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Commensal gut bacteria are key contributors to the resilience against pathogen invasion. This is 15 
exemplified by the success of fecal microbiota transplantation in treating recurrent Clostridioides 
difficile infection. Yet, characteristics of communities that can confer colonization resistance and 
the underlying mechanisms remain largely unknown. Here we use a synthetic community of 14 
commensal gut bacteria to uncover inter-species interactions and metabolic pathways 
underpinning the emergent resilience against C. difficile invasion. We challenged this synthetic 20 
community as well as fecal-matter-derived communities with antibiotic treatment and C. difficile in 
a continuous flow bioreactor. Using generalized Lotka-Volterra and genome-scale metabolic 
modelling, we identified interactions between Escherichia coli and Bacteroides/Phocaeicola sp. as 
key to the pathogen’s suppression. Metabolomics analysis further revealed that 
fructooligosaccharide metabolism, vitamin B3 biosynthesis, and competition for Stickland 25 
metabolism precursors contribute to suppression. Analysis of metagenomics data from patient 
cohorts and clinical trials attested the in vivo relevance of the identified metabolic pathways and 
the ratio between Bacteroides and Escherichia in successful colonization resistance. The latter was 
found to be a much stronger discriminator than commonly used alpha diversity metrics. Our study 
uncovers emergent microbial interactions in pathogen resistance with implications for rational 30 
design of bacteriotherapies. 
 
Clostridioides difficile infection (CDI) remains a significant challenge to healthcare systems. It has a high 
incidence in hospital settings due to antibiotic usage which disrupts healthy gut flora and facilitates CDI 
development and pseudomembranous colitis in humans [1, 2]. C. difficile's spore-forming ability further 35 
complicates treatment and contributes to a high recurrence rate, ranging from 13-50%, increasing with each 
subsequent recurrence [3, 4]. Thus, there is an increasing need for effective prevention and treatment 
strategies to manage CDI and mitigate its impact on patient health and healthcare systems. 
 
Current preventative measures include pre/probiotics and a fiber-rich diet, which aim to increase gut 40 
taxonomic and/or functional diversity. These measures have variable success, and the mechanisms of 
action, when successful, are not yet fully understood [5]. The clinical practice guidelines recommend oral 
vancomycin as the primary treatment for non-severe CDI, marking a shift from the earlier preference for 
metronidazole/vancomycin to vancomycin/fidaxomicin, with fidaxomicin offering the advantage of a lower 
recurrence rate of about 15–20% [6-13]. The introduction of bezlotoxumab as an adjunctive therapy has 45 
been shown to significantly reduce recurrent CDI and maintain a favorable safety profile [14, 15]. The 2013 
European Society of Clinical Microbiology and Infectious Diseases (ESCMID-CPG) guidelines recommend 
metronidazole for non-severe cases and vancomycin for severe CDI [6]. Research into new treatments like 
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ridinilazole as well as the development of vaccines, is ongoing and highlights the advancements in 
prevention and management of recurrent CDI [16, 17].  
Use of antibiotics – of the few that C. difficile is not (yet) resistant to – remains a major treatment route but 
has several adverse side effects, including promoting antibiotic resistance and further disruption of the gut 
microbial homeostasis [18]. Furthermore, the formation of C. difficile spores contributes to antibiotic 5 
resistance and the recurrence of infections. Other treatment strategies have been tested such as introducing 
nutrient competition using nontoxigenic C. difficile spores, and modulation of bile acid metabolism for 
boosting inhibitory compounds like deoxycholic acid and lithocholic acid [19, 20]. The most successful 
treatment approach yet is Fecal Microbiota Transplantation (FMT) with an overall efficacy rate between 75 
and 90% for managing rCDI [21-23]. This treatment is often accompanied by an increase in gut microbial 10 
diversity, yet its mechanism(s) of action are not well understood. The success of FMT underscores the 
emergent resistance provided by the commensal microbiota. Indeed, despite 5% of adults and 15-70% of 
infants being asymptomatically colonized by C. difficile, their healthy microbiome typically suppresses its 
proliferation/pathogenicity [24]. However, identification of the right donor for a patient remains an unresolved 
problem due to the lack of mechanistic insights into the resistance conferred by a community and complex 15 
interplay between the donor and the host microbiota [25]. Further, FMT carries risks due to the incomplete 
characterisation of the donor community, including the transmission of infectious agents and immunological 
side-effects [26]. In severe cases, transmission of multi-drug-resistance organisms have caused US FDA 
to issue safety alerts [27]. 
 20 
As a safer, more agreeable, and defined treatment option to FMT, bacteriotherapy – administration of a 
defined microbial cocktail – is emerging as a pre-clinically promising strategy for addressing dysbiosis and 
combating CDI. However, this strategy has faced challenges in clinical efficacy, as evidenced by trials [28-
30]. These outcomes highlight the intricacies of CDI treatment and suggest that a deeper understanding of 
community ecology, microbial interactions, and associated metabolic outputs is crucial. They also 25 
underscore that applying a monotonous treatment strategy to a diverse microbiome signature is often 
ineffective, calling for more tailored and dynamic therapeutic approaches. 
 
The diversity and dynamics of gut microbiota make it challenging to study the entire microbiome in terms of 
community ecology and associated colonization resistance mechanisms. To navigate this complexity, we 30 
used a synthetic community of 14 bacterial species from a culturomics library [31] that are representative of 
the core microbiome across populations [32]. Using this defined community, we identify ecological and 
metabolic interactions underpinning community resistance to C. difficile invasion even after antibiotic 
treatment. Towards assessing the in vivo relevance of our findings, we use fecal-matter derived community 
as well as perform analysis of all available C. difficile cohort metagenomics datasets. Overall, our findings 35 
reveal microbial interactions underlying the efficacy of bacteriotherapy and FMT in managing C. difficile 
infection. 
 
 
RESULTS 40 
 
Clostridioides difficile suppression by a 14-member gut bacterial consortium 
Fourteen bacterial species – Phocaeicola dorei, Roseburia faecis, Fusicatenibacter saccharivorans, 
Bacteroides uniformis, Bifidobacterium longum, Blautia obeum, Collinsella aerofaciens, Phocaeicola 
vulgatus, Parabacteroides merdae, Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides 45 
caccae, Escherichia coli, and Parabacteroides distasonis – were selected to assess their impact on C. 
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difficile following antibiotic treatment. These species were previously isolated from a pooled human fecal 
sample from six healthy donors [31]. The utility of this culture collection is derived from its uniform isolation 
process, where all bacterial strains were cultured using the same basal medium. Furthermore, these strains 
were derived from individuals who shared a similar diet and geographic region, ensuring a baseline of prior 
interaction among them. This uniformity in isolation conditions, coupled with their shared dietary and 5 
environmental background, positions these bacterial strains as suitable subjects for studying community 
ecology within the human gut. To extrapolate the identified community ecology to the diverse gut 
microbiome population, we selected bacterial species belonging to the core set of microbiome members. 
The selected 14 microbes represent members of the core human gut microbiota, defined as bacterial 
species present in 50% of the human gut population with a percentage abundance more than 0.1% [32].  10 
 
First, we sought to understand the association of these 14 bacterial species with Clostridioides difficile 
infection (CDI) in humans. To this end, we analyzed fecal shotgun metagenomics data from CDI-infected 
individuals (N=216, across 8 cohort studies), CDI-infected individuals treated with fecal microbiota 
transplantation (FMT) (N=222, across 6 cohort studies), and healthy individuals (N=251, across 10 cohort 15 
studies) from public datasets (Fig.1a, Suppl. Table 1). In patients with CDI, we observed a significantly 
lower relative abundance of P. dorei, R. faecis, B. obeum, F. sacchirovorans, B. uniformis, B. longum, C. 
aerofaciens, P. vulgatus, and P. merdae. Interestingly, the relative abundance of E. coli was significantly 
higher in CDI patients compared to healthy and FMT-treated individuals (Fig.1a). 
 20 
Next, we investigated whether the differential relative abundance of these bacteria between CDI- and non-
CDI individuals was related to individual C. difficile-inhibitory phenotypes. To address this, we conducted 
paired co-cultures of each of the 14 member species against C. difficile. The co-cultures were conducted 
under two different initial inoculum ratios; 1:4, representing a higher proportion of pathobiont to gut 
commensals as observed in dysbiotic states [33-37], and 1:9, corresponding to a lower proportion observed 25 
in non-dysbiotic states [38, 39]. Our findings revealed that P. dorei, B. caccae, R. faecis, and B. 
thetaiotaomicron were the most effective inhibitors, regardless of the initial inoculum ratio (Fig. 1b). This 
inhibition was also independent of the individual bacterial generation time, suggesting a critical role of 
factors other than nutrient competition (Suppl. fig. 2). Most other species exhibited differential inhibition 
between the initial inoculum ratios tested; with B. ovatus even showing a significant boost of C. difficile load 30 
for the 1:4 inoculum ratio, while showing a significant inhibition for the 1:9 inoculum ratio. 
 
Interestingly, a subset of the strong and consistent individual suppressors, i.e., B. caccae and B. 
thetaiotaomicron, did not demonstrate higher prevalence in healthy individuals (Fig. 1a,b). Conversely, 
species that have a lower relative abundance in CDI patients, e.g., P. merdae and B. obeum, did not exhibit 35 
significant individual suppressive capacity. Collectively, these results indicate that community interactions 
rather than individual species presence/abundance determine colonization resistance against C. difficile, 
potentially due to taxonomically distinct but functionally equivalent species in healthy and diseased samples 
carrying out similar metabolic functions.  
 40 
Bacteroides caccae is a key contributor to C. difficile suppression by Mix-14 consortium 
Since most of the selected species exhibited a lower differential relative abundance in CDI patient 
metagenome samples (Fig. 1a), as well as successful individual inhibition of C. difficile in at least one of 
the tested pairwise inoculum ratios (Fig. 1b), we hypothesized that a consortium of these 14 bacterial 
species could collectively resist C. difficile colonization. Given that these 14 bacterial members are 45 
prevalent across the healthy population, understanding their dynamics and interactions could help us 
comprehend the mechanisms behind colonization resistance observed at host-level. Further, to mimic the 
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flow of nutrients in the gut, we used a continuous flow mini bioreactor array (mBRA) model [40] to 
understand the bacterial interactions between these strains in the presence and absence of abiotic 
(antibiotic) and biotic (C. difficile) perturbations. For this reason, we assembled a consortium of these 14 
bacterial members (referred to as Mix-14 hereafter) the bioreactor model system [40]. After establishing a 
stable community, we administered antibiotics for multiple consecutive days, followed by biotic perturbation 5 
via C. difficile infection (Fig.1c). We observed stabilization of community optical density (OD) and pH 
throughout the experiment for the assembled Mix-14 community in all perturbation regimes studied (Suppl. 
fig. 1a,b). As hypothesized, Mix-14 successfully inhibited C. difficile invasion (i.e., endpoint log10 CFU/mL 
of < 3.5, i.e., at least five orders of magnitude lower than the C. difficile control), with the antibiotic-perturbed 
Mix-14 showing a more promising inhibition pattern (Fig. 2a). 10 
 
To test whether Mix-14 can confer C. difficile colonization resistance in a more complex community, we 
tested Mix-14's ability to eliminate already-invaded C. difficile in a fecal community background. In this 
setup, instead of initially inoculating with Mix-14, we inoculated the bioreactor wells with the same fecal 
sample (mix of 6 donors) from which the culture library was created. These communities were then 15 
subjected to antibiotics perturbation, followed by C. difficile infection and subsequent Mix-14 treatment (Fig. 
1d). As hypothesized, Mix-14 intervention successfully eliminated C. difficile against a fecal background too 
(Fig. 2b). 
 
To understand shifts in Mix-14 community composition and dynamics post-perturbation, we analyzed 16S 20 
amplicon sequencing data gathered daily over the complete 23-day bioreactor timeline. Our results showed 
a robust assembly of bacterial communities in all conditions pre- or without perturbation (Fig. 2c, d). 
Curiously, Mix-14 control’s final community composition was more dissimilar to Mix-14 inoculated with C. 
difficile than Mix-14 inoculated with antibiotics and/or C. difficile (Fig. 2d). This suggests not only that C. 
difficile induced many shifts within the community despite being suppressed, but also that the changes in 25 
community composition following antibiotics dampen the transient effects of C. difficile inoculation. 
  
Suppressive function and antibiotic response of the consortium is an emergent property  
The stabilized Mix-14 community consisted of E. coli and F. saccharivorans as top-abundant members, 
followed by R. faecis, B. thetaiotaomicron, C. aerofaciens, B. obeum, and B. caccae, with the rest of the 30 
bacterial species remaining in lower (< 10^-2) or undetectable relative abundance. Interestingly, except for 
E. coli, no other bacterium exhibited monoculture growth that scaled with its final relative abundance in the 
community. For example, F. saccharivorans showed the lowest monoculture growth while being one of the 
top-abundant species in the community in absence of perturbations, indicating that individual bacterial 
phenotypes do not necessarily relate to net community performance (Suppl. fig. 2), and further emphasizing 35 
the role of community interactions. 
 
Following the antibiotics treatment, we observed a notable shift in community composition and dynamics in 
Mix-14 compared to the non-perturbed condition (Fig. 2c,d). E. coli and B. caccae showed the highest 
relative abundance post-antibiotics. While E. coli exhibited a decline in relative abundance during the 40 
antibiotics treatment (day 8-11), it recovered once the antibiotics were flushed out of the system, consistent 
with a bacteriostatic effect of the xenobiotic (Fig. 2c). The sensitivity to antibiotics measured in monoculture 
did not align with observed community abundance trends. For instance, B. caccae strongly increased in 
relative abundance post antibiotic perturbation, despite showing strong sensitivity to the antibiotics in 
monoculture (Suppl. fig. 3). This community-level cross-protection is in line with the recent observations in 45 
another gut bacterial community [41]. In our study, distinct compositional shifts also emerged after C. 
difficile was introduced without a preceding antibiotics treatment; the Mix-14 community showed an 
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increase in relative abundance for B. caccae, along with B. longum, B. obeum, and C. aerofaciens, 
indicating transient rewiring of community interactions by C. difficile.  
 
Impact of C. difficile introduction following antibiotic treatment is synergistic and transient 
In the absence of pathogen invasion or antibiotic treatment, the communities assembled robustly, indicating 5 
that the observed impact of perturbations is not confounded by variability in the pre-perturbation state of the 
communities (Fig. 2c,d & Suppl. fig. 4). Since C. difficile was suppressed in Mix-14 treated with or without 
antibiotics, the pathogen’s invasion was transient. C. difficile’s short-lived infection of Mix-14 led to 
significant community shifts, even when not preceded by antibiotics (Fig. 2d). Some species responded 
similarly to either perturbation, such as B. caccae benefitting from both antibiotics as well as C. difficile 10 
inoculation, while F. saccharivorans and R. faecis suffered from the abiotic and biotic perturbation. 
 
To further understand the similarities in community-level responses to either or both perturbations across 
all Mix-14 member species, we constructed a correlation network (Suppl. fig. 6). Within this network, we 
discerned three distinct clusters. Notably, one cluster comprising B. thetaiotaomicron, P. distasonis, and P. 15 
dorei demonstrated a positive covariance post-antibiotic treatment. This cluster, henceforth referred to as 
the suppressive ecological cluster (SEC), is characterized by its members' robust individual suppressive 
abilities (Fig. 1b). The second cluster, made of F. saccharivorans and R. faecis, positively covaried with 
each other and negatively covaried with C. difficile inoculation and B. caccae. In the third cluster, B. longum, 
B. obeum and C. aerofaciens positively covaried with each other, yet negatively correlated with E. coli, B. 20 
caccae and the antibiotics treatment. Yet, this cluster virtually reaches zero relative abundance following 
antibiotics treatment and was thus considered of negligible importance in driving post-antibiotics C. difficile 
suppression by Mix-14. 
 
B. caccae imparts C. difficile resistance to fecal-matter-derived communities 25 
Next, we investigated the degree to which the increase in the relative abundance of B. caccae post-
antibiotic exposure and/or C. difficile infection contributed to colonization resistance. We treated the C. 
difficile-infected fecal community with B. caccae, Mix-13 (Mix-14 minus B. caccae), and a mock community 
that is comprised of three species from Mix-14 (i.e., E. coli, B. uniformis, P. vulgatus) based on their diverse 
monoculture phenotypes (Suppl. fig. 2), with or without B. caccae (Mix-4 and 3, respectively). Our results 30 
showed that only when B. caccae was present in the intervention treatment, the host fecal community 
exhibited similar colonization resistance compared to the healthy, non-AB treated fecal control (Fig. 2b). 
Altogether, our results suggest that Mix-14 – both in antibiotics-perturbed and non-antibiotics-perturbed 
states – could aid community resistance against colonization by C. difficile, with B. caccae being the key 
player mediating this inhibition. In accordance with Mix-14 community composition and dynamics, fecal 35 
communities displayed extensive shifts in composition as a result of antibiotics treatment (Suppl. fig.7 & 8). 
Yet, they stabilized following perturbation and were defined by minimal inter-replicate Bray-Curtis 
dissimilarity between post-perturbation timepoints day 20 and day 23 (Suppl. Fig. 7), containing >15 genera 
with a mean relative abundance of >1% in all conditions (Suppl. fig. 9). These genera included the key 
genera of Mix-14, with predominant representation of Bacteroides/Phocaeicola, Bifidobacterium, and 40 
Escherichia/Shigella across all conditions. Henceforth, we refer to Bacteroides as the taxonomic grouping 
for both Bacteroides and Phocaeicola, and refer to Escherichia for both Escherichia and Shigella. 
 
Bacteroides to Escherichia ratio underpins suppressiveness of both synthetic and fecal-matter-
derived communities 45 
Since perturbed Mix-14 and some fecal communities were C. difficile-suppressive, it was of interest to 
discover which shared taxonomic compositional signatures may be key in conferring suppression. No 
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appreciable genus-level shifts were found to characterize the difference between suppressive and non-
suppressive states in both Mix-14 and fecal-background communities (Fig. 2e). Yet, we found that the ratio 
of Bacteroides to Escherichia and Bacteroides to Fusicatenibacter was associated with the composition of 
suppressive communities shared between the Mix-14 and fecal backgrounds. However, since the latter 
ratio is an artefact of Fusicatenibacter reaching near-zero abundance after perturbation, we did not regard 5 
this as a reliable indicator of potential key interactions. The significant discriminatory power of the ratio 
between Bacteroides and Escherichia – while either genus alone fails to achieve the same – further 
supports that the suppressive effect of Bacteroides caccae on C. difficile is not merely a matter of its 
abundance but also depends on its proportion within the microbial community, highlighting the complex role 
of community composition in resistance (Fig. 2f). 10 
 
We further investigated internal community configurations as potential ‘biomarkers’ of suppressiveness, 
assessing the complete combinatorial space of bacterial ratios at 2:1 ([Genus A + Genus B] to genus C), 
allowing the lower-abundant genera to reveal statistical relevance in relation to other genera. Of the 168 
ratios thus tested, 24 were found to be significant. In addition to the ratio of Bacteroides (+ other genera, 15 
such as Parabacteroides) to Escherichia being significantly higher in perturbed and/or suppressive states 
of both Mix-14 and fecal background communities, several inverse ratios, e.g., Escherichia + Roseburia to 
Bacteroides were significantly lower (Fig. 2g). Some of these ratios, such as Bacteroides + Parabacteroides 
to Escherichia, were significant despite the added genus; i.e., the added genus slightly reduces the 
statistical power of the underlying 1:1 ratio that ‘carries’ the significance. Yet, additional genera outside of 20 
this statistical ‘masking’ effect were revealed to be associated with suppressive sub-communities. For 
instance, in fecal communities, the ratio of Bifidobacterium + Escherichia to Bacteroides was a stronger 
discriminator (p = 0.0004) than Escherichia to Bacteroides (p = 0.014). To assess to what extent these 
ecological signatures of suppression related to higher alpha diversity – the ecological signature typically 
associated with C. difficile suppression [2] – we investigated the correlation between these metrics. The 25 
ratio of Bacteroides to Escherichia correlated significantly with alpha diversity (Fig. 2h, Suppl. Table 2). 
Altogether, our analysis supports the ratio of Bacteroides to Escherichia as one of the key ecological 
signatures of C. difficile inhibition in vitro, along with higher alpha diversity.  
 
Genome-scale modelling identifies metabolic interactions connecting C. difficile suppressive 30 
consortium 
Genome scale metabolic models were reconstructed for the Mix-14 consortium species based on the 
assembled genome sequences and used to assess auxotrophies and potential inter-species dependencies 
using flux balance analysis (FBA). F. saccharivorans featured 11 auxotrophies, including that for riboflavin 
and benzoate, which might make it more susceptible to environmental variations impacting availability of 35 
these nutrients. On the other side, B. caccae, which negatively correlated with F. saccharivorans, harbours 
more biosynthetic capabilities, rendering it relatively less dependent on nutritional fluctuations. Notably, C. 
difficile was predicted to be auxotrophic for a range of amino acids, including L-isoleucine and L-tryptophan, 
indicating susceptibility to competitors for these metabolites. In single-species simulations, both B. caccae 
and C. difficile showed a preference for L-isoleucine suggesting competition between the two in the 40 
experimental conditions. 
Next, we used metabolic models for simulating metabolic competition and cross-feeding within the Mix-14 
consortium. The simulations predicted that E. coli is a potential donor providing various metabolites to eight 
community members, as well as C. difficile (Fig. 3a). Consistent with its auxotrophies, C. difficile was 
predicted to be dependent on the supply of isoleucine and tryptophan from other community members 45 
(Methods). Both amino acids are Stickland fermentation substrates supporting the growth for C. difficile [1]. 
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This metabolic role of E. coli’s suggests that its contribution to Mix-14 in colonization resistance goes 
beyond competitive exclusions despite its dominance in the community. 
 
Ecological modelling uncovers interaction between Bacteroides and Escherichia driving C. difficile 
suppression 5 
Our data shows C. difficile suppression to be an emergent, community-scale property rather than the result 
of a direct/pairwise and isolated interaction between C. difficile and any resident community member. To 
uncover the ecological network underpinning this emergent phenomenon, we used an ODE-based 
modelling approach. We first inferred and/or constrained the net interactions between community members 
using available in vitro experimental data, including the carbon utilization patterns (95 C-sources) at species 10 
and community-scale (Biolog, Suppl. fig. 10), correlation networks within the relative abundance data 
(Suppl. fig. 6), community final ODs, individual inhibition phenotypes (Fig. 1b), as well as in silico data 
generated via genome-scale metabolic modelling (Fig. 3a). For instance, the anti-correlative behavior 
around system equilibrium between the main community members E. coli and F. saccharivorans (without 
antibiotics) or B. caccae (with antibiotics) as seen in Fig. 2c suggests some type of stable co-existence or 15 
non-antagonistic interaction. See Suppl. Table 3B for complete details of interaction inference and 
constraints used in the model.  
 
However, not all sources of data used for interaction type inference agree on (or provide information for) 
each respective interaction direction or strength. Hence, to explore the variability thereof, we employed a 20 
generalized Lotka-Volterra-based model to test how different configurations of the interaction landscape, 
explored via random permutation (i.e., 1.5 million iterations tested), could reproduce composition 
distributions, Shannon alpha diversity and C. difficile suppressiveness observed for Mix-14 in vitro (Methods 
4.2.2., Fig. 3b, Suppl. fig. 4 & 5).  
 25 
The modelling results reveal that, to achieve an in silico community capable of reproducing observed 
suppressiveness, an interaction landscape with a positive effect of E. coli on B. caccae, and in turn of B. 
caccae on the suppressing SEC-species, was key (Suppl. fig. 11a). In order to achieve observed alpha 
diversity, the model predicts the interaction landscape is also defined by a positive effect of E. coli on the 
SEC-species (Suppl. fig. 11b), which would correspond with the strong correlations between the end-point 30 
relative abundances of these groups (Suppl. fig. 6). Fig. 3b shows key interactions within Mix-14 that the 
model results predict to represent observed community ecology and associated community outcomes. The 
importance of the predicted key positive pairing between E. coli, B. caccae, and SEC-species corresponds 
with findings observed for fecal communities (Fig. 2 e-h), and were subsequently validated in vitro (Fig. 3c). 
For instance, only when paired with B. caccae did the combination of SEC-species B. thetaiotaomicron and 35 
P. distasonis show significant suppressive capacity (final C. difficile CFU/mL >2 orders of magnitude lower 
than control, Fig. 3c). This suppressive capacity was strongest when B. caccae and E. coli were also 
present, yet their paired combination alone could closely approximate this suppressive capacity (also final 
C. difficile CFU/mL >2 orders of magnitude lower than control, Fig. 3c), emphasizing the enhancement of 
B. caccae’s suppressive potential by E. coli. Altogether, the ecological modelling results indicate the 40 
importance of the interaction between B. caccae and the SEC-species, as well as the interaction between 
E. coli and B. caccae, in conferring community suppressiveness. 
 
Metabolomics reveals competitive and inhibitory molecules associated with C. difficile suppression 
To hunt for molecular mechanisms associated with Bacteroides-mediated suppressiveness shared 45 
between Mix-14 and fecal communities, we used comprehensive metabolomics analysis and thereby 
contrasted molecular phenotypes between metabolic landscapes considered suppressive and non-
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suppressive. Mix-14 + AB, Mix-14 + AB + C. difficile, Fecal, Fecal + AB + C. difficile + B. caccae, Fecal + 
AB + C. difficile + Mix-14 were conditions considered suppressive, while control Mix-14 community, Fecal 
+ AB, Fecal + AB + C. difficile were considered non-suppressive. Combining data derived from defined and 
undefined communities adds considerable background ‘noise’ and other sources of variability that may 
impede useful statistical comparisons. Hence, to increase replicate space and enhance the ability to find 5 
statistically significant trends in the metabolomics data, we used the previously found compositional 
signatures associated with suppressiveness to guide the extrapolation of suppressiveness capacities of 
metabolic landscapes belonging to experimental conditions unchallenged by C. difficile. For instance, we 
considered the supernatant of fecal control as metabolically ‘suppressive’, since the condition ‘fecal + C. 
difficile’ was suppressive. Similarly, we considered the supernatant of ‘Mix-14 + antibiotics’ as ‘suppressive’, 10 
since ‘Mix-14 + antibiotics + C. difficile’ was suppressive. This method of extrapolation may introduce false 
positive or negative assignments of metabolites as suppression-associated, however, since community 
compositions of extrapolated communities were very similar to their C. difficile–challenged counterparts, 
this limitation was considered of negligible importance.  
 15 
We found a total of 47 metabolites with significant differential abundance (Wilcoxon rank sum test, BH 
adjusted p-value < 0.05) between C. difficile-suppressive and non-suppressive samples (Fig. 4a). Out of 
these 47 metabolites, 36 were depleted in suppressive samples, and 11 were enriched. Out of the 36 
depleted metabolites, 16 corresponded to amino acids and their derivatives, hinting at the importance of 
these substrates for C. difficile’s growth via Stickland metabolism. This is in line with previous metabolomics 20 
studies on C. difficile pathogenesis. For example, enrichment of lipids and metabolic byproducts during C. 
difficile colonization was previously noted [42], and accordingly, these metabolites were depleted in our 
suppressive samples. 
 
Two of the top metabolites enriched in suppressive communities were the fructooligosaccharides (FOS) 25 
1,1-kestotetraose (fold change = 34.0, adjusted p-value = 0.034) and 1-kestose (fold change = 7.6, adjusted 
p-value = 0.048). This is in line with nondigestible oligosaccharides enhancing colonization resistance 
against C. difficile in vitro [43]. FOS are known byproducts of fructan metabolism, including by Bacteroides 
thetaiotaomicron: one of the members of Mix-14’s suppressive subcommunity [44]. Inulin, a fructan, was a 
major component of the growth medium, and thus a likely source of 1-kestose and 1,1-kestotetraose 30 
catabolism. The increased abundance of these two compounds, coupled with the observed evidence of 
widespread fructan (e.g., levan, inulin) metabolism in the genomes of Mix-14 members (Fig. 4b), suggests 
that fructan metabolism and associated increase in fructooligosaccharides are important drivers of C. 
difficile suppression. 
 35 
Nicotinamide riboside, vitamin B3, is another highly enriched metabolite (fold change=11.2, p-
adjusted=0.00016). Vitamin B3 is a NAD+ precursor that can be synthesized de novo by Bacteroides [12] 
[45]. Enrichment of this metabolite in suppressive samples suggests a potential shift toward de novo B3 
biosynthesis, which could result in competition with C. difficile for amino acid precursors like tryptophan and 
may alter the availability of NAD+ [46]. Genes in vitamins B1 and B3 biosynthesis pathways were detected 40 
in genomes of Mix-14 Bacteroides/Phocaeicola (Fig. 4c): a key genus for suppression in Mix-14 alone as 
well as fecal backgrounds. These metabolic shifts are associated with the changes in Bacteroides to 
Escherichia ratio (Fig. 4d) supporting the functional role of vitamin biosynthesis in the pathogen 
suppression. 
 45 
Three of the top metabolites depleted in suppressive samples compared to non-suppressive were the short 
chain fatty acyl-CoAs: butyryl/isobutyryl CoA (fold change = 0.15, adjusted p-value = 0.00032), propionyl 
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CoA (fold change = 0.24, adjusted p-value = 0.00074), and acetyl CoA (fold change = 0.39, adjusted p-
value = 0.023). The polyamine N1,N12-diacetylspermine (fold change = 0.3, adjusted p-value = 0.037) was 
similarly enriched in non-suppressive samples, hinting at C. difficile’s growth via polyamine (i.e., spermine) 
metabolism. Finally, NAD+ (fold change = 0.5, adjusted p-value = 0.0014) was depleted in suppressive 
samples relative to non-suppressive. The enrichment of NAD+ and short chain fatty acyl-CoAs, which are 5 
involved in the regeneration of NAD+ [47, 48], in non-suppressive samples points towards their importance 
in redox homeostasis for C. difficile’s growth. Moreover, the Wood-Ljungdahl pathway has been shown to 
be upregulated during pathogenesis [49] and results in the production of acetyl-CoA and NAD+. These 
results are concordant with C. difficile inducing NAD+ regenerating pathways in response to availability of 
microbiota-produced metabolites following antibiotics treatment [50]. Moreover, the availability of NAD+ 10 
(relative to NADH) was demonstrated to play a significant role in the regulation of toxin production [51].  
 
Cyclic dipeptides were also enriched in non-suppressive samples (mean fold change = 0.7, adjusted p-
value < 0.001). C. difficile was previously shown to release proline-based cyclic dipeptides, D/L cylco(Leu-
Pro) and D/L cylco(Phe-Pro), during colonization and under antibiotic-induced conditions [52]. These 15 
molecules were shown to be quorum sensing as well as having antibacterial properties which have been 
proposed to be involved in C. difficile colonization and pathogenesis [52, 53]. Accordingly, we observed four 
proline-based cyclic dipeptides enriched in non-suppressive samples: cyclo(Pro-Tyr) (D,L), cyclo(Phe-Pro) 
(D,L), cyclo(Pro-Val) (D,L), and cyclo(His-Pro) (D,L), suggesting that they may be a strategy employed by 
C. difficile during invasion. Furthermore, cyclo(Pro-Val) (D,L) was shown to be a diketopiperazine and beta-20 
glucosidase inhibitor [54], suggesting a mechanism by which inulin degradation can be modulated by C. 
difficile.  
 
Fructan metabolism is associated with C. difficile suppression 
Mechanistically, fructooligosaccharides likely inhibit C. difficile’s growth through decreasing its adhesion 25 
capacity and thus making it more susceptible to wash-out [55]. Longer fructopolysaccharides like inulin do 
not impact adhesion [55], thus implying that microbial community metabolism is essential. To identify which 
species were responsible for the observed fructooligosaccharides (i.e. kestose and kestotetraose) peak in 
suppressive samples (Fig. 4a), we searched the corresponding genomes for the genes known to be 
involved in fructan metabolism. Although some bacteria have been shown to biosynthesize 30 
fructooligosaccharides de novo, there were no associated hits for biosynthesis across genomes of Mix-14 
members. On the other hand, 211 hits were associated with 14 fructan degradation polysaccharide 
utilization loci (PULs). Notably, B. longum and C. difficile lacked any fructan degrading PULs. Yet, B. 
thetaiotaomicron (SEC-species), B. ovatus, B. caccae, and B. uniformis possessed 50, 36, 26, and 22 
fructan degradation PULs, respectively (Fig. 4b). Of all Mix-14 species, F. saccharivorans had the most 35 
genes annotated for the metabolism of kestose (PUL0024), contrasting with most species that had very few 
to none, like E. coli or C. aerofaciens possessing one and two hits, respectively. 
Several species that performed well in communities after antibiotics treatment or C. difficile challenge, 
including key player Bacteroides caccae, thus encode genomic capabilities to metabolise fructan sources 
into fructooligosaccharides, while species that can metabolise kestose, such as F. saccharivorans and R. 40 
faecis, were sensitive to either perturbation (Fig. 2c, Fig. 4b, Suppl. fig. 4b). The observed 
fructooligosaccharides increase thus likely results from increased fructan metabolism and reduced kestose 
metabolism (Fig. 4a). In addition, a recent study emphasised how Bifidobacterium and F. saccharivorans 
abundance markedly increased in human feces following 1-kestose treatment, suggesting benefit or growth 
on this fructooligosaccharide in vivo as well [56]. Further, a recent, large-scale gut study provides evidence 45 
of Bifidobacteria’s fructooligosacharide utilization [57]. Moreover, [58] demonstrated that successful FMT 
treatment (and thus C. difficile suppression) in pediatric recurrent CDI (rCDI) patients was linked to 
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consistent compositional shifts – including an increase in Bacteroidaceae and decrease in 
Enterobacteriaceae – correlating with an enhanced capacity for complex carbohydrate degradation. These 
observations further support the translational nature of the link between C. difficile suppression, ratio of 
Bacteroides to Escherichia, and complex sugar metabolism as found in our study. 
 5 
 
Bacteroides to Escherichia ratio, fructan metabolism, and Stickland metabolism are linked with C. 
difficile suppression in patient cohort data 
To confirm the translational relevance of the compositional and metabolic signatures of C. difficile 
suppression observed in our bioreactor experiments, we analyzed 689 metagenome fecal samples from 10 10 
published C. difficile cohort studies (Fig. 1a, Methods). To do so, we checked for the abundance of key 
genes involved in the fructooligosaccharides (FOS), Stickland, and B3 metabolic pathways among 
metagenomes of healthy, FMT-treated, and C. difficile infected (CDI) individuals (Fig. 1a, Suppl. Table 1). 
We found significantly fewer gene hits for all three pathways across non-suppressive (CDI) fecal samples 
compared to suppressive ones (healthy, post-FMT) (Fig. 5a). This result indicates these metabolic 15 
pathways might have a role in suppressing CDI in vivo.  
 
Furthermore, we checked whether the difference in bacterial ratio (Bacteroides to Escherichia) observed in 
our in vitro studies was also present in patient metagenomic samples. As hypothesized, the Bacteroides to 
Escherichia ratio was significantly lower in the CDI patients compared to the healthy individuals (Fig. 5b).  20 
Since Bacteroides relative abundance was not significantly different between the suppressive and non-
suppressive communities (Fig. 5c), this confirms the importance of the ratio rather than Bacteroides alone 
in the association with suppression. To further assess whether the ratio of Bacteroides to Escherichia might 
serve as an important variable in explaining or predicting the success of designed bacteriotherapeutic 
interventions for treating recurrent CDI, we also analyzed the metagenomic datasets of a study [59] showing 25 
the potential of a live biotherapeutic mix (i.e., “second generation FMT”), RBX2660, that was shown to be 
effective in recovering patients from rCDI (Suppl. fig. 14). The dataset includes a subset of cases of patients 
who were treated with the mix but still suffered from rCDI within 60 days post-treatment. We observed that 
the ratio of Bacteroides to Escherichia was significantly lower (Mann-Whitney U test, BH-adjusted p < 0.05) 
both between placebo and treated patients, as well as successfully treated and unsuccessfully treated 30 
patients (Fig. 5d, Suppl. fig. 13). While the Bacteroides to Escherichia ratio strongly distinguished between 
placebo and all treatment groups (i.e., single-, double-, or open-label treatments) at post-treatment stages 
(p < 3e-05, Fig. 5d & Suppl. fig. 13), Shannon alpha diversity is a less effective differentiator; within 
treatment groups, it did not statistically differentiate successful from unsuccessful treatments. Between 
treatment groups, the only significant differences in alpha diversity were between open-label treatment and 35 
placebo (p = 0.04), as well as between single treatment and open-label treatment (Fig. 5e). This implies 
that alpha diversity is not a strong metric in differentiating treatment groups from placebo groups, or in 
differentiating successful from unsuccessful patients. Even when single dose and double dose treatment 
data were grouped together, these trends held (Suppl. fig. 13). 

Since both the differential microbial ratio (found in the 16S data of our Mix-14 and fecal community 40 
experiments) and differential gene presence (of pathways associated with metabolites found to be 
differentially abundant in our experiment’s metabolomics data) were found in the patient metagenome data, 
we further tested whether these signatures were related. As shown in Fig. 5f, the Bacteroides to Escherichia 
ratio positively correlated with the abundance of fructooligosaccharide- and Stickland metabolism related 
genes, revealing clusters of CDI (low alpha diversity, low gene counts and low ratio) and suppressive (high 45 
alpha diversity, high gene counts and high ratio) patient fecal communities (Fig. 5f). Similar clustering was 
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observed for vitamin B3 biosynthesis pathway-related genes (Suppl. fig. 15). Altogether, our results indicate 
that suppressive communities (healthy and FMT-treated) show an increase in associated Bacteroides to 
Escherichia ratio, which in turn is associated with fructooligosaccharide- and Stickland metabolism 
pathways. Finally, our findings from in vitro bioreactor-based experiments with mathematical modeling were 
consistent with patient metagenome samples, showing the in vivo relevance of the methods utilized.  5 
 
 
DISCUSSION 
 
The suppression of enteric pathogens such as C. difficile by gut microbiota in controlled by complex and 10 
multifactorial mechanisms [60, 61], including direct inhibition [62], enhancement of the host immune 
response [63, 64], nutrient competition [65, 66], and modulation of secondary metabolism [67]. The success 
of FMT in suppressing CDI suggests that multiple mechanisms need to be operating simultaneously to 
achieve pathogen suppression. Some of these mechanisms are well understood, such as the inhibition of 
C. difficile associated with the conversion of primary bile acids into secondary bile acids [68, 69] and the 15 
increased production of short-chain fatty acids [70]. However, the overall outcome of pathogen suppression 
can vary with subtle changes in microbial community interactions. For instance, some cases of FMT still 
fail to resolve rCDI [71]. A deeper understanding of microbial interactions is therefore necessary to develop 
defined bacterial therapeutics, improve treatment outcomes, and to identify microbiome-based biomarkers 
for stratifying treatment strategies. 20 
 
Together, our experiments using synthetic and fecal-matter-derived communities, metabolomics data, 
mathematical modelling, and cohort metagenomics data analysis uncover the ratio between Bacteroides 
and Escherichia as a key feature of C. difficile suppressive capacity of a gut microbial community. While 
this implies that having no Escherichia would impart higher colonization resistance, mathematical modelling 25 
of our synthetic gut community suggests that relatively low levels of E. coli contribute to community 
suppressiveness by positively interacting with B. caccae. This non-intuitive conjecture of the model was 
validated in vitro, wherein a combination with E. coli showed higher suppressive capacities compared with 
B. caccae or other suppressive species alone.  
 30 
Notably, E. coli’s support of B. caccae is key, further enabling commensal or mutualistic interactions with 
other co-suppressors like P. distasonis. In the absence of B. caccae and other co-suppressors from the 
community, E. coli and C. difficile can co-exist in high relative abundances. These findings showcase the 
importance of non-linear, higher-order, interactions in successful pathogen suppression, and provide 
mechanistic insights into high variability observed across individuals and treatments, including the 35 
inconsistent success rates of bacteriotherapy in preventing or recovering recipients from CDI [72]. In 
addition, emergent interactions explain inconsistencies in associations between individual taxa and disease 
states. For instance, E. coli has been linked to both CDI suppression [73] and occurrence [74, 75]; and 
Bacteroides – a key co-suppressing taxon in our study – has previously been linked to CDI suppression 
[76] as well as CDI occurrence [2]. Pathogen suppression is thus an emergent property of community 40 
interactions. 
 
The importance of shifting the focus away from individual taxa and towards ecological networks to link gut 
composition with health outcomes has also been emphasized previously in chronic fatigue [77], engraftment 
success [78]; and response to cancer immunotherapy [79]. The non-linear ratio signature that we observed 45 
surpasses any single taxon in characterizing successful CDI suppression, but also community-scale metrics 
such as alpha diversity. Community alpha diversity is currently considered a major contributor in pathogen 
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suppression as well as many other microbiota-linked host-benefits [2, 80]. A combination of in vitro and in 
vivo analyses as demonstrated in this study could therefore be used to identify ecological processes 
governing structure-function relationship in other microbiome-linked disease states. 
 
At molecular level, we find that the suppression of C. difficile is, at least partially, mediated by small 5 
molecules produced and exchanged by the suppressive sub-community. The corresponding interactions 
encompass both inhibition and nutrient competition with the pathogen. The inhibitory molecules identified 
in our study include fructooligosaccharides (FOS) like 1-kestose and 1,1-kestotetraose, which have 
previously been shown to modulate C. difficile’s adhesive phenotype [43, 44], and thereby reducing its 
residence time. The presence of these two compounds in the metabolomics data, coupled with the observed 10 
evidence of widespread fructan (e.g., levan, inulin) metabolism across members of Mix-14 genomes (Fig. 
4b), suggests that fructan metabolism and associated increase in fructooligosaccharides is an important 
driver of C. difficile suppression.  
 
On nutrient competition, > 40% of metabolites that were significantly lower in suppressive exometabolomes 15 
were amino acids or derivatives in accord with C. difficile’s dependence on Stickland metabolism [42], and 
showcased an enrichment of polyamine endproducts such as N1, N12-deacetylspermine in CDI 
communities. Similarly, other precursors and co-factors needed for C. difficile growth as direct substrates 
or to maintain redox balance, including short-chain fatty acyl-CoAs and NAD+, were also depleted in the 
suppressive community, redirecting these precursors and co-factors to B1 and B3 vitamins, among others. 20 
A converted form of vitamin B3, nicotinamide mononucleoside, was previously shown to be key in 
colonization resistance against other gut pathogens [81]. 
 
Supporting our metabolomics findings, analysis of microbiome samples from independent, previously 
published, cohort and clinical trial datasets identified Bacteroides to Escherichia ratio as a key compositional 25 
signature of the pathogen suppression and treatment success. We note that the analysis does not 
necessarily imply that the absence of Escherichia, which will make the ratio infinity, would be beneficial. As 
our modeling and in vitro experiments suggest, Escherichia do have a role to play in the pathogen 
suppression. As most, if not all, gut microbiomes harbor Escherichia, the Bacteroides to Escherichia ratio 
serves as a good indicator. Gene-level analysis of the microbiome samples further attested our mechanistic 30 
findings on the role of fructan and Stickland metabolism in C. difficile suppression. While the failure of FMT 
and other bacteriotherapies may be influenced by other recipient-specific factors, e.g. use of antibiotics [58, 
82, 83], the strong cross-cohort signatures observed in our analysis and the underlying mechanistic 
reasoning suggests that part of the inter-individual variation in treatment response could be explained by 
the ecological and metabolic signatures identified in this study. 35 

Together, our results bring forward ecological and metabolic signatures for understanding and predicting 
the success of bacteriotherapies and FMT in treating CDI and preventing recurrence. This represents a 
mechanistic and robust approach compared to low-resolution metrics like alpha diversity, which is currently 
thought to be the main factor underlying FMT success [84]. Our findings could be used to characterize FMT-
donors and to match bacterial therapeutics to recipients using, e.g. the Bacteroides to Escherichia ratios, 40 
while measurements of metabolites like fructooliogosaccharides and vitamin B3 could be used as 
biomarkers to monitor treatment success. 
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FIGURES  

 
Fig. 1. Experimental rationale and design. C. difficile suppressive capacities of Mix-14 community members and their 
differential abundance in CDI patients and healthy subjects. 
a. Relative abundance of Mix-14 consortium species in CDI versus Suppressive (Healthy + FMT-treated) individuals from 
patient cohort metagenomic data. Most Mix-14 species show a statistically significant differential abundance in healthy 
versus C. difficile-infected patients. Boxplot center lines represent respective medians, box limits represent upper and lower 
quartiles, and whiskers represent 1.5x interquartile range.   
b. Inhibition of C. difficile by 14 different bacterial species in paired co-cultures at two initial inoculum ratios (1:4 and 1:9), 
representing dysbiotic and non-dysbiotic states, respectively. The heatmap presents each member species’ prevalence 
across the metagenomic datasets as presented in panel a, where prevalence is defined as the fraction of samples where it 
occupies at least 1% of relative abundance space.  c, d. Experimental timelines for mapping effects of a synthetic gut 
bacterial consortium (Mix-14, panel c) or fecal-material derived community (panel d) on C. difficile infection in a continuous 
bioreactor system. Timeline was designed to mimic typical infection and treatment timeline and duration: e.g., sequential, 
multiple days of antibiotics; C. difficile exposure following antibiotics; and, in the case of fecal-derived communities, 
bacteriotherapeutic treatment after C. difficile infection. Different iterations of the timeline (e.g., with and without antibiotics) 
were tested. Experimental output included: final C. difficile CFU counts, timeseries 16S rDNA amplicon sequencing data, 
and post-perturbation metabolomics data.  
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Fig. 2. Mix-14 consortium successfully suppresses C. difficile colonisation in vitro. 
a. Mix-14 strongly suppressed C. difficile with or without preceding antibiotics treatment, lowering final C. difficile load by multiple 
orders of magnitude compared to C. difficile control (i.e., C. difficile monoculture) at experimental endpoints (day 23). Center 
lines represent the respective median. 
b. Fecal-matter derived communities suppressed C. difficile when not treated with antibiotics, or when treated with antibiotics 
as well subsequent mixes that contained B. caccae. By the experimental endpoint (day 23), suppressive communities 
successfully lowered C. difficile load by several orders of magnitude compared to the non-suppressive fecal community treated 
with antibiotics (in which final C. difficile load was virtually as high as C. difficile control as shown in panel a). Center lines 
represent the respective median. 
c. Dynamics of Mix-14 following antibiotics treatment (day 8-11) and C. difficile challenge (day 13). While E. coli and F. 
saccharivorans were the primary players before antibiotics treatment, both suffer from this perturbation, with F. saccharivorans 
unable to recover. While inhibited by the antibiotics in monoculture, B. caccae fills the dynamic niche opened during antibiotic 
treatment and replaces F. sacchariavorans as the key player in an anti-correlative dynamic around system equilibrium with E. 
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coli. Following B. caccae’s ‘rise’ is B. thetaiotaomicron; a key suppressor in monoculture (Fig. 1b). Noteworthy is that the trend 
of Mix-14 treated with antibiotics but not challenged with C. difficile (Mix-14 + AB) was nearly identical (dashed lines), 
emphasising the robustness of the AB-induced dynamics in Mix-14. Solid lines represent mean trends, and accompanied 
shaded areas represent ± standard deviation.  
d. Bray-Curtis dissimilarity matrix of Mix-14 pre-perturbation (day 7) and endpoint relative abundance profiles. The matrix shows 
that all pre-perturbation profiles were similar to each other as well as to the Mix-14 (control) endpoint, emphasising the 
robustness of community composition and assembly in the absence of perturbations. Post-perturbation profiles were starkly 
different to the pre- or no perturbation profiles. To illustrate, Mix-14 control’s final community composition is more dissimilar to 
Mix-14 inoculated with C. difficile than Mix-14 inoculated with antibiotics (and C. difficile). This suggests not only that the C. 
difficile perturbation induces many (transient) shifts within the community, but also that the perturbations caused by antibiotics 
mitigate the effects of C. difficile inoculation. 
e-g. Relative abundance analyses of Mix-14 and fecal-background communities. Statistical significance (Mann-Whitney U test, 
BH-adjusted p < 0.05) was determined for genus-level changes in suppressive fecal background communities versus non-
suppressive fecal background communities, and perturbed (suppressive) Mix-14 versus non-perturbed (control) Mix-14. Blue 
indicates statistically significant decline of genus or ratio, while pink indicates a significant increase. For each heatmap cell, the 
top-half represents trends observed for the defined Mix-14 communities, while the bottom half represents trends observed for 
the undefined fecal communities. If significance and direction of effect were shared between Mix-14 and fecal communities, 
respective cells were highlighted with a black outline. In these panels, Bacteroides includes Phocaeicola, and Escherichia 
includes Shigella (Methods). 
e. Mix-14 and fecal-matter derived communities shared no statistically significant genus-level shifts characterising the difference 
between suppressive and non-suppressive states. 
f. The log10 ratios of Bacteroides to Escherichia and Bacteroides to Fusicatenibacter were revealed to be associated with 
suppressive compositions of Mix-14 and fecal communities. The former ratio had statistical significance of p = 6e-05 in Mix-14, 
and of p= 0.014 in fecal background communities. The latter had statistical significance of p = 6e-05 in Mix-14, and of p = 0.026 
in fecal background communities.    
g. Multiple 2:1 ratios (log10) characterize the difference between suppressive and non-suppressive states in both Mix-14 and 
fecal communities. Additional key genera were revealed to be associated with potential suppressive internal compositional 
configurations, namely Bifidobacterium and Collinsella (e.g., Bifidobacterium + Collinsella to Bacteroides, lower in suppressive 
communities). 
h. Scatterplot of the logged Bacteroides to Escherichia ratio (log10, x-axis) versus Shannon alpha diversity (y-axis), calculated 
for all fecal background communities at day 20. The positive trend between these variables reveals potential related ecological 
signatures characterising the suppressive communities. The fitted line represents the linear regression, and the shaded area 
the associated standard error.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610284doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 
Fig. 3. Genome-scale and ecological models indicate key interactions amongst Mix-14 community members. 
a. Alluvial diagram highlighting the predicted nutritional dependencies in Mix-14 based on metabolic models and flux 
balance analysis-based methods. Of note is the central donor role of E. coli to several key Mix-14 members, as well 
as C. difficile. The thickness of each flow is proportional to the average SMETANA score across simulations, and 
only interactions with a score greater than 0.75 are shown. 
b. Mix-14 in silico experimentation pipeline, resulting in a proposed Mix-14 interaction network.  
Key interactions (i.e., those most likely to reproduce observed community dynamics and functions) were deduced 
from over a million simulation results. In the shown network containing key interactions, arrow opacity corresponds 
with predicted interaction strength (the fainter, the weaker), while arrow colour corresponds with predicted net 
interaction direction (red = inhibitory, blue = boosting).  
* Model results predict that this interaction type could range from weakly positive to moderately negative without 
compromising reproducibility of Mix-14’s observed suppressiveness and community composition. While E. coli was 
observed to inhibit C. difficile in a paired co-culture (for inoculation ratio of 1:9, Fig. 1b), its net effect within the 
community co-culture may be different (e.g., E. coli secreting different compounds in the medium, see GEM-predicted 
nutritional dependencies in panel a).   
** Model results predict that Mix-14’s suppressiveness could be maintained if C. difficile inhibited E. coli weakly or 
moderately. If strongly, suppressiveness as well as accuracy in reproducing Shannon alpha diversity was lost. A 
neutral or positive effect of C. difficile on E. coli sustained predicted suppressiveness. 
c. Experiment validation of model predictions on the role of sub-consortia in Mix-14 in conferring C. difficile 
suppressiveness. For example, only when paired with B. caccae did the combination of SEC-species B. 
thetaiotaomicron and P. distasonis show significant suppressive capacity (final C. difficile CFU/mL >2 orders of 
magnitude lower than control). The suppressive effect was most pronounced when B. caccae and E. coli co-occurred, 
with the duo nearly mirroring this suppressive capacity independently. This finding underscores the critical role of E. 
coli in bolstering B. caccae's net suppressive ability, highlighting the significance of their interaction within the Mix-
14 community. Center lines represent respective medians. 
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Fig. 4.  Metabolites underlying C. difficile suppression shared by Mix-14 and fecal-matter derived 
communities. 
a. Fold changes for 47 compounds identified as significantly altered (Mann-Whitney U, BH-adjusted p-value <0.05) 
in C. difficile-suppressive versus non-suppressive communities of Mix-14 and fecal origin. Compounds higher in 
suppressive samples have fold changes greater than 1, indicating enrichment, while those lower have fold changes 
less than 1, indicating depletion. Interpretations of these changes are summarized in the legend below the graph. 
b. Heatmap displaying fructan degradation gene hits from the dbCAN-PUL database across Mix-14 member and 
C. difficile genomes. Mix-14 species with the (predicted) ability to degrade the fructooligosaccharide (FOS) kestose 
were those that were inhibited by antibiotics and/or C. difficile (i.e., F. saccharivorans, R. faecis, B. obeum), while 
species that were boosted in these conditions (i.e., Bacteroides/Phocaeicola species) had hits in genes that could 
metabolise fructan into FOS such as kestose. Combined, these findings could help explain the observed spike in 
FOS as shown in a. Species were ordered by phylogenetic similarity. 
c. Heatmap displaying B3 de novo biosynthesis gene hits from the diamond sequence aligner using a targeted 
database (Methods) across Mix-14 member and C. difficile genomes. While most contained hits across (parts of 
the) the B3 biosynthesis pathway, only Bacteroides/Phocaeicola species contained hits across all four mapped 
pathways. Species were ordered by phylogenetic similarity. 
d. Ratio (log-transformed) of Bacteroides/Phocaeicola to Escherichia species consistent with differential 
abundance of metabolites in suppressive versus non-suppressive samples. Here shown are NAD+ (depleted in 
suppressive samples, showing a negative relationship with the ratio) and NAD+ precursor B3 (enriched in 
suppressive samples, showing a positive relationship with the ratio).  
An increase in vitamin B3 in conjunction with NAD+ depletion may indicate that C. difficile was unable to sufficiently 
use B3 to replenish the NAD+ required for its growth via e.g., Stickland metabolism. Thus, the suppressive 
community and its key interactions, including those between Bacteroides and Escherichia, may have suppressed 
C. difficile by monopolizing this vitamin and disrupting the redox balance necessary for C. difficile’s growth, and/or 
by competing with C. difficile for Stickland precursors such as tryptophan. 
Error bars represent ± standard deviations away from the log10-transformed mean ratio for y-axis, and log10-
abundance of either metabolite on the x-axis. 
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Fig. 5. Functional and compositional signatures of C. difficile suppression in cohort studies support in vitro findings and 
mathematical modelling. 
a. FOS and Stickland precursor gene hits found in the metagenomic datasets of the analyzed cohort studies (Methods). Metabolomics of 
Mix-14 and fecal community supernatants indicated both FOS-generating and Stickland precursor metabolism as potential mechanistic 
pathways driving the observed Bacteroides (caccae)-mediated suppression in vitro. Here, we observe that genes embedded within either 
of these metabolic pathways are indeed found in significantly higher numbers (Mann-Whitney U tests) in fecal samples of suppressive 
(Healthy + FMT) than non-suppressive (CDI) human hosts, validating their potential mechanistic role in suppression. Boxplot center lines 
represent respective medians, box limits represent upper and lower quartiles, and whiskers represent 1.5x interquartile range.   
b-c. While the ratio of Bacteroides (including Phocaeicola) to Escherichia is significantly higher in healthy human samples than in CDI 
patient samples (b), the relative abundance of Bacteroides is not significantly different (c) - consistent with in vitro findings (Fig. 2 e). This 
consistency between in vivo and in vitro data emphasizes the importance of inspecting ecological networks/configurations as potential 
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biomarkers of C. difficile suppression. Boxplot center lines represent respective medians, box limits represent upper and lower quartiles, 
and whiskers represent 1.5x interquartile range.   
d-e. RBX2660 probiotic mix for standardized live bacterial suspension was used to treat CDI patients against rCDI with a high success 
rate [59]. We here investigated the ratio of Bacteroides to Escherichia (d) and Shannon alpha diversity calculated over Genus-level (e) 
between the different treatment groups. For post-treatment days datapoints (Day >0), statistical comparisons (Mann-Whitney U test, BH-
adjustments) were performed between treatment types (black brackets, shown if p < 0.05) and within treatment types (rCDI within 60 
days, red brackets, shown if p < 0.05). Open label treatments were excluded from within-treatment comparison, since all patients had 
rCDI prior to receiving the open label treatment.    
Between treatment types, ratio is a better discriminator between placebo and non-placebo treatments, successfully distinguishing all 
treatment types (single-, double-, and open label treatments) from placebo (p < 0.05), while alpha diversity only successfully distinguishes 
placebo from open label treatment patients, and shows significant differences within treatments (e.g., single treatment versus open label 
treatment).  
Within treatment types, ratio is a better discriminator between successful and unsuccessful patients, showing a significantly lower ratio in 
patients for whom the single or double dose of did not successfully prevent rCDI within 60 days. Alpha diversity failed to have the same 
discriminatory power – only the comparison between successful and unsuccessful patients for double dose reaching near statistical 
significance (p = 0.054).  
Boxplot center lines represent respective medians, box limits represent upper and lower quartiles, and whiskers represent 1.5x 
interquartile range.   
f. Both the ratio of Bacteroides to Escherichia and hypothesised metabolic gene hits were found to be significantly different between fecal 
samples of suppressive and non-suppressive hosts (see panel a-c). Here, we show that these compositional and molecular signatures 
are positively related, as were predicted from our in vitro data (Fig. 4). The fitted line represents the linear regression, and the shaded 
area the associated standard error. 
g. Proposed phenomenological as well as mechanistic signatures of C. difficile suppression: non-suppressive communities are defined 
by lower alpha diversity and lower ratio of Bacteroides (incl. Phocaeicola) to Escherichia, while suppressive communities share 
compositional traits, including higher alpha diversity and higher ratio of Bacteroides to Escherichia. These traits were statistically linked 
to two potential molecular mechanisms: 1) fructan metabolism into FOS, such as 1-kestose, which may directly suppress C. difficile, and 
2) metabolism of Stickland precursors – including NAD+ and cofactors, as well as tryptophan for de novo B3 biosynthesis – indirectly 
suppresses C. difficile via competition for critical substrates and redox balance/central metabolites. 
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METHODS 
 
Bacterial growth conditions 
All the anaerobic bacteria for the study were grown in modified Brain Heart Infusion (mBHI) broth, as in 
[31]. Briefly, the growth medium was prepared by adding yeast extract (5.0 g/L), L-cysteine (0.3 g/L), 1 5 
mL/L Resazurine (0.25 mg/mL), and 0.05 g/L of bovine bile to the standard BHI base ingredients. The 
media was purged until anaerobic and was autoclaved at 121 degrees Celsius and 15 lbs pressure for 30 
minutes. The media was then transferred to the anaerobic chamber and further supplemented with 1 mL/L 
of hemin solution (0.5mg/mL), 1 mL/L Menadione (5.8 mM), 10 mL of ATCC vitamin mixture (ATCC, USA), 
10 mL of ATCC mineral mixture (ATCC, USA), 8mL/L of 10N NaOH, and 100 mL/L of 1M 2-(N-Morpholino) 10 
ethane sulfonic acid (MES) (Table 1). For making C. difficile selective agar, mBHI was supplemented with 
0.3g/L of D-cycloserine and 0.002g/L of Cefoxitin. Medium composition and procedure for making the 
dGMM+Lab media were taken from [85]. 
 
Fecal samples preparation and mini bioreactor  15 
Donor fecal samples were collected as described in [31]. Briefly, we obtained fresh fecal samples from six 
healthy individuals with no record of antibiotic use in the past three years. The six fecal samples were 
pooled equally and cryopreserved at -80°C with 10% DMSO as a cryoprotectant, and used as inoculum. A 
similar approach was used to prepare Mix-14, Mix-4, and Mix-3 stocks (Fig. 1c,d). All the individual bacteria 
were grown until they reached an optical density of 0.5 or diluted to it, if necessary, with mBHI and then 20 
cryopreserved in -80°C with 10% DMSO as a cryoprotectant, and were subsequently used as inoculum. 
mBHI medium was used as a culture medium for the complete bioreactor run. Mini bioreactors (MBRAs) 
were sterilized and assembled, after which the experiment was performed as described previously in [40], 
with minor modifications. The input and output on Watson Marlow pumps were set at 1 rpm and 2 rpm, 
respectively. The rotating magnetic stirrer was set at 150 rpm with a 10mm stir bar inside the bioreactor 25 
wells. Four reactor blocks were used for every run, containing six wells per block, producing a total of 24 
wells per run. Per run, the wells were divided into 4-5 treatment groups. Each treatment group was thus 
allocated 4 or 6 replicate wells. The growth medium was set to flow continuously into all reactor wells, 
consuming ~300mL for 24 hours. Per run, 300µL of inoculum (for Mix-14 or fecal community) was 
introduced into all wells, during which the flow was stopped for 16 hours to allow engraftment and reduce 30 
the role of bottlenecking during community assembly. Upon flow resumption, the continuous flow model 
was operated up to 23 days post-inoculation. On day 8, growth medium containing a concentration of 25 
mg/L of clindamycin was used for respective treatment conditions (Fig 1c,d), and discontinued on the 12th 
day of the reactor run, after which flow with regular growth medium was resumed. On the 13th day of the 
reactor run, 150 µL of Clostridium difficile R20291(OD 0.16) was inoculated into all the reactor wells of 35 
respective treatment conditions. On day 16 of the run, we inoculated wells of respective experimental 
conditions with 300µL (OD 0.5) of Mix-14, Mix-4, Mix-3, or individual bacteria (Fig. 1d). Samples were 
collected daily from each reactor well to determine 16S rRNA analysis, metabolomics, OD at 600nm, and 
pH.  
 40 
DNA isolation and sequencing 
For Mix-14 experiments (Fig 1c), DNA was isolated from all samples extracted daily from respective 
bioreactor runs. For the experiment with fecal-matter derived communities (Fecal + C. difficile, Fecal + 
antibiotics + C. difficile, Fecal + antibiotics + C. difficile + Mix-14), DNA was isolated from the initial inoculum 
(day 0), day 8, day16, day 20 and day 23 (Fig. 1d). For follow-up experiments with the fecal community 45 
(e.g., intervention by individual bacteria, Fig. 1d), DNA was isolated from day 20 samples. DNA was 
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extracted using a Powersoil DNA isolation kit (MoBio Laboratories Inc, CA) following the manufacturer’s 
instructions. After extraction, the quality of DNA was measured using NanoDropTM one (Thermo Fisher 
Scientific, DE) and quantified using Qubit Fluorometer 3.0 (Invitrogen, CA). The DNA samples were stored 
at -20oC until further use. To examine the change in microbial composition over time, all samples were 
amplicon sequenced using an Illumina MiSeq platform with paired-end V3 chemistry. The library was 5 
prepared using an Illumina Nextera XT library preparation kit (Illumina Inc, CA) targeting V3-V4 regions of 
the 16S rRNA sequence. The libraries were bead normalized and multiplexed before loading into the 
sequencer.  
 
16S Amplicon sequencing analysis 10 
Microbiota profiling from 16S sequencing was performed using Vsearch [86]. Merging and Quality filtering 
with a minimum cut-off length of 400 and max length of 500 was done for the fastq files using the Vsearch 
tool. Singleton and chimeric reads (UCHIME) were removed. OTU picking was performed with VSEARCH 
abundance-based greedy clustering. OTUs were annotated with the SILVA reference database or custom 
reference database consisting of full-length 16S extracted from the whole genome sequences of the 15 
fourteen bacteria in the consortium. 
 
In vitro paired co-culture inhibition (relevant for Fig. 1b) 
Co-culture inhibition was performed as previously mentioned in [31] with slight modifications. Briefly, Mix-
14 member species and C. difficile were grown in mBHI medium overnight until they reached an OD 20 
(600nm) of 0.8-1. Each culture was then diluted to 0.5 OD using an mBHI medium. For the paired co-culture 
assay, different ratios of Commensal:Pathogen (1:1, 1:4, and 1:9) were diluted in 1mL of fresh mBHI or 
dGMM&LAB medium and incubated for 24 hours. Each culture was then plated on CDSA plates at different 
dilutions and incubated for 24 hours. Colony counts were done, and percentage inhibition was subsequently 
calculated in units of CFU/mL C. difficile. 25 
 
Antimicrobial inhibition (relevant for Suppl. fig. 12) 
For the antimicrobial inhibition assay, B. caccae strains were grown for 24 hours in mBHI medium and then 
centrifuged at 1000 g for 5 min. The supernatant was filter-sterilized using a 0.22 μm filter in the anaerobic 
chamber and diluted to a ratio of 1:1 with the 1X mBHI medium. pH was adjusted to 6.8. An overnight 30 
culture of C. difficile was diluted to OD600 of 0.5. Twenty microliters of OD600-adjusted suspension was 
added to 1 mL of the 1:1 diluted cell-free supernatant and incubated for 24 hours in triplicates. C. difficile 
was grown in 50% mBHI diluted with anaerobic PBS as a positive control. After 24 hours, the cultures were 
serial-diluted with anaerobic PBS, plated on CDSA, and incubated anaerobically for 24 hours for 
enumeration. For heat treatment, the centrifuged supernatant was transferred to sterile tubes and 35 
pasteurized at 90 °C for 45 min (1 mL portions) suspended in a water-filled heating block. Pasteurized 
supernatant preparations were stored at 4°C for near-term experiments or frozen at -20 °C. For Proteinase 
K, portions of supernatants were treated with proteinase K at 1mg/ mL concentration for 1 hour at 37°C. 
Following treatment, the enzyme was inactivated by the addition of phenylmethylsulfonyl fluoride. 
 40 
In vitro growth curve analysis (relevant for Suppl. fig. 2) 
For growth curve analysis, individual bacteria were grown in the mBHI medium until reaching the mid-log 
phase at OD 0.8-1. Then, each monoculture was diluted to an OD (600nm) of 0.005, and OD at 600nm was 
measured regularly for 96 hours, allowing all bacteria to reach the stationary phase. All the bacteria were 
grown in biological triplicates.  45 
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Community-level physiology profiling and Biolog metabolite utilization profiling (relevant for Suppl. 
fig. 10) 
Biolog data for assaying carbon utilisation profiles of individual bacteria was extracted from previous work 
[31] [87]. For community-level physiology profiling, 1mL samples were collected from the bioreactor run of 
different treatments. The samples were centrifuged at 3000 x g for 1 min. The pellets were washed thrice 5 
with anaerobic PBS until the residual media was thoroughly washed off. The remaining pellet was dissolved 
in enough AN inoculating fluid (Biolog Inc.), to reach a final OD (600 nm) of 0.02. The AN fluid containing 
bacterial cells was then aliquoted 300µL to individual wells in the AN Biolog plate. OD at 600 nm was 
measured to verify the OD and further checked at 12 and 24 hours. For the analysis, a cutoff of 20% 
utilization was set to determine the positive utilization of the substrate. 10 
 
Semi batch in vitro coculture experiment (relevant for Fig. 3c) 
We did an in vitro semi-batch coculture inhibition assay to validate mathematical modeling results. A mix of 
different bacteria was made, as mentioned previously. 150uL of the bacterial mix was inoculated onto 10mL 
of mBHI. The culture was half diluted with mBHI every 24 hours for five days. 100µL of 0.19 OD(600nm) C. 15 
difficile was inoculated to the culture, and the CFU count was done in CDSA for 2 days post-infection. 
Cultures were collected for DNA isolation before and post-infection. 
 
Antibiotic susceptibility test (relevant for Suppl. fig. 3) 
An antibiotic susceptibility test is done to determine the ability of the core human gut bacteria to resist the 20 
antibiotic used for dysbiosis. Individual bacteria were grown in the mBHI media until they grew to the mid-
log phase OD 0.8-1. Then, the culture was diluted to become an OD of 0.005 and grown until it reached 
0.2. Further, clindamycin was added at a concentration of 250𝜇g/mL. After 36 hours, the amount of total 
ATP produced was measured using a luminescence assay kit according to the manufacturer's instructions 
(Promega). Fold change was calculated for the relative luminescence against non-antibiotic treated control.   25 
 
Untargeted Metabolomics (relevant for Fig. 4a) 
Samples from the bioreactor run on day 16/20 were filtered through a 0.2𝜇m filter and sent to Metabolon 
Inc. for analysis. Samples were processed according to the protocols for metabolomic analysis provided by 
Metabolon Inc. Details of sample accessioning, preparation, quality control measures, and ultra-high-30 
performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) can be found in the 
resources provided by Metabolon [88] and are included in the Supplementary Methods. 
 
Community dynamics data analysis (relevant for Fig. 2) 
For experiments with the defined Mix-14 community, 16S amplicon sequencing reads were normalized to 35 
arrive at relative abundances for each member species across all six replicates for each experimental 
condition. Statistical comparisons of endpoint relative abundance profiles (day 23 for ‘Mix-14 control’, ‘Mix-
14 + Antibiotics’, ‘Mix-14 + Antibiotics + C. difficile’, and day 14 for ‘Mix-14 + C. difficile’) were performed 
using the Mann-Whitney U test, as implemented in the ‘geom_signif’ function of the ‘ggsignif’ R package (v 
0.6.4).  40 
To construct correlation matrices for Mix-14 relative abundance profiles, we merged all endpoint relative 
abundance data across all four experimental conditions. Binary variables were added to account for 
absence or presence of antibiotics treatment or C. difficile inoculation. Spearman correlations between all 
fourteen Mix-14 member species and their end-point relative abundances, as well as the two binary 
experimental perturbation variables, were calculated, arriving at a 16 x 16 correlation matrix using the ‘rcorr’ 45 
function of the ‘Hmisc’ R package (v 5.1-0).  Correlation networks of significant (p<0.05) correlations were 
constructed using the ‘igraph’ R package (v 1.4.2). 
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In experiments in which an undefined community was assembled from a fecal background, the maximum 
resolution of taxonomic assignment from 16S amplicon sequencing was genus level. Relative abundances 
were calculated for each assigned OTU, and those with the same genus name were summed together. 
Since Escherichia was indistinguishable from Shigella, they were grouped together in their OTU 
assignments. Endpoint (day 20) relative abundance profiles for all ten fecal background community 5 
experiments were assessed together and assigned a binary value of suppressiveness of C. difficile (1 for 
log10 CFU/mL counts of < 2, and 0 for > 2). 
To calculate the Bray-Curtis dissimilarity of final mean relative abundance profiles across the different 
experimental conditions for both Mix-14 as well as Fecal background communities, we used the ‘vegdist’ 
function of the ‘vegan’ R package (v 2.6-4). To plot the Bray-Curtis dissimilarities in a heatmap, we used 10 
the ‘pheatmap’ function of the ‘pheatmap’ R package (v 1.0.12). 
For all endpoint relative abundance profiles (of Mix-14 defined and fecal undefined communities), we 
calculated the corresponding Shannon alpha diversity index (referred to as alpha diversity or Shannon 
Index) and the 1:1 (56 in total) and 2:1 ratios (168 in total) of Mix-14 genera. Shannon alpha diversity index 
was calculated as follows: −∑ 𝑝! ∙ ln(𝑝!)"

!#$ , where 𝑆 is the total number of taxa (with nonzero relative 15 
abundance), and 𝑝! is the relative abundance of taxon 𝑖. The 1:1 ratios were calculated via %&'()	+

%&'()	,
	, while 

the 2:1 ratios were calculated via %&'()	+-%&'()	,
%&'()	.

. Prior to calculating ratios, a small (0.0001) value was added 
to all relative abundance data so that ratio calculations would not result in 0 or ‘inf’ values, which in turn 
would create issues when log10-transforming ratios. Log10-transformation of the ratios was performed to 
account for the wide range of values and to normalize the distribution, making it more suitable for statistical 20 
analysis and easier to interpret visually on graphs. 
Statistical significance of difference in Shannon index between unperturbed versus perturbed Mix-14 and 
non-suppressive versus suppressive fecal communities was calculated using the Mann-Whitney U test 
(pairwise Wilcoxon rank sum test), implemented in the ‘wilcox.test’ function of the default ‘stats’ R package 
(v 4.2.2). The same analysis was done for 1:1 and 2:1 log-10 transformed ratios, where effect sizes were 25 
calculated by taking the difference in medians for each ratio between compared groups. To emphasize 
potential ecological configurations of relevance in suppressive mechanisms in both Mix-14 as well as fecal 
background experiments, ratios that were significantly different in both comparisons of perturbed versus 
unperturbed Mix-14 and suppressive versus non-suppressive fecal communities, while sharing a similar 
effect direction, were selected for further analysis. 30 
To understand the relationship between fecal background community suppressiveness, alpha diversity and 
selected ratios, we executed linear regressions on log-transformed ratios against corresponding alpha 
diversity. The linear regressions (and R2 calculations) were performed using R’s baseline ‘lm’ function, and 
the statistical significance of R2 was assessed using the function’s default F-test.  
 35 
Ecological Modelling (relevant for Fig. 3b) 
To explore to what extent the observed dynamics and properties of the experimental Mix-14 communities 
can be recreated in silico based on observed monoculture growth kinetics and/or suppressiveness in vitro, 
we here formulate a model mimicking the bioreactor experimental timeline and constraints. Moreover, to 
further study the observed emergent and key role of B. caccae on Mix-14’s suppressive capacity and 40 
Shannon-indexed alpha diversity, we will here focus on the following key Mix-14 clusters/players (>10% 
final abundance in absence or presence of antibiotics treatment, and/or those with individual suppressive 
capacities): B. caccae, E. coli, F. saccharivorans, SEC-species and C. difficile.  
 
Model formulation and integration 45 
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A system of coupled ordinary differential equations, following the generalized Lotka-Volterra formulation, 
was used to investigate which interaction landscape(s) are most likely to explain Mix-14’s post-antibiotics 
suppressiveness of C. difficile (equations 2-4). Parameter inference was performed using supplied 
experimental data, such as monoculture growth kinetics of each Mix-14 community member.  
To calculate the maximum growth rate for each species, we determined the maximum change in OD value 5 
per unit time as measured in monoculture. Given that the time between subsequent timepoints was not 
always equal, we used the finite difference method for approximating the derivative: 
 
𝐺𝑟𝑜𝑤𝑡ℎ	𝑟𝑎𝑡𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	 /0	12	2!"#3/0	12	2!

45(6	12	2!"#345(6	12	2!
																																																					(1)  

After which we extracted the mean maximum net hourly growth rate for each species. Since the unit of time 10 
used in the model is day-1, we multiplied the maximum net hourly growth rate by 24 to arrive at a daily 
maximum net growth rate. Then, the dilution rate (𝜙) was added to arrive at the per capita growth rate 
(since the net growth rates represent the difference between inherent growth rate and the flush 
effect/dilution rate of the bioreactors, which is proportional to total biomass as well). For the SEC-species 
(B. dorei, B. thetaiotaomicon, P. distasonis), the mean maximum per capita growth rates and corresponding 15 
standard deviations were extracted for all member species and averaged across them. As described further 
in Results (2.4., Suppl. fig. 6), the SEC-species all positively covaried in Mix-14 post-antibiotic treatment 
and all displayed individual suppressive capacities (Fig. 1b). 
 
The parsimonious model system consists of the following coupled ordinary differential equations: 20 
7,!
72
= 9:𝑟! + ∑ 𝛼!,9𝐵9:

9#$ >𝐵! ?1 −
∑ ,!
$"!
!%#
<

@A𝑥 − 𝜙𝐵!								𝑓𝑜𝑟	𝑖 ≠ 𝐶. 𝑑𝑖𝑓𝑓𝑖𝑐𝑖𝑙𝑒		(2)  

𝑥 = K 1	𝑖𝑓	𝐶 = 0
1 − 𝛾$	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

																																																																																																			(3)       
7,!
72
= :𝑟! + ∑ 𝛼!,9𝐵9:

9#$ >𝐵! P1 −
,!
<!
Q − 𝜙𝐵!																								𝑓𝑜𝑟	𝑖 = 𝐶. 𝑑𝑖𝑓𝑓𝑖𝑐𝑖𝑙𝑒			(4)     

 
Where 𝐵! is the population abundance of species 𝑖, 𝑟! describes the per capita growth rate of species 𝑖 25 
(informed by max growth rate in monoculture growth curves), 𝑁 describes the total number of species in 
the system (excluding species 𝑖), 𝛼!,9 describes effect of species 𝑗 on the per capita growth rate of species 
𝑖, 𝐾 describes the ‘carrying capacity’ or maximum density of the system (informed by range of observed co-
culture max ODs), and 𝜙 describes the dilution rate of the system. The interaction coefficients were all 
made relative to the subjected species’ growth rate, 𝑟!, so that one unit of the exerting species, 𝑗, 30 
corresponds to a fraction, 𝑓, of the subjected species' growth rate being impacted, and thus 𝛼!,9 = 𝑓 ∙ 𝑟!. If 
the direction of interaction (i.e., positive, or negative) was inferable from experimental data, the relative 
strengths of interaction (𝑓) were pulled from uniform distributions following 𝑓~U(0.01, 1), otherwise: 
𝑓~N(0, 0.2=) (assuming neutrality, with mean of 0). A random permutation experiment (akin to [89, 90]) was 
thus performed on each interaction to arrive at a maximum combinatorial space, not only of interaction 35 
directions but also strengths. See Fig. 3b for configurations.  
 
Multiplier 𝑥 describes the bacteriostatic sensitivity as a function of antibiotics treatment, with the degree of 
sensitivity being captured by 𝛾$, which is 0 for complete insensitivity, and 1 for complete sensitivity (i.e., 
halting growth altogether). As evident from studying relative abundance dynamics of the co-cultures in the 40 
window between antibiotics addition (day 8) and subsequent two days of treatment (day 10), apparent 
responses to antibiotics in community co-culture are different – or altogether opposite – to antibiotic-
sensitivity measured in monoculture (Suppl. fig. 3). This hints at the importance of ecological forces such 
as community cross-protection or community sensitization: effects that result from interaction networks 
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within the community, reducing the accuracy at which monoculture growth data can be extrapolated to 
community growth [91, 92]. In the hypothesised ecological trajectory of suppression, this community-
induced sensitivity of F. saccharivorans is a critical point in the community’s dynamics, directly or indirectly 
allowing for key player B. caccae to take over F. saccharivorans’ dynamic niche (i.e., as major grower 
alongside E. coli, oscillating along the system’s maximum optical density). Consistent between monoculture 5 
and co-culture is E. coli’s response to the antibiotics treatment, which has been shown to be bacteriostatic 
[93]. For modelling purposes, we here include community-level rather than monoculture sensitivity to 
antibiotics in multiplier 𝑥, avoiding a significant increase in parameter space (via adding an antibiotics-
dependency to each interaction coefficient in the 𝛼!,9 matrix). Moreover, since C. difficile is introduced days 
after the last antibiotic treatment, we assume antibiotics are flushed out of the system and hence do not 10 
include multiplier 𝑥 for C. difficile.  
 
By enforcing a universal carrying capacity in the form of 𝐾, all subjected populations suffer equally from the 
substrates being utilised fast when the bioreactor reaches high population densities. The universal K does 
slow down population growth rates as cellular densities get higher, which is not to account for metabolic 15 
reprogramming as population reach stationary phase (which is what K typically represents in logistic growth 
models for serial dilutions), but rather to account for the (implicit) Monod growth kinetics, slowing down 
inherent growth rates as substrates → 0.	In addition, this enforcement allows us to mimic the anti-correlative 
behaviour around system equilibrium observed for the ‘big players’ (i.e., F. saccharivorans and E. coli 
without antibiotics treatment, B. caccae and E. coli with antibiotics treatment) that are coupled in a dynamic 20 
that cannot be sustained if their interaction was inherently antagonistic [94].  
 
The differential for C. difficile is taken separately, with its growth being limited not by the universal K, but 
rather by its species-specific 𝐾! (as extracted from the monoculture maximum). The rationale for this choice 
is twofold: firstly, if C. difficile were also constrained by a universal carrying capacity, any apparent 25 
suppression could result from the model artefact of carrying capacity saturation by day 13 (C. difficile’s 
inoculation day), rather than direct interactions with other community members. Secondly, given the 
opportunistic, pathogenic nature of C. difficile, it is biologically plausible to assert that this bacterium 
operates under different ecological principles compared to the resident community it is introduced to, 
disrupting any stabilising ecological forces at play within the community (such as being allowed to 30 
‘parasitise’ on the system’s carrying capacity, by not being bound by it itself).  

For each simulation, we collected: 
i. All inputted parameters (𝑟! , 𝛼!,9, 𝐾);  
ii. Final abundances (𝑂𝐷! at the end of day 23); 
iii. Final community OD (∑ 𝑂𝐷!:-!

!#$ ); 35 
iv. Final relative abundances ?𝑝!#

/0!
∑ /0!$"!
!%#

@;  

v. End-point Shannon alpha diversity index (−∑ 𝑝!:-!
!#$ ∙ ln 𝑝!);  

vi. Suppressiveness of final community 9]1	𝑖𝑓	𝐵..7!??!@!A&
71B	=C > 𝐵..7!??!@!A&

71B	$C 	
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																														

A; 

vii. Ratio of final relative abundances of E. coli versus B. caccae and SEC-species ? D&.()*!
E+.(,((,--D.&/.01-(!-0

@. 

 40 
Simulations producing a final community composition in which the following conditions were met, were kept 
(i.e., those representing a realistic interaction network producing observed trends for Mix-14 treated with 
antibiotics): 

i. B. caccae’s final relative abundance > 0.2; and 
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ii. SEC-species’s summed final relative abundance > 0.02; and 
iii. E. coli > B. caccae; and 
iv. E. coli > SEC-species. 

 
The model was integrated using the ‘ode’ function of the ‘deSolve’ R package (v 1.35). Each simulation 5 
was initialised with identical starting ODs for each state variable (0.01 OD, except C. difficile with an initial 
OD of 0), to reflect low initial densities in the order of magnitude used in the experiment and was integrated 
for 23 days in a chemostat environment mimicking the experimental setup. The antibiotics effect multipliers 
were made to apply (i.e., change from 1 to ≤1) from the start of the antibiotics treatment (day 8), until the 
end, including the day it takes for the antibiotics to be washed out of the system (day 12, accounting for 10 
another 3 volume changes after the end of the antibiotics treatment). Due to the above-described sources 
of inter-simulation variation (i.e., random permutation of interaction parameters and stochasticity on dilution 
rate variation), 1.5∙106 model integrations were conducted to extract sufficient simulations per network 
configuration (Fig. 3b). A final subset of 4.3∙104 simulations met the conditions as described above and was 
used for further analysis. An overview of model parameters and associated units can be found in Suppl. 15 
Table 3A. 
 
Analysis simulation results 
The relative importance of each interaction between the key Mix-14 players (within constraints as shown in 
Suppl. Table 3B & Fig. 3b) in driving system Suppressiveness and Shannon alpha diversity was 20 
investigated using the simulation output results (of 1.5∙106 simulations, ~4∙104 met conditions as detailed 
above and were used for analysis). The f values of every interaction coefficient for each simulation were 
extracted, and interactions were classified as follows: 𝑓	 < −0.5  = strongly negative (i.e., one unit of the 
effector corresponds to inhibition of at least half of the effected species’ growth rate),  −0.5 < 𝑓 < −0.1  = 
moderately negative, −0.1 < 𝑓	 < 0  = weakly negative, 0 > 𝑓 < 0.1 = weakly positive, 0.1 > 𝑓 < 0.5 = 25 
moderately positive, 𝑓 > 0.5 = strongly positive. 
A binary score metric was added to the simulation results, in which 1 was assigned to simulations for which 
the final Shannon alpha diversity (calculated for the resident community, i.e., excluding C. difficile) was 
within the observed range of communities treated with antibiotics (i.e., Shannon index of > 0.8 but < 1.2), 
whereas 0 was assigned to simulation results that fell outside of the observed range. The same binary 30 
metric was added for suppressiveness, with 1 being assigned for simulations accurately reproducing C. 
difficile suppression, and 0 when a simulation result allowed for C. difficile growth. 
 
Simulation results (Suppressiveness score and Shannon index range score) were binned into 
classifications of interaction type and strength (e.g., ‘weakly positive’ for ‘interaction effect B. caccae on E. 35 
coli), and the ratio of ‘0’ to ‘1’ scores for both the Suppressiveness score and the Shannon index range 
score were calculated for each bin. These binned simulation results were plotted in heatmaps using the 
‘ggplot2’ R package (v 3.4.2). Ratios of <1 (i.e., 1 being an equal number of ‘realistic’ to ‘unrealistic’ 
simulations within the respective bin) were highlighted to emphasise interaction configurations that poorly 
reproduced the metric of interest. A combination of these results (i.e., binned interaction configurations 40 
reproducing observed suppressiveness and observed alpha diversity) was then used to deduce the key 
interaction configuration(s) most likely to reproduce the observed characteristics of Mix-14 after antibiotics 
treatment (and C. difficile inoculation). 
 
 45 
Metabolic modelling (relevant for Fig. 3a) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610284doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Genome-scale metabolic models were reconstructed using CarveMe (v 1.5.1) [95] and gapfilled using 
KEMET (v 1.0.0) [96]. Community metabolic simulations were carried out using SMETANA (v 1.1.0) [97], 
with the --detailed and --molweight flags used to identify a minimal media and predict nutritional 
dependencies. 30 simulations were carried out in order to account for variability in the identified minimal 
media. Auxotrophies were calculated using the function “auxotrophies” in the module ‘cobra.auxotrophy’ of 5 
the ‘reframed’ Python package (v 1.4.0).  
Alluvial diagrams were generated using the ‘ggalluvial’ R package (v 0.12.5). Heatmaps were generated 
using the ‘ComplexHeatmap’ R package (v 2.13.1) [98]. 
 
Metabolomics data analysis (relevant for Fig. 4a) 10 
The log-transformed, batch-normalized, and imputed untargeted metabolomics data was processed using 
R (v 4.1.0) and the ‘tidyverse’ package (v 2.0.0). The ‘Rstatix’ package (v 0.7.2) was used for statistical 
testing (Mann-Whitney U test), and the Benjamini-Hochberg procedure was used to control for false 
discovery rate due to multiple hypothesis testing. 
 15 
Mix-14 Polysaccharide utilization loci annotations (relevant for Fig. 4b) 
The diamond sequence aligner (v 2.0.8, diamond blastp) was used to identify experimentally validated 
carbohydrate degrading hits from the dbCAN-PUL database [99] across the Mix-14 genomes in this study. 
Filtering criteria of sequence identity similarity of at least 60% and a bitscore of at least 100 were used to 
filter out spurious hits. The phylogenetic tree was reconstructed based on multiple sequence alignments of 20 
whole genome amino acid sequences using PhyloPhlAn (v3.0.67) [100]. The default PhyloPhlAn database 
was used with 32 cores for processing, alongside the  --fast and --diversity low parameters. 
 
Mix-14 B3 de novo biosynthesis annotations (relevant for Fig. 4c) 
Experimentally validated B3 biosynthesis genes were extracted from the database drafted by Magnusdottir 25 
and colleagues [101]. The database, obtained as a FASTA file, was curated using seqtk (r82) in order to 
remove corrupted entries; cd-hit (v 4.8.1) with default parameters (-c 0.9) was used to dereplicate the 
FASTA file [102]. Finally, the FASTA file was converted to a diamond database with diamond makedb and 
the genomes of interest were aligned on the database using diamond blastp (v 2.0.8) [103]. 
 30 
Analysis of cohort metagenomes (relevant for Fig. 5a-c, f) 
To assess the association of 14 core human gut bacteria in CDI conditions, an abundance mapping at the 
strain level was performed using publicly available gut metagenome sequencing datasets collected from 
fecal samples of individuals enrolled in clinical trials. For all the metagenome reads, quality trimming and 
adapter clipping were done with Trimmomatic [104]. Further, the reads were aligned against the human 35 
genome to filter out human reads and were assembled with Bowtie2 (v 2.3.2) [105] and SAMtools [106]. 
The resulting contigs were classified taxonomically by k-mer analysis using Kraken2 [107], with Kraken 2 
standard database. Subsequent species abundance estimation was performed using Kraken-tools [108] 
with a threshold set to ignore species with fewer than 10 classified reads. 
 40 
To assess the gene abundance for genes involved in FOS-generating, Stickland (precursor), B3 
biosynthesis, and polyamine pathways, an abundance mapping was performed using metagenome 
sequencing datasets. Initially, quality trimming and adapter clipping were done with Trimmomatic. The 
trimmed reads were then assembled using metaSPAdes. The resulting contigs were subjected to sequence 
alignment using Diamond BLASTx against a custom database created from the FASTA sequences of the 45 
genes involved in the aforementioned pathways. The abundance data were compiled and filtered to include 
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only hits with a bitscore greater than 100. Metadata were integrated, and the data were normalized and 
grouped by pathway to determine the gene abundance. 
 
 
Analysis of RBX2660 Mix Data (relevant for Fig. 5d-e) 5 
Genus-level relative abundances of the RBX2660 Mix clinical trial [59] were filtered to exclude non-bacterial 
genera, after which the remaining genera for each patient were summed in their relative abundance 
(∑ %	𝐺𝑒𝑛𝑢𝑠!

D12!&'2	F):,D12!&'2	F
!#$ , and then multiplied by $GG

∑ %	%&'()!
1,2!-32	5$,1,2!-32	5

!%#
 to correct relative abundance 

space after exclusion of non-bacterial genera (e.g., Saccharomyces). Then, patients for whom at least 50% 
of the relative abundance space was occupied by non-bacterial genera were excluded (i.e., 10 

$GG
∑ %	%&'()!

1,2!-32	5$,1,2!-32	5
!%#

> 1.5) to discount unrepresentative/confounded bacterial compositions. In addition, 

we excluded patients also excluded by main authors as detailed in S1 [59]. The ratio was calculated 
between Bacteroides + 0.0001 and Escherichia + 0.0001, to avoid issues with log10-transformation of the 
ratio. Outlier ratios of >10^5 (log10 > 5) were excluded to discount artefacts of sequencing error at low to 
near-zero relative abundance space. Shannon alpha diversity was also calculated for each patient across 15 
bacterial relative abundances. To assess the role of either of these metrics in the post-treatment (Days > 
0) data, statistical analyses were performed between treatment (placebo, single-, double-, open label) and 
outcome groups (i.e., binary variable of rCDI within 60 days) using Mann-Whitney U test. To account for 
false discovery rate in multiple comparisons, p-values were subsequently adjusted using the Benjamini-
Hochberg (BH) procedure.    20 
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4. SUPPLEMENTARY FIGURES 
 

Supplementary Figure 1. OD (left) and pH (right) trajectories of Mix-14 (control, in red), Mix-14 + Antibiotics 
(in green), and Mix-14 + Antibiotics + C. difficile (in blue). The inset of the left panel shows that final 
community OD values (for day 21, 22, 23) were significantly higher in antibiotics-treated Mix-14 than in Mix-
14 control. Unlike OD, pH values showed no significant difference between treatment types. Error bars 
represent ± standard deviations from the mean.  

 
 

Supplementary Figure 2. Monoculture growth curves for Mix-14 members. Note that C. difficile has the 
highest growth kinetics of all species, consistent with growth phenotypes of opportunistic pathogens.  Error 
bars represent ± standard error from the mean (through which the line was fitted). 
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Supplementary Figure 3. a. Individual antibiotics (clindamycin, at 250 𝜇g/mL concentration) sensitivity 
measured for Mix-14 members. b. Table contrasting antibiotics sensitivity of key Mix-14 species as 
measured in monoculture versus their apparent response in co-culture. For most key species, the response 
to the antibiotics in monoculture is unparalleled or even opposite to the apparent response in co-culture, 
emphasising community interaction effects such as cross-protection [109] and/or cross-sensitization [41]. 
a. 

 
 
b.  

Mix-14 species Rel. 
abundance d8 
(𝝁	&	𝝈) 

Rel. 
abundance 
d10 (𝝁	&	𝝈) 

d8 → 
d10 

Apparent response to 
AB in co-culture 

Response to AB in 
monoculture 

B. caccae 0.011 (0.020) 0.585 (0.079) *53 Gain Inhibition 
B. thetaiotamicron 0.015 (0.010) 0.076 (0.037) *5 Gain Complete inhibition 
P. distasonis 0.000012 

(0.000017) 
0.0023 
(0.0017) 

*192 Gain Complete inhibition 

E. coli 0.471 (0.064) 0.285 (0.067) *0.61 Inhibition Inhibition 
F. saccharivorans 0.408 (0.151) 0.049 (0.023) *0.12 Inhibition Neutral 
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Supplementary Figure 4. a. Relative abundance trajectories of Mix-14 species across different 
experimental conditions. Upper panels show mean relative abundance (solid lines) with ± standard deviation 
(shaded area), while bottom panels show log10-transformed mean relative abundances to emphasise 
trajectories of species in lower abundance regimes.  
b. Final and Day 7 species relative abundances compared between conditions, with Day 7 corresponding 
to the pre-perturbation timepoint (i.e., when growth conditions between different experimental conditions 
were identical, aiding to understand robustness of Mix-14 assembly). Statistical comparisons of endpoint 
data were done using Mann-Whitney U-test and subsequent BH-adjustments of p-values, and comparisons 
shown are those that were significant. Statistical significance is indicated as follows: *p < 0.05, **p < 0.01. 
Boxplot center lines represent respective medians, box limits represent upper and lower quartiles, and 
whiskers represent 1.5x interquartile range.  
c. Table summarising statistically significant responses of individual Mix-14 community members to the 
different perturbation regimes, as detailed in Fig. 2b. Statistical comparisons of species relative abundances 
were performed using the Wilcoxon rank-sum test (Mann-Whitney U test). Underlined = species (nearly) 
strictly dependent on or inhibited by perturbation. Bold = species’ response to combined disturbance is 
opposite to its response to either disturbance alone. Arrows highlight opposite responses by species to 
either perturbation. †= Effect could be due to load difference pre-perturbation (day 7).  
While strict sensitivities (see underlined) hint at direct effects of the perturbation, non-strict sensitivities may 
hint at indirect effects of the perturbation (i.e., via effects on the interaction landscape, which are of 
importance in Mix-14 as emphasised by the discrepancy between monoculture AB sensitivities and 
community-level sensitivities).   
a 
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Supplementary Figure 5.  Comparison of Mix-14 Final Shannon alpha diversity across experimental 
conditions. Statistical comparisons (Mann-Whitney U, BH-adjusted) show that in the absence of antibiotics, 
C. difficile challenge induced community shifts that increased the system’s alpha diversity, despite the 
pathogen being suppressed by Mix-14, hinting at a community-wide transient effect. However, in 
combination with antibiotics, the C. difficile challenge significantly lowered alpha diversity relative to 
antibiotics alone. Boxplot center lines represent respective medians, box limits represent upper and lower 
quartiles, and whiskers represent 1.5x interquartile range.   
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Supplementary Figure 6. Correlation networks of end-point relative abundances of all four conditions, with 
presence (1)/absence (0) values assigned to C. difficile and antibiotics treatment (nodes in blue). Mix-14 
(control) thus has 0 assigned to either disturbance variable, while Mix-14 + Antibiotics + C. difficile has 1 
assigned to both. Correlations emphasize potential directions of net interaction effects. a. Spearman 
correlations, p<0.05, rho >|0.6|. b. Spearman correlations, p<0.05, rho >|0.4|.  
a 

 
b  

 
 
 
 
 
 5 
 
 
 
 
 10 
 
 
 
 
 15 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610284doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Supplementary Figure 7. Bray-Curtis dissimilarities of endpoint (Day 20) compositions of fecal-matter 
derived communities. Most dissimilar in this comparison is ‘Fecal_CD_D20’ – the only community not treated 
with antibiotics. Suppressive treatments (e.g., ‘Fecal_AB_CD_Mix_14_D20’, ‘Fecal_AB_CD_Mix_4_D20’)  
and the ‘Fecal_CD_D20’ control tend to cluster together, suggesting that similar community compositions 
might be crucial for suppression of C. difficile. 
Conversely, non-suppressive treatments tend to be clustered away from suppressive ones, reinforcing the 
notion that their community compositions diverge in ways that might affect their functional outcomes against 
C. difficile. 
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Supplementary Figure 8. Comparison of Shannon alpha diversities of suppressive fecal-matter derived 
communities versus non-suppressive ones. Suppressive fecal-matter derived communities have significantly 
higher (Mann-Whitney U, p<0.05) alpha diversity than non-suppressive communities. Boxplot center lines 
represent respective medians, box limits represent upper and lower quartiles, and whiskers represent 1.5x 
interquartile range.   
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Supplementary Figure 9. Inter-transfer Bray-Curtis dissimilarity (top half, mean & ± standard deviations) 
and genus-level relative abundance distribution (bottom half) of fecal-matter derived communities 
challenged with C. difficile (left panels), treated with antibiotics (AB) and subsequently challenged with C. 
difficile (middle panels), or perturbed by both antibiotics, subsequently challenge with C. difficile, and then 
treated with a Mix-14 intervention (right panels). As in line with Suppl. fig. 7, antibiotics induce significant 
shifts within the community, resulting in high inter-transfer Bray-Curtis dissimilarity, while the fecal 
community unperturbed by antibiotics shows rapid stabilisation (Day 0-8). Also noteworthy is the difference 
in composition of the fecal inoculum (see stacked barplot at Day 0) compared to the timepoints taken after 
growth in mBHI, corresponding to the expected effect of growing a bacterial community in a synthetic setting 
versus the setting of origin (the fecal environment). 
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Supplementary Figure 10. Pearson correlation heatmap comparing carbon usage assay profile similarities 
of Mix-14 species and different experimental conditions. The redder the colour, the more stimulated the 
growth (normalized against growth without the compound in question). Of particular interest in the Biolog 
data heatmap/cladogram is the highlighted branch containing B. caccae and C. difficile, containing other 
(individual) strains with similar carbon usage profiles - which could hence compete with B. caccae over 
shared carbon sources. In this similarity clade, only B. caccae does well in community with antibiotics 
treatment. This could indicate that B. caccae has a competitive upper hand over C. difficile and its approx. 
equidistant branch member F. saccharivorans for the shared resources following antibiotics (or C. difficile) 
perturbation. 
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Supplementary Figure 11. Ecological model simulation results. a. Ratio of suppressive versus non-
suppressive simulated final community states per binned interaction strength, across all binary interaction 
coefficients. A simulation was considered suppressive if the final abundance of C. difficile was less than its 
initial load. b. Ratio of Shannon diversity of the simulated final community states being within the observed 
range per binned interaction strength, across all binary interaction coefficients. For either heatmap, the 
higher the ratio, the more accurate the simulation results were for each specific binned interaction strength 
in reproducing the community characteristic (Suppressiveness, Shannon alpha diversity) observed 
experimentally for Mix-14 after antibiotic treatment. For the Suppressiveness scores, the colour gradient 
(blue, lightblue, red, darkred) used was set at 0, 1, 5, 10, whereas for the Shannon index range score, the 
colour gradient used was set at 0, 1, 3, 10 (due to a lower maximum ratio for the latter). 
a 

 
b 
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Supplementary Figure 12. While B. caccae was shown to be critical in the C. difficile suppression conferred 
by Mix-14, its own direct suppressiveness (see Fig. 1b; B. caccae suppressed C. difficile by a little over one 
order of magnitude) – while significant – was not nearly as strong as that of the consortium (Fig. 2a, Mix-14, 
especially post antibiotics, suppressed C. difficile by over 6 orders of magnitude). Here, it is shown that B. 
caccae’s suppression is likely not mediated by antimicrobials or other antagonistic extracellular compounds 
it secretes, since C. difficile load in its supernatant was not significantly lower than C. difficile load of control. 
Statistical significance was calculated using a two-tailed unpaired t-test. 
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Supplementary Figure 13. In addition to figure 5 panel e-d, we here show the comparisons of community-
wide metrics when patients treated with single and double doses of probiotic mix RBX2660 [59] were 
grouped together. Log10 ratio of Bacteroides to Escherichia is significantly lower in failed treatments (t-test, 
p = 0.0073), while alpha diversity does not distinguish with the same statistical significance or power (t-test, 
p = 0.052). Median Ratio for successful treatments was 14.0 (1.15 in log10), while median Ratio for failed 
treatments was 0.651 (-0.26 in log10). Median Shannon alpha diversity for successful treatments was 2.07, 
and 1.79 for unsuccessful treatments. Boxplot center lines represent respective medians, box limits 
represent upper and lower quartiles, and whiskers represent 1.5x interquartile range.   
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Supplementary Figure 14. Donors from which strains were isolated and then prepared to formulate the 
RBX2660 mix for standardized live bacterial suspension [59], are defined by a significantly (Mann-Whiteny 
U test, BH-adjusted p-value < 0.05) higher ratio of Bacteroides to Escherichia (left panel) and Shannon 
alpha diversity calculated over Genus-level (right panel) than all the CDI patients that were divided among 
‘placebo’, ’single treatment’ and ‘double treatment’ groups. At day 0, there were no differences in conditions 
for single treatment, double treatment, and placebo groups. While we do not see any significant differences 
in alpha diversity between these groups, we do see a significant difference in ratio between double treatment 
and placebo, with a subset of ‘double’ treatment group datapoints having a slightly higher ratio. Boxplot 
center lines represent respective medians, box limits represent upper and lower quartiles, and whiskers 
represent 1.5x interquartile range.   
 

   
 

Supplementary Figure 15. The ratio of Bacteroides to Escherichia and hypothesised molecular 
signatures – including B3 biosynthesis – are positively correlated, as was predicted from our in vitro data 
(Fig. 4). Here, we plotted the gene hits across metagenomic data of healthy individuals and CDI patients 
(excluding FMT patients). The fitted line represents the linear regression, and the shaded area the 
associated standard error. 
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Supplementary Tables 
 
Supplementary Table 1: List of cohort studies included for metagenomic analysis. Sample numbers 
shown are those that met sequence quality criteria as mentioned in Methods (section 4.2.8) 

Project ID Study name N 
Samples 

N  
CDI  

N  
FMT 

N 
Healthy  References 

PRJNA420371 University of Alabama at 
Birmingham 25 8 9 

8 
 [110] 

PRJNA339012 Kumar, R., et al., 2017 26  16 10  [111] 
PRJNA564397 Monaghan, T.M., et al., 2020 81 32  49  [112] 
PRJEB23489 Smillie, C.S., et al., 2018 108  90 18  [113] 

PRJEB39023 

Daniel Podlesny, W.F.F., 
2020, & Podlesny, D., et al., 
2022 27 8 11 

8 

 [114, 115] 
PRJEB33013; 
PRJEB35738 Kim, J., et al., 2020 86 26  

60 
 [116] 

PRJNA674880 Langdon, A., et al., 2021 155 111  44  [117] 

PRJNA701961 
Andrea R. Watson, et al., 
2022 96 16 44 

36 
 [118] 

PRJNA637878 Aggarwala, V., et al., 2021 75 10 52 13  [119] 
PRJNA297268 Milani, C., et al., 2016 10 5  5  [120] 

Total 689 216 222 251  
 5 
 
 
 
 
 10 
 
 
 
 
 15 
 
 
 
 
 20 
 
 
 
 
 25 
 
 
 
 
 30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610284doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52 

Supplementary Table 2: Correlations of significant ratios with Shannon-Indexed Alpha Diversity. 
Combinations in grey have worse regression than the focus Ratio of Bacteroides to Escherichia. In bold is 
the ratio with the strongest regression. 
 

 Linear regression metrics Spearman correlation metrics 
Ratio R^2 p-value rho p-value 
Bacteroides_Abundance / 
Escherichia_Abundance* 0.437 3.152e-07 0.6892097 2.041e-07 
Bacteroides_Abundance / 
Fusicatenibacter_Abundance* 0.3401 1.365e-05 0.6013895 9.576e-06 
(Fusicatenibacter_Abundance + 
Parabacteroides_Abundance) / 
Bacteroides_Abundance 0.4198 6.424e-07 -0.6448111 1.491e-06 
(Escherichia_Abundance + 
Roseburia_Abundance) / 
Bacteroides_Abundance 0.4399 2.792e-07 -0.6892097 2.041e-07 
(Escherichia_Abundance + 
Fusicatenibacter_Abundance) / 
Bacteroides_Abundance 0.4409 2.675e-07 -0.6873643 2.217e-07 
(Collinsella_Abundance + 
Parabacteroides_Abundance) / 
Bacteroides_Abundance 0.4843 3.987e-08 -0.6561007 9.01e-07 
(Collinsella_Abundance + 
Fusicatenibacter_Abundance) / 
Bacteroides_Abundance 0.3416 1.289e-05 -0.5687147 3.437e-05 
(Collinsella_Abundance + 
Escherichia_Abundance) / 
Bacteroides_Abundance 0.4405 2.717e-07 -0.6892097 2.041e-07 
(Blautia_Abundance + 
Fusicatenibacter_Abundance) / 
Bacteroides_Abundance 0.3752 3.705e-06 -0.6021494 9.283e-06 
(Blautia_Abundance + 
Escherichia_Abundance) / 
Bacteroides_Abundance 0.4454 2.211e-07 -0.6892097 2.041e-07 
(Bifidobacterium_Abundance + 
Fusicatenibacter_Abundance) / 
Bacteroides_Abundance 0.589 1.976e-10 -0.7625923 < 2.2e-16 
(Bifidobacterium_Abundance + 
Escherichia_Abundance) / 
Bacteroides_Abundance 0.632 1.502e-11 -0.7859314 < 2.2e-16 
(Bifidobacterium_Abundance + 
Collinsella_Abundance) / 
Bacteroides_Abundance 0.5948 1.416e-10 -0.7667173 < 2.2e-16 
(Bifidobacterium_Abundance + 
Fusicatenibacter_Abundance) / 
Blautia_Abundance 0.3692 4.659e-06 -0.6060573 7.905e-06 
(Bifidobacterium_Abundance + 
Fusicatenibacter_Abundance) / 
Collinsella_Abundance 0.2755 0.0001283 -0.663591 6.439e-07 
(Bifidobacterium_Abundance + 
Fusicatenibacter_Abundance) / 
Parabacteroides_Abundance 0.4142 8.048e-07 -0.6574034 8.499e-07 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610284doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

(Bacteroides_Abundance + 
Roseburia_Abundance) / 
Escherichia_Abundance 0.4135 8.293e-07 0.6643508 6.223e-07 
(Bacteroides_Abundance + 
Parabacteroides_Abundance) / 
Escherichia_Abundance 0.4194 6.527e-07 0.6861702 2.339e-07 
(Bacteroides_Abundance + 
Roseburia_Abundance) / 
Fusicatenibacter_Abundance 0.3039 4.899e-05 0.5618758 4.428e-05 
(Bacteroides_Abundance + 
Parabacteroides_Abundance) / 
Fusicatenibacter_Abundance 0.3161 3.205e-05 0.5755536 2.655e-05 
(Bacteroides_Abundance + 
Collinsella_Abundance) / 
Escherichia_Abundance 0.425 5.186e-07 0.6764003 3.624e-07 
(Bacteroides_Abundance + 
Blautia_Abundance) / Escherichia_Abundance 0.4218 5.909e-07 0.6761832 3.659e-07 
(Bacteroides_Abundance + 
Collinsella_Abundance) / 
Fusicatenibacter_Abundance 0.3222 2.579e-05 0.5785931 2.364e-05 
(Bacteroides_Abundance + 
Blautia_Abundance) / 
Fusicatenibacter_Abundance 0.3178 3.017e-05 0.5787017 2.354e-05 

* = inverse ratio has identical metrics, with inverse sign for correlation coefficient. 
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Supplementary Table 3A: Overview of parameters used in the ecological model (see Methods 4.2.2.) 
Parameter Units Description Informed by 
𝑟!  [𝑑]3$ Maximum per capita 

growth rate of bug 𝑖.  
Max growth rate of monoculture growth data (mBhi_GC.xlxs), 
pulled from a normal distribution: 𝑟!~N(µ(𝑟!), σ(𝑟!)=) 

𝜙  [𝑑]3$ Dilution rate Experimental set-up: 1 volume change every 8 hours, so 3 per day. 
The dilution rate and local perturbations thereof (i.e., each 
integration, for each population) were pulled from a normal 
distribution: 𝑟!~N(3, 0.02=) 

𝐾  [𝑂𝐷] Universal or system-
wide maximum 
density in bioreactor 

Co-culture final max OD post antibiotic treatment 
(od_ph_bioreactor.xlsx), pulled from a normal distribution: 
𝐾~N(µ(𝐾), σ(𝐾)=).  

𝐾.7  [𝑂𝐷] Species-specific 
maximum density of 
C. diff 

Monoculture max OD for C. diff (mBhi_GC.xlxs), pulled from a 
normal distribution: 𝐾.7 	~N(µ(𝐾.7 	), σ(𝐾.7 	)=). 

𝛼!,9  [𝑂𝐷]3𝟏 Effect of species 𝑗 on 
per capita growth rate 
of species 𝑖 

The interaction coefficients were all made relative to the subjected 
species’ growth rate, 𝑟!, so that one unit of the exerting species, 𝑗, 
corresponds to a fraction, 𝑓, of the subjected species' growth rate 
being impacted, and thus 𝛼!,9 = 𝑓 ∙ 𝑟!. If the direction of interaction 
(i.e., positive, or negative) was inferable from experimental data, 
the relative strengths of interaction (𝑓) were pulled from uniform 
distributions following 𝑓~U(0.01, 1), otherwise: 𝑓~N(0, 0.2=) 
(assuming neutrality, with mean of 0). 

𝑥  unitless Multiplier capturing 
the community-level 
sensitivity to the 
antibiotic clindamycin, 
added between days 
8-11, in system 
between days 8-12. 

Relative loss in abundance, estimated from drop in relative 
abundance during antibiotics treatment. 0 for complete 
bacteriostatic response, 1 for complete insensitivity. Based on the 
average relative abundance losses observed, 0.6 was assigned for 
the multiplier of E. coli, and 0 for the multiplier of F. saccharivorans. 
All other species variables had a multiplier value of 1 (no evident 
community-level sensitivity to the antibiotics). 

Initial 
conditions 

[𝑂𝐷] Initial density for each 
of the modelled 
populations.  

Since the OD at t0 of the monoculture growth experiments 
(mBhi_GC.xlxs) was ~0.01, all variables were initialised at 0.01 
OD, except C. difficile. C. difficile was initialised with 0.01 OD at 
day 13 (when it is introduced in the experimental timeline). This 
introduction density is small enough to warrant an introduction load 
of an invasive/emergent pathogen, yet big enough to exclude 
stochastic extinction in the used dilution regime. 
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Supplementary Table 3 B: Justifications of constraints for interaction parameter inference as used 
in Ecological Modelling (see Methods 4.2.2.) 

 
 
 5 
 

Effect from Effect to Direction inferred Justification Data source(s) for justification

B. caccae E. coli positive

With co-cultures achieving mean maximum OD values of >6 (Suppl. 
fig. x), and E. coli achieving >50% of final relative abundance in 
community co-culture – both when F. saccharivorans  was its fellow 
top-abundant member or when this niche was filled by B. caccae – 
approximately >3 community OD units are attributable to E. coli, 
which is much greater than the 1 ODU at which E. coli equilibrates in 
monoculture. Hence, post-antibiotic perturbation, one can deduce 
that E. coli engaged in beneficial (indirect) interactions with other 
(dominant) Mix-14 members, in particular B. caccae. 

Mix-14 Community OD data, Mix-14 
relative abundance data

E. coli
B. caccae & F. 
saccharivorans neutral to positive

Vice versa, while E. coli is a dominant member of the community, it 
does not competitively exclude others and dominate the co-culture in 
its entirety. In fact, GEM results indicate this species may play a 
‘central donor’ role, with the potential to supply metabolites other Mix-
14 members, including B. caccae, are predicted to be auxotrophic 
for (Fig. 3a).  Dynamically, F. saccharivorans' anticorrelative 
behaviour with E. coli around system equilibrium in the absence 
of/before AB, and B. caccae’s  sharp rise in relative abundance 
during/after antibiotics treatment would not be biologically feasible if 
E. coli exerted an antagonistic effect on B. caccae. Mix-14 GEM results, Mix-14 relative 

abundance data

SEC-species & B. caccae C. difficile negative

As shown in individual suppressiveness data (Fig. 1b), SEC-cluster 
members and B. caccae show strong indiviudal suppressive 
capacities. Moreover, all of these species perform relatively better in 
post-antibiotic treated and suppressive Mix-14. Hence, they are 
considered as major players directly or indirectly inhibiting C. difficile . 
In addition, BIOLOG carbon utilisation assay showed close 
clustering of C. difficile with B. caccae, implying competition as a 
potential driver of their interaction.

Individual suppressiveness, C. 
difficile CFU counts at Mix-14 
experimental endpoints, relative 
abundance data, BIOLOG carbon 
utilisation assay

F. saccharivorans
B. caccae & SEC-
species negative

F. saccharivorans and B. caccae occupy a near-identical dynamic 
niche in Mix-14 across experimental conditions, and only occupy this 
when the other is in low abundance (e.g., F. saccharivorans 
occupies this niche and maintains this position until perturbation by 
antibiotics or C. difficile, after which F. saccharivorans declines to 
near-zero relative abundance and B. caccae rises out of low-
abundance to occupy the same dynamic niche as a top-abundant 
species, anti-correlating around system equilibrium with E. coli). In 
addition, in the BIOLOG carbon utilisation data, both of these species 
cluster closely together, hinting at potential competition between 
these species).

BIOLOG carbon utilisation assay, 
Mix-14 relative abundance data

B. caccae 
F. 
saccharivorans negative

F. saccharivorans and B. caccae occupy a near-identical dynamic 
niche in Mix-14 across experimental conditions, and only occupy this 
when the other is in low abundance (e.g., F. saccharivorans 
occupies this niche and maintains this position until perturbation by 
antibiotics or C. difficile, after which F. saccharivorans declines to 
near-zero relative abundance and B. caccae rises out of low-
abundance to occupy the same dynamic niche as a top-abundant 
species, anti-correlating around system equilibrium with E. coli). In 
addition, in the BIOLOG carbon utilisation data, both of these species 
cluster closely together, hinting at potential competition between 
these species).

BIOLOG carbon utilisation assay, 
Mix-14 relative abundance data

B. caccae SEC-species positive

As B. caccae rises following antibiotics treatment, so do SEC- 
species. Since the SEC-species 'follow' the rise of B. caccae, the 
dynamic resembles a commensalist or mutualist (net) interaction 
between these species groups, and would not be congruent with an 
antagonistic effect of B. caccae on the SEC-species. Mix-14 relative abundance data

SEC-species B. caccae neutral to positive

As B. caccae rises following antibiotics treatment, so do SEC- 
species. Since the SEC-species 'follow' the rise of B. caccae, the 
dynamic resembles a commensalist or mutualist (net) interaction 
between these species groups, and would not be congruent with an 
antagonism between the SEC-species and B. caccae. Mix-14 relative abundance data

C. difficile B. caccae neutral to positive

Positive transient effect observed of C. difficile on B. caccae's 
relative abundance (when comparing Mix-14 + AB to Mix-14 + AB + 
C. difficile, and/or when comparing Mix-14 control to Mix-14 + C. 
difficile) Mix-14 relative abundance data
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Supplementary Methods for Untargeted Metabolomics 
 
Briefly, the protocol used for analysis of the metabolomics data, as described by Metabolon [88], was as 
follows: 
Sample Accessioning: Following receipt, samples were inventoried and immediately stored at -80oC.  5 
Each sample received was accessioned into the Metabolon LIMS system and was assigned by the LIMS a 
unique identifier that was associated with the original source identifier only.  This identifier was used to track 
all sample handling, tasks, results, etc.  The samples (and all derived aliquots) were tracked by the LIMS 
system.  All portions of any sample were automatically assigned their own unique identifiers by the LIMS 
when a new task was created; the relationship of these samples was also tracked.  All samples were 10 
maintained at -80oC until processed. 
Sample Preparation: Samples were prepared using the automated MicroLab STAR® system from 
Hamilton Company.  Several recovery standards were added prior to the first step in the extraction process 
for QC purposes.  To remove protein, dissociate small molecules bound to protein or trapped in the 
precipitated protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with 15 
methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation.  The 
resulting extract was divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-
MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS 
with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one 
sample was reserved for backup.  Samples were placed briefly on a TurboVap® (Zymark) to remove the 20 
organic solvent.  The sample extracts were stored overnight under nitrogen before preparation for analysis.   
QA/QC:  Several types of controls were analyzed in concert with the experimental samples: a pooled matrix 
sample generated by taking a small volume of each experimental sample (or alternatively, use of a pool of 
well-characterized human plasma) served as a technical replicate throughout the data set; extracted water 
samples served as process blanks; and a cocktail of QC standards that were carefully chosen not to 25 
interfere with the measurement of endogenous compounds were spiked into every analyzed sample, 
allowed instrument performance monitoring and aided chromatographic alignment.  Tables below describe 
these QC samples and standards.  Instrument variability was determined by calculating the median relative 
standard deviation (RSD) for the standards added to each sample before injection into the mass 
spectrometer.  Overall process variability was determined by calculating the median RSD for all 30 
endogenous metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples.  
Experimental samples were randomized across the platform run with QC samples spaced evenly among 
the injections, as outlined in Suppl. Methods Fig. 1. 

 

Type Description Purpose 

RS Recovery Standard Assess variability and verify performance of 
extraction and instrumentation. 

IS Internal Standard Assess variability and performance of 
instrument. 

Type Description Purpose 

MTRX 
Large pool of human plasma 
maintained by Metabolon that has 
been characterized extensively. 

Assure that all aspects of the Metabolon 
process are operating within specifications. 

CMTRX Pool created by taking a small 
aliquot from every customer sample. 

Assess the effect of a non-plasma matrix on the 
Metabolon process and distinguish biological 
variability from process variability. 

PRCS Aliquot of ultra-pure water Process Blank used to assess the contribution 
to compound signals from the process. 

SOLV Aliquot of solvents used in 
extraction. 

Solvent Blank used to segregate contamination 
sources in the extraction. 
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Supplementary Methods, Fig. 1: Preparation of client-specific technical replicates.  A small aliquot of each 
client sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-colored 
cylinder), which is then injected periodically throughout the platform. 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS): All 5 
methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo 
Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray 
ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution.  The sample 
extract was dried then reconstituted in solvents compatible to each of the four methods.  Each reconstitution 
solvent contained a series of standards at fixed concentrations to ensure injection and chromatographic 10 
consistency.  One aliquot was analyzed using acidic positive ion conditions, chromatographically optimized 
for more hydrophilic compounds.  In this method, the extract was gradient eluted from a C18 column 
(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% 
perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was also analyzed using acidic 
positive ion conditions, however it was chromatographically optimized for more hydrophobic compounds.  15 
In this method, the extract was gradient eluted from the same afore mentioned C18 column using methanol, 
acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic content.  
Another aliquot was analyzed using basic negative ion optimized conditions using a separate dedicated 
C18 column.   The basic extracts were gradient eluted from the column using methanol and water, however 
with 6.5mM Ammonium Bicarbonate at pH 8.  The fourth aliquot was analyzed via negative ionization 20 
following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient 
consisting of water and acetonitrile with 10mM ammonium formate, pH 10.8. The MS analysis alternated 
between MS and data-dependent MSn scans using dynamic exclusion.  The scan range varied slighted 
between methods but covered 70-1000 m/z.  Raw data files are archived and extracted as described below. 
Bioinformatics: The informatics system consisted of four major components, the Laboratory Information 25 
Management System (LIMS), the data extraction and peak-identification software, data processing tools for 
QC and compound identification, and a collection of information interpretation and visualization tools for 
use by data analysts.  The hardware and software foundations for these informatics components were the 
LAN backbone, and a database server running Oracle 10.2.0.1 Enterprise Edition. 
LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory automation 30 
through a secure, easy to use, and highly specialized system.  The scope of the Metabolon LIMS system 
encompasses sample accessioning, sample preparation and instrumental analysis and reporting and 
advanced data analysis.  All the subsequent software systems are grounded in the LIMS data structures.  
It has been modified to leverage and interface with the in-house information extraction and data 
visualization systems, as well as third party instrumentation and data analysis software. 35 
Data Extraction and Compound Identification: Raw data was extracted, peak-identified and QC 
processed using Metabolon’s hardware and software.  These systems are built on a web-service platform 
utilizing Microsoft’s .NET technologies, which run on high-performance application servers and fiber-
channel storage arrays in clusters to provide active failover and load-balancing.  Compounds were identified 
by comparison to library entries of purified standards or recurrent unknown entities.  Metabolon maintains 40 
a library based on authenticated standards that contain the retention time/index (RI), mass to charge ratio 
(m/z), and chromatographic data (including MS/MS spectral data) on all molecules present in the library.  
Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples
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window of the proposed identification, accurate mass match to the library +/- 10 ppm, and the MS/MS 
forward and reverse scores between the experimental data and authentic standards.  The MS/MS scores 
are based on a comparison of the ions present in the experimental spectrum to the ions present in the 
library spectrum.  While there may be similarities between these molecules based on one of these factors, 
the use of all three data points can be utilized to distinguish and differentiate biochemicals.  More than 3300 5 
commercially available purified standard compounds have been acquired and registered into LIMS for 
analysis on all platforms for determination of their analytical characteristics.  Additional mass spectral 
entries have been created for structurally unnamed biochemicals, which have been identified by virtue of 
their recurrent nature (both chromatographic and mass spectral).  These compounds have the potential to 
be identified by future acquisition of a matching purified standard or by classical structural analysis. 10 
Curation: A variety of curation procedures were carried out to ensure that a high quality data set was made 
available for statistical analysis and data interpretation.  The QC and curation processes were designed to 
ensure accurate and consistent identification of true chemical entities, and to remove those representing 
system artifacts, mis-assignments, and background noise.  Metabolon data analysts use proprietary 
visualization and interpretation software to confirm the consistency of peak identification among the various 15 
samples.  Library matches for each compound were checked for each sample and corrected if necessary. 
Metabolite Quantification and Data Normalization: Peaks were quantified using area-under-the-curve.  
For studies spanning multiple days, a data normalization step was performed to correct variation resulting 
from instrument inter-day tuning differences.  Essentially, each compound was corrected in run-day blocks 
by registering the medians to equal one (1.00) and normalizing each data point proportionately (termed the 20 
“block correction”; Suppl. Methods Fig. 2).   For studies that did not require more than one day of analysis, 
no normalization is necessary, other than for purposes of data visualization.  In certain instances, 
biochemical data may have been normalized to an additional factor (e.g., cell counts, total protein as 
determined by Bradford assay, osmolality, etc.) to account for differences in metabolite levels due to 
differences in the amount of material present in each sample. 25 

 
Supplementary Methods, Fig. 2: Visualization of data normalization steps for a multiday platform run. 
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Day
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Day
1      2        3        4      5       6        7

A. B. 
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