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ABSTRACT:

Humans and many animals rapidly and accurately perceive numerosity, the number of objects, in a
visual image. The numerosity of recently viewed images influences our perception of the current
image’s numerosity: numerosity adaptation. How does numerosity adaptation affect responses to
numerosity in the brain? Recent studies show both early visual responses that monotonically increase
with numerosity, and later numerosity-tuned responses that peak at different (preferred) numerosities
in different neural populations. We have recently shown that numerosity adaptation affects the
preferred numerosity of numerosity-tuned neural populations. We have also shown that early visual
monotonic responses reflect image contrast, which follows numerosity closely. Here we ask how
monotonic responses in the early visual cortex are affected by adaptation to different numerosities,
using ultra-high field (7T) fMRI and neural model-based analyses. FMRI response amplitudes
increased monotonically with numerosity throughout the early visual field maps (V1-V3, hV4, LO1-
LO2 & V3A/B). This increase in response amplitudes becomes less steep after adaptation to higher
numerosities, with this effect becoming stronger through the early visual hierarchy. This suppression
of responses to numerosity is consistent with perceptual effects where adaptation to high numerosities
reduces the perceived numerosity. These results imply that numerosity adaptation effects in later
numerosity-tuned neural populations may originate in early visual areas that respond to image contrast

in the adapting image.
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Introduction

Numerical cognition leverages aspects of perception, attention and working memory to construct a
quantitative understanding of the world that eventually allows advanced abilities like mathematics.
Numerical cognition’s simplest stages require only an ability to estimate and perceive object number,
or numerosity, often called the ‘number sense’. This simple numerosity perception is found in many
animals, including humans (Burr & Ross, 2008; Jevons, 1871) and non-human primates (Nieder et al.,
2002), but also birds (Scarf et al., 2011), amphibians (Krusche et al., 2010), fish (Miletto Petrazzini et
al., 2016), and insects (Howard et al., 2018). Numerosity perception may provide a selective
advantage in any animal by helping to forage for food, like finding the plant with the most fruits
(Nieder, 2021, 2022). Some have proposed that numerosity perception reflects non-numerical image
features that are often correlated with numerosity, like density (Durgin, 2008) or contrast energy at
high spatial frequencies (Dakin et al., 2011). However, extensive recent evidence demonstrates that
humans perceive numerosity itself more quickly and accurately than these non-numerical features
(Cicchini et al., 2016; DeWind et al., 2015; Testolin et al., 2020).

Which neural responses underlie numerosity perception? Two broad classes of responses have
been described: numerosity-tuned responses and monotonically changing responses. In numerosity-
tuned neural populations, the response peaks at a specific (preferred) numerosity and gradually
decreases with distance from this numerosity (Nieder et al., 2002) (Nieder & Miller, 2003).
Numerosity-tuned responses have been found in single neurons in monkeys (Nieder et al., 2002;
Nieder & Miller, 2003), humans (Kutter et al., 2018), crows (Ditz & Nieder, 2016) and chickens
(Kobylkov et al., 2022). We have also revealed the numerosity tuning of neural populations
throughout the human brain by combining ultra-high field (7T) functional magnetic resonance
imaging (fMRI) and neural model-based analyses (Cai et al., 2021; Harvey et al., 2013; Harvey &
Dumoulin, 2017). Numerosity-tuned responses are located in the association cortices of humans
(Harvey & Dumoulin, 2017) and monkeys (Nieder & Miller, 2004). Their responses closely predict
numerosity perception across trials (Nieder & Miller, 2003; Tudusciuc & Nieder, 2007) and across
individuals (Kersey & Cantlon, 2017; Lasne et al., 2019; Piazza et al., 2004), positioning them as an
important basis of numerosity perception (Tsouli et al., 2022).

The second class of neural populations increase their response amplitude monotonically as
numerosity increases. Such monotonic responses, sometimes called summation coding (Roggeman et
al., 2007; Zorzi & Testolin, 2018), have long been predicted as an intermediate stage in computational
models for the derivation of downstream numerosity-tuned responses (Dehaene & Changeux, 1993;
Kim et al., 2021; Stoianov & Zorzi, 2012; Verguts & Fias, 2004; Zorzi & Testolin, 2018).
Monotonically responding populations have been described using EEG and fMRI (DeWind et al.,
2019; Park et al., 2015; Paul et al., 2022). These responses were found in early visual cortex
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(including V1 (Paul et al., 2022), V2, and V3 (Fornaciai & Park, 2018a; Paul et al., 2022)) with very
short latencies (Park et al., 2015), indicating that these monotonic responses are implicated in the
earlier stages of feedforward visual processing. Surprisingly for early visual responses, these
responses to numerosity are not strongly affected by non-numerical features like item size and spacing
(DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). How can such early responses already
encompass numerosity information?

These early visual responses may be explained by close relationships between numerosity and
aggregate Fourier power in the stimuli used in most experiments (Paul et al., 2022). This aggregate
Fourier power follows numerosity closely, with little effect of item size or spacing. Indeed,
monotonically increasing responses in early visual areas follow the logarithm of aggregate Fourier
power more closely than the logarithm of numerosity (Paul et al., 2022). As such, the established
response properties of the early visual cortex give a population-level monotonic response to Fourier
power from which numerosity can be straightforwardly computed. This allows for numerosity-tuned
populations to emerge in lateral occipital cortex (Paul et al., 2022) and propagate throughout the
association cortices. In sum, while numerosity estimation can be described as a relatively simple
perceptual ability beginning at the earliest stages of vision, the resulting numerosity representation
may be used for higher-order cognitive processes throughout the brain (Harvey & Dumoulin, 2017;
Paul et al., 2022).

Like many visual features, numerosity perception is affected by adaptation (Burr & Ross,
2008), where perceived numerosity is repelled from previously-presented numerosities. For example,
after repeatedly viewing a high numerosity, lower numerosities are underestimated. How does
numerosity adaptation affect neural responses to numerosity? First, in fMRI repetition suppression
paradigms, repeated presentation of a single numerosity suppresses parietal neural responses to
similar numerosities more than responses to more different numerosities (Piazza et al., 2004). This is
seen as evidence for numerosity-tuned responses in human parietal cortex and suggests that adaptation
strongly affects numerosity-tuned responses. Similarly, numerosity adaptation strongly reduces the
ability to distinguish between the patterns of activity evoked by different numerosities in parietal
cortex using multivariate classification methods, suggesting adaptation suppresses or changes the
patterns of response to specific numerosities (Castaldi et al., 2016; Eger et al., 2009). Finally, we have
shown that numerosity tuning in neural populations with numerosity preferences near the adaptor is
repelled from the adapted numerosity while that in neural populations with numerosity preferences
further from the adaptor is attracted toward the adapted numerosity (Tsouli et al., 2021). This mixed
change in numerosity preferences occurs in all numerosity-tuned responses throughout the association
cortices and suggests some form of normalization across the whole set of numerosity-tuned responses.

However, it remains unclear whether early visual monotonic responses to numerosity are
affected by adaptation and may therefore contribute to later adaptation effects on numerosity-tuned

responses. Here, we therefore analyzed these early visual monotonic responses in an ultra-high field
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(7T) fMRI data set where we have previously shown numerosity adaptation effects on numerosity-
tuned responses (Tsouli et al., 2021). During fMRI scanning, participants viewed the same changing
sequence of numerosities (to map numerosity preferences) under conditions of low numerosity
adaptation, high numerosity adaptation and changing numerosity adaptation. In the current study, we
compared the amplitudes of responses to these conditions in the early visual cortex. Higher
numerosities produce a stronger neural response in early visual cortex than lower numerosities. We
therefore hypothesized that adaptation to a higher numerosity would more strongly suppress the
monotonic response to subsequently viewed displays, by more strongly reducing the sensitivity of the

responsive neural populations.

Results

Monotonic responses to numerosity displays in the early visual cortex

During fMRI scanning, participants viewed sequences of progressively increasing and decreasing
numerosities (from one to seven and back) to quantify response amplitudes to different numerosities.
These progressively changing numerosity displays were presented in three different adaption
conditions (Fig. 1): 1) Preceded by displays containing one item (low adaptor condition); 2) Preceded
by displays containing twenty items (high adaptor condition); 3) Preceded by displays of the same
changing numerosity (changing adaptor condition). In the changing adaptor condition, the changing
numerosity was therefore presented twice as frequently as other conditions and so will produce larger

monotonic responses.
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A

Low adaptor condition (adapter: 1 dot)

x 3times x 3 times. x 3 times x 3 times x 3 times x 3 times x 3 times x 12 times
One One One Two One Three One Four One Five One Six One  Seven One Twenty

High adaptor condition (adapter: 20 dots)
x 3 times x 3 times x 3 times x 3 times x 3 times x 3 times x 3 times x 12 times

Twenty One Twenty Two Twenty Three Twenty  Four Twenty Five Twenty  Six Twenty Seven Twenty  Twenty

Changing adaptor condition (adapter: same)
x 3 times x 3 times x 3 times x 3 times x 3 times x 3 times x 3 times x 12times

One One Two Two Three Three Four Four Five Five Six Six Seven  Seven Twenty  Twenty
Low adaptor condition High adaptor condition Changing adaptor condition

(adaptor: 1 dot) (adaptor: 20 dots) (adaptor: same)

400 ms

Figure 1: Numerosity stimuli. (A) Schematic description of the numerosity response mapping
stimuli shown in the ascending progression of one stimulus cycle. Each fMRI time frame (TR)
contained an adaptor numerosity (left, colored border), which differed between conditions, followed
by a changing numerosity (right, black border). In all three conditions the changing numerosities
increases from 1 through 7, followed by a baseline of 20 dots. In the low and high adaptor conditions,
the adaptor was constant at numerosities of 1 and 20 respectively. In the changing adaptor condition,
the changing numerosities were also shown as the adaptor. In all conditions, the same pair of adaptor
and changing numerosities was repeated three times (across three TRs) to ensure strong fMRI

responses. (B) Example displays presented in a single TR in each condition.

We used a changing adaptor condition (Fig. 1), without adaptation to a fixed numerosity, to identify
responses to changes in numerosity as we have used this stimulus design in previous studies (Harvey
et al., 2013; Harvey & Dumoulin, 2017; Paul et al., 2022; Tsouli et al., 2021) and it maximizes the
neural response amplitude and goodness of fit of our models. We explained responses in all
conditions using a monotonic response model where the amplitudes of the neural response underlying
the fMRI response was proportional to the logarithm of the aggregate Fourier power of the changing
numerosity display shown during each fMRI time frame. As previously shown (Paul et al., 2022),
many recording sites showed such responses in the representation of the central visual field (where the
numerosity mapping stimulus was displayed) in visual field maps V1-V3, hV4, V3A/B, LO1 and LO2

(Fig. 2). We selected recording sites in each visual field map where preferred visual position
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eccentricity was below 1°, where a monotonic response increasing with aggregate Fourier power

explained at least 10% of response variance, and where this monotonic response model explained

C Preferred visual
field position 0°
eccentricity

6.35°

—

more variance than a numerosity-tuned model.

A Variance explained B Preferred visual
field position

1 08060402 0 02040608 1 polar angle

Tuned fits best Monotonic fits best

Figure 2: Locations of monotonic responses to numerosity. (A) Blue recording sites show
responses that monotonically increased in proportion to the logarithm of aggregate Fourier power,
while red recording sites show numerosity-tuned responses. Here, the best-fitting response model
explained at least 0.1 (cross-validated R?) of response variance. (B) The preferred visual field position
polar angle of each recording site (obtained from visual field mapping data) let us localize visual field
map borders at reversals in polar angle progressions. Dashed lines show visual field map borders at
the upper vertical meridian (blue) lower vertical meridian (red) and horizontal meridian (green). (C)
Each recording site’s preferred visual field position eccentricity. We used this to localize sites with a
preferred eccentricity below 1°, whose population receptive fields included the numerosity mapping

stimulus area.

Changes in early visual monotonic responses during numerosity adaptation

We first asked whether the change in response amplitudes over the course of a scan in the recording
sites differed between the adaptor conditions. The fMRI responses of recording sites in the early
visual cortex increased following the aggregate Fourier power (and so the numerosity) of the
presented displays in all adaptation conditions (Fig. 3A). However, the monotonic change in response
amplitudes was greater in the low than in the high adaptor condition. Note that this change in response
amplitude was greater still in the changing adaptor condition. A likely explanation for this is that the
adaptor in the changing adaptor condition contains the same changes in numerosity as the changing
numerosity stimulus does. This effectively doubles the changes in numerosity between fMRI time
frames. For example, the difference between the total numerosity in the first and second displays in
Fig. 1 is two ((2+2)-(1+1)) in the changing adaptor condition but only one in the high adaptor
condition (20+2)-(20+1) and low adaptor (1+2)-(1+1) conditions.
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In our response model, the response amplitude of each recording site in each condition was
captured by a slope (beta) parameter. This quantified how much the amplitude of the neural response
underlying the fMRI signal increased when the logarithm of the aggregate Fourier power of the
stimuli increased by one (Fig 3B). Our response model included the effect of the adaptor stimuli. This
was constant in the low and high adaptor condition, so could not explain any response variance, but
changed with the changing numerosity in the changing adaptor condition. After including responses to
these changes, the amplitude slope in the changing adaptor condition fell between those of the low

and high adaptor conditions.

A Changing numerosity B Changing numerosﬂy
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0 1020 30 40 50 60 70 80 9 & 051 15 2 2.5 3 35 4
Time (s) Aggregate Fourier power

Figure 3. The response of an example recording site (voxel) in V1 to a numerosity mapping
stimulus differs with numerosity adaptation. (A) As the stimulus’ changing numerosity
progressively increased and decreased (top inset), the fMRI BOLD response in all adaptation
conditions (colored dots) increased and decreased, after a hemodynamic delay. The responses in all
conditions were closely fit by the predictions of the monotonic responses to the aggregate Fourier
power of the stimulus (colored lines), scaled with different amplitudes. The range of response
amplitudes was greater in the low adaptor condition than the high adaptor condition. The range of
response amplitudes in the changing adaptor condition was greater still, because both the adaptor
numerosity and the changing numerosity changed in the same way so the changing numerosity is
presented twice as frequently. The variance explained (R?) followed this range of response
amplitudes, as a lower amplitude decreases the signal-to-noise ratio of the response. (B) We explained
these responses using neural response models in which neural responses monotonically increase
proportionally to the aggregate Fourier power of the displays, which follows numerosity closely (Paul
et al., 2022). We fit the slope of this proportionality (i.e. the increase in amplitude of the neural
response when aggregate Fourier power increases by one, Apower=1) using a general linear model.
This slope was greatest in the low adaptor condition, intermediate in the changing adaptation
condition, and smallest in the high adaptor condition. In a response model of the changing adaptor
condition that ignored responses to the adaptor (green dashed line), the slope doubled compared to the

model that considered responses to the adaptor (green solid line).
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To summarize the response change in each visual field map, we first calculated the response slope in
each adaptation condition for recording sites throughout the early visual cortex (from V1 to LO2 and
V3A/B) (Fig 4A-C). Notably, some later visual field maps (LO1, LO2, V3A/B) include recording
sites with both monotonic and tuned responses: our analyses included only recording sites whose
responses are better explained (better fit under cross-validation) by our monotonic response model in
the changing adaptor condition. For each visual field map, we took the average slope in each
condition across these recording sites in every hemisphere and used these hemisphere averages for
statistical comparisons. The slope was significantly above zero in all adaptation conditions in all
visual field maps, so all conditions yielded monotonically increasing response to aggregate Fourier
power (and so to numerosity) in all visual field maps (Fig. 4D). In each visual field map, this slope
was significantly greater in the low adaptor condition than the changing adaptor condition, which in
turn had a greater slope than the high adaptor condition (Fig. 4D). This reduction in slopes from lower
to higher adaptor conditions reflects neural adaptation of monotonic responses to increasing
numerosities and is also consistent with perceptual numerosity adaptation effects, where adaptation to

higher numerosities decreases the perceived numerosity of lower numerosity stimuli.

Progressive increases in adaptation effects through the early visual hierarchy

We then compared the strength of this neural adaptation effect between visual field maps. We first
computed a measure of relative slope change; specifically, we subtracted the slope in a high adaptor
condition from the slope in a low adaptor condition, and divide by the slope of the changing adaptor
condition (Fig. 4E). This metric reflects how much shallower the slope (of responses to increasing
numerosities) becomes when preceded by a high compared to a low adaptor, quantifying the relative
strength of the neural adaptation effect in each visual field map. An ANOVA (with visual field map as
a fixed factor and participant as a random factor) found significant differences between maps in this
proportional reduction in response slope (F(6,85)=11.4, p=2.5x10"). Post-hoc multiple comparisons
revealed a progressive increase in the strength of the neural adaptation effect from earlier to later
visual field maps (Fig. 4F). Therefore, the effect of numerosity adaptation on neural response

amplitudes increased through the early visual hierarchy.
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234
235  Figure 4: Neural adaptation of monotonic responses increased through the visual hierarchy. (A-

236  C) The fMRI BOLD responses increased monotonically with aggregate Fourier power in recording
237  sites throughout the central visual field representations of the early visual field maps, in the low (A),
238  changing (B) and high (C) adaptor conditions. (D) In the average across the recording sites in each
239  visual field map of each hemisphere, the slope of the monotonic response increase with the logarithm
240  of aggregate Fourier power was significantly positive in all conditions and all visual field maps

241  (colored stars). This slope was greatest in the low adaptor condition, intermediate in the changing
242 adaptor condition, and lowest in the high adaptor condition (black stars show comparisons between
243 conditions in each visual field map) *p<0.05, **p<0.01, ***p<0.001. Colored markers (linked with
244 colored lines) show the mean in the visual field map example in each hemisphere and condition. (E)
245  To compare this reduction in monotonic response amplitude between visual field maps, we calculated
246  the change in response slope between adaptation conditions (here: low minus high) in each recording
247  site, as a proportion of the slope in the changing adaptor condition. (F) This proportional decrease in
248  response amplitude from low to high adaptor conditions (i.e., the neural adaptation effect strength)
249  became greater through the visual processing hierarchy. Visual field maps marked with brackets to the
250  right of the stars showed significantly stronger proportional decreases than those with brackets to the
251  left of the starts.
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Discussion

In the current study, we asked whether numerosity adaptation affects the responses of the early visual
cortex. First, we found that the monotonically increasing neural response to numerosity occurred
regardless of numerosity adaptation. These effects began by V1 and continued through the early
hierarchy to V2, V3, hV4, V3A/B, and LO1-LO2. Second, in all these visual field maps, the
amplitude of this monotonic increase (slope) was reduced when the adapting numerosity was higher.
This is consistent with the perceptual effect where perceived numerosity is reduced during high
numerosity adaptation. Third, the proportion by which the response slope was reduced during higher
compared to lower numerosity adaptation (i.e., the magnitude of the adaptation effect) increased
hierarchically from V1 onward.

In this study, we focus on the early visual neural response that monotonically increases with
numerosity (DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). We have explained these
findings by the close relationship between numerosity and contrast energy in the spatial frequency
domain (Paul et al., 2022). At a fixed contrast, this aggregate Fourier power follows numerosity
closely but nonlinearly, with little effect of size or spacing, and predicts population responses in V1
and computational models (Kim et al., 2021; Stoianov & Zorzi, 2012) more closely than numerosity
does (Paul et al., 2022). This provides a signal from which numerosity itself may be straightforwardly
derived. Indeed, responses in the numerosity-tuned populations of the association cortices are more
closely predicted by numerosity than aggregate Fourier power (Paul et al., 2022). Therefore, we
describe the monotonic responses in the current study as responses to contrast and the tuned responses
as responses to numerosity. However, we found a very similar pattern of results if we model the early
visual responses as functions of the log(numerosity), rather than as functions of aggregate Fourier

power, of our displays.

Adaptation effects on numerosity perception (Burr & Ross, 2008) have always been assumed
to reflect changes in the responses of numerosity-tuned neurons. This is a reasonable assumption for
several reasons. First, when adaptation of numerosity perception was first described, numerosity-
tuned neurons had recently been found in macaque parietal and frontal cortices (Nieder et al., 2002;
Nieder & Miller, 2004), and tuned effects of repetition suppression were found in human parietal
cortex (Piazza et al., 2004). Early visual monotonic responses to numerosity were only described
years later (DeWind et al., 2019; Park et al., 2015). Second, adaptation effects are often found for
image features with tuned neural representations, like orientation (Dragoi et al., 2000) and motion
direction (Mather, 1980). Third, adaptation to a low numerosity has been shown to increase perceived
numerosity (Aulet & Lourenco, 2023; Burr & Ross, 2008), as well as adaptation to high numerosity
decreasing perceived numerosity. The bidirectionality of this repulsive effect seems likely to reflect
effects on numerosity-tuned neural populations with different numerosity preferences. Specifically,

adaptation to a numerosity below the numerosity preference of a numerosity-tuned neuron should
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suppress responses to lower numerosities more than responses to higher numerosities. This should
thereby increase the numerosity yielding the largest response (the numerosity preference) (Tsouli et
al., 2022). Accordingly, we have recently shown (using the present data set) that tuned neural

numerosity preferences are affected by adaptation (Tsouli et al., 2021).

However, converging evidence also suggests that the neural effects of numerosity adaptation
begin at early visual processing stages, with spatially specific responses to image contrast. First,
perceptual numerosity adaptation is highly spatially specific (limited to the adapted location) (Burr &
Ross, 2008), while numerosity-tuned neurons have large spatial receptive fields and their response to
numerosity does not depend on the stimulus falling within that receptive field (Harvey et al., 2015;
Harvey & Dumoulin, 2017; Paul et al., 2022; Viswanathan & Nieder, 2020). Second, perceptual
numerosity adaptation is weaker when the adaptor and test displays differ in color (Grasso et al.,
2022) or other low-level visual features (Caponi et al., 2024). Different low-level features activate
distinct neural populations in early visual processing, but similar numerosity-tuned responses are
found regardless of item color (Cai et al., 2022). Third, compelling recent results (Bonn & Odic,
2023) show that perceived numerosity is affected by adaptation to gratings with no numerosity but a
spatial frequency matching that of the numerosity display. Fourth, recent results show that the
strength of the numerosity adaptation effect is greater when the positions of the individual items in the
adaptor and test displays overlap (Yousif et al., 2023). Fifth, the increase in perceived numerosity
after low numerosity adaptation is far weaker than the decrease after high numerosity adaptation
(Aulet & Lourenco, 2023; Yousif et al., 2023). The asymmetry of this bidirectional effect may reflect
an additional effect of adaptation at the monotonic response stage for high numerosity displays.
Finally, the numerosity adaptation effect becomes weaker as contrast decreases (Burr & Ross, 2008),
though it remains clear even at low contrasts. Together with the present results, these results suggest
that perceptual numerosity adaptation at least partly originates in early visual processing stages with

spatially specific responses to contrast.

Importantly, none of these findings show that perceptual numerosity adaptation arises only
through early visual contrast adaptation and indeed several results speak against this interpretation.
First, we found that effects on monotonic responses become progressively stronger through the early
visual hierarchy. Second, recent results (Kido et al., 2024) show that responses to numerosity in more
anterior areas of the association cortices depend progressively more on the context of recently-
presented numerosities. Third, the effects on monotonic responses that we see are only correlated with
effects on tuned responses in the most posterior numerosity map. All of these results suggest
progressively increasing neural adaptation effects throughout the numerosity processing hierarchy, not
effects at an early stage alone. Furthermore, adaptation effects on visual numerosity perception can
also be produced by adapting to quantities in other sensory modalities (Anobile et al., 2021; Arrighi et
al., 2014; Togoli & Arrighi, 2021), though these cross-modal adaptation effects are weaker than
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effects of adaptation to visual numerosity itself. Finally, beyond adaptation, numerosity estimation is
reduced when individual items are connected by bars (He et al., 2009). This effect is not present in the
earlier visual responses to numerosity (Fornaciai & Park, 2018a) and cannot be explained by changes
in the spatial frequency domain contrast of the displays (Paul et al., 2022), so at least some effects on
numerosity perception depend on later stages. We therefore propose that neural effects of at many
stages of numerosity processing contribute to perceptual numerosity adaptation effects. Neural
populations in many areas represent information about numerosity in either their monotonic or tuned
responses, with hierarchical processing of each response across many stages (Harvey & Dumoulin,
2017; Paul et al., 2022) and tuned responses likely being derived from monotonic responses (Kim et
al., 2021; Zorzi & Testolin, 2018). As adaptation may be best understood as a property of all neural
responses, we can expect adaptation effects at all of these stages, with effects at one stage likely being

inherited by the next.

Our results do not convincingly demonstrate that adaptation effects on early visual monotonic
responses ultimately cause adaptation effects on numerosity-tuned responses. Indeed, it is not yet
clear that early visual monotonic responses are required to produce numerosity-tuned response.
Nevertheless, several findings suggest that adaptation effects on numerosity-tuned responses are
inherited in part from effects on early visual contrast representations. First, almost all visual inputs to
the cortex come through the primary visual cortex, which represents image features by contrast-driven
responses in the spatial frequency domain. There is no other pathway through which numerosity tuned
neurons could be activated by visual stimuli. Second, computational models for the derivation of
numerosity-tuned responses (Dehaene & Changeux, 1993; Kim et al., 2021; Verguts & Fias, 2004;
Zorzi & Testolin, 2018) generally rely on an intermediate stage with monotonic responses to
numerosity. We have previously shown that the monotonic responses to numerosity shown by two
very different neural network models (Kim et al., 2021; Stoianov & Zorzi, 2012) are better predicted
by early visual responses to contrast (Paul et al., 2022). Changing the early visual contrast

representation seems likely to change any response derived from this representation.

Adaptation often relies on presenting the same stimulus state repeatedly or over an extended
period. However, our changing adaptor condition suppressed the early visual response to numerosity
to an intermediate extent although it did not repeatedly present the same numerosity like the low and
high adaptor conditions. This may be understood in as an interaction with a monotonic response to
numerosity. If suppression of the early visual response depends on the level of recent early visual
activity, the changing adaptor condition would be expected to produce an intermediate average level
of activity, because the presented numerosity is always between the low and high adaptor. We would
expect neural adaptation effects on numerosity-tuned responses to work quite differently because they

would suppress the response similar throughout the response curve, not at a specific numerosity.
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360 Indeed, all our conditions only presents the adaptor very briefly (and typically once) before
361  each presentation of a changing numerosity, although many times over different presentations of
362  changing numerosities. Is this sufficient to produce repulsive numerosity adaptation effects in

363  perception? Or does this instead produce attractive serial dependence effects that occur when single
364  presentations of a particular numerosity bias perception of the numerosity in the next presentation
365  (Cicchini et al., 2014; Fornaciai & Park, 2018b)? We have previously shown that the stimulus timing
366  used here produces a clear repulsive adaptation effects (Tsouli et al., 2021). Previous results also
367  shown repulsive adaptation effects with brief adaptor presentations (Aagten-Murphy & Burr, 2016).
368  Again here, these brief but frequent presentations, although separated by changing numerosities,

369  would be expected to affect the average level of recent activity in the early visual cortex that we

370  propose underlies the effects we observe.

371 Functionally, adaptation is usually proposed to adapt perception to the context of recently

372 seen sensory stimuli, thereby increasing sensitivity in the stimulus range we are currently working
373  with by increasing discriminability around the adapted range (Grzywacz & Balboa, 2002). Seeing

374  contrast adaptation as a fundamental contributor to numerosity adaption instead suggests numerosity
375  adaptation’s functional role may be to help to separate numerosity from contrast. Both numerosity and
376  the contrast between items and their background (i.e. item contrast) similarly affect Fourier power in
377  the spatial frequency domain (Paul et al., 2022). An image can have greater Fourier power because it
378  contains more items or greater item contrast. To determine numerosity, we need to normalize the

379  image contrast for item contrast. Indeed, responses in V1 are strongly contrast-dependent, while

380  responses in the first areas showing numerosity-tuned responses (visual field maps TO1 and TO?2, i.e.
381  area hMT+) are minimally affected by item contrast (Kastner et al., 2004). Therefore, under normal
382  circumstances, contrast adaptation may serve to normalize item contrast by considering the contrast of
383  recently viewed items, and thereby yield a contrast-invariant representation to numerosity. However,
384  during the unusual circumstances of numerosity adaptation, numerosity affects image contrast while
385  item contrast is held constant. This may thereby disrupt this normalization process, leading to

386  inaccurate numerosity perception. This view sees mechanisms of numerosity adaptation as inherent to
387  the process of numerosity estimation itself, rather than an adaptive aspect of numerosity perception.

388  These views are not mutually exclusive.
389
390  Conclusions:

391  The current results show a central role for early visual cortex in the neural basis of numerosity
392 adaptation, increasing in strength through the visual processing hierarchy. These early visual effects
393 may be inherited by later numerosity-tuned neural populations, with separate neural adaptation effects

394  also likely acting in numerosity-tuned stages. Therefore, the neural basis of numerosity adaptation
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395  likely involves effects at all levels of numerosity processing. Together, these pervasive neural effects
396  throughout the brain seem likely to underlie the strong and multi-faceted perceptual effects of

397  numerosity adaptation.
398

399
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412 Method

413  -Participants

414  We recruited eight human participants (five male, three female; age range 26-52 years). One was left-
415  handed. All were well educated, with good mathematical abilities, and had normal or corrected-to-
416  normal visual acuity. All gave written informed consent. All experimental procedures were approved
417 by the ethics committee of University Medical Center Utrecht (protocol number 09/350).

418

419  -Numerosity stimuli

420  We used MATLAB (MathWorks, Inc.) and the Psychophysics Toolbox (Brainard, 1997; Kleiner et
421  al., 2007) to generate and present experimental stimuli similar to our past studies (Harvey et al., 2013,
422  2015; Harvey & Dumoulin, 2017; Tsouli et al., 2021). The numerosity stimuli were presented on a
423  69.84 x 39.29 cm LCD screen (Cambridge Research Systems) positioned behind the MRI bore.

424  Participants were required to lie still and view the display through a mirror attached to the head coil.
425  The total distance from the attached mirror to the display screen was 220 cm and the display

426  resolution was 1920 x 1080 pixels.

427  Two large, thin and red cross lines were presented in the entire display to aid accurate fixation at the
428  cross intersection in the center of the display. All items in the numerosity stimuli were positioned
429  pseudo-randomly and limited within a circle centered on the fixation of 0.75° of visual angle (radius),
430  minimizing the extent of the numerosity pattern, allowing it to be viewed without eye movements, and
431  falling within the population receptive field of fMRI recording site responding to the central visual
432 field. The pseudo-random positions of these items were constrained so that items were evenly spaced

433 throughout this limited circle, avoiding perceptual grouping. Each numerosity stimulus presentation
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434  contained a new pseudo-random dot pattern. We kept the total surface area of all display items

435  constant regardless of numerosity, so that display luminance was unaffected by numerosity.

436  In all conditions, the numerosities 1 through 7 and 20 were presented as dots on a gray background
437  (Fig. 1). Each numerosity stimulus was presented briefly (300 ms) to ensure participants had no time
438  to sequentially count the dots. The numerosity stimulus was followed by an interstimulus interval
439  (ISI) of 400 ms showing a uniform gray background, then the next numerosity stimulus. In each 1400
440  ms (one fMRI volume acquisition, TR), we first showed an adaptor numerosity, which differed

441  between three conditions, then a changing numerosity which was the same for all three conditions.
442 The changing numerosities varied from 1 through 7, with a baseline of 20 dots. For the changing

443 numerosities 1-7, this repeated three times (across three TRs) before the numerosity changed, to

444  ensure strong fMRI responses and allow enough time to distinguish the hemodynamic responses to
445  different numerosities. When the changing numerosity 20 this was repeated 12 times (across 12 TRs)
446  to better distinguish between numerosity-tuned and monotonic responses. A monotonically increasing
447  response to numerosity should have a high amplitude during this period. However, a tuned response
448  with a numerosity preference far below 20 (Cai et al., 2021) should have a lower amplitude during
449  this period because a numerosity of 20 dots should be well outside of the range that elicits strong

450  responses. This also allowed us to distinguish neural populations with very small tuning widths which
451  never responded to the changing numerosities 1 through 7, and populations with very large tuning
452 widths which always responded to these numerosities (Harvey et al., 2013).

453 In the low and high adaptor conditions, the alternating adaptor numerosity was held constant
454  at 1 and 20 respectively. In the changing adaptor condition, the same numerosities were shown in the
455  adaptor as the changing numerosity.

456 The changing numerosity stimuli were first presented in ascending order (1 to 7) for 4.2 s (3
457  TRs) each, next followed by 16.8 s (12 TRs) where the stimulus contained 20 dots, then followed by
458  the numerosities in descending order (7 to 1) for 4.2 s (3 TRs) each, finally followed by another same
459  long period of 20 dots. This sequence was repeated four times in each scanning run, resulting in a run
460  duration of 369.6s. Therefore, each of the changing numerosity stimuli 1 through 7 was shown for a
461  total of 24 times in each functional run. In the changing adaptor condition, these changing

462  numerosities were also shown as the adaptor, adding another 24 times in each run.

463 The dots showing both the adaptor and changing numerosities were shown in black in 90% of
464  dot presentations, while in the remaining 10%, the dots were shown in white (Fig. 1). Participants
465  were instructed to press a button when the dots were shown in white instead of black (which is very
466  easy at all numerosities) to ensure that they were paying attention to the stimuli during fMRI

467  acquisition. No numerosity judgments were required.

468

469  -Visual field mapping stimuli
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470  In a separate scanning session, visual field mapping was used to delineate visual field maps and

471  determine the position selectivity of our recording sites, following protocols described previously
472 (Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011; Paul et al., 2022). Briefly, a bar filled with
473  amoving checkerboard pattern stepped across a 6.35° (radius) circle in the display center in eight
474  (cardinal and diagonal) directions. Participants fixated the same central fixation cross, pressing a
475  button when this changed color to ensure fixation and attention.

476

477  -MRI data collection

478  fMRI acquisition procedure

479  We acquired MRI data on a 7T Philips Achieva scanner for a previously published study (Tsouli et
480  al., 2021). Similar acquisition protocols are described fully in other previous studies (Harvey et al.,
481  2015; Harvey & Dumoulin, 2017). Briefly, we acquired T1-weighted anatomical scans, automatically
482  segmented these with Freesurfer (http:/freesurfer.net), then manually edited labels to minimize

483  segmentation errors using ITK-SNAP (http://www.itksnap.org/). This provided a highly accurate

484  cortical surface model at the grey-white matter border to the characterize cortical organization of the
485  measured responses. Functional T2*-weighted 2D echo planar images were acquired using multiband
486  acquisition (multiband factor: 2) and anterior-posterior encoding, and a 32-channel head coil, at a
487  resolution of 1.77 x 1.77 x 1.75 mm, with a field of view of 227 x 227 x 70 mm. The TR was 1400
488  ms, echo time (TE) was 25 ms, and flip angle was 70°. Functional runs were each 273 time frames
489  (382.2 s) in duration, of which the first 9 time frames (12.6 s) were discarded to ensure the signal was

490  at steady state.

491 Three scanning sessions were required for each participant. In each scanning session, 3

492 functional runs were acquired for the changing adaptor condition (9 runs in total, total duration: 57
493 min 20 s) and 3-4 runs for the low and high adaptor conditions (in total 10 runs each for these

494  adaptation conditions in total, total duration: 63 min 42 s; with the exception of one participant where
495 9 runs were acquired for each condition due to technical issues). The additional run we acquired for
496  the low and high adaptor conditions helped ensure strong fMRI responses, because the changing

497  numerosity stimuli were presented less frequently due to the interleaved adaptor stimuli. The order of
498  the conditions was counterbalanced across runs within and between participants. Moreover, in each
499  session we acquired a top-up scan recorded with the opposite phase-encoding direction to correct for
500  image distortion in the gradient encoding direction (Andersson et al., 2003).

501

502  -fMRI preprocessing

503 The functional data was co-registered to the anatomical space using AFNI (afni.nimh.nih.gov;
504  Cox, 1996) as described previously (Paul et al., 2022; Tsouli et al., 2021; van Ackooij et al., 2022). A

505  single transformation matrix was constructed, incorporating all the steps from the raw data to the
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506  cortical surface model to reduce the number of interpolation steps to one. For the fMRI data, we first
507  applied motion correction to the functional data (3dvolreg). We also applied motion correction to the
508  images that were acquired using opposing phase-encoding direction, then determined the distortion
509 transformation between these and the functional runs (3dQwarp) to correct for spatial distortions in
510  the functional scans (3dNwarpApply). Then we determined the transformation that co-registers this
511  functional data to the T1 with the same resolution, position and orientation as the functional data

512 (3dvolreg). We finally determined the transformation from this T1 image to a higher resolution (1 mm
513  isotropic) whole-brain T1 image (3dUnifize, 3dAllineate). We applied the product of all these

514  transformations for every functional volume to transform our functional data to the whole-brain T1
515  anatomy. We repeated this for each fMRI session to transform all their data to the same anatomical
516  space. We then imported these data into Vistasoft’s mrVista framework

517  (github.com/vistalab/vistasoft) for analysis and model fitting. For each adaptation condition, the time
518  series of separate scans were then averaged together, resulting in a very high signal-to-noise ratio.

519

520  fMRI Data Analysis

521  Neural response models for responses to numerosity

522 For each fMRI recording site (voxel) we interpret the fMRI responses to the numerosity stimuli using
523  two neural response models: a numerosity-tuned population receptive field (pRF) model (Dumoulin &
524  Wandell, 2008; Harvey et al., 2013, 2015; Harvey & Dumoulin, 2017) and a monotonic response model
525 (DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). These each describe the recording site’s
526  response using a small set of parameters that we can then compare between adaptation conditions.

527 For the monotonic response model, the predicted neural response at each recording site is

528  proportional to the logarithm of the aggregate Fourier power (in the spatial frequency domain) of the
529  displays with each numerosity (Paul et al., 2022), shown at each time point. We convolved this neural
530  response time course with an HRF to give an fMRI response time course prediction. In each adaptor
531  condition, we used a general linear model to compare this prediction to the fMRI response time course
532 ateach recording site. This determined the slope of the relationship between the prediction and the
533 response (proportional to the neural response amplitude, following a positive or negative

534  relationship), together with the response variance explained by this scaled prediction. As we have

535  previously shown (Paul et al., 2022), this contrast-driven response model is closely but nonlinearly
536  related to a monotonic response to the logarithm of the presented numerosity in each display.

537  However, it predicts the responses of the early visual cortex and neural network to numerosity

538  displays more closely than numerosity does. We also repeated our analyses using a model describing
539  amonotonic response to the logarithm of the presented numerosity at each time point, giving very
540  similar results.

541 The numerosity-tuned pRF model describes the aggregate tuning of neural populations in

542 each record site using a logarithmic Gaussian function with two free parameters: preferred numerosity
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(mean of the Gaussian function) and tuning width (standard deviation of the Gaussian in logarithmic
numerosity space). We started by generating a large candidate set of combinations of preferred
numerosity and tuning width. For every candidate combination, we predicted a neural response time
course as the amplitude of the candidate neural response function at each time point’s presented
numerosity. We then convolved this candidate neural response time course with a hemodynamic
response function (HRF), giving a corresponding candidate fMRI response time course prediction.
For each fMRI recording site and stimulus condition, we chose the fMRI response time course
prediction that most closely followed the recorded response time series (by minimizing the sum of
squared errors between the predicted and observed fMRI time series). We then took the parameter
combination that generated this fMRI response time course prediction, together with the goodness of
fit of this prediction, for further analysis. We quantify this goodness of fit as the variance explained by
the model, i.e. R?, the proportion of the variance of the fMRI response time course that is outside the
residual of the fit model.

In modelling the responses to the adaption conditions, we fit two different models. One model
included only the aggregate Fourier power of the changing numerosity displays when making the
predictions of fMRI responses, while the other included both the adaptor display and the changing
numerosity display. We used the latter model for subsequent analyses as it was a complete description
of the presented stimulus. However, the stimulus was designed so that both models would produce
closely related predictions and parameter estimates. In the high and low adaptor conditions, the
adaptor presented a constant numerosity throughout the run. This should produce a constant response
throughout the run in both the monotonic and tuned response model. In such general linear modeling
frameworks, this adaptor then adds a constant component to the predicted response. FMRI data has an
arbitrary baseline that is anyway captured by another constant component in both models (which we
do not analyze), so any further constant component contributes to that baseline without affecting other
model parameters. In the changing adaptor condition, the adaptor presented the same numerosities as
the changing numerosity that our models’ responses follow. In general linear models, this doubles the
amplitude of the predicted response to the changing numerosity. This therefore halves the scaling
between the fMRI response and the predicted response to the changing numerosity display, compared
to a model that does not consider the response to the adaptor display. Considering this difference
between adaptation conditions thereby makes the amplitudes of responses to the changing numerosity
straightforwardly comparable between adaptation conditions. Any changes in fMRI responses
between adaptation conditions can only arise through non-linear interactions between response to the
adaptor and the changing numerosity stimuli.

It is important for further analyses to distinguish between monotonically increasing and
numerosity-tuned responses. We used the changing adaptor condition to identify responses to changes
in numerosity as we have used this stimulus design in previous studies (Harvey et al., 2013; Harvey &

Dumoulin, 2017; Paul et al., 2022; Tsouli et al., 2021) and it maximizes neural response amplitude


https://doi.org/10.1101/2024.08.29.610311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.29.610311; this version posted August 30, 2024. The copyright holder for this preprint

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

and the goodness of fit of our models. We fit both monotonic and tuned models to the averages of the
odd and even numbered scans in this condition. We then evaluated the response predictions of the
both resulting models on the complementary half of the data (i.e. cross-validation) because the tuned
model is fit from a larger set of predictions which follow more complex functions. During this
evaluation, we allowed the response predictions to rescale in amplitude (but not change sign) between
fitting and evaluation because the complementary halves of the data were often acquired in different
scanning sessions, which can arbitrarily differ in fMRI signal amplitude. We then computed the
residual sum of squared errors between the responses and predictions across both halves and for each
voxel chose the model with the lower residual.

A numerosity-tuned response can be clearly identified when the preferred numerosity is
within the range of the changing numerosities 1 through 7, because this shows the response amplitude
decrease for higher numerosities. Therefore, our numerosity-tuned pRF models make and test
predictions outside of this range to show that preferred numerosity estimates within this range predict
responses better than functions with a preferred numerosity outside of this range. A monotonic
response can be clearly identified when a monotonic response model fits better than a numerosity-
tuned model. However, voxels that fit slightly better by a numerosity-tuned model with a numerosity
preference above 7 are also likely to reflect monotonic responses, because our previous experiments
using a larger numerosity range demonstrate that very few voxels show numerosity-tuned responses
with preferences above 7 (Cai et al., 2021). We therefore also use monotonic models of voxels where
the numerosity-tuned model estimates a numerosity preference above 7.

Moreover, we also exclude from further analysis of numerosity-tuned pRF models the
recording sites for which the response models in the changing adaptor condition explained less than

0.2 of response variance.

Neural response models for visual field position and definition of visual field maps

We localized monotonic responses to the area around the occipital pole, the location of the visual field
maps of the early visual cortex (DeWind et al., 2019; Park et al., 2015; Paul et al., 2022). We
therefore asked how adaptation effects on monotonic responses are localized in these early visual field
maps. We fit the responses to the visual field mapping stimuli using a standard visual spatial pRF
analysis (Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011). We defined visual field maps
borders based on the reversals in the cortical progression of the polar angle of voxels’ visual field
position preferences, manually identifying these on an inflated rendering of each participant’s cortical
surface (Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011). These formed our main regions of
interest. As well as the early visual field maps (V1, V2, V3, hV4), we also identified mid-level visual
field maps (LO1, LO2 and V3A/B) which showed monotonically-responding recording sites in some

hemispheres.
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617  -Comparisons and statistics

618  In order to quantify the change in monotonic response amplitudes between different adaptation

619  conditions, we analyzed the parameters of monotonic models fit to the responses of recording sites in
620  each the early visual field maps (V1-V3, hV4, V3A/B, LO1, LO2). Specifically, we compared the
621  slope of the relationship between the monotonic response prediction and the recorded response, i.e.
622  the increase in amplitude of the neural response underlying the fMRI signal when the aggregate

623  Fourier power of the changing numerosity display increases by one (Fig. 3B). We also repeated this
624  using a log(numerosity) response model, where the slope parameter reflects the increase in amplitude
625  of the neural response underlying the fMRI signal when the logarithm of the presented numerosity
626  increases by one. This gave very similar results.

627 To make these comparisons between monotonic responses in the different adaptation

628  conditions, we first take all the recording sites within a visual field maps and extract their preferred
629  visual field positions from the visual field position response models. For each recording site, we then
630  extracted the fit slope from the monotonic numerosity response models for each adaptation. Within
631  each visual field maps, we then select recording sites that meet the following criteria for further

632  analysis: (1) where the preferred visual field position’s eccentricity is below 1°, i.e, recording sites
633  whose visual spatial population receptive field include the numerosity stimulus area; (2) the slope of
634  the monotonic model in the control condition is positive, so response amplitudes increase with

635  numerosity; and (3) the model variance explained in the control condition is at least 0.1,

636  corresponding to under 5% probability of observing these responses by chance. We then calculated
637  the average slope among the selected voxels in each visual field map in each hemisphere (i.e., in each

638  visual field map example) for each adaptation condition.

639 In subsequent analyses, for each visual field map, we use the resulting slope in each visual field
640  map example as independent measures. We first tested for significant differences between these

641  slopes and variance explained using the Wilcoxon signed rank test, where the values for each

642  hemisphere in one adaptation condition and paired with the values from the same visual field map
643  example in the other adaptation conditions, i.e., we tested whether the difference in these visual field
644  map examples’ slopes between these two adaptation conditions was significantly above zero. As we
645  performed this comparison separately for each visual field map, we performed a false discovery rate
646  (FDR) correction (Benjamini & Hochberg, 1995) on the resulting probability estimates, taking all
647  visual field maps into account.

648 We also ask whether the strength of the adaptation effect on the monotonic model slope

649  differed between visual field maps. This is complicated by the fact that, within each adaptation

650  condition, the slopes shows clear differences between visual field maps, making it difficult to interpret
651  any changes between adaptation conditions. We would expect a visual field map with a high slope or

652  high variance explained to be able to decrease this slope more (in absolute values) with adaptation.
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653  We therefore calculated the change in slope between the low and high adaptor conditions, between the
654  low adaptor and changing adaptor conditions, and between the changing adaptor and high adaptor
655  conditions. In each case, we divided this decrease in slope by the slope in the changing adaptor

656  condition to give a proportion by which the slope changed that was comparable between pairs of

657  conditions. Having calculated the proportion by which the slope decreased from these three

658  comparisons in each visual field map example, we performed separate two-factor ANOV As for each
659  pair of conditions (factors: visual field map and participant) to test whether the proportional decrease
660 in slope differs between visual field maps. These are corrected for multiple comparisons by using

661  Tukey’s honestly significant difference test (Tukey, 1949), which gives the marginal means and

662  confidence intervals shown in Fig. 4F.
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