

1 **Title: Gene expression and chromatin accessibility comparison in iPSC-derived**
2 **microglia in African, European, and Amerindian genomes in Alzheimer's patients**
3 **and controls.**

4

5 **Authors:**

6 Sofia Moura¹, Luciana Bertholim Nasciben¹, Aura M. Ramirez¹, Lauren Coombs¹, Joe
7 Rivero¹, Derek J. Van Booven¹, Brooke A. DeRosa¹, Kara L. Hamilton-Nelson¹, Patrice
8 L. Whitehead¹, Larry D. Adams¹, Takiyah D. Starks², Pedro R. Mena¹, Maryenela Illanes-
9 Manrique^{3,4}, Sergio Tejada¹, Goldie S. Byrd², Mario R. Cornejo-Olivas^{3,4}, Briseida E.
10 Feliciano-Astacio⁵, Karen Nuytemans^{1,6}, Liyong Wang^{1,6}, Margaret A. Pericak-Vance^{1,6},
11 Derek M. Dykxhoorn^{1,6}, Farid Rajabli^{1,6}, Anthony J. Griswold^{1,6}, Juan I. Young^{1,6}, Jeffery
12 M. Vance^{1,6,*}.

13 ¹ John P. Hussman Institute for Human Genomics, University of Miami Miller School of
14 Medicine, Miami, Florida, USA.

15 ² Maya Angelou Center for Health Equity, Wake Forest University, Winston-Salem, North
16 Carolina, USA.

17 ³ Neurogenetics Working Group, Universidad Científica del Sur, Lima, Peru.

18 ⁴ Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima,
19 Peru.

20 ⁵ Universidad Central del Caribe, Bayamon, Puerto Rico, USA.

21 ⁶ Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami
22 Miller School of Medicine, Miami, FL, USA

23 * Corresponding author.

24 **Abstract**

25 Alzheimer's disease (AD) risk differs between population groups, with African Americans
26 and Hispanics being the most affected groups compared to non-Hispanic Whites. Genetic
27 factors contribute significant risk to AD, but the genetic regulatory architectures (GRA)
28 have primarily been studied in Europeans. Many AD genes are expressed in microglia;
29 thus, we explored the impact of genetic ancestry (Amerindian (AI), African (AF), and
30 European (EU)) on the GRA in iPSC-derived microglia from 13 individuals (~4 each with
31 high global ancestry, AD and controls) through ATAC-seq and RNA-seq analyses. We
32 identified several differentially accessible and expressed genes (2 and 10 AD-related,
33 respectively) between ancestry groups. We also found a high correlation between the
34 transcriptomes of iPSC-derived and brain microglia, supporting their use in human
35 studies. This study provides valuable insights into genetically diverse microglia beyond
36 the analysis of AD.

37 **Introduction**

38 Alzheimer's Disease (AD) affects millions of people worldwide with currently ~11% of the
39 US population (65 and older) affected. It is predicted that over 150 million individuals will
40 be affected by AD worldwide by 2050. Pathologically, AD is characterized by β -amyloid
41 (A β) deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated
42 tau as neurofibrillary tangles, all of which lead to neurodegeneration and progressive
43 cognitive impairment¹.

44 African American (AA) and Hispanic (HI) individuals have the highest risk of developing
45 AD, followed by non-Hispanic White (NHW) individuals, likely due to a combination of
46 environmental and genetic factors. Specifically, in the US, AD affects 19% of AA, 14% of
47 Hispanics, and 10% of NHW². Further, over the next 25 years, the greatest growth in AD
48 will be in Africa and South America. Genetic diversity and admixture play important roles
49 in disease risk. African American genomes are typically admixed between African and
50 European ancestries while HI encompass a three-way admixture of European,
51 Amerindian, and African ancestries³. Consistent with this, there are ancestry-related
52 differences in the genetic architecture of AD⁴. Although there are gene variants
53 consistently associated with AD risk across different populations, recent genome-wide
54 association studies (GWAS) have identified several ancestry-specific risk variants,
55 including variants in *ABCA7*⁵⁻⁹, *MPDZ*¹⁰, and *IGF1R*^{5,10}. Thus, it is crucial to investigate
56 ancestry-specific disease mechanisms to understand the differential disease
57 susceptibility in different populations and to facilitate the move toward personalized
58 medicine across ancestries.

59 Most AD-associated and GWAS¹¹⁻¹³ risk loci lie in non-coding, regulatory regions.
60 However, the regulatory architecture of the genome has not been extensively analyzed
61 in diverse populations, with most of the existing data derived from individuals of European
62 ancestry. The different population risk profiles for AD of *APOEe4* carriers of different
63 ancestry present a clear example of how differences in gene regulation can affect AD
64 susceptibility. Rajabli *et al.* demonstrated that the lower risk for AD in carriers of *APOEe4*
65 with African ancestry relative to European ancestry was due to differences in the local

66 genomic ancestry surrounding the *APOEe4* allele ^{14,15}. Subsequently, it was found that
67 European local genomic ancestry carriers of *APOEe4* had higher *APOEe4* expression
68 and more open chromatin accessibility than that of African local ancestry carriers ^{16,17},
69 supporting the recent report that lower expression of *APOEe4* is tied to lower risk ¹⁸ and
70 highlighting ancestral differences in gene regulatory networks.

71 Although much of AD pathogenesis research has focused primarily on neurons, studies
72 suggest a critical role for microglia in the AD disease process. Autopsy studies found an
73 elevated proportion of activated microglia significantly correlated with pathological AD ¹⁹,
74 specifically the total A β load and number of neuritic plaques. Furthermore, a large number
75 of reported AD GWAS genes are expressed in microglia ^{20,21}, further supporting their role
76 in AD pathology. Microglia are the resident immune cells of the central nervous system
77 (CNS) and play key roles in brain development, synaptic pruning, homeostasis, and
78 neuronal network maintenance, among other immune response processes ²².
79 Specifically, in the context of AD, microglia are particularly important for A β plaque
80 clearance, neuroprotection, inflammatory responses, and synaptic homeostasis ²³.

81 Here we report an examination of iPSC-derived microglia from African, European, and
82 Amerindian ancestries, expanding on our previous studies of single nuclei RNA-seq and
83 single nuclei ATAC-seq on postmortem microglia from the frontal cortex on African and
84 European genomes ^{16,17}. Additionally, as iPSC-derived cells have become important
85 models for human neurodegenerative research, we performed a comparison between our
86 iPSC-derived microglia and autopsy samples to determine similarities and differences.
87 While this study is focused on AD-GWAS genes, this data will be useful for all neurological
88 genetic studies of African, European, and Amerindian populations, as well as admixed
89 populations of African American and Hispanic individuals.

90 **Results**

91 **Differentiation and validation of iPSC-derived microglia.**

92 We differentiated thirteen iPSC-derived microglia (iMGL) lines from individuals of diverse
93 ancestral backgrounds, AD cases and controls, males and females, all derived from
94 individuals over 65 years of age (**Table 1**). Specifically, we differentiated 4 Amerindian
95 (AI), 5 European (EU), and 4 African (AF) iMGL lines. Genotyping and whole genome
96 sequencing were performed to 1) identify the global ancestry and 2) confirm the absence
97 of known mutations in AD-related Mendelian genes (*APP*, *ABCA7*, *MAPT*, *PSEN1*,
98 *PSEN2*, *SORL1*, and *TREM2*; **Supplementary Table 1**) that could affect the GRA.

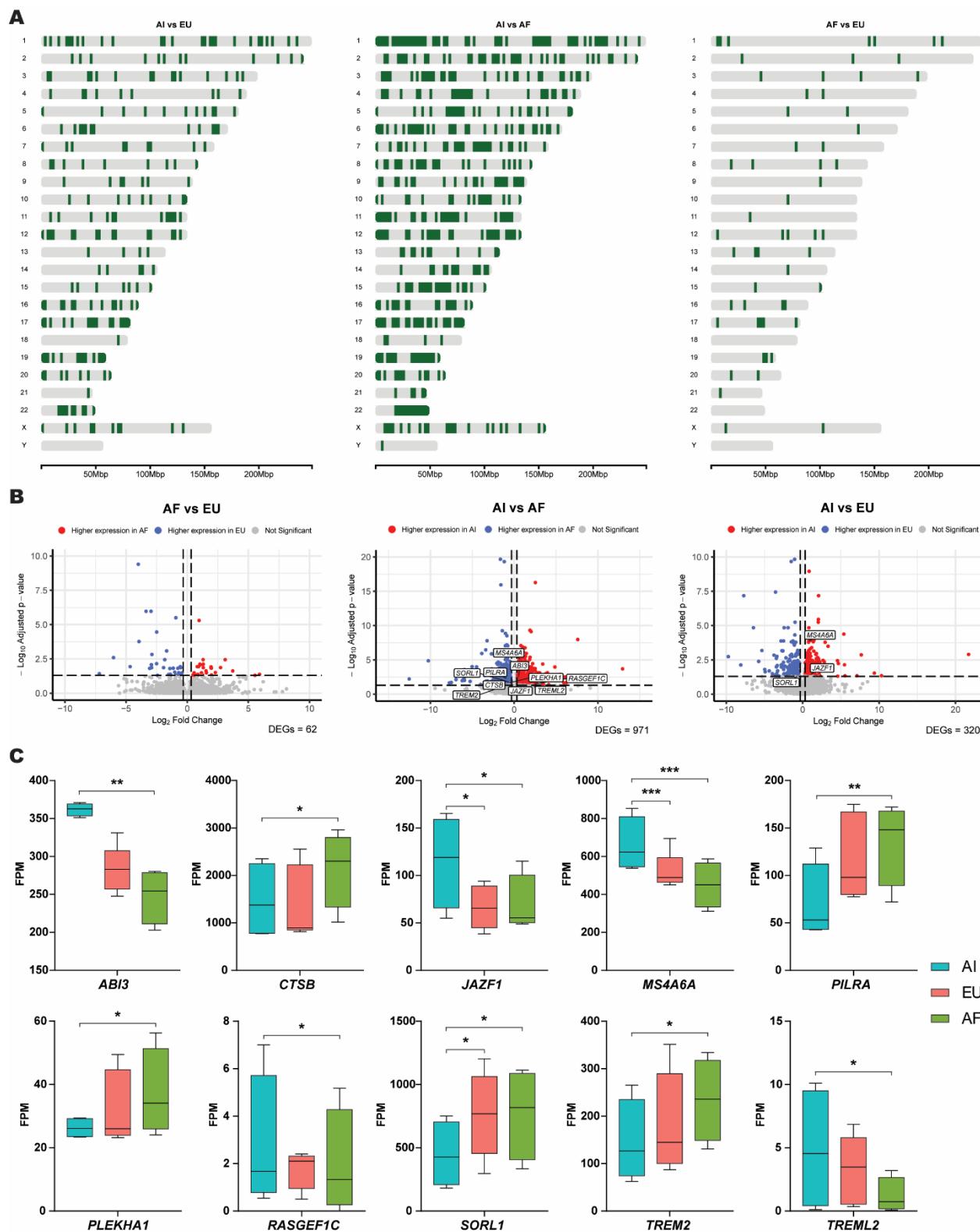
Sample	Global Ancestry	Age	Sex	<i>APOE</i>	Clinical Diagnosis
1	AI	96.3%	86	Male	3/3
2	AI	95.5%	86	Male	3/3
3	AI	100%	71	Female	4/4
4	AI	92.0%	86	Female	3/3
5	EU	100.0%	88	Male	4/4
6	EU	88.6%	76	Female	4/4
7	EU	99.7%	65	Female	3/3
8	EU	93.8%	67	Female	3/3
9	EU	99.5%	72	Female	4/4
10	AF	94.4%	70	Female	4/4
11	AF	96.4%	75	Female	3/3
12	AF	91.5%	84	Female	3/3
13	AF	93.5%	90	Female	3/3

99 **Table 1:** iPSC-derived Microglia cell line information. AI: Amerindian. EU: European. AF: African.
100 AD: Alzheimer's disease. MCI: Mild Cognitive Impairment.

101 All thirteen iMGL cell lines were further validated with microglia cell-specific lineage
102 markers using immunocytochemistry (ICC) (*PU.1* (*SPI1*), *TMEM119*, *TREM2*, and
103 *P2RY12*; **Supplementary Figure 1**). All microglia cell lines expressed these cell-type
104 specific markers, and their transcriptomic profiles correlated well ($r=0.83$) when compared
105 to previously published iMGL using the same differentiation approach ²⁴. In addition, we
106 also verified that these cells did not express markers for other brain cell types (astrocytes,
107 oligodendrocytes, and neurons; **Supplementary Figure 2 and Supplementary Table 2**).

108 **Brain Microglia vs iPSC-derived Microglia.**

109 We compared the transcriptomic profiles of our iMGL to both Fetal Brain and Adult Brain
110 cell types^{17,25}. In both comparisons, we observed the highest correlation between iMGL
111 and Fetal Brain Microglia ($\rho = 0.711$), and Brain Microglia ($\rho = 0.637$) compared to other
112 brain cell types (**Table 2**). This data suggests these iMGL recapitulate well the
113 transcriptomic profiles observed in brain microglia and are a good study model.

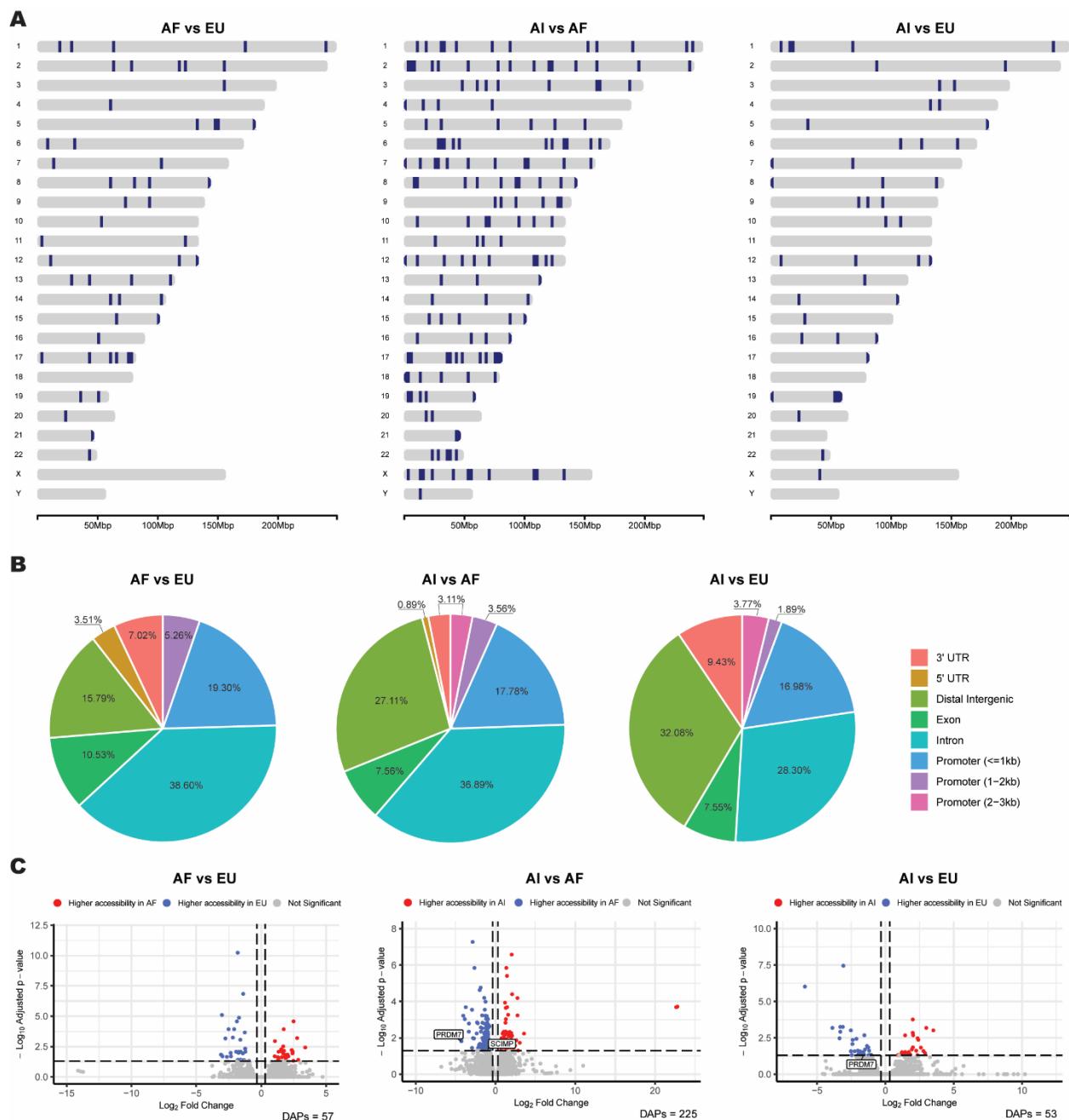

	Cell type	rho	Source
Fetal Brain (Cerebrum)	Microglia	0.711	Cao, J. <i>et al</i> , (2020).
	Astrocytes	0.580	
	Excitatory Neurons	0.599	
	Inhibitory Neurons	0.573	
	Oligodendrocytes	0.563	
	Vascular Endothelial	0.678	
Adult Brain	Microglia	0.637	Griswold, A. and Celis, K. <i>et al</i> , (2021).
	Astrocytes	0.507	
	Excitatory Neurons	0.503	
	Inhibitory Neurons	0.495	
	Oligodendrocytes	0.529	
	OPC	0.509	
	VLMC	0.553	
	Endothelial	0.586	

114 **Table 2:** Correlation analysis between iMGL from our study and other cell types. Note that all
115 thirteen iMGL lines were included for these comparisons and the p-value was below 2.2×10^{-16} for
116 all comparisons. The Adult Brain data is derived from both African and European ancestry.

117 **Gene expression profiles across ancestries.**

118 We detected a total of 21,980 expressed genes across ancestries and performed
119 differential expression pairwise comparisons between ancestries. In total, we observed
120 1,103 unique, differentially expressed genes (DEGs) between ancestries (FDR<0.05).
121 Specifically, we identified 971 DEGs between Amerindian (AI) and AF, 320 between AI
122 and EU ancestries, and 62 DEGs between African (AF) and Europeans (EU) (**Figure 1A**
123 and B; **Supplementary Tables 3, 4, and 5**).

124 We focused on genes previously identified in AD GWAS studies ^{5,26–30}. Of the 121 AD
125 GWAS genes (**Supplementary Table 6**), we identified 10 DEGs between AI and AF
126 (*ABI3*, *CTSB*, *JAZF1*, *MS4A6A*, *PILRA*, *PLEKHA1*, *RASGEF1C*, *SORL1*, *TREM2*, and
127 *TREML2*) and 3 DEGs between AI and EU (*JAZF1*, *MS4A6A*, and *SORL1*). Despite our
128 recent report on brain microglia of European and African ancestries ¹⁷, we did not observe
129 differential expression for AD risk-modifying genes between AF and EU in our iPSC-
130 derived microglia. We observed significantly higher gene expression in AI compared to
131 AF for *ABI3*, *JAZF1* (also compared to EU), and *RASGEF1C*, while AF had significantly
132 higher expression of *CTSB*, *PLEKHA1*, *SORL1*, and *TREM2* compared to AI. Lastly, we
133 observed that EU express significantly higher amounts of *SORL1* compared to AI (**Figure**
134 **1C**).



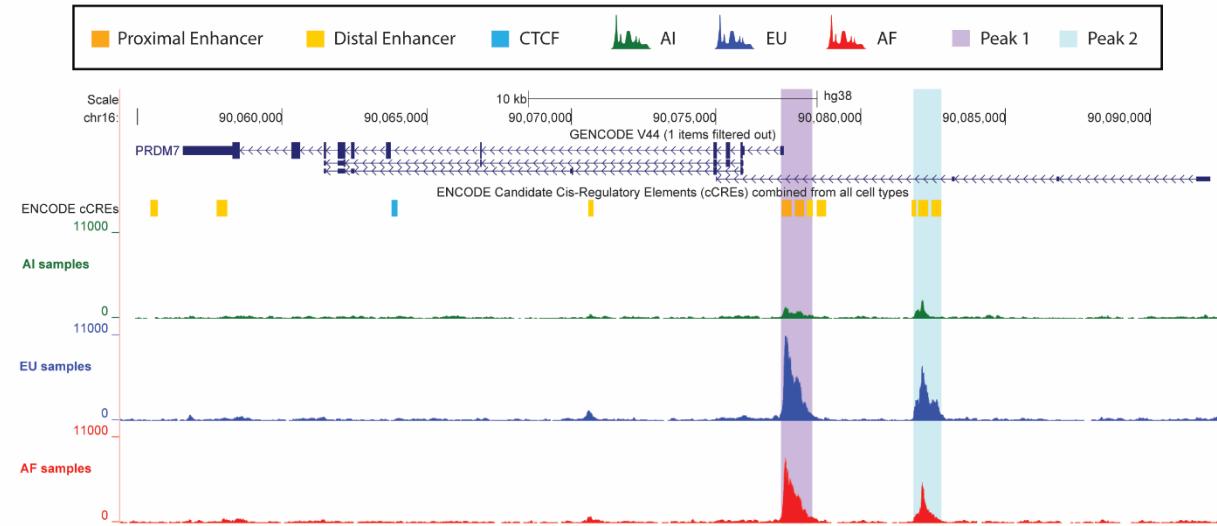
135
136 **Figure 1:** Gene expression across ancestries. **(A)** Chromosome Maps per pair-wise ancestral
137 comparison demonstrating the distribution of differentially expressed genes (DEGs) genome-
138 wide. The dark green color represents DEGs. **(B)** Volcano plots representing gene expression

139 (Log₂ Fold Change) per pair-wise comparison between ancestries (AF vs EU, AI vs AF, and AI vs
140 EU). All 60,656 expressed variables are represented by the circles. The blue and red colored
141 circles represent the genes that are differentially expressed (Fold Change cutoff of ± 1.25 and
142 have an adjusted p-value (FDR) ≤ 0.05). AD risk-modifying genes were highlighted in the white
143 boxes. **(C)** Gene expression (FPM) of AD-related genes that were differentially expressed
144 between ancestries. Box plots represent minimum to maximum FPM values and error bars denote
145 the standard deviation. Asterisks denote adjusted p-value (FDR) with $p \leq 0.05$ (*), $p \leq 0.01$ (**),
146 and $p \leq 0.001$ (***). FPM: Fragments per Million.

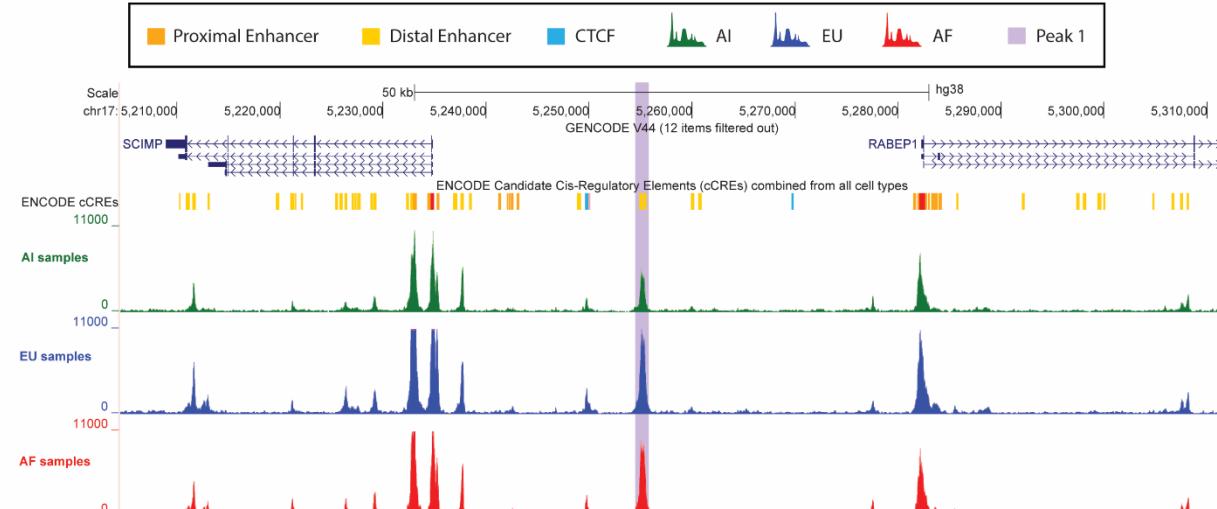
147 **Chromatin accessibility across ancestries.**

148 We measured a total of 171,929 ATAC peaks for all ancestries and performed differential
149 accessibility analysis genome wide. Overall, we observed 225 differentially accessible
150 peaks (DAPs) linked to 208 unique, differentially accessible genes (DAGs) between AI
151 and AF, 57 DAPs (55 DAGs) between AF and EU ancestries, and 53 DAPs (52 DAGs)
152 between AI and EU (**Figure 2; Supplementary Tables 7, 8, and 9**). We observed an
153 enrichment in DAPs between AI and EU in chromosome 17 (12.28%, Chi-square p-
154 value=0.038) and chromosome 13 (7.02%, Chi-square p-value=0.041), which contain
155 only ~3% and ~4% of the genome, respectively. Between AI and AF, we observed a
156 significant enrichment in DAPs in chromosome 17 (9.78%, Chi-square p-value=0.004).
157 Lastly, we observed that DAPs between AI and EU were enriched in chromosome 7
158 (5.66%, Chi-square p-value=0.031; **Figure 2A and Supplementary Table 10**). Overall,
159 we observed that among all DAPs between all three ancestral comparisons, the DAPs lie
160 primarily in intronic regions (~28-39%) followed by distal intergenic (~16-32%) and
161 promoter regions (~23-25%; **Figure 2B; Supplementary Table 11**). Interestingly, in the
162 context of genes associated with AD, we only detected 2 DAGs (*PRDM7* and *SCIMP*)
163 between AI and AF and 1 DAG between AI and EU (*PRDM7*) (**Figure 2C**).

164


165 **Figure 2: Chromatin accessibility across ancestries. (A)** Chromosome Maps per pair-
 166 wise ancestral group comparison demonstrating the distribution of differentially
 167 accessible genes (DAGs) genome-wide. The dark blue color represents DAGs. **(B)** Pie
 168 Charts illustrate the regions of the genome in which the differentially accessible peaks lie
 169 for each of the ancestral comparisons. **(C)** Volcano plots representing chromatin
 170 accessible peaks (\log_2 Fold change) per pair-wise comparison between ancestries (AF
 171 vs EU, AI vs AF, and AI vs EU). All 171,929 peaks are represented by the circles. The

172 blue and red colored circles represent the genes that are differentially accessible (Log_2
173 Fold Change cutoff of ± 0.322 and adjusted p-value (FDR) ≤ 0.05 . AD risk-modifying genes
174 were highlighted in the white boxes.


175 We observed two DAPs in *PRDM7*: one in the proximal enhancer (Peak 1) and another
176 in a distal enhancer (Peak 2; **Figure 3A**), according to ENCODE classification.
177 Specifically, we observed that compared to AI, AF have significantly higher chromatin
178 accessibility in peak 1 while EU have significantly higher accessibility in peak 2.
179 Interestingly, contrary to other samples of the same ancestry group, we observed that
180 sample 4 (AI) has chromatin accessibility in peak 1 while sample 6 (EU) presents visibly
181 less accessibility in both peaks 1 and 2 (**Supplementary Figure 3**). We performed local
182 ancestry (LA) analyses surrounding the *PRDM7* locus ($\pm 500\text{kb}$) to further investigate
183 whether it could explain the differences in chromatin accessibility (**Supplementary Table**
184 **12**). We observed that samples 1-3 of AI global ancestry, have homozygote Amerindian
185 LA for the *PRDM7* locus while sample 4 has African LA for both haplotypes in this locus
186 aligning with the chromatin accessibility observations within the African global ancestry
187 group. While this data suggests that the African LA of sample 4 in the *PRDM7* locus plays
188 a role in and promotes chromatin accessibility, we did not observe any LA differences in
189 the European global ancestry samples (all homozygote EU LA for this locus).

190 In addition, we observed a DAP between AI and AF in a distal intergenic enhancer of
191 *SCIMP* ($\sim 20\text{kb}$; **Figure 3B**). We did not observe LA differences within the same global
192 ancestry group for the *SCIMP* locus (**Supplementary Table 12**) which could explain
193 chromatin accessibility differences seen between global ancestry groups in this region
194 (**Supplementary Figure 4**).

A

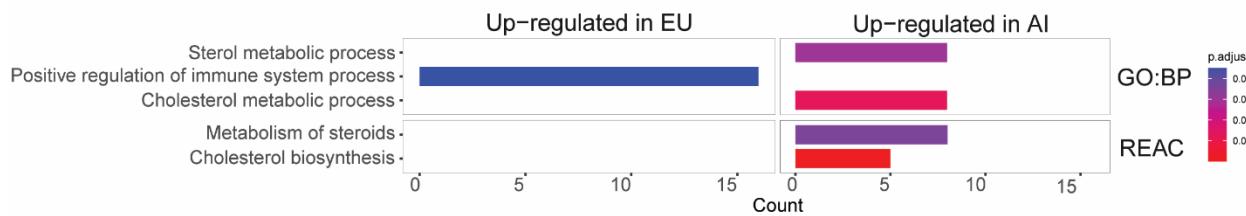
B

195

196 **Figure 3:** Differentially accessible peaks in AD-risk modifying genes across ancestries.


197 **(A)** Differential chromatin accessible peaks in *PRDM7*. **(B)** Differential chromatin
198 accessible peak in a distal intergenic enhancer of *SCIMP*. Note that the peaks represent
199 merged data of all individuals within the same ancestry group.

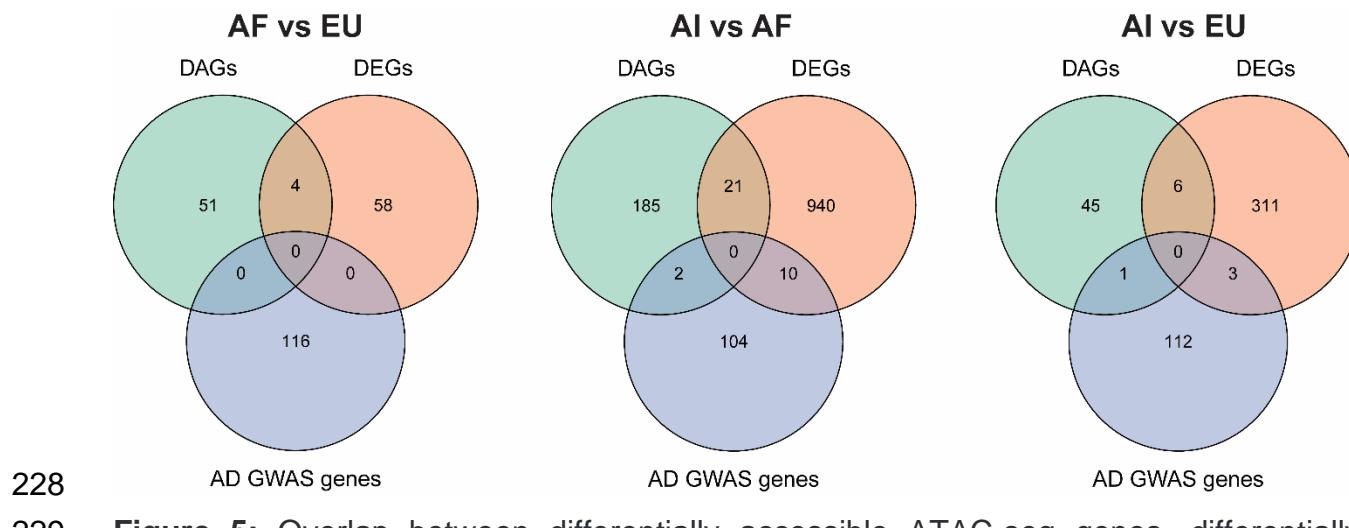
200 **Functional enrichment pathway analysis.**


201 To understand the functional mechanisms that might contribute to the differential AD risk
202 across ancestries, we performed functional enrichment pathway analysis between the
203 three ancestral groups using the g:Profiler tool in R. As expected, given the smaller
204 number of DEGs between EU and AF, we only observed two significant functionally

205 enriched pathways for these ancestries (**Supplementary Table 13**) and none have a
206 known relation to AD. We observed that several DEGs across the other two ancestry
207 group comparisons were involved in immune response, lysosomal activity, sterol and
208 steroid biosynthesis and metabolism, cholesterol biosynthesis and metabolism, lipid
209 transport and metabolism, and phagocytosis - all highly relevant processes in AD
210 pathology (**Figure 4** and **Supplementary Tables 14 and 15**).

A

B



211
212 **Figure 4:** Functional enrichment pathway enrichment across ancestries relevant to AD.
213 Pathway enrichment analyses between **(A)** AI and AF, and **(B)** AI and EU. See
214 **Supplementary Tables 14 and 15**, respectively, for all significantly enriched pathways.

215 **Regulatory architecture in iPSC-derived Microglia.**

216 We studied the overlap between DAGs and DEGs to gain further insights into ancestry-
217 specific regulatory mechanisms. Overall, we observed less than 2% shared DAGs and
218 DEGs when comparing the ancestries (**Figure 5A** and **Supplementary Figure 5**). None
219 of the overlapping DEGs and DAGs were from known AD GWAS genes. We observed
220 that all overlapping DAGs and DEGs between AF and EU, and between AI and EU lay in
221 promoter regions (**Supplementary Tables 16 and 17**, respectively) while there was a
222 wider genomic distribution for those overlapping DAGs and DEGs between AI and AF
223 (**Supplementary Table 18**).

224 However, despite the small overlap between DAGs and DEGs with $p\text{-value} \leq 0.05$, we still
225 observed a correlation between expression and chromatin accessibility in the promoter
226 peaks ($r = 0.53$ (AF vs EU); $r = 0.57$ (AI vs EU); $r = 0.47$ (AI vs AF); **Supplementary Figure**
227 **6**).

228 **Figure 5:** Overlap between differentially accessible ATAC-seq genes, differentially
229 expressed RNA-seq genes, and AD GWAS genes between ancestry-group comparisons.
230

231 **Regulatory differences specific to AD diagnosis, APOE genotype, and Sex.**

232 Between AD cases and controls, we performed differential expression analysis for 12
233 samples (the MCI sample was excluded from this analysis) and observed a total of 7
234 DEGs between non-cognitively impaired individuals and AD samples (**Supplementary**
235 **Table 19**). None were previously identified as AD risk-modifying genes. Differential
236 expression analysis between *APOEe3* and *APOEe4* homozygote carriers revealed 7
237 DEGs (**Supplementary Table 20**). Between the two analyses, we only found one DEG
238 in common, high mobility group AT-hook 2 (*HMGA2*), which was overexpressed in AD
239 and *APOEe4* carriers as compared to controls and *APOEe3* carriers (**Supplementary**
240 **Figure 7**). The sex comparison revealed a total of 116 DEGs between Males and Females
241 (**Supplementary Table 21**), none of which were AD risk-modifying genes or overlapped
242 with any of the DEGs from the two aforementioned analyses. On the chromatin
243 accessibility level, we only observed three DAPs/DAGs between *APOEe3* and *APOEe4*
244 carriers (**Supplementary Table 22**), one DAP/DAG between cases and controls
245 (**Supplementary Table 23**), and 136 DAPs between Males and Females (90 DAGs;
246 **Supplementary Table 24**). None of these peaks have been previously connected to
247 either AD or *APOE* genotype. Lastly, we observed an overlap between eleven sex-
248 specific DEGs and DAGs, most of which are located in chromosomes X and Y.

249 **Ancestry-specific genetic regulatory architecture tool for other Neurological**
250 **diseases.**

251 Despite the lack of ancestry-specific studies for other neurological diseases, ancestry
252 might affect disease risk as observed in AD pathology. To demonstrate the importance of
253 this GRA resource for the study of other neurological diseases in diverse ancestries, we
254 compared both DEGs and DAGs identified for each of the ancestry comparison groups in
255 our study with GWAS genes identified for Autism Spectrum Disorder (ASD)³¹⁻⁴¹,
256 Schizophrenia (SZ)⁴²⁻⁵⁷, Bipolar disorder (BP)^{54,58-64}, Parkinson's Disease (PD)^{65,66},
257 Multiple Sclerosis (MS)^{67,68}, Stroke⁶⁹, Coronary Artery Disease (CAD)⁷⁰⁻⁷⁶, and
258 Hyperlipidemia (HDL)^{77,78} (**Figure 6**).

A

		GWAS								Total
		ASD	SZ	BP	PD	MS	Stroke	CAD	HLD	Total
DEGs	AF vs EU	0	4	0	0	2	0	1	1	62
	AI vs AF	4	57	13	5	22	3	28	7	971
	AI vs EU	1	25	5	2	10	2	8	2	320
	Total Queried	184	1989	482	86	424	87	449	106	

B

		GWAS								Total
		ASD	SZ	BP	PD	MS	Stroke	CAD	HLD	Total
DAGs	AF vs EU	0	7	0	0	0	0	3	0	55
	AI vs AF	2	19	5	1	3	0	4	0	208
	AI vs EU	0	1	1	0	0	0	1	0	52
	Total Queried	184	1989	482	86	424	87	449	106	

260 **Figure 6:** The genetic regulatory architecture in iMGL of diverse ancestries as a useful resource
 261 to study other neurological and associated diseases. We illustrate the overlap between ancestry-
 262 specific **(A)** DEGs and **(B)** DAGs from our study with previously identified GWAS genes for Autism
 263 Spectrum Disorder (ASD), Schizophrenia (SZ), Bipolar disorder (BP), Parkinson's Disease (PD),
 264 Stroke, Multiple Sclerosis (MS), Coronary Artery Disease (CAD), and Hyperlipidemia (HLD). Gray
 265 boxes represent the total number of genes queried.

266 **Discussion**

267 Recent studies have demonstrated that genetic disease associations differ in their
268 strength and location between ancestries^{5,27,28,30}. As the majority of genetic associations
269 are in non-coding regions, it is important to gain insight into the regulatory architecture of
270 other ancestries besides European. Given the key role of microglia in AD pathology, we
271 report, for the first time, epigenetic and disease-relevant differences between these
272 ancestries in iMGL. While we have focused on AD, the microglial regulatory architecture
273 presented here will be applicable to any study of the CNS.

274 Several known AD genes demonstrated ancestral expression differences in the microglia.
275 One of these genes was ABI family member 3 (*ABI3*), differentially expressed between
276 AI and AF in this study and which has been previously found to be associated with AD in
277 African American individuals⁷⁹. Studies have found that loss of *ABI3* function in mice was
278 associated with A β -amyloidosis⁸⁰ and increased *ABI3* expression in microglia has been
279 observed surrounding amyloid plaques in AD brain samples⁸¹. Both studies hypothesize
280 that *ABI3* expression plays a role in microglia migration in the central nervous system and
281 affects disease progression in the absence of a functioning protein. We find that AF have
282 on average the lowest expression of *ABI3*, compared to AI, supporting *ABI3* as an AD
283 risk factor specifically in AF.

284 Another known AD gene, Cathepsin B (*CTSB*), identified here as differentially expressed
285 with higher expression levels in AF compared to AI, has been implicated as a major
286 contributor to cognitive dysfunction and neuropathological changes, such as lysosomal
287 dysfunction, cell death, and inflammatory responses^{82,83}. Interestingly, increased *CTSB*
288 protein expression has been reported in AD patients compared to controls⁸⁴⁻⁸⁶. It was
289 also previously reported that *APOEe4* carriers of AF local ancestry expressed higher
290 *CTSB* in brain microglia compared to those of EU local ancestry surrounding the *APOE*
291 locus¹⁷, similar to the trend observed in our dataset between AF and EU (**Figure 1C**).
292 Again, this could suggest a larger role in AD risk for *CTSB* lying on AF local ancestry in
293 African American individuals. Both of these differences were seen between AF and AI
294 samples, which displayed the largest genomic differences between the three ancestries

295 examined in this study. These are the two populations at either end of the migration
296 spectrum for humans, implying these genetic ancestries had the longest time to evolve
297 independently, creating ancestries who are the least related genetically.

298 In addition, even for genes without significant ancestral differences, the expression and
299 accessibility data here can be useful for further understanding of the locus across
300 population groups. For example, another AD-risk-modifying gene that showed differential
301 gene expression is *MS4A6A*. This gene has been shown to be highly expressed in
302 microglia⁸⁷ and it was previously reported that brain microglia of AF ancestry express
303 less *MS4A6A* compared to those of EU ancestry¹⁷. Despite not reaching significance, we
304 did observe a similar trend towards less *MS4A6A* expression in AF iMGL compared to
305 EU iMGL. *TREM2*, another well-known AD-GWAS gene, is primarily expressed in
306 microglia and has been heavily implicated in AD progression^{88–91}. Interestingly, we found
307 that AI cells express the lowest amount of *TREM2*. Data show that *TREM2* mRNA levels
308 are associated with amyloid burden in cortical regions⁹² and loss-of-function *TREM2*
309 variants are associated with dementia^{93–95}, implying that the lower expression in AI
310 microglia might impact AD risk in this ancestry due to reduced microglia functionality (A β -
311 plaque clearance, *APOE*-mediated functions, immune modulation, and cell survival).

312 The iMGL lines used here varied not only in their genetic ancestry, but also in other
313 variables such as sex, *APOE* genotype, and disease status which could complicate the
314 interpretation of results. Therefore, we also performed differential expression analysis
315 between Males and Females, AD vs controls, and *APOEe3* vs *APOEe4* carriers. Most of
316 our AD patients were *APOEe4* homozygotes as at least 60% of AD patients carry the
317 *APOEe4* allele. Despite observing a small number of DEGs between AD vs Controls and
318 *APOE e3* vs *e4* carriers, we observed that *HMGA2*, a high-mobility protein that modulates
319 transcription and chromatin condensation, was differentially expressed in both
320 comparisons. Specifically, we observed higher gene expression in AD individuals and
321 *APOEe4* carriers. Interestingly, silencing of *HMGA2* has been reported to lead to
322 increased expression of the PI3K/AKT signaling pathway and improved memory and
323 learning ability, reduced brain injury, and decreased oxidative stress and inflammatory
324 reactions in mice⁹⁶. It was also recently reported that downregulation of *HMGA2* in AD

325 patients was associated with increased lifespan ⁹⁷. Thus, together with these findings, our
326 results also suggest and support that increased *HMGA2* expression is a risk factor for
327 AD.

328 We are often taught that chromatin accessibility is a key factor controlling gene
329 expression. Comparing the significantly different changes in gene expression and
330 chromatin accessibility between ancestries provides one opportunity to examine this
331 relationship. Our differential analysis between ancestries revealed greater differences in
332 gene expression (DEG) (approximately 0.3-4.4% of genes depending on the paired
333 comparison) than in chromatin accessibility (DAP/DAG) (0.03-0.13%). This supports the
334 growing understanding of the complexity of our cells in regulating gene expression and
335 that transcription is a much more complex mechanism and higher accessibility is only one
336 factor that could affect gene expression. For example, DNA sequence variability both at
337 binding sites and distal eQTLs can complicate interpretation of the (dis)concordance
338 between gene expression and chromatin accessibility changes. However, as expected,
339 when expanding our sample size by using all our expression and accessibility data, we
340 do find the expected moderate correlation between chromatin accessibility and
341 expression ($r=0.47$ to 0.57).

342 iPSCs and derived cells have become important models for human brain disorders. We
343 demonstrated that their transcriptome has a strong correlation with brain single nuclei
344 RNAseq results ¹⁷. These iPSC-derived microglial cells were grown in the absence of
345 other cell types and with a lack of environmental stressors. The complex gene regulatory
346 networks operating in brain cells reflect the interplay of mostly invariable genetic factors
347 with a dynamic exposome that includes chemical exposures, diet, and diverse stressors
348 across the life course. One could postulate that microglia co-cultured with other CNS cell
349 types or 3D organoids would feature cell-cell interactions that would provide an even
350 stronger correlation with the brain transcriptome.

351 We did not observe any of the currently known African-specific AD GWAS genes ⁵ to be
352 differentially expressed or accessible in the AF ancestry iMGL compared to the AI or EU
353 ancestries. This could be explained by the fact that some of these genes were not
354 expressed in iMGL and others had heterogenous expression levels between the limited

355 number of individuals. The relatively small number of individuals included is the main
356 limitation of this study. This is a general limitation of iPSC-derived cell studies which are
357 expensive and time-consuming. Some of the differential findings reported here may
358 reflect individual heterogeneity rather than ancestry generalizations. Additional iPSC-
359 derived cell lines are needed to fully explore the regulatory architecture and to capture
360 individual variability. Further genomic studies such as Hi-C will enhance these
361 comparisons, particularly for specific genes of interest.

362 **Conclusions**

363 Overall, we provide novel insights into the genetic regulatory architecture of microglia
364 from three ancestry groups: Amerindian, African, and European. Transcriptional and
365 architectural similarity was the most common finding, which is reassuring for future
366 therapeutic interventions. We found a good correlation between the transcriptome of our
367 iMGL and reported brain transcriptomes, as well as concordance for previously reported
368 AD risk genes, supporting ancestral differences. These findings support the role of iMGL
369 as a valuable model for human disease. Our data also supports a role for *HMGA2*
370 expression in *APOEe4* carriers and AD risk. Lastly, this study provides a useful resource
371 for the research community as it provides novel data on genome-wide regulatory
372 architectures of diverse, understudied, genetic groups that could be applied to the study
373 of other brain diseases, particularly those with high microglia involvement.

374 **Methods**

375 **Sample collection.**

376 All samples of AI, EU, and AI cases and controls selected for this study were obtained
377 from the John P. Hussman Institute for Human Genomics (HIHG) at the University of
378 Miami Miller School of Medicine with the exception of the induced pluripotent stem cells
379 derived from samples 7-9 which were obtained through ADRC from the University of
380 California Irvine (UCI). All participants were ascertained using a protocol approved by the
381 appropriate Institutional Review Board. This study received ethical approval from the
382 University of Miami Institutional Review Board (approved protocol #20070307).

383 **Global ancestry ascertainment.**

384 We calculated the admixture proportions using a model-based clustering algorithm, as
385 implemented in the ADMIXTURE software ⁹⁸. A supervised ADMIXTURE analysis was
386 performed at K = 4, incorporating four reference populations: 104 African, 84 European,
387 108 Amerindian, and 102 East Asian individuals from the Human Genome Diversity
388 Project reference populations.

389 **Local ancestry ascertainment.**

390 To infer local ancestry, we first merged our dataset with the Human Genome Diversity
391 Project reference panel, including European, African, and Amerindian reference
392 populations ⁹⁹. Next, we phased the combined data using SHAPEIT4 with default settings,
393 referencing the 1000 Genomes Phase 3 reference panel ^{100,101}. Finally, we estimated
394 local ancestry at each genomic locus using RFMix v2 software ¹⁰².

395 **Whole Genome Sequencing (WGS).**

396 DNA was extracted from all individual cell lines using the QIAamp DNA Blood Kit
397 (QIAGEN, #51104) according to the manufacturer's instructions. 1.5 μ g of DNA was
398 submitted for WGS at the Center for Genome Technology (CGT) Sequencing Core at the
399 HIHG using standard Illumina PCR-free library prep and sequencing protocols on the
400 NovaSeq6000 followed by a bioinformatics pipeline incorporating the GATK Best
401 Practices analysis recommendations ¹⁰³. Individuals were screened for rare coding

402 variants in seven AD-related genes nominated as likely causative by the ADSP Gene
403 Verification Committee and variants in the promoter regions of the ten AD genes that had
404 differential gene expression (**Supplementary Table 1**).

405 **Induced pluripotent stem cell generation.**

406 Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using
407 SepMate-50 tubes with Lymphoprep (STEMCELL Technologies, #85450 and #07801)
408 through density-gradient centrifugation according to the manufacturer's instructions.
409 PBMCs were reprogrammed into induced pluripotent stem cells (iPSCs) using CTS™
410 CytoTune™-iPS 2.1 Sendai Reprogramming Kit (Invitrogen, #A34546) according to the
411 manufacturer's instructions. Reprogrammed cells were tested for Sendai Virus absence,
412 trilineage differentiation capability, immunocytochemistry, STR profiling, karyotyping, and
413 mycoplasma testing as previously described ¹⁰⁴. PBMC isolation and reprogramming was
414 performed at the Hussman Institute for Human Genomics (HIHG) Induced Pluripotent
415 Stem Cell (iPSC) Core at the University of Miami. Validation analyses were performed by
416 the HIHG-iPSC Core and WiCell.

417 **Differentiation of iPSCs to Microglia.**

418 iPSCs were differentiated into hematopoietic progenitor cells (HPCs) and subsequently
419 into Microglia (MGL) as previously described ²⁴ with minor modifications.

420 In brief, feeder-free iPSCs were cultured and expanded in StemFlex medium (Gibco™,
421 #A3349401) in vitronectin (10µg/ml, Gibco™, #A31804) coated cell culture-treated plates.
422 On day -1, iPSCs were passaged with 0.5M EDTA onto Matrigel-coated (Corning,
423 #354277) 12-well plates at a density of 10-20 aggregates/cm² (>50µm in size). On day 0,
424 if 4-10 colonies/cm² adhered, the StemFlex medium was replaced with 1ml/well of HPC
425 medium A (Basal medium with supplement A (1:200), STEMCELL Technologies,
426 #05310). Half-medium change was carried out 48 hours later. On day 3, HPC medium A
427 was replaced in full by medium B (Basal medium with supplement B at 1:200). Half-
428 medium changes of medium B were performed on days 5, 7, and 10. HPCs were
429 harvested on day 12.

430 On day 0 of microglia differentiation (day 12 of HPC differentiation), HPCs were plated at
431 22,000 cells/cm² onto a Matrigel-coated 6-well plate containing 2ml of Microglia
432 differentiation medium (Basal Medium with supplement 1 and 2 at 1:9 and 1:225,
433 respectively; STEMCELL Technologies, #100-0019). Cells were supplemented with fresh
434 half-medium every other day from day 0 to day 10. On day 12, cells were collected and
435 centrifuged at 300 x g for 5 minutes. The cell pellet was resuspended in 2ml/well of fresh
436 Microglia differentiation medium and transferred to a freshly Matrigel-coated 6-well plate.
437 Cells were supplemented with 1ml of media every second day until day 22. Microglia cells
438 were collected, resuspended in 2ml of Microglia maturation medium (Basal Medium with
439 supplement 1 (1:9), and 2 and 3 (1:225); STEMCELL Technologies, #100-0020), and re-
440 plated for assays into new Matrigel-coated 6-well plates. Lastly, on day 26, microglia were
441 harvested for immunocytochemistry (ICC), bulk RNA-, and ATAC-sequencing.

442 **RNA isolation and sequencing.**

443 Total RNA was isolated from 1 million microglial cells per cell line using the RNeasy Mini
444 kit (QIAGEN, #74104) according to the manufacturer's instructions. Suspension cells
445 were collected and centrifuged for 5 minutes at 300 x g. 600 μ l of RLT buffer (including β -
446 Mercaptoethanol at 1/100) was used to collect semi-attached microglia and subsequently
447 resuspend the cell pellet from the previous step. Cells were briefly vortexed for 1 minute
448 and homogenized by loading the lysate into a QIAshredder spin column (QIAGEN,
449 #79656) and centrifuging for 2 minutes at full speed. The homogenized lysate was
450 resuspended in 1 volume of 70% ethanol and transferred to a RNeasy spin column and
451 centrifuged for 30 seconds at 8,000 x g. 350 μ l of Buffer RW1 was added to the same spin
452 column and centrifuged for 15 seconds at 8,000 x g. Following this, 80 μ l of DNase I
453 incubation mix (70 μ l of RDD buffer and 10 μ l of DNase I, QIAGEN, #79254) were added
454 to the spin column and incubated at RT for 15 minutes. Buffer RW2 (350 μ l) was
455 transferred to the spin column and centrifuged for 15 seconds at 8,000 x g. 500 μ l of RPE
456 buffer were loaded into the column followed by a centrifugation step of 30 seconds at
457 8,000 x g. The previous step was repeated once again but centrifuged for 2 minutes at
458 8,000 x g to ensure all residual ethanol was removed. The RNeasy spin column was
459 transferred to a new 1.5ml collection tube and 30 μ l of RNase-free water were added to

460 the column to elute the bound RNA. Lastly, the spin column was centrifuged at 8,000 x g
461 for 1 minute and then stored at -80°C until further used. The RNA concentration and
462 quality were assessed using the Agilent Tapestation (Agilent Technologies) to determine
463 the RNA integrity number (RIN).

464 **Bulk RNA sequencing.**

465 RNA libraries were prepared at the John P. Hussman Institute for Human Genomics
466 Center for Genome Technology (University of Miami, FL) from ribodepleted total RNA. In
467 brief, total RNA was prepared with the TECAN Universal Plus Total RNA-seq with
468 NuQuant® Human AnyDeplete according to the manufacturer's instructions, using 60ng
469 via QuBit and 16 PCR cycles. The normalized libraries were sequenced as paired end
470 100bp reactions targeting 30 million reads/sample on the Illumina NovaSeq 6000
471 (Illumina, CA). The raw FASTQ files were processed through an in-house bioinformatics
472 pipeline including adapter trimming by TrimGalore (v0.6.10)
473 (<https://github.com/FelixKrueger/TrimGalore>), alignment to the GRCh38 human
474 reference genome with STAR (v2.5.0a)¹⁰⁵, and gene counts quantified against the
475 GENCODEv35 gene annotation release using the GeneCounts module implemented in
476 STAR.

477 **Bulk ATAC-sequencing.**

478 Cultured cells were treated with DNase I (200U/mL; QIAGEN, #79254) at 37°C for 30
479 minutes. The treated cells were then harvested and pelleted at 400 x g for 5 minutes at
480 4°C. The cell pellet was carefully washed in cold 1x PBS. The cells were re-pelleted as
481 described before and then lysed in 100µl of lysis buffer (10mM Tris-HCl pH 7.4, 10mM
482 NaCl, 3mM MgCl₂, 0.1% NP-40, 0.1% Tween-20, and 0.01% Digitonin) on ice for 5
483 minutes. Next, the lysed microglia were washed in 1ml of wash buffer (10mM Tris-HCl pH
484 7.4, 10mM NaCl, 3mM MgCl₂, and 0.1% Tween-20) and 100,000 nuclei were pelleted at
485 500 x g for 10 minutes at 4°C. The nuclei were incubated at 37°C for 30 minutes at
486 1,000rpm in 100µl of Transposition mix (2x Tagment DNA Buffer, 1x PBS, 0.1% v/v
487 Tween-20, 0.01% v/v Digitonin, and 5µl of Tagment DNA Enzyme 1). The transposed
488 DNA was purified using the MinElute PCR Purification kit (QIAGEN, #28004) and eluted

489 in 10 μ l of Elution Buffer. The purified transposed DNA was combined with 25 μ M of
490 Custom Adapter 1 (no primer mix), 25 μ M of Custom Adapter 2 (barcode), and NEBNext
491 High-Fidelity 2x PCR Master Mix and ran on a thermocycler with the following conditions:
492 72°C for 3 minutes, 98°C for 30 seconds, and 5 cycles of 98°C for 30 seconds, 63°C for
493 30 seconds, and 72°C for 1 minute. The additional number of cycles required was
494 determined as described in ¹⁰⁶ and ran with the same conditions abovementioned. The
495 amplified libraries were purified with the MinElute PCR Purification kit and eluted in 20 μ l
496 of Nuclease-free water. Library traces were assessed by the Agilent Tapestation and
497 when necessary, size selection purification was carried out using the AMPure XP beads
498 (Beckman Coulter, #A63880) according to the manufacturer's instructions. See
499 **Supplementary Table 26** for full adapter sequences. Libraries were sequenced in paired
500 end 100bp reactions targeting 30 million reads/sample on the Illumina NovaSeq 6000.
501 The ATAC-seq data were preprocessed (trimmed, aligned, filtered, and quality-controlled)
502 and analyzed using an adapted version of the ENCODE ATAC-seq pipeline. In brief,
503 adapters and poor-quality bases were trimmed using TrimGalore (v0.6.10)
504 (<https://github.com/FelixKrueger/TrimGalore>). Reads were aligned to the CRCh38 human
505 reference genome with bowtie (v2.2.2) ¹⁰⁷, duplicates marked with Picard (v2.1.1)
506 (<https://broadinstitute.github.io/picard/>), and peaks called using MACS2 (v2.2.7.1) ¹⁰⁷.
507 Peaks were merged across all samples using an overlapping peak/union strategy to
508 obtain a list of peaks across all samples. Counts per peak were calculated from individual
509 aligned BAM files using htseq-count (v1.99.2) using the un-stranded option.

510 **Differential expression and accessibility analyses.**

511 Differential expression and accessibility analyses were carried out across the different
512 ancestral populations using DESeq2 (version 3.17) package ¹⁰⁸ in R language
513 environment (version 4.2.1). We used DESeq2 default parameters and controlled for
514 batch differences (design = ~batch + ancestry). Three contrasts were run: AF vs EU, AI
515 vs AF, and AI vs EU. Genes that were significantly expressed and/or accessible were
516 identified with an FDR adjusted p-value of <0.05.

517 **Functional enrichment pathway analysis.**

518 Functional enrichment analysis was done with the R library gprofiler2¹⁰⁹. We extracted
519 gene symbols of DEG between ancestries (FDR adjusted p-value of <0.05), and the
520 function *gost* was used to perform the gene set enrichment analysis for each ancestry
521 comparison using the Gene Ontology, KEGG pathways, and REACTOME databases.
522 Multiple comparison correction of enrichment scores was done with the 'gSCS' method.
523 Pathways were considered significant if p-adj < 0.05. Results were manually curated to
524 show known pathways related to AD pathogenesis, and the corresponding full lists of
525 enriched terms are described in **Supplementary Tables 13, 14, and 15**.

526 **ATAC peak annotation**

527 The function *annotatePeak* from Chipseeker R library¹¹⁰ was used to annotate peaks
528 with the nearest gene and genomic region. The annotation was done at the transcript
529 level using the GENCODE V44 database. The distance of ± 3 kb from the transcription
530 start sites (TSS) was used to assign a peak to a gene promoter-TSS, and the following
531 priority was defined for annotation: "Promoter", "5UTR", "3UTR", "Exon", "Intron",
532 "Downstream", "Intergenic".

533 **Immunocytochemistry (ICC) and fluorescence imaging.**

534 Cultured microglia cells were fixed with 4% formaldehyde for 15 minutes at RT and
535 washed with 1x PBS. Cells were permeabilized for 10 mins with PBS-T solution (0.1%
536 Triton X and 1x PBS). The microglia cells were then incubated in blocking buffer (1x PBS
537 and 5% normal donkey serum) for 1 hour at RT. The blocking buffer was removed and
538 incubated in the primary antibody solution (1% donkey serum, 0.1% Tween-20, 0.01%
539 Sodium Azide, and target primary antibody) at 4°C overnight. The following day, the
540 primary antibody solution was removed, and the cells were washed three times with 1x
541 PBS. Following this, the secondary antibody solution (1% donkey serum, 0.1% Tween-
542 20, 0.01% Sodium Azide, and secondary antibody) were added to each well, and cells
543 were incubated for 1 hour at RT in the dark. Lastly, the secondary antibody solution was
544 removed, and cells were washed thrice with PBS. The cells were washed with 1x PBS
545 and incubated with DAPI (NucBlue Fixed Cell Stain). Images were acquired using a

546 Keyence Microscope BZ-X800. See Supplementary Table 25 for details on all antibodies
547 used for ICC analysis.

548 **Correlation analyses between differential expression and differential accessibility**

549 Pearson correlation (r) was used to evaluate the relationship between gene expression
550 and corresponding promoter accessibility. First, DEGs between ancestries with
551 $|\log_2(\text{FoldChange})| \geq 1$ and adjusted p-values ≤ 0.1 were considered for the analysis.
552 Then, promoter peaks (distance of ± 3 kb from TSS) annotated to those DEGs were
553 considered for correlation analysis.

554 **Correlation analyses between iPSC-derived Microglia and other cell types.**

555 Correlation analyses between iMGL and Brain cell types were performed using Spearman
556 correlation analyses. Specifically, we calculated the average expression of all thirteen
557 iPSC-derived Microglia (iMGL) cell lines included in this study for each gene. Note that
558 genes with an expression value of 0 were excluded as well as sex-related (Chromosomes
559 X and Y) and mitochondrial genes. Following this, genes were ranked in descending order
560 by expression level for both iMGL and brain cell types, and only genes present in both
561 comparison datasets were included in the Spearman correlation test.

562 **Data Availability**

563 All data generated or analyzed during this study are included in this published article and
564 its supplementary information files. Sequencing files can be requested to the
565 corresponding author.

566 **Acknowledgments**

567 This study was supported by the National Institute on Aging (grant numbers U01-
568 AG072579, RF1-AGO59018, U01-AG066767, U01-AG052410, R56-AG072547, R01-
569 AG070864).

570 We acknowledge the Center for Genome Technology (CGT) from the John P. Hussman
571 Institute for Human Genomics (HIHG) from the University of Miami, Miller School of
572 Medicine for the genomic and data analyses. We thank Dr. Lily Wang for meaningful data
573 discussions and express our gratitude to the numerous participants, researchers, and
574 staff involved for their invaluable contributions to the present study.

575 **Author contributions**

576 S.M., D.M.D, A.J.G., J.I.Y., and J.M.V. conceptualized the project and planned
577 experiments. S.M. performed the experiments. S.M., L.B.N., and A.J.G. analyzed the
578 data. A.M.R., and L.C., contributed to the performance of experiments. B.DR. assisted
579 with iPSC reprogramming. J.R. and F.R. performed local and global ancestry analyses.
580 D.V.B. and L.B.N. performed bioinformatic analyses. K.H.-N., P.W., L.A., T.S., P.M., M.I.-
581 M., S.T., G.B., M.C.-O., B.F.-A., and M.A.P.-V. contributed to sample collection and
582 processing. S.M., L.B.N., A.M.R., B.DR., K.N., L.W., D.M.D., F.R., A.J.G., J.I.Y., and
583 J.M.V. discussed the data results. S.M., L.B.N., F.R., A.J.G., D.M.D., J.I.Y., J.M.V. wrote
584 the manuscript. All authors read and approved the final manuscript.

585 **Materials and Correspondence**

586 Correspondence to Jeffery M. Vance (jvance@miami.edu)

587 **References**

- 588 1. Knopman, D. S. *et al.* Alzheimer disease. *Nature Reviews Disease Primers* 2021
589 7:17, 1–21 (2021).
- 590 2. Rajan, K. B. *et al.* Population estimate of people with clinical Alzheimer's disease
591 and mild cognitive impairment in the United States (2020–2060). *Alzheimer's &*
592 *Dementia* 17, 1966–1975 (2021).
- 593 3. Bryc, K., Durand, E. Y., Macpherson, J. M., Reich, D. & Mountain, J. L. The
594 Genetic Ancestry of African Americans, Latinos, and European Americans across
595 the United States. *Am J Hum Genet* 96, 37 (2015).
- 596 4. Reitz, C., Pericak-Vance, M. A., Foroud, T. & Mayeux, R. A global view of the
597 genetic basis of Alzheimer disease. *Nature Reviews Neurology* 2023 19:5 19,
598 261–277 (2023).
- 599 5. Kunkle, B. W. *et al.* Novel Alzheimer Disease Risk Loci and Pathways in African
600 American Individuals Using the African Genome Resources Panel: A Meta-
601 analysis. *JAMA Neurol* 78, 102–113 (2021).
- 602 6. Reitz, C. *et al.* Variants in the ATP-Binding Cassette Transporter (ABCA7),
603 Apolipoprotein E ε4, and the Risk of Late-Onset Alzheimer Disease in African
604 Americans. *JAMA* 309, 1483–1492 (2013).
- 605 7. Cukier, H. N. *et al.* ABCA7 frameshift deletion associated with Alzheimer disease
606 in African Americans. *Neurol Genet* 2, (2016).
- 607 8. Talebi, M. *et al.* ABCA7 and EphA1 Genes Polymorphisms in Late-Onset
608 Alzheimer's Disease. *Journal of Molecular Neuroscience* 70, 167–173 (2020).
- 609 9. Vardarajan, B. N. *et al.* Rare coding mutations identified by sequencing of
610 Alzheimer disease genome-wide association studies loci. *Ann Neurol* 78, 487–
611 498 (2015).
- 612 10. Ray, N. R. *et al.* Extended genome-wide association study employing the African
613 genome resources panel identifies novel susceptibility loci for Alzheimer's disease
614 in individuals of African ancestry. *Alzheimers Dement* (2024)
615 doi:10.1002/ALZ.13880.
- 616 11. Giral, H., Landmesser, U. & Kratzer, A. Into the Wild: GWAS Exploration of Non-
617 coding RNAs. *Front Cardiovasc Med* 5, 181 (2018).
- 618 12. Mirza, A. H., Kaur, S., Brorsson, C. A. & Pociot, F. Effects of GWAS-Associated
619 Genetic Variants on lncRNAs within IBD and T1D Candidate Loci. *PLoS One* 9,
620 e105723 (2014).
- 621 13. Andrews, S. J. *et al.* The complex genetic architecture of Alzheimer's disease:
622 novel insights and future directions. *EBioMedicine* 90, 104511 (2023).

623 14. Rajabli, F. *et al.* A locus at 19q13.31 significantly reduces the ApoE ϵ 4 risk for
624 Alzheimer's Disease in African Ancestry. *PLoS Genet* **18**, e1009977 (2022).

625 15. Rajabli, F. *et al.* Ancestral origin of ApoE ϵ 4 Alzheimer disease risk in Puerto
626 Rican and African American populations. *PLoS Genet* **14**, e1007791 (2018).

627 16. Celis, K. *et al.* Ancestry-related differences in chromatin accessibility and gene
628 expression of APOE ϵ 4 are associated with Alzheimer's disease risk. *Alzheimer's & Dementia* **19**, 3902–3915 (2023).

630 17. Griswold, A. J. *et al.* Increased APOE ϵ 4 expression is associated with the
631 difference in Alzheimer's disease risk from diverse ancestral backgrounds.
632 *Alzheimer's & Dementia* **17**, 1179–1188 (2021).

633 18. Vance, J. M. *et al.* Report of the APOE4 National Institute on Aging/Alzheimer
634 Disease Sequencing Project Consortium Working Group: Reducing APOE4 in
635 Carriers is a Therapeutic Goal for Alzheimer's Disease. *Ann Neurol* (2024)
636 doi:10.1002/ANA.26864.

637 19. Felsky, D. *et al.* Neuropathological correlates and genetic architecture of
638 microglial activation in elderly human brain. *Nature Communications* **2019** *10*:1
639 **10**, 1–12 (2019).

640 20. Nott, A. *et al.* Brain cell type–specific enhancer–promoter interactome maps and
641 disease-risk association. *Science* (1979) **366**, 1134–1139 (2019).

642 21. Novikova, G. *et al.* Integration of Alzheimer's disease genetics and myeloid
643 genomics identifies disease risk regulatory elements and genes. *Nature Communications* **2021** *12*:1 **12**, 1–14 (2021).

645 22. Colonna, M. & Butovsky, O. Microglia Function in the Central Nervous System
646 During Health and Neurodegeneration. *Annu Rev Immunol* **35**, 441 (2017).

647 23. Gao, C., Jiang, J., Tan, Y. & Chen, S. Microglia in neurodegenerative diseases:
648 mechanism and potential therapeutic targets. *Signal Transduction and Targeted
649 Therapy* **2023** *8*:1 **8**, 1–37 (2023).

650 24. McQuade, A. *et al.* Development and validation of a simplified method to generate
651 human microglia from pluripotent stem cells. *Mol Neurodegener* **13**, 1–13 (2018).

652 25. Cao, J. *et al.* A human cell atlas of fetal gene expression. *Science* (1979) **370**,
653 (2020).

654 26. Lambert, J. C. *et al.* Meta-analysis of 74,046 individuals identifies 11 new
655 susceptibility loci for Alzheimer's disease. *Nat Genet* **45**, 1452 (2013).

656 27. Kunkle, B. W. *et al.* Genetic meta-analysis of diagnosed Alzheimer's disease
657 identifies new risk loci and implicates A β , tau, immunity and lipid processing.
658 *Nature Genetics* **2019** *51*:3 **51**, 414–430 (2019).

659 28. Bellenguez, C. *et al.* New insights into the genetic etiology of Alzheimer's disease
660 and related dementias. *Nature Genetics* 2022 **54**:454, 412–436 (2022).

661 29. Wightman, D. P. *et al.* A genome-wide association study with 1,126,563
662 individuals identifies new risk loci for Alzheimer's disease. *Nature Genetics* 2021
663 **53**:953, 1276–1282 (2021).

664 30. Lake, J. *et al.* Multi-ancestry meta-analysis and fine-mapping in Alzheimer's
665 disease. *Mol Psychiatry* (2023) doi:10.1038/s41380-023-02089-w.

666 31. Anney, R. *et al.* Individual common variants exert weak effects on the risk for
667 autism spectrum disorders. *Hum Mol Genet* **21**, 4781–4792 (2012).

668 32. Anney, R. *et al.* A genome-wide scan for common alleles affecting risk for autism.
669 *Hum Mol Genet* **19**, 4072–4082 (2010).

670 33. Weiss, L. A. *et al.* A genome-wide linkage and association scan reveals novel loci
671 for autism. *Nature* 2009 **461**:7265461, 802–808 (2009).

672 34. Ma, D. *et al.* A Genome-wide Association Study of Autism Reveals a Common
673 Novel Risk Locus at 5p14.1. *Ann Hum Genet* **73**, 263–273 (2009).

674 35. Matoba, N. *et al.* Common genetic risk variants identified in the SPARK cohort
675 support DDHD2 as a candidate risk gene for autism. *Translational Psychiatry*
676 2020 **10**:110, 1–14 (2020).

677 36. Liu, X. *et al.* Genome-wide Association Study of Autism Spectrum Disorder in the
678 East Asian Populations. *Autism Research* **9**, 340–349 (2016).

679 37. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder
680 highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
681 *Mol Autism* **8**, 21 (2017).

682 38. Grove, J. *et al.* Identification of common genetic risk variants for autism spectrum
683 disorder. *Nature Genetics* 2019 **51**:351, 431–444 (2019).

684 39. Wu, Y. *et al.* Multi-trait analysis for genome-wide association study of five
685 psychiatric disorders. *Translational Psychiatry* 2020 **10**:110, 1–11 (2020).

686 40. Kuo, P. H. *et al.* Genome-Wide Association Study for Autism Spectrum Disorder
687 in Taiwanese Han Population. *PLoS One* **10**, (2015).

688 41. Almandil, N. B. *et al.* Integration of Transcriptome and Exome Genotyping
689 Identifies Significant Variants with Autism Spectrum Disorder. *Pharmaceuticals*
690 **15**, (2022).

691 42. Lam, M. *et al.* Comparative genetic architectures of schizophrenia in East Asian
692 and European populations. *Nature Genetics* 2019 **51**:1251, 1670–1678 (2019).

693 43. Ripke, S. *et al.* Biological insights from 108 schizophrenia-associated genetic loci.
694 *Nature* 2014 **511**:7510 **511**, 421–427 (2014).

695 44. Ripke, S. *et al.* Genome-wide association analysis identifies 13 new risk loci for
696 schizophrenia. *Nature Genetics* 2013 **45**:10 **45**, 1150–1159 (2013).

697 45. Betcheva, E. T. *et al.* Whole-genome-wide association study in the Bulgarian
698 population reveals HHAT as schizophrenia susceptibility gene. *Psychiatr Genet*
699 **23**, 11–19 (2013).

700 46. Goes, F. S. *et al.* Genome-wide association study of schizophrenia in Ashkenazi
701 Jews. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics*
702 **168**, 649–659 (2015).

703 47. Stefansson, H. *et al.* Common variants conferring risk of schizophrenia. *Nature*
704 2009 **460**:7256 **460**, 744–747 (2009).

705 48. Aberg, K. A. *et al.* A Comprehensive Family-Based Replication Study of
706 Schizophrenia Genes. *JAMA Psychiatry* **70**, 573–581 (2013).

707 49. Levinson, D. F. *et al.* Genome-wide association study of multiplex schizophrenia
708 pedigrees. *American Journal of Psychiatry* **169**, 963–973 (2012).

709 50. Li, Z. *et al.* Genome-wide association analysis identifies 30 new susceptibility loci
710 for schizophrenia. *Nature Genetics* 2017 **49**:11 **49**, 1576–1583 (2017).

711 51. Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology
712 in schizophrenia. *Nature* 2022 **604**:7906 **604**, 502–508 (2022).

713 52. Pardiñas, A. F. *et al.* Common schizophrenia alleles are enriched in mutation-
714 intolerant genes and in regions under strong background selection. *Nature*
715 *Genetics* 2018 **50**:3 **50**, 381–389 (2018).

716 53. Liu, J. *et al.* Genome-wide association study followed by trans-ancestry meta-
717 analysis identify 17 new risk loci for schizophrenia. *BMC Med* **19**, 1–15 (2021).

718 54. Blokland, G. A. M. *et al.* Sex-Dependent Shared and Nonshared Genetic
719 Architecture Across Mood and Psychotic Disorders. *Biol Psychiatry* **91**, 102–117
720 (2022).

721 55. O'Donovan, M. C. *et al.* Identification of loci associated with schizophrenia by
722 genome-wide association and follow-up. *Nature Genetics* 2008 **40**:9 **40**, 1053–
723 1055 (2008).

724 56. Athanasiu, L. *et al.* Gene variants associated with schizophrenia in a Norwegian
725 genome-wide study are replicated in a large European cohort. *J Psychiatr Res* **44**,
726 748–753 (2010).

727 57. Kirov, G. *et al.* A genome-wide association study in 574 schizophrenia trios using
728 DNA pooling. *Molecular Psychiatry* 2009 **14**:8 **14**, 796–803 (2008).

729 58. Stahl, E. A. *et al.* Genome-wide association study identifies 30 loci associated
730 with bipolar disorder. *Nature Genetics* 2019 51:5 **51**, 793–803 (2019).

731 59. Wu, Y. *et al.* Multi-trait analysis for genome-wide association study of five
732 psychiatric disorders. *Translational Psychiatry* 2020 10:1 **10**, 1–11 (2020).

733 60. Ikeda, M. *et al.* A genome-wide association study identifies two novel
734 susceptibility loci and trans population polygenicity associated with bipolar
735 disorder. *Molecular Psychiatry* 2018 23:3 **23**, 639–647 (2017).

736 61. Mullins, N. *et al.* Genome-wide association study of more than 40,000 bipolar
737 disorder cases provides new insights into the underlying biology. *Nature Genetics*
738 2021 53:6 **53**, 817–829 (2021).

739 62. Cichon, S. *et al.* Genome-wide Association Study Identifies Genetic Variation in
740 Neurocan as a Susceptibility Factor for Bipolar Disorder. *The American Journal of*
741 *Human Genetics* **88**, 372–381 (2011).

742 63. Li, H. J. *et al.* Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder
743 Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-
744 analysis. *JAMA Psychiatry* **78**, 320–330 (2021).

745 64. Bigdeli, T. B. *et al.* Genome-Wide Association Studies of Schizophrenia and
746 Bipolar Disorder in a Diverse Cohort of US Veterans. *Schizophr Bull* **47**, 517–529
747 (2021).

748 65. Nalls, M. A. *et al.* Identification of novel risk loci, causal insights, and heritable risk
749 for Parkinson's disease: a meta-analysis of genome-wide association studies.
750 *Lancet Neurol* **18**, 1091–1102 (2019).

751 66. Pan, H. *et al.* Genome-wide association study using whole-genome sequencing
752 identifies risk loci for Parkinson's disease in Chinese population. *npj Parkinson's*
753 *Disease* 2023 9:1 **9**, 1–11 (2023).

754 67. Beecham, A. H. *et al.* Analysis of immune-related loci identifies 48 new
755 susceptibility variants for multiple sclerosis. *Nature Genetics* 2013 45:11 **45**,
756 1353–1360 (2013).

757 68. Patsopoulos, N. A. *et al.* Multiple Sclerosis Genomic Map implicates peripheral
758 immune cells & microglia in susceptibility. *Science* **365**, (2019).

759 69. Mishra, A. *et al.* Stroke genetics informs drug discovery and risk prediction across
760 ancestries. *Nature* 2022 611:7934 **611**, 115–123 (2022).

761 70. Tcheandjieu, C. *et al.* Large-scale genome-wide association study of coronary
762 artery disease in genetically diverse populations. *Nature Medicine* 2022 28:8 **28**,
763 1679–1692 (2022).

764 71. Koyama, S. *et al.* Population-specific and trans-ancestry genome-wide analyses
765 identify distinct and shared genetic risk loci for coronary artery disease. *Nature Genetics*
766 2020 52:11 **52**, 1169–1177 (2020).

767 72. Klarin, D. *et al.* Genetic analysis in UK Biobank links insulin resistance and
768 transendothelial migration pathways to coronary artery disease. *Nature Genetics*
769 2017 49:9 **49**, 1392–1397 (2017).

770 73. Nelson, C. P. *et al.* Association analyses based on false discovery rate implicate
771 new loci for coronary artery disease. *Nature Genetics* 2017 49:9 **49**, 1385–1391
772 (2017).

773 74. Howson, J. M. M. *et al.* Fifteen new risk loci for coronary artery disease highlight
774 arterial-wall-specific mechanisms. *Nature Genetics* 2017 49:7 **49**, 1113–1119
775 (2017).

776 75. Van Der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an
777 expanded view on the genetic architecture of coronary artery disease. *Circ Res*
778 122, 433–443 (2018).

779 76. Verweij, N., Eppinga, R. N., Hagemeijer, Y. & Van Der Harst, P. Identification of
780 15 novel risk loci for coronary artery disease and genetic risk of recurrent events,
781 atrial fibrillation and heart failure. *Scientific Reports* 2017 7:1 **7**, 1–9 (2017).

782 77. Backman, J. D. *et al.* Exome sequencing and analysis of 454,787 UK Biobank
783 participants. *Nature* 2021 599:7886 **599**, 628–634 (2021).

784 78. Nam, K., Kim, J. & Lee, S. Genome-wide study on 72,298 individuals in Korean
785 biobank data for 76 traits. *Cell Genomics* 2, 100189 (2022).

786 79. Conway, O. J. *et al.* ABI3 and PLCG2 missense variants as risk factors for
787 neurodegenerative diseases in Caucasians and African Americans. *Mol
788 Neurodegener* 13, 1–12 (2018).

789 80. Karahan, H. *et al.* The effect of Abi3 locus deletion on the progression of
790 Alzheimer's disease-related pathologies. *Front Immunol* 14, 1102530 (2023).

791 81. Satoh, J. I. *et al.* Microglia express ABI3 in the brains of Alzheimer's disease and
792 Nasu-Hakola disease. *Intractable Rare Dis Res* 6, 262 (2017).

793 82. Drobny, A. *et al.* The role of lysosomal cathepsins in neurodegeneration:
794 Mechanistic insights, diagnostic potential and therapeutic approaches. *Biochimica
795 et Biophysica Acta (BBA) - Molecular Cell Research* 1869, 119243 (2022).

796 83. Cermak, S. *et al.* Loss of Cathepsin B and L Leads to Lysosomal Dysfunction,
797 NPC-Like Cholesterol Sequestration and Accumulation of the Key Alzheimer's
798 Proteins. *PLoS One* 11, e0167428 (2016).

799 84. Sundelöf, J. *et al.* Higher Cathepsin B Levels in Plasma in Alzheimer's Disease
800 Compared to Healthy Controls. *Journal of Alzheimer's Disease* **22**, 1223–1230
801 (2010).

802 85. Sun, Y. *et al.* Translational Study of Alzheimer's Disease (AD) Biomarkers from
803 Brain Tissues in A β PP/PS1 Mice and Serum of AD Patients. *Journal of*
804 *Alzheimer's Disease* **45**, 269–282 (2015).

805 86. Morena, F. *et al.* A Comparison of Lysosomal Enzymes Expression Levels in
806 Peripheral Blood of Mild- and Severe-Alzheimer's Disease and MCI Patients:
807 Implications for Regenerative Medicine Approaches. *Int J Mol Sci* **18**, 1806
808 (2017).

809 87. Zhang, Y. *et al.* An RNA-Sequencing Transcriptome and Splicing Database of
810 Glia, Neurons, and Vascular Cells of the Cerebral Cortex. *The Journal of*
811 *Neuroscience* **34**, 11929 (2014).

812 88. Ulland, T. K. & Colonna, M. TREM2 — a key player in microglial biology and
813 Alzheimer disease. *Nature Reviews Neurology* **2018 14:11** **14**, 667–675 (2018).

814 89. Zhao, Y. *et al.* TREM2 Is a Receptor for β -Amyloid that Mediates Microglial
815 Function. *Neuron* **97**, 1023-1031.e7 (2018).

816 90. McQuade, A. *et al.* Gene expression and functional deficits underlie TREM2-
817 knockout microglia responses in human models of Alzheimer's disease. *Nature*
818 *Communications* **2020 11:1** **11**, 1–17 (2020).

819 91. Schmid, C. D. *et al.* Heterogeneous expression of the triggering receptor
820 expressed on myeloid cells-2 on adult murine microglia. *J Neurochem* **83**, 1309–
821 1320 (2002).

822 92. Winfree, R. L. *et al.* TREM2 gene expression associations with Alzheimer's
823 disease neuropathology are region-specific: implications for cortical versus
824 subcortical microglia. *Acta Neuropathol* **145**, 733–747 (2023).

825 93. Cady, J. *et al.* TREM2 Variant p.R47H as a Risk Factor for Sporadic Amyotrophic
826 Lateral Sclerosis. *JAMA Neurol* **71**, 449–453 (2014).

827 94. Gratuze, M., Leyns, C. E. G. & Holtzman, D. M. New insights into the role of
828 TREM2 in Alzheimer's disease. *Molecular Neurodegeneration* **2018 13:1** **13**, 1–16
829 (2018).

830 95. Lill, C. M. *et al.* The role of TREM2 R47H as a risk factor for Alzheimer's disease,
831 frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's
832 disease. *Alzheimer's & Dementia* **11**, 1407–1416 (2015).

833 96. Liu, X. *et al.* The protective role of miR-132 targeting HMGA2 through the
834 PI3K/AKT pathway in mice with Alzheimer's disease. *Am J Transl Res* **13**, 4632
835 (2021).

836 97. Zhang, J., Li, X., Xiao, J., Xiang, Y. & Ye, F. Analysis of gene expression profiles
837 in Alzheimer's disease patients with different lifespan: A bioinformatics study
838 focusing on the disease heterogeneity. *Front Aging Neurosci* **15**, (2023).

839 98. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of
840 ancestry in unrelated individuals. *Genome Res* **19**, 1655–1664 (2009).

841 99. Cavalli-Sforza, L. L. Human evolution and its relevance for genetic epidemiology.
842 *Annu Rev Genomics Hum Genet* **8**, 1–15 (2007).

843 100. Delaneau, O. *et al.* Integrating sequence and array data to create an improved
844 1000 Genomes Project haplotype reference panel. *Nature Communications* **2014**
845 **5**:15, 1–9 (2014).

846 101. Auton, A. *et al.* A global reference for human genetic variation. *Nature* **2015**
847 526:7571 **526**, 68–74 (2015).

848 102. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: A
849 Discriminative Modeling Approach for Rapid and Robust Local-Ancestry
850 Inference. *The American Journal of Human Genetics* **93**, 278–288 (2013).

851 103. Depristo, M. A. *et al.* A framework for variation discovery and genotyping using
852 next-generation DNA sequencing data. *Nature Genetics* **2011** 43:5 **43**, 491–498
853 (2011).

854 104. DeRosa, B. A. *et al.* Generation of two iPSC lines (UMi038-A & UMi039-A) from
855 siblings bearing an Alzheimer's disease-associated variant in SORL1. *Stem Cell
856 Res* **62**, 102823 (2022).

857 105. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–
858 21 (2013).

859 106. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A Method
860 for Assaying Chromatin Accessibility Genome-Wide. *Current protocols in
861 molecular biology / edited by Frederick M. Ausubel ... [et al.]* **109**, 21.29.1 (2015).

862 107. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
863 *Nature Methods* **2012** 9:4 **9**, 357–359 (2012).

864 108. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
865 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 1–21 (2014).

866 109. Peterson, H., Kolberg, L., Raudvere, U., Kuzmin, I. & Vilo, J. gprofiler2 -- an R
867 package for gene list functional enrichment analysis and namespace conversion
868 toolset g:Profiler. *F1000Res* **9**, (2020).

869 110. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for
870 ChIP peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382–
871 2383 (2015).

