, but similar numerosity-tuned responses are 301 
found regardless of item color (Cai et al., 2022). Third, compelling recent results (Bonn & Odic, 302 
2023) show that perceived numerosity is affected by adaptation to gratings with no numerosity but a 303 
spatial frequency matching that of the numerosity display. Fourth, recent results show that the 304 
strength of the numerosity adaptation effect is greater when the positions of the individual items in the 305 
adaptor and test displays overlap (Yousif et al., 2023). Fifth, the increase in perceived numerosity 306 
after low numerosity adaptation is far weaker than the decrease after high numerosity adaptation 307 
(Aulet & Lourenco, 2023; Yousif et al., 2023). The asymmetry of this bidirectional effect may reflect 308 
an additional effect of adaptation at the monotonic response stage for high numerosity displays. 309 
Finally, the numerosity adaptation effect becomes weaker as contrast decreases (Burr & Ross, 2008), 310 
though it remains clear even at low contrasts. Together with the present results, these results suggest 311 
that perceptual numerosity adaptation at least partly originates in early visual processing stages with 312 
spatially specific responses to contrast. 313 

Importantly, none of these findings show that perceptual numerosity adaptation arises only 314 
through early visual contrast adaptation and indeed several results speak against this interpretation. 315 
First, we found that effects on monotonic responses become progressively stronger through the early 316 
visual hierarchy. Second, recent results (Kido et al., 2024) show that responses to numerosity in more 317 
anterior areas of the association cortices depend progressively more on the context of recently-318 
presented numerosities. Third, the effects on monotonic responses that we see are only correlated with 319 
effects on tuned responses in the most posterior numerosity map. All of these results suggest 320 
progressively increasing neural adaptation effects throughout the numerosity processing hierarchy, not 321 
effects at an early stage alone. Furthermore, adaptation effects on visual numerosity perception can 322 
also be produced by adapting to quantities in other sensory modalities (Anobile et al., 2021; Arrighi et 323 
al., 2014; Togoli & Arrighi, 2021), though these cross-modal adaptation effects are weaker than 324 
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effects of adaptation to visual numerosity itself. Finally, beyond adaptation, numerosity estimation is 325 
reduced when individual items are connected by bars (He et al., 2009). This effect is not present in the 326 
earlier visual responses to numerosity (Fornaciai & Park, 2018a) and cannot be explained by changes 327 
in the spatial frequency domain contrast of the displays (Paul et al., 2022), so at least some effects on 328 
numerosity perception depend on later stages. We therefore propose that neural effects of at many 329 
stages of numerosity processing contribute to perceptual numerosity adaptation effects. Neural 330 
populations in many areas represent information about numerosity in either their monotonic or tuned 331 
responses, with hierarchical processing of each response across many stages (Harvey & Dumoulin, 332 
2017; Paul et al., 2022) and tuned responses likely being derived from monotonic responses (Kim et 333 
al., 2021; Zorzi & Testolin, 2018). As adaptation may be best understood as a property of all neural 334 
responses, we can expect adaptation effects at all of these stages, with effects at one stage likely being 335 
inherited by the next. 336 

Our results do not convincingly demonstrate that adaptation effects on early visual monotonic 337 
responses ultimately cause adaptation effects on numerosity-tuned responses. Indeed, it is not yet 338 
clear that early visual monotonic responses are required to produce numerosity-tuned response. 339 
Nevertheless, several findings suggest that adaptation effects on numerosity-tuned responses are 340 
inherited in part from effects on early visual contrast representations. First, almost all visual inputs to 341 
the cortex come through the primary visual cortex, which represents image features by contrast-driven 342 
responses in the spatial frequency domain. There is no other pathway through which numerosity tuned 343 
neurons could be activated by visual stimuli. Second, computational models for the derivation of 344 
numerosity-tuned responses (Dehaene & Changeux, 1993; Kim et al., 2021; Verguts & Fias, 2004; 345 
Zorzi & Testolin, 2018) generally rely on an intermediate stage with monotonic responses to 346 
numerosity. We have previously shown that the monotonic responses to numerosity shown by two 347 
very different neural network models (Kim et al., 2021; Stoianov & Zorzi, 2012) are better predicted 348 
by early visual responses to contrast (Paul et al., 2022). Changing the early visual contrast 349 
representation seems likely to change any response derived from this representation. 350 

Adaptation often relies on presenting the same stimulus state repeatedly or over an extended 351 
period. However, our changing adaptor condition suppressed the early visual response to numerosity 352 
to an intermediate extent although it did not repeatedly present the same numerosity like the low and 353 
high adaptor conditions. This may be understood in as an interaction with a monotonic response to 354 
numerosity. If suppression of the early visual response depends on the level of recent early visual 355 
activity, the changing adaptor condition would be expected to produce an intermediate average level 356 
of activity, because the presented numerosity is always between the low and high adaptor. We would 357 
expect neural adaptation effects on numerosity-tuned responses to work quite differently because they 358 
would suppress the response similar throughout the response curve, not at a specific numerosity. 359 
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Indeed, all our conditions only presents the adaptor very briefly (and typically once) before 360 
each presentation of a changing numerosity, although many times over different presentations of 361 
changing numerosities. Is this sufficient to produce repulsive numerosity adaptation effects in 362 
perception? Or does this instead produce attractive serial dependence effects that occur when single 363 
presentations of a particular numerosity bias perception of the numerosity in the next presentation 364 
(Cicchini et al., 2014; Fornaciai & Park, 2018b)? We have previously shown that the stimulus timing 365 
used here produces a clear repulsive adaptation effects (Tsouli et al., 2021). Previous results also 366 
shown repulsive adaptation effects with brief adaptor presentations (Aagten-Murphy & Burr, 2016). 367 
Again here, these brief but frequent presentations, although separated by changing numerosities, 368 
would be expected to affect the average level of recent activity in the early visual cortex that we 369 
propose underlies the effects we observe. 370 

Functionally, adaptation is usually proposed to adapt perception to the context of recently 371 
seen sensory stimuli, thereby increasing sensitivity in the stimulus range we are currently working 372 
with by increasing discriminability around the adapted range (Grzywacz & Balboa, 2002). Seeing 373 
contrast adaptation as a fundamental contributor to numerosity adaption instead suggests numerosity 374 
adaptation’s functional role may be to help to separate numerosity from contrast. Both numerosity and 375 
the contrast between items and their background (i.e. item contrast) similarly affect Fourier power in 376 
the spatial frequency domain (Paul et al., 2022). An image can have greater Fourier power because it 377 
contains more items or greater item contrast. To determine numerosity, we need to normalize the 378 
image contrast for item contrast. Indeed, responses in V1 are strongly contrast-dependent, while 379 
responses in the first areas showing numerosity-tuned responses (visual field maps TO1 and TO2, i.e. 380 
area hMT+) are minimally affected by item contrast (Kastner et al., 2004). Therefore, under normal 381 
circumstances, contrast adaptation may serve to normalize item contrast by considering the contrast of 382 
recently viewed items, and thereby yield a contrast-invariant representation to numerosity. However, 383 
during the unusual circumstances of numerosity adaptation, numerosity affects image contrast while 384 
item contrast is held constant. This may thereby disrupt this normalization process, leading to 385 
inaccurate numerosity perception. This view sees mechanisms of numerosity adaptation as inherent to 386 
the process of numerosity estimation itself, rather than an adaptive aspect of numerosity perception. 387 
These views are not mutually exclusive. 388 

 389 

Conclusions: 390 

The current results show a central role for early visual cortex in the neural basis of numerosity 391 
adaptation, increasing in strength through the visual processing hierarchy. These early visual effects 392 
may be inherited by later numerosity-tuned neural populations, with separate neural adaptation effects 393 
also likely acting in numerosity-tuned stages. Therefore, the neural basis of numerosity adaptation 394 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610311doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


likely involves effects at all levels of numerosity processing. Together, these pervasive neural effects 395 
throughout the brain seem likely to underlie the strong and multi-faceted perceptual effects of 396 
numerosity adaptation. 397 

  398 

399 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610311doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements  400 

This work was supported by the Netherlands Organization for Scientific Research (452.17.012 to 401 
B.M.H.) and the Chinese Scholarship Council (202208510065 to L.Z.)  402 
 403 
 404 

Author contributions 405 
Conceptualization, L.Z. , S.D. and B.M.H.; methodology, L.Z. and B.M.H.; software, L.Z. and 406 
B.M.H.; validation, L.Z., E.H. and B.M.H.; formal analysis, L.Z., E.H. and B.M.H.; investigation, 407 
L.Z. and B.M.H.; data curation, L.Z. and B.M.H.; writing – original draft, L.Z. and B.M.H.; writing – 408 
review & editing, L.Z., E.H., Y.W., S.G, S.D. and B.M.H.; visualization, L.Z., E.H. and B.M.H.; 409 
supervision, S.G., S.D. and B.M.H.; project administration, B.M.H.; funding acquisition, B.M.H. 410 
 411 

Method 412 
-Participants 413 
We recruited eight human participants (five male, three female; age range 26-52 years). One was left-414 
handed. All were well educated, with good mathematical abilities, and had normal or corrected-to-415 
normal visual acuity. All gave written informed consent. All experimental procedures were approved 416 
by the ethics committee of University Medical Center Utrecht (protocol number 09/350).  417 
 418 
-Numerosity stimuli 419 
We used MATLAB (MathWorks, Inc.) and the Psychophysics Toolbox (Brainard, 1997; Kleiner et 420 
al., 2007) to generate and present experimental stimuli similar to our past studies (Harvey et al., 2013, 421 
2015; Harvey & Dumoulin, 2017; Tsouli et al., 2021). The numerosity stimuli were presented on a 422 
69.84 × 39.29 cm LCD screen (Cambridge Research Systems) positioned behind the MRI bore. 423 
Participants were required to lie still and view the display through a mirror attached to the head coil. 424 
The total distance from the attached mirror to the display screen was 220 cm and the display 425 
resolution was 1920 × 1080 pixels. 426 
Two large, thin and red cross lines were presented in the entire display to aid accurate fixation at the 427 
cross intersection in the center of the display. All items in the numerosity stimuli were positioned 428 
pseudo-randomly and limited within a circle centered on the fixation of 0.75° of visual angle (radius), 429 
minimizing the extent of the numerosity pattern, allowing it to be viewed without eye movements, and 430 
falling within the population receptive field of fMRI recording site responding to the central visual 431 
field. The pseudo-random positions of these items were constrained so that items were evenly spaced 432 
throughout this limited circle, avoiding perceptual grouping. Each numerosity stimulus presentation 433 
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contained a new pseudo-random dot pattern. We kept the total surface area of all display items 434 
constant regardless of numerosity, so that display luminance was unaffected by numerosity. 435 
In all conditions, the numerosities 1 through 7 and 20 were presented as dots on a gray background 436 
(Fig. 1). Each numerosity stimulus was presented briefly (300 ms) to ensure participants had no time 437 
to sequentially count the dots. The numerosity stimulus was followed by an interstimulus interval 438 
(ISI) of 400 ms showing a uniform gray background, then the next numerosity stimulus. In each 1400 439 
ms (one fMRI volume acquisition, TR), we first showed an adaptor numerosity, which differed 440 
between three conditions, then a changing numerosity which was the same for all three conditions. 441 
The changing numerosities varied from 1 through 7, with a baseline of 20 dots. For the changing 442 
numerosities 1-7, this repeated three times (across three TRs) before the numerosity changed, to 443 
ensure strong fMRI responses and allow enough time to distinguish the hemodynamic responses to 444 
different numerosities. When the changing numerosity 20 this was repeated 12 times (across 12 TRs) 445 
to better distinguish between numerosity-tuned and monotonic responses. A monotonically increasing 446 
response to numerosity should have a high amplitude during this period. However, a tuned response 447 
with a numerosity preference far below 20 (Cai et al., 2021) should have a lower amplitude during 448 
this period because a numerosity of 20 dots should be well outside of the range that elicits strong 449 
responses. This also allowed us to distinguish neural populations with very small tuning widths which 450 
never responded to the changing numerosities 1 through 7, and populations with very large tuning 451 
widths which always responded to these numerosities (Harvey et al., 2013).  452 

In the low and high adaptor conditions, the alternating adaptor numerosity was held constant 453 
at 1 and 20 respectively. In the changing adaptor condition, the same numerosities were shown in the 454 
adaptor as the changing numerosity. 455 

The changing numerosity stimuli were first presented in ascending order (1 to 7) for 4.2 s (3 456 
TRs) each, next followed by 16.8 s (12 TRs) where the stimulus contained 20 dots, then followed by 457 
the numerosities in descending order (7 to 1) for 4.2 s (3 TRs) each, finally followed by another same 458 
long period of 20 dots. This sequence was repeated four times in each scanning run, resulting in a run 459 
duration of 369.6s. Therefore, each of the changing numerosity stimuli 1 through 7 was shown for a 460 
total of 24 times in each functional run. In the changing adaptor condition, these changing 461 
numerosities were also shown as the adaptor, adding another 24 times in each run.  462 

The dots showing both the adaptor and changing numerosities were shown in black in 90% of 463 
dot presentations, while in the remaining 10%, the dots were shown in white (Fig. 1). Participants 464 
were instructed to press a button when the dots were shown in white instead of black (which is very 465 
easy at all numerosities) to ensure that they were paying attention to the stimuli during fMRI 466 
acquisition. No numerosity judgments were required. 467 

 468 
-Visual field mapping stimuli 469 
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In a separate scanning session, visual field mapping was used to delineate visual field maps and 470 
determine the position selectivity of our recording sites, following protocols described previously 471 
(Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011; Paul et al., 2022). Briefly, a bar filled with 472 
a moving checkerboard pattern stepped across a 6.35° (radius) circle in the display center in eight 473 
(cardinal and diagonal) directions. Participants fixated the same central fixation cross, pressing a 474 
button when this changed color to ensure fixation and attention. 475 
 476 
-MRI data collection 477 
fMRI acquisition procedure 478 
We acquired MRI data on a 7T Philips Achieva scanner for a previously published study (Tsouli et 479 
al., 2021). Similar acquisition protocols are described fully in other previous studies (Harvey et al., 480 
2015; Harvey & Dumoulin, 2017). Briefly, we acquired T1-weighted anatomical scans, automatically 481 
segmented these with Freesurfer (http://freesurfer.net), then manually edited labels to minimize 482 
segmentation errors using ITK-SNAP (http://www.itksnap.org/). This provided a highly accurate 483 
cortical surface model at the grey-white matter border to the characterize cortical organization of the 484 
measured responses. Functional T2*-weighted 2D echo planar images were acquired using multiband 485 
acquisition (multiband factor: 2) and anterior-posterior encoding, and a 32-channel head coil, at a 486 
resolution of 1.77 × 1.77 × 1.75 mm, with a field of view of 227 × 227 × 70 mm. The TR was 1400 487 
ms, echo time (TE) was 25 ms, and flip angle was 70°. Functional runs were each 273 time frames 488 
(382.2 s) in duration, of which the first 9 time frames (12.6 s) were discarded to ensure the signal was 489 
at steady state. 490 

Three scanning sessions were required for each participant. In each scanning session, 3 491 
functional runs were acquired for the changing adaptor condition (9 runs in total, total duration: 57 492 
min 20 s) and 3-4 runs for the low and high adaptor conditions (in total 10 runs each for these 493 
adaptation conditions in total, total duration: 63 min 42 s; with the exception of one participant where 494 
9 runs were acquired for each condition due to technical issues). The additional run we acquired for 495 
the low and high adaptor conditions helped ensure strong fMRI responses, because the changing 496 
numerosity stimuli were presented less frequently due to the interleaved adaptor stimuli. The order of 497 
the conditions was counterbalanced across runs within and between participants. Moreover, in each 498 
session we acquired a top-up scan recorded with the opposite phase-encoding direction to correct for 499 
image distortion in the gradient encoding direction (Andersson et al., 2003). 500 

 501 
-fMRI preprocessing 502 

The functional data was co-registered to the anatomical space using AFNI (afni.nimh.nih.gov;  503 
Cox, 1996) as described previously (Paul et al., 2022; Tsouli et al., 2021; van Ackooij et al., 2022). A 504 
single transformation matrix was constructed, incorporating all the steps from the raw data to the 505 
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cortical surface model to reduce the number of interpolation steps to one. For the fMRI data, we first 506 
applied motion correction to the functional data (3dvolreg). We also applied motion correction to the 507 
images that were acquired using opposing phase-encoding direction, then determined the distortion 508 
transformation between these and the functional runs (3dQwarp) to correct for spatial distortions in 509 
the functional scans (3dNwarpApply). Then we determined the transformation that co-registers this 510 
functional data to the T1 with the same resolution, position and orientation as the functional data 511 
(3dvolreg). We finally determined the transformation from this T1 image to a higher resolution (1 mm 512 
isotropic) whole-brain T1 image (3dUnifize, 3dAllineate). We applied the product of all these 513 
transformations for every functional volume to transform our functional data to the whole-brain T1 514 
anatomy. We repeated this for each fMRI session to transform all their data to the same anatomical 515 
space. We then imported these data into Vistasoft’s mrVista framework 516 
(github.com/vistalab/vistasoft) for analysis and model fitting. For each adaptation condition, the time 517 
series of separate scans were then averaged together, resulting in a very high signal-to-noise ratio. 518 
 519 
fMRI Data Analysis 520 
Neural response models for responses to numerosity 521 
For each fMRI recording site (voxel) we interpret the fMRI responses to the numerosity stimuli using 522 
two neural response models: a numerosity-tuned population receptive field (pRF) model (Dumoulin & 523 
Wandell, 2008; Harvey et al., 2013, 2015; Harvey & Dumoulin, 2017) and a monotonic response model 524 
(DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). These each describe the recording site’s 525 
response using a small set of parameters that we can then compare between adaptation conditions. 526 

For the monotonic response model, the predicted neural response at each recording site is 527 
proportional to the logarithm of the aggregate Fourier power (in the spatial frequency domain) of the 528 
displays with each numerosity (Paul et al., 2022), shown at each time point. We convolved this neural 529 
response time course with an HRF to give an fMRI response time course prediction. In each adaptor 530 
condition, we used a general linear model to compare this prediction to the fMRI response time course 531 
at each recording site. This determined the slope of the relationship between the prediction and the 532 
response (proportional to the neural response amplitude, following a positive or negative 533 
relationship), together with the response variance explained by this scaled prediction. As we have 534 
previously shown (Paul et al., 2022), this contrast-driven response model is closely but nonlinearly 535 
related to a monotonic response to the logarithm of the presented numerosity in each display. 536 
However, it predicts the responses of the early visual cortex and neural network to numerosity 537 
displays more closely than numerosity does. We also repeated our analyses using a model describing 538 
a monotonic response to the logarithm of the presented numerosity at each time point, giving very 539 
similar results. 540 

The numerosity-tuned pRF model describes the aggregate tuning of neural populations in 541 
each record site using a logarithmic Gaussian function with two free parameters: preferred numerosity 542 
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(mean of the Gaussian function) and tuning width (standard deviation of the Gaussian in logarithmic 543 
numerosity space). We started by generating a large candidate set of combinations of preferred 544 
numerosity and tuning width. For every candidate combination, we predicted a neural response time 545 
course as the amplitude of the candidate neural response function at each time point’s presented 546 
numerosity. We then convolved this candidate neural response time course with a hemodynamic 547 
response function (HRF), giving a corresponding candidate fMRI response time course prediction. 548 
For each fMRI recording site and stimulus condition, we chose the fMRI response time course 549 
prediction that most closely followed the recorded response time series (by minimizing the sum of 550 
squared errors between the predicted and observed fMRI time series). We then took the parameter 551 
combination that generated this fMRI response time course prediction, together with the goodness of 552 
fit of this prediction, for further analysis. We quantify this goodness of fit as the variance explained by 553 
the model, i.e. R2, the proportion of the variance of the fMRI response time course that is outside the 554 
residual of the fit model. 555 

In modelling the responses to the adaption conditions, we fit two different models. One model 556 
included only the aggregate Fourier power of the changing numerosity displays when making the 557 
predictions of fMRI responses, while the other included both the adaptor display and the changing 558 
numerosity display. We used the latter model for subsequent analyses as it was a complete description 559 
of the presented stimulus. However, the stimulus was designed so that both models would produce 560 
closely related predictions and parameter estimates. In the high and low adaptor conditions, the 561 
adaptor presented a constant numerosity throughout the run. This should produce a constant response 562 
throughout the run in both the monotonic and tuned response model. In such general linear modeling 563 
frameworks, this adaptor then adds a constant component to the predicted response. FMRI data has an 564 
arbitrary baseline that is anyway captured by another constant component in both models (which we 565 
do not analyze), so any further constant component contributes to that baseline without affecting other 566 
model parameters. In the changing adaptor condition, the adaptor presented the same numerosities as 567 
the changing numerosity that our models’ responses follow. In general linear models, this doubles the 568 
amplitude of the predicted response to the changing numerosity. This therefore halves the scaling 569 
between the fMRI response and the predicted response to the changing numerosity display, compared 570 
to a model that does not consider the response to the adaptor display. Considering this difference 571 
between adaptation conditions thereby makes the amplitudes of responses to the changing numerosity 572 
straightforwardly comparable between adaptation conditions. Any changes in fMRI responses 573 
between adaptation conditions can only arise through non-linear interactions between response to the 574 
adaptor and the changing numerosity stimuli.  575 

It is important for further analyses to distinguish between monotonically increasing and 576 
numerosity-tuned responses. We used the changing adaptor condition to identify responses to changes 577 
in numerosity as we have used this stimulus design in previous studies (Harvey et al., 2013; Harvey & 578 
Dumoulin, 2017; Paul et al., 2022; Tsouli et al., 2021) and it maximizes neural response amplitude 579 
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and the goodness of fit of our models. We fit both monotonic and tuned models to the averages of the 580 
odd and even numbered scans in this condition. We then evaluated the response predictions of the 581 
both resulting models on the complementary half of the data (i.e. cross-validation) because the tuned 582 
model is fit from a larger set of predictions which follow more complex functions. During this 583 
evaluation, we allowed the response predictions to rescale in amplitude (but not change sign) between 584 
fitting and evaluation because the complementary halves of the data were often acquired in different 585 
scanning sessions, which can arbitrarily differ in fMRI signal amplitude. We then computed the 586 
residual sum of squared errors between the responses and predictions across both halves and for each 587 
voxel chose the model with the lower residual. 588 

A numerosity-tuned response can be clearly identified when the preferred numerosity is 589 
within the range of the changing numerosities 1 through 7, because this shows the response amplitude 590 
decrease for higher numerosities. Therefore, our numerosity-tuned pRF models make and test 591 
predictions outside of this range to show that preferred numerosity estimates within this range predict 592 
responses better than functions with a preferred numerosity outside of this range. A monotonic 593 
response can be clearly identified when a monotonic response model fits better than a numerosity-594 
tuned model. However, voxels that fit slightly better by a numerosity-tuned model with a numerosity 595 
preference above 7 are also likely to reflect monotonic responses, because our previous experiments 596 
using a larger numerosity range demonstrate that very few voxels show numerosity-tuned responses 597 
with preferences above 7 (Cai et al., 2021). We therefore also use monotonic models of voxels where 598 
the numerosity-tuned model estimates a numerosity preference above 7. 599 

Moreover, we also exclude from further analysis of numerosity-tuned pRF models the 600 
recording sites for which the response models in the changing adaptor condition explained less than 601 
0.2 of response variance. 602 

 603 
Neural response models for visual field position and definition of visual field maps 604 
We localized monotonic responses to the area around the occipital pole, the location of the visual field 605 
maps of the early visual cortex (DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). We 606 
therefore asked how adaptation effects on monotonic responses are localized in these early visual field 607 
maps. We fit the responses to the visual field mapping stimuli using a standard visual spatial pRF 608 
analysis (Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011). We defined visual field maps 609 
borders based on the reversals in the cortical progression of the polar angle of voxels’ visual field 610 
position preferences, manually identifying these on an inflated rendering of each participant’s cortical 611 
surface (Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011). These formed our main regions of 612 
interest. As well as the early visual field maps (V1, V2, V3, hV4), we also identified mid-level visual 613 
field maps (LO1, LO2 and V3A/B) which showed monotonically-responding recording sites in some 614 
hemispheres.  615 
 616 
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-Comparisons and statistics 617 
In order to quantify the change in monotonic response amplitudes between different adaptation 618 
conditions, we analyzed the parameters of monotonic models fit to the responses of recording sites in 619 
each the early visual field maps (V1-V3, hV4, V3A/B, LO1, LO2). Specifically, we compared the 620 
slope of the relationship between the monotonic response prediction and the recorded response, i.e. 621 
the increase in amplitude of the neural response underlying the fMRI signal when the aggregate 622 
Fourier power of the changing numerosity display increases by one (Fig. 3B). We also repeated this 623 
using a log(numerosity) response model, where the slope parameter reflects the increase in amplitude 624 
of the neural response underlying the fMRI signal when the logarithm of the presented numerosity 625 
increases by one. This gave very similar results. 626 

To make these comparisons between monotonic responses in the different adaptation 627 
conditions, we first take all the recording sites within a visual field maps and extract their preferred 628 
visual field positions from the visual field position response models. For each recording site, we then 629 
extracted the fit slope from the monotonic numerosity response models for each adaptation. Within 630 
each visual field maps, we then select recording sites that meet the following criteria for further 631 
analysis: (1) where the preferred visual field position’s eccentricity is below 1°, i.e, recording sites 632 
whose visual spatial population receptive field include the numerosity stimulus area; (2) the slope of 633 
the monotonic model in the control condition is positive, so response amplitudes increase with 634 
numerosity; and (3) the model variance explained in the control condition is at least 0.1, 635 
corresponding to under 5% probability of observing these responses by chance. We then calculated 636 
the average slope among the selected voxels in each visual field map in each hemisphere (i.e., in each 637 
visual field map example) for each adaptation condition. 638 

 In subsequent analyses, for each visual field map, we use the resulting slope in each visual field 639 
map example as independent measures. We first tested for significant differences between these 640 
slopes and variance explained using the Wilcoxon signed rank test, where the values for each 641 
hemisphere in one adaptation condition and paired with the values from the same visual field map 642 
example in the other adaptation conditions, i.e., we tested whether the difference in these visual field 643 
map examples’ slopes between these two adaptation conditions was significantly above zero. As we 644 
performed this comparison separately for each visual field map, we performed a false discovery rate 645 
(FDR) correction (Benjamini & Hochberg, 1995) on the resulting probability estimates, taking all 646 
visual field maps into account. 647 
 We also ask whether the strength of the adaptation effect on the monotonic model slope 648 
differed between visual field maps. This is complicated by the fact that, within each adaptation 649 
condition, the slopes shows clear differences between visual field maps, making it difficult to interpret 650 
any changes between adaptation conditions. We would expect a visual field map with a high slope or 651 
high variance explained to be able to decrease this slope more (in absolute values) with adaptation. 652 
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We therefore calculated the change in slope between the low and high adaptor conditions, between the 653 
low adaptor and changing adaptor conditions, and between the changing adaptor and high adaptor 654 
conditions. In each case, we divided this decrease in slope by the slope in the changing adaptor 655 
condition to give a proportion by which the slope changed that was comparable between pairs of 656 
conditions. Having calculated the proportion by which the slope decreased from these three 657 
comparisons in each visual field map example, we performed separate two-factor ANOVAs for each 658 
pair of conditions (factors: visual field map and participant) to test whether the proportional decrease 659 
in slope differs between visual field maps. These are corrected for multiple comparisons by using 660 
Tukey’s honestly significant  difference test (Tukey, 1949), which gives the marginal means and 661 
confidence intervals shown in Fig. 4F.  662 
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