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Abstract

Genome-wide association studies have identified thousands of common variants associated
with an increased risk of neurodegenerative disorders. However, the noncoding localization
of these variants has made the assignment of target genes for brain cell types challenging.
Genomic approaches that infer chromosomal 3D architecture can link noncoding risk
variants and distal gene regulatory elements such as enhancers to gene promoters. By
using enhancer-to-promoter interactome maps for microglia, neurons, and oligodendrocytes,
we identified cell-type-specific enrichment of genetic heritability for brain disorders through
stratified linkage disequilibrium score regression. Our analysis suggests that genetic
heritability for multiple neurodegenerative disorders is enriched at microglial chromatin
contact sites. Through Hi-C coupled multimarker analysis of genomic annotation (H-
MAGMA) we identified disease risk genes for Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis and amyotrophic lateral sclerosis. We found that disease-risk genes were
overrepresented in microglia compared to other brain cell types across neurodegenerative
conditions. Notably, the microglial risk genes and pathways identified were largely specific to

each disease. Our findings reinforce microglia as an important, genetically informed cell type
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for therapeutic interventions in neurodegenerative conditions and highlight potentially

targetable disease-relevant pathways.
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Introduction

Genetics plays a significant role in the etiology of neurodegenerative disorders including
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS) and
amyotrophic lateral sclerosis (ALS) (2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Familial forms have been
identified for AD, PD and ALS that exhibit Mendelian patterns of inheritance and are
associated with rare variants with strong effect sizes (12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27). While the genetics underlying familial cases have been informative in
our understanding of disease etiology, most individuals presenting with neurogenerative
disorders, including MS, have sporadic forms of the disease. Genome-wide association
studies (GWAS) for sporadic neurodegenerative disorders have identified thousands of
common variants associated with an increased risk of disease and highlight the
heterogeneity of these disorders (28, 29, 30, 31, 32, 33, 34). GWAS risk variants generally
have a relatively high prevalence in the population and exhibit smaller effect sizes, with their

risk contribution believed to arise from the combined effects of multiple variants (35).

Most GWAS risk variants reside within non-coding regions of the genome and are often
located distally from the nearest known genes (36). GWAS risk variants are enriched at
chromatin accessibility regions that likely function as gene regulatory elements such as
enhancers and promoters (37, 38). Enhancers are distal genomic regions associated with
chromatin accessibility and are characterized by the presence of specific histone

modifications, including acetylation of histone H3 lysine 27 (H3K27ac) (39). Enhancers are
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highly cell type-specific (40) and can be incorporated into heritability analysis to prioritize cell
types associated with the genetic risk of complex traits. GWAS variants for neurological
disorders and psychiatric traits have been associated with cell type-specific heritability
enrichment. For example, AD risk variants were found to be enriched in microglia and
macrophage enhancers, while schizophrenia risk was enriched in neuronal gene regulatory

regions (1, 41, 42, 43, 44, 45, 46, 47).

Enhancers have been informative for the allocation of cell types associated with genetic risk.
However, the distal localization of GWAS risk variants has made the identification of target
genes impacted by these variants a major challenge. The mammalian genome has a non-
random three-dimensional organization that connects distal chromosomal regions through
the formation of chromatin loops (48). Functional chromatin interactions include the
association of gene promoters with cis-regulatory regions, such as enhancers (48). The
recruitment of transcription factors and structural proteins to enhancers and their interaction
with promoters facilitates the formation of the pre-initiation complex and gene transcription
(49, 50). Genetic variants localized to gene regulatory regions were thought to disrupt
enhancer function or enhancer-to-promoter interactions, ultimately impacting gene
expression and cell behavior (46, 51). Similar to enhancers, chromatin interactions are cell-
type-specific (1). Hence, localization of non-coding GWAS variants to chromatin contact
sites could predict cell type-specific genes and pathways that are susceptible to genetic

variation in neurodegenerative disorders.

Enhancer-to-promoter interactomes are available for three of the major brain cell types,
however, the assignment of GWAS risk variants to genes has been hindered by a lack of
computational tools. A recently developed tool, Hi-C coupled multimarker analysis of
genomic annotation (H-MAGMA), identifies putative disease risk genes by accounting for
GWAS variants within distal non-coding regions (52). H-MAGMA predicts gene-level

associations with diseases by combining GWAS summary statistics with enhancer-to-
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promoter interactomes (52, 53). Here we used H-MAGMA coupled with chromatin data to
map out disease genes for neurodegenerative diseases. By integrating epigenetic
annotations with chromatin interaction data, we identified putative cell types and genes that
contribute to the genetic susceptibility of these disorders. We found that risk genes are
enriched in microglia across multiple neurodegenerative diseases (AD, PD, ALS, and MS).
However, the pathways impacted by microglial GWAS-risk genes are mostly unique for each

disorder, indicating that immune processes exhibit disease-specific patterns.

Results

Microglial chromatin interactions are enriched for genetic risk variants associated

with neurodegenerative disorders

To determine whether disease risk variants for neurodegenerative disorders are associated
with genes linked to distal gene regulatory regions we used proximity ligation-assisted
chromatin immunoprecipitation-seq (PLAC-seq) data generated from human cortical
neurons, microglia and oligodendrocytes (1). PLAC-seq chromatin interactions were
anchored to active gene promoters by immunoprecipitation of histone H3 lysine 4
trimethylation (H3K4me3), which is a histone modification enriched at active gene promoters
(54, 55). PLAC-seq contact sites were defined as two 5 kb regions (or bins) separated by 10
kb or more (1). By integrating PLAC-seqg-defined chromatin loops with ATAC-seq, H3K27ac
chromatin immunoprecipitation (ChlP)-seq and H3K4me3 ChlP-seq from the same cell types
(1), we classified chromatin interactions as either: i) promoter-to-enhancer; ii) promoter-to-
promoter; iii) promoter-to-ATAC; iv) promoter-to-promoter/enhancer; v) promoter-to-other; vi)
H3K4me3-to-H3K4me3; vii) H3K4me3-to-other; and viii) other interactions. Active promoters
were defined by co-occurrence of H3K4me3 and H3K27ac within 2 kb of a transcription start
site (TSS). Enhancers were defined as H3K27ac peaks that did not overlap with H3K4me3.

PLAC-seq contact sites that overlapped both promoter and enhancer regions were termed
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promoter/enhancer. Genomic regions with H3K4me3 peaks further than 2 kb from a TSS
were not considered promoters and were classified as ‘H3K4me3’ regions. Distal regions
that were linked to promoters and had an ATAC peak but no H3K27ac peak were defined as
‘ATAC’. Lastly, chromatin loops that linked to regions with no detectable H3K4me3,
H3K27ac or ATAC signal were designated ‘other’. Promoter-to-enhancer loops were the
most common classification of chromatin interactions for each cell type, representing 29.4%,
39.1% and 38.2% of interactions in microglia, neurons, and oligodendrocytes, respectively
(Fig. 1a). The next most abundant classifications were chromatin interactions that occurred
at promoters-to-other or H3K4me3-to-other (Fig. 1a). Promoters are known to interact with
more than one enhancer. For microglia, neurons and oligodendrocytes, most promoters
interacted with more than one enhancer and for enhancer-to-promoter interactions, most
enhancers interacted with a single promoter (Fig. 1b). The average distance of these
promoter-to-enhancer interactions was 175 kb for microglia, 200 kb for neurons and 150 kb
for oligodendrocytes (Fig. 1¢). Overall, H3K4me3-anchored PLAC-seq chromatin loops in
microglia, neurons and oligodendrocytes predominantly identified promoters that were linked

to multiple distal enhancers.

To examine whether disease heritability was enriched at brain cell type chromatin
interactions, we used stratified linkage disequilibrium score (sLDSC) regression analysis.
Cell type disease enrichment by sLDSC regression was assessed using chromatin
interactions defined as (i) all PLAC-seq bins irrespective of functional genomic annotations
(total PLAC-seq bins), (ii) PLAC-seq bins subset to both active gene promoters (H3K4me3 +
H3K27ac) and distal enhancers (H3K27ac only) (promoter & enhancer PLAC-seq bins), (iii)
PLAC-seq bins subset to active gene promoters (promoter PLAC-seq bins) and (iv) PLAC-
seq bins subset to distal enhancers (enhancer PLAC-seq bins). Cell type disease
enrichment was assessed using summary statistics from two complementary AD GWAS;
one study was based exclusively on clinical diagnosis (28), while the second included by-

proxy cases (29). GWAS summary statistics were analyzed for three additional
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neurodegenerative conditions, PD, MS and ALS (30, 32, 34) and for a neurodevelopmental

condition, schizophrenia (33).

Microglia PLAC-seq bins showed enrichment for AD risk variants over other cell types, with
a greater enrichment of AD risk variants found at enhancer PLAC-seq bins compared to
promoter PLAC-seq bins (Fig. 1d, Supplemental Fig. 1). These findings corroborate
observations that AD GWAS variants are enriched at microglia enhancers compared to
microglia promoters defined using histone modifications (1, 56). The microglia enhancer
PLAC-seq bins are likely physically linked to gene promoters and therefore functionally
relevant. An enrichment of disease risk variants at microglia PLAC-seq bins was also
observed for PD and MS, although there was no clear preference for either promoter or
enhancer interacting regions for these disorders (Fig. 1d, Supplemental Fig. 1). No
enrichment for ALS risk variants was identified at PLAC-seq bins for microglia, neurons or
oligodendrocytes (Fig. 1d, Supplemental Fig. 1). In contrast, for schizophrenia, heritability
showed a strong enrichment of disease risk at PLAC-seq bins identified in neurons and
oligodendrocytes (Fig. 1d, Supplemental Fig. 1). The heritability enrichment for
schizophrenia was stronger in neurons than oligodendrocytes (promoter & enhancer PLAC-
seq bins; sLDSC; neurons -log10(q)=15; oligodendrocytes, -log10(q)=4.0) (Fig. 1d). This
supports previous findings showing that schizophrenia GWAS variants were enriched at
neuronal promoters and enhancers using annotations defined by histone modifications (1,
44). Overall, chromatin-interacting regions in microglia show a broad enrichment for disease

heritability across multiple neurodegenerative disorders.

Microglial chromatin interactions identify disease risk genes across multiple

neurodegenerative conditions
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Promoter-to-enhancer interactions link distal gene regulatory regions, such as enhancers, to
active gene promoters and can be used to infer disease-risk genes for noncoding GWAS
risk variants. H-MAGMA was used to identify disease-risk genes in microglia, neurons and
oligodendrocytes for AD, PD, MS, ALS and schizophrenia by incorporating PLAC-seq
interactomes for the corresponding cell types. In all the neurodegenerative GWAS that we
assessed, the highest number of risk genes were identified in microglia compared to
neurons and oligodendrocytes (Fig. 2a, Supplementary Table 1). In contrast, for
schizophrenia the highest number of risk genes were identified in neurons (Fig. 2a,
Supplementary Table 1). The identified number of PLAC-seq chromatin interactions were
higher in microglia compared to other cell types (microglia, 108802; neurons, 93290;
oligodendrocytes, 61895; Fig. 1a), which may partially explain the increased number of
microglia disease risk genes identified across neurodegenerative conditions. To account for
the differing number of chromatin interactions identified between the three cell types, the
PLAC-seq data was randomly downsampled to 60,000 chromatin interactions per cell type.
This was followed by H-MAGMA analysis, which was repeated for 10 iterations (Fig. 2b). H-
MAGMA analysis using the 60,000 downsampled PLAC-seq chromatin interactions
maintained a similar distribution of disease-risk genes across the three cell types (Fig. 2b).
Importantly, when the number of chromatin interactions was the same for each cell type, the
number of disease-risk genes identified remained highest in microglia for AD, PD, MS and
ALS (Fig. 2b). The overrepresentation of disease risk genes identified in microglia for
neurodegenerative disorders compared to neurons for schizophrenia is consistent with the
cell type distribution of disease heritability identified using sLDSC regression analysis (Fig.

1d).

GWAS risk variants may be differentially enriched at chromatin interaction contact sites at
enhancers (PLAC-seq bins at intergenic and intronic regions) compared to promoters
(PLAC-seq bins at promoters and exonic regions). To determine GWAS risk enrichment

across these gene regulatory classifications, H-MAGMA was repeated using PLAC-seq bins
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subset to enhancers or promoters. For AD, PD and MS, the maximum number of disease-
risk genes were identified using microglia enhancer contact sites, followed by microglia
promoter contact sites (Supplemental Fig. 2). In ALS, more disease-risk genes were
identified using microglia promoter contact sites compared to enhancer contact sites
(Supplemental Fig. 2). This suggests that promoters may play a more crucial role in the
genetic risk associated with ALS, in contrast to the significance of enhancers for GWAS risk
in other neurodegenerative conditions. Lastly, for schizophrenia, the highest number of
disease-risk genes were identified at neuronal promoter contact sites compared to

enhancers (Supplemental Fig. 2).

Disease-risk variants often colocalise with gene regulatory regions that are highly cell-type
specific, thereby conferring cell-type-associated genetic susceptibility (37, 57). However, the
downstream genes associated with these regulatory regions may be expressed exclusively
in the disease-associated cell type or across multiple cell types. Expression Weighted
Celltype Enrichment (EWCE) analysis was used to determine the cell type expression of the
GWAS risk genes identified by H-MAGMA by incorporating single-cell gene expression data
from the mouse cortex and hippocampus (58). EWCE analysis revealed that the expression
of microglia GWAS-risk genes for AD, MS and schizophrenia was enriched in microglia
compared to other brain cell types (Fig. 2¢). In contrast, GWAS-risk genes identified in
neurons and oligodendrocytes across the neurodegenerative conditions generally did not
exhibit a cell type enrichment in gene expression, indicating a broader expression across
multiple cell types (Fig. 2c). However, disease risk genes identified by H-MAGMA genes
across all three cell types for schizophrenia were characterized by matching cell type-
specific gene expression (Fig. 2¢). Of note, neurons and oligodendrocytes originate from
neural progenitor cells localized in the brain (59, 60), while microglia are derived from a
distinct progenitor pool in the embryonic yolk sac outside of the brain (61). This may account
for the cell type specificity in gene expression of microglia-associated risk genes across

neurological conditions compared to risk genes identified in neurons and oligodendrocytes.
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221

222  Microglial genetic-susceptibility genes are associated with disease-specific pathways
223

224 Genetic heritability estimates using sLDSC and the identification of putative GWAS risk
225  genes using H-MAGMA highlight the importance of microglia in the genetic susceptibility of
226  neurodegenerative conditions. This may suggest shared dysregulated microglial processes
227  across these disorders. However, an intersection of GWAS-risk genes identified using H-
228 MAGMA for microglia showed a minimal overlap between the different diseases (filtered on
229 H-MAGMA p-value; AD, PD, MS, ALS p<5e-8 and schizophrenia p<5e-12) (Fig. 3a,b).

230  Similarly, there was a minimal overlap across diseases for GWAS risk genes identified for
231  neurons and oligodendrocytes (Fig. 3a,b). While most risk genes were unique to each

232  disorder, some genes were shared across two or more conditions. For example, the major
233 histocompatibility complex (MHC) was identified as a disease-risk locus in MS and

234  schizophrenia (Fig. 3b). Disease-risk genes that overlapped across PD, ALS and

235  schizophrenia were KANSL1-AS1 (microglia and oligodendrocytes) and KANSL1,

236 ARHGAP27, and PLEKHM1 (microglia). Interestingly, KANSL1 and ARHGAP27 were

237  identified as comorbid genes for PD and ALS (62). The microglial GWAS-risk genes BAGS6,
238 NEU1, PRRC2A, PSMB8, PSMB8-AS1 and PSMB9 were associated with MS, ALS and
239  schizophrenia. PSMB8-AS1 was also identified as a microglial risk gene for AD. These

240 findings indicate that microglia are an important cell type associated with genetic

241  susceptibility across multiple neurodegenerative disorders. However, the microglial genes
242  that are impacted by genetic risk are mostly disease-specific.

243

244  We next assessed specific cellular and biological pathways associated with microglia

245  GWAS-risk genes for each disorder using gene ontology (GO) analysis. GO pathways linked
246  to GWAS-risk genes were mostly unique for each neurodegenerative condition (Fig. 3c).
247  This is consistent with the observation that most disease-risk genes were unique to each

248 GWAS (Fig. 3a, b). The top GO pathways associated with microglial AD-risk genes included
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lipoproteins, amyloid processing and endocytosis (Fig. 3c, Supplementary Table 2)
compared to neuronal and oligodendrocytes AD-risk genes which were associated with
amyloid and tau protein catabolic processes (Supplemental Fig. 3, 4). PD microglial-risk
genes were associated with the endolysosomal/autolysosomal pathways, synaptic vesicles
and epigenetic signaling (Fig. 3c, Supplementary Table 2). Whereas substantia nigra
gliosis, epigenetic signaling and synaptic vesicle pathways were evident in neuronal PD-risk
genes, reinforcing the vulnerability of the midbrain in PD (Supplemental Fig. 3). Both
microglia and oligodendrocyte MS risk-genes were associated with MHC protein complexes,
autoimmunity, and antigen presentation and processing (Fig. 3¢, Supplemental Fig. 4,
Supplementary Table 2). Risk genes assigned to the MHC Class Il complex were also
associated with AD and PD, as well as MS (Fig. 3b). ALS exhibited associations with
vacuoles and kinases, while also sharing pathways with PD related to lysosomes and
autophagosomes (Fig. 3¢, Supplementary Table 2). Microglial-associated GO pathways for
schizophrenia GWAS-risk genes were distinct from the neurodegenerative disorders and
primarily included epigenetic and gene regulatory pathways (Fig. 3¢, Supplementary Table
2). Neuronal GWAS schizophrenia risk genes were primarily implicated in synaptic
processes (Supplemental Fig. 3). Collectively, pathway analysis confirmed the observation
from gene set overlaps, indicating that microglial risk genes and associated biological

pathways are mostly disease-specific.

Discussion

Incorporation of enhancer-to-promoter interactomes for microglia, neurons and
oligodendrocytes with GWAS summary statistics enabled us to identify the cell types and
genes associated with the genetic risk of brain disorders. Partitioned heritability analysis
highlighted microglia as an important cell type underlying genetic susceptibility across
multiple neurodegenerative conditions. Accordingly, enhancer-to-promoter interactomes

identified the greatest number of predicted risk genes in microglia for AD, PD, MS and ALS.

10
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Previous studies have shown both the importance of active regulatory regions (63, 64) and
that AD GWAS-risk is associated with gene regulatory regions in microglia (1, 41, 42, 56), as
well as monocytes and macrophages (43, 65). MS is an autoimmune condition where the
immune system attacks the myelin sheath surrounding neurons (66) and MS genetic risk
genes have been associated with the peripheral immune system and microglia (67). ALS is
a motor neuron disease that has been linked to aberrant inflammation (68), although GWAS
risk for ALS has been primarily attributed to neuronal cell types (32). The genetic risk of PD
using single-cell gene expression analysis has identified dopaminergic neurons and
oligodendrocytes as cell types that express PD risk genes (69, 70). Interestingly, PD GWAS
risk was found to be enriched in microglia and monocyte chromatin accessibility regions
(71), although equivalent epigenetic datasets for dopaminergic neurons are lacking. In
summary, chromatin interactions in microglia showed the strongest heritability enrichment
and revealed the most risk genes across all neurodegenerative disorders. Despite this
commonality, microglia genetic-susceptibility genes identified using H-MAGMA were

associated with pathways that were disease-specific.

AD genetic risk in microglia was associated with lipoproteins, amyloid processing,
endocytosis and MHC class II. The lipid-protein complex and lipoprotein pathways included
the apolipoprotein genes APOE, APOC1, APOC4-APOC2, APOC2 and APOC4, with APOE
being the strongest common genetic determinate of sporadic AD (72). Amyloid processing
pathways included the ABC transporter ABCA7, vesicle-associated genes such as PICALM,
BIN1 and SORL1, and protein cleavage genes such as ADAM10 and APH1B. The
endosome/endocytosis-associated AD risk genes USP6NL, CNN2, RIN3, RAB8B and
membrane-associated genes such as SPPL2A, STX4 may contribute to amyloid processing,
although this remains to be fully explored. Rare loss of function variants for ABCA7 and
SORL1 have also been implicated in increased AD risk (73, 74). The MHC class |l complex
was associated with AD risk and was mostly driven by the HLA locus (HLA-DQB1/HLA-

DRB1/HLA-DRB5/HLA-DRA/HLA-E), as well as immune response genes such as INPP5D.

11
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Microglia mobility was implicated by AD risk genes such as the aggrecan protease
ADAMTS4 and cell adhesion molecule CASS4. Many AD risk genes were also implicated
across pathways, for example, the low-density lipoprotein receptor, SORL1, recycles

amyloid precursor protein out of endosomes (75).

PD risk genes in microglia were associated with endo-lysosomal pathways, as previously
implicated in a non-cell-type-centric manner for PD (76). These included lysosomal-
associated genes LRRK2, RAB29 and PLEKHM?1, as well as membrane fusion genes such
as STX4, TMEM175, VPS37A and the familial PD gene SNCA (alpha-synuclein). The PD
risk gene ARHGAPZ27 has also been implicated in endocytosis (77). Histone modifications
were associated with PD risk in microglia through histone lysine methylation (SETD1A and
FAMA47E) and acetylation (KAT8 and KANSL1). Microglia and immune homeostasis, mobility
and migration were linked to PD genetic risk through association with the purinergic
nucleotide receptors P2RY12 and P2RY13. Additional genes of interest are the vitamin K
epoxide reductase VKORC1, the platelet-associated gene MMRN1 and the kinases DGKQ
and CCNT2. PD has been linked to mitochondrial dysfunction through familial mutations
such as PINK1 and PARK?7 (78) and environmental factors such as pesticides (79). The
contribution of common PD-risk variants to mitochondrial function is less represented,
however, we identified NADH:ubiquinone oxidoreductase complex assembly factor 2,
NDUFAF2, the branched-chain keto acid dehydrogenase kinase, BCKDK and the G-protein-
coupled receptor for succinate, SUCNR1, (citric acid cycle intermediate) as PD risk genes.
BCKDK is localized to mitochondria and BCKDK mutations lead to dysregulated branched-
chain amino acids and have been associated with Maple Syrup Urine Disease (MSUD) with
links to Parkinsonism (80, 81). The microglia PD risk genes LRRK2, SNCA, and TMEM175

have also been linked to rare coding mutations in PD patients (82, 83, 84).

MS-risk genes are mostly associated with T cell signaling and antigen presentation and

processing, consistent with previous findings (85). A broader set of HLA genes were
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333  implicated in MS risk and genes linked to antigen presentation that were not identified in AD
334  such as the ABC transporters TAP1 and TAP2, TAP-binding protein TAPBPL, and the MHC
335 Class | and Class ll-associated genes (MICB, CIITA). Additional risk genes implicated in
336 antigen processing were heat shock proteins (HSPA1B, HSPA1A and HSPA1L) and the

337  ubiquitin ligase MARCHF1. MS-risk genes associated with immune activation included

338  Tumor Necrosis Factor (TNF) and TNF receptor family members TNFRSF1 and CD27,

339  negative regulation of cytokines (SOCS1 and VSIR), interleukin signaling (IL12RB1) as well
340 as other immune signaling molecules such as A/IF1 (also known as IBA1), BCL10 and

341 PTPRC. Interestingly, several chromatin-related risk genes were identified including

342 CORO1A and the lysine acetyltransferase KATS.

343

344  Pathways for ALS risk genes were mostly associated with vacuole-related terms, as well as
345  autophagy and the lysosome. These included vacuole-associated channels and transporters
346  ATXN3 (spinocerebellar ataxia-3), CLCN3, SLC12A4, TMEM175 and lysosomal-associated
347  proteins such as TPP1, KICS2, NEU1, TM6SF1, as well as the guanine nucleotide

348 exchange factor C9orf72, iduronidase IDUA, formin binding protein FNBP1 and the vacuolar
349 ATPase ATP6V1G2. The proteasomal genes PSMB8, PSMB9 and PSMB10 were identified
350 as MS-risk genes, with an isoform of PSMB8 being linked to P-body formation in MS lesions
351 (86). Several kinases were identified besides C90rf72, including TBK1 and CSNK2B. Repeat

352  expansions in C9orf72 and mutations in TBK1 have established associations with both ALS

353  and frontotemporal dementia (FTD) (87, 88).

354

355  The assignment of cell types to genetic risk and the identification of target genes depends
356  on cell type epigenomic and chromatin interactome profiling. This has been performed for a
357 limited number of cell types and chromatin conformation data has mostly been generated for
358 non-dementia cases. Recent gene expression studies have implicated vascular cell types in

359 the genetic risk for AD (89, 90, 91). Furthermore, the expression of AD risk has been

13
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reported to be differentially enriched in microglia substates (92). These examples highlight
the need for epigenomic and chromatin conformation analysis of rare cell types and

substates across disease conditions. However, our current analysis reinforces the genetic
causative role of microglia in age-related brain conditions and offers biological insights into

their involvement in various neurodegenerative disorders.

Figure Legends

Figure 1. Microglia enhancer-to-promoter interactions were enriched for disease-risk
variants across multiple neurodegenerative conditions A) Doughnut plots of
classifications of PLAC-seq interactions identified in human microglia, neurons and
oligodendrocytes (1) with the total number of interactions shown in the center. ‘Promoters’,
PLAC-seq bins that overlap a H3K4me3 and H3K27ac peak within 2,000 bp of a
transcriptional start site (TSS). ‘Enhancers’, PLAC-seq bins that overlap H3K27ac peaks
distal to the TSS. ‘H3K4me3’, PLAC-seq bins that overlap H3K4me3 peaks distal to TSS.
‘ATAC’, PLAC-seq bins that overlap chromatin accessible regions devoid of H3K4me3 and
H3K27ac. B) Percent distribution of the number of enhancers interacting with individual
promoters (top plot) and the number of promoters interacting with individual enhancers
(bottom plot). C) Distribution plot of the proportion of distances between midpoints of
promoters and midpoints of enhancers that interact based on chromatin interaction PLAC-
seq data. D) Heatmap of partitioned heritability using sSLDSC regression analysis of: (i) total
PLAC-seq bins, (ii) promoter & enhancer PLAC-seq bins, (iii) promoter PLAC-seq bins and
(iv) enhancer PLAC-seq bins for microglia, neurons and oligodendrocytes in AD (28, 29), PD
(30) (excluding 23andMe), MS (34), ALS (32), and schizophrenia (33). Shown are LDSC
enrichment p-values with Benjamini-Hochberg FDR correction for the number of diseases
and cell types (-log10(q)). Disease enrichment was considered insignificant if the coefficient
z-score was negative and assigned a 0.0 -log10(p) score. OLs, oligodendrocytes. SCZ,

schizophrenia.
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Figure 2. Microglial disease risk genes were identified for distal GWAS variants using
chromatin loops A) The number of disease risk genes identified in microglia, neurons and
oligodendrocytes using H-MAGMA and GWAS for AD, PD (excluding 23andMe), MS, ALS,
and schizophrenia. Gene-to-SNP associations were assigned for SNPs that were located
within the promoter or exon of a gene, or within enhancers that were linked to genes through
PLAC-seq interactions. B) To account for differences in chromatin interactions between cell
types, the number of enhancer-to-promoter interactions was randomly sampled down to
60,000 loops 10 times. The number of disease risk genes were identified using the sampled
down loops for microglia, neurons and oligodendrocytes with H-MAGMA for AD, PD
(excluding 23andMe), MS, ALS, and schizophrenia. Dunn's test (non-parametric) between
cell types within each group: AD (Jansen 2019): microglia-neurons (**), microglia-oligo (****),

neurons-oligo (ns); AD (Kunkle 2019): microglia-neurons (*), microglia-oligo (

****)

, heurons-

(*****)

oligo (*); PD: microglia-neurons (ns), microglia-oligo , heurons-oligo (**); MS:
microglia-neurons (****), microglia-oligo (**), neurons-oligo (ns); ALS: microglia-neurons
(****), microglia-oligo (**), neurons-oligo (ns); schizophrenia: microglia-neurons (*),
microglia-oligo (*), neurons-oligo (****). C) EWCE analysis identified cell type enrichment of
H-MAGMA disease risk genes from Fig. 2A using mouse cortex and hypothalamus single-

cell RNA-seq (58). Shown are EWCE p-values. SCZ, schizophrenia.OLs, oligodendrocytes.

*p <0.05, **p<0.01, ***p<1e-4, ****p<1e-6.

Figure 3. Microglia disease-risk genes impacted disease-specific pathways A) UpSet
visualization of unique and intersecting H-MAGMA disease-risk gene numbers between AD,
PD (excluding 23andMe), MS, ALS and schizophrenia for each cell type. B) Heatmaps of H-
MAGMA identified risk genes based on promoter-enhancer interactions from PLAC-seq data
for AD, PD (excluding 23andMe), MS, ALS (p<5e-8) and schizophrenia (p<5e-12) for
microglia, neurons and oligodendrocytes. Shown are H-MAGMA FDR corrected p-values (-

log10(q)). C) Gene ontology pathway analysis of microglial risk genes identified by H-

15


https://doi.org/10.1101/2024.08.29.610255
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.29.610255; this version posted August 30, 2024. The copyright holder for this preprint

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

MAGMA for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia; shown are top 20

pathways. SCZ, schizophrenia.

Supplementary Figure 1. LDSC coefficient z-scores and enrichment values A)
Partitioned heritability sSLDSC coefficient z-scores for i) total PLAC-seq bins (ii) promoter and
enhancer PLAC-seq bins; iii) all promoters and iv) all enhancers for microglia, neurons and
oligodendrocytes in AD, PD (excluding 23andMe), MS, ALS, and schizophrenia.
*transformed coefficient p-values < 0.05. B) Partitioned heritability sSLDSC enrichment values
defined as the ratio of the proportion of heritability to the number of SNPs (Prop. h2 / Prop.
SNPs) for i) total PLAC-seq bins (ii) promoter and enhancer PLAC-seq bins; iii) all promoters
and iv) all enhancers for microglia, neurons and oligodendrocytes in AD, PD (excluding
23andMe), MS, ALS, and schizophrenia. The grey dotted line represents the cutoff for

enrichment (1). Error bars represent standard error. SCZ, schizophrenia.

Supplementary Figure 2. H-MAGMA disease risk genes identified using PLAC-seq
interactions overlapping SNPs subset to either genes or enhancers only A) The
number of disease-risk genes identified in microglia, neurons and oligodendrocytes using H-
MAGMA and GWAS for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia using
SNPs overlapping PLAC-seq bins at i) exon and promoters only (left) or at ii) enhancer
regions only (right). B) Chromatin interactions were randomly sampled down 10 times to
60,000 interactions and the number of disease-risk genes were identified in microglia,
neurons and oligodendrocytes using H-MAGMA and GWAS for AD, PD (excluding
23andMe), MS, ALS, and schizophrenia using SNPs overlapping PLAC-seq bins at i) exons
and promoters only (left) or at ii) enhancers only (right). Dunn's test (non-parametric)
between cell types within each group: i) exons and promoters only: AD (Jansen 2019):
microglia-oligodendrocytes (**), PD: microglia-oligodendrocytes (**), neurons-

oligodendrocytes (***); MS: microglia-neurons (

****)

, microglia-oligodendrocytes (**); ALS:

microglia-neurons (*), microglia-oligo (****), neurons-oligo (*); schizophrenia: microglia-
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neurons (****), microglia-oligo (*****) and ii) enhancers only: AD (Jansen 2019): microglia-
neurons (****), microglia-oligo (**); PD: microglia-neurons (**), microglia-oligo (****),
neurons-oligo (*); MS: microglia-neurons (****), microglia-oligo (**); ALS: microglia-neurons

(**), neurons-oligo ( ; schizophrenia: microglia-neurons (*), microglia-oligo (*), neurons-

****)

oligo (****). *p <0.05, **p<0.01, ***p<1e-4, ****p<1e-6. SCZ, schizophrenia.

Supplementary Figure 3. Gene ontology pathways for neurons across diseases. Gene
ontology pathway analysis of neuronal risk genes identified by H-MAGMA for AD, PD
(excluding 23andMe), MS, ALS, and schizophrenia; shown are the top 20 pathways. SCZ,

schizophrenia.

Supplementary Figure 4. Gene ontology pathways for oligodendrocytes across
diseases. Gene ontology pathway analysis of oligodendrocyte risk genes identified by H-
MAGMA for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia; shown are the top

20 pathways. SCZ, schizophrenia.

Data and code availability

Code is available: https://github.com/aydanasg/cell hmagma.

PLAC-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq and ATAC-seq datasets were taken

from (1) and processed data is available: https://github.com/nottalexi/brain-cell-type-peak-

files.
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Materials and Methods

PLAC-seq datasets

PLAC-seq data for human microglia, neurons and oligodendrocytes (1) was pre-processed
by Nott et al., 2019 (1). PLAC-seq data was generated using epilepsy resections of the
frontal, parietal and temporal cortex of seven individuals aged 5 months to 17 years.
Chromatin interactions were 5 kb resolution and were anchored to promoters using

chromatin immunoprecipitation of the histone modification H3K4me3 (1).

Classification of PLAC-seq interactions

PLAC-seq chromatin interactions were classified as i) promoter-to-enhancer; ii) promoter-to-
promoter; iii) promoter-to-ATAC; iv) promoter-to-promoter/enhancer; v) promoter-to-other; vi)
H3K4me3-to-H3K4me3; vii) H3K4me3-to-other; and viii) other interactions for microglia,
neurons and oligodendrocytes. ‘Promoter’ were classified as PLAC-seq bins that overlapped
with H3K4me3 and H3K27ac regions within 2,000 bp of the nearest TSS and ‘enhancer’
were classified as PLAC-seq bins that overlapped H3K27ac regions distal to TSS as defined
by Nott 2019 (1); promoter/enhancer were classified as PLAC-seq bins that overlapped both
promoter and enhancer regions; ‘H3K4me3’ were PLAC-seq bins that overlapped H3K4me3
regions distal from TSS; ‘ATAC’ were PLAC-seq bins that overlapped chromatin accessibility
regions that were devoid of H3K4me3 and H3K27ac; ‘other’ were PLAC-seq bins that did not
overlap with H3K4me3, H3K27ac or chromatin accessibility regions (1). To identify the
number of enhancers interacting with each promoter and number of promoters interacting
with each enhancer, cell type PLAC-seq bins were overlapped with active promoter and

active enhancer regions.

GWAS datasets
The following GWAS summary statistics were used in this study were downloaded from

EBI's GWAS catalogue (https://www.ebi.ac.uk/gwas/) and were of European ancestry:
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AD (Jansen 2019) (GCST007320): n= 71,880 cases and 383,378 controls (29);

AD (Kunkle 2019) (GCST007511): n = 21,982 cases and 41,944 controls, Stage 1 (28);
PD (Nalls 2019) (GCST009325): n = 33,674 cases and 449,056 controls (excluding
23andMe) (30);

MS (Andlauer 2016) (GCST003566): n = 4,888 cases and 10,395 controls (34);

ALS (van Rheenen 2021) (GCST90027164): n = 27,205 cases and 110,881 controls (32);
schizophrenia (Trubetskoy 2022) (GCST90128471): n = 53,386 cases and 77,258 controls

(33).

Quality control of GWAS summary statistics

GWAS summary statistics were standardised and underwent quality control steps before
running H-MAGMA. GWAS summary statistics were filtered using format_sumstats function
in “MungeSumstats” package (version 1.6.0, available on Bioconductor) in R (version 4.2.1)
(93). Summary statistics had the following imputation quality: AD (Jansen 2019) >0.91; AD

(Kunkle 2019) >0.4; PD > 0.8; MS =0.8; ALS >0.95; schizophrenia (INFO>0.9).

H-MAGMA

Annotating genetic variants to target genes was performed using H-MAGMA (52, 94). H-
MAGMA input files provide the background profile of gene-SNP associations based on
chromatin interaction data. To generate cell type-specific promoter-enhancer profiles, 1)
chromatin interaction data from PLAC-seq for microglia, neurons and oligodendrocytes, and
2) reference data for SNPs (22665064 million SNPs) from Phase 3 of 1,000 Genomes for

European ancestry were used (genome Build 37) (https://ctg.cncr.nl/software/magma).

Exonic and promoter SNPs were directly assigned to target genes based on genomic
location using a gene model Gencode v41

(https://www.gencodegenes.org/human/release 411ift37.html) (95). Promoters were defined

as 1.5kb upstream and 500bp downstream of the TSS of each gene isoform. Intronic and

intergenic SNPs were assigned to cognate genes based on cell-type chromatin interactions
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(see PLAC-seq datasets) with promoters and exons (52). Intronic and intergenic SNPs were
filtered to enhancer SNPs by overlapping with cell-type enhancer regions (1). To investigate
disease enrichment in active chromatin interactions, significant cell-type specific chromatin
interactions with FDR-corrected p-value cut-off of 0.01 were filtered to interactions with
promoters in at least one end by overlapping cell-type promoter regions (1). Filtered
chromatin interactions were overlapped with Gencode 41 exon and promoter coordinates to
identify exon-based and promoter-based interactions (52, 94). To determine whether
enhancer or promoter/exon SNPs were driving the disease enrichment of genes, H-MAGMA
input files were generated either with promoter/exon SNPs or enhancer SNPs only. H-
MAGMA outputted genes with an FDR-corrected p-value <0.05 were selected for

downstream analysis.

MAGMA

MAGMA analysis pipeline was used to run the H-MAGMA cell type-specific gene level
association with a disease (53). The association was established using the default “SNP-
wise mean” gene analysis model, which is a test of mean SNP association using the sum of
squared SNP Z-statistics as a test statistic. In brief, SNP-level p-values from GWAS
summary statistics were aggregated into gene-level p-values and a reference data set
(1,000 Genomes European panel) was used to account for linkage disequilibrium between
SNPs. Since some of the GWAS summary statistics used in the study are SNP meta-
analysis results, individual sample sizes per SNP may have significant variation and may
affect the gene test-statistic results. Therefore, if available, individual sample sizes per SNP
were used (ncol modifier in —pval parameter in MAGMA). The analysis was run as follows:
magma --bfile g1000_eur --pval <GWAS summary statistics> use=SNP,P ncol=NSUM --

gene-annot <Input annotation file> --debug set-spar=tmp_snps_used --out <Output file>.

Partitioned heritability (SLDSC regression)
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579  Partitioned heritability using sLDSC regression analysis was used to identify brain cell type
580 annotations that were enriched for heritability of AD, PD (excluding 23andMe), MS, ALS and
581  schizophrenia (LDSC version 1.0.1) by functional category while controlling for 97 annotation
582  categories of the full baseline model (model version 2.2) (96). Cell type annotations per

583  functional category were run jointly. Functional categories included cell type 1) total PLAC-
584  seq bins, 2) promoter and enhancer PLAC-seq bins, 3) promoters PLAC-seq bins, and 4)
585  enhancer PLAC-seq for microglia, neurons and oligodendrocytes. Baseline model LD

586  scores, standard regression weights, and allele frequencies that were used were built from
587 1000 Genomes Phase 3 for European population. The enrichment P-values were FDR

588  multiple testing corrected for the number of GWAS studies and number of cell types using
589  Benjamini-Hochberg correction method. Disease enrichment was considered insignificant if
590 the coefficient z-score was negative. Cell type annotations for all the functional categories
591  were created using plink format .bed/.bim/.fam filesets of 1000 Genomes Phase 3 for

592  European population and LD scores were computed based on a 1 centiMorgan (cM)

593  window. Since the annotations were built on top of the baseline model, 1000 Genomes

594  Phase 3 was used together with the HapMap3 SNPs. A quality control step of GWAS

595 summary statistics was performed before LDSC analysis using munge_sumstats.py where
596 SNPs had INFO <= 0.9, MAF <= 0.01 and N < 32290, were out-of-bounds p-values, strand-
597  ambiguous, with duplicated IDs and alleles did not match Hap-Map SNPs. To prevent bias
598 from variable imputation quality both between and within each GWAS study, all the GWAS
599  SNPs were filtered to HapMap3 SNPs, as these SNPs are well imputed in most studies.

600

601 EWCE

602  Expression weighted cell type enrichment (EWCE) analysis (v1.6.0) was used to identify cell
603 type-specificity of the H-MAGMA outputted risk genes for each disease type (97). Single-cell
604  RNA-seq data from mouse cortex and hypothalamus from Zeisel et al. (2015) study (58) was

605 used to generate probability distribution associated with cell type-specific H-MAGMA
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outputted risk genes having an average level of expression within a cell type. Significant cell

type-specificity was determined based on the p-value <0.05.

GO analysis

Gene set enrichment analysis was performed on the list of H-MAGMA outputted significant
risk genes identified per cell type to identify biological pathways at risk in each cell type for
each disease. The R package “gprofiler2” (v0.2.1) was used for gene set enrichment, which
contains data sources including Gene Ontology (GO), KEGG, Reactome, WikiPathways,
miRTarBase, TRANSFAC, Human Protein Atlas, protein complexes from CORUM and
Human Phenotype Ontology (98). Risk genes inputted into the analysis were filtered based
on the FDR adjusted p-value<0.05 and were ordered based on the Z-score generated by the
H-MAGMA. Identified pathways were also FDR corrected using p-value <0.05. For
visualization, if pathways contained the same set of genes, the one with the highest FDR

corrected p-value was included in the bar plots.
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