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Abstract

Alzheimer’s disease (AD) risk differs between population groups, with African Americans
and Hispanics being the most affected groups compared to non-Hispanic Whites. Genetic
factors contribute significant risk to AD, but the genetic regulatory architectures (GRA)
have primarily been studied in Europeans. Many AD genes are expressed in microglia;
thus, we explored the impact of genetic ancestry (Amerindian (Al), African (AF), and
European (EU)) on the GRA in iPSC-derived microglia from 13 individuals (~4 each with
high global ancestry, AD and controls) through ATAC-seq and RNA-seq analyses. We
identified several differentially accessible and expressed genes (2 and 10 AD-related,
respectively) between ancestry groups. We also found a high correlation between the
transcriptomes of iPSC-derived and brain microglia, supporting their use in human
studies. This study provides valuable insights into genetically diverse microglia beyond
the analysis of AD.
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Introduction

Alzheimer’s Disease (AD) affects millions of people worldwide with currently ~11% of the
US population (65 and older) affected. It is predicted that over 150 million individuals will
be affected by AD worldwide by 2050. Pathologically, AD is characterized by -amyloid
(AB) deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated
tau as neurofibrillary tangles, all of which lead to neurodegeneration and progressive

cognitive impairment ..

African American (AA) and Hispanic (HI) individuals have the highest risk of developing
AD, followed by non-Hispanic White (NHW) individuals, likely due to a combination of
environmental and genetic factors. Specifically, in the US, AD affects 19% of AA, 14% of
Hispanics, and 10% of NHW 2. Further, over the next 25 years, the greatest growth in AD
will be in Africa and South America. Genetic diversity and admixture play important roles
in disease risk. African American genomes are typically admixed between African and
European ancestries while HI encompass a three-way admixture of European,
Amerindian, and African ancestries 3. Consistent with this, there are ancestry-related
differences in the genetic architecture of AD “. Although there are gene variants
consistently associated with AD risk across different populations, recent genome-wide
association studies (GWAS) have identified several ancestry-specific risk variants,
including variants in ABCA7 >°, MPDZ 19, and IGF1R >°, Thus, it is crucial to investigate
ancestry-specific disease mechanisms to understand the differential disease
susceptibility in different populations and to facilitate the move toward personalized

medicine across ancestries.

Most AD-associated and GWAS 1713 risk loci lie in non-coding, regulatory regions.
However, the regulatory architecture of the genome has not been extensively analyzed
in diverse populations, with most of the existing data derived from individuals of European
ancestry. The different population risk profiles for AD of APOEe4 carriers of different
ancestry present a clear example of how differences in gene regulation can affect AD
susceptibility. Rajabli et al. demonstrated that the lower risk for AD in carriers of APOEe4

with African ancestry relative to European ancestry was due to differences in the local
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genomic ancestry surrounding the APOEe4 allele 1415, Subsequently, it was found that
European local genomic ancestry carriers of APOEe4 had higher APOEe4 expression
and more open chromatin accessibility than that of African local ancestry carriers 617,
supporting the recent report that lower expression of APOEe4 is tied to lower risk ' and

highlighting ancestral differences in gene regulatory networks.

Although much of AD pathogenesis research has focused primarily on neurons, studies
suggest a critical role for microglia in the AD disease process. Autopsy studies found an
elevated proportion of activated microglia significantly correlated with pathological AD 19,
specifically the total AR load and number of neuritic plagues. Furthermore, a large number
of reported AD GWAS genes are expressed in microglia 2%2, further supporting their role
in AD pathology. Microglia are the resident immune cells of the central nervous system
(CNS) and play key roles in brain development, synaptic pruning, homeostasis, and
neuronal network maintenance, among other immune response processes 22,
Specifically, in the context of AD, microglia are particularly important for AR plague

clearance, neuroprotection, inflammatory responses, and synaptic homeostasis 2.

Here we report an examination of iPSC-derived microglia from African, European, and
Amerindian ancestries, expanding on our previous studies of single nuclei RNA-seq and
single nuclei ATAC-seq on postmortem microglia from the frontal cortex on African and
European genomes 1617, Additionally, as iPSC-derived cells have become important
models for human neurodegenerative research, we performed a comparison between our
iIPSC-derived microglia and autopsy samples to determine similarities and differences.
While this study is focused on AD-GWAS genes, this data will be useful for all neurological
genetic studies of African, European, and Amerindian populations, as well as admixed

populations of African American and Hispanic individuals.
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Results
Differentiation and validation of iPSC-derived microglia.
We differentiated thirteen iPSC-derived microglia (iMGL) lines from individuals of diverse
ancestral backgrounds, AD cases and controls, males and females, all derived from
individuals over 65 years of age (Table 1). Specifically, we differentiated 4 Amerindian
(Al), 5 European (EU), and 4 African (AF) IMGL lines. Genotyping and whole genome
sequencing were performed to 1) identify the global ancestry and 2) confirm the absence
of known mutations in AD-related Mendelian genes (APP, ABCA7, MAPT, PSEN1,
PSEN2, SORL1, and TREMZ2; Supplementary Table 1) that could affect the GRA.
Sample Global Ancestry Age Sex APOE Clinical Diagnosis

1 Al 96.3% 86 Male 3/3 Control

2 Al 95.5% 86 Male 3/3 Control

3 Al 100% 71 Female 4/4 AD

4 Al 92.0% 86 Female 3/3 Control

5 EU 100.0% 88 Male 4/4 AD

6 EU 88.6% 76 Female 4/4 AD

7 EU 99.7% 65 Female 3/3 Control

8 EU 93.8% 67 Female 3/3 Control

9 EU 99.5% 72 Female 4/4 AD

10 AF 94.4% 70 Female 4/4 AD

11 AF 96.4% 75 Female 3/3 Control

12 AF 91.5% 84 Female 3/3 AD

13 AF 93.5% 90 Female 3/3 MCI

Table 1: iPSC-derived Microglia cell line information. Al: Amerindian. EU: European. AF: African.

AD: Alzheimer’s disease. MCI: Mild Cognitive Impairment.

All thirteen IMGL cell lines were further validated with microglia cell-specific lineage
markers using immunocytochemistry (ICC) (PU.1 (SPI1), TMEM119, TREM2, and
P2RY12; Supplementary Figure 1). All microglia cell lines expressed these cell-type
specific markers, and their transcriptomic profiles correlated well (r=0.83) when compared
to previously published iMGL using the same differentiation approach 24. In addition, we
also verified that these cells did not express markers for other brain cell types (astrocytes,

oligodendrocytes, and neurons; Supplementary Figure 2 and Supplementary Table 2).
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108 Brain Microglia vs iPSC-derived Microglia.

109 We compared the transcriptomic profiles of our iIMGL to both Fetal Brain and Adult Brain
110 cell types 1”25, In both comparisons, we observed the highest correlation between iMGL
111 and Fetal Brain Microglia (p= 0.711), and Brain Microglia (p= 0.637) compared to other
112 brain cell types (Table 2). This data suggests these IMGL recapitulate well the

113 transcriptomic profiles observed in brain microglia and are a good study model.

Cell type rho Source
Microglia 0.711
Astrocytes 0.580
Eetal Brain Excitatory Neurons 0.599
(Cerebrum) Inhibitory Neurons 0.573 Cao, J. et al, (2020).
Oligodendrocytes 0.563
Vascular
Endothelial 0.678
Microglia 0.637
Astrocytes 0.507
Excitatory Neurons 0.503
Adult Brain Inhibitory Neurons 0.495 Griswold, A. and Celis, K.
Oligodendrocytes 0.529 et al, (2021).
OPC 0.509
VLMC 0.553
Endothelial 0.586

114  Table 2: Correlation analysis between iMGL from our study and other cell types. Note that all
115 thirteen iIMGL lines were included for these comparisons and the p-value was below 2.2x10-16 for

116  all comparisons. The Adult Brain data is derived from both African and European ancestry.

117 Gene expression profiles across ancestries.

118 We detected a total of 21,980 expressed genes across ancestries and performed
119 differential expression pairwise comparisons between ancestries. In total, we observed
120 1,103 unique, differentially expressed genes (DEGs) between ancestries (FDR<0.05).
121  Specifically, we identified 971 DEGs between Amerindian (Al) and AF, 320 between Al
122 and EU ancestries, and 62 DEGs between African (AF) and Europeans (EU) (Figure 1A
123 and B; Supplementary Tables 3, 4, and 5).
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We focused on genes previously identified in AD GWAS studies °26-30, Of the 121 AD
GWAS genes (Supplementary Table 6), we identified 10 DEGs between Al and AF
(ABI3, CTSB, JAZF1, MS4A6A, PILRA, PLEKHA1l, RASGEF1C, SORL1, TREM2, and
TREMLZ2) and 3 DEGs between Al and EU (JAZF1, MS4A6A, and SORL1). Despite our
recent report on brain microglia of European and African ancestries 17, we did not observe
differential expression for AD risk-modifying genes between AF and EU in our iPSC-
derived microglia. We observed significantly higher gene expression in Al compared to
AF for ABI3, JAZF1 (also compared to EU), and RASGEF1C, while AF had significantly
higher expression of CTSB, PLEKHAL, SORL1, and TREM2 compared to Al. Lastly, we
observed that EU express significantly higher amounts of SORL1 compared to Al (Figure
1C).
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Figure 1: Gene expression across ancestries. (A) Chromosome Maps per pair-wise ancestral

comparison demonstrating the distribution of differentially expressed genes (DEGs) genome-

wide. The dark green color represents DEGs. (B) Volcano plots representing gene expression
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139 (Log:Fold Change) per pair-wise comparison between ancestries (AF vs EU, Al vs AF, and Al vs
140 EU). All 60,656 expressed variables are represented by the circles. The blue and red colored
141 circles represent the genes that are differentially expressed (Fold Change cutoff of + 1.25 and
142  have an adjusted p-value (FDR)< 0.05). AD risk-modifying genes were highlighted in the white
143 boxes. (C) Gene expression (FPM) of AD-related genes that were differentially expressed
144  between ancestries. Box plots represent minimum to maximum FPM values and error bars denote
145 the standard deviation. Asterisks denote adjusted p-value (FDR) with p< 0.05 (*), p< 0.01 (**),
146  and p=< 0.001 (***). FPM: Fragments per Million.

147  Chromatin accessibility across ancestries.

148 We measured a total of 171,929 ATAC peaks for all ancestries and performed differential
149 accessibility analysis genome wide. Overall, we observed 225 differentially accessible
150 peaks (DAPs) linked to 208 unique, differentially accessible genes (DAGSs) between Al
151 and AF, 57 DAPs (55 DAGSs) between AF and EU ancestries, and 53 DAPs (52 DAGS)
152 between Al and EU (Figure 2; Supplementary Tables 7, 8, and 9). We observed an
153 enrichment in DAPs between Al and EU in chromosome 17 (12.28%, Chi-square p-
154 value=0.038) and chromosome 13 (7.02%, Chi-square p-value=0.041), which contain
155 only ~3% and ~4% of the genome, respectively. Between Al and AF, we observed a
156 significant enrichment in DAPs in chromosome 17 (9.78%, Chi-square p-value=0.004).
157 Lastly, we observed that DAPs between Al and EU were enriched in chromosome 7
158 (5.66%, Chi-square p-value=0.031; Figure 2A and Supplementary Table 10). Overall,
159 we observed that among all DAPs between all three ancestral comparisons, the DAPs lie
160 primarily in intronic regions (~28-39%) followed by distal intergenic (~16-32%) and
161 promoter regions (~23-25%; Figure 2B; Supplementary Table 11). Interestingly, in the
162 context of genes associated with AD, we only detected 2 DAGs (PRDM7 and SCIMP)
163 between Al and AF and 1 DAG between Al and EU (PRDM?7) (Figure 2C).
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165 Figure 2: Chromatin accessibility across ancestries. (A) Chromosome Maps per pair-
166 wise ancestral group comparison demonstrating the distribution of differentially
167 accessible genes (DAGs) genome-wide. The dark blue color represents DAGs. (B) Pie
168 Charts illustrate the regions of the genome in which the differentially accessible peaks lie
169 for each of the ancestral comparisons. (C) Volcano plots representing chromatin
170 accessible peaks (log2 Fold change) per pair-wise comparison between ancestries (AF
171 vs EU, Al vs AF, and Al vs EU). All 171,929 peaks are represented by the circles. The
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172  Dblue and red colored circles represent the genes that are differentially accessible (Log2
173  Fold Change cutoff of +0.322 and adjusted p-value (FDR)< 0.05. AD risk-modifying genes
174  were highlighted in the white boxes.

175 We observed two DAPs in PRDM7: one in the proximal enhancer (Peak 1) and another
176 in a distal enhancer (Peak 2; Figure 3A), according to ENCODE classification.
177  Specifically, we observed that compared to Al, AF have significantly higher chromatin
178 accessibility in peak 1 while EU have significantly higher accessibility in peak 2.
179 Interestingly, contrary to other samples of the same ancestry group, we observed that
180 sample 4 (Al) has chromatin accessibility in peak 1 while sample 6 (EU) presents visibly
181 less accessibility in both peaks 1 and 2 (Supplementary Figure 3). We performed local
182 ancestry (LA) analyses surrounding the PRDM7 locus (x 500kb) to further investigate
183  whether it could explain the differences in chromatin accessibility (Supplementary Table
184 12). We observed that samples 1-3 of Al global ancestry, have homozygote Amerindian
185 LA for the PRDM7 locus while sample 4 has African LA for both haplotypes in this locus
186 aligning with the chromatin accessibility observations within the African global ancestry
187 group. While this data suggests that the African LA of sample 4 in the PRDM7 locus plays
188 arole in and promotes chromatin accessibility, we did not observe any LA differences in

189 the European global ancestry samples (all homozygote EU LA for this locus).

190 In addition, we observed a DAP between Al and AF in a distal intergenic enhancer of
191 SCIMP (~20kb; Figure 3B). We did not observe LA differences within the same global
192 ancestry group for the SCIMP locus (Supplementary Table 12) which could explain
193 chromatin accessibility differences seen between global ancestry groups in this region

194 (Supplementary Figure 4).

11
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196 Figure 3: Differentially accessible peaks in AD-risk modifying genes across ancestries.

197 (A) Differential chromatin accessible peaks in PRDM7. (B) Differential chromatin
198 accessible peak in a distal intergenic enhancer of SCIMP. Note that the peaks represent

199 merged data of all individuals within the same ancestry group.

200 Functional enrichment pathway analysis.

201  To understand the functional mechanisms that might contribute to the differential AD risk
202 across ancestries, we performed functional enrichment pathway analysis between the
203 three ancestral groups using the g:Profiler tool in R. As expected, given the smaller

204 number of DEGs between EU and AF, we only observed two significant functionally

12
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enriched pathways for these ancestries (Supplementary Table 13) and none have a
known relation to AD. We observed that several DEGs across the other two ancestry
group comparisons were involved in immune response, lysosomal activity, sterol and
steroid biosynthesis and metabolism, cholesterol biosynthesis and metabolism, lipid
transport and metabolism, and phagocytosis - all highly relevant processes in AD
pathology (Figure 4 and Supplementary Tables 14 and 15).

A
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Sterol metabolic process-
Steroid metabolic process-
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Figure 4: Functional enrichment pathway enrichment across ancestries relevant to AD.
Pathway enrichment analyses between (A) Al and AF, and (B) Al and EU. See
Supplementary Tables 14 and 15, respectively, for all significantly enriched pathways.
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215 Regulatory architecture in iPSC-derived Microglia.

216  We studied the overlap between DAGs and DEGs to gain further insights into ancestry-
217  specific regulatory mechanisms. Overall, we observed less than 2% shared DAGs and
218 DEGs when comparing the ancestries (Figure 5A and Supplementary Figure 5). None
219 of the overlapping DEGs and DAGs were from known AD GWAS genes. We observed
220 that all overlapping DAGs and DEGs between AF and EU, and between Al and EU lay in
221  promoter regions (Supplementary Tables 16 and 17, respectively) while there was a
222 wider genomic distribution for those overlapping DAGs and DEGs between Al and AF
223  (Supplementary Table 18).

224  However, despite the small overlap between DAGs and DEGs with p-value< 0.05, we still
225 observed a correlation between expression and chromatin accessibility in the promoter
226  peaks (r=0.53 (AF vs EU); r=0.57 (Al vs EU); r= 0.47 (Al vs AF); Supplementary Figure
227  6).

AF vs EU Al vs AF Al vs EU
DAGs DEGs DAGs DEGs DAGs DEGs

- - -
o CRNs NV o

228 AD GWAS genes AD GWAS genes AD GWAS genes
229 Figure 5: Overlap between differentially accessible ATAC-seq genes, differentially

230 expressed RNA-seq genes, and AD GWAS genes between ancestry-group comparisons.
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231 Regulatory differences specific to AD diagnosis, APOE genotype, and Sex.

232 Between AD cases and controls, we performed differential expression analysis for 12
233 samples (the MCI sample was excluded from this analysis) and observed a total of 7
234 DEGs between non-cognitively impaired individuals and AD samples (Supplementary
235 Table 19). None were previously identified as AD risk-modifying genes. Differential
236  expression analysis between APOEe3 and APOEe4 homozygote carriers revealed 7
237 DEGs (Supplementary Table 20). Between the two analyses, we only found one DEG
238 in common, high mobility group AT-hook 2 (HMGAZ2), which was overexpressed in AD
239 and APOEe4 carriers as compared to controls and APOEe3 carriers (Supplementary
240 Figure 7). The sex comparison revealed a total of 116 DEGs between Males and Females
241  (Supplementary Table 21), none of which were AD risk-modifying genes or overlapped
242 with any of the DEGs from the two aforementioned analyses. On the chromatin
243  accessibility level, we only observed three DAPs/DAGs between APOEe3 and APOEe4
244  carriers (Supplementary Table 22), one DAP/DAG between cases and controls
245 (Supplementary Table 23), and 136 DAPs between Males and Females (90 DAGsS;
246  Supplementary Table 24). None of these peaks have been previously connected to
247  either AD or APOE genotype. Lastly, we observed an overlap between eleven sex-

248  specific DEGs and DAGs, most of which are located in chromosomes X and Y.

249 Ancestry-specific genetic regulatory architecture tool for other Neurological
250 diseases.

251 Despite the lack of ancestry-specific studies for other neurological diseases, ancestry
252  might affect disease risk as observed in AD pathology. To demonstrate the importance of
253 this GRA resource for the study of other neurological diseases in diverse ancestries, we
254  compared both DEGs and DAGs identified for each of the ancestry comparison groups in
255 our study with GWAS genes identified for Autism Spectrum Disorder (ASD) 3141,
256  Schizophrenia (Sz) 42-%7, Bipolar disorder (BP) >*%-64 Parkinson’s Disease (PD) 6566,
257 Multiple Sclerosis (MS) 6768 Stroke °, Coronary Artery Disease (CAD) 776 and
258  Hyperlipidemia (HDL) "8 (Figure 6).
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A GWAS
ASD sz BP PD MS  Stroke  CAD HLD Total
AF vs EU 0 4 0 0 2 0 1 1 62
/7]
Q| AlvsAF 4 57 13 5 22 3 28 7 971
(] 1
Al vs EU 1 25 5 2 10 2 8 2 320
Total
Queried 184 1989 | 482 | 86 424 87 449 106
B GWAS
ASD sz BP PD MS  Stroke  CAD HLD Total
AF vs EU 0 7 0 0 0 0 3 0 55
0
| AlvsAF 2 19 5 1 3 0 4 0 208
o
Al vs EU 0 1 1 0 0 0 1 0 52
Total
o5 g Queried 184 1989 482 86 424 87 449 106

260 Figure 6: The genetic regulatory architecture in iIMGL of diverse ancestries as a useful resource
261 to study other neurological and associated diseases. We illustrate the overlap between ancestry-
262  specific (A) DEGs and (B) DAGs from our study with previously identified GWAS genes for Autism
263  Spectrum Disorder (ASD), Schizophrenia (SZ), Bipolar disorder (BP), Parkinson’s Disease (PD),
264  Stroke, Multiple Sclerosis (MS), Coronary Artery Disease (CAD), and Hyperlipidemia (HLD). Gray

265  boxes represent the total number of genes queried.
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266 Discussion

267 Recent studies have demonstrated that genetic disease associations differ in their
268 strength and location between ancestries 272830 As the majority of genetic associations
269 are in non-coding regions, it is important to gain insight into the regulatory architecture of
270 other ancestries besides European. Given the key role of microglia in AD pathology, we
271 report, for the first time, epigenetic and disease-relevant differences between these
272 ancestries in IMGL. While we have focused on AD, the microglial regulatory architecture

273  presented here will be applicable to any study of the CNS.

274  Several known AD genes demonstrated ancestral expression differences in the microglia.
275 One of these genes was ABI family member 3 (ABI3), differentially expressed between
276 Al and AF in this study and which has been previously found to be associated with AD in
277  African American individuals 7°. Studies have found that loss of ABI3 function in mice was
278 associated with AB-amyloidosis 8 and increased ABI3 expression in microglia has been
279 observed surrounding amyloid plaques in AD brain samples 8. Both studies hypothesize
280 that ABI3 expression plays a role in microglia migration in the central nervous system and
281 affects disease progression in the absence of a functioning protein. We find that AF have
282 on average the lowest expression of ABI3, compared to Al, supporting ABI3 as an AD

283  risk factor specifically in AF.

284  Another known AD gene, Cathepsin B (CTSB), identified here as differentially expressed
285 with higher expression levels in AF compared to Al, has been implicated as a major
286  contributor to cognitive dysfunction and neuropathological changes, such as lysosomal
287  dysfunction, cell death, and inflammatory responses 8283, Interestingly, increased CTSB
288 protein expression has been reported in AD patients compared to controls 8486, |t was
289 also previously reported that APOEe4 carriers of AF local ancestry expressed higher
290 CTSB in brain microglia compared to those of EU local ancestry surrounding the APOE
291 locus Y7, similar to the trend observed in our dataset between AF and EU (Figure 1C).
292  Again, this could suggest a larger role in AD risk for CTSB lying on AF local ancestry in
293 African American individuals. Both of these differences were seen between AF and Al

294  samples, which displayed the largest genomic differences between the three ancestries
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295 examined in this study. These are the two populations at either end of the migration
296 spectrum for humans, implying these genetic ancestries had the longest time to evolve

297 independently, creating ancestries who are the least related genetically.

298 In addition, even for genes without significant ancestral differences, the expression and
299 accessibility data here can be useful for further understanding of the locus across
300 population groups. For example, another AD-risk-modifying gene that showed differential
301 gene expression is MS4A6A. This gene has been shown to be highly expressed in
302 microglia & and it was previously reported that brain microglia of AF ancestry express
303 less MS4A6A compared to those of EU ancestry 7. Despite not reaching significance, we
304 did observe a similar trend towards less MS4A6A expression in AF iIMGL compared to
305 EU IMGL. TREMZ2, another well-known AD-GWAS gene, is primarily expressed in
306 microglia and has been heavily implicated in AD progression -1, Interestingly, we found
307 that Al cells express the lowest amount of TREM2. Data show that TREM2 mRNA levels
308 are associated with amyloid burden in cortical regions %2 and loss-of-function TREM2
309 variants are associated with dementia 9%, implying that the lower expression in Al
310 microglia might impact AD risk in this ancestry due to reduced microglia functionality (AB-

311 plaque clearance, APOE-mediated functions, immune modulation, and cell survival).

312 The IMGL lines used here varied not only in their genetic ancestry, but also in other
313 variables such as sex, APOE genotype, and disease status which could complicate the
314 interpretation of results. Therefore, we also performed differential expression analysis
315 Dbetween Males and Females, AD vs controls, and APOEe3 vs APOEe4 carriers. Most of
316 our AD patients were APOEe4 homozygotes as at least 60% of AD patients carry the
317 APOEe4 allele. Despite observing a small number of DEGs between AD vs Controls and
318 APOE e3vs e4 carriers, we observed that HMGAZ2, a high-mobility protein that modulates
319 transcription and chromatin condensation, was differentially expressed in both
320 comparisons. Specifically, we observed higher gene expression in AD individuals and
321 APOEe4 carriers. Interestingly, silencing of HMGA2 has been reported to lead to
322 increased expression of the PISK/AKT signaling pathway and improved memory and
323 learning ability, reduced brain injury, and decreased oxidative stress and inflammatory

324  reactions in mice %. It was also recently reported that downregulation of HMGAZ2 in AD
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325 patients was associated with increased lifespan °’. Thus, together with these findings, our
326 results also suggest and support that increased HMGAZ2 expression is a risk factor for
327 AD.

328 We are often taught that chromatin accessibility is a key factor controlling gene
329 expression. Comparing the significantly different changes in gene expression and
330 chromatin accessibility between ancestries provides one opportunity to examine this
331 relationship. Our differential analysis between ancestries revealed greater differences in
332 gene expression (DEG) (approximately 0.3-4.4% of genes depending on the paired
333 comparison) than in chromatin accessibility (DAP/DAG) (0.03-0.13%). This supports the
334 growing understanding of the complexity of our cells in regulating gene expression and
335 that transcription is a much more complex mechanism and higher accessibility is only one
336 factor that could affect gene expression. For example, DNA sequence variability both at
337 binding sites and distal eQTLs can complicate interpretation of the (dis)concordance
338 between gene expression and chromatin accessibility changes. However, as expected,
339 when expanding our sample size by using all our expression and accessibility data, we
340 do find the expected moderate correlation between chromatin accessibility and
341 expression (r=0.47 to 0.57).

342 iPSCs and derived cells have become important models for human brain disorders. We
343 demonstrated that their transcriptome has a strong correlation with brain single nuclei
344 RNAseq results /. These iPSC-derived microglial cells were grown in the absence of
345 other cell types and with a lack of environmental stressors. The complex gene regulatory
346 networks operating in brain cells reflect the interplay of mostly invariable genetic factors
347 with a dynamic exposome that includes chemical exposures, diet, and diverse stressors
348 across the life course. One could postulate that microglia co-cultured with other CNS cell
349 types or 3D organoids would feature cell-cell interactions that would provide an even

350 stronger correlation with the brain transcriptome.

351 We did not observe any of the currently known African-specific AD GWAS genes ° to be
352 differentially expressed or accessible in the AF ancestry IMGL compared to the Al or EU
353 ancestries. This could be explained by the fact that some of these genes were not

354 expressed in IMGL and others had heterogenous expression levels between the limited
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number of individuals. The relatively small number of individuals included is the main
limitation of this study. This is a general limitation of iPSC-derived cell studies which are
expensive and time-consuming. Some of the differential findings reported here may
reflect individual heterogeneity rather than ancestry generalizations. Additional iPSC-
derived cell lines are needed to fully explore the regulatory architecture and to capture
individual variability. Further genomic studies such as Hi-C will enhance these

comparisons, particularly for specific genes of interest.
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Conclusions

Overall, we provide novel insights into the genetic regulatory architecture of microglia
from three ancestry groups: Amerindian, African, and European. Transcriptional and
architectural similarity was the most common finding, which is reassuring for future
therapeutic interventions. We found a good correlation between the transcriptome of our
IMGL and reported brain transcriptomes, as well as concordance for previously reported
AD risk genes, supporting ancestral differences. These findings support the role of IMGL
as a valuable model for human disease. Our data also supports a role for HMGA2
expression in APOEe4 carriers and AD risk. Lastly, this study provides a useful resource
for the research community as it provides novel data on genome-wide regulatory
architectures of diverse, understudied, genetic groups that could be applied to the study

of other brain diseases, particularly those with high microglia involvement.
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374 Methods
375 Sample collection.

376  All samples of Al, EU, and Al cases and controls selected for this study were obtained
377 from the John P. Hussman Institute for Human Genomics (HIHG) at the University of
378 Miami Miller School of Medicine with the exception of the induced pluripotent stem cells
379 derived from samples 7-9 which were obtained through ADRC from the University of
380 California Irvine (UCI). All participants were ascertained using a protocol approved by the
381 appropriate Institutional Review Board. This study received ethical approval from the
382  University of Miami Institutional Review Board (approved protocol #20070307).

383 Global ancestry ascertainment.

384  We calculated the admixture proportions using a model-based clustering algorithm, as
385 implemented in the ADMIXTURE software %. A supervised ADMIXTURE analysis was
386 performed at K = 4, incorporating four reference populations: 104 African, 84 European,
387 108 Amerindian, and 102 East Asian individuals from the Human Genome Diversity

388 Project reference populations.
389 Local ancestry ascertainment.

390 To infer local ancestry, we first merged our dataset with the Human Genome Diversity
391 Project reference panel, including European, African, and Amerindian reference
392 populations %°. Next, we phased the combined data using SHAPEIT4 with default settings,
393 referencing the 1000 Genomes Phase 3 reference panel %0101 Finally, we estimated

394 local ancestry at each genomic locus using RFMix v2 software 102,
395 Whole Genome Sequencing (WGS).

396 DNA was extracted from all individual cell lines using the QlAamp DNA Blood Kit
397 (QIAGEN, #51104) according to the manufacturer’s instructions. 1.5ug of DNA was
398 submitted for WGS at the Center for Genome Technology (CGT) Sequencing Core at the
399 HIHG using standard lllumina PCR-free library prep and sequencing protocols on the
400 NovaSeq6000 followed by a bioinformatics pipeline incorporating the GATK Best

401 Practices analysis recommendations 3. Individuals were screened for rare coding
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402 variants in seven AD-related genes nominated as likely causative by the ADSP Gene
403 Verification Committee and variants in the promoter regions of the ten AD genes that had

404  differential gene expression (Supplementary Table 1).
405 Induced pluripotent stem cell generation.

406 Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using
407 SepMate-50 tubes with Lymphoprep (STEMCELL Technologies, #85450 and #07801)
408 through density-gradient centrifugation according to the manufacturer’s instructions.
409 PBMCs were reprogrammed into induced pluripotent stem cells (iPSCs) using CTS™
410 CytoTune™-iPS 2.1 Sendai Reprogramming Kit (Invitrogen, #A34546) according to the
411 manufacturer’s instructions. Reprogrammed cells were tested for Sendai Virus absence,
412  trilineage differentiation capability, immunocytochemistry, STR profiling, karyotyping, and
413 mycoplasma testing as previously described 4. PBMC isolation and reprogramming was
414  performed at the Hussman Institute for Human Genomics (HIHG) Induced Pluripotent
415  Stem Cell (iPSC) Core at the University of Miami. Validation analyses were performed by
416  the HIHG-IPSC Core and WiCell.

417 Differentiation of iPSCs to Microglia.

418 iPSCs were differentiated into hematopoietic progenitor cells (HPCs) and subsequently

419 into Microglia (MGL) as previously described 24 with minor modifications.

420 In brief, feeder-free iPSCs were cultured and expanded in StemFlex medium (Gibco™,
421  #A3349401) in vitronectin (10ug/ml, Gibco™ #A31804) coated cell culture-treated plates.
422 On day -1, iPSCs were passaged with 0.5M EDTA onto Matrigel-coated (Corning,
423  #354277) 12-well plates at a density of 10-20 aggregates/cm? (>50um in size). On day O,
424  if 4-10 colonies/cm? adhered, the StemFlex medium was replaced with 1ml/well of HPC
425 medium A (Basal medium with supplement A (1:200), STEMCELL Technologies,
426  #05310). Half-medium change was carried out 48 hours later. On day 3, HPC medium A
427 was replaced in full by medium B (Basal medium with supplement B at 1:200). Half-
428 medium changes of medium B were performed on days 5, 7, and 10. HPCs were
429 harvested on day 12.
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430 On day 0 of microglia differentiation (day 12 of HPC differentiation), HPCs were plated at
431 22,000 cells/cm? onto a Matrigel-coated 6-well plate containing 2ml of Microglia
432  differentiation medium (Basal Medium with supplement 1 and 2 at 1:9 and 1:225,
433 respectively; STEMCELL Technologies, #100-0019). Cells were supplemented with fresh
434  half-medium every other day from day 0 to day 10. On day 12, cells were collected and
435 centrifuged at 300 x g for 5 minutes. The cell pellet was resuspended in 2ml/well of fresh
436  Microglia differentiation medium and transferred to a freshly Matrigel-coated 6-well plate.
437  Cells were supplemented with 1ml of media every second day until day 22. Microglia cells
438 were collected, resuspended in 2ml of Microglia maturation medium (Basal Medium with
439 supplement 1 (1:9), and 2 and 3 (1:225); STEMCELL Technologies, #100-0020), and re-
440 plated for assays into new Matrigel-coated 6-well plates. Lastly, on day 26, microglia were

441  harvested for immunocytochemistry (ICC), bulk RNA-, and ATAC-sequencing.

442 RNA isolation and sequencing.

443  Total RNA was isolated from 1 million microglial cells per cell line using the RNeasy Mini
444 kit (QIAGEN, #74104) according to the manufacturer's instructions. Suspension cells
445  were collected and centrifuged for 5 minutes at 300 x g. 600l of RLT buffer (including B-
446  Mercaptoethanol at 1/100) was used to collect semi-attached microglia and subsequently
447  resuspend the cell pellet from the previous step. Cells were briefly vortexed for 1 minute
448 and homogenized by loading the lysate into a QlAshredder spin column (QIAGEN,
449  #79656) and centrifuging for 2 minutes at full speed. The homogenized lysate was
450 resuspended in 1 volume of 70% ethanol and transferred to a RNeasy spin column and
451  centrifuged for 30 seconds at 8,000 x g. 350ul of Buffer RW1 was added to the same spin
452  column and centrifuged for 15 seconds at 8,000 x g. Following this, 80ul of DNAse |
453 incubation mix (70ul of RDD buffer and 10ul of DNAse |, QIAGEN, #79254) were added
454 to the spin column and incubated at RT for 15 minutes. Buffer RW2 (350ul) was
455 transferred to the spin column and centrifuged for 15 seconds at 8,000 x g. 500ul of RPE
456  buffer were loaded into the column followed by a centrifugation step of 30 seconds at
457 8,000 x g. The previous step was repeated once again but centrifuged for 2 minutes at
458 8,000 x g to ensure all residual ethanol was removed. The RNeasy spin column was

459 transferred to a new 1.5ml collection tube and 30ul of RNAse-free water were added to

24


https://doi.org/10.1101/2024.08.27.609943
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.27.609943; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

460 the column to elute the bound RNA. Lastly, the spin column was centrifuged at 8,000 x g
461 for 1 minute and then stored at -80°C until further used. The RNA concentration and
462 quality were assessed using the Agilent Tapestation (Agilent Technologies) to determine
463 the RNA integrity number (RIN).

464 Bulk RNA sequencing.

465 RNA libraries were prepared at the John P. Hussman Institute for Human Genomics
466 Center for Genome Technology (University of Miami, FL) from ribodepleted total RNA. In
467  brief, total RNA was prepared with the TECAN Universal Plus Total RNA-seq with
468 NuQuant® Human AnyDeplete according to the manufacturer’s instructions, using 60ng
469 via QuBit and 16 PCR cycles. The normalized libraries were sequenced as paired end
470 100bp reactions targeting 30 million reads/sample on the lllumina NovaSeq 6000
471  (lllumina, CA). The raw FASTQ files were processed through an in-house bioinformatics
472  pipeline including adapter trimming by TrimGalore (v0.6.10)
473  (https://qgithub.com/FelixKrueger/TrimGalore), alignment to the GRCh38 human

474 reference genome with STAR (v2.5.0a) 1%, and gene counts quantified against the
475 GENCODEV35 gene annotation release using the GeneCounts module implemented in
476 STAR.

477 Bulk ATAC-sequencing.

478  Cultured cells were treated with DNase | (200U/mL; QIAGEN, #79254) at 37°C for 30
479 minutes. The treated cells were then harvested and pelleted at 400 x g for 5 minutes at
480 4°C. The cell pellet was carefully washed in cold 1x PBS. The cells were re-pelleted as
481 described before and then lysed in 100l of lysis buffer (10mM Tris-HCI pH 7.4, 10mM
482 NaCl, 3mM MgClz, 0.1% NP-40, 0.1% Tween-20, and 0.01% Digitonin) on ice for 5
483 minutes. Next, the lysed microglia were washed in 1ml of wash buffer (10mM Tris-HCI pH
484 7.4, 10mM NacCl, 3mM MgClz, and 0.1% Tween-20) and 100,000 nuclei were pelleted at
485 500 x g for 10 minutes at 4°C. The nuclei were incubated at 37°C for 30 minutes at
486  1,000rpm in 100ul of Transposition mix (2x Tagment DNA Buffer, 1x PBS, 0.1% v/v
487 Tween-20, 0.01% v/v Digitonin, and 5ul of Tagment DNA Enzyme 1). The transposed
488 DNA was purified using the MinElute PCR Purification kit (QIAGEN, #28004) and eluted
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489 in 10ul of Elution Buffer. The purified transposed DNA was combined with 25uM of
490 Custom Adapter 1 (no primer mix), 25uM of Custom Adapter 2 (barcode), and NEBNext
491 High-Fidelity 2x PCR Master Mix and ran on a thermocycler with the following conditions:
492  72°C for 3 minutes, 98°C for 30 seconds, and 5 cycles of 98°C for 30 seconds, 63°C for
493 30 seconds, and 72°C for 1 minute. The additional number of cycles required was
494  determined as described in 1% and ran with the same conditions abovementioned. The
495 amplified libraries were purified with the MinElute PCR Purification kit and eluted in 20ul
496 of Nuclease-free water. Library traces were assessed by the Agilent Tapestation and
497  when necessary, size selection purification was carried out using the AMPure XP beads
498 (Beckman Coulter, #A63880) according to the manufacturer's instructions. See
499 Supplementary Table 26 for full adapter sequences. Libraries were sequenced in paired
500 end 100bp reactions targeting 30 million reads/sample on the lllumina NovaSeq 6000.
501 The ATAC-seq data were preprocessed (trimmed, aligned, filtered, and quality-controlled)
502 and analyzed using an adapted version of the ENCODE ATAC-seq pipeline. In brief,
503 adapters and poor-quality bases were trimmed using TrimGalore (v0.6.10)
504 (https://github.com/FelixKrueger/TrimGalore). Reads were aligned to the CRCh38 human
505 reference genome with bowtie (v2.2.2) 107, duplicates marked with Picard (v2.1.1)
506 (https://broadinstitute.github.io/picard/), and peaks called using MACS2 (v2.2.7.1) 107,
507 Peaks were merged across all samples using an overlapping peak/union strategy to
508 obtain a list of peaks across all samples. Counts per peak were calculated from individual

509 aligned BAM files using htseg-count (v1.99.2) using the un-stranded option.

510 Differential expression and accessibility analyses.

511 Differential expression and accessibility analyses were carried out across the different
512 ancestral populations using DESeq2 (version 3.17) package % in R language
513 environment (version 4.2.1). We used DESeq2 default parameters and controlled for
514  batch differences (design = ~batch + ancestry). Three contrasts were run: AF vs EU, Al
515 vs AF, and Al vs EU. Genes that were significantly expressed and/or accessible were
516 identified with an FDR adjusted p-value of <0.05.

517 Functional enrichment pathway analysis.
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518 Functional enrichment analysis was done with the R library gprofiler2 1%°. We extracted
519 gene symbols of DEG between ancestries (FDR adjusted p-value of <0.05), and the
520 function gost was used to perform the gene set enrichment analysis for each ancestry
521 comparison using the Gene Ontology, KEGG pathways, and REACTOME databases.
522  Multiple comparison correction of enrichment scores was done with the ‘gSCS’ method.
523 Pathways were considered significant if p-adj<0.05. Results were manually curated to
524 show known pathways related to AD pathogenesis, and the corresponding full lists of

525 enriched terms are described in Supplementary Tables 13, 14, and 15.

526 ATAC peak annotation

527 The function annotatePeak from Chipseeker R library 11° was used to annotate peaks
528 with the nearest gene and genomic region. The annotation was done at the transcript
529 level using the GENCODE V44 database. The distance of +3 kb from the transcription
530 start sites (TSS) was used to assign a peak to a gene promoter-TSS, and the following
531 priority was defined for annotation: "Promoter", "5UTR", "3UTR", "Exon", "Intron",

532 "Downstream"”, "Intergenic”.

533 Immunocytochemistry (ICC) and fluorescence imaging.

534  Cultured microglia cells were fixed with 4% formaldehyde for 15 minutes at RT and
535 washed with 1x PBS. Cells were permeabilized for 10 mins with PBS-T solution (0.1%
536 Triton X and 1x PBS). The microglia cells were then incubated in blocking buffer (1x PBS
537 and 5% normal donkey serum) for 1 hour at RT. The blocking buffer was removed and
538 incubated in the primary antibody solution (1% donkey serum, 0.1% Tween-20, 0.01%
539 Sodium Azide, and target primary antibody) at 4°C overnight. The following day, the
540 primary antibody solution was removed, and the cells were washed three times with 1x
541 PBS. Following this, the secondary antibody solution (1% donkey serum, 0.1% Tween-
542 20, 0.01% Sodium Azide, and secondary antibody) were added to each well, and cells
543 were incubated for 1 hour at RT in the dark. Lastly, the secondary antibody solution was
544  removed, and cells were washed thrice with PBS. The cells were washed with 1x PBS

545 and incubated with DAPI (NucBlue Fixed Cell Stain). Images were acquired using a
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546 Keyence Microscope BZ-X800. See Supplementary Table 25 for details on all antibodies
547  used for ICC analysis.

548 Correlation analyses between differential expression and differential accessibility

549 Pearson correlation (r) was used to evaluate the relationship between gene expression
550 and corresponding promoter accessibility. First, DEGs between ancestries with
551 |logz(FoldChange)|= 1 and adjusted p-values < 0.1 were considered for the analysis.
552  Then, promoter peaks (distance of £3 kb from TSS) annotated to those DEGs were

553 considered for correlation analysis.

554  Correlation analyses between iPSC-derived Microglia and other cell types.

555  Correlation analyses between IMGL and Brain cell types were performed using Spearman
556 correlation analyses. Specifically, we calculated the average expression of all thirteen
557 iPSC-derived Microglia (iMGL) cell lines included in this study for each gene. Note that
558 genes with an expression value of 0 were excluded as well as sex-related (Chromosomes
559 X and Y) and mitochondrial genes. Following this, genes were ranked in descending order
560 by expression level for both IMGL and brain cell types, and only genes present in both

561 comparison datasets were included in the Spearman correlation test.
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562 Data Availability

563 All data generated or analyzed during this study are included in this published article and
564 its supplementary information files. Sequencing files can be requested to the

565 corresponding author.
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