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Abstract 11 

Genome-wide association studies have identified thousands of common variants associated 12 

with an increased risk of neurodegenerative disorders. However, the noncoding localization 13 

of these variants has made the assignment of target genes for brain cell types challenging. 14 

Genomic approaches that infer chromosomal 3D architecture can link noncoding risk 15 

variants and distal gene regulatory elements such as enhancers to gene promoters. By 16 

using enhancer-to-promoter interactome maps for microglia, neurons, and oligodendrocytes, 17 

we identified cell-type-specific enrichment of genetic heritability for brain disorders through 18 

stratified linkage disequilibrium score regression. Our analysis suggests that genetic 19 

heritability for multiple neurodegenerative disorders is enriched at microglial chromatin 20 

contact sites. Through Hi-C coupled multimarker analysis of genomic annotation (H-21 

MAGMA) we identified disease risk genes for Alzheimer’s disease, Parkinson’s disease, 22 

multiple sclerosis and amyotrophic lateral sclerosis. We found that disease-risk genes were 23 

overrepresented in microglia compared to other brain cell types across neurodegenerative 24 

conditions. Notably, the microglial risk genes and pathways identified were largely specific to 25 

each disease. Our findings reinforce microglia as an important, genetically informed cell type 26 
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 2 

for therapeutic interventions in neurodegenerative conditions and highlight potentially 27 

targetable disease-relevant pathways. 28 

 29 

Key words 30 
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 32 

Introduction 33 

 34 

Genetics plays a significant role in the etiology of neurodegenerative disorders including 35 

Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS) and 36 

amyotrophic lateral sclerosis (ALS) (2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Familial forms have been 37 

identified for AD, PD and ALS that exhibit Mendelian patterns of inheritance and are 38 

associated with rare variants with strong effect sizes (12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 39 

22, 23, 24, 25, 26, 27). While the genetics underlying familial cases have been informative in 40 

our understanding of disease etiology, most individuals presenting with neurogenerative 41 

disorders, including MS, have sporadic forms of the disease. Genome-wide association 42 

studies (GWAS) for sporadic neurodegenerative disorders have identified thousands of 43 

common variants associated with an increased risk of disease and highlight the 44 

heterogeneity of these disorders (28, 29, 30, 31, 32, 33, 34). GWAS risk variants generally 45 

have a relatively high prevalence in the population and exhibit smaller effect sizes, with their 46 

risk contribution believed to arise from the combined effects of multiple variants (35).  47 

 48 

Most GWAS risk variants reside within non-coding regions of the genome and are often 49 

located distally from the nearest known genes (36). GWAS risk variants are enriched at 50 

chromatin accessibility regions that likely function as gene regulatory elements such as 51 

enhancers and promoters (37, 38). Enhancers are distal genomic regions associated with 52 

chromatin accessibility and are characterized by the presence of specific histone 53 

modifications, including acetylation of histone H3 lysine 27 (H3K27ac) (39). Enhancers are 54 
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highly cell type-specific (40) and can be incorporated into heritability analysis to prioritize cell 55 

types associated with the genetic risk of complex traits. GWAS variants for neurological 56 

disorders and psychiatric traits have been associated with cell type-specific heritability 57 

enrichment. For example, AD risk variants were found to be enriched in microglia and 58 

macrophage enhancers, while schizophrenia risk was enriched in neuronal gene regulatory 59 

regions (1, 41, 42, 43, 44, 45, 46, 47). 60 

 61 

Enhancers have been informative for the allocation of cell types associated with genetic risk. 62 

However, the distal localization of GWAS risk variants has made the identification of target 63 

genes impacted by these variants a major challenge. The mammalian genome has a non-64 

random three-dimensional organization that connects distal chromosomal regions through 65 

the formation of chromatin loops (48). Functional chromatin interactions include the 66 

association of gene promoters with cis-regulatory regions, such as enhancers (48). The 67 

recruitment of transcription factors and structural proteins to enhancers and their interaction 68 

with promoters facilitates the formation of the pre-initiation complex and gene transcription 69 

(49, 50). Genetic variants localized to gene regulatory regions were thought to disrupt 70 

enhancer function or enhancer-to-promoter interactions, ultimately impacting gene 71 

expression and cell behavior (46, 51). Similar to enhancers, chromatin interactions are cell-72 

type-specific (1). Hence, localization of non-coding GWAS variants to chromatin contact 73 

sites could predict cell type-specific genes and pathways that are susceptible to genetic 74 

variation in neurodegenerative disorders. 75 

 76 

Enhancer-to-promoter interactomes are available for three of the major brain cell types, 77 

however, the assignment of GWAS risk variants to genes has been hindered by a lack of 78 

computational tools. A recently developed tool, Hi-C coupled multimarker analysis of 79 

genomic annotation (H-MAGMA), identifies putative disease risk genes by accounting for 80 

GWAS variants within distal non-coding regions (52). H-MAGMA predicts gene-level 81 

associations with diseases by combining GWAS summary statistics with enhancer-to-82 
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promoter interactomes (52, 53). Here we used H-MAGMA coupled with chromatin data to 83 

map out disease genes for neurodegenerative diseases. By integrating epigenetic 84 

annotations with chromatin interaction data, we identified putative cell types and genes that 85 

contribute to the genetic susceptibility of these disorders. We found that risk genes are 86 

enriched in microglia across multiple neurodegenerative diseases (AD, PD, ALS, and MS). 87 

However, the pathways impacted by microglial GWAS-risk genes are mostly unique for each 88 

disorder, indicating that immune processes exhibit disease-specific patterns. 89 

 90 

Results 91 

 92 

Microglial chromatin interactions are enriched for genetic risk variants associated 93 

with neurodegenerative disorders 94 

 95 

To determine whether disease risk variants for neurodegenerative disorders are associated 96 

with genes linked to distal gene regulatory regions we used proximity ligation-assisted 97 

chromatin immunoprecipitation-seq (PLAC-seq) data generated from human cortical 98 

neurons, microglia and oligodendrocytes (1). PLAC-seq chromatin interactions were 99 

anchored to active gene promoters by immunoprecipitation of histone H3 lysine 4 100 

trimethylation (H3K4me3), which is a histone modification enriched at active gene promoters 101 

(54, 55). PLAC-seq contact sites were defined as two 5 kb regions (or bins) separated by 10 102 

kb or more (1).  By integrating PLAC-seq-defined chromatin loops with ATAC-seq, H3K27ac 103 

chromatin immunoprecipitation (ChIP)-seq and H3K4me3 ChIP-seq from the same cell types 104 

(1), we classified chromatin interactions as either: i) promoter-to-enhancer; ii) promoter-to-105 

promoter; iii) promoter-to-ATAC; iv) promoter-to-promoter/enhancer; v) promoter-to-other; vi) 106 

H3K4me3-to-H3K4me3; vii) H3K4me3-to-other; and viii) other interactions. Active promoters 107 

were defined by co-occurrence of H3K4me3 and H3K27ac within 2 kb of a transcription start 108 

site (TSS). Enhancers were defined as H3K27ac peaks that did not overlap with H3K4me3. 109 

PLAC-seq contact sites that overlapped both promoter and enhancer regions were termed 110 
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promoter/enhancer. Genomic regions with H3K4me3 peaks further than 2 kb from a TSS 111 

were not considered promoters and were classified as ‘H3K4me3’ regions. Distal regions 112 

that were linked to promoters and had an ATAC peak but no H3K27ac peak were defined as 113 

‘ATAC’. Lastly, chromatin loops that linked to regions with no detectable H3K4me3, 114 

H3K27ac or ATAC signal were designated ‘other’. Promoter-to-enhancer loops were the 115 

most common classification of chromatin interactions for each cell type, representing 29.4%, 116 

39.1% and 38.2% of interactions in microglia, neurons, and oligodendrocytes, respectively 117 

(Fig. 1a).  The next most abundant classifications were chromatin interactions that occurred 118 

at promoters-to-other or H3K4me3-to-other (Fig. 1a). Promoters are known to interact with 119 

more than one enhancer. For microglia, neurons and oligodendrocytes, most promoters 120 

interacted with more than one enhancer and for enhancer-to-promoter interactions, most 121 

enhancers interacted with a single promoter (Fig. 1b). The average distance of these 122 

promoter-to-enhancer interactions was 175 kb for microglia, 200 kb for neurons and 150 kb 123 

for oligodendrocytes (Fig. 1c). Overall, H3K4me3-anchored PLAC-seq chromatin loops in 124 

microglia, neurons and oligodendrocytes predominantly identified promoters that were linked 125 

to multiple distal enhancers. 126 

 127 

To examine whether disease heritability was enriched at brain cell type chromatin 128 

interactions, we used stratified linkage disequilibrium score (sLDSC) regression analysis. 129 

Cell type disease enrichment by sLDSC regression was assessed using chromatin 130 

interactions defined as (i) all PLAC-seq bins irrespective of functional genomic annotations 131 

(total PLAC-seq bins), (ii) PLAC-seq bins subset to both active gene promoters (H3K4me3 + 132 

H3K27ac) and distal enhancers (H3K27ac only) (promoter & enhancer PLAC-seq bins), (iii) 133 

PLAC-seq bins subset to active gene promoters (promoter PLAC-seq bins) and (iv) PLAC-134 

seq bins subset to distal enhancers (enhancer PLAC-seq bins). Cell type disease 135 

enrichment was assessed using summary statistics from two complementary AD GWAS; 136 

one study was based exclusively on clinical diagnosis (28), while the second included by-137 

proxy cases (29). GWAS summary statistics were analyzed for three additional 138 
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neurodegenerative conditions, PD, MS and ALS (30, 32, 34) and for a neurodevelopmental 139 

condition, schizophrenia (33).  140 

 141 

Microglia PLAC-seq bins showed enrichment for AD risk variants over other cell types, with 142 

a greater enrichment of AD risk variants found at enhancer PLAC-seq bins compared to 143 

promoter PLAC-seq bins (Fig. 1d, Supplemental Fig. 1). These findings corroborate 144 

observations that AD GWAS variants are enriched at microglia enhancers compared to 145 

microglia promoters defined using histone modifications (1, 56). The microglia enhancer 146 

PLAC-seq bins are likely physically linked to gene promoters and therefore functionally 147 

relevant. An enrichment of disease risk variants at microglia PLAC-seq bins was also 148 

observed for PD and MS, although there was no clear preference for either promoter or 149 

enhancer interacting regions for these disorders (Fig. 1d, Supplemental Fig. 1). No 150 

enrichment for ALS risk variants was identified at PLAC-seq bins for microglia, neurons or 151 

oligodendrocytes (Fig. 1d, Supplemental Fig. 1). In contrast, for schizophrenia, heritability 152 

showed a strong enrichment of disease risk at PLAC-seq bins identified in neurons and 153 

oligodendrocytes (Fig. 1d, Supplemental Fig. 1). The heritability enrichment for 154 

schizophrenia was stronger in neurons than oligodendrocytes (promoter & enhancer PLAC-155 

seq bins; sLDSC; neurons -log10(q)=15; oligodendrocytes, -log10(q)=4.0) (Fig. 1d). This 156 

supports previous findings showing that schizophrenia GWAS variants were enriched at 157 

neuronal promoters and enhancers using annotations defined by histone modifications (1, 158 

44). Overall, chromatin-interacting regions in microglia show a broad enrichment for disease 159 

heritability across multiple neurodegenerative disorders. 160 

 161 

Microglial chromatin interactions identify disease risk genes across multiple 162 

neurodegenerative conditions 163 

 164 
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Promoter-to-enhancer interactions link distal gene regulatory regions, such as enhancers, to 165 

active gene promoters and can be used to infer disease-risk genes for noncoding GWAS 166 

risk variants. H-MAGMA was used to identify disease-risk genes in microglia, neurons and 167 

oligodendrocytes for AD, PD, MS, ALS and schizophrenia by incorporating PLAC-seq 168 

interactomes for the corresponding cell types. In all the neurodegenerative GWAS that we 169 

assessed, the highest number of risk genes were identified in microglia compared to 170 

neurons and oligodendrocytes (Fig. 2a, Supplementary Table 1). In contrast, for 171 

schizophrenia the highest number of risk genes were identified in neurons (Fig. 2a, 172 

Supplementary Table 1). The identified number of PLAC-seq chromatin interactions were 173 

higher in microglia compared to other cell types (microglia, 108802; neurons, 93290; 174 

oligodendrocytes, 61895; Fig. 1a), which may partially explain the increased number of 175 

microglia disease risk genes identified across neurodegenerative conditions. To account for 176 

the differing number of chromatin interactions identified between the three cell types, the 177 

PLAC-seq data was randomly downsampled to 60,000 chromatin interactions per cell type. 178 

This was followed by H-MAGMA analysis, which was repeated for 10 iterations (Fig. 2b). H-179 

MAGMA analysis using the 60,000 downsampled PLAC-seq chromatin interactions 180 

maintained a similar distribution of disease-risk genes across the three cell types (Fig. 2b). 181 

Importantly, when the number of chromatin interactions was the same for each cell type, the 182 

number of disease-risk genes identified remained highest in microglia for AD, PD, MS and 183 

ALS (Fig. 2b). The overrepresentation of disease risk genes identified in microglia for 184 

neurodegenerative disorders compared to neurons for schizophrenia is consistent with the 185 

cell type distribution of disease heritability identified using sLDSC regression analysis (Fig. 186 

1d). 187 

 188 

GWAS risk variants may be differentially enriched at chromatin interaction contact sites at 189 

enhancers (PLAC-seq bins at intergenic and intronic regions) compared to promoters 190 

(PLAC-seq bins at promoters and exonic regions). To determine GWAS risk enrichment 191 

across these gene regulatory classifications, H-MAGMA was repeated using PLAC-seq bins 192 
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subset to enhancers or promoters. For AD, PD and MS, the maximum number of disease-193 

risk genes were identified using microglia enhancer contact sites, followed by microglia 194 

promoter contact sites (Supplemental Fig. 2). In ALS, more disease-risk genes were 195 

identified using microglia promoter contact sites compared to enhancer contact sites 196 

(Supplemental Fig. 2). This suggests that promoters may play a more crucial role in the 197 

genetic risk associated with ALS, in contrast to the significance of enhancers for GWAS risk 198 

in other neurodegenerative conditions. Lastly, for schizophrenia, the highest number of 199 

disease-risk genes were identified at neuronal promoter contact sites compared to 200 

enhancers (Supplemental Fig. 2). 201 

 202 

Disease-risk variants often colocalise with gene regulatory regions that are highly cell-type 203 

specific, thereby conferring cell-type-associated genetic susceptibility (37, 57). However, the 204 

downstream genes associated with these regulatory regions may be expressed exclusively 205 

in the disease-associated cell type or across multiple cell types. Expression Weighted 206 

Celltype Enrichment (EWCE) analysis was used to determine the cell type expression of the 207 

GWAS risk genes identified by H-MAGMA by incorporating single-cell gene expression data 208 

from the mouse cortex and hippocampus (58). EWCE analysis revealed that the expression 209 

of microglia GWAS-risk genes for AD, MS and schizophrenia was enriched in microglia 210 

compared to other brain cell types (Fig. 2c). In contrast, GWAS-risk genes identified in 211 

neurons and oligodendrocytes across the neurodegenerative conditions generally did not 212 

exhibit a cell type enrichment in gene expression, indicating a broader expression across 213 

multiple cell types (Fig. 2c). However, disease risk genes identified by H-MAGMA genes 214 

across all three cell types for schizophrenia were characterized by matching cell type-215 

specific gene expression (Fig. 2c). Of note, neurons and oligodendrocytes originate from 216 

neural progenitor cells localized in the brain (59, 60), while microglia are derived from a 217 

distinct progenitor pool in the embryonic yolk sac outside of the brain (61). This may account 218 

for the cell type specificity in gene expression of microglia-associated risk genes across 219 

neurological conditions compared to risk genes identified in neurons and oligodendrocytes. 220 
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 221 

Microglial genetic-susceptibility genes are associated with disease-specific pathways 222 

 223 

Genetic heritability estimates using sLDSC and the identification of putative GWAS risk 224 

genes using H-MAGMA highlight the importance of microglia in the genetic susceptibility of 225 

neurodegenerative conditions. This may suggest shared dysregulated microglial processes 226 

across these disorders. However, an intersection of GWAS-risk genes identified using H-227 

MAGMA for microglia showed a minimal overlap between the different diseases (filtered on 228 

H-MAGMA p-value; AD, PD, MS, ALS p<5e-8 and schizophrenia p<5e-12) (Fig. 3a,b). 229 

Similarly, there was a minimal overlap across diseases for GWAS risk genes identified for 230 

neurons and oligodendrocytes (Fig. 3a,b). While most risk genes were unique to each 231 

disorder, some genes were shared across two or more conditions. For example, the major 232 

histocompatibility complex (MHC) was identified as a disease-risk locus in MS and 233 

schizophrenia (Fig. 3b). Disease-risk genes that overlapped across PD, ALS and 234 

schizophrenia were KANSL1-AS1 (microglia and oligodendrocytes) and KANSL1, 235 

ARHGAP27, and PLEKHM1 (microglia). Interestingly, KANSL1 and ARHGAP27 were 236 

identified as comorbid genes for PD and ALS (62). The microglial GWAS-risk genes BAG6, 237 

NEU1, PRRC2A, PSMB8, PSMB8-AS1 and PSMB9 were associated with MS, ALS and 238 

schizophrenia. PSMB8-AS1 was also identified as a microglial risk gene for AD. These 239 

findings indicate that microglia are an important cell type associated with genetic 240 

susceptibility across multiple neurodegenerative disorders. However, the microglial genes 241 

that are impacted by genetic risk are mostly disease-specific.  242 

 243 

We next assessed specific cellular and biological pathways associated with microglia 244 

GWAS-risk genes for each disorder using gene ontology (GO) analysis. GO pathways linked 245 

to GWAS-risk genes were mostly unique for each neurodegenerative condition (Fig. 3c). 246 

This is consistent with the observation that most disease-risk genes were unique to each 247 

GWAS (Fig. 3a, b). The top GO pathways associated with microglial AD-risk genes included 248 
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lipoproteins, amyloid processing and endocytosis (Fig. 3c, Supplementary Table 2) 249 

compared to neuronal and oligodendrocytes AD-risk genes which were associated with 250 

amyloid and tau protein catabolic processes (Supplemental Fig. 3, 4). PD microglial-risk 251 

genes were associated with the endolysosomal/autolysosomal pathways, synaptic vesicles 252 

and epigenetic signaling (Fig. 3c, Supplementary Table 2). Whereas substantia nigra 253 

gliosis, epigenetic signaling and synaptic vesicle pathways were evident in neuronal PD-risk 254 

genes, reinforcing the vulnerability of the midbrain in PD (Supplemental Fig. 3). Both 255 

microglia and oligodendrocyte MS risk-genes were associated with MHC protein complexes, 256 

autoimmunity, and antigen presentation and processing (Fig. 3c, Supplemental Fig. 4, 257 

Supplementary Table 2). Risk genes assigned to the MHC Class II complex were also 258 

associated with AD and PD, as well as MS (Fig. 3b). ALS exhibited associations with 259 

vacuoles and kinases, while also sharing pathways with PD related to lysosomes and 260 

autophagosomes (Fig. 3c, Supplementary Table 2). Microglial-associated GO pathways for 261 

schizophrenia GWAS-risk genes were distinct from the neurodegenerative disorders and 262 

primarily included epigenetic and gene regulatory pathways (Fig. 3c, Supplementary Table 263 

2). Neuronal GWAS schizophrenia risk genes were primarily implicated in synaptic 264 

processes (Supplemental Fig. 3). Collectively, pathway analysis confirmed the observation 265 

from gene set overlaps, indicating that microglial risk genes and associated biological 266 

pathways are mostly disease-specific. 267 

 268 

Discussion 269 

 270 

Incorporation of enhancer-to-promoter interactomes for microglia, neurons and 271 

oligodendrocytes with GWAS summary statistics enabled us to identify the cell types and 272 

genes associated with the genetic risk of brain disorders. Partitioned heritability analysis 273 

highlighted microglia as an important cell type underlying genetic susceptibility across 274 

multiple neurodegenerative conditions. Accordingly, enhancer-to-promoter interactomes 275 

identified the greatest number of predicted risk genes in microglia for AD, PD, MS and ALS. 276 
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Previous studies have shown both the importance of active regulatory regions (63, 64) and 277 

that AD GWAS-risk is associated with gene regulatory regions in microglia (1, 41, 42, 56), as 278 

well as monocytes and macrophages (43, 65). MS is an autoimmune condition where the 279 

immune system attacks the myelin sheath surrounding neurons (66) and MS genetic risk 280 

genes have been associated with the peripheral immune system and microglia (67). ALS is 281 

a motor neuron disease that has been linked to aberrant inflammation (68), although GWAS 282 

risk for ALS has been primarily attributed to neuronal cell types (32). The genetic risk of PD 283 

using single-cell gene expression analysis has identified dopaminergic neurons and 284 

oligodendrocytes as cell types that express PD risk genes (69, 70). Interestingly, PD GWAS 285 

risk was found to be enriched in microglia and monocyte chromatin accessibility regions 286 

(71), although equivalent epigenetic datasets for dopaminergic neurons are lacking. In 287 

summary, chromatin interactions in microglia showed the strongest heritability enrichment 288 

and revealed the most risk genes across all neurodegenerative disorders. Despite this 289 

commonality, microglia genetic-susceptibility genes identified using H-MAGMA were 290 

associated with pathways that were disease-specific. 291 

 292 

AD genetic risk in microglia was associated with lipoproteins, amyloid processing, 293 

endocytosis and MHC class II. The lipid-protein complex and lipoprotein pathways included 294 

the apolipoprotein genes APOE, APOC1, APOC4-APOC2, APOC2 and APOC4, with APOE 295 

being the strongest common genetic determinate of sporadic AD (72). Amyloid processing 296 

pathways included the ABC transporter ABCA7, vesicle-associated genes such as PICALM, 297 

BIN1 and SORL1, and protein cleavage genes such as ADAM10 and APH1B. The 298 

endosome/endocytosis-associated AD risk genes USP6NL, CNN2, RIN3, RAB8B and 299 

membrane-associated genes such as SPPL2A, STX4 may contribute to amyloid processing, 300 

although this remains to be fully explored. Rare loss of function variants for ABCA7 and 301 

SORL1 have also been implicated in increased AD risk (73, 74). The MHC class II complex 302 

was associated with AD risk and was mostly driven by the HLA locus (HLA-DQB1/HLA-303 

DRB1/HLA-DRB5/HLA-DRA/HLA-E), as well as immune response genes such as INPP5D. 304 
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Microglia mobility was implicated by AD risk genes such as the aggrecan protease 305 

ADAMTS4 and cell adhesion molecule CASS4. Many AD risk genes were also implicated 306 

across pathways, for example, the low-density lipoprotein receptor, SORL1, recycles 307 

amyloid precursor protein out of endosomes (75). 308 

 309 

PD risk genes in microglia were associated with endo-lysosomal pathways, as previously 310 

implicated in a non-cell-type-centric manner for PD (76). These included lysosomal-311 

associated genes LRRK2, RAB29 and PLEKHM1, as well as membrane fusion genes such 312 

as STX4, TMEM175, VPS37A and the familial PD gene SNCA (alpha-synuclein). The PD 313 

risk gene ARHGAP27 has also been implicated in endocytosis (77). Histone modifications 314 

were associated with PD risk in microglia through histone lysine methylation (SETD1A and 315 

FAM47E) and acetylation (KAT8 and KANSL1). Microglia and immune homeostasis, mobility 316 

and migration were linked to PD genetic risk through association with the purinergic 317 

nucleotide receptors P2RY12 and P2RY13. Additional genes of interest are the vitamin K 318 

epoxide reductase VKORC1, the platelet-associated gene MMRN1 and the kinases DGKQ 319 

and CCNT2. PD has been linked to mitochondrial dysfunction through familial mutations 320 

such as PINK1 and PARK7 (78) and environmental factors such as pesticides (79). The 321 

contribution of common PD-risk variants to mitochondrial function is less represented, 322 

however, we identified NADH:ubiquinone oxidoreductase complex assembly factor 2, 323 

NDUFAF2, the branched-chain keto acid dehydrogenase kinase, BCKDK and the G-protein-324 

coupled receptor for succinate, SUCNR1, (citric acid cycle intermediate) as PD risk genes. 325 

BCKDK is localized to mitochondria and BCKDK mutations lead to dysregulated branched-326 

chain amino acids and have been associated with Maple Syrup Urine Disease (MSUD) with 327 

links to Parkinsonism (80, 81). The microglia PD risk genes LRRK2, SNCA, and TMEM175 328 

have also been linked to rare coding mutations in PD patients (82, 83, 84). 329 

 330 

MS-risk genes are mostly associated with T cell signaling and antigen presentation and 331 

processing, consistent with previous findings (85). A broader set of HLA genes were 332 
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implicated in MS risk and genes linked to antigen presentation that were not identified in AD 333 

such as the ABC transporters TAP1 and TAP2, TAP-binding protein TAPBPL, and the MHC 334 

Class I and Class II-associated genes (MICB, CIITA). Additional risk genes implicated in 335 

antigen processing were heat shock proteins (HSPA1B, HSPA1A and HSPA1L) and the 336 

ubiquitin ligase MARCHF1. MS-risk genes associated with immune activation included 337 

Tumor Necrosis Factor (TNF) and TNF receptor family members TNFRSF1 and CD27, 338 

negative regulation of cytokines (SOCS1 and VSIR), interleukin signaling (IL12RB1) as well 339 

as other immune signaling molecules such as AIF1 (also known as IBA1), BCL10 and 340 

PTPRC. Interestingly, several chromatin-related risk genes were identified including 341 

CORO1A and the lysine acetyltransferase KAT8. 342 

 343 

Pathways for ALS risk genes were mostly associated with vacuole-related terms, as well as 344 

autophagy and the lysosome. These included vacuole-associated channels and transporters 345 

ATXN3 (spinocerebellar ataxia-3), CLCN3, SLC12A4, TMEM175 and lysosomal-associated 346 

proteins such as TPP1, KICS2, NEU1, TM6SF1, as well as the guanine nucleotide 347 

exchange factor C9orf72, iduronidase IDUA, formin binding protein FNBP1 and the vacuolar 348 

ATPase ATP6V1G2. The proteasomal genes PSMB8, PSMB9 and PSMB10 were identified 349 

as MS-risk genes, with an isoform of PSMB8 being linked to P-body formation in MS lesions 350 

(86). Several kinases were identified besides C9orf72, including TBK1 and CSNK2B. Repeat 351 

expansions in C9orf72 and mutations in TBK1 have established associations with both ALS 352 

and frontotemporal dementia (FTD) (87, 88). 353 

 354 

The assignment of cell types to genetic risk and the identification of target genes depends 355 

on cell type epigenomic and chromatin interactome profiling. This has been performed for a 356 

limited number of cell types and chromatin conformation data has mostly been generated for 357 

non-dementia cases. Recent gene expression studies have implicated vascular cell types in 358 

the genetic risk for AD (89, 90, 91). Furthermore, the expression of AD risk has been 359 
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reported to be differentially enriched in microglia substates (92). These examples highlight 360 

the need for epigenomic and chromatin conformation analysis of rare cell types and 361 

substates across disease conditions. However, our current analysis reinforces the genetic 362 

causative role of microglia in age-related brain conditions and offers biological insights into 363 

their involvement in various neurodegenerative disorders. 364 

 365 

Figure Legends 366 

 367 

Figure 1. Microglia enhancer-to-promoter interactions were enriched for disease-risk 368 

variants across multiple neurodegenerative conditions A) Doughnut plots of 369 

classifications of PLAC-seq interactions identified in human microglia, neurons and 370 

oligodendrocytes (1) with the total number of interactions shown in the center. ‘Promoters’, 371 

PLAC-seq bins that overlap a H3K4me3 and H3K27ac peak within 2,000 bp of a 372 

transcriptional start site (TSS). ‘Enhancers’, PLAC-seq bins that overlap H3K27ac peaks 373 

distal to the TSS. ‘H3K4me3’, PLAC-seq bins that overlap H3K4me3 peaks distal to TSS. 374 

‘ATAC’, PLAC-seq bins that overlap chromatin accessible regions devoid of H3K4me3 and 375 

H3K27ac. B) Percent distribution of the number of enhancers interacting with individual 376 

promoters (top plot) and the number of promoters interacting with individual enhancers 377 

(bottom plot). C) Distribution plot of the proportion of distances between midpoints of 378 

promoters and midpoints of enhancers that interact based on chromatin interaction PLAC-379 

seq data. D) Heatmap of partitioned heritability using sLDSC regression analysis of: (i) total 380 

PLAC-seq bins, (ii) promoter & enhancer PLAC-seq bins, (iii) promoter PLAC-seq bins and 381 

(iv) enhancer PLAC-seq bins for microglia, neurons and oligodendrocytes in AD (28, 29), PD 382 

(30) (excluding 23andMe), MS (34), ALS (32), and schizophrenia (33). Shown are LDSC 383 

enrichment p-values with Benjamini–Hochberg FDR correction for the number of diseases 384 

and cell types (-log10(q)). Disease enrichment was considered insignificant if the coefficient 385 

z-score was negative and assigned a 0.0 -log10(p) score. OLs, oligodendrocytes. SCZ, 386 

schizophrenia. 387 
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 388 

Figure 2. Microglial disease risk genes were identified for distal GWAS variants using 389 

chromatin loops A) The number of disease risk genes identified in microglia, neurons and 390 

oligodendrocytes using H-MAGMA and GWAS for AD, PD (excluding 23andMe), MS, ALS, 391 

and schizophrenia. Gene-to-SNP associations were assigned for SNPs that were located 392 

within the promoter or exon of a gene, or within enhancers that were linked to genes through 393 

PLAC-seq interactions. B) To account for differences in chromatin interactions between cell 394 

types, the number of enhancer-to-promoter interactions was randomly sampled down to 395 

60,000 loops 10 times. The number of disease risk genes were identified using the sampled 396 

down loops for microglia, neurons and oligodendrocytes with H-MAGMA for AD, PD 397 

(excluding 23andMe), MS, ALS, and schizophrenia. Dunn's test (non-parametric) between 398 

cell types within each group: AD (Jansen 2019): microglia-neurons (**), microglia-oligo (****), 399 

neurons-oligo (ns); AD (Kunkle 2019): microglia-neurons (*), microglia-oligo (****), neurons-400 

oligo (*); PD: microglia-neurons (ns), microglia-oligo (*****), neurons-oligo (**); MS: 401 

microglia-neurons (****), microglia-oligo (**), neurons-oligo (ns); ALS: microglia-neurons 402 

(****), microglia-oligo (**), neurons-oligo (ns); schizophrenia: microglia-neurons (*), 403 

microglia-oligo (*), neurons-oligo (****). C) EWCE analysis identified cell type enrichment of 404 

H-MAGMA disease risk genes from Fig. 2A using mouse cortex and hypothalamus single-405 

cell RNA-seq (58). Shown are EWCE p-values. SCZ, schizophrenia.OLs, oligodendrocytes. 406 

*p <0.05, **p<0.01, ***p<1e-4, ****p<1e-6. 407 

 408 

Figure 3. Microglia disease-risk genes impacted disease-specific pathways A) UpSet 409 

visualization of unique and intersecting H-MAGMA disease-risk gene numbers between AD, 410 

PD (excluding 23andMe), MS, ALS and schizophrenia for each cell type. B) Heatmaps of H-411 

MAGMA identified risk genes based on promoter-enhancer interactions from PLAC-seq data 412 

for AD, PD (excluding 23andMe), MS, ALS (p<5e-8) and schizophrenia (p<5e-12) for 413 

microglia, neurons and oligodendrocytes. Shown are H-MAGMA FDR corrected p-values (-414 

log10(q)). C) Gene ontology pathway analysis of microglial risk genes identified by H-415 
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MAGMA for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia; shown are top 20 416 

pathways. SCZ, schizophrenia. 417 

 418 

Supplementary Figure 1. LDSC coefficient z-scores and enrichment values A) 419 

Partitioned heritability sLDSC coefficient z-scores for i) total PLAC-seq bins (ii) promoter and 420 

enhancer PLAC-seq bins; iii) all promoters and iv) all enhancers for microglia, neurons and 421 

oligodendrocytes in AD, PD (excluding 23andMe), MS, ALS, and schizophrenia. 422 

*transformed coefficient p-values < 0.05. B) Partitioned heritability sLDSC enrichment values 423 

defined as the ratio of the proportion of heritability to the number of SNPs (Prop. h2 / Prop. 424 

SNPs) for i) total PLAC-seq bins (ii) promoter and enhancer PLAC-seq bins; iii) all promoters 425 

and iv) all enhancers for microglia, neurons and oligodendrocytes in AD, PD (excluding 426 

23andMe), MS, ALS, and schizophrenia. The grey dotted line represents the cutoff for 427 

enrichment (1). Error bars represent standard error. SCZ, schizophrenia. 428 

 429 

Supplementary Figure 2. H-MAGMA disease risk genes identified using PLAC-seq 430 

interactions overlapping SNPs subset to either genes or enhancers only A) The 431 

number of disease-risk genes identified in microglia, neurons and oligodendrocytes using H-432 

MAGMA and GWAS for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia using 433 

SNPs overlapping PLAC-seq bins at i) exon and promoters only (left) or at ii) enhancer 434 

regions only (right). B) Chromatin interactions were randomly sampled down 10 times to 435 

60,000 interactions and the number of disease-risk genes were identified in microglia, 436 

neurons and oligodendrocytes using H-MAGMA and GWAS for AD, PD (excluding 437 

23andMe), MS, ALS, and schizophrenia using SNPs overlapping PLAC-seq bins at i) exons 438 

and promoters only (left) or at ii) enhancers only (right). Dunn's test (non-parametric) 439 

between cell types within each group: i) exons and promoters only: AD (Jansen 2019): 440 

microglia-oligodendrocytes (**), PD: microglia-oligodendrocytes (**), neurons-441 

oligodendrocytes (***); MS: microglia-neurons (****), microglia-oligodendrocytes (**); ALS: 442 

microglia-neurons (*), microglia-oligo (****), neurons-oligo (*); schizophrenia: microglia-443 
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neurons (****), microglia-oligo (*****) and ii) enhancers only: AD (Jansen 2019): microglia-444 

neurons (****), microglia-oligo (**); PD: microglia-neurons (**), microglia-oligo (****), 445 

neurons-oligo (*); MS: microglia-neurons (****), microglia-oligo (**); ALS: microglia-neurons 446 

(**), neurons-oligo (****); schizophrenia: microglia-neurons (*), microglia-oligo (*), neurons-447 

oligo (****). *p <0.05, **p<0.01, ***p<1e-4, ****p<1e-6. SCZ, schizophrenia. 448 

 449 

Supplementary Figure 3. Gene ontology pathways for neurons across diseases. Gene 450 

ontology pathway analysis of neuronal risk genes identified by H-MAGMA for AD, PD 451 

(excluding 23andMe), MS, ALS, and schizophrenia; shown are the top 20 pathways. SCZ, 452 

schizophrenia. 453 

 454 

Supplementary Figure 4. Gene ontology pathways for oligodendrocytes across 455 

diseases. Gene ontology pathway analysis of oligodendrocyte risk genes identified by H-456 

MAGMA for AD, PD (excluding 23andMe), MS, ALS, and schizophrenia; shown are the top 457 

20 pathways. SCZ, schizophrenia. 458 

 459 

Data and code availability 460 

Code is available: https://github.com/aydanasg/cell_hmagma. 461 

PLAC-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq and ATAC-seq datasets were taken 462 

from (1) and processed data is available: https://github.com/nottalexi/brain-cell-type-peak-463 

files.  464 
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Supplemental figure 1
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Supplemental figure 2
A

MS ALS SCZ

AD (Jansen) AD(Kunkle) PD

0

20

40

60

0

500

1000

1500

0
10
20
30
40

0

40

80

120

0

30

60

90

0

50

100

150

G
en

e 
co

un
t

Gene count based on exonic and promoter SNPs

0

500

1000

0
10
20
30
40

0

20

40

60

0

20

40

60

0

25

50

75

100

0

50

100

150

G
en

e 
co

un
t

Gene count based on intronic and intergenic SNPs

MS ALS SCZ

AD (Jansen) AD (Kunkle) PD

35
40
45
50
55
60

1200

1300

1400

20
25
30
35
40
45

40

60

80

100

60

80

100

40

80

120

160G
en

e 
co

un
t

Microglia Neuronal Oligodendrocytes

SD Gene count based on exonic and promoter SNPs v5 SD Gene count based on intronic and intergenic SNPs v5
B

MS ALS SCZ

AD (Jansen) AD(Kunkle) PD

20

30

40

50

800

900

1000

1100

0

20

40

0

20

40

60

25

50

75

100

40

80

120

160G
en

e 
co

un
t

MS ALS SCZ

AD (Jansen) AD (Kunkle) PD

Microglia Neuronal Oligodendrocytes

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.610255doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.610255
http://creativecommons.org/licenses/by/4.0/


 24 

 492 

 493 

Supplemental figure 3
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Supplemental figure 4
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Materials and Methods 496 

 497 

PLAC-seq datasets 498 

PLAC-seq data for human microglia, neurons and oligodendrocytes (1) was pre-processed 499 

by Nott et al., 2019 (1). PLAC-seq data was generated using epilepsy resections of the 500 

frontal, parietal and temporal cortex of seven individuals aged 5 months to 17 years. 501 

Chromatin interactions were 5 kb resolution and were anchored to promoters using 502 

chromatin immunoprecipitation of the histone modification H3K4me3 (1).  503 

 504 

Classification of PLAC-seq interactions 505 

PLAC-seq chromatin interactions were classified as i) promoter-to-enhancer; ii) promoter-to-506 

promoter; iii) promoter-to-ATAC; iv) promoter-to-promoter/enhancer; v) promoter-to-other; vi) 507 

H3K4me3-to-H3K4me3; vii) H3K4me3-to-other; and viii) other interactions for microglia, 508 

neurons and oligodendrocytes. ‘Promoter’ were classified as PLAC-seq bins that overlapped 509 

with H3K4me3 and H3K27ac regions within 2,000 bp of the nearest TSS and ‘enhancer’ 510 

were classified as PLAC-seq bins that overlapped H3K27ac regions distal to TSS as defined 511 

by Nott 2019 (1); promoter/enhancer were classified as PLAC-seq bins that overlapped both 512 

promoter and enhancer regions; ‘H3K4me3’ were PLAC-seq bins that overlapped H3K4me3 513 

regions distal from TSS; ‘ATAC’ were PLAC-seq bins that overlapped chromatin accessibility 514 

regions that were devoid of H3K4me3 and H3K27ac; ‘other’ were PLAC-seq bins that did not 515 

overlap with H3K4me3, H3K27ac or chromatin accessibility regions (1). To identify the 516 

number of enhancers interacting with each promoter and number of promoters interacting 517 

with each enhancer, cell type PLAC-seq bins were overlapped with active promoter and 518 

active enhancer regions. 519 

 520 

GWAS datasets 521 

The following GWAS summary statistics were used in this study were downloaded from 522 

EBI’s GWAS catalogue (https://www.ebi.ac.uk/gwas/) and were of European ancestry: 523 
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AD (Jansen 2019) (GCST007320): n= 71,880 cases and 383,378 controls (29);  524 

AD (Kunkle 2019) (GCST007511):  n = 21,982 cases and 41,944 controls, Stage 1 (28); 525 

PD (Nalls 2019) (GCST009325): n = 33,674 cases and 449,056 controls (excluding 526 

23andMe) (30); 527 

MS (Andlauer 2016) (GCST003566): n = 4,888 cases and 10,395 controls (34);  528 

ALS (van Rheenen 2021) (GCST90027164): n = 27,205 cases and 110,881 controls (32); 529 

schizophrenia (Trubetskoy 2022) (GCST90128471): n = 53,386 cases and 77,258 controls 530 

(33). 531 

 532 

Quality control of GWAS summary statistics 533 

GWAS summary statistics were standardised and underwent quality control steps before 534 

running H-MAGMA. GWAS summary statistics were filtered using format_sumstats function 535 

in “MungeSumstats” package (version 1.6.0, available on Bioconductor) in R (version 4.2.1) 536 

(93). Summary statistics had the following imputation quality: AD (Jansen 2019) >0.91; AD 537 

(Kunkle 2019) >0.4; PD > 0.8; MS ≥0.8; ALS >0.95; schizophrenia (INFO>0.9). 538 

 539 

H-MAGMA 540 

Annotating genetic variants to target genes was performed using H-MAGMA (52, 94). H-541 

MAGMA input files provide the background profile of gene-SNP associations based on 542 

chromatin interaction data. To generate cell type-specific promoter-enhancer profiles, 1) 543 

chromatin interaction data from PLAC-seq for microglia, neurons and oligodendrocytes, and 544 

2) reference data for SNPs (22665064 million SNPs) from Phase 3 of 1,000 Genomes for 545 

European ancestry were used (genome Build 37) (https://ctg.cncr.nl/software/magma). 546 

Exonic and promoter SNPs were directly assigned to target genes based on genomic 547 

location using a gene model Gencode v41 548 

(https://www.gencodegenes.org/human/release_41lift37.html) (95). Promoters were defined 549 

as 1.5kb upstream and 500bp downstream of the TSS of each gene isoform. Intronic and 550 

intergenic SNPs were assigned to cognate genes based on cell-type chromatin interactions 551 
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(see PLAC-seq datasets) with promoters and exons (52). Intronic and intergenic SNPs were 552 

filtered to enhancer SNPs by overlapping with cell-type enhancer regions (1). To investigate 553 

disease enrichment in active chromatin interactions, significant cell-type specific chromatin 554 

interactions with FDR-corrected p-value cut-off of 0.01 were filtered to interactions with 555 

promoters in at least one end by overlapping cell-type promoter regions (1). Filtered 556 

chromatin interactions were overlapped with Gencode 41 exon and promoter coordinates to 557 

identify exon-based and promoter-based interactions (52, 94). To determine whether 558 

enhancer or promoter/exon SNPs were driving the disease enrichment of genes, H-MAGMA 559 

input files were generated either with promoter/exon SNPs or enhancer SNPs only. H-560 

MAGMA outputted genes with an FDR-corrected p-value <0.05 were selected for 561 

downstream analysis. 562 

 563 

MAGMA 564 

MAGMA analysis pipeline was used to run the H-MAGMA cell type-specific gene level 565 

association with a disease (53). The association was established using the default “SNP-566 

wise mean” gene analysis model, which is a test of mean SNP association using the sum of 567 

squared SNP Z-statistics as a test statistic. In brief, SNP-level p-values from GWAS 568 

summary statistics were aggregated into gene-level p-values and a reference data set 569 

(1,000 Genomes European panel) was used to account for linkage disequilibrium between 570 

SNPs. Since some of the GWAS summary statistics used in the study are SNP meta-571 

analysis results, individual sample sizes per SNP may have significant variation and may 572 

affect the gene test-statistic results. Therefore, if available, individual sample sizes per SNP 573 

were used (ncol modifier in –pval parameter in MAGMA). The analysis was run as follows: 574 

magma --bfile g1000_eur --pval <GWAS summary statistics> use=SNP,P ncol=NSUM --575 

gene-annot <Input annotation file> --debug set-spar=tmp_snps_used --out <Output file>.  576 

 577 

Partitioned heritability (sLDSC regression) 578 
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Partitioned heritability using sLDSC regression analysis was used to identify brain cell type 579 

annotations that were enriched for heritability of AD, PD (excluding 23andMe), MS, ALS and 580 

schizophrenia (LDSC version 1.0.1) by functional category while controlling for 97 annotation 581 

categories of the full baseline model (model version 2.2) (96). Cell type annotations per 582 

functional category were run jointly. Functional categories included cell type 1) total PLAC-583 

seq bins, 2) promoter and enhancer PLAC-seq bins, 3) promoters PLAC-seq bins, and 4) 584 

enhancer PLAC-seq for microglia, neurons and oligodendrocytes. Baseline model LD 585 

scores, standard regression weights, and allele frequencies that were used were built from 586 

1000 Genomes Phase 3 for European population. The enrichment P-values were FDR 587 

multiple testing corrected for the number of GWAS studies and number of cell types using 588 

Benjamini-Hochberg correction method. Disease enrichment was considered insignificant if 589 

the coefficient z-score was negative. Cell type annotations for all the functional categories 590 

were created using plink format .bed/.bim/.fam filesets of 1000 Genomes Phase 3 for 591 

European population and LD scores were computed based on a 1 centiMorgan (cM) 592 

window. Since the annotations were built on top of the baseline model, 1000 Genomes 593 

Phase 3 was used together with the HapMap3 SNPs. A quality control step of GWAS 594 

summary statistics was performed before LDSC analysis using munge_sumstats.py where 595 

SNPs had INFO <= 0.9, MAF <= 0.01 and N < 32290, were out-of-bounds p-values, strand-596 

ambiguous, with duplicated IDs and alleles did not match Hap-Map SNPs. To prevent bias 597 

from variable imputation quality both between and within each GWAS study, all the GWAS 598 

SNPs were filtered to HapMap3 SNPs, as these SNPs are well imputed in most studies. 599 

 600 

EWCE 601 

Expression weighted cell type enrichment (EWCE) analysis (v1.6.0) was used to identify cell 602 

type-specificity of the H-MAGMA outputted risk genes for each disease type (97). Single-cell 603 

RNA-seq data from mouse cortex and hypothalamus from Zeisel et al. (2015) study (58) was 604 

used to generate probability distribution associated with cell type-specific H-MAGMA 605 
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outputted risk genes having an average level of expression within a cell type. Significant cell 606 

type-specificity was determined based on the p-value <0.05.  607 

 608 

GO analysis  609 

Gene set enrichment analysis was performed on the list of H-MAGMA outputted significant 610 

risk genes identified per cell type to identify biological pathways at risk in each cell type for 611 

each disease. The R package “gprofiler2” (v0.2.1) was used for gene set enrichment, which 612 

contains data sources including Gene Ontology (GO), KEGG, Reactome, WikiPathways, 613 

miRTarBase, TRANSFAC, Human Protein Atlas, protein complexes from CORUM and 614 

Human Phenotype Ontology (98). Risk genes inputted into the analysis were filtered based 615 

on the FDR adjusted p-value<0.05 and were ordered based on the Z-score generated by the 616 

H-MAGMA. Identified pathways were also FDR corrected using p-value <0.05. For 617 

visualization, if pathways contained the same set of genes, the one with the highest FDR 618 

corrected p-value was included in the bar plots.  619 

  620 
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