

1 **Liprin- α /RIM complex regulates the dynamic assembly of presynaptic active
2 zones via liquid-liquid phase separation**

3

4 Gaowei Jin^{1,2,3,#}, Joaquín Campos^{4,#}, Yang Liu^{1,2,3,#}, Berta Marcó de la Cruz^{5,6}, Shujing Zhang^{2,3},
5 Mingfu Liang^{2,3}, Kaiyue Li^{2,3}, Xingqiao Xie^{1,2,3}, Cong Yu^{3,7,8}, Fredrik H. Sterky^{5,6,9,*}, Claudio
6 Acuna^{4,*}, Zhiyi Wei^{1,2,3,8,*}

7

8 ¹ Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of
9 Science and Technology, Shenzhen, China

10 ² Brain Research Center, Southern University of Science and Technology, Shenzhen, China

11 ³ School of Life Sciences, Southern University of Science and Technology, Shenzhen, China

12 ⁴ Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, University of
13 Heidelberg, Heidelberg, Germany

14 ⁵ Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy,
15 University of Gothenburg, Gothenburg, Sweden

16 ⁶ Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg,
17 Gothenburg, Sweden

18 ⁷ Guangdong Provincial Key Laboratory of Cell Microenvironment, Southern University of
19 Science and Technology, Shenzhen, China.

20 ⁸ Institute for Biological Electron Microscopy, Southern University of Science and Technology,
21 Shenzhen, China.

22 ⁹ Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden

23 [#] These authors contributed equally to this work.

24 ^{*} Corresponding author: Z.W. (weizy@sustech.edu.cn), C.A. (acuna@uni-heidelberg.de), and
25 F.H.S. (fredrik.sterky@gu.se)

26

27 **Abstract**

28 Presynaptic scaffold proteins, including liprin- α , RIM, and ELKS, are pivotal to the assembly of
29 the active zone and regulating the coupling of calcium signals and neurotransmitter release, yet the
30 underlying mechanism remains poorly understood. Here, we determined the crystal structure of
31 the liprin- α 2/RIM1 complex, revealing a multifaceted intermolecular interaction that drives the
32 liprin- α /RIM assembly. Neurodevelopmental disease-associated mutations block the formation of
33 the complex. Disrupting this interaction in neurons impairs synaptic transmission and reduces the
34 readily releasable pool of synaptic vesicles. Super-resolution imaging analysis supports a role for
35 liprin- α in recruiting RIM1 to the active zone, presumably by promoting the liquid-liquid phase
36 separation (LLPS) of RIM1. Strikingly, the liprin- α /RIM interaction modulates the competitive
37 distribution of ELKS1 and voltage-gated calcium channels (VGCCs) in RIM1 condensates.
38 Disrupting the liprin- α /RIM interaction significantly decreased VGCC accumulation in the
39 condensed phase and rendered release more sensitive to the slow calcium buffer EGTA, suggesting
40 an increased physical distance between VGCC and vesicular calcium sensors. Together, our
41 findings provide a plausible mechanism of the liprin- α /RIM complex in regulating the coupling of
42 calcium channels and primed synaptic vesicles via LLPS for efficient synaptic transmission and
43 uncover the pathological implication of liprin- α mutations in neurodevelopmental disorders.

44 Introduction

45 Synaptic transmission is the cornerstone of brain functions, representing the fundamental process
46 through which neurons communicate. Triggered by an action potential, neurotransmitter release
47 occurs at a specialized region in the presynaptic terminal, known as “active zone”¹⁻³. This dynamic
48 region arises from the orchestrated assembly of a diverse array of proteins, forming an electron-
49 dense structure attached to the plasma membrane that governs synaptic vesicle exocytosis. Five
50 conserved scaffold proteins have emerged as core components in active zone assembly, including
51 liprin- α , RIM, RIM-BP (RBP), ELKS, and Munc13¹. However, the assembly mechanism remains
52 poorly understood, mainly due to the limited understanding of the complex interactions among
53 these proteins.

54

55 Among these core scaffolds, liprin- α has garnered increasing attention for its evolutionary
56 conserved roles in active zone formation and function. The liprin- α family contains four members
57 (liprin- α 1/2/3/4) in mammals and one member each in *C. elegans* and *Drosophila*⁴⁻⁸. Genetic
58 studies in invertebrates reveal that dysfunction of liprin- α orthologs leads to altered active zone
59 morphology and diminished synaptic vesicle accumulation^{5,6,9}. Although the depletion of two
60 neuron-specific isoforms, liprin- α 2 and α 3, mildly disrupts active zone ultrastructure and vesicle
61 priming in mice¹⁰, knocking out all four liprin- α genes in human neurons blocks the recruitment
62 of active zone components and synaptic vesicle¹¹, demonstrating the indispensable role of liprin-
63 α proteins in mammalian presynaptic structure and function. Liprin- α organizes the active zone by
64 interacting with various presynaptic proteins^{6,10,12-16} (Fig. 1A). Its C-terminal SAM domains
65 associate with presynaptic adhesion molecules, such as LAR-type receptor protein tyrosine
66 phosphatases and neurexins through forming the liprin- α /CASK/neurexin tripartite complex^{11,17-}
67 ¹⁹. On the other hand, liprin- α employs N-terminal coiled coils to recruit other presynaptic
68 scaffolds, including RIM and ELKS, to synaptic adhesion sites for active zone formation and
69 function^{15,20-23}.

70

71 RIM binds to the other four core scaffold proteins and Ca^{2+} channels^{20,24-27}, contributing to active
72 zone assembly. The RIM family in vertebrates has four members²⁸: RIM1 and RIM2 are
73 multidomain-containing proteins with two C-terminal C2 domains (C2A and C2B; Fig. 1A)
74 involved in neurotransmitter release through phospholipid binding²⁹, whereas RIM3 and RIM4

75 only contain the C2B domain. RIM1 and RIM2 were identified to interact through their C2B
76 domains with the coiled-coil region of liprin- α ²⁰. Although the recognized significance of both
77 liprin- α and RIM in active zone formation and function, a molecular understanding of their
78 interaction and its functional consequences remain unknown. Discovery of RIM/RBP
79 condensation indicates the involvement of liquid-liquid phase separation (LLPS) in coupling
80 synaptic vesicles and voltage-gated Ca^{2+} channels (VGCCs)^{30,31}. In agreement with this, liprin- α
81 co-phase separates with ELKS, required for active zone formation³². These findings also raise an
82 intriguing question of how these sophisticated protein assemblies interplay through the liprin-
83 α /RIM interaction.

84

85 In this study, we solved the structure of the complex formed by the coiled-coil region of liprin- α 2
86 and the C2B domain of RIM1. The structure uncovers that liprin- α mutations associated with
87 neurodevelopmental diseases block complex formation, supporting the importance of this complex
88 in synapse formation. Further structural analysis reveals a unique binding mode between the
89 coiled-coil dimer and the C2B dimer, which drives a large protein assembly. Through this
90 multivalent binding, liprin- α 2 promotes the condensate formation of RIM1, confirming its
91 scaffolding role in early active zone protein recruitment. Using human neurons lacking all liprin-
92 α (liprin- α qKOs), we showed that the liprin- α /RIM interaction is dispensable for synapse
93 formation while required for synaptic transmission and vesicle recruitment. Importantly, our LLPS
94 assays and synaptic analyses indicate that liprin- α 2, through its binding to RIM1, not only
95 effectively accumulates RIM1 at the active zone but also promotes VGCC clustering, allowing
96 proximal coupling between VGCC clustering sites and vesicle priming sites for efficient
97 neurotransmitter release. Collectively, our study unveils the presynaptic assembly and regulatory
98 mechanism of active zone machinery via the liprin- α /RIM interaction in an LLPS-dependent
99 manner.

100

101 **Results**

102 **Biochemical and crystallographic analyses of the liprin- α 2/RIM1 complex**

103 To understand the molecular mechanism governing the liprin- α /RIM interaction, we first identified
104 the minimal segment in liprin- α 2 that is sufficient for its binding to the C2B domain of RIM1. As
105 our previous study suggests that liprin- α can form a tripartite complex with RIM and ELKS and a

106 coiled-coil region (CC2; Fig 1A) binds both RIM and ELKS²³, we speculated that RIM and ELKS
107 interact with distinct segments of CC2. To validate this, we divided the CC2 region into two parts:
108 the N-terminal half (CC2N) and the C-terminal half (CC2C) (Fig. 1A). The interactions between
109 the two segments and RIM1_C2B were characterized using analytical size-exclusion
110 chromatography (aSEC) and isothermal titration calorimetry (ITC). The results showed that CC2N
111 but not CC2C interacts with RIM1_C2B, with a measured binding affinity of ~5 μM (Fig. 1B and
112 C). Consistently, the deletion of CC2N from liprin-α2 did not compromise its ability to bind
113 ELKS1, while the deletion of CC2C disrupted the interaction (Fig. S1). These results indicate that
114 liprin-α2 interacts with the C2B domain of RIM1 through its CC2N segment. The differential
115 binding specificity found in the CC2 region provides a mechanism for assembling the liprin-
116 α/RIM/ELKS tripartite complex.

117

118 Next, we aimed to solve the structure of the liprin-α2_CC2N/RIM1_C2B complex using X-ray
119 crystallography. Initial attempts to co-crystallize the tag-removed CC2N and C2B fragments
120 resulted in heavy precipitation, preventing crystal formation. To circumvent this issue, we
121 modified our approach by mixing tag-removed liprin-α2_CC2N with SUMO-tagged RIM1_C2B
122 for crystallization. However, this approach also failed to yield any crystals, despite extensive trials,
123 presumably due to the interference of the SUMO tag in protein crystallization. To remove the
124 SUMO tag without inducing severe protein precipitation, we added a trace amount of TEV
125 protease during crystallization. This strategy successfully led to the formation of high-quality
126 crystals, which we used to determine the structure of the liprin-α2_CC2N/RIM1_C2B complex at
127 a resolution of 2.75-Å (Table S1).

128

129 **Overall structure of the liprin-α2_CC2N/RIM1_C2B complex**

130 In the complex structure, the CC2N segment forms a dimeric coiled coil that interacts with two
131 RIM1_C2B molecules symmetrically through its N-terminal region, assembling a 2:2
132 stoichiometric complex (Figs. 2A, S2A, and S2B). Conversely, the C2B domain of RIM1,
133 characterized by a β-sandwich fold, mainly packs with CC2N via a β-sheet composed of strands
134 β-2/3/6/9 (Figs. 2A, 2B, and S2C). The CC2N/C2B interaction is predominantly mediated by polar
135 interactions. Several salt bridges, including R1239^{RIM1}-E328/D335^{liprin-α2}, R1201^{RIM1}-E337^{liprin-α2},
136 and E1198^{RIM1}-R346^{liprin-α2}, strongly stabilize this interaction (Fig. 2B). Q332^{liprin-α2} and R339^{liprin-}

137 ^{a2} also contribute significantly to the binding by forming hydrogen bond networks at the interface
138 (Fig. 2B). In addition to these polar interactions, hydrophobic interactions further strengthen the
139 CC2N/C2B interaction (Fig. 2B). The interface residues in CC2N are highly conserved across
140 liprin- α isoforms in different species (Fig. S2B and D), suggesting that the observed RIM-binding
141 mode is shared by all liprin- α proteins. Conversely, a key interface residue in RIM1, R1201, is not
142 conserved in RIM3 and RIM4 (Fig. 2C). The substitution of R1201 with glutamine in RIM1, to
143 mimic the sequence of RIM4, abolished the CC2N/C2B interaction (Fig. 2D), confirming that the
144 liprin- α /RIM interaction is specific to certain RIM proteins ²⁹, including RIM1, RIM2, and their
145 homologs in invertebrates. Likewise, the presence of a glutamine residue at the R1201-
146 corresponding position in the C2A domain of RIM1 explains the selective binding of liprin- α to
147 the C2B domain over C2A (Fig. S2C).

148
149 In addition to the primary interface (interface I) in the formation of the tetrameric complex, the
150 tetramers in the crystal are assembled through a secondary CC2N/C2B interface (interface II) (Fig.
151 2A). At interface II, the C-terminal part of CC2N interacts with a side face of the β -sandwich fold
152 in RIM1_C2B, mainly through charge-charge interactions and hydrogen bonding (Figs. 2E, S2B,
153 and S3A). ITC-based analysis showed that, while disruptive mutations at interface I abolish the
154 CC2N/C2B interaction, interface II mutations have a milder impact, reducing the binding affinity
155 by \sim 5-fold (Figs. 2F, S3B, and S3C). Furthermore, neighboring CC2N coiled coils interact through
156 salt bridges that stabilize both CC2N/C2B interfaces (Figs. 2E and S3A). Specifically, E380 forms
157 salt bridges with R346 in a neighboring CC2N coiled coil, stabilizing the orientation of R346 for
158 its binding to E1198^{RIM1} at interface I (Fig. S3D). The charge-reversed mutation E380R led to a 2-
159 fold decrease in the binding affinity between CC2N and C2B (Figs. 2F and S3E). Together, the
160 crystal structure of the liprin- α ₂_CC2N/RIM1_C2B complex reveals how the CC2N coiled coil
161 specifically recognizes the C2B domain of RIM1 via two interconnected binding interfaces.

162
163 As the C2B domain of RIM1 also binds to phosphatidylinositol 4,5-bisphosphate (PIP₂) ²⁹, we
164 analyzed the potential impact of PIP₂ on liprin- α 's ability to bind C2B. As shown in Fig. 2G, the
165 putative PIP₂-binding site on C2B remains fully accessible with bound CC2N. However, when
166 C2B is associated with the PIP₂-containing membrane, formation of the liprin- α /RIM complex
167 positions a negatively charged patch on the CC2N surface facing the membrane (Fig. 2G).

168 Considering the negatively charged nature of the inner leaflet of the plasma membrane, this spatial
169 arrangement has the potential to generate charge repulsion, thus inhibiting the CC2N/C2B
170 interaction. It suggests that the membrane association of RIM1 in the PIP₂-enriched compartment
171 may tune its binding to liprin- α .

172

173 **Two disease-associated mutations at the CC2N region disrupt the liprin- α /RIM interaction**

174 Many genetic mutations in human liprin- α genes have been linked to neurodevelopmental
175 disorders such as autism, intellectual disability, and epilepsy^{33–36}. Interestingly, several reported
176 missense mutations are located in the CC2N region (Fig. 3A)^{33,35–37}. These mutated sites,
177 including E328^{liprin- α 2}, A315^{liprin- α 3} (corresponding to A350 in liprin- α 2), and L330^{liprin- α 1} (L348 in
178 liprin- α 2), are strictly conserved in the liprin- α family (Fig. 3B). In addition to E328's critical role
179 in forming salt bridges with RIM1_C2B (Fig. 2B), L348 is directly involved in hydrophobic
180 interactions with M1293 and I1295 in RIM1_C2B (Fig. 2B). A350, although not directly involved
181 in C2B binding, contributes to the coiled-coil formation of CC2 (Figs. 3C and S2B). The charge-
182 reverse mutation E328K disrupts the charge-charge interaction between liprin- α 2 and RIM1. To
183 determine the potential consequence of the other two mutations, we performed *in silico*
184 substitutions of the corresponding residues in the complex structure and analyzed the mutated
185 model. As shown in Fig. 3D, the L348F mutation, while retaining hydrophobicity, imposes steric
186 hindrance by introducing a bulkier sidechain, thereby impeding the close contact between CC2N
187 and C2B. However, the A350S mutation, having little impact on the coiled-coil structure of CC2N
188 (Fig. 3E), is unlikely to interfere with the CC2N/C2B interaction.

189

190 To further evaluate the mutational effects on the liprin- α /RIM interaction, we introduced E328K,
191 L348F, and A350S mutations to the CC2N construct and measured the binding affinities of the
192 CC2N mutants to RIM1_C2B. Consistent with our structural analysis, the E328K and L348F
193 mutations eliminate the CC2N/C2B interaction, while the A350S mutation had minimal impact on
194 binding affinity (Fig. 3F). Considering that the L330F mutation in liprin- α 1 was identified in
195 patients with autism³⁵, our results suggest that this mutation may impair synapse development by
196 interfering with the binding of liprin- α 1 to RIM proteins. Nevertheless, given the poorly defined
197 function of liprin- α 1 at the presynapse, whether the L330F mutation contributes to

198 neurodevelopmental defects through the disruption of liprin- α 1/RIM interaction requires further
199 investigation.

200

201 **Liprin- α 2 and RIM1 form a large complex through multivalent binding**

202 Although RIM1_C2B was purified as a monomer, it forms a homodimer in our crystal structure,
203 a feature also observed in the apo C2B structure of RIM1³⁸ (Figs. 4A and S4A). This dimerization
204 tendency was confirmed in solution, as increasing concentrations of RIM1_C2B led to a
205 corresponding increase in dimer formation (Figs. 4B and S4B). Considering the C2B dimerization
206 along with the CC2N/C2B interactions, we propose that liprin- α 2 and RIM1 may assemble into a
207 large complex through a network of intermolecular interactions revealed in our crystal structure
208 (Figs. 4C and S4A). This hypothesis is supported by aSEC analysis of a 500 μ M liprin-
209 α 2_CC2/RIM1_C2B mixture, which showed the formation of protein assemblies with molecular
210 weights even larger than 500 kDa (Fig. 4D). In contrast, either CC2 or C2B alone maintains their
211 dimeric state even at a concentration of 500 μ M (Fig. S4B and C). These results suggest the
212 involvement of multivalent interactions in assembling the liprin- α 2/RIM1 complex. However,
213 given the high protein concentrations (sub-mM) used in our crystallographic and aSEC analyses,
214 it prompts an important question of whether the observed multivalent interactions could occur in
215 the context of presynaptic assembly.

216

217 Recent studies on active zone proteins, including liprin- α , RIM, and ELKS, reveal their
218 pronounced propensity for LLPS^{23,30,32,39}. Through LLPS, these proteins can concentrate within
219 condensates ranging from sub-mM to mM levels^{23,30}. Given the well-established significance of
220 multivalent binding in mediating LLPS^{40,41}, it is plausible that liprin- α 2 and RIM1 may coalesce
221 into a co-condensate, presumably facilitated by the multivalent interactions identified in our crystal
222 structure. To explore the potential role of the CC2N/C2B interaction in the co-condensation of
223 liprin- α 2 and RIM1, we performed *in vitro* LLPS assays with a purified N-terminal segment of
224 liprin- α 2 (liprin- α 2_CC12) and full-length RIM1. Notably, liprin- α 2_CC12, containing both the
225 CC1 and CC2 regions, has been shown to promote the LLPS of ELKS²³. Indeed, compared to the
226 condensate formed by RIM1 alone, the addition of liprin- α 2_CC12 robustly enlarged the RIM1
227 droplet size (Fig. 4E and F). In contrast, the E334R and R346E mutations at interface I of CC12
228 diminished the promotive effect, confirming the importance of the CC2N/C2B interaction in

229 promoting RIM1 LLPS. Additionally, the R383A mutation at interface II of CC12 modestly
230 attenuated the enhancing effect on droplet size (Fig. 4E and F), consistent with the milder impact
231 of interface II on the disruption of the CC2N/C2B interaction (Fig. 2F). Similarly, our *in vitro*
232 sedimentation-based assay confirmed the CC12-mediated promotion effect of RIM1 LLPS (Fig.
233 S4D and E). Altogether, our structural and biochemical analyses highlight the role of the
234 CC2N/C2B interaction in assembling liprin- α 2 and RIM1 into condensates, offering insights into
235 the molecular mechanism underlying the dynamic assembly of the presynaptic active zone.

236

237 **The CC2N/C2B interaction is dispensable for synaptic formation**

238 To study the functional role of the liprin- α 2/RIM1 complex in active zone assembly and function,
239 we employed pluripotent stem-cell-derived human neurons lacking all liprin- α proteins (liprin- α
240 qKO neurons)¹¹, in which the assembly of active zones and the recruitment of synaptic vesicles
241 to nascent terminals is completely blocked. By re-expressing wild-type (WT) liprin- α 2 or its
242 mutants, including the CC2N deletion (Δ CC2N) and point mutations E344R and R346E, we can
243 specifically analyze the CC2N/C2B interaction's effects on synaptic defects in liprin- α qKO
244 neurons, as these mutants disrupt RIM1 binding while retaining ELKS1 interaction (Fig. S5A and
245 B). To ensure comparable expression levels of liprin- α 2 variants, an approach of lentivirus
246 transduction was used (Fig. S5C).

247

248 Quantitative analysis of synapses using synapsin and MAP staining for pre- and post-synaptic
249 compartments, respectively, showed that the deletion of all liprin- α isoforms almost eliminated
250 synaptic puncta as we reported previously¹¹, but re-expression of either liprin- α 2 WT or RIM-
251 binding-deficient mutants comparably restored synapsin puncta signals in liprin- α qKO neurons
252 (Fig. S6A and B). Next, we compared synaptic levels of active zone proteins in liprin- α qKO
253 neurons rescued with either liprin- α 2 or its mutants using confocal microscopy. No significant
254 differences were found in the overall synaptic levels of these active zone proteins between the
255 rescues with the WT and mutant constructs (Fig. S6C and D). These findings suggest that the
256 disruption of the liprin- α 2/RIM1 complex has no major effects on active zone assembly, and the
257 CC2N/C2B interaction plays a dispensable role in synaptic formation.

258

259 **The CC2N/C2B interaction is critical for synaptic transmission**

260 To further assess the significance of the liprin- α /RIM complex on synaptic function, we performed
261 direct measurements of miniature excitatory postsynaptic currents (mEPSCs) in liprin- α qKO
262 neurons. The absence of all four liprin- α isoforms nearly abolished spontaneous synaptic
263 transmission (Fig. 5A-C), consistent with our previous findings¹¹. We then rescued the synaptic
264 deficit in liprin- α qKO neurons by re-expressing liprin- α 2 or its mutants. As shown in Fig. 5A-C,
265 WT liprin- α 2 re-expression substantially restored mEPSCs, whereas the mutants were
266 significantly less effective. Considering the specific disruption of the liprin- α /RIM interaction by
267 the mutations, these results strongly support the role of liprin- α in conjugation with RIM proteins
268 via the CC2N/C2B interaction to regulate synaptic vesicle release and neurotransmission.

269

270 Next, we explored whether the liprin- α /RIM complex influences synaptic transmission by
271 regulating primed synaptic vesicles by analyzing the size of the readily releasable pool (RRP) of
272 synaptic vesicles, using hyperosmotic sucrose treatment as described earlier⁴². In liprin- α qKO
273 neurons, sucrose responses were eliminated but were readily rescued by liprin- α 2 WT re-
274 expression (Fig. 5D-F). In contrast, RIM-binding-deficient mutants only partially rescued sucrose
275 responses, which were significantly smaller than those triggered by the WT rescue (Fig. 5D-F). It
276 suggests that the liprin- α /RIM interaction is important in maintaining the RRP size. Together, our
277 structural and functional results demonstrate that the liprin- α /RIM complex, assembled by the
278 CC2N/C2B interaction, controls the synaptic transmission, at least in part, by regulating the
279 number of primed synaptic vesicles in nerve terminals.

280

281 **Liprin- α 2 facilitates the presynaptic accumulation of RIM1 through the CC2N/C2B 282 interaction**

283 Given the essential role of RIM1 in vesicle priming at the active zone^{43,44}, the liprin- α /RIM1
284 complex may regulate RIM1 levels at the active zone, which in turn could influence synaptic
285 vesicle priming and release. To test this possibility, we analyzed the presynaptic level of RIM1
286 using STED super-resolution microscopy (Fig. S6E). We found a significant reduction of RIM1
287 signals at the presynaptic termini under the R346E rescue condition, compared to the WT liprin-
288 α 2 (Fig. 5G). This finding, coupled with the role of liprin- α 2 in promoting RIM1 condensate
289 formation through the CC2N/C2B interaction (Fig. 4E and F), suggests that liprin- α may
290 effectively accumulate RIM1 at the active zone by forming the liprin- α /RIM1 complex. As RIM1

291 may also be involved in recruiting VGCCs to the active zone^{26,45}, we compared presynaptic P/Q-
292 type VGCC $\alpha 1$ subunit (CaV2.1) levels between the WT and R346E rescue conditions. However,
293 no significant alternation in CaV2.1 levels was detected (Fig. 5H), suggesting that while the liprin-
294 α /RIM interaction helps recruiting RIM1 to nerve terminals, it does not control the overall density
295 of VGCCs at the active zone. Nevertheless, potential nanoscale changes in Ca^{2+} channel
296 positioning upon liprin- α /RIM interaction disruption cannot be readily ruled out. Indeed, previous
297 studies at the calyx of Held synapses have clearly shown changes in presynaptic VGCC nano-
298 organization without altering the overall density of these channels in nerve terminals⁴⁶.

299

300 **The liprin- α /RIM complex controls the clustering of Ca^{2+} channels through mesoscale
301 interactions among ELKS1 and RIM1 condensates**

302 Liprin- α , through its CC2 region, assembles ELKS and RIM proteins (Fig. 6A), which contribute
303 to the nano-scale organization of presynaptic VGCCs^{26,47}. Therefore, we hypothesize that the
304 liprin- α /RIM complex may cooperate with ELKS to regulate the local distribution of VGCCs,
305 without affecting the overall level of Ca^{2+} channels at the active zone. Intriguingly, both ELKS1
306 and RIM1 can form condensates via LLPS, regulated by liprin- α and RBP, respectively^{23,30}. To
307 explore the relationship between the ELKS1 and RIM1 condensates, we prepared these
308 condensates using purified full-length proteins. To enhance RIM1 LLPS, the RBP2_(SH3)₃
309 fragment was added (Fig. 6A), as reported previously³⁰. Without liprin- $\alpha 2$ _CC12, the ELKS1 and
310 RIM1 condensates merge to form co-phase droplets (Fig. 6B). However, the presence of liprin-
311 $\alpha 2$ _CC12 prevents co-condensation, with the droplets of ELKS1 and RIM1 become largely
312 immiscible (Fig. 6C). Consistent with our previous findings using ELKS2 fragments²³,
313 ELKS1/liprin- $\alpha 2$ _CC12 was found to enrich at the periphery of RIM1 droplets (Fig. 6C, box 'a').
314 Conversely, no RIM1 accumulation was observed in ELKS1 droplets (Fig. 6C, box 'b'), although
315 both liprin- $\alpha 2$ _CC12 and ELKS1 can interact with RIM1 (Fig. 6A).

316

317 The disruption of the liprin- α /RIM interaction by introducing R346E into liprin- $\alpha 2$ _CC12
318 eliminated the surface coating of CC12 on RIM1 droplets (Fig. 6C), indicating that the liprin-
319 α /RIM interaction is essential for recruiting CC12 onto RIM1 condensates. However, the absence
320 of liprin- $\alpha 2$ _CC12 from RIM droplets led to an increased accumulation of ELKS1 within RIM1
321 droplets, aligning with the formation of ELKS1/RIM1 co-phase droplets in the absence of CC12

322 (Fig. 6B). These observations suggest that the liprin- α /RIM interaction limits the accumulation of
323 ELKS1 within the RIM1 condensate. Additionally, without the addition of RBP2_(SH3)₃, RIM1,
324 ELKS1, and liprin- α 2_CC12 form co-phase droplets (Fig. S7A), indicating that RBP2 also
325 contributes to the immiscibility between the RIM1 and ELKS1 condensates when liprin- α 2_CC12
326 is present. Consistently, liprin- α 2_CC12 is weakly enriched on the periphery of
327 RIM1/RBP2_(SH3)₃ co-condensates (Fig. S7B), compared to its co-condensation formation with
328 RIM1 alone (Fig. 4E). Thus, the peripheral enrichment of liprin- α 2_CC12 changes the surface
329 property of the RIM1 condensates, which potentially hinders the diffusion of ELKS1 molecules
330 into condensates. This hypothesis is supported by fluorescence recovery after photobleaching
331 (FRAP) analyses, which show a decrease in the dynamic properties of RIM1 condensates in the
332 presence of liprin- α 2_CC12 compared to RBP2_(SH3)₃ (Fig. S7C).

333

334 The RIM1 condensate is known to enrich the cytoplasmic tail of presynaptic Ca^{2+} channels^{23,30},
335 which interacts with the PDZ domain of RIM (Fig. 6A)²⁶. As ELKS interacts with the PDZ domain
336 of RIM with a much higher binding affinity^{24,25,30,48}, the accumulation of ELKS1 in RIM1
337 condensates may prevent the enrichment of VGCCs through binding competition. Indeed, the
338 addition of the cytoplasmic tail of the N-type VGCC α 1 subunit (NCav_CT) to the mixture of
339 ELKS1 and RIM1 condensates resulted in its accumulation in RIM1 condensates (Fig. 6D).
340 However, disrupting the liprin- α /RIM interaction decreased the overall level of NCav_CT in RIM1
341 condensates, presumably due to the accumulation of ELKS1 in RIM1 condensates (Fig. 6D). By
342 classifying droplets based on their fluorescence intensity relationship (Fig. 6E), we quantitatively
343 compared the ELKS1 and NCav_CT intensities in the two classes of condensates under different
344 conditions (Figs. 6F and S7D). The results confirmed that disrupting the liprin- α /RIM interaction
345 significantly increases the distribution of ELKS1 in RIM1 condensates (Fig. 6F, left panel), which
346 in turn dramatically reduces the distribution of NCav_CT in RIM1 condensates to a level
347 comparable to that in ELKS1 condensates (Fig. 6F, right panel).

348

349 Taken together, our LLPS analyses demonstrate that the liprin- α /RIM complex plays a regulatory
350 role in the distribution of both ELKS1 and VGCCs in the RIM1 condensate. Considering the
351 essential role of VGCC nano-scale clustering in efficient vesicle release, liprin- α may control the

352 interplay between RIM, ELKS, and VGCCs in synaptic transmission by regulating mesoscale
353 protein-protein interactions in the condensed phase.

354

355 **The liprin- α /RIM complex promotes efficient coupling between presynaptic Ca^{2+} channels**
356 **and primed synaptic vesicles**

357 We then directly assessed if liprin- α /RIM complex, by regulating the accumulation of ELKS1 in
358 RIM1 condensates, can control the fine-scale localization of VGCCs within the active zone and
359 thereby regulate the nanodomain coupling between VGCCs and primed synaptic vesicles. For this,
360 we used a channel-rhodopsin-assisted approach to assess evoked synaptic transmission in liprin- α
361 qKO neurons rescued with either liprin- α 2 WT or R346E (Fig. 7A). We loaded nerve terminals
362 with the ‘slow’ Ca^{2+} -chelator EGTA-AM, which selectively chelates diffusing Ca^{2+} ions not
363 involved in nanodomain coupling between Ca^{2+} channels and the release machinery (Fig. 7B). We
364 reasoned that if the liprin- α /RIM complex is critical for this short-distance coupling, evoked
365 release in the R346E rescue would be more sensitive to EGTA-AM than that in the WT rescue.
366 Indeed, we observed that EGTA-AM more effectively blocked evoked release in liprin- α qKO
367 neurons rescued with R346E, compared to those rescued with WT construct (Fig. 7C and D),
368 suggesting an increased distance between Ca^{2+} channels and Ca^{2+} sensors in the release machinery
369 upon disruption of the liprin- α /RIM interaction. Control treatment with vehicle (DMSO) showed
370 no significant differences in evoked release (Fig. 7C and D). Altogether, these results indicate that
371 the liprin- α /RIM complex is crucial for localizing Ca^{2+} channels in close proximity to primed
372 synaptic vesicles within the active zone and to ensure tight coupling between presynaptic action
373 potentials and neurotransmitter release. These finding also provides a plausible mechanism for
374 liprin- α /RIM complexes in the regulation of the nanoscale VGCC clustering, while having a
375 negligible impact on its overall presynaptic levels (Fig. 5H) that may involve alternative
376 interactions between VGCC and other active zone components.

377

378 **Discussion**

379 Our study unveils the unique assembly mechanism of the liprin- α /RIM complex, a critical yet less
380 characterized interaction in the presynaptic active zone. Through a combination of structural
381 biology and biochemical approaches, we have elucidated the sophisticated molecular interactions
382 that govern the formation of this complex. Remarkably, our discovery of the liprin- α /RIM

383 interaction's role in orchestrating the interplay of the RIM1 and ELKS1 condensates provides fresh
384 insights into the nano-scale organization of the active zone. Supported by synaptic analyses in
385 liprin- α qKO neurons with rescue assays, the functional significance of this interaction extends to
386 the modulation of synaptic vesicle release, specifically through its impact on RIM distribution and
387 VGCC clustering. Thus, our work deepens the understanding of the active zone's assembly
388 mediated by liprin- α and RIM, as well as the dynamic coupling between protein machinery for
389 vesicle priming and release in synaptic transmission.

390

391 Our results indicate that liprin- α s, via direct interactions with RIM, can dynamically control two
392 essential functions of the active zone, namely synaptic vesicle priming and subsynaptic distribution
393 of VGCCs, although via different mechanisms. The defects in vesicle priming observed upon
394 disruption of liprin- α /RIM complexes (Fig. 5) can be readily explained by a concomitant reduction
395 in the levels of RIM1 at the active zone, which in turn prime synaptic vesicles via direct
396 interactions with Munc13. In contrast, the defects in VGCC nanoscale localization (Figs. 6 and 7)
397 can be explained in part by the reduction of active zone RIM but perhaps more importantly by a
398 redistribution of ELKS1 in RIM1 condensates, which can outcompete and displace VGCC bound
399 to RIM PDZ domains, resulting in a dramatic reduction of VGCC levels in RIM1 condensates.
400 Thus, our results align with the idea that liprin- α s act as master organizers of presynaptic assembly,
401 regulating the nano-organization of the active zone functions via a multitiered interaction network.
402 At the core, liprin- α s can dynamically and directly interact with RIM and ELKS in a single protein
403 complex, which further coordinates other presynaptic components such as Munc13, RBP, and
404 calcium channels.

405

406 Our findings support the involvement of LLPS in the dynamic organization of presynaptic active
407 zones. Emerging evidence has highlighted the nanoscale clustering of RIM⁴⁹, neurexin⁵⁰, Munc13
408⁵¹, and Ca²⁺ channels^{52,53} at subregions of the active zones. Considering the active zone's capacity
409 to adapt to various stimuli, LLPS likely facilitates the rapid reorganization of these presynaptic
410 nanoclusters, enabling swift adjustments to synaptic activity. Mesoscale interactions between
411 membrane-associated condensates (e.g., ELKS1 and RIM1 condensates) may contribute to such a
412 dynamic organization of these presynaptic nanoclusters, providing mechanistic insights into the
413 adaptable assembly of the active zone. In this framework, liprin- α emerges as a central regulatory

414 hub, controlling the interplay between active zone proteins in the context of LLPS. Specifically,
415 the liprin- α /RIM interaction not only promotes the recruitment of RIM1 to the active zone (Fig.
416 5G) but also restricts the enrichment of ELKS1 in RIM1 condensates, maintaining the required
417 VGCC clustering (Fig. 6C-F) for synaptic transmission. Thus, the observed immiscibility between
418 the RIM1 and ELKS1 condensates may be necessary for the nano-scale organization at the active
419 zone. This may ensure that highly condensed active zone proteins maintain their different
420 localization and clustering, allowing them to form distinct functional assemblies at different sites
421 during neurotransmitter release.

422
423 The intricate interaction network among active zone proteins is likely to provide a critical layer of
424 functional redundancy that ensures the robustness and adaptability of synaptic connections ^{1,3}. For
425 instance, the disruption of the liprin- α /RIM interaction does not completely block the recruitment
426 of RIM1 to the active zone (Fig. 5A and B), presumably due to compensation by the binding of
427 RIM to RBP and ELKS (Fig. 6A). This compensatory effect explains the significant yet not
428 profound impairment in synaptic function (Fig. 5). Nevertheless, given the role of liprin- α in early
429 synaptic development ^{11,14,22,54}, the liprin- α /RIM interaction could be critical for the proper
430 assembly of synapses. The compromised RIM protein recruitment by disruptive mutations in
431 liprin- α may still result in a deficit in synaptic homeostasis, contributing to pathological conditions
432 like neurodevelopmental diseases associated with liprin- α proteins ^{33,34}.

433
434 Interestingly, Rabphilin-3A and synaptotagmin, known for their roles in the docking and fusion of
435 synaptic vesicles, also utilize their C2B domains to interact with the coiled-coil structure of the
436 SNARE complex through multiple interfaces ^{55,56}. This binding mode similarity with the liprin- α /RIM
437 complex suggests a general mechanism by which multi-interface binding can modulate the
438 assembly and function of protein complexes in response to synaptic activity. In addition, the C2B
439 domains of Rabphilin-3A and synaptotagmin are also involved in lipid binding ⁵⁷. The binding of
440 lipids to the C2B domain could serve as a molecular switch that influences the conformation,
441 localization, or interaction partners of these C2B-containing proteins (Fig. 2G), which have been
442 extensively studied in synaptotagmin ⁵⁸⁻⁶⁰. Given the similar role of the C2B domain of RIM1 in
443 vesicle release ²⁹, it is likely that the coupling mechanism between membrane and liprin- α

444 interactions of the C2B domain in RIMs also contributes to neurotransmitter release, which is
445 compelling to be further investigated.
446

447 **References**

- 448 1. Südhof, T. C. The presynaptic active zone. *Neuron* **75**, 11–25 (2012).
- 449 2. Ackermann, F., Waites, C. L. & Garner, C. C. Presynaptic active zones in invertebrates and
450 vertebrates. *EMBO Rep* **16**, 1–16 (2015).
- 451 3. Emperador-Melero, J. & Kaeser, P. S. Assembly of the presynaptic active zone. *Curr Opin
452 Neurobiol* **63**, 95–103 (2020).
- 453 4. Serra-Pages, C., Medley, Q. G., Tang, M., Hart, A. & Streuli, M. Liprins, a family of LAR
454 transmembrane protein-tyrosine phosphatase-interacting proteins. *J Biol Chem* **273**, 15611–
455 15620 (1998).
- 456 5. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic
457 termini in *C. elegans*. *Nature* **401**, 371–375 (1999).
- 458 6. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H. & Van Vactor, D. Drosophila liprin-alpha
459 and the receptor phosphatase Dlar control synapse morphogenesis. *Neuron* **34**, 27–38
460 (2002).
- 461 7. Spangler, S. A. *et al.* Differential expression of liprin-alpha family proteins in the brain
462 suggests functional diversification. *J Comp Neurol* **519**, 3040–3060 (2011).
- 463 8. Zürner, M. *et al.* Analyses of the spatiotemporal expression and subcellular localization of
464 liprin-alpha proteins. *J Comp Neurol* **519**, 3019–3039 (2011).
- 465 9. Kittelmann, M. *et al.* Liprin- α /SYD-2 determines the size of dense projections in
466 presynaptic active zones in *C. elegans*. *J Cell Biol* **203**, 849–63 (2013).
- 467 10. Wong, M. Y. *et al.* Liprin- α 3 controls vesicle docking and exocytosis at the active zone of
468 hippocampal synapses. *Proceedings of the National Academy of Sciences* **115**, 2234–2239
469 (2018).
- 470 11. Marcó de la Cruz, B. *et al.* Liprin- α proteins are master regulators of human presynapse
471 assembly. *Nat Neurosci* **27**, 629–642 (2024).
- 472 12. Ackley, B. D. *et al.* The two isoforms of the *Caenorhabditis elegans* leukocyte-common
473 antigen related receptor tyrosine phosphatase PTP-3 function independently in axon
474 guidance and synapse formation. *J Neurosci* **25**, 7517–7528 (2005).
- 475 13. Olsen, O. *et al.* Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic
476 complex. *J Cell Biol* **170**, 1127–1134 (2005).
- 477 14. Patel, M. R. *et al.* Hierarchical assembly of presynaptic components in defined *C. elegans*
478 synapses. *Nat Neurosci* **9**, 1488–1498 (2006).
- 479 15. Spangler, S. A. *et al.* Liprin-alpha2 promotes the presynaptic recruitment and turnover of
480 RIM1/CASK to facilitate synaptic transmission. *J Cell Biol* **201**, 915–928 (2013).
- 481 16. Xie, X., Liang, M., Yu, C. & Wei, Z. Liprin- α -Mediated Assemblies and Their Roles in
482 Synapse Formation. *Front Cell Dev Biol* **9**, (2021).
- 483 17. Xie, X. *et al.* Structural basis of liprin- α -promoted LAR-RPTP clustering for modulation of
484 phosphatase activity. *Nat Commun* **11**, 169 (2020).
- 485 18. Wei, Z. *et al.* Liprin-mediated large signaling complex organization revealed by the liprin-
486 alpha/CASK and liprin-alpha/liprin-beta complex structures. *Mol Cell* **43**, 586–598 (2011).
- 487 19. Wakita, M. *et al.* Structural insights into selective interaction between type IIa receptor
488 protein tyrosine phosphatases and Liprin- α . *Nat Commun* **11**, 649 (2020).

489 20. Schoch, S. *et al.* RIM1alpha forms a protein scaffold for regulating neurotransmitter release
490 at the active zone. *Nature* **415**, 321–326 (2002).

491 21. Ko, J., Na, M., Kim, S., Lee, J.-R. R. & Kim, E. Interaction of the ERC family of RIM-
492 binding proteins with the liprin-alpha family of multidomain proteins. *J Biol Chem* **278**,
493 42377–42385 (2003).

494 22. Dai, Y. *et al.* SYD-2 Liprin-alpha organizes presynaptic active zone formation through
495 ELKS. *Nat Neurosci* **9**, 1479–1487 (2006).

496 23. Liang, M. *et al.* Oligomerized liprin- α promotes phase separation of ELKS for
497 compartmentalization of presynaptic active zone proteins. *Cell Rep* **34**, 108901 (2021).

498 24. Ohtsuka, T. *et al.* Cast: a novel protein of the cytomatrix at the active zone of synapses that
499 forms a ternary complex with RIM1 and munc13-1. *J Cell Biol* **158**, 577–590 (2002).

500 25. Wang, Y., Liu, X., Biederer, T. & Südhof, T. C. A family of RIM-binding proteins regulated
501 by alternative splicing: Implications for the genesis of synaptic active zones. *Proceedings
502 of the National Academy of Sciences* **99**, 14464–14469 (2002).

503 26. Kaeser, P. S. *et al.* RIM Proteins Tether Ca²⁺ Channels to Presynaptic Active Zones via a
504 Direct PDZ-Domain Interaction. *Cell* **144**, 282–295 (2011).

505 27. Lu, J. *et al.* Structural basis for a Munc13-1 homodimer to Munc13-1/RIM heterodimer
506 switch. *PLoS Biol* **4**, 1159–1172 (2006).

507 28. Wang, Y. & Südhof, T. C. Genomic definition of RIM proteins: Evolutionary amplification
508 of a family of synaptic regulatory proteins. *Genomics* **81**, (2003).

509 29. de Jong, A. P. H. *et al.* RIM C2B Domains Target Presynaptic Active Zone Functions to
510 PIP2-Containing Membranes. *Neuron* **98**, 335–349.e7 (2018).

511 30. Wu, X. *et al.* RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase
512 Separation. *Mol Cell* **73**, 971–984.e5 (2019).

513 31. Wu, X. *et al.* Vesicle Tethering on the Surface of Phase-Separated Active Zone
514 Condensates. *Mol Cell* **81**, 13–24.e7 (2021).

515 32. McDonald, N. A., Fetter, R. D. & Shen, K. Assembly of synaptic active zones requires
516 phase separation of scaffold molecules. *Nature* **588**, 454–458 (2020).

517 33. Paul, M. S. *et al.* A syndromic neurodevelopmental disorder caused by rare variants in
518 PPFIA3. *Am J Hum Genet* **111**, 96–118 (2024).

519 34. Sourbron, J., Jansen, K., Aerts, N. & Lagae, L. PPFIA4 mutation: A second hit in POLG
520 related disease? *Epilepsy Behav Rep* **16**, 100455 (2021).

521 35. Iossifov, I. *et al.* The contribution of de novo coding mutations to autism spectrum disorder.
522 *Nature* **515**, 216–221 (2014).

523 36. Reuter, M. S. *et al.* Diagnostic yield and novel candidate genes by exome sequencing in 152
524 consanguineous families with neurodevelopmental disorders. *JAMA Psychiatry* **74**, 293–
525 299 (2017).

526 37. Kaplanis, J. *et al.* Evidence for 28 genetic disorders discovered by combining healthcare
527 and research data. *Nature* **586**, (2020).

528 38. Guan, R. *et al.* Crystal structure of the RIM1 α C2B domain at 1.7 Å resolution. *Biochemistry*
529 **46**, 8988–8998 (2007).

530 39. Emperador-Melero, J. *et al.* PKC-phosphorylation of Liprin- α 3 triggers phase separation
531 and controls presynaptic active zone structure. *Nat Commun* **12**, (2021).

532 40. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:
533 organizers of cellular biochemistry. *Nat Rev Mol Cell Biol* **18**, 285–298 (2017).

534 41. Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. *Nat Neurosci* **23**,
535 301–310 (2020).

536 42. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at
537 hippocampal synapses. *Neuron* **16**, (1996).

538 43. Betz, A. *et al.* Functional interaction of the active zone proteins Munc13-1 and RIM1 in
539 synaptic vesicle priming. *Neuron* **30**, 183–196 (2001).

540 44. Koushika, S. P. *et al.* A post-docking role for active zone protein Rim. *Nat Neurosci* **4**, 997–
541 1005 (2001).

542 45. Han, Y., Kaeser, P. S., Südhof, T. C. & Schneggenburger, R. RIM determines Ca²⁺ channel
543 density and vesicle docking at the presynaptic active zone. *Neuron* **69**, 304–316 (2011).

544 46. Acuna, C., Liu, X., Gonzalez, A. & Südhof, T. C. RIM-BPs Mediate Tight Coupling of
545 Action Potentials to Ca²⁺-Triggered Neurotransmitter Release. *Neuron* **87**, (2015).

546 47. Dong, W. *et al.* CAST/ELKS Proteins Control Voltage-Gated Ca²⁺ Channel Density and
547 Synaptic Release Probability at a Mammalian Central Synapse. *Cell Rep* **24**, 284–293.e6
548 (2018).

549 48. Lu, J., Li, H., Wang, Y., Südhof, T. C. & Rizo, J. Solution structure of the RIM1 α PDZ
550 domain in complex with an ELKS1b C-terminal peptide. *J Mol Biol* **352**, 455–466 (2005).

551 49. Tang, A.-H. *et al.* A trans-synaptic nanocolumn aligns neurotransmitter release to receptors.
552 *Nature* **536**, 210–214 (2016).

553 50. Trotter, J. H. *et al.* Synaptic neurexin-1 assembles into dynamically regulated active zone
554 nanoclusters. *J Cell Biol* **218**, 2677–2698 (2019).

555 51. Sakamoto, H. *et al.* Synaptic weight set by Munc13-1 supramolecular assemblies. *Nat
556 Neurosci* **21**, 41–49 (2018).

557 52. Ghelani, T. *et al.* Interactive nanocluster compaction of the ELKS scaffold and Cacophony
558 Ca²⁺ channels drives sustained active zone potentiation. *Sci Adv* **9**, (2023).

559 53. Rebola, N. *et al.* Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies
560 Contribute to the Diversity of Synaptic Function. *Neuron* **104**, 693–710.e9 (2019).

561 54. Patel, M. R. & Shen, K. RSY-1 is a local inhibitor of presynaptic assembly in *C. elegans*.
562 *Science (1979)* **323**, 1500–1503 (2009).

563 55. Ferrer-Orta, C. *et al.* Structural characterization of the Rabphilin-3A-SNAP25 interaction.
564 *Proc Natl Acad Sci U S A* **114**, E5343–E5351 (2017).

565 56. Zhou, Q. *et al.* The primed SNARE-complexin-synaptotagmin complex for neuronal
566 exocytosis. *Nature* **548**, 420–425 (2017).

567 57. Guillén, J. *et al.* Structural insights into the Ca²⁺ and PI(4,5)P₂ binding modes of the C2
568 domains of rabphilin 3A and synaptotagmin 1. *Proc Natl Acad Sci U S A* **110**, 20503–20508
569 (2013).

570 58. Wang, J. *et al.* Circular oligomerization is an intrinsic property of synaptotagmin. *Elife* **6**,
571 (2017).

572 59. Honigmann, A. *et al.* Phosphatidylinositol 4,5-bisphosphate clusters act as molecular
573 beacons for vesicle recruitment. *Nat Struct Mol Biol* **20**, 679–686 (2013).

574 60. Wang, S., Li, Y. & Ma, C. Synaptotagmin-1 C2B domain interacts simultaneously with
575 SNAREs and membranes to promote membrane fusion. *Elife* **5**, (2016).

576 61. Jin, G. *et al.* Structural basis of ELKS/Rab6B interaction and its role in vesicle capturing
577 enhanced by liquid-liquid phase separation. *Journal of Biological Chemistry* **299**, 104808
578 (2023).

579 62. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation
580 Mode. *Methods Enzymol* **276**, 307–326 (1997).

581 63. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions.
582 *Acta Crystallogr D Biol Crystallogr* **60**, 432–438 (2004).

583 64. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
584 Crystallogr D Biol Crystallogr* **60**, 2126–2132 (2004).

585 65. Adams, P. D. *et al.* PHENIX: A comprehensive Python-based system for macromolecular
586 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213–221 (2010).

587 66. Davis, I. W. *et al.* MolProbity: all-atom contacts and structure validation for proteins and
588 nucleic acids. *Nucleic Acids Res* **35**, W375-83 (2007).

589 67. Sterky, F. H. *et al.* Carbonic anhydrase-related protein CA10 is an evolutionarily conserved
590 pan-neurexin ligand. *Proc Natl Acad Sci U S A* **114**, (2017).

591 68. Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human pluripotent
592 stem cells. *Neuron* **78**, (2013).

593 69. Tan, C. *et al.* Munc13 supports fusogenicity of non-docked vesicles at synapses with
594 disrupted active zones. *Elife* **11**, (2022).

595

596

597 **Acknowledgments**

598 We thank the assistance of Southern University of Science and Technology (SUSTech) Core
599 Research Facilities and Shanghai Synchrotron Radiation Facility (beamlines 17U1, 18U1, and
600 19U1). We thank Prof. Pilong Li for the pETL7 vector. This work was supported by Key-Area
601 Research and Development Program of Guangdong Province (Grant No. 2023B0303010001),
602 Shenzhen Science and Technology Program (RCJC20210609104333007 to Z.W.), the National
603 Natural Science Foundation of China (32170697 to C.Y. and 32371009 to X.X.), Shenzhen-Hong
604 Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions (2023SHIBS0002),
605 Shenzhen Key Laboratory of Biomolecular Assembling and Regulation
606 (ZDSYS2022040211100001), the Chica and Heinz Schaller Foundation (C.A.), Brain and
607 Behavior Research Foundation (C.A.), the Deutsche Forschungsgemeinschaft (DFG SFB1158-
608 SO2, C.A.), the Fritz Thyssen Foundation (grant 10.21.0.019MN, C.A.), the Swedish Research
609 Council (2022-00817, F.H.S.) and the DAAD/ANID fellowship (57451854/62180003, J.C.).
610 F.H.S. is supported by the Knut and Alice Wallenberg Foundation via the Wallenberg Centre for
611 Molecular and Translational Medicine at the University of Gothenburg. Z.W. and C.Y. are
612 investigators of SUSTech Institute for Biological Electron Microscopy.

613

614 **Author contributions**

615 Z.W., C.A., F.H.S., and G.J. conceived the study. Z.W., C.A., and F.H.S. supervised the project.
616 G.J., Y.L., J.C., and B.M.C. designed and performed experiments. L.L., J.D., C.Y., F.N., and Z.W.
617 analyzed the data. Z.W., C.A., and F.H.S. wrote the manuscript with inputs from other authors.

618

619 **Competing Interests Statement**

620 All authors declare that they have no competing interests.

621

622 **Data availability**

623 The structure factors and atomic model of the liprin- α 2_CC2N/RIM1_C2B complex have been
624 deposited in the Protein Data Bank (PDB) with accession code 8Z22.

625 **Methods**

626 **Constructs**

627 Human liprin- α 2 (GenBank: AF034799.1) CC12 truncation with an N-terminal His₆-SUMO tag
628 was generated in our previous study²³. The CC2 (residues 259 – 542), CC2N (residues 300 – 404),
629 and CC2C (residues 405 – 542) regions were subcloned into a modified pET32a vector with N-
630 terminal thioredoxin (Trx)-His₆-tag and an HRV 3C protease cutting site. Plasmids encoding rat
631 ELKS1 (Genbank: NM_170788.2), RIM1 (specifically the RIM1 α isoform, Genbank:
632 XM_017596673.1), and RBP2 (GenBank: XM_017598284.1) were kind gifts from Prof. Mingjie
633 Zhang. For crystallization, RIM1_C2B (residues 1166 – 1334) was subcloned into a modified
634 pET28a vector with an N-terminal His₆-SUMO tag. Full-length RIM1 was inserted into the pCAG
635 vector with an N-terminal FLAG tag. The full-length ELKS1 was first cloned into a modified
636 pETL7 vector with an N-terminal followed by a TEV-protease cutting site. Subsequently, His₆-
637 MBP-GFP tagged ELKS1 was subcloned into the pCAG vector⁶¹. All point mutations in these
638 constructs were created using a site-directed mutagenesis kit. Lentiviral rescue constructs were
639 generated by subcloning PCR-amplified wildtype and mutant liprin- α 2 cDNA, using Gibson
640 assembly, to a lentiviral vector containing the ubiquitin promoter. All constructs were verified by
641 DNA sequencing. All plasmids used in this study were summarized in Table S2.

642

643 **Protein expression and purification**

644 Trx or SUMO-tagged proteins were expressed in *Escherichia coli* BL21(DE3) cells. Transfected
645 cells were cultured in LB medium at 37°C with agitation at 200 rpm to reach an OD₆₀₀ of ~0.8.
646 After cooling to 16°C, protein expression was induced with 500 μ M IPTG and continued with
647 overnight shaking at 16°C and 200 rpm. Harvested cell pellets were lysed via high-pressure
648 homogenization in a binding buffer (50 mM Tris pH 8.0, 500 mM NaCl, 5 mM imidazole)
649 supplemented with 1 mM PMSF. The tagged proteins were purified using Ni²⁺-NTA affinity
650 chromatography with an elution buffer (50 mM Tris pH 8.0, 500 mM NaCl, and 250 mM
651 imidazole). The eluted proteins were further purified by size exclusion chromatography performed
652 on a Superdex-200pg column (GE Healthcare) pre-equilibrated in TBS buffer (20 mM Tris pH
653 8.0, 100 mM NaCl, 1 mM EDTA, and 1 mM DTT). To prepare the RIM and liprin- α 2 fragments
654 for crystallization, the affinity tag was removed using HRV-3C or SUMO proteases at 4°C
655 overnight, followed by a second round of size exclusion chromatography on a Superdex-75pg

656 column (GE Healthcare) pre-equilibrated with TBS. Purified proteins were concentrated using
657 Amicon Ultra centrifugal filters (Millipore) to ~10 mg/mL, aliquoted and stored at -80°C after
658 flash-freezing in liquid nitrogen. For fluorescence labeling, the Superdex-200pg column was
659 equilibrated in a buffer containing 20 mM HEPES pH 8.0, 100 mM NaCl, 1 mM EDTA, and 1
660 mM DTT. The RBP2_(SH3)₃ fusion protein was prepared as previously reported³⁰.

661

662 Full-length RIM1 and ELKS1 were expressed in HEK293F suspension cells (ThermoFisher
663 Scientific), cultured in Freestyle 293 medium (OPM-293 CD05 Medium) at 37 °C supplied with
664 5% CO₂ and 80% humidity. When cell density reached 2.0 × 10⁶ cells/mL, cells were transiently
665 transfected using expression plasmids and polyethylenimine (PEI) (Yeasen Biotechnology). For
666 transfection, ~0.5 mg plasmids were pre-mixed with 1 mg PEIs in 50 mL fresh medium for 15
667 min, and then the mixture was added to 500 mL of cell culture. After a 72-hour culture, cells were
668 collected at 4 °C by centrifugation at 1000 g for 20 min. The pellets were lysed in a buffer
669 containing 50 mM Tris pH 7.5, 500 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, and a protease
670 inhibitor cocktail. Protein purification was performed using anti-FLAG affinity chromatography,
671 with an elution buffer containing 100-500 µg of FLAG peptide (DYKDDDDK). Subsequent
672 purification steps involved size-exclusion chromatography on a Superdex 6 Increase column (GE
673 Healthcare) using TBS with varying NaCl concentrations according to the biochemical properties
674 of individual proteins. The protein quality was further checked using an HT7700 transmission
675 electron microscope (HITACHI) with 100 kV voltage.

676

677 **Co-immunoprecipitation (Co-IP) assay**

678 Transfected HEK293T cells were lysed in ice-cold lysis buffer containing 50 mM Tris pH 7.5, 150
679 mM NaCl, 5% glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1% protease
680 inhibitor cocktail (TargetMol, C001) for 0.5 h on ice and followed by centrifugation at 12,000 g
681 for 15 min at 4°C. The supernatant fraction was then incubated with anti-GFP conjugated agarose
682 beads (Ktsm-life, ktsm1301) for 60 min at 4°C. The beads were washed with the cell lysis buffer
683 twice and resuspended with 20 µL SDS-PAGE loading buffer. The prepared samples were
684 separated by 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore,
685 IPVH00010). The membranes were sequentially blocked with 5% skim milk in buffer containing
686 50 mM Tris-HCl pH 7.4, 150 mM NaCl, and 0.1% Tween 20, immunoblotted with anti-GFP

687 mouse monoclonal antibody (Transgen, HT801-01, dilution 1:3000) or anti-DYKDDDDK(anti-
688 FLAG) mouse monoclonal antibody (Transgen, HT201-01, dilution 1:3000), probed with
689 horseradish-peroxidase conjugated secondary antibodies (Cell Signaling, 7076s, dilution 1:10000)
690 at room temperature and finally developed with a chemiluminescent substrate (BioRad, 107-5061).
691 Protein bands were visualized on the Tanon-6011C Chemiluminescent Imaging System (Tanon
692 Science and Technology).

693

694 **Isothermal titration calorimetry (ITC) assay**

695 To quantitatively analyze protein-protein interaction, ITC experiments were conducted using a
696 MicroCal PEAQ-ITC calorimeter (Malvern Panalytical). All proteins were prepared in an identical
697 reaction buffer containing 20 mM Tris pH 8.0, 100 mM NaCl, and 1 mM EDTA. The protein
698 concentration in the syringe was 400 μ M for titrating into the reaction cell, where the concentration
699 of target proteins was typically 40 μ M. Experiments were carried out at a controlled temperature
700 of 25°C. Each titration involved injecting 3 μ L of the syringe solution into the cell, followed by a
701 150-second equilibration period between injections. A titration curve contained a total of 13
702 titration points. The resulting data were analyzed using the MicroCal PEAQ-ITC Analysis
703 software, applying a one-site binding model to determine the dissociation constant (K_d).

704

705 **Analytical size exclusion chromatography (aSEC)**

706 Analytical gel filtration chromatography was performed using an ÄKTA Pure system (GE
707 Healthcare). The protein samples were loaded into a Superdex 200 Increase 10/300 GL column
708 (GE Healthcare) pre-equilibrated with a buffer comprising 20 mM Tris-HCl pH 7.5, 100 mM
709 NaCl, 1 mM EDTA, and 1 mM DTT.

710

711 **SEC coupled with multi-angle light scattering (SEC-MALS) assay**

712 The SEC-MALS assay was conducted using a platform composed of a multi-angle light scattering
713 (MALS) detector (miniDawn, Wyatt), a differential refractive index (dRI) detector (Optilab,
714 Wyatt) and a liquid chromatography (LC) system (AKTA pure, GE Healthcare). In each assay, a
715 100 μ l sample (individual proteins or complexes) was injected into a Superdex 200 Increase 10/300
716 GL column (GE Healthcare) pre-equilibrated with TBS. Data were analyzed using ASTRA6
717 (Wyatt).

718

719 **Protein crystallization and structure determination**

720 Crystals of the liprin- α 2_CC2N/RIM1_C2B complex were grown using the sitting drop vapor-
721 diffusion method. Protein samples of liprin- α 2_CC2N and RIM1_C2B were mixed in a 1:1 ratio
722 and concentrated to 21 mg/mL. This concentrated mixture (1 μ L) was combined with an equal
723 volume of reservoir buffer containing 28% v/v 2-propanol, 0.1 M BIS-TRIS pH 6.5, and 3% v/v
724 polyethylene glycerol 200 for crystallization tray setup. The crystallization was conducted at 16°C,
725 and the resulting crystals were cryoprotected with 30% (v/v) glycerol. X-ray diffraction data were
726 collected at the BL19U1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF).
727 Diffraction data were processed using HKL2000 software ⁶². The complex structure was solved
728 by molecular replacement in PHASER ⁶³ using the RIM1_C2B apo structure (PDB ID: 2Q3X) as
729 the search model. Model building, adjustment, and refinement were carried out iteratively using
730 COOT ⁶⁴ and PHENIX ⁶⁵. The final models were validated by MolProbity ⁶⁶ and statistics were
731 summarized in Table S1. All structure figures presented in the paper were prepared using PyMOL
732 (<https://www.pymol.org/>).

733

734 **Fluorophore labeling of proteins**

735 Fluorescent labeling dyes, including Cy3/Cy5/iFluor 488 NHS esters (ThermoFisher) and iFluor
736 405 NHS ester (AAT Bioquest), were dissolved in DMSO at a stock concentration of 5 mM and
737 stored at -20°C. Prior to labeling, proteins were concentrated at 5 mg/mL in a HEPES buffer at pH
738 7.5 to ensure specific N-terminal labeling. Labeling was performed by mixing the proteins with
739 the corresponding fluorophores at a 1:1 molecular ratio and incubating at room temperature for 1
740 hour. The reaction was quenched by adding a 200 mM Tris buffer. Unincorporated fluorescence
741 was removed using a pre-equilibrated HiTrap desalting column (GE Healthcare) with the
742 corresponding TBS buffer. Fluorescence labeling efficiency was assessed using a Nanodrop-2000
743 spectrophotometer (ThermoFisher). The labeled proteins were frozen and stored at -80°C. For
744 imaging, a sparse labeling approach was used, where the fluorescence-labeled proteins were mixed
745 with an excess of corresponding unlabeled proteins in the same buffer, achieving a final molecular
746 ratio of 1:100.

747

748 **Phase separation assays**

749 **Sample preparation and imaging.** Prior to imaging experiments, all proteins used for imaging were
750 centrifuged at 20,000 g for 10 min at 4°C to remove any potential aggregates or precipitates.
751 Protein concentrations and buffer conditions were specified in the corresponding figures or their
752 legends. For imaging, samples were applied to the wells of 384-well glass bottom plates (P384-
753 1.5H-N, Cellvis). Confocal images were captured using an A1R confocal microscope (Nikon)
754 equipped with a 100X/NA oil objective lens. The fluorescence intensities of images were analyzed
755 using ImageJ/Fiji software. For the phase separation assay involving RIM1, RBP2_(SH3)₃, and
756 liprin- α 2_CC12, RIM1 α and RBP2_(SH3)₃ were mixed at the desired concentration in a 200 μ L
757 microcentrifuge tube, then applied to the 384-well plates. After allowing the condensates to settle
758 for 10 minutes, the CC12 fragment or its mutant was introduced into the well. Following an
759 additional 5-minute incubation, images were captured. For the phase separation assay involving
760 both RIM1 and ELKS1 condensates, the MBP tag on the ELKS1 fusion protein was removed using
761 TEV protease to produce GFP-ELKS1 condensates. After RIM1/RBP2_(SH3)₃ condensates had
762 settled down for 10 min, ELKS1 condensates w/o liprin- α 2_CC12 were added to the 384-well
763 plate and mixed with RIM1 α /RBP2_(SH3)₃ condensates. The mixtures were then allowed to settle
764 for an additional 20 min before image capture. To detect the distribution of NCav_CT in the two-
765 phase system, NCav_CT was mixed with ELKS1 condensates and then loaded onto the pre-formed
766 RIM1 α /RBP2_(SH3)₃ condensates.

767

768 **Sedimentation assay.** RIM1 was mixed with RBP2_(SH3)₃/liprin- α 2_CC12 at the specified
769 concentration and incubated for 5 min. The mixture was centrifuged at 1,400 rpm for 5 min at
770 room temperature. Following centrifugation, the supernatant was promptly isolated by pipette
771 thoroughly, and the pellet was re-suspended with 20 μ L of dilution buffer. Both supernatant and
772 pellet samples on the SDS-PAGE gel were visualized using Coomassie blue R250 staining. The
773 intensity of bands of interest was quantified using ImageJ/Fiji software.

774

775 **Fluorescence recovery after photo-bleaching (FRAP) assay.** In each FRAP experiment, ten regions
776 of interest (ROIs) were selected. Laser beams at 561nm with 100% power were precisely applied
777 to target the Cy3 fluorophore for photobleaching. Pre-bleach and post-bleach images were
778 acquired with no delay time interval. Subsequent time-lapse images were captured at 20-second
779 intervals for a duration of 20 min to record fluorescence intensity recovery. These experiments

780 were conducted using a Nikon A1R confocal microscope equipped with a 100X/NA oil lens.
781 Fluorescence recovery was measured with ImageJ/Fiji by calculating the intensity at each time
782 point. Data were processed by correcting for background fluorescence and normalizing the pre-
783 bleaching intensity to 100% and the bleaching point intensity to 0%.

784

785 **Cell culture experiments**

786 Maintenance of human embryonic stem cells (hESCs). hESCs of line WA09/H9 (RRID:
787 CVCL_9773) were obtained from WiCell and maintained/cultured on Matrigel-coated (Corning
788 #15505739) dishes using mTeSR Plus (StemCell Technologies #100-0276), which was changed
789 every other day. hESC cells were kept in an incubator supplied with 5% CO₂ at 37°C. All
790 procedures followed The Robert Koch Institute guidelines for human ESC work.

791

792 Maintenance of human embryonic kidney (HEK) cells. HEK (HEK293T/17, ATCC CRL-11268)
793 cells were used to produce all lentiviruses for this study. Cells were maintained in an incubator
794 supplied with 5% CO₂ at 37°C, using DMEM-Glutamax medium (Gibco #31966047)
795 supplemented with 10% fetal bovine serum (FBS; Sigma #F7524). The medium was changed
796 every other day, and cells were split after reaching near 70% confluence using Trypsin-EDTA
797 (Gibco #15400054).

798

799 Production of lentiviruses for neuronal differentiation, optogenetic control, and sparse
800 visualization. Lentiviruses were produced in HEK cells, as described elsewhere⁶⁷. Briefly, two
801 hours before transfection, at near 60% confluence, the medium was changed, and then HEK cells
802 co-transfected using Linear Polyethylenimine 25,000 (PEI, Sigma Cat# 23966) with the following
803 plasmids: pREV (3.9 µg), pRRE (8.1 µg), pVSVG (6 µg), and with the corresponding vector DNA
804 using 12 µg per 75 cm² cell culture area. The following lentiviral vector DNA was used to produce
805 lentiviruses for differentiation, optogenetic control, and sparse visualization: FU-M2rtTA, Tet-O-
806 Ngn2-puromycin, Channel-rhodopsin oChiEF fused to tdTomato (termed here ChR-tdTomato),
807 and soluble GFP²⁶. Two hours after transfection, the medium was changed again with fresh
808 DMEM media, and lentiviruses were harvested from the medium 40 hours later. Specifically, the
809 medium was first centrifuged at 1,500 g for 10 min at 4°C to eliminate dead cells and debris, and
810 then lentiviral particles were pelleted by high-speed centrifugation (60,000 g for 1.5 h),

811 resuspended in MEM (Gibco #51200046) with 10 mM HEPES (100 μ l per 30 ml of medium),
812 aliquoted, and snap-frozen in liquid nitrogen.

813

814 Production of lentiviruses for neuronal infection (rescue constructs). All rescue experiments were
815 performed using fresh (non-concentrated) lentiviruses, generated using the same protocol
816 described above but with the following modifications. First, two hours after transfection, the
817 medium was replaced with Neurobasal supplemented with 2% B27 (Gibco #17504044),
818 GlutaMAX (Gibco #35050061), and 10 mM HEPES (Gibco #15630080). Second, lentiviral
819 particles were harvested from the medium 40 h after transfection with a low-speed (1,500 g for 10
820 min at 4°C) centrifugation to pellet dead cells and debris. The supernatant was then aliquoted and
821 frozen at -80°C.

822

823 Generation of induced neurons. Induced glutamatergic neurons were generated from control
824 (Ctrl1) and liprin- α 1 to α 4 mutant (qKO1) ESC clones, as described in detail previously⁶⁸. In brief,
825 for each neuronal experiment, 250K hESCs were detached with Accutase (Gibco), plated on
826 matrigel-coated wells in mTeSR Plus containing Rho kinase inhibitor (Y27632, Axon Medchem
827 #1683), and transduced with concentrated lentiviruses FU-M2rtTA and Tet-O-*Ngn2*-puromycin,
828 generated as described in the previous section. A day later (defined as DIV0), the medium was
829 changed to N2 medium [DMEM/F12 (Gibco #11330032), 1% N2 supplement (Gibco 17502048)
830 1% non-essential amino acids (Gibco #11140050), laminin (200 ng/ml, Thermo Fisher
831 #23017015), BDNF (10 ng/ml, Peprotech #450-02) and NT-3 (10 ng/ml, Peprotech #450-03)
832 supplemented with Doxycycline (2 μ g/ml, Alfa Aesar)] to induce expression of *Ngn2* and the
833 puromycin resistance cassette. On DIV1, puromycin (1 mg/ml) was added to the medium, and
834 after 48 hours, selection cells were detached with Accutase (Gibco #A1110501) and re-plated on
835 Matrigel-coated coverslips along with mouse glia (typically at a density of 150,000 iGluts per 24-
836 well plate) in B27 medium [Neurobasal-A (Gibco #12349015) supplemented with B27 (Gibco
837 #17504044), GlutaMAX (Gibco #35050061) laminin, BDNF, and NT-3]. From this time point on
838 until DIV10, the medium was replaced every second day, and cytosine arabinoside (ara-C; Sigma
839 #C6645) was added to a final concentration of 2 μ M to prevent glia overgrowth. Rescue lentiviral
840 constructs (e.g., to express either WT or mutant liprin- α 2 constructs that prevent interaction with
841 RIM) were added to the medium on day 4. From DIV10, neuronal growth medium [Neurobasal-

842 A supplemented with B27, GlutaMAX, and 5% FBS (Hyclone #SH30071.03HI)] was washed in
843 and used for partial medium replacements every 3-4 days until analysis, typically at around 6
844 weeks in culture.

845

846 Induced neurons for measuring evoked transmission. To measure the impact of the slow calcium
847 buffer EGTA on evoked synaptic transmission, the protocol for the generation of induced
848 glutamatergic neurons was slightly modified, as it required the majority (80%) of cells to express
849 ChR and a minority (20%) to express GFP for visualization for electrophysiological recordings.
850 For this, cells from either control or qKO clones were further separated into two groups. In group
851 #1, cells were infected with pFU-M2rtTA, pTet-O-*Ngn2*-puromycin, and lentiviruses expressing
852 ChR-tdTomato^{46,68}. In group #2, cells were infected with pFU-M2rtTA, pTet-O-*Ngn2*-puromycin,
853 and lentiviruses to express soluble GFP. Four days later, cells from groups #1 and #2 were washed
854 three times with PBS to remove any lentivirus trace attached to cell membranes, detached, mixed
855 at a ratio of 80/20 (80% with ChR and 20% with GFP), re-seeded on Matrigel-coated coverslips
856 along with mouse glia, and cultured as described above.

857

858 Isolation of mouse glial cells. For induced glutamatergic neurons to form mature functional
859 synapses, we grew induced neurons on a monolayer of primary mouse glial cells. Isolation and
860 culture of primary mouse glial cells were performed essentially as described⁶⁸. In short, E21-P1
861 mouse cortices from wildtype C57BL6 mice were dissected and triturated with fire-polished
862 pipettes and filtered through a cell strainer. Cells from two cortices were plated onto T75 flasks
863 pre-coated with poly-L-lysine (5 mg/mL, Sigma #P1274) in DMEM supplemented with 10% FBS
864 (Sigma). Upon reaching confluence, cells were dissociated by trypsinization and re-seeded twice
865 to remove potential trace amounts of mouse neurons before the glia cell cultures were used for co-
866 culture with induced neurons.

867

868 **Immunocytochemistry**

869 Cultured neurons were fixed for 15 min at room temperature with a solution containing 4%
870 Paraformaldehyde and 4% Sucrose in PBS, pH 7.4, then washed three times with PBS (each
871 washing step was separated by 10 mins) and permeabilized with 0.1% TritonX-100 in PBS for 10
872 min at room temperature. Then, cultures were blocked for 1 hour (2% NGS, 1% BSA, 0.01% NaN₃

873 in PBS), and incubated in primary antibodies diluted in the blocking buffer overnight at 4°C in a
874 humidity chamber. The next day, neurons were washed (3×) with PBS and incubated with
875 fluorescently labeled secondary antibodies (Jackson ImmunoResearch) for 1 hour at room
876 temperature. After this, neurons were washed 3 times in PBS, followed by a wash in ddH₂O and
877 mounting in microscope slides using ProLong Gold mounting medium (Thermo Fisher Scientific).
878 For PSD95 staining, a modified version of the protocol described above was utilized. Specifically,
879 neurons were fixed in ice-cold Methanol fixing solution (90% methanol and 10% MES buffer:
880 100 mM MES pH 6.9, 1 mM EGTA, and 1 mM MgCl₂) at room temperature for 5 min, washed 3
881 times in PBS, and then incubated in blocking/permeabilizing solution (2% normal goat serum, 1%
882 BSA 0.01% NaN₃, and 0.1% Triton X-100 in PBS) for 30 min, before proceeding with staining.
883 The following primary antibodies and dilutions were used: MAP2 (Encor, 1:1000), pan-Synapsin
884 (Proteogenix, 1:1000), PSD-95 (NeuroMab, 1:100 and Addgene 1:100 for SIM experiments),
885 RIM1/2 (SySy, 1:200), RIMBP-2 (SySy, 1:200), Synaptophysin-1 (SySy, 1:200), Piccolo (SySy,
886 1:200), Cav2.1 (SySy, 1:200). See Table S3 for details on the source of each antibody.

887

888 **Confocal imaging**

889 For measurements of synapse density and gross estimations of active zone integrity, synapse-rich
890 areas were identified by extensive synapsin signals in close proximity to postsynaptic MAP2
891 profiles and were imaged using a confocal microscope (Leica, Germany) controlled by LAS X
892 software (Leica, Germany). Specimens were sampled in frame mode at 1024×1024 pixels/frame
893 resolution. 10 optical sections along the z-axis were taken for each sample and then compiled into
894 a single maximal projection image for analysis. All the acquisition parameters were kept constant
895 between conditions and experiments.

896

897 **Super-resolution STED imaging**

898 STED imaging was conducted similarly as described previously ⁶⁹. Briefly, induced neurons were
899 cultured on glass coverslips, and immunocytochemistry was performed as described above, except
900 that five PBS washing steps were done after each antibody incubation and Alexa 488 anti-guinea
901 pig (Thermo), STAR 580 nanobody anti-mouse (Abberior) and STAR 635P anti-rabbit were used
902 as secondary antibodies. Image acquisition was conducted in a Leica SP8 Confocal/STED 3×
903 microscope with an oil immersion 100×1.44 numerical aperture objective and gated detectors (2-

904 6 ns range for all 3 signals). Images were acquired from synapse-rich areas of $33.2 \mu\text{m}^2$ sampled
905 at $\sim 16 \text{ nm per pixel}$. The signal from the 488 antibodies was acquired in confocal mode, and signals
906 from the 580 and the 635 antibodies were acquired in STED mode sequentially (to avoid bleed
907 trough) and using the same STED laser line (775 nm to maximize alignment). Line accumulation
908 (4-8 \times) and frame averaging (3 \times) were applied. Images were acquired blindly to the genotype of
909 the samples and identical settings were used for all the samples within an experiment/batch.

910

911 **Western blot**

912 Protein samples were extracted from cultured neurons at DIV30-45, lysed in RIPA buffer (50 mM
913 Tris pH 8.0, 150 mM NaCl, 0.1% sodium dodecyl sulfate, 0.5% sodium deoxycholate, and
914 1% Triton X-100) supplemented with PMSF (Thermo Fischer #36978) and Complete proteinase
915 inhibitor cocktail (Merch #11873580001) for 20 min. Lysates were centrifuged at 20,000 g for
916 10 min at 4°C, and supernatants containing solubilized proteins were collected. Protein samples
917 were separated by SDS-PAGE in pre-cast TGX gels (Biorad). Transfer to a nitrocellulose
918 membrane (Amersham) was performed in Towbin transfer buffer (25 mM Tris, 0.2 M glycine, and
919 20% methanol). Membranes were blocked with 5% non-fat milk (Aplichem) for 1 hour and
920 primary antibodies were incubated overnight at 4°C. After washing the membranes three times
921 with TBS-T (20 mM Tris pH 7.5, 137 mM NaCl, and 0.05% Tween-20), secondary antibodies
922 were incubated in 1:1 TBS-T Odyssey Blocking (LI-COR # 927-50000) for 1 hour. Membranes
923 were imaged using an Odyssey CLx system (LI-COR), and bands were quantified by densitometry
924 using Image Studio 5.2 software (LI-COR). The following primary antibodies (see Table S3 for
925 details) were used: Tuj1 (BioLegend, 1:5000) and GFP (Thermo Fisher Scientific, 1:1000).

926

927 **Patch clamp electrophysiology**

928 General. All electrophysiological recordings were done using an RC-27 chamber (Sutter
929 Instruments) mounted under a BX51 upright microscope (Olympus). The microscope was
930 equipped with DIC and fluorescent capabilities, and with a TTL-driven LED for optogenetic
931 activation with millisecond precision. All recordings were done at $26 \pm 1^\circ\text{C}$ using a dual TC344B
932 temperature control system (Sutter Instruments), with neurons continuously perfused with
933 oxygenated (95% O₂ and 5% CO₂) ASCF containing 125 mM NaCl, 2.5 mM KCl, 0.1 mM
934 MgCl₂, 4 mM CaCl₂, 25 mM glucose, 1.25 mM NaH₂PO₄, 0.4 mM ascorbic acid, 3 mM myo-

935 inositol, 2 mM Na-pyruvate, and 25 mM NaHCO₃, pH 7.4. Neurons were approached and patched
936 under DIC, using 3.0 ± 0.5 MegaOhm pipettes (WPI), pulled with a PC10 puller (Narishige,
937 Japan). In all experiments, pipettes were loaded with a voltage clamp internal solution containing
938 125 mM Cs-gluconate, 20 mM KCl, 4 mM MgATP, 10 mM Na-phosphocreatine, 0.3 mM GTP,
939 0.5 mM EGTA, 2 mM QX314 (Hello Bio, #HB1030), and 10 mM HEPES, pH 7.2. Electrical
940 signals were recorded using a Multiclamp 700B amplifier (Axon Instruments) controlled by
941 Clampex 10.1 and Digidata 1440 digitizer (Molecular Devices).

942

943 Spontaneous synaptic current recordings. We performed whole-cell voltage-clamp recordings at
944 ~ 70 mV holding potentials. Spontaneous excitatory currents were detected as downward
945 deflections from the baseline.

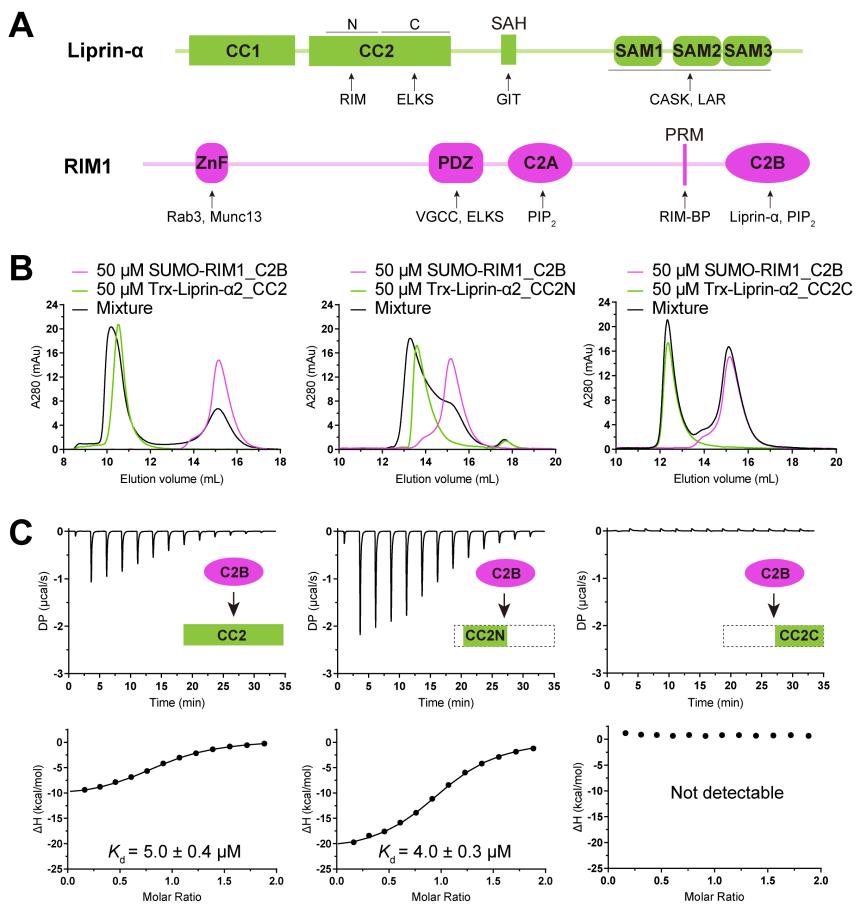
946

947 Evoked currents. Evoked excitatory currents were triggered by 5 ms pulses of blue (488 nm) light
948 generated via a CoolLED illumination system (pE-300) controlled by a TTL pulse, and recorded
949 from GFP+/ChR- neurons (see above) in voltage clamp at ~ 70 mV holding potentials.

950

951 Sucrose responses. Cells were maintained at ~ 70 mV holding potentials (voltage clamp
952 configuration) and stimulated with 0.5 M sucrose solution for 5 seconds. Sucrose solution was
953 delivered in the vicinity of recorded cells (20-30 μ m away) using a low resistance glass pipette
954 (1.5 MegaOhms) connected to a custom pressure device (5 psi).

955


956 **Data analysis and statistics**

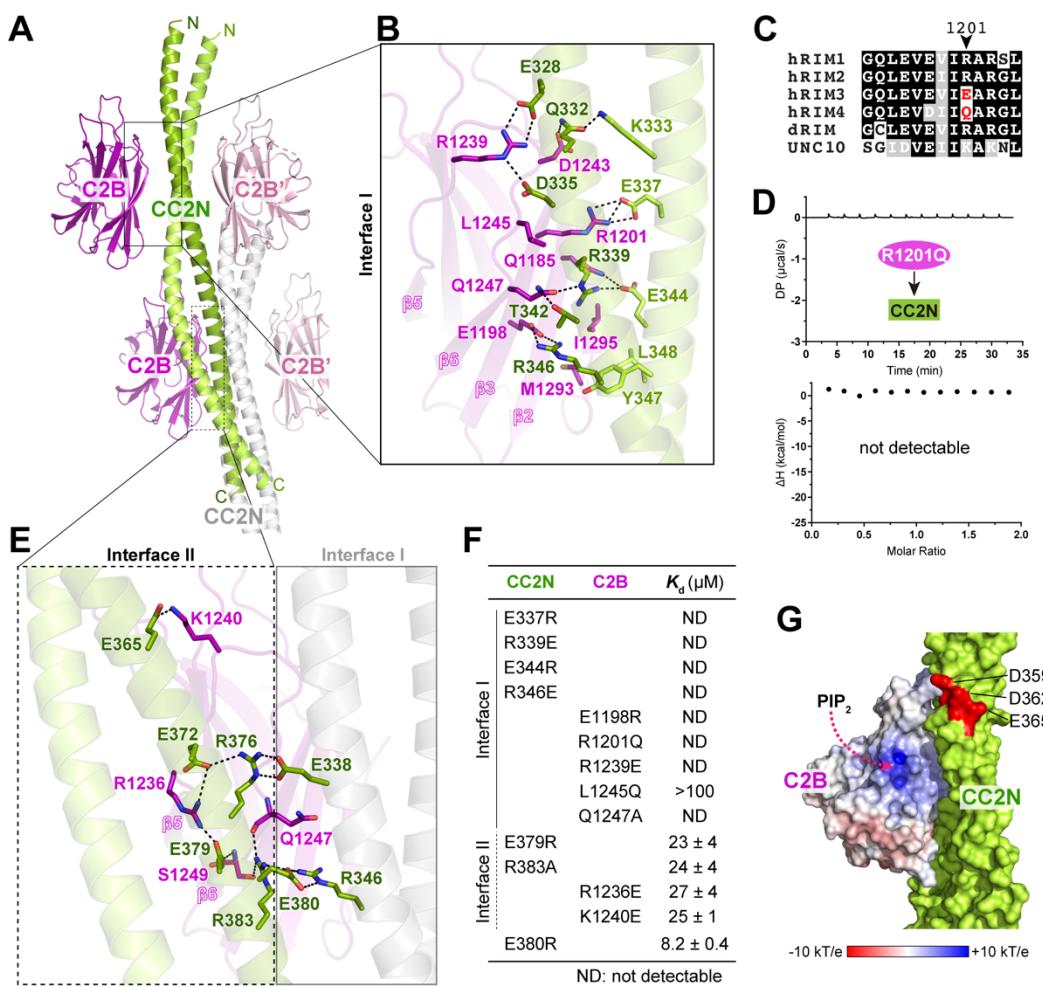
957 Confocal images were handled and analyzed using LASX (Leica) or ImageJ/Fiji (v. 2.3.0/1.53f).
958 In experiments aimed to measure the recruitment of RIM1, Piccolo, and RBP2 to presynaptic
959 boutons in qKO neurons, the signal intensity of corresponding active zone markers was measured
960 only inside ROIs defined by Synaptophysin. For STED image analysis, individual “side view”
961 synapses were manually selected, and intensity profiles were obtained by drawing a rectangle of
962 1200 \times 200 nm centered in and perpendicular to the PSD-95 elongated signal using an ImageJ
963 custom macro. Intensity profiles were recorded for all 3 signals, and the right alignment/orientation
964 of the profiles was performed in R Studio. Intensity traces were obtained by averaging individual
965 traces over the raw data values. Representative images in figures were linearly adjusted using

966 bright and contrast identically across samples. Immunoblot images were handled and analyzed
967 with Image Studio v. 5.2 (LI-COR). Analysis of voltage- and current-clamp recordings was done
968 with Clampfit 10.1 or with custom-written macros in IgorPro 6.11. Electrophysiological/imaging
969 experiments were done and analyzed with the experimenter blinded to the sample
970 genotype/condition whenever possible. Summary data are shown as means \pm standard errors of the
971 mean (SEM) or means \pm standard deviation (SD) as indicated in the figure legends. Statistical
972 analysis was performed using Prism 9 (GraphPad Software). Datasets were first analyzed with the
973 D'Agostino Pearson test to determine if the data had a normal (Gaussian) distribution. For
974 between-group comparisons, unpaired two-tailed t-tests were used if data distribution was normal,
975 or two-tailed Mann-Whitney tests for non-Gaussian datasets. For multiple-group comparisons,
976 statistical significance was determined by ANOVA with Tukey's or Holm-Šídák's corrections for
977 multiple comparisons, or Kruskal-Wallis (KW) followed by Dunn's post hoc test for non-Gaussian
978 datasets. ns, not significant; ****, $p < 0.0001$; ***, $p < 0.001$; **, $p < 0.01$; *, $p < 0.05$.

979

980 **Figures**

981


982 **Figure 1. Biochemical characterization of the liprin- α 2/RIM1 interaction.**

983 **A.** Schematic of liprin- α and RIM1 domain organization, with protein-binding regions indicated.
984 CC, Coiled coil region; SAH, single alpha helix; SAM, sterile alpha motif; ZnF, zinc finger;
985 PRM, proline-rich motif; PDZ, PSD-95/Discs-large/ZO-1 homology; C2, Protein kinase C
986 conserved region 2.

987 **B.** aSEC analysis showing the binding of RIM1_C2B to the N-terminal segment of liprin-
988 α 2_CC2.

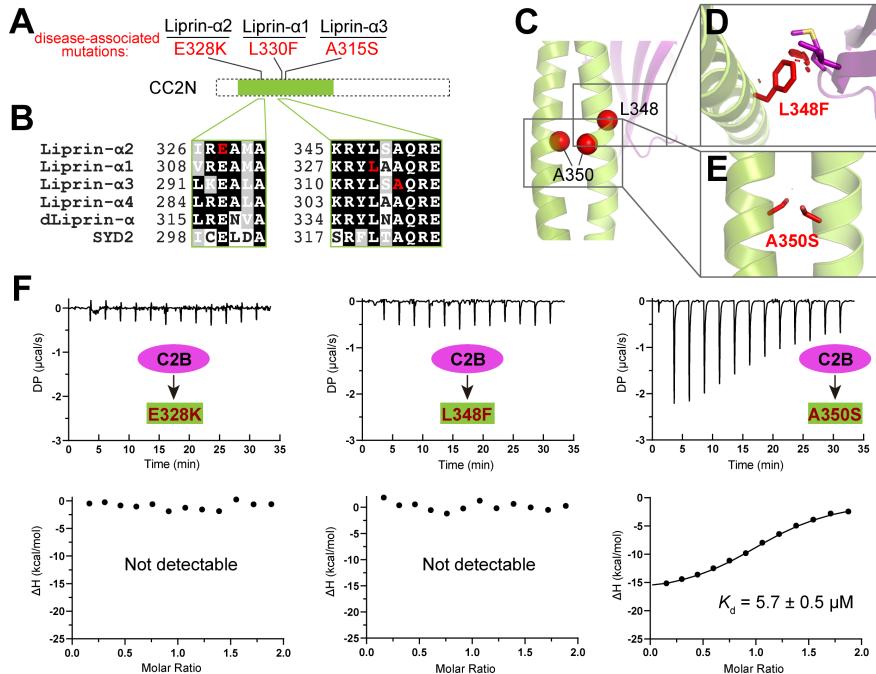
989 **C.** ITC-based affinity measurement of RIM1_C2B binding to different boundaries of liprin-
990 α 2_CC2.

991

992

993 **Figure 2. Structural characterization of the liprin- α 2_CC2N/RIM1_C2B complex.**

994 A. Crystal structure of the liprin- α 2_CC2N/RIM1_C2B complex. Two neighboring CC2N coiled
995 coils (colored green and grey, respectively), with four bound C2B molecules (colored magenta),
996 are shown.


997 B. Molecular details of interface I formed between the N-terminal part of CC2N and C2B. Salt
998 bridges and hydrogen bonds are indicated by dashed lines.

999 C. Multisequence alignment of RIM isoforms from various species, showing the sequence
1000 variability at the interface residue position corresponding to R1201 in hRIM1. Species
1001 abbreviations: 'h' for human, 'd' for Drosophila, and UNC10 as the *C.elegans* RIM homolog.

1002 D. ITC analysis of the R1201Q RIM1 mutant's binding to CC2N.

1003 E. Molecular details of interface II formed between the C-terminal part of CC2N and C2B. The
1004 interconnectivity between interfaces I and II in the complex of one C2B molecule and two
1005 CC2N coiled coils is displayed. Salt bridges and hydrogen bonds are indicated by dashed lines.

1006 F. Summary of binding affinities between various CC2N and C2B variants, measured by ITC.
1007 G. Surface representation of C2B and CC2N, showing the spatial relationship between the PIP₂-
1008 binding site and bound CC2N. Key negatively charged residues on the CC2N structure are
1009 highlighted in red.
1010

1011

1012 **Figure 3. Structural and biochemical analyses of disease-associated mutations on the liprin-**

1013 **α/RIM interaction.**

1014 **A.** Disease-associated mutations and their positions in the CC2N segment of liprin-α1 (L330,

1015 corresponding to L348 in liprin-α2), liprin-α2 (E328), and liprin-α3 (A315, corresponding to

1016 A350 in liprin-α2).

1017 **B.** Multisequence alignment of liprin-α family members. Residues affected by disease-associated

1018 missense variants are marked in red.

1019 **C.** Cartoon representation of the liprin-α2_CC2N/RIM1_C2B complex with residues affected by

1020 disease-associated missense variants indicated. E328K and L348 are located at interface I,

1021 while A350 contributes to the coiled-coil formation of CC2N.

1022 **D.** Structural analysis of the L348F mutation showing steric hindrance caused by the mutated

1023 sidechain upon the complex formation. Atomic clashes are indicated by red cylinders.


1024 **E.** Structural analysis of the A350S mutation in the context of the coiled-coil structure, revealing

1025 no disruption.

1026 **F.** ITC-based analyses of the interactions between C2B and the E328K, L348F, and A350S

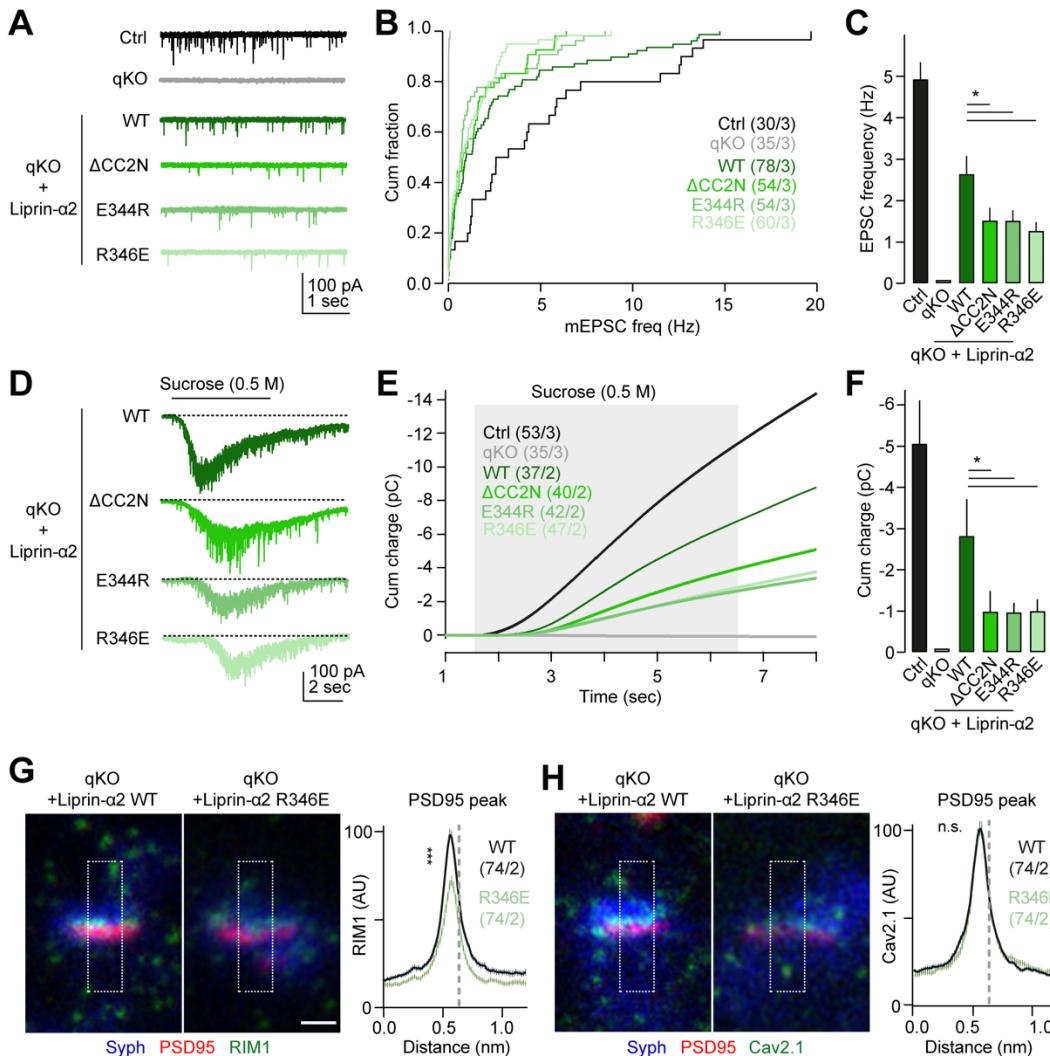
1027 mutants of CC2N.

1028

1029

1030 **Figure 4. Unique assembly mode of the liprin-α2/RIM1 complex.**

1031 **A.** Structural superimposition of the RIM1_C2B dimer from two crystal structures. The overall
1032 RMSD of these two dimeric C2B structures is 0.4 Å.


1033 **B.** Concentration-dependent dimerization of RIM1_C2B in solution.

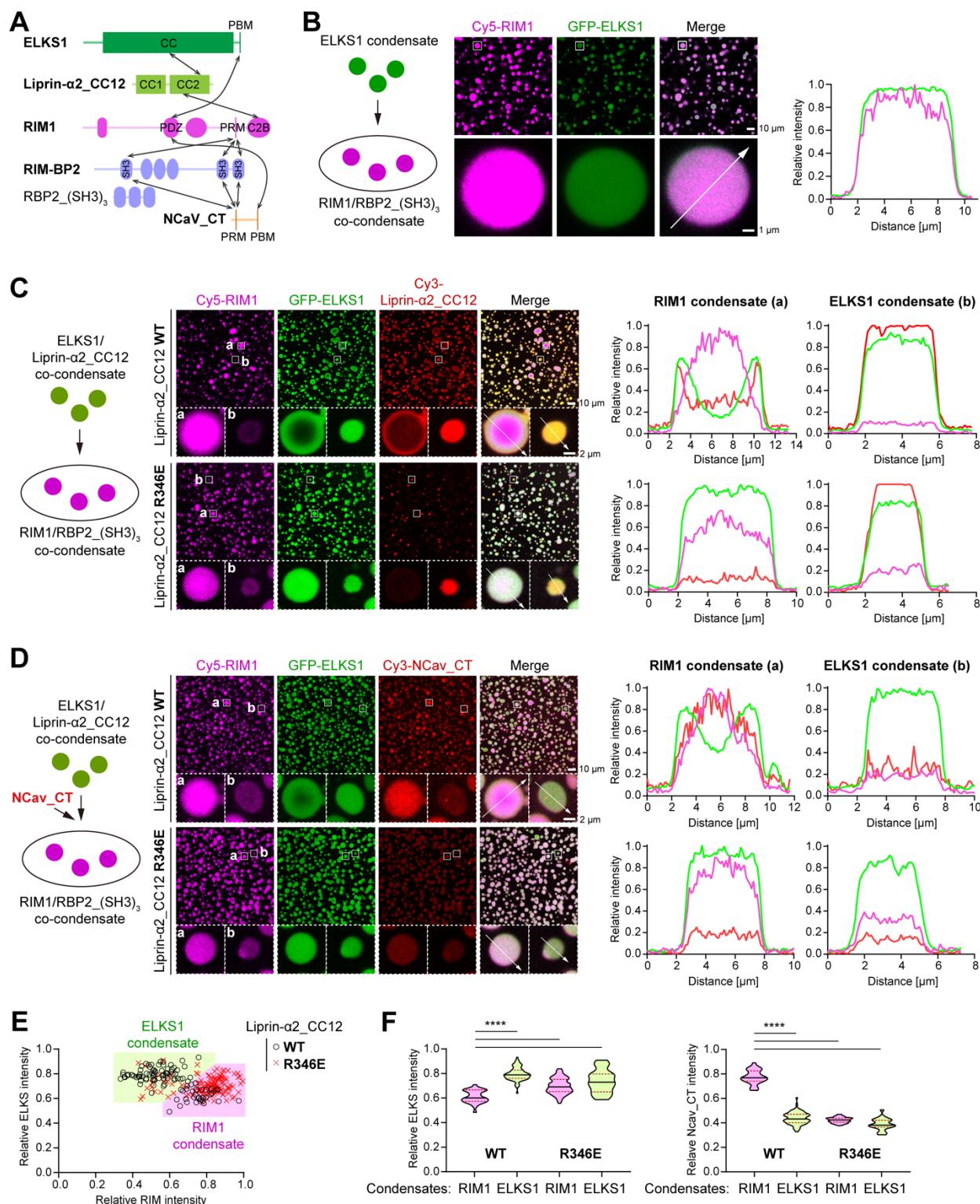
1034 **C.** Schematic representation of the liprin-α2_CC2N/RIM1_C2B complex assembly modes. Under
1035 low-concentration conditions, a 2:2 heterodimer is formed, whereas high-concentration
1036 conditions lead to the assembly of a large complex through multiple intermolecular
1037 interactions.

1038 **D.** aSEC analysis coupled with multi-angle static light scattering (MALS), showing the formation
1039 of large CC2N and C2B assemblies.

1040 **E.** *In vitro* LLPS assays showing the CC2N/C2B assembly in promoting RIM1 LLPS.

1041 **F.** Quantification analysis of RIM1 droplet sizes presented in panel E. Droplets from 8 different
1042 views are quantified, and all data are represented as means \pm SD. The unpaired Student's *t* test
1043 analysis was used to define a statistically significant difference (****, p < 0.0001; ***, p <
1044 0.001).

1045


1046 **Figure 5. Liprin- α 2/RIM1 complex controls synaptic function.**

1047 **A.** Representative traces of spontaneous glutamatergic transmission, measured as miniature
1048 excitatory postsynaptic currents (mEPSCs) in Control (Ctrl) neurons, liprin- α quadruple
1049 knockout (qKO), and qKO neurons rescued with liprin- α 2 WT or RIM-binding-deficient
1050 mutants (Δ CC2N, E344R, and R346E). Recordings were performed at a holding potential of -
1051 70 mV and in the presence of 0.5 μ M tetrodotoxin (TTX).

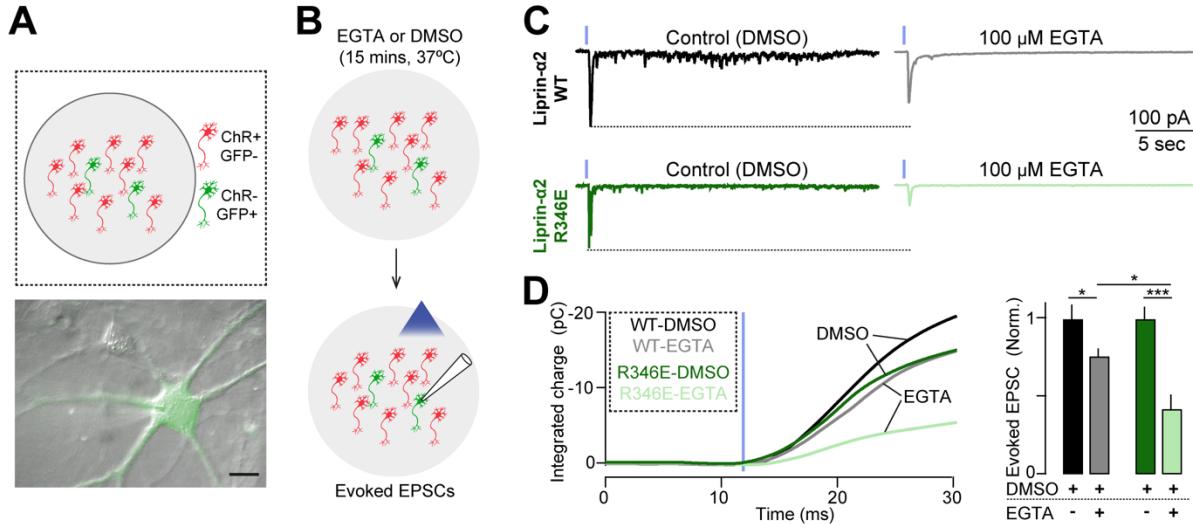
1052 **B.** Cumulative distributions of EPSC frequency under the conditions indicated in panel **A**.

1053 **C.** Statistical analyses of **B** showing the impact of liprin- α 2 mutations on synaptic transmission.
1054 The number of cells/batches analyzed for each condition was indicated in panel **B**. Data
1055 represented as means \pm SEM; * p < 0.05.

1056 **D.** Representative traces showing the response to hyperosmotic sucrose in indicated conditions.
1057 Neurons were challenged with 0.5 M sucrose for 5 seconds (shaded area in panel **E**) using a
1058 flow pipe placed in close proximity (near 100 μ m) to the recorded cells.
1059 **E.** Integrated responses (EPSC charge) to hypertonic sucrose application in indicated conditions.
1060 **F.** Statistical analyses of **E** showing the impact of liprin- α 2 mutations on the size of the RRP. The
1061 number of cells/batches analyzed for each condition was indicated in panel **E**. Data represented
1062 as means \pm SEM; * $p < 0.05$.
1063 **G, H.** Subsynaptic imaging and summary plots of RIM1 (**G**) and Cav2.1 (**H**) intensity profiles in
1064 liprin- α qKO neurons rescued with liprin- α 2 WT (black) or R346E mutant (light green). The
1065 relative peak of the PSD95 signal is indicated by the vertical dotted line. Scale bar: 250 nm.
1066 Number of profiles/batches analyzed: liprin- α 2 WT:74/2; liprin- α 2 R346E:74/2. Data
1067 represented as means \pm SEM; n.s. non-significant, *** $p < 0.001$.
1068

1072 **A.** Schematic diagram of the interaction network among active zone proteins. Interactions are
1073 indicated by the double-headed arrows.

1074 **B.** Confocal imaging analysis of the LLPS mixture containing the ELKS1 condensate and the
1075 RIM1/RBP2_(SH3)₃ condensate. A magnified view of a representative droplet was displayed
1076 below, with a line analysis of fluorescence signal intensities along the indicated dashed line.
1077 The concentration of each protein was 5 μ M.


1078 **C.** Confocal imaging analysis of the LLPS mixture containing the ELKS1/liprin- α 2_CC12 (WT
1079 or R346E) condensate and the RIM1/RBP2_(SH3)₃ condensate. Magnified views of
1080 representative RIM1 (a) and ELKS1 (b) droplets were displayed below, with line analyses of
1081 fluorescence signal intensities along the indicated dashed lines. The concentration of each
1082 protein was 5 μ M.

1083 **D.** Confocal imaging analysis of the LLPS mixture containing the ELKS1/liprin- α 2_CC12 (WT
1084 or R346E) condensate, the RIM1/RBP2_(SH3)₃ condensate, and NCav_CT. Magnified views
1085 of representative RIM1 (a) and ELKS1 (b) droplets were displayed below, with line analyses
1086 of fluorescence signal intensities along the indicated dashed lines. The concentration of each
1087 protein was 5 μ M.

1088 **E.** Plot analyses of the intensity relationship between ELKS1 and RIM1 fluorescence signals in
1089 the condensates shown in panel **D**. The intensity of ~100 droplets in the view was quantified
1090 and normalized. The relative intensity ratio of RIM1/ELKS1 >1 was defined as RIM1
1091 condensate, while the ratio <1 was defined as ELKS1 condensate.

1092 **F.** Quantitative analyses of RIM1, ELKS1, and NCav_CT fluorescence intensities in the ELKS1
1093 and RIM1 condensates. Data represented as means \pm SD. The unpaired Student's *t* test analysis
1094 was used to define a statistically significant difference (****, $p < 0.0001$).

1095

1096

1097 **Figure 7. Liprin- α /RIM complexes couple presynaptic Ca^{2+} channels with primed synaptic
1098 vesicles**

1099 **A.** Top. Schematic representation of the experimental approach for recording channel-rhodopsin-

1100 assisted evoked EPSCs in liprin- α qKO neurons rescued with liprin- α 2 WT or R346E mutants.

1101 Channelrhodopsin ($\text{ChR}^+/\text{GFP}^-$)- and GFP($\text{ChR}^-/\text{GFP}^+$)-expressing neurons were seeded at 4/1

1102 ratios, respectively. Bottom: a montage of fluorescent and DIC images showing the patch

1103 clamp pipette approaching a $\text{ChR}^-/\text{GFP}^+$ neuron. Scale bar: 15 μm .

1104 **B.** Neurons were treated with 100 μM EGTA-AM (dissolved in DMSO) or DMSO (vehicle) as a

1105 control. Evoked excitatory postsynaptic currents were triggered using blue light to activate

1106 channel-rhodopsin expressed presynaptically and monitored postsynaptically using whole-cell

1107 voltage-clamp recordings.

1108 **C.** Representative recordings of evoked EPSCs in liprin- α qKO neurons rescued with liprin- α 2

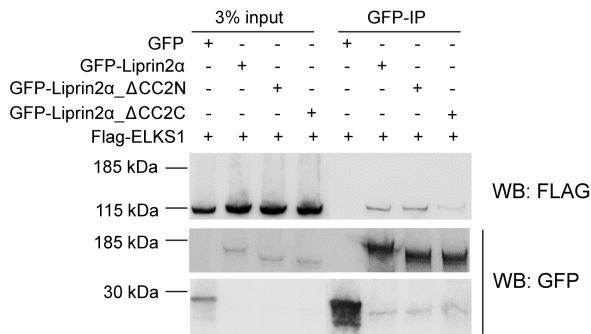
1109 WT (top) or R346E (bottom) constructs. The averaged responses of consecutive 5 trials (at 60

1110 seconds intervals) are shown, in neurons treated with DMSO (left) or EGTA (right). The timing

1111 of light activation was indicated by vertical blue ticks.

1112 **D.** Summary graphs of evoked glutamatergic transmission in liprin- α qKO neurons rescued with

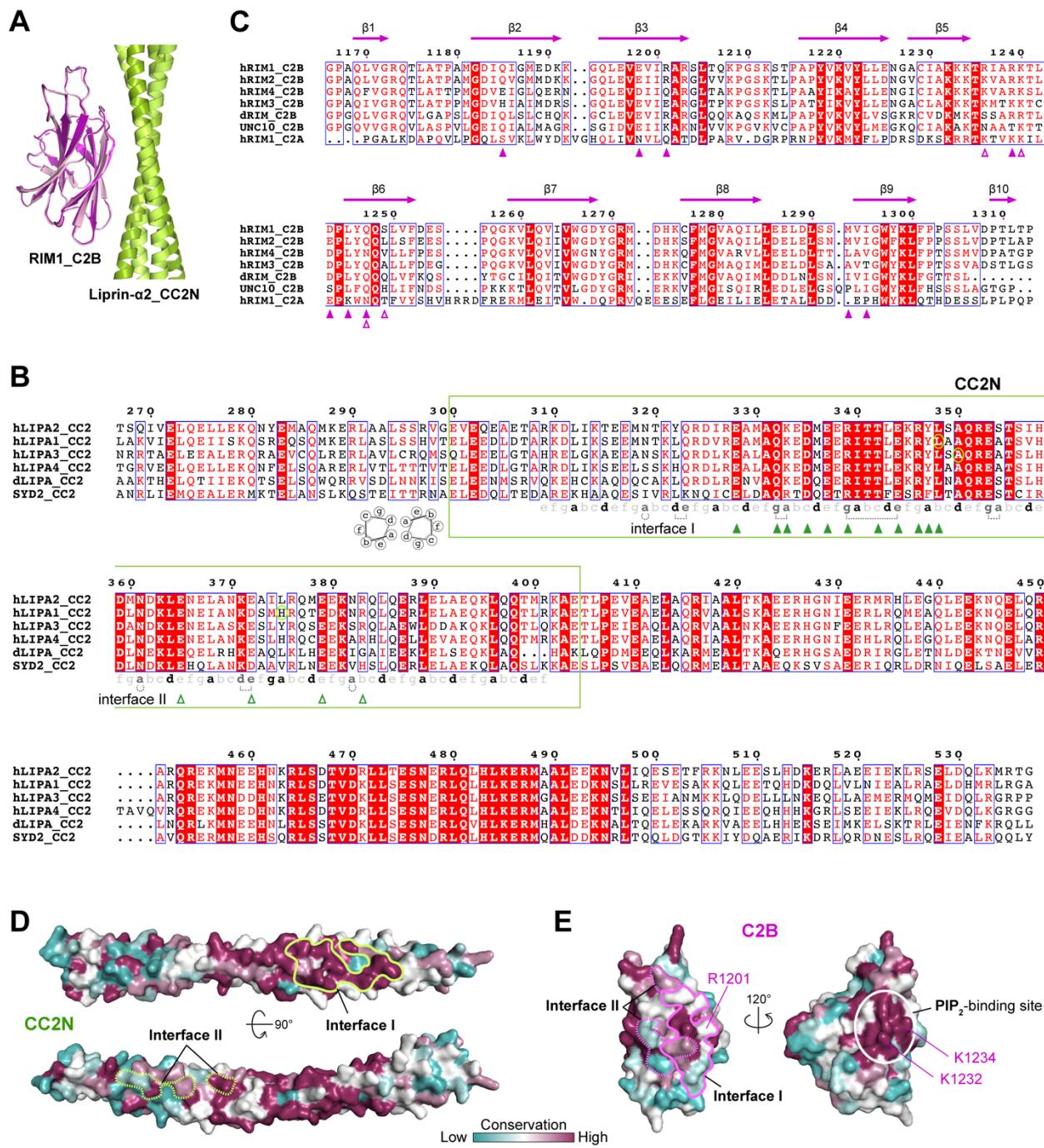
1113 liprin- α 2 WT (black) or R346E (green) constructs, under control (DMSO, dark) conditions or


1114 under EGTA (light) treatment. Left, averaged integrated responses. Right, responses

1115 normalized by the peak of evoked currents. Number of cells/batches analyzed: L2-WT DMSO:

1116 53/2; L2-WT EGTA: 55/2; L2-R346E DMSO: 64/2; L2- R346E EGTA: 49/2. Data represented

1117 as means \pm SEM; * $p < 0.05$; *** $p < 0.001$.


1118 **Supplementary Figures**

1119

1120 **Figure S1. Co-immunoprecipitation analysis of the CC2-mediated binding of liprin- α 2 to**
1121 **ELKS1.**

1122

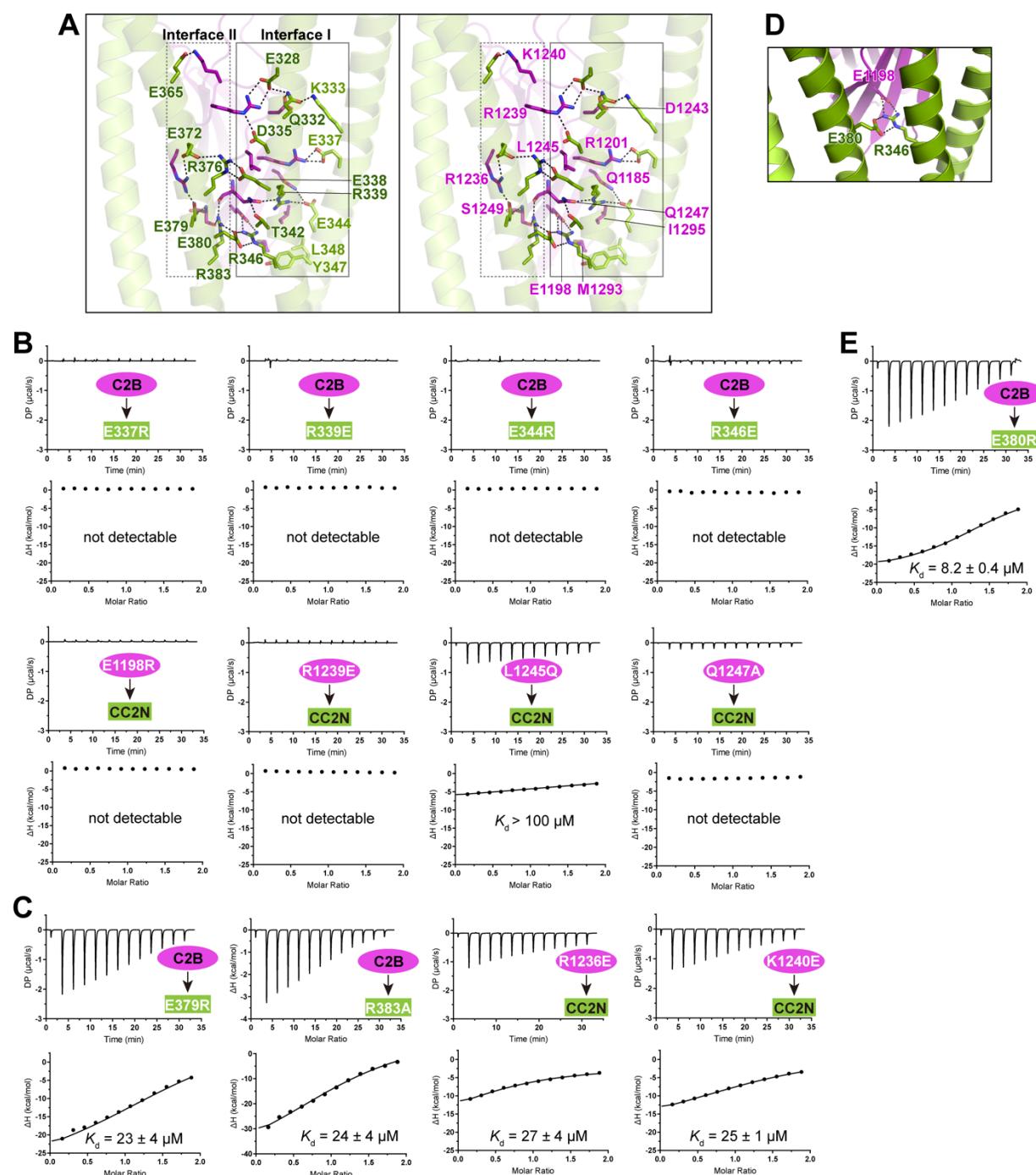
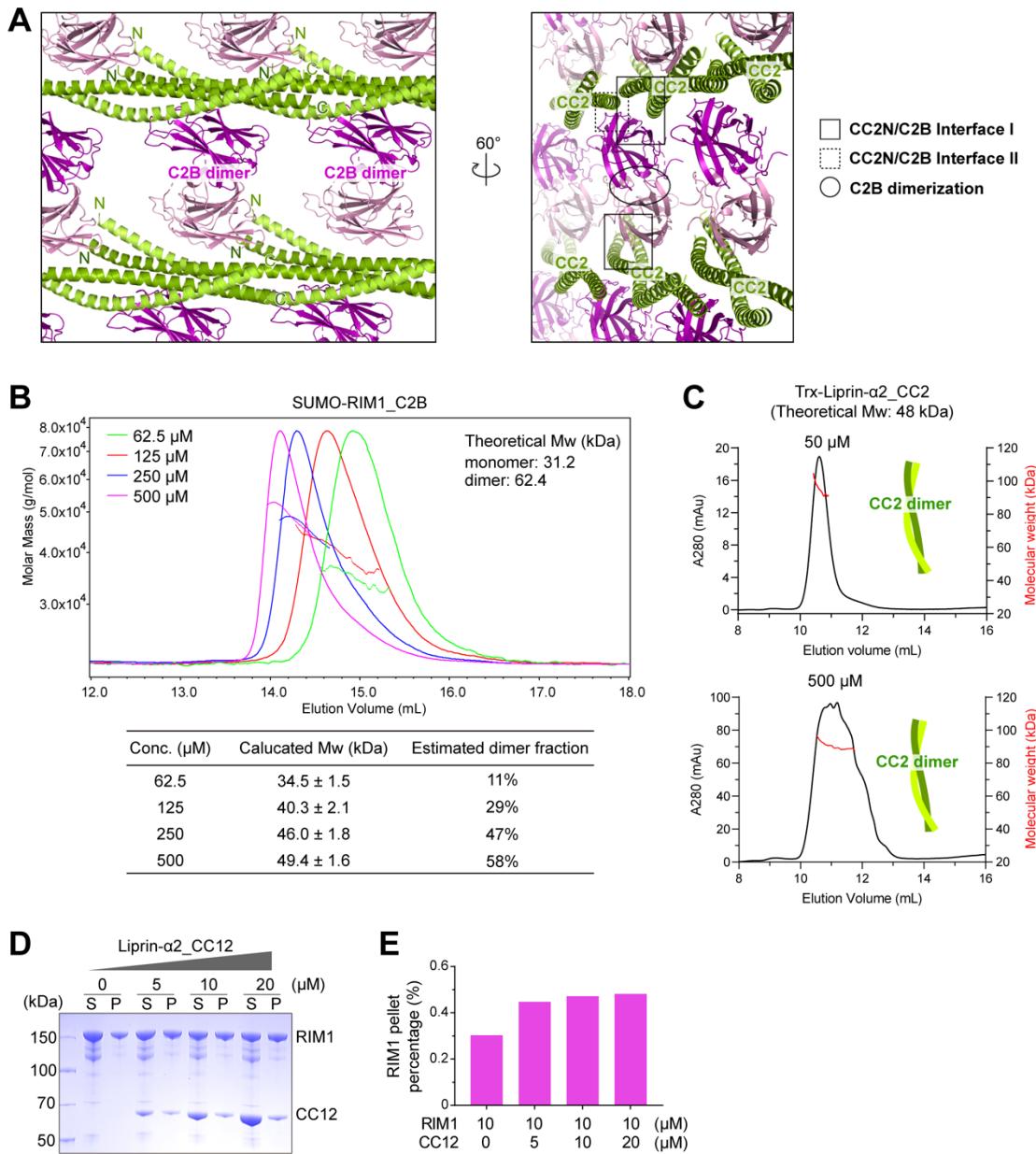


Figure S2. Structural and sequence analysis of the liprin- α 2/RIM1 interaction.

A. Structural comparison of the two C2B molecules (e.g., C2B and C2B' in Fig. 2A) in the CC2N/C2B tetrameric complex. The corresponding interfaces I on CC2N are aligned well, indicating the symmetric binding of C2B to the dimeric CC2N coiled coil.

B. Multisequence alignment of the CC2 domain from liprin- α family proteins. Species abbreviations: 'h' for human, 'd' for Drosophila, and SYD2 as the *C.elegans* liprin- α homolog.


1130 Heptad repeats of coiled-coil structures in the CC2N sequence are annotated, with heptad
1131 labels in black and dark grey denoting residues involved in coiled-coil formation through
1132 hydrophobic and polar interactions, respectively. Polar interactions are indicated by dashed
1133 lines, while residues involved in interfaces I and II are marked by solid and open purple
1134 triangle-ups. Mutation sites associated with neurodevelopmental disorders are encircled.
1135 **C.** Multisequence alignment of the C2B domains from RIM family proteins. The sequence of the
1136 C2A domain in human RIM1 was also included in the alignment for comparison. UNC10 is a
1137 RIM homolog in *C.elegans*. Residues involved in interfaces I and II are indicated by solid and
1138 open green triangle-ups, respectively.
1139 **D.** Surface conservation analysis of the CC2N coiled-coil structure. Conservation scores for each
1140 residue were calculated based on the alignment in panel **B**.
1141 **E.** Surface conservation analysis of the C2B structure. Conservation scores for each residue were
1142 calculated based on the alignment in panel **C**. The highly conserved PIP₂-binding site is
1143 indicated by a circle.
1144

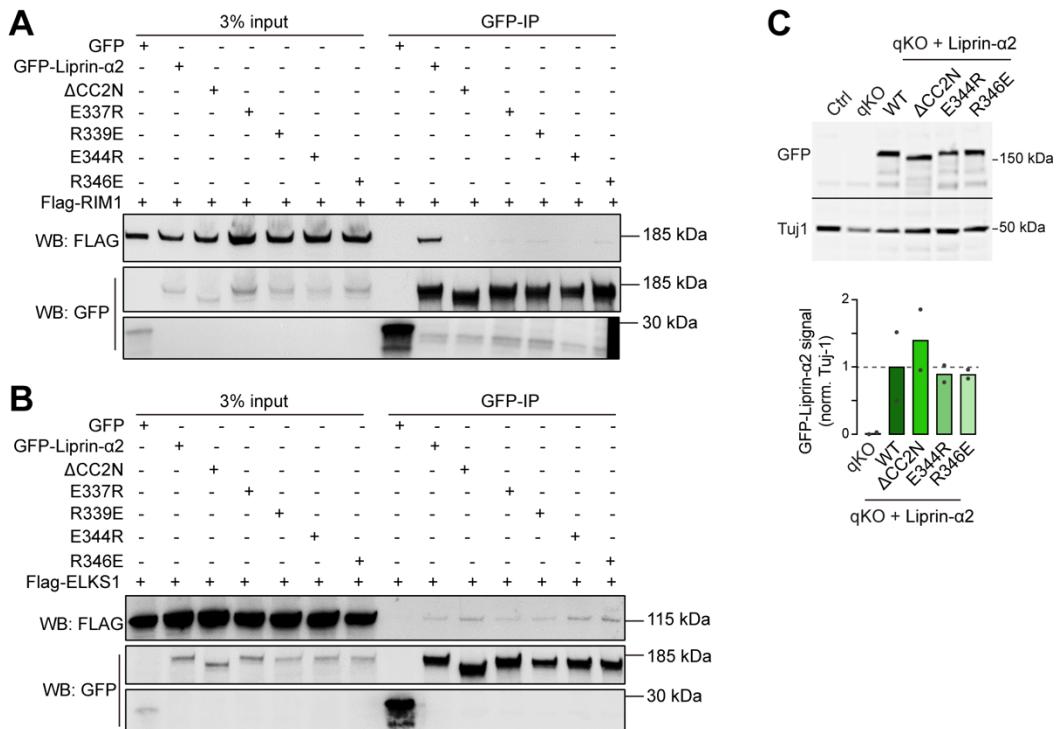
1152 **D.** Structural analysis of two interacting CC2N coiled coils at interface I. The salt bridge formed
1153 between R346^{liprin- α 2} and E1198^{RIM1} is stabilized by E380^{liprin- α 2}.

1154 **E.** ITC-based analysis showing the mild disruptive effect of the E380R mutation in CC2N on the
1155 CC2N/C2B interaction.

1156

1157

1158 **Figure S4. Analyses of multiple intermolecular interactions in the liprin-α2/RIM1 assembly.**


1159 **A.** Crystal packing analysis of the liprin-α2_CC2N/RIM1_C2B complex. Different
1160 intermolecular interfaces are highlighted.

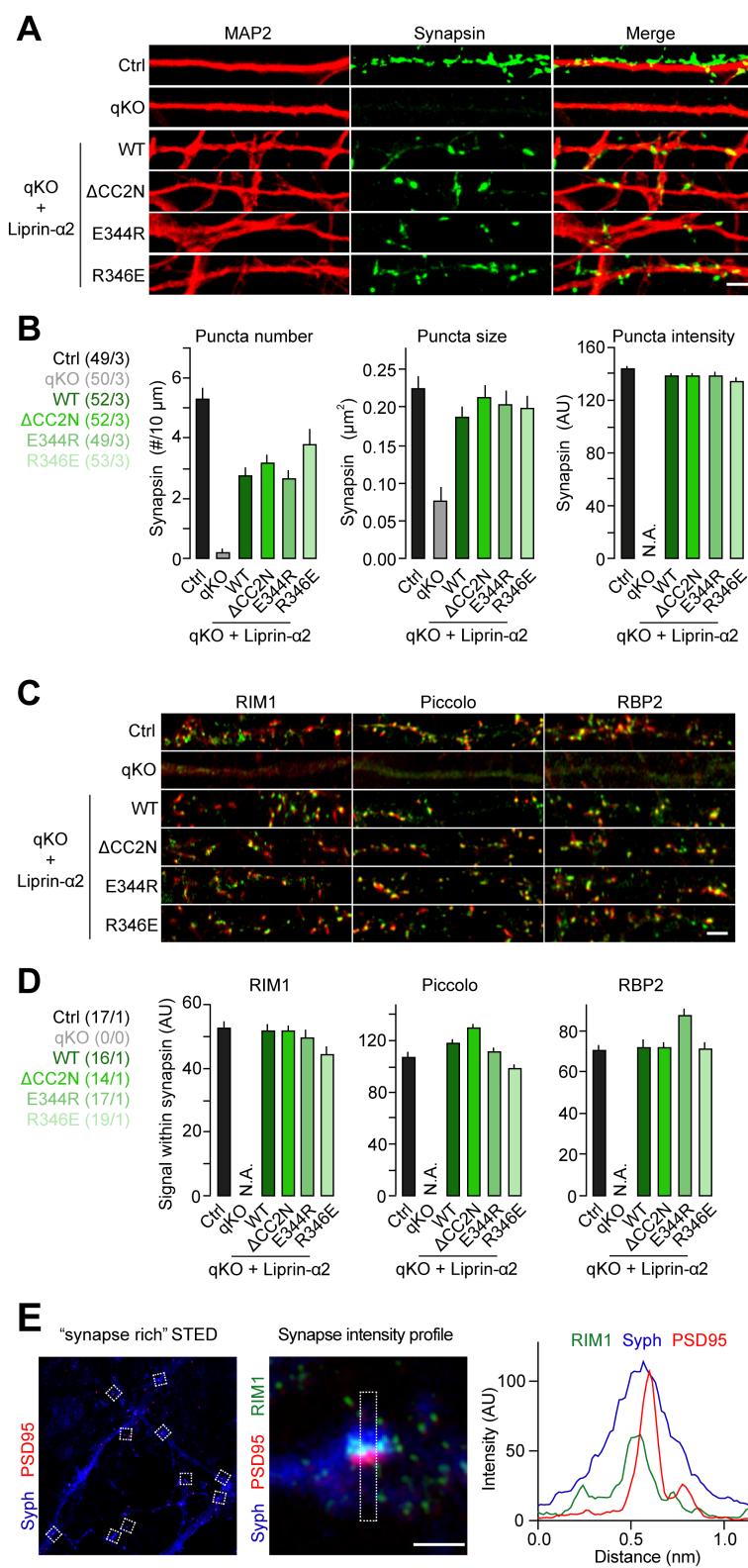
1161 **B.** Dimerization fraction analysis of RIM1_C2B in solution using aSEC coupled with MALS.

1162 **C.** Molecular weight analysis of liprin-α2_CC2 in solution using aSEC coupled with MALS.

1163 **D.** Sedimentation-based assay indicating the distribution of RIM1 full-length protein in the
1164 supernatant (S) and pellet (P) when mixed with increasing concentrations of liprin-α2_CC12.

1165 **E.** Quantification of the RIM1 content of pellet fraction of samples shown in panel **D**.

1166


1167 **Figure S5. Characterization of liprin- α 2 mutations for rescue assays in liprin- α qKO
1168 neurons.**

1169 **A.** Co-immunoprecipitation analysis of the binding of liprin- α 2 variants to RIM1. Consistent with
1170 our ITC-based analyses (Fig. S3B), the interface I mutations in liprin- α 2 disrupt the liprin-
1171 α 2/RIM1 interaction. Results are repeated by three independent batches of experiments.

1172 **B.** Co-immunoprecipitation analysis of the binding of liprin- α 2 variants to ELKS1. The interface
1173 I mutations, especially E344R and R346E in liprin- α 2, showed minimal interference with
1174 ELKS1 binding. Thus, these mutations were selected for the following rescue assays in liprin-
1175 α qKO neurons.

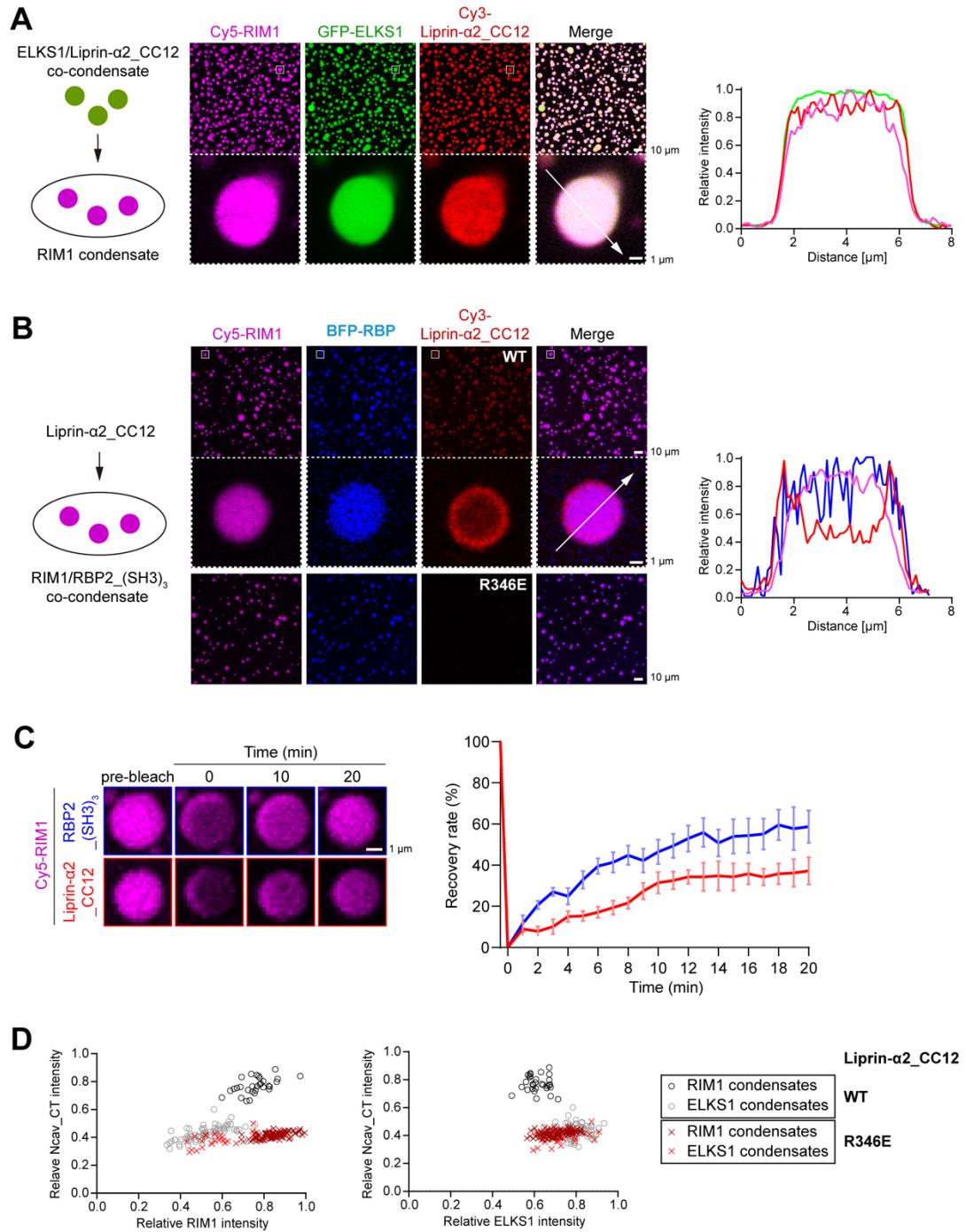
1176 **C.** Western blot analysis confirming comparable expression levels of liprin- α 2 variants with
1177 lentivirus transfection in liprin- α qKO neurons.

1178

1179

1180 **Figure S6. Morphological integrity of human synapses upon disruption of liprin- α /RIM**
 1181 **complexes**

1182 **A.** Representative confocal micrographs showing presynaptic synapsin (green) puncta closely
1183 apposed to dendritic MAP (red) profiles under the indicated conditions. Scale bar: 5 μ m.


1184 **B.** Quantification of synapsin puncta density (left), size (middle), and intensity (right). The data
1185 reflects the minimal impact of liprin- α /RIM complex perturbations on synapse morphological
1186 integrity. The number of cells/batches analyzed for each condition is indicated on the right.

1187 **C.** Confocal micrographs displaying the distribution of active zone proteins Piccolo (left), RIM
1188 (middle), and RBP2 (right) at presynaptic boutons under the indicated conditions. Scale bar: 5
1189 μ m.

1190 **D.** Quantification of fluorescence intensity from experiments presented in panel **C**. Signal
1191 intensity of active zone markers was measured only inside regions of interest (ROIs) defined
1192 by synapsin staining (see Methods for details). The number of ROIs/batches analyzed for each
1193 condition is indicated on the right.

1194 **E.** Microscopic analysis to identify synapses and measure the sub-synaptic distribution of
1195 presynaptic proteins using STED microscopy. Synapse-rich regions identified by
1196 Synapsin/PSD95 appositions were visualized at low magnification (left), followed by high
1197 magnification imaging (middle), with signal intensity quantified relative to the distance from
1198 postsynaptic PSD95 signals (right).

1199

1200

1201 **Figure S7. *In vitro* LLPS analyses of active zone proteins.**

1202 **A.** Confocal imaging analysis of the LLPS mixture containing ELKS1/liprin- α _CC12 and RIM1
1203 condensates. A magnified view of a representative droplet is displayed below, with a line
1204 analysis of fluorescence signal intensities along the indicated dashed line. The concentration
1205 of each protein was 5 μM .

1206 **B.** Confocal imaging analysis of RIM1/RBP2 co-condensates upon adding liprin- α _CC12 WT or
1207 the R346E mutant. A magnified view of a representative droplet, as boxed in the WT condition,
1208 is displayed below, with a line analysis of fluorescence signal intensities along the dashed line.
1209 The concentration of each protein was 5 μ M.

1210 **C.** FRAP analysis of RIM1 condensates in the presence of RBP2_(SH3)₃ or liprin- α _CC12.

1211 **D.** Plot analyses illustrating the intensity relationship between NCav_CT and RIM1 (left panel)
1212 or ELKS1 (right panel) fluorescence signals in RIM1 or ELKS1 condensates in the presence
1213 of liprin- α _CC12 WT or R346E.

1214

1215 **Table S1. X-ray data collection and refinement statistics.**

Data collection	
Space group	<i>P</i> 2 ₁
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	58.663, 92.697, 66.583
α , β , γ (°)	90, 102.95, 90
Resolution (Å)	50–2.75 (2.8–2.75)
<i>R</i> _{merge} ^a	0.149 (1.151)
<i>I</i> / σ <i>I</i>	13.8 (1.4)
<i>CC</i> _{1/2} ^b	0.995 (0.714)
Completeness (%)	98.9 (98.0)
Redundancy	6.3 (5.9)
Refinement	
Resolution (Å)	50–2.75 (2.92–2.75)
No. reflections	17881 (2950)
<i>R</i> _{work} / <i>R</i> _{free} ^c	0.205 (0.290) / 0.234 (0.323)
No. atoms	
Protein	3832
Ligand/ion	0
Water	20
Mean <i>B</i> (Å)	
Protein	68.8
Ligand/ion	-
Water	58.9
r.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.5
Ramachandran analysis	
Favored region (%)	98.7
Allowed region (%)	1.3
Outliers (%)	0

The numbers in parentheses represent values for the highest resolution shell.

^a $R_{\text{merge}} = \sum |I_i - I_m| / \sum I_i$, where I_i is the intensity of the measured reflection and I_m is the mean intensity of all symmetry related reflections.

^b $CC_{1/2}$ is the correlation coefficient of the half datasets.

^c $R_{\text{work}} = \sum |F_{\text{obs}} - |F_{\text{calc}}|| / \sum |F_{\text{obs}}|$, where F_{obs} and F_{calc} are observed and calculated structure factors.

$R_{\text{free}} = \sum_T |F_{\text{obs}} - |F_{\text{calc}}|| / \sum_T |F_{\text{obs}}|$, where T is a test data set of about 5 % of the total reflections randomly chosen and set aside prior to refinement.

1218 **Table S2. Summary of plasmids.**

PLASMID	SOURCE / RRID
32m3c-liprin- α 2_CC2 (aa 259-542)	This paper
pET28a-RIM1 α _C2B (aa 1166-1334)	This paper
pET28a-RIM1 α _C2B (E1198R)	This paper
pET28a-RIM1 α _C2B (R1201Q)	This paper
pET28a-RIM1 α _C2B (R1239E)	This paper
pET28a-RIM1 α _C2B (L1245Q)	This paper
pET28a-RIM1 α _C2B (Q1247A)	This paper
pET28a-RIM1 α _C2B (R1236E)	This paper
pET28a-RIM1 α _C2B (K1240E)	This paper
32m3c-liprin- α 2_CC2C (aa 404-542)	This paper
32m3c-liprin- α 2_CC2N (aa 300-404)	This paper
32m3c-liprin- α 2_CC2N (E337R)	This paper
32m3c-liprin- α 2_CC2N (R339E)	This paper
32m3c-liprin- α 2_CC2N (E344R)	This paper
32m3c-liprin- α 2_CC2N (R346E)	This paper
32m3c-liprin- α 2_CC2N (L348F)	This paper
32m3c-liprin- α 2_CC2N (A350S)	This paper
32m3c-liprin- α 2_CC2N (E379R)	This paper
32m3c-liprin- α 2_CC2N (R383A)	This paper
32m3c-liprin- α 2_CC2N (E380R)	This paper
pET28a-liprin- α 2_CC12 (aa 24-542)	Liang et al., 2021
pET28a-liprin- α 2_CC12 (E344R)	This paper
pET28a-liprin- α 2_CC12 (R346E)	This paper
pET28a-liprin- α 2_CC12 (R383A)	This paper
m3c-RBP2_(SH3) ₃ (aa 178-252+844-1040)	Wu et al., 2019
32m3c-NCav_CT (aa 2151-2327)	Wu et al., 2019
pCAG-FLAG-RIM1	This paper

pCAG-FLAG-ELKS1	This paper
pTGFP-Liprin- α 2	Xie et al., 2020;
pTGFP-Liprin- α 2- Δ CC2N (aa 1-299+405-1257)	This paper
pTGFP-Liprin- α 2- Δ CC2C (aa 1-404+543-1257)	This paper
pTGFP-Liprin- α 2 (E337R)	This paper
pTGFP-Liprin- α 2 (R339E)	This paper
pTGFP-Liprin- α 2 (E344R)	This paper
pTGFP-Liprin- α 2 (R346E)	This paper
pFU-EGFP-Liprin- α 2 (WT)	This paper
pFU-EGFP-Liprin- α 2 (Δ CC2N)	This paper
pFU-EGFP-Liprin- α 2 (E344R)	This paper
pFU-EGFP-Liprin- α 2 (R346E)	This paper
pFU-NLS-GFP-Cre	Marcó de la Cruz et al., 2024
pMDLg/pRRE	RRID: Addgene_12251
pRSV-REV	RRID: Addgene_12253
pVSVG	RRID: Addgene_35616
pFU-M2rtTA	RRID: Addgene_20342
pTet-O-Ngn2-puromycin	RRID: Addgene_52047
pFU-oChIEF-tdTomato	Marcó de la Cruz et al., 2024

1220 **Table S3. Antibody identifiers.**

ANTIBODY	SOURCE	IDENTIFIER / RRID
Mouse anti- β -actin	Sigma	Cat #: A5441; RRID: AB_476744
Rabbit anti-Ca2+ channel P/Q-type alpha-1A	Synaptic Systems	Cat #: 152 203; RRID: AB_2619841
Mouse anti-FLAG	Transgen	Cat #: HT201-01
Mouse anti-GFP	Transgen	Cat #: HT801-01
Rabbit anti-GFP	Thermo Fisher Scientific	Cat #: A11122; RRID: AB_221569
Chicken anti-MAP2	Encor	Cat #: CPCA-MAP2; RRID: AB_2138173
Mouse anti-PSD95	Thermo Fisher Scientific	Cat #: MA1-046; RRID: AB_2092361
Mouse anti-PSD95	NeuroMab	Cat #: 75-028(K28/43); RRID: AB_2877189
Rabbit anti-PSD95	Addgene	Cat #: 196561(K28/43); RRID: AB_2928071
Rabbit anti-RIM1	Synaptic Systems	Cat #: 140003; RRID: AB_887774
Rabbit anti-RIM1/2	Synaptic Systems	Cat #: 140213; RRID: AB_2832237
Rabbit anti-RIM-BP2	Synaptic Systems	Cat #: 316103; RRID: AB_2619739
Rabbit anti-Synapsin	Custom made	This paper
Mouse anti-Synaptophysin1	Synaptic Systems	Cat #: 101 011; RRID: AB_887824
Mouse anti-Tuj1 (α - β III-Tubulin)	BioLegend	Cat #: 801201; RRID: AB_2313773
Horse anti-Mouse HRP	Cell Signaling	Cat #: 7076
Goat anti-Mouse 680RD	LI-COR	Cat #: 925-68070; RRID: AB_2651128
Goat anti-Rabbit 800CW	LI-COR	Cat #: 925-32211; RRID: AB_621843
Goat anti-Mouse Alexa Fluor 488	Thermo Fisher Scientific	Cat #: A-11001; RRID: AB_2534069
Goat anti-Mouse Alexa Fluor 568	Thermo Fisher Scientific	Cat #: A-11004; RRID: AB_2534072
Goat anti-Mouse Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21052; RRID: AB_2535719
Goat anti-Rabbit Alexa Fluor 405	Thermo Fisher Scientific	Cat #: A-31556; RRID: AB_221605

Goat anti-Rabbit Alexa Fluor 488	Thermo Fisher Scientific	Cat #: A-32731; RRID: AB_2633280
Goat anti-Rabbit Alexa Fluor 568	Thermo Fisher Scientific	Cat #: A-11011; RRID: AB_143157
Goat anti-Mouse Alexa Fluor 594	Thermo Fisher Scientific	Cat #: A-11032; RRID: AB_2534091
Goat anti-Rabbit Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21071; RRID: AB_2535732
Goat anti-Rabbit Alexa Fluor 647	Thermo Fisher Scientific	Cat #: A-21245; RRID: AB_2535813
Goat anti-Chicken-CF405M	Sigma	Cat #: SAB4600466
Goat anti-Chicken Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21103; RRID: AB_2535756