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Abstract 24 

Alzheimer’s disease (AD) risk differs between population groups, with African Americans 25 

and Hispanics being the most affected groups compared to non-Hispanic Whites. Genetic 26 

factors contribute significant risk to AD, but the genetic regulatory architectures (GRA) 27 

have primarily been studied in Europeans. Many AD genes are expressed in microglia; 28 

thus, we explored the impact of genetic ancestry (Amerindian (AI), African (AF), and 29 

European (EU)) on the GRA in iPSC-derived microglia from 13 individuals (~4 each with 30 

high global ancestry, AD and controls) through ATAC-seq and RNA-seq analyses. We 31 

identified several differentially accessible and expressed genes (2 and 10 AD-related, 32 

respectively) between ancestry groups. We also found a high correlation between the 33 

transcriptomes of iPSC-derived and brain microglia, supporting their use in human 34 

studies. This study provides valuable insights into genetically diverse microglia beyond 35 

the analysis of AD.  36 
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Introduction 37 

Alzheimer’s Disease (AD) affects millions of people worldwide with currently ~11% of the 38 

US population (65 and older) affected. It is predicted that over 150 million individuals will 39 

be affected by AD worldwide by 2050. Pathologically, AD is characterized by β-amyloid 40 

(Aβ) deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated 41 

tau as neurofibrillary tangles, all of which lead to neurodegeneration and progressive 42 

cognitive impairment 1. 43 

African American (AA) and Hispanic (HI) individuals have the highest risk of developing 44 

AD, followed by non-Hispanic White (NHW) individuals, likely due to a combination of 45 

environmental and genetic factors. Specifically, in the US, AD affects 19% of AA, 14% of 46 

Hispanics, and 10% of NHW 2. Further, over the next 25 years, the greatest growth in AD 47 

will be in Africa and South America. Genetic diversity and admixture play important roles 48 

in disease risk. African American genomes are typically admixed between African and 49 

European ancestries while HI encompass a three-way admixture of European, 50 

Amerindian, and African ancestries 3. Consistent with this, there are ancestry-related 51 

differences in the genetic architecture of AD 4. Although there are gene variants 52 

consistently associated with AD risk across different populations, recent genome-wide 53 

association studies (GWAS) have identified several ancestry-specific risk variants, 54 

including variants in ABCA7 5–9, MPDZ 10, and IGF1R 5,10. Thus, it is crucial to investigate 55 

ancestry-specific disease mechanisms to understand the differential disease 56 

susceptibility in different populations and to facilitate the move toward personalized 57 

medicine across ancestries.  58 

Most AD-associated and GWAS 11–13 risk loci lie in non-coding, regulatory regions. 59 

However, the regulatory architecture of the genome has not been extensively analyzed 60 

in diverse populations, with most of the existing data derived from individuals of European 61 

ancestry. The different population risk profiles for AD of APOEe4 carriers of different 62 

ancestry present a clear example of how differences in gene regulation can affect AD 63 

susceptibility. Rajabli et al. demonstrated that the lower risk for AD in carriers of APOEe4 64 

with African ancestry relative to European ancestry was due to differences in the local 65 
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genomic ancestry surrounding the APOEe4 allele 14,15. Subsequently, it was found that 66 

European local genomic ancestry carriers of APOEe4 had higher APOEe4 expression 67 

and more open chromatin accessibility than that of African local ancestry carriers 16,17, 68 

supporting the recent report that lower expression of APOEe4 is tied to lower risk 18 and 69 

highlighting ancestral differences in gene regulatory networks. 70 

Although much of AD pathogenesis research has focused primarily on neurons, studies 71 

suggest a critical role for microglia in the AD disease process. Autopsy studies found an 72 

elevated proportion of activated microglia significantly correlated with pathological AD 19, 73 

specifically the total Aβ load and number of neuritic plaques. Furthermore, a large number 74 

of reported AD GWAS genes are expressed in microglia 20,21, further supporting their role 75 

in AD pathology. Microglia are the resident immune cells of the central nervous system 76 

(CNS) and play key roles in brain development, synaptic pruning, homeostasis, and 77 

neuronal network maintenance, among other immune response processes 22. 78 

Specifically, in the context of AD, microglia are particularly important for Aβ plaque 79 

clearance, neuroprotection, inflammatory responses, and synaptic homeostasis 23.  80 

Here we report an examination of iPSC-derived microglia from African, European, and 81 

Amerindian ancestries, expanding on our previous studies of single nuclei RNA-seq and 82 

single nuclei ATAC-seq on postmortem microglia from the frontal cortex on African and 83 

European genomes 16,17. Additionally, as iPSC-derived cells have become important 84 

models for human neurodegenerative research, we performed a comparison between our 85 

iPSC-derived microglia and autopsy samples to determine similarities and differences. 86 

While this study is focused on AD-GWAS genes, this data will be useful for all neurological 87 

genetic studies of African, European, and Amerindian populations, as well as admixed 88 

populations of African American and Hispanic individuals.   89 
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Results 90 

Differentiation and validation of iPSC-derived microglia. 91 

We differentiated thirteen iPSC-derived microglia (iMGL) lines from individuals of diverse 92 

ancestral backgrounds, AD cases and controls, males and females, all derived from 93 

individuals over 65 years of age (Table 1). Specifically, we differentiated 4 Amerindian 94 

(AI), 5 European (EU), and 4 African (AF) iMGL lines. Genotyping and whole genome 95 

sequencing were performed to 1) identify the global ancestry and 2) confirm the absence 96 

of known mutations in AD-related Mendelian genes (APP, ABCA7, MAPT, PSEN1, 97 

PSEN2, SORL1, and TREM2; Supplementary Table 1) that could affect the GRA. 98 

Sample Global Ancestry Age Sex APOE  Clinical Diagnosis 

1 AI 96.3% 86 Male 3/3 Control 

2 AI 95.5% 86 Male 3/3 Control 

3 AI 100% 71 Female 4/4 AD 

4 AI 92.0% 86 Female 3/3 Control 

5 EU 100.0% 88 Male 4/4 AD 

6 EU 88.6% 76 Female 4/4 AD 

7 EU 99.7% 65 Female 3/3 Control 

8 EU 93.8% 67 Female 3/3 Control 

9 EU 99.5% 72 Female 4/4 AD 

10 AF 94.4% 70 Female 4/4 AD 

11 AF 96.4% 75 Female 3/3 Control 

12 AF 91.5% 84 Female 3/3 AD 

13 AF 93.5% 90 Female 3/3 MCI 

Table 1: iPSC-derived Microglia cell line information. AI: Amerindian. EU: European. AF: African. 99 

AD: Alzheimer’s disease. MCI: Mild Cognitive Impairment. 100 

All thirteen iMGL cell lines were further validated with microglia cell-specific lineage 101 

markers using immunocytochemistry (ICC) (PU.1 (SPI1), TMEM119, TREM2, and 102 

P2RY12; Supplementary Figure 1). All microglia cell lines expressed these cell-type 103 

specific markers, and their transcriptomic profiles correlated well (r=0.83) when compared 104 

to previously published iMGL using the same differentiation approach 24. In addition, we 105 

also verified that these cells did not express markers for other brain cell types (astrocytes, 106 

oligodendrocytes, and neurons; Supplementary Figure 2 and Supplementary Table 2).  107 
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Brain Microglia vs iPSC-derived Microglia. 108 

We compared the transcriptomic profiles of our iMGL to both Fetal Brain and Adult Brain 109 

cell types 17,25. In both comparisons, we observed the highest correlation between iMGL 110 

and Fetal Brain Microglia (ρ= 0.711), and Brain Microglia (ρ= 0.637) compared to other 111 

brain cell types (Table 2). This data suggests these iMGL recapitulate well the 112 

transcriptomic profiles observed in brain microglia and are a good study model. 113 

Cell type rho Source 

Fetal Brain 
(Cerebrum) 

Microglia 0.711 

Cao, J. et al, (2020). 

Astrocytes 0.580 

Excitatory Neurons 0.599 

Inhibitory Neurons 0.573 

Oligodendrocytes 0.563 

Vascular 
Endothelial 

0.678 

Adult Brain 

Microglia 0.637 

Griswold, A. and Celis, K. 
et al, (2021). 

Astrocytes 0.507 

Excitatory Neurons 0.503 

Inhibitory Neurons 0.495 

Oligodendrocytes 0.529 

OPC 0.509 

VLMC 0.553 

Endothelial 0.586 

Table 2: Correlation analysis between iMGL from our study and other cell types. Note that all 114 

thirteen iMGL lines were included for these comparisons and the p-value was below 2.2x10-16 for 115 

all comparisons. The Adult Brain data is derived from both African and European ancestry. 116 

Gene expression profiles across ancestries.  117 

We detected a total of 21,980 expressed genes across ancestries and performed 118 

differential expression pairwise comparisons between ancestries. In total, we observed 119 

1,103 unique, differentially expressed genes (DEGs) between ancestries (FDR<0.05). 120 

Specifically, we identified 971 DEGs between Amerindian (AI) and AF, 320 between AI 121 

and EU ancestries, and 62 DEGs between African (AF) and Europeans (EU) (Figure 1A 122 

and B; Supplementary Tables 3, 4, and 5).  123 
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We focused on genes previously identified in AD GWAS studies 5,26–30. Of the 121 AD 124 

GWAS genes (Supplementary Table 6), we identified 10 DEGs between AI and AF 125 

(ABI3, CTSB, JAZF1, MS4A6A, PILRA, PLEKHA1, RASGEF1C, SORL1, TREM2, and 126 

TREML2) and 3 DEGs between AI and EU (JAZF1, MS4A6A, and SORL1). Despite our 127 

recent report on brain microglia of European and African ancestries 17, we did not observe 128 

differential expression for AD risk-modifying genes between AF and EU in our iPSC-129 

derived microglia. We observed significantly higher gene expression in AI compared to 130 

AF for ABI3, JAZF1 (also compared to EU), and RASGEF1C, while AF had significantly 131 

higher expression of CTSB, PLEKHA1, SORL1, and TREM2 compared to AI. Lastly, we 132 

observed that EU express significantly higher amounts of SORL1 compared to AI (Figure 133 

1C).  134 
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135 

Figure 1: Gene expression across ancestries. (A) Chromosome Maps per pair-wise ancestral 136 

comparison demonstrating the distribution of differentially expressed genes (DEGs) genome-137 

wide. The dark green color represents DEGs. (B) Volcano plots representing gene expression 138 
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(Log2 Fold Change) per pair-wise comparison between ancestries (AF vs EU, AI vs AF, and AI vs 139 

EU). All 60,656 expressed variables are represented by the circles. The blue and red colored 140 

circles represent the genes that are differentially expressed (Fold Change cutoff of ± 1.25 and 141 

have an adjusted p-value (FDR)≤ 0.05). AD risk-modifying genes were highlighted in the white 142 

boxes. (C) Gene expression (FPM) of AD-related genes that were differentially expressed 143 

between ancestries. Box plots represent minimum to maximum FPM values and error bars denote 144 

the standard deviation. Asterisks denote adjusted p-value (FDR) with p≤ 0.05 (*), p≤ 0.01 (**), 145 

and p≤ 0.001 (***). FPM: Fragments per Million. 146 

Chromatin accessibility across ancestries. 147 

We measured a total of 171,929 ATAC peaks for all ancestries and performed differential 148 

accessibility analysis genome wide. Overall, we observed 225 differentially accessible 149 

peaks (DAPs) linked to 208 unique, differentially accessible genes (DAGs) between AI 150 

and AF, 57 DAPs (55 DAGs) between AF and EU ancestries, and 53 DAPs (52 DAGs) 151 

between AI and EU (Figure 2; Supplementary Tables 7, 8, and 9). We observed an 152 

enrichment in DAPs between AI and EU in chromosome 17 (12.28%, Chi-square p-153 

value=0.038) and chromosome 13 (7.02%, Chi-square p-value=0.041), which contain 154 

only ~3% and ~4% of the genome, respectively. Between AI and AF, we observed a 155 

significant enrichment in DAPs in chromosome 17 (9.78%, Chi-square p-value=0.004). 156 

Lastly, we observed that DAPs between AI and EU were enriched in chromosome 7 157 

(5.66%, Chi-square p-value=0.031; Figure 2A and Supplementary Table 10). Overall, 158 

we observed that among all DAPs between all three ancestral comparisons, the DAPs lie 159 

primarily in intronic regions (~28-39%) followed by distal intergenic (~16-32%) and 160 

promoter regions (~23-25%; Figure 2B; Supplementary Table 11). Interestingly, in the 161 

context of genes associated with AD, we only detected 2 DAGs (PRDM7 and SCIMP) 162 

between AI and AF and 1 DAG between AI and EU (PRDM7) (Figure 2C).  163 
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164 

Figure 2: Chromatin accessibility across ancestries. (A) Chromosome Maps per pair-165 

wise ancestral group comparison demonstrating the distribution of differentially 166 

accessible genes (DAGs) genome-wide. The dark blue color represents DAGs.  (B) Pie 167 

Charts illustrate the regions of the genome in which the differentially accessible peaks lie 168 

for each of the ancestral comparisons. (C) Volcano plots representing chromatin 169 

accessible peaks (log2 Fold change) per pair-wise comparison between ancestries (AF 170 

vs EU, AI vs AF, and AI vs EU). All 171,929 peaks are represented by the circles. The 171 
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blue and red colored circles represent the genes that are differentially accessible (Log2 172 

Fold Change cutoff of ±0.322 and adjusted p-value (FDR)≤ 0.05. AD risk-modifying genes 173 

were highlighted in the white boxes. 174 

We observed two DAPs in PRDM7: one in the proximal enhancer (Peak 1) and another 175 

in a distal enhancer (Peak 2; Figure 3A), according to ENCODE classification. 176 

Specifically, we observed that compared to AI, AF have significantly higher chromatin 177 

accessibility in peak 1 while EU have significantly higher accessibility in peak 2. 178 

Interestingly, contrary to other samples of the same ancestry group, we observed that 179 

sample 4 (AI) has chromatin accessibility in peak 1 while sample 6 (EU) presents visibly 180 

less accessibility in both peaks 1 and 2 (Supplementary Figure 3). We performed local 181 

ancestry (LA) analyses surrounding the PRDM7 locus (± 500kb) to further investigate 182 

whether it could explain the differences in chromatin accessibility (Supplementary Table 183 

12). We observed that samples 1-3 of AI global ancestry, have homozygote Amerindian 184 

LA for the PRDM7 locus while sample 4 has African LA for both haplotypes in this locus 185 

aligning with the chromatin accessibility observations within the African global ancestry 186 

group. While this data suggests that the African LA of sample 4 in the PRDM7 locus plays 187 

a role in and promotes chromatin accessibility, we did not observe any LA differences in 188 

the European global ancestry samples (all homozygote EU LA for this locus).  189 

In addition, we observed a DAP between AI and AF in a distal intergenic enhancer of 190 

SCIMP (~20kb; Figure 3B). We did not observe LA differences within the same global 191 

ancestry group for the SCIMP locus (Supplementary Table 12) which could explain 192 

chromatin accessibility differences seen between global ancestry groups in this region 193 

(Supplementary Figure 4).  194 
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195 

Figure 3: Differentially accessible peaks in AD-risk modifying genes across ancestries. 196 

(A) Differential chromatin accessible peaks in PRDM7. (B) Differential chromatin 197 

accessible peak in a distal intergenic enhancer of SCIMP. Note that the peaks represent 198 

merged data of all individuals within the same ancestry group. 199 

Functional enrichment pathway analysis. 200 

To understand the functional mechanisms that might contribute to the differential AD risk 201 

across ancestries, we performed functional enrichment pathway analysis between the 202 

three ancestral groups using the g:Profiler tool in R. As expected, given the smaller 203 

number of DEGs between EU and AF, we only observed two significant functionally 204 
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enriched pathways for these ancestries (Supplementary Table 13) and none have a 205 

known relation to AD. We observed that several DEGs across the other two ancestry 206 

group comparisons were involved in immune response, lysosomal activity, sterol and 207 

steroid biosynthesis and metabolism, cholesterol biosynthesis and metabolism, lipid 208 

transport and metabolism, and phagocytosis - all highly relevant processes in AD 209 

pathology (Figure 4 and Supplementary Tables 14 and 15). 210 

211 

Figure 4: Functional enrichment pathway enrichment across ancestries relevant to AD. 212 

Pathway enrichment analyses between (A) AI and AF, and (B) AI and EU. See 213 

Supplementary Tables 14 and 15, respectively, for all significantly enriched pathways.  214 
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Regulatory architecture in iPSC-derived Microglia. 215 

We studied the overlap between DAGs and DEGs to gain further insights into ancestry-216 

specific regulatory mechanisms. Overall, we observed less than 2% shared DAGs and 217 

DEGs when comparing the ancestries (Figure 5A and Supplementary Figure 5). None 218 

of the overlapping DEGs and DAGs were from known AD GWAS genes. We observed 219 

that all overlapping DAGs and DEGs between AF and EU, and between AI and EU lay in 220 

promoter regions (Supplementary Tables 16 and 17, respectively) while there was a 221 

wider genomic distribution for those overlapping DAGs and DEGs between AI and AF 222 

(Supplementary Table 18).  223 

However, despite the small overlap between DAGs and DEGs with p-value≤ 0.05, we still 224 

observed a correlation between expression and chromatin accessibility in the promoter 225 

peaks (r= 0.53 (AF vs EU); r= 0.57 (AI vs EU); r= 0.47 (AI vs AF); Supplementary Figure 226 

6). 227 

228 

Figure 5: Overlap between differentially accessible ATAC-seq genes, differentially 229 

expressed RNA-seq genes, and AD GWAS genes between ancestry-group comparisons.  230 
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Regulatory differences specific to AD diagnosis, APOE genotype, and Sex. 231 

Between AD cases and controls, we performed differential expression analysis for 12 232 

samples (the MCI sample was excluded from this analysis) and observed a total of 7 233 

DEGs between non-cognitively impaired individuals and AD samples (Supplementary 234 

Table 19). None were previously identified as AD risk-modifying genes. Differential 235 

expression analysis between APOEe3 and APOEe4 homozygote carriers revealed 7 236 

DEGs (Supplementary Table 20). Between the two analyses, we only found one DEG 237 

in common, high mobility group AT-hook 2 (HMGA2), which was overexpressed in AD 238 

and APOEe4 carriers as compared to controls and APOEe3 carriers (Supplementary 239 

Figure 7). The sex comparison revealed a total of 116 DEGs between Males and Females 240 

(Supplementary Table 21), none of which were AD risk-modifying genes or overlapped 241 

with any of the DEGs from the two aforementioned analyses. On the chromatin 242 

accessibility level, we only observed three DAPs/DAGs between APOEe3 and APOEe4 243 

carriers (Supplementary Table 22), one DAP/DAG between cases and controls 244 

(Supplementary Table 23), and 136 DAPs between Males and Females (90 DAGs; 245 

Supplementary Table 24). None of these peaks have been previously connected to 246 

either AD or APOE genotype. Lastly, we observed an overlap between eleven sex-247 

specific DEGs and DAGs, most of which are located in chromosomes X and Y. 248 

Ancestry-specific genetic regulatory architecture tool for other Neurological 249 

diseases. 250 

Despite the lack of ancestry-specific studies for other neurological diseases, ancestry 251 

might affect disease risk as observed in AD pathology. To demonstrate the importance of 252 

this GRA resource for the study of other neurological diseases in diverse ancestries, we 253 

compared both DEGs and DAGs identified for each of the ancestry comparison groups in 254 

our study with GWAS genes identified for Autism Spectrum Disorder (ASD) 31–41, 255 

Schizophrenia (SZ) 42–57, Bipolar disorder (BP) 54,58–64, Parkinson’s Disease (PD) 65,66, 256 

Multiple Sclerosis (MS) 67,68, Stroke 69, Coronary Artery Disease (CAD) 70–76, and 257 

Hyperlipidemia (HDL) 77,78 (Figure 6). 258 
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 259 

Figure 6: The genetic regulatory architecture in iMGL of diverse ancestries as a useful resource 260 

to study other neurological and associated diseases. We illustrate the overlap between ancestry-261 

specific (A) DEGs and (B) DAGs from our study with previously identified GWAS genes for Autism 262 

Spectrum Disorder (ASD), Schizophrenia (SZ), Bipolar disorder (BP), Parkinson’s Disease (PD), 263 

Stroke, Multiple Sclerosis (MS), Coronary Artery Disease (CAD), and Hyperlipidemia (HLD). Gray 264 

boxes represent the total number of genes queried.  265 
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Discussion 266 

Recent studies have demonstrated that genetic disease associations differ in their 267 

strength and location between ancestries 5,27,28,30. As the majority of genetic associations 268 

are in non-coding regions, it is important to gain insight into the regulatory architecture of 269 

other ancestries besides European. Given the key role of microglia in AD pathology, we 270 

report, for the first time, epigenetic and disease-relevant differences between these 271 

ancestries in iMGL. While we have focused on AD, the microglial regulatory architecture 272 

presented here will be applicable to any study of the CNS.  273 

Several known AD genes demonstrated ancestral expression differences in the microglia. 274 

One of these genes was ABI family member 3 (ABI3), differentially expressed between 275 

AI and AF in this study and which has been previously found to be associated with AD in 276 

African American individuals 79. Studies have found that loss of ABI3 function in mice was 277 

associated with Aβ-amyloidosis 80 and increased ABI3 expression in microglia has been 278 

observed surrounding amyloid plaques in AD brain samples 81. Both studies hypothesize 279 

that ABI3 expression plays a role in microglia migration in the central nervous system and 280 

affects disease progression in the absence of a functioning protein. We find that AF have 281 

on average the lowest expression of ABI3, compared to AI, supporting ABI3 as an AD 282 

risk factor specifically in AF.   283 

Another known AD gene, Cathepsin B (CTSB), identified here as differentially expressed 284 

with higher expression levels in AF compared to AI, has been implicated as a major 285 

contributor to cognitive dysfunction and neuropathological changes, such as lysosomal 286 

dysfunction, cell death, and inflammatory responses 82,83. Interestingly, increased CTSB 287 

protein expression has been reported in AD patients compared to controls 84–86. It was 288 

also previously reported that APOEe4 carriers of AF local ancestry expressed higher 289 

CTSB in brain microglia compared to those of EU local ancestry surrounding the APOE 290 

locus 17, similar to the trend observed in our dataset between AF and EU (Figure 1C). 291 

Again, this could suggest a larger role in AD risk for CTSB lying on AF local ancestry in 292 

African American individuals.  Both of these differences were seen between AF and AI 293 

samples, which displayed the largest genomic differences between the three ancestries 294 
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examined in this study. These are the two populations at either end of the migration 295 

spectrum for humans, implying these genetic ancestries had the longest time to evolve 296 

independently, creating ancestries who are the least related genetically. 297 

In addition, even for genes without significant ancestral differences, the expression and 298 

accessibility data here can be useful for further understanding of the locus across 299 

population groups. For example, another AD-risk-modifying gene that showed differential 300 

gene expression is MS4A6A. This gene has been shown to be highly expressed in 301 

microglia 87 and it was previously reported that brain microglia of AF ancestry express 302 

less MS4A6A compared to those of EU ancestry 17. Despite not reaching significance, we 303 

did observe a similar trend towards less MS4A6A expression in AF iMGL compared to 304 

EU iMGL. TREM2, another well-known AD-GWAS gene, is primarily expressed in 305 

microglia and has been heavily implicated in AD progression 88–91. Interestingly, we found 306 

that AI cells express the lowest amount of TREM2. Data show that TREM2 mRNA levels 307 

are associated with amyloid burden in cortical regions 92 and loss-of-function TREM2 308 

variants are associated with dementia 93–95, implying that the lower expression in AI 309 

microglia might impact AD risk in this ancestry due to reduced microglia functionality (Aβ-310 

plaque clearance, APOE-mediated functions, immune modulation, and cell survival). 311 

The iMGL lines used here varied not only in their genetic ancestry, but also in other 312 

variables such as sex, APOE genotype, and disease status which could complicate the 313 

interpretation of results. Therefore, we also performed differential expression analysis 314 

between Males and Females, AD vs controls, and APOEe3 vs APOEe4 carriers. Most of 315 

our AD patients were APOEe4 homozygotes as at least 60% of AD patients carry the 316 

APOEe4 allele. Despite observing a small number of DEGs between AD vs Controls and 317 

APOE e3 vs e4 carriers, we observed that HMGA2, a high-mobility protein that modulates 318 

transcription and chromatin condensation, was differentially expressed in both 319 

comparisons. Specifically, we observed higher gene expression in AD individuals and 320 

APOEe4 carriers. Interestingly, silencing of HMGA2 has been reported to lead to 321 

increased expression of the PI3K/AKT signaling pathway and improved memory and 322 

learning ability, reduced brain injury, and decreased oxidative stress and inflammatory 323 

reactions in mice 96. It was also recently reported that downregulation of HMGA2 in AD 324 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609943doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609943
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

patients was associated with increased lifespan 97. Thus, together with these findings, our 325 

results also suggest and support that increased HMGA2 expression is a risk factor for 326 

AD. 327 

We are often taught that chromatin accessibility is a key factor controlling gene 328 

expression. Comparing the significantly different changes in gene expression and 329 

chromatin accessibility between ancestries provides one opportunity to examine this 330 

relationship. Our differential analysis between ancestries revealed greater differences in 331 

gene expression (DEG) (approximately 0.3-4.4% of genes depending on the paired 332 

comparison) than in chromatin accessibility (DAP/DAG) (0.03-0.13%). This supports the 333 

growing understanding of the complexity of our cells in regulating gene expression and 334 

that transcription is a much more complex mechanism and higher accessibility is only one 335 

factor that could affect gene expression. For example, DNA sequence variability both at 336 

binding sites and distal eQTLs can complicate interpretation of the (dis)concordance 337 

between gene expression and chromatin accessibility changes. However, as expected, 338 

when expanding our sample size by using all our expression and accessibility data, we 339 

do find the expected moderate correlation between chromatin accessibility and 340 

expression (r=0.47 to 0.57). 341 

iPSCs and derived cells have become important models for human brain disorders. We 342 

demonstrated that their transcriptome has a strong correlation with brain single nuclei 343 

RNAseq results 17.  These iPSC-derived microglial cells were grown in the absence of 344 

other cell types and with a lack of environmental stressors. The complex gene regulatory 345 

networks operating in brain cells reflect the interplay of mostly invariable genetic factors 346 

with a dynamic exposome that includes chemical exposures, diet, and diverse stressors 347 

across the life course. One could postulate that microglia co-cultured with other CNS cell 348 

types or 3D organoids would feature cell-cell interactions that would provide an even 349 

stronger correlation with the brain transcriptome.  350 

We did not observe any of the currently known African-specific AD GWAS genes 5 to be 351 

differentially expressed or accessible in the AF ancestry iMGL compared to the AI or EU 352 

ancestries. This could be explained by the fact that some of these genes were not 353 

expressed in iMGL and others had heterogenous expression levels between the limited 354 
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number of individuals.  The relatively small number of individuals included is the main 355 

limitation of this study. This is a general limitation of iPSC-derived cell studies which are 356 

expensive and time-consuming. Some of the differential findings reported here may 357 

reflect individual heterogeneity rather than ancestry generalizations. Additional iPSC-358 

derived cell lines are needed to fully explore the regulatory architecture and to capture 359 

individual variability. Further genomic studies such as Hi-C will enhance these 360 

comparisons, particularly for specific genes of interest.   361 
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Conclusions 362 

Overall, we provide novel insights into the genetic regulatory architecture of microglia 363 

from three ancestry groups: Amerindian, African, and European. Transcriptional and 364 

architectural similarity was the most common finding, which is reassuring for future 365 

therapeutic interventions. We found a good correlation between the transcriptome of our 366 

iMGL and reported brain transcriptomes, as well as concordance for previously reported 367 

AD risk genes, supporting ancestral differences. These findings support the role of iMGL 368 

as a valuable model for human disease. Our data also supports a role for HMGA2 369 

expression in APOEe4 carriers and AD risk. Lastly, this study provides a useful resource 370 

for the research community as it provides novel data on genome-wide regulatory 371 

architectures of diverse, understudied, genetic groups that could be applied to the study 372 

of other brain diseases, particularly those with high microglia involvement.   373 
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Methods 374 

Sample collection. 375 

All samples of AI, EU, and AI cases and controls selected for this study were obtained 376 

from the John P. Hussman Institute for Human Genomics (HIHG) at the University of 377 

Miami Miller School of Medicine with the exception of the induced pluripotent stem cells 378 

derived from samples 7-9 which were obtained through ADRC from the University of 379 

California Irvine (UCI). All participants were ascertained using a protocol approved by the 380 

appropriate Institutional Review Board. This study received ethical approval from the 381 

University of Miami Institutional Review Board (approved protocol #20070307). 382 

Global ancestry ascertainment.  383 

We calculated the admixture proportions using a model-based clustering algorithm, as 384 

implemented in the ADMIXTURE software 98. A supervised ADMIXTURE analysis was 385 

performed at K = 4, incorporating four reference populations: 104 African, 84 European, 386 

108 Amerindian, and 102 East Asian individuals from the Human Genome Diversity 387 

Project reference populations. 388 

Local ancestry ascertainment. 389 

To infer local ancestry, we first merged our dataset with the Human Genome Diversity 390 

Project reference panel, including European, African, and Amerindian reference 391 

populations 99. Next, we phased the combined data using SHAPEIT4 with default settings, 392 

referencing the 1000 Genomes Phase 3 reference panel 100,101. Finally, we estimated 393 

local ancestry at each genomic locus using RFMix v2 software 102. 394 

Whole Genome Sequencing (WGS).  395 

DNA was extracted from all individual cell lines using the QIAamp DNA Blood Kit 396 

(QIAGEN, #51104) according to the manufacturer’s instructions. 1.5µg of DNA was 397 

submitted for WGS at the Center for Genome Technology (CGT) Sequencing Core at the 398 

HIHG using standard Illumina PCR-free library prep and sequencing protocols on the 399 

NovaSeq6000 followed by a bioinformatics pipeline incorporating the GATK Best 400 

Practices analysis recommendations 103. Individuals were screened for rare coding 401 
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variants in seven AD-related genes nominated as likely causative by the ADSP Gene 402 

Verification Committee and variants in the promoter regions of the ten AD genes that had 403 

differential gene expression (Supplementary Table 1).  404 

Induced pluripotent stem cell generation. 405 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using 406 

SepMate-50 tubes with Lymphoprep (STEMCELL Technologies, #85450 and #07801) 407 

through density-gradient centrifugation according to the manufacturer’s instructions. 408 

PBMCs were reprogrammed into induced pluripotent stem cells (iPSCs) using CTS™ 409 

CytoTune™-iPS 2.1 Sendai Reprogramming Kit (Invitrogen, #A34546) according to the 410 

manufacturer’s instructions. Reprogrammed cells were tested for Sendai Virus absence, 411 

trilineage differentiation capability, immunocytochemistry, STR profiling, karyotyping, and 412 

mycoplasma testing as previously described 104. PBMC isolation and reprogramming was 413 

performed at the Hussman Institute for Human Genomics (HIHG) Induced Pluripotent 414 

Stem Cell (iPSC) Core at the University of Miami. Validation analyses were performed by 415 

the HIHG-iPSC Core and WiCell. 416 

Differentiation of iPSCs to Microglia. 417 

iPSCs were differentiated into hematopoietic progenitor cells (HPCs) and subsequently 418 

into Microglia (MGL) as previously described 24 with minor modifications.  419 

In brief, feeder-free iPSCs were cultured and expanded in StemFlex medium (GibcoTM, 420 

#A3349401) in vitronectin (10µg/ml, GibcoTM
, #A31804) coated cell culture-treated plates. 421 

On day -1, iPSCs were passaged with 0.5M EDTA onto Matrigel-coated (Corning, 422 

#354277) 12-well plates at a density of 10-20 aggregates/cm2 (>50µm in size). On day 0, 423 

if 4-10 colonies/cm2 adhered, the StemFlex medium was replaced with 1ml/well of HPC 424 

medium A (Basal medium with supplement A (1:200), STEMCELL Technologies, 425 

#05310). Half-medium change was carried out 48 hours later. On day 3, HPC medium A 426 

was replaced in full by medium B (Basal medium with supplement B at 1:200). Half-427 

medium changes of medium B were performed on days 5, 7, and 10. HPCs were 428 

harvested on day 12. 429 
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On day 0 of microglia differentiation (day 12 of HPC differentiation), HPCs were plated at 430 

22,000 cells/cm2 onto a Matrigel-coated 6-well plate containing 2ml of Microglia 431 

differentiation medium (Basal Medium with supplement 1 and 2 at 1:9 and 1:225, 432 

respectively; STEMCELL Technologies, #100-0019). Cells were supplemented with fresh 433 

half-medium every other day from day 0 to day 10. On day 12, cells were collected and 434 

centrifuged at 300 x g for 5 minutes. The cell pellet was resuspended in 2ml/well of fresh 435 

Microglia differentiation medium and transferred to a freshly Matrigel-coated 6-well plate. 436 

Cells were supplemented with 1ml of media every second day until day 22. Microglia cells 437 

were collected, resuspended in 2ml of Microglia maturation medium (Basal Medium with 438 

supplement 1 (1:9), and 2 and 3 (1:225); STEMCELL Technologies, #100-0020), and re-439 

plated for assays into new Matrigel-coated 6-well plates. Lastly, on day 26, microglia were 440 

harvested for immunocytochemistry (ICC), bulk RNA-, and ATAC-sequencing. 441 

RNA isolation and sequencing. 442 

Total RNA was isolated from 1 million microglial cells per cell line using the RNeasy Mini 443 

kit (QIAGEN, #74104) according to the manufacturer’s instructions. Suspension cells 444 

were collected and centrifuged for 5 minutes at 300 x g. 600µl of RLT buffer (including β-445 

Mercaptoethanol at 1/100) was used to collect semi-attached microglia and subsequently 446 

resuspend the cell pellet from the previous step. Cells were briefly vortexed for 1 minute 447 

and homogenized by loading the lysate into a QIAshredder spin column (QIAGEN, 448 

#79656) and centrifuging for 2 minutes at full speed. The homogenized lysate was 449 

resuspended in 1 volume of 70% ethanol and transferred to a RNeasy spin column and 450 

centrifuged for 30 seconds at 8,000 x g. 350µl of Buffer RW1 was added to the same spin 451 

column and centrifuged for 15 seconds at 8,000 x g. Following this, 80µl of DNAse I 452 

incubation mix (70µl of RDD buffer and 10µl of DNAse I, QIAGEN, #79254) were added 453 

to the spin column and incubated at RT for 15 minutes. Buffer RW2 (350µl) was 454 

transferred to the spin column and centrifuged for 15 seconds at 8,000 x g. 500µl of RPE 455 

buffer were loaded into the column followed by a centrifugation step of 30 seconds at 456 

8,000 x g. The previous step was repeated once again but centrifuged for 2 minutes at 457 

8,000 x g to ensure all residual ethanol was removed. The RNeasy spin column was 458 

transferred to a new 1.5ml collection tube and 30µl of RNAse-free water were added to 459 
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the column to elute the bound RNA. Lastly, the spin column was centrifuged at 8,000 x g 460 

for 1 minute and then stored at -80°C until further used. The RNA concentration and 461 

quality were assessed using the Agilent Tapestation (Agilent Technologies) to determine 462 

the RNA integrity number (RIN). 463 

Bulk RNA sequencing. 464 

RNA libraries were prepared at the John P. Hussman Institute for Human Genomics 465 

Center for Genome Technology (University of Miami, FL) from ribodepleted total RNA. In 466 

brief, total RNA was prepared with the TECAN Universal Plus Total RNA-seq with 467 

NuQuant® Human AnyDeplete according to the manufacturer’s instructions, using 60ng 468 

via QuBit and 16 PCR cycles. The normalized libraries were sequenced as paired end 469 

100bp reactions targeting 30 million reads/sample on the Illumina NovaSeq 6000 470 

(Illumina, CA). The raw FASTQ files were processed through an in-house bioinformatics 471 

pipeline including adapter trimming by TrimGalore (v0.6.10) 472 

(https://github.com/FelixKrueger/TrimGalore), alignment to the GRCh38 human 473 

reference genome with STAR (v2.5.0a) 105, and gene counts quantified against the 474 

GENCODEv35 gene annotation release using the GeneCounts module implemented in 475 

STAR. 476 

Bulk ATAC-sequencing. 477 

Cultured cells were treated with DNase I (200U/mL; QIAGEN, #79254) at 37°C for 30 478 

minutes. The treated cells were then harvested and pelleted at 400 x g for 5 minutes at 479 

4°C. The cell pellet was carefully washed in cold 1x PBS. The cells were re-pelleted as 480 

described before and then lysed in 100µl of lysis buffer (10mM Tris-HCl pH 7.4, 10mM 481 

NaCl, 3mM MgCl2, 0.1% NP-40, 0.1% Tween-20, and 0.01% Digitonin) on ice for 5 482 

minutes. Next, the lysed microglia were washed in 1ml of wash buffer (10mM Tris-HCl pH 483 

7.4, 10mM NaCl, 3mM MgCl2, and 0.1% Tween-20) and 100,000 nuclei were pelleted at 484 

500 x g for 10 minutes at 4°C. The nuclei were incubated at 37°C for 30 minutes at 485 

1,000rpm in 100µl of Transposition mix (2x Tagment DNA Buffer, 1x PBS, 0.1% v/v 486 

Tween-20, 0.01% v/v Digitonin, and 5µl of Tagment DNA Enzyme 1). The transposed 487 

DNA was purified using the MinElute PCR Purification kit (QIAGEN, #28004) and eluted 488 
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in 10µl of Elution Buffer. The purified transposed DNA was combined with 25µM of 489 

Custom Adapter 1 (no primer mix), 25µM of Custom Adapter 2 (barcode), and NEBNext 490 

High-Fidelity 2x PCR Master Mix and ran on a thermocycler with the following conditions: 491 

72°C for 3 minutes, 98°C for 30 seconds, and 5 cycles of 98°C for 30 seconds, 63°C for 492 

30 seconds, and 72°C for 1 minute. The additional number of cycles required was 493 

determined as described in 106 and ran with the same conditions abovementioned. The 494 

amplified libraries were purified with the MinElute PCR Purification kit and eluted in 20µl 495 

of Nuclease-free water. Library traces were assessed by the Agilent Tapestation and 496 

when necessary, size selection purification was carried out using the AMPure XP beads 497 

(Beckman Coulter, #A63880) according to the manufacturer's instructions. See 498 

Supplementary Table 26 for full adapter sequences. Libraries were sequenced in paired 499 

end 100bp reactions targeting 30 million reads/sample on the Illumina NovaSeq 6000. 500 

The ATAC-seq data were preprocessed (trimmed, aligned, filtered, and quality-controlled) 501 

and analyzed using an adapted version of the ENCODE ATAC-seq pipeline. In brief, 502 

adapters and poor-quality bases were trimmed using TrimGalore (v0.6.10) 503 

(https://github.com/FelixKrueger/TrimGalore). Reads were aligned to the CRCh38 human 504 

reference genome with bowtie (v2.2.2) 107, duplicates marked with Picard (v2.1.1) 505 

(https://broadinstitute.github.io/picard/), and peaks called using MACS2 (v2.2.7.1) 107. 506 

Peaks were merged across all samples using an overlapping peak/union strategy to 507 

obtain a list of peaks across all samples. Counts per peak were calculated from individual 508 

aligned BAM files using htseq-count (v1.99.2) using the un-stranded option. 509 

Differential expression and accessibility analyses. 510 

Differential expression and accessibility analyses were carried out across the different 511 

ancestral populations using DESeq2 (version 3.17) package 108 in R language 512 

environment (version 4.2.1). We used DESeq2 default parameters and controlled for 513 

batch differences (design = ~batch + ancestry). Three contrasts were run: AF vs EU, AI 514 

vs AF, and AI vs EU. Genes that were significantly expressed and/or accessible were 515 

identified with an FDR adjusted p-value of <0.05. 516 

Functional enrichment pathway analysis. 517 
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Functional enrichment analysis was done with the R library gprofiler2 109. We extracted 518 

gene symbols of DEG between ancestries (FDR adjusted p-value of <0.05), and the 519 

function gost was used to perform the gene set enrichment analysis for each ancestry 520 

comparison using the Gene Ontology, KEGG pathways, and REACTOME databases. 521 

Multiple comparison correction of enrichment scores was done with the ‘gSCS’ method. 522 

Pathways were considered significant if p-adj < 0.05. Results were manually curated to 523 

show known pathways related to AD pathogenesis, and the corresponding full lists of 524 

enriched terms are described in Supplementary Tables 13, 14, and 15. 525 

ATAC peak annotation 526 

The function annotatePeak from Chipseeker R library 110 was used to annotate peaks 527 

with the nearest gene and genomic region. The annotation was done at the transcript 528 

level using the GENCODE V44 database. The distance of ±3 kb from the transcription 529 

start sites (TSS) was used to assign a peak to a gene promoter-TSS, and the following 530 

priority was defined for annotation: "Promoter", "5UTR", "3UTR", "Exon", "Intron", 531 

"Downstream", "Intergenic”.  532 

Immunocytochemistry (ICC) and fluorescence imaging. 533 

Cultured microglia cells were fixed with 4% formaldehyde for 15 minutes at RT and 534 

washed with 1x PBS. Cells were permeabilized for 10 mins with PBS-T solution (0.1% 535 

Triton X and 1x PBS). The microglia cells were then incubated in blocking buffer (1x PBS 536 

and 5% normal donkey serum) for 1 hour at RT. The blocking buffer was removed and 537 

incubated in the primary antibody solution (1% donkey serum, 0.1% Tween-20, 0.01% 538 

Sodium Azide, and target primary antibody) at 4°C overnight. The following day, the 539 

primary antibody solution was removed, and the cells were washed three times with 1x 540 

PBS. Following this, the secondary antibody solution (1% donkey serum, 0.1% Tween-541 

20, 0.01% Sodium Azide, and secondary antibody) were added to each well, and cells 542 

were incubated for 1 hour at RT in the dark. Lastly, the secondary antibody solution was 543 

removed, and cells were washed thrice with PBS. The cells were washed with 1x PBS 544 

and incubated with DAPI (NucBlue Fixed Cell Stain). Images were acquired using a 545 
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Keyence Microscope BZ-X800. See Supplementary Table 25 for details on all antibodies 546 

used for ICC analysis. 547 

Correlation analyses between differential expression and differential accessibility 548 

Pearson correlation (r) was used to evaluate the relationship between gene expression 549 

and corresponding promoter accessibility. First, DEGs between ancestries with 550 

|log2(FoldChange)|≥ 1 and adjusted p-values ≤ 0.1 were considered for the analysis. 551 

Then, promoter peaks (distance of ±3 kb from TSS) annotated to those DEGs were 552 

considered for correlation analysis.  553 

Correlation analyses between iPSC-derived Microglia and other cell types. 554 

Correlation analyses between iMGL and Brain cell types were performed using Spearman 555 

correlation analyses. Specifically, we calculated the average expression of all thirteen 556 

iPSC-derived Microglia (iMGL) cell lines included in this study for each gene. Note that 557 

genes with an expression value of 0 were excluded as well as sex-related (Chromosomes 558 

X and Y) and mitochondrial genes. Following this, genes were ranked in descending order 559 

by expression level for both iMGL and brain cell types, and only genes present in both 560 

comparison datasets were included in the Spearman correlation test.  561 
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Data Availability 562 

All data generated or analyzed during this study are included in this published article and 563 

its supplementary information files. Sequencing files can be requested to the 564 

corresponding author. 565 
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