

1 **Distinct immune profiles in children living with HIV based on timing and duration of**
2 **suppressive antiretroviral treatment**

3
4 Madeline J Lee^{1,2}, Morgan L Litchford³, Elena Vendrame¹, Rosemary Vergara¹, Thanmayi Ranganath¹, Carolyn
5 S Fish³, Daisy Chebet⁴, Agnes Langat⁵, Caren Mburu⁴, Jillian Neary⁶, Sarah Benki⁷, Dalton Wamalwa⁴, Grace
6 John-Stewart⁷, Dara A Lehman^{3,7}, Catherine A Blish^{*1,8}

7
8 ¹ Department of Medicine, Stanford University School of Medicine, Stanford, CA

9 ² Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA

10 ³ Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA

11 ⁴ Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya

12 ⁵ Division of Global HIV & TB., Center for Global Health, U.S Centers for Disease Control and Prevention

13 ⁶ Department of Epidemiology, University of Washington, Seattle, WA

14 ⁷ Department of Global Health, University of Washington, Seattle, WA

15 ⁸ Chan Zuckerberg Biohub, San Francisco, CA

16
17 *Corresponding author

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 **ABSTRACT**

51

52 Timely initiation of antiretroviral therapy (ART) remains a major challenge in the effort to treat children living with
53 HIV ("CLH") and little is known regarding the dynamics of immune normalization following ART in CLH with
54 varying times to and durations of ART. Here, we leveraged two cohorts of virally-suppressed CLH from Nairobi,
55 Kenya to examine differences in the peripheral immune systems between two cohorts of age-matched children
56 (to control for immune changes with age): one group which initiated ART during early HIV infection and had been
57 on ART for 5-6 years at evaluation (early, long-term treated; "ELT" cohort), and one group which initiated ART
58 later and had been on ART for approximately 9 months at evaluation (delayed, short-term treated; "DST" cohort).
59 We profiled PBMC and purified NK cells from these two cohorts by mass cytometry time-of-flight (CyTOF).
60 Although both groups of CLH had undetectable viral RNA load at evaluation, there were marked differences in
61 both immune composition and immune phenotype between the ELT cohort and the DST cohort. DST donors
62 had reduced CD4 T cell percentages, decreased naive to effector memory T cell ratios, and markedly higher
63 expression of stress-induced markers. Conversely, ELT donors had higher naive to effector memory T cell ratios,
64 low expression of stress-induced markers, and increased expression of markers associated with an effective
65 antiviral response and resolution of inflammation. Collectively, our results demonstrate key differences in the
66 immune systems of virally-suppressed CLH with different ages at ART initiation and durations of treatment and
67 provide further rationale for emphasizing early onset of ART.

68

69 **AUTHOR SUMMARY**

70

71 Many children living with HIV lack access to both antiviral treatments and testing for HIV infection and are
72 therefore unable to initiate treatment in a timely manner. When children do begin treatment, their immune
73 systems take time to recover from the uncontrolled HIV infection. In this study, we examine how the immune
74 systems of children living with HIV normalize after treatment onset by looking at two groups of children whose
75 HIV is well-controlled by treatment and who therefore don't have virus replicating in their blood. One group
76 started treatment within the first year of life and has been on treatment for 5-6 years, while the other began

77 treatment after the first year and has been treated for around 9 months. Although both of these groups are virally-
78 suppressed, we found significant differences in their immune profiles, with the children who had delayed and
79 short-term treatment showing signs of inflammation and immune dysfunction. Collectively, our study helps us
80 understand how variation in the timing and duration of ART treatment impacts the immune system in children
81 with viral suppression and therefore provides clinicians with additional knowledge that can inform the care of
82 children living with HIV, improving their health and quality of life.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104 **INTRODUCTION**

105

106 It is estimated that around 1.4 million children worldwide are currently living with HIV. The increasing availability
107 of antiretroviral therapy (ART) has contributed to a significant decrease in mortality among children living with
108 HIV (CLH) and the percentage of CLH receiving ART has increased from roughly 18% worldwide in 2010 to
109 nearly 60% in 2022 (<https://data.unicef.org/topic/hivaids/paediatric-treatment-and-care/>). However, several
110 major problems remain in the treatment of CLH, including continuing access to medication and timely initiation
111 of ART. The majority of HIV infections acquired by children occur via perinatal transmission(1,2). Children who
112 initiate ART earlier have smaller HIV reservoir sizes, longer time to viral rebound following ART interruption,
113 decreased immune activation at baseline, and decreased overall mortality(3–9). Despite the known benefits of
114 early ART intervention, many CLH are undiagnosed and hence unable to initiate ART during acute infection.

115

116 ART attenuates key aspects of immune dysregulation that result from HIV-1 infection, including CD4 T cell loss
117 and CD8 T cell activation in both adults and children(10–12). However, some of these factors never completely
118 normalize, particularly in individuals with later initiation of ART. In 2017, Alvarez et al. conducted one of the only
119 studies to examine the kinetics of immune normalization in ART-treated CLH; they found that CD4 loss and CD8
120 T cell activation in CLH are reversed to levels seen in children without HIV within 10 months of ART initiation(10).
121 While this study provided valuable insight, it examined only a few metrics of immune restoration following ART
122 initiation in CLH.

123

124 In this study, we analyze the temporal dynamics of immune normalization following ART initiation in CLH. We
125 leverage peripheral blood samples from CLH with viral suppression from two cohorts from early in the ART era:
126 one which initiated ART during acute/early HIV infection and one which initiated ART later, during chronic
127 infection. In order to minimize developmental differences in the immune systems of our two cohorts, we utilized
128 samples which were collected at similar ages across both cohorts (median = 6.08 years), at which point the
129 early-treated children had been on ART for 5-6 years (early long-term treated, ELT) while the delayed-treated
130 children had been on ART for approximately 9 months (delayed, short-term treated, DST). We use these samples

131 to demonstrate that, although the children with delayed, short-term treatment had undetectable viral loads, they
132 had severely altered peripheral immune systems compared to the children who had early, long-term treatment.
133 The DST children had immune systems marked by altered T cell memory subset frequencies and upregulation
134 of stress-induced surface proteins. Conversely, the ELT children exhibited increased expression of markers
135 associated with lymphocyte maturity and a productive antiviral response. Collectively, our study demonstrates
136 that early treatment and longer duration of ART has a marked impact on immune recovery. Thus, two age-
137 matched children (eg., both 5 years old) with perinatal HIV infection and current viral suppression may have
138 markedly different immune phenotypes due to differences in timing and duration of ART.

139

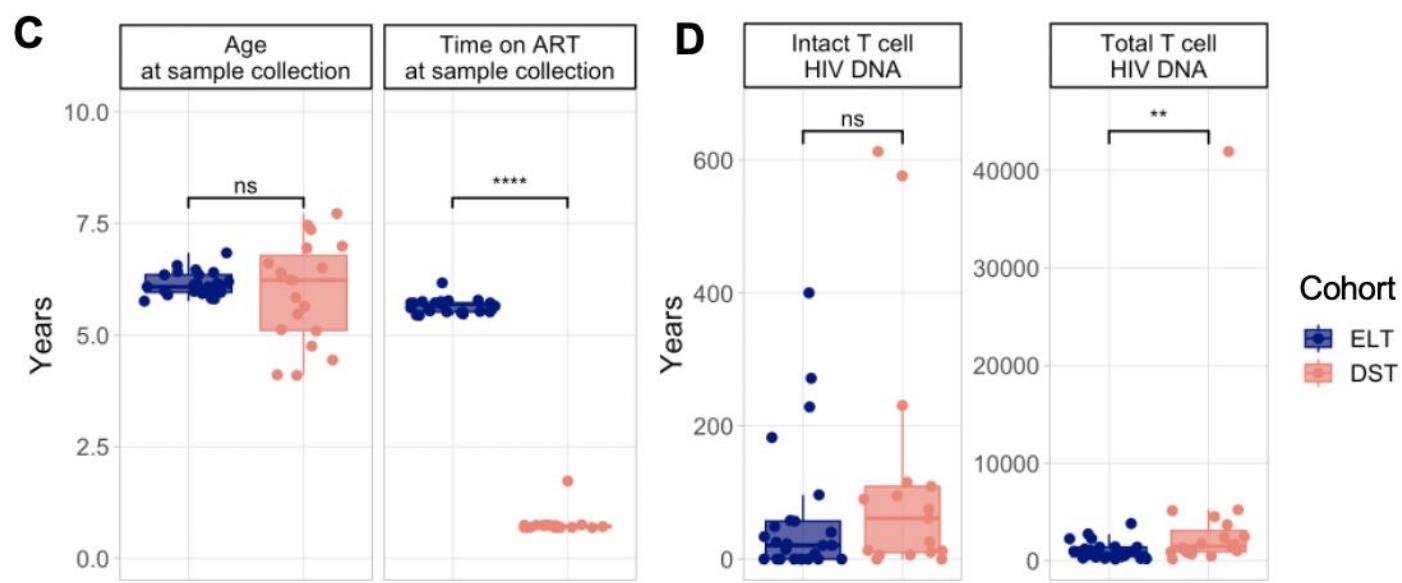
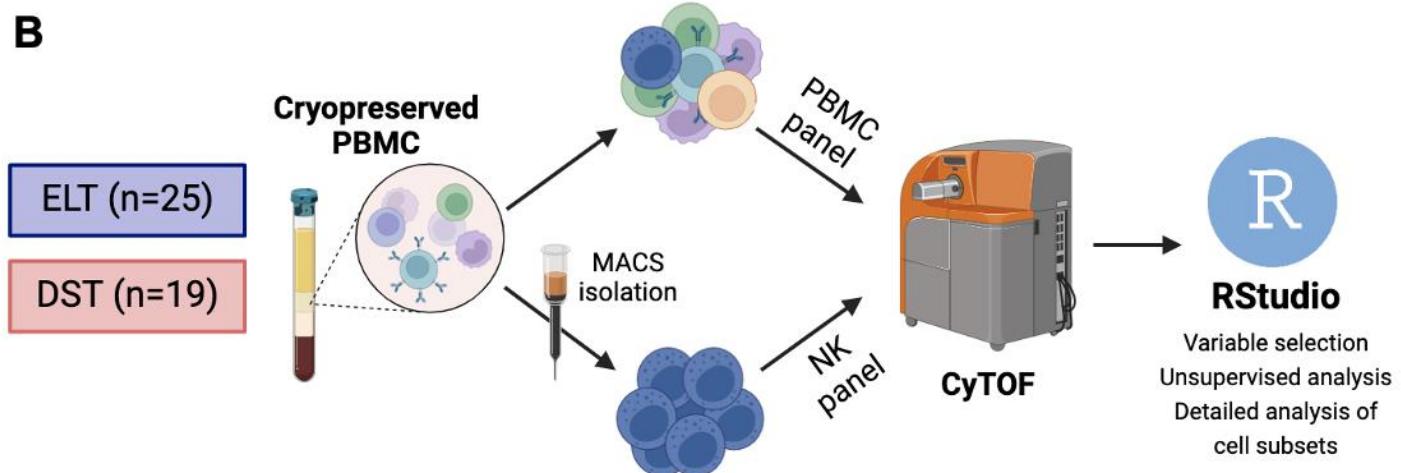
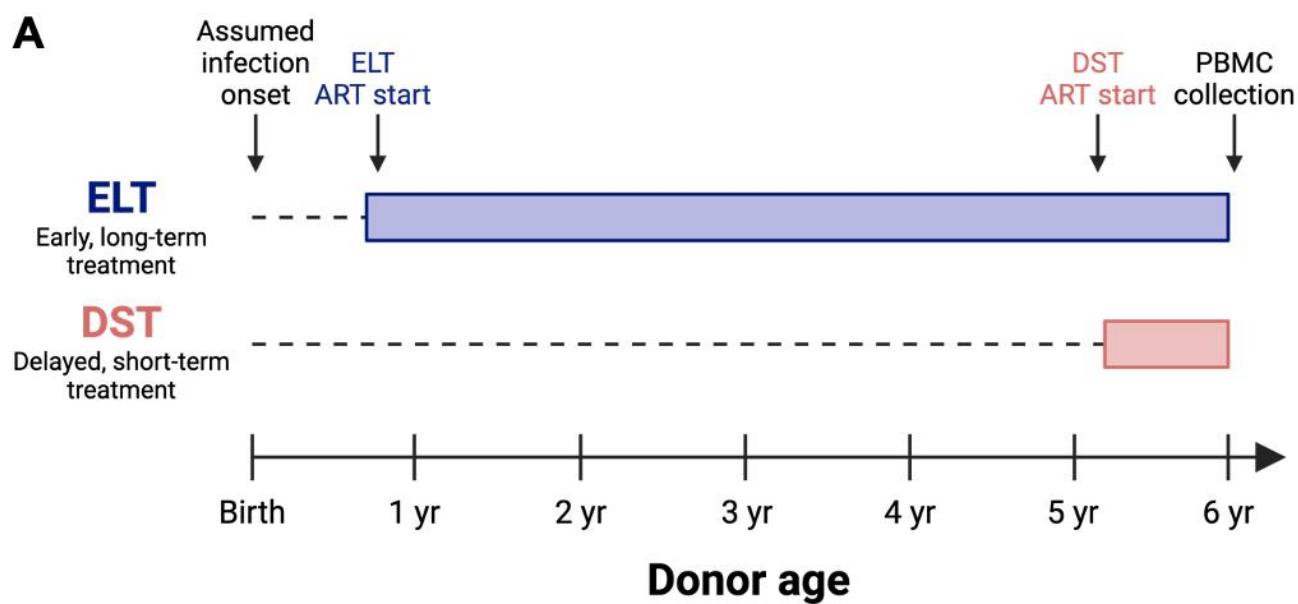
140

141

142

143

144




145

146

147

148

149

151 **Figure 1: Overview of cohorts.** A) Schematic showing the age and duration of ART for the two cohorts used in this study. Blue and pink
152 bars indicate the duration of ART for the early, long-term treatment cohort (ELT; top, blue) and the delayed, short term treatment cohort
153 (DST; bottom, pink). Dashed lines indicate the duration of untreated HIV-1 infection. All donors were assumed to be infected before, at,
154 or near birth. ELT donors initiated ART within the first year of life. DST donors initiated ART at ages 3-7. B) Schematic illustration of
155 experimental design. C) Boxplots showing the age of each donor at PBMC collection (left) and the length of time each donor had been
156 on ART at sample collection (right). D) Boxplots showing the number of copies of intact T cell-associated HIV DNA (left) and total T cell-
157 associated HIV DNA (right) for each donor. HIV DNA levels were determined by cross subtype-intact proviral DNA assay (CS-IPDA).
158 Significance values were determined using a Wilcoxon rank-sum test. ns, $p > 0.05$. *, $p < 0.05$. **, $p < 0.005$. ***, $p < 0.0005$. ****, $p <$
159 0.00005.

160

161 **Cohort**

162 In this study, we sought to understand how the duration of untreated HIV and timing of treatment initiation
163 influence the pediatric immune landscape, which changes rapidly in the first few years of life(13–15). To do this,
164 we profiled the peripheral immune cells from two cohorts of ART-treated CLH in Nairobi, Kenya between 2005-
165 2007, a time prior to the current recommendation of early ART initiation (**Fig. 1A**): one cohort in which children
166 initiated ART soon after birth (the early long-term treatment “ELT” cohort); and one in which children were
167 diagnosed with HIV and initiated ART later in life (the delayed short term-treatment “DST” cohort) (**Table 1**). To
168 account for the age-dependent changes in immune profiles, PBMC samples collected from children at similar
169 age ranges (between 4 and 8 years of age) were included from both cohorts, corresponding to approximately 9
170 months post-ART initiation for DST donors (n=19) and 66 months after ART initiation for ELT donors (n=25) (**Fig.**
171 **1C**). As our goal was to assess immune status in children who had fully suppressed their viral load, we only
172 included children who had a viral load below 150 copies/mL (the assay’s limit of detection) for >3 months prior
173 to immune status assessment as well as at the time of sample collection. Consistent with the later initiation of
174 ART, the DST cohort samples had a slightly higher level of total T cell-associated HIV DNA, indicating a larger
175 viral reservoir, although their levels of intact T cell-associated HIV DNA were not significantly different (**Fig. 1D**).
176

177

178

179

	ELT (N=25)	DST (N=19)	Overall (N=44)
Sex			
Male	7 (28.0%)	9 (47.4%)	16 (36.4%)
Female	18 (72.0%)	10 (52.6%)	28 (63.6%)
Age (years)			
Mean (SD)	6.13 (0.265)	5.95 (1.13)	6.05 (0.762)
Median [Min, Max]	6.08 [5.76, 6.84]	6.23 [4.10, 7.72]	6.09 [4.10, 7.72]
Age at ART onset (years)			
Mean (SD)	0.486 (0.186)	5.18 (1.14)	2.51 (2.47)
Median [Min, Max]	0.410 [0.210, 0.830]	5.15 [3.36, 6.98]	0.755 [0.210, 6.98]
Time on ART (years)			
Mean (SD)	5.65 (0.155)	0.767 (0.234)	3.54 (2.45)
Median [Min, Max]	5.69 [5.44, 6.17]	0.710 [0.690, 1.73]	5.49 [0.690, 6.17]
Viral load			
(RNA copies/mL)			
Mean (SD)	Undetectable	Undetectable	Undetectable
Median [Min, Max]	Undetectable	Undetectable	Undetectable

180

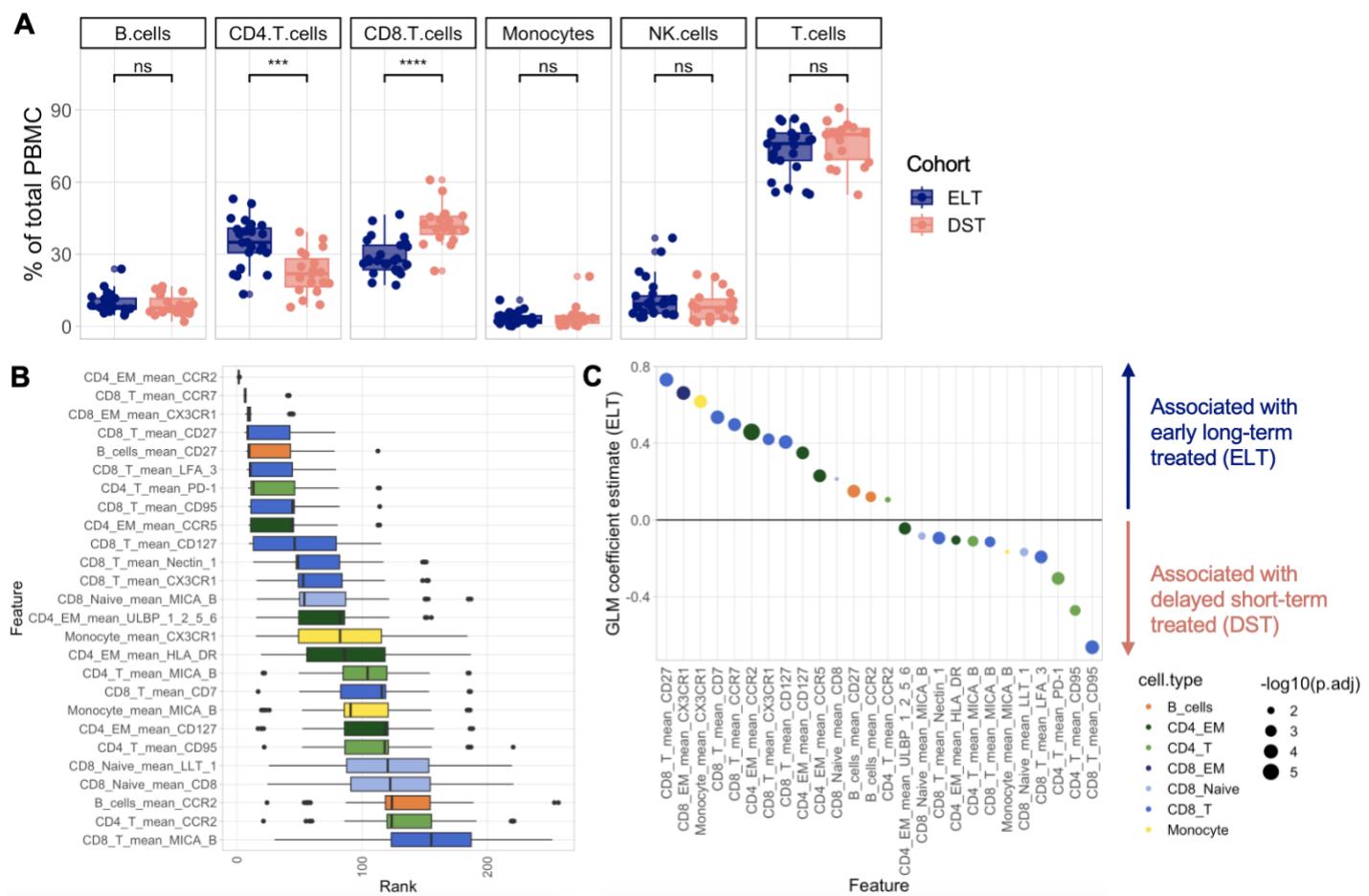
181

Table 1: Key demographic and clinical information for donors used in this study. “Undetectable” refers to viral loads below the assay’s limit of detection, which in this case was 150 copies/mL of viral RNA. All donors in this study had undetectable viral loads.

182

183

184


185

186 **RESULTS**

187

188 **The immune profiles of early, long-term treated children are distinct from those of delayed, short term-
189 treated children**

190 We performed mass cytometry by time-of-flight (CyTOF) on whole peripheral blood mononuclear cells (PBMC)
191 and purified natural killer (NK) cells from the two pediatric cohorts and first sought to characterize broad changes
192 in the immune composition and phenotype between the two groups. We stained each sample with two panels of
193 antibodies conjugated to heavy metals (one for whole PBMC and one for purified NK cells); these panels, which
194 have been previously described in detail, are designed to deeply interrogate the immune response to viral
195 infection with a focus on ligand/receptor interactions between NK cells and other peripheral immune cells(16).
196 Although both ELT and DST cohorts were virally suppressed at the time of sample collection, there were marked
197 differences in the peripheral immune profiles between the two cohorts. After nine months of ART treatment and
198 at least three months of viral suppression, DST children had a significantly lower frequency of CD4 T cells and
199 correspondingly higher CD8 T cell levels than ELT children that had been on ART for ~5-6 years (**Fig. 2A**). The
200 overall frequency of T cells, as well as B cells, monocytes, and NK cells, was unchanged between the two cohorts
201 (**Fig. 2A**).
202

203

204

Figure 2: Age-matched CLH in the ELT and DST cohorts exhibit broad differences in immune composition and phenotype. A)

205

Boxplots showing the frequencies of major immune cell subsets as a percentage of total PBMC in each cohort. B)

206

variables selected by MUVR. The X axis shows the rank of the importance of each variable in the model in each iteration of the analysis,

207

with a lower rank being more important. Boxes are colored by cell type. C) GLM coefficient estimates of each variable selected in (B) with

208

the ELT cohort. Positive coefficient values indicate an association with the ELT cohort; negative coefficient values indicate an association

209

with the DST cohort. Dot color indicates cell type. Dot size indicates -log10 adjusted P value; P values were adjusted with the Benjamini-

210

Hochberg correction for multiple hypothesis testing. Variables selected in (B) with an adjusted P value > 0.05 were not plotted in C.

211

Significance values were determined using a Wilcoxon rank-sum test. ns, p > 0.05. *, p < 0.05. **, p < 0.005. ***, p <

212 0.00005.

213

214

215

216

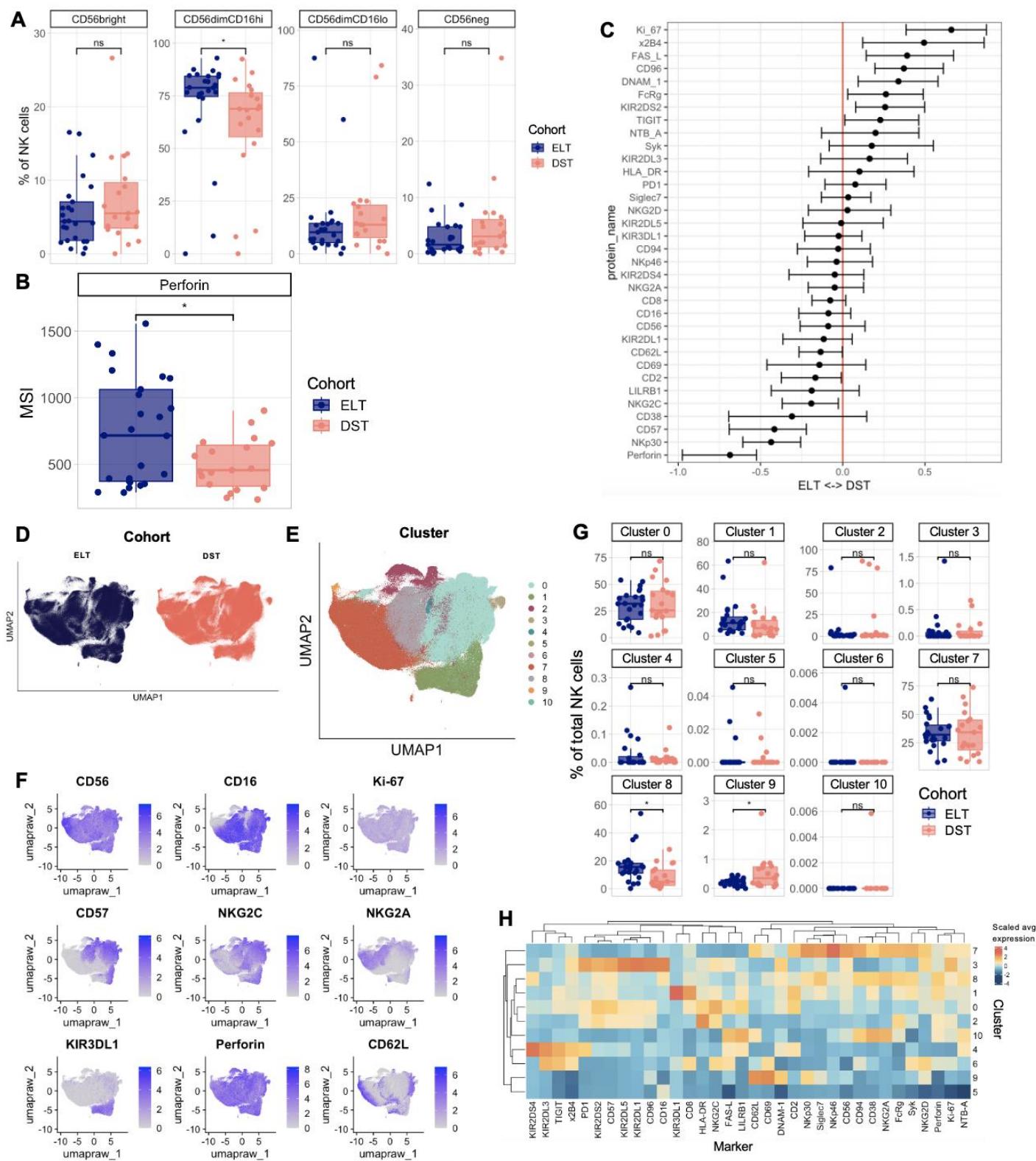
217

We next interrogated changes in immune phenotype between the cohorts using **M**ultivariate modeling with

218

minimally biased **V**ariable selection in **R** (MUVR), a random forest-based method of determining which variables

219 are the most important in determining an outcome variable(17). A total of 287 continuous variables were used
220 for MUVR analysis (**Supplemental Table 1**). These included mean expression of each marker in our CyTOF
221 panels in each of 9 cell types (B cells, monocytes, total CD4 T cells, naive CD4 T cells, effector memory CD4 T
222 cells, total CD8 T cells, naive CD8 T cells, effector memory CD8 T cells, and NK cells). The outcome variable
223 was binary classification by cohort (ELT or DST). This analysis identified 26 predictor variables, representing all
224 cell types except naive CD4 T cells and NK cells (**Fig. 2B**). We then utilized a generalized linear model (GLM)
225 to stratify these predictor variables by their association with either the ELT or DST cohorts (**Fig. 2C**). 14 variables
226 were significantly associated with the ELT cohort, while 12 variables were significantly associated with the DST
227 cohort. The 12 variables whose expression were associated with the DST cohort were markers of activation and
228 exhaustion (**Fig. 2C**). These markers are MICA/B, Nectin-1, HLA-DR, LFA-3, PD-1, ULBP, and CD95 in T cells
229 and MICA/B expression in monocytes. Conversely, the T cell markers (CD27, CX3CR1, CD7, CCR7, CCR2,
230 CD127, and CCR5) associated with ELT cohort donors tended to be associated with survival, terminal
231 differentiation, and antiviral response (**Fig. 2C**). ELT cohort donors also had higher CX3CR1 expression in
232 monocytes (**Fig. 2C**). Collectively, these results suggest that there exist differences in immune composition and
233 phenotype between early long-term- and delayed short-term-treated donors, with the ELT donors exhibiting
234 upregulation of markers involved with a healthy and productive antiviral immune response and DST donors
235 expressing higher levels of stress-associated markers. These differences may impact these donors' ability to
236 respond to infection, malignancy, or other challenges to the immune system, as DST donors appear to have a
237 much higher level of background inflammation and a dearth of CD4 T cells.


238

239

240

241

NK cells

242

243

244

245

Figure 3: DST donor NK cells appear immature and less functional compared to those of ELT children. A) Boxplots showing the frequencies of major NK cell subsets as a percentage of all NK cells in the two cohorts. CD56^{bright} NK cells are defined as CD56^{bright}, CD16^{lo}. B) Boxplots showing the median signal intensity (MSI) in all NK cells of three markers that were differentially expressed at the

246 patient level between ELT and DST donors. C) CytoGLMM analysis of NK features that are significant predictors of the ELT cohort (left)
247 and the DST cohort (right). Each row represents one marker. The X axis represents log-odds. Bars represent 95% confidence intervals.
248 Markers whose 95% confidence intervals do not cross the red line are considered to be significant predictors of one cohort over the
249 other. D-E) UMAP embeddings of the NK cells in the dataset, colored by cohort (D) or PARC cluster (E). F) Feature plots showing the
250 expression of 9 different proteins on the NK cells in this dataset. G) Boxplots showing the frequency of each PARC cluster among all NK
251 cells in the dataset. H) Heatmap showing the scaled expression of each marker in each PARC cluster. Significance values were
252 determined using a Wilcoxon rank-sum test. ns, p > 0.05. *, p < 0.05. **, p < 0.005. ***, p < 0.0005. ****, p < 0.00005.

253

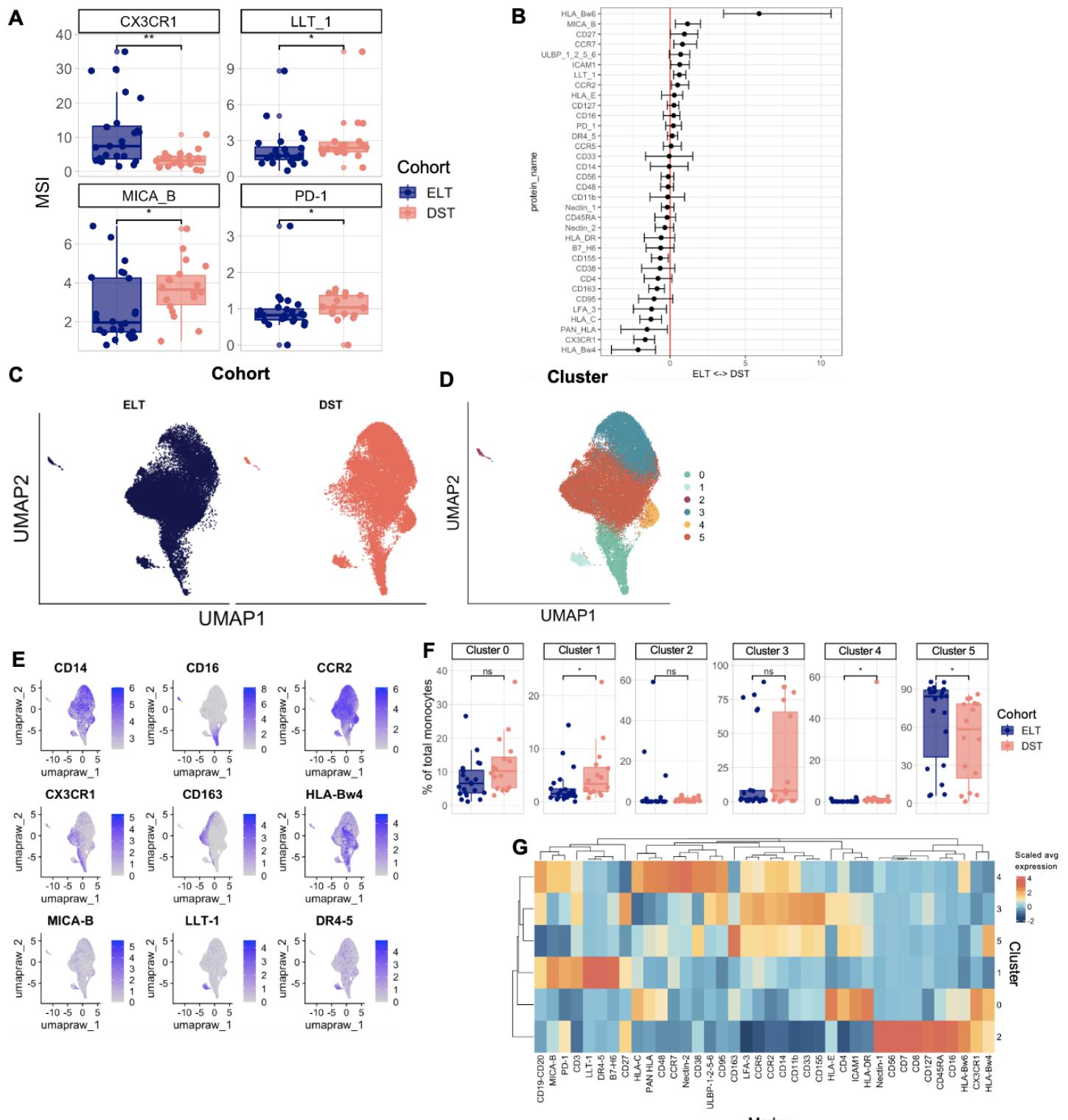
254 **NK cells appear less mature and less functional in DST children compared to those of ELT children**

255 Having identified overall changes in the immune composition and phenotype of children in the DST cohort
256 compared to those in the ELT cohort, we interrogated changes within individual immune cell subsets, beginning
257 with NK cells as our NK cell-specific CyTOF panel allowed us to identify granular changes in NK cell composition
258 and phenotype. We began by analyzing the frequencies of four major NK cell subsets: CD56^{bright} NK cells,
259 CD56^{dim}CD16^{hi} NK cells, CD56^{dim}CD16^{lo} NK cells, and CD56- NK cells. We found that DST donors had a
260 significantly lower percentage of CD56^{dim}CD16^{hi} NK cells, which are typically mature, cytotoxic NK cells. These
261 donors also had trending increases in the abundances of CD56^{bright}CD16^{low} NK cells, which are immature and
262 produce high levels of cytokines; CD56^{dim}CD16^{low} NK cells, an unconventional mature NK cell population with
263 reduced antibody-dependent cellular cytotoxicity (ADCC) capacity; and CD56-CD16^{hi} NK cells, which are a
264 dysfunctional population that expand during chronic infection (**Fig. 3A**).

265

266 Two markers were differentially expressed on bulk NK cells between the two cohorts: CD57, a marker of maturity;
267 and CD62L, which denotes polyfunctional and intermediately mature NK cells(18)(**Fig. 3B**). Both of these
268 markers were upregulated in ELT donors compared to DST donors. To identify additional differences between
269 the cohorts, we used a generalized linear mixed model to find markers whose expression was associated with
270 one cohort over the other(19). In addition to CD57, and CD62L, ELT donor status was correlated with expression
271 of the cytotoxic molecule Perforin as well as the activating receptors NKp30, CD16, and CD2 (**Fig. 3C**).
272 Meanwhile, DST donor status was correlated with expression of all three members of the DNAM-1/TIGIT/CD96
273 axis, which regulates NK cell activation and inhibition via ligation of Nectin-2 and poliovirus receptor(20). Higher

274 levels of proliferation marker Ki-67, the apoptosis inducer Fas-L, and the marker of decreased NK cell
275 functionality FcRg were also associated with the DST cohort (**Fig. 3C**).


276

277 To further interrogate changes in NK cell phenotype, we generated a UMAP embedding of the NK cells in our
278 dataset (**Fig. 3D-F**). As suggested by our previous findings, we observed a high degree of overlap in the
279 distribution of the NK cells from the two individual cohorts (**Fig. 3D**). However, when we performed unsupervised
280 clustering on the NK cells using the PARC algorithm(21), we did identify two clusters that were differentially
281 abundant between DST and ELT donors (**Fig. 3E,G**). Cluster 8 is a large cluster (typically comprising 5-20% of
282 peripheral NK cells) that was more abundant in ELT donors (**Fig. 3E,G**) and exhibited an intermediately-mature
283 phenotype that falls between the more mature ($CD57^{hi} CD56^{dim} CD16^{hi}$) NK cells and the less mature ($CD57^{low}$
284 $CD56^{bright} CD16^{low}$) NK cells (**Fig. 3E-F**). This cluster also had the highest Perforin expression out of any of the
285 clusters (**Fig. 3H**). Cluster 9 was the only cluster more abundant in DST donors. This is a much smaller cluster,
286 comprising only 0-3% of all NK cells (**Fig. 3G**), and is an unconventional $CD56^{dim} CD16^{low}$ population with very
287 high expression of CD62L and CD69 and particularly low expression of Perforin (**Fig. 3H**). Overall, these
288 analyses suggest that ELT donor NK cells were broadly more mature and functional compared to DST donor NK
289 cells, which were more proliferative but less cytotoxically capable.

290

291

Monocytes

292

293

294

295

296

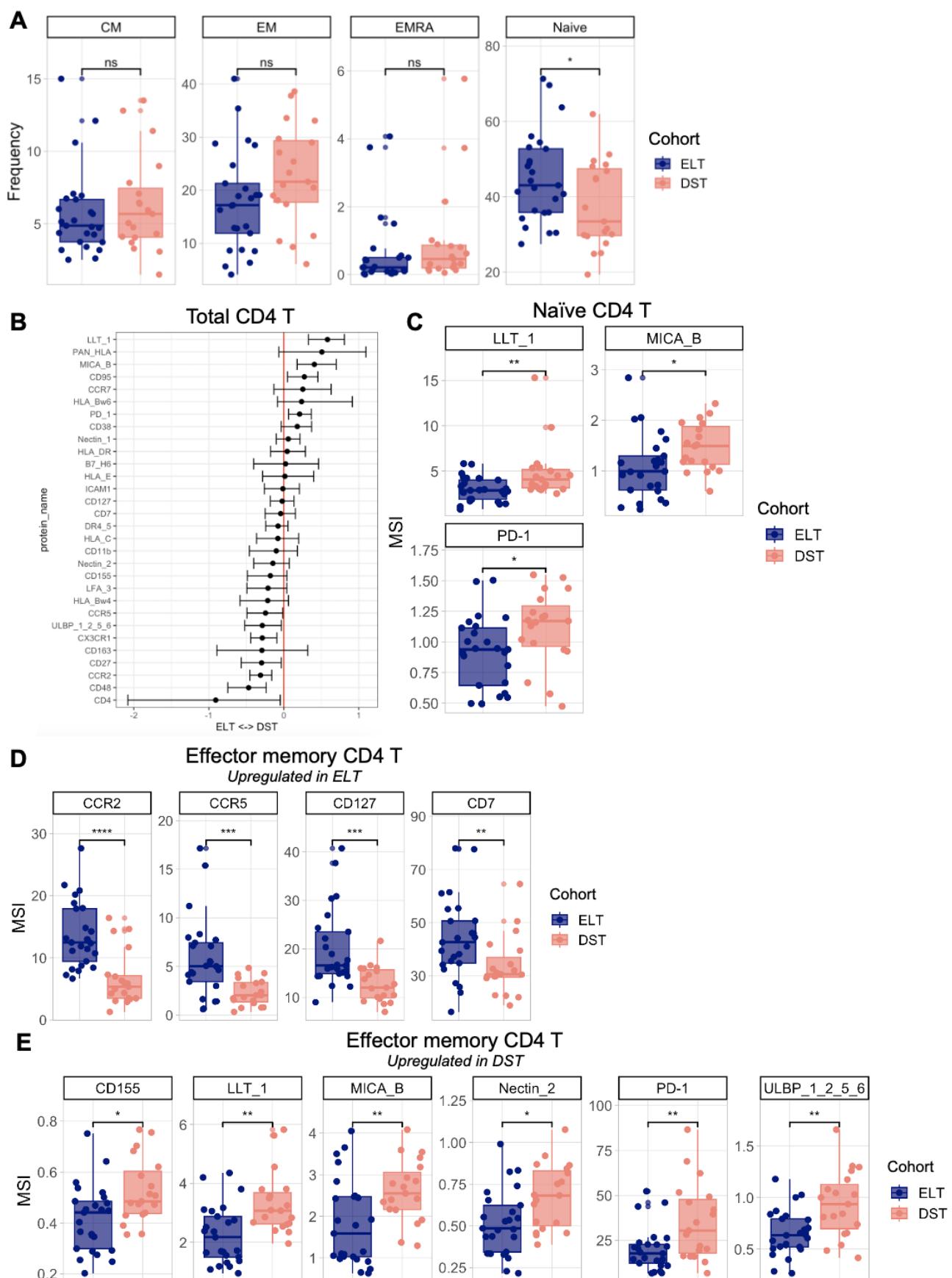
Figure 4. A) Boxplots showing the median signal intensity (MSI) in all monocytes of four markers that were differentially expressed at the patient level between ELT and DST donors. B) CytoGLMM analysis of monocyte features that are significant predictors of the ELT cohort (left) and the DST cohort (right). Each row represents one marker. The X axis represents log-odds. Bars represent 95% confidence intervals. Markers whose 95% confidence intervals do not cross the red line are considered to be significant predictors of one cohort

297 over the other. C) UMAP embeddings of the monocytes in the dataset, colored by cohort (C) or PARC cluster (D). E) Feature plots
298 showing the expression of 6 different proteins on the monocytes in this dataset. F) Boxplots showing the frequency of each PARC cluster
299 among all monocytes in the dataset. G) Heatmap showing the scaled expression of each marker in each PARC cluster. Significance
300 values were determined using a Wilcoxon rank-sum test. ns, $p > 0.05$. *, $p < 0.05$. **, $p < 0.005$. ***, $p < 0.0005$. ****, $p < 0.00005$.

301

302 **DST children have an increased frequency of nonclassical and stressed monocytes compared to ELT
303 children**

304 We next analyzed changes in the composition and phenotype of monocytes across CLH with delayed, short-
305 term-treatment (DST) and early, long-term treatment (ELT). Monocytes from donors in the ELT cohort expressed
306 higher levels of the chemokine receptor CX3CR1, which is associated with homeostasis(22,23) (**Fig. 4A**).
307 Meanwhile, DST donor monocytes expressed comparatively more LLT-1, MICA/B, and PD-1, all of which can
308 be upregulated in the context of infection and cellular stress(24,25) (**Fig. 4A**). Further analysis by generalized
309 linear mixed model (GLMM) found that expression of the adhesion molecule LFA-3, HLA-C, and HLA-Bw4 was
310 significantly associated with the ELT cohort, while CCR7 and HLA-Bw6 were associated with the DST cohort
311 (**Fig. 4B**). Collectively, these findings suggest that monocytes from patients with delayed and shorter-term
312 treatment are under significant stress and downregulate markers associated with homeostasis and inflammation
313 resolution in comparison to early, long-term-treated donors.


314

315 Unsupervised analysis of the monocytes in the ELT and DST cohorts also revealed differences between the
316 delayed short-term- and early long-term-treated donors. A UMAP embedding of all monocytes in the dataset
317 illustrates more significant shifts between the two cohorts than was observed in NK cells (**Fig. 4C**). Notably, DST
318 donor monocytes were overrepresented in the portions of the UMAP embedding with high CD16 expression,
319 indicating a higher abundance of nonclassical monocytes in this cohort (**Fig. 4C-E**). When we performed
320 unsupervised clustering on our monocyte dataset, we did indeed find a cluster with high CD16 expression (cluster
321 0) that was more abundant in DST donors than ELT donors, although this difference is not statistically significant
322 (**Fig. 4F-G**). Another cluster, cluster 1, was present at a significantly higher frequency in DST donors; this cluster
323 was defined by high expression of several stress-induced proteins (MICA/B, LLT-1, B7-H6, and DR4/5) as well
324 as PD-1 (**Fig. 4F-G**). Finally, cluster 5, which had particularly high expression of CD163 and HLA-Bw4, was more

325 abundant in ELT donors (**Fig. 4F-G**). Overall, these results illustrate the shift towards nonclassical and stressed
326 monocytes in CLH with delayed, short-term treatment.

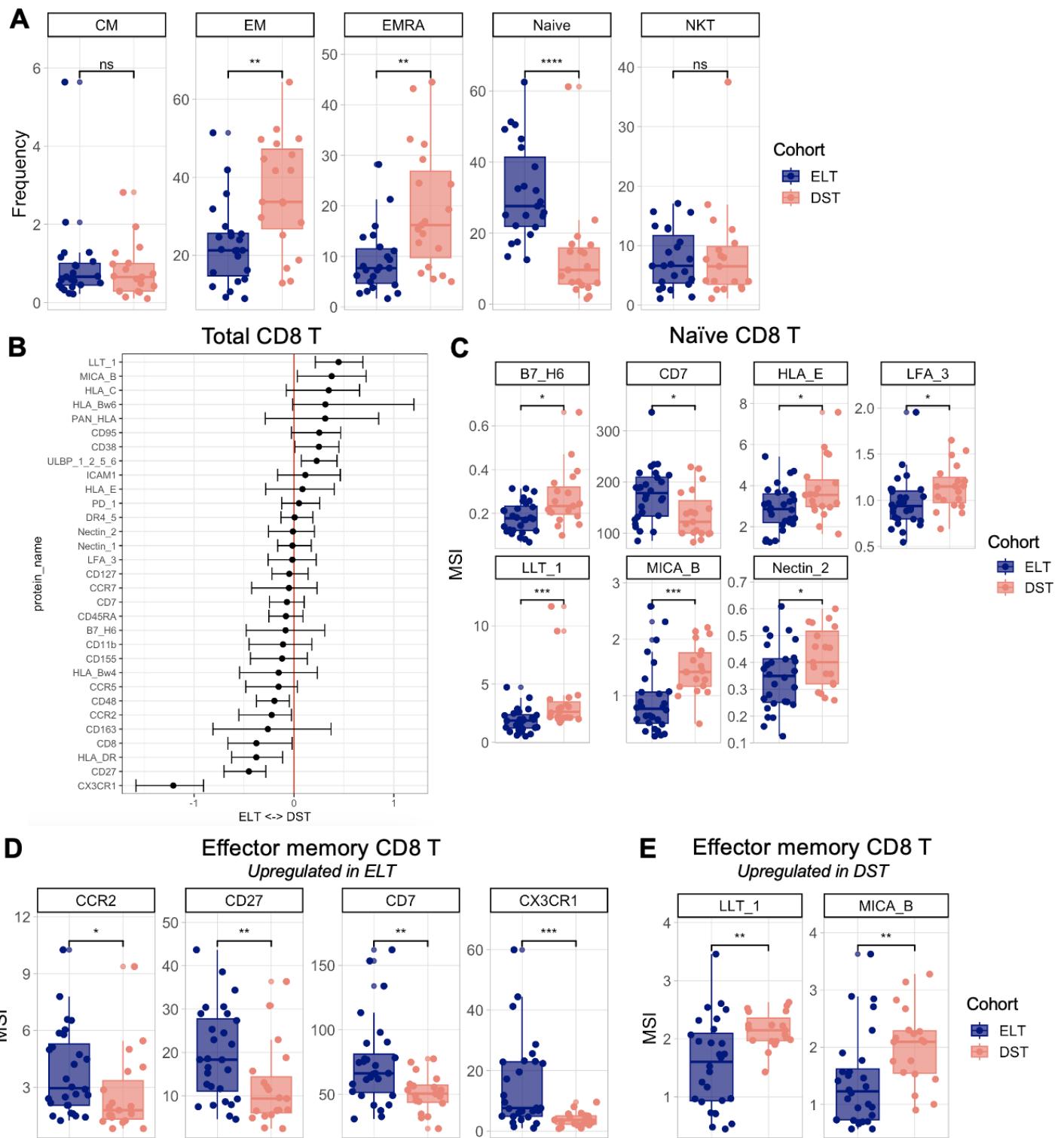
327

CD4 T cells

329 **Figure 5.** A) Boxplots showing the frequencies of memory CD4 T cell subsets as a percentage of total CD4 T cells in each cohort. B)
330 CytoGLMM analysis of total CD4 T cell features that are significant predictors of the ELT cohort (left) and the DST cohort (right). Each
331 row represents one marker. The X axis represents log-odds. Bars represent 95% confidence intervals. Markers whose 95% confidence
332 intervals do not cross the red line are considered to be significant predictors of one cohort over the other. C-E) Boxplots showing the
333 median signal intensity (MSI) in naive CD4 T cells (C) or effector memory CD4 T cells (D-E) four markers that were differentially expressed
334 at the patient level between ELT and DST donors. Markers shown in D are expressed at higher levels in ELT patients; markers shown in
335 E are expressed at higher levels in DST patients. Significance values were determined using a Wilcoxon rank-sum test. ns, p > 0.05. *, p
336 < 0.05. **, p < 0.005. ***, p < 0.0005. ****, p < 0.00005.

337

338 **CD4 T cell memory subsets are significantly altered in ELT children compared to DST children**


339 In earlier analyses, we found that CD4 T cell frequency was lower in DST children, despite these children having
340 HIV RNA measured below detection for at least 3 months prior to sample collection (**Fig. 2A**). Delving into a
341 more granular CD4 T cell analysis, we identified striking differences in the memory T cell subset composition of
342 both CD4 T cells between the cohorts: DST donors had a significantly lower abundance of naive CD4 T cells
343 and a proportionally higher abundance of effector memory (EM) and effector memory re-expressing CD45RA
344 (EMRA) T cells, which are a terminally-differentiated subset of effector memory T cells(26) (**Fig. 5A**). The overall
345 phenotype of CD4 T cells was also significantly different in DST donors compared to the ELT cohort, with stress-
346 induced markers like LLT-1, PD-1, and CD95 being associated with DST donors (**Fig. 5B**). CCR2, CD48 and
347 CX3CR1 were all significantly associated with ELT (**Fig. 5B**).

348

349 Given that some of these shifts in bulk T cell phenotype may reflect the differing T cell memory subset
350 composition of the two cohorts, we next interrogated phenotypic shifts in the two largest CD4 T cell subsets,
351 naive and effector memory CD4 T cells. Naive CD4 T cells were the subset with the fewest changes between
352 the two cohorts, with DST donor naive CD4 T cells only expressing higher levels of LLT-1, MICA/B, and PD-1
353 (**Fig. 5C**). Effector memory (EM) CD4 T cells, however, were substantially different between the two cohorts.
354 CD4 TEM cells in ELT donors had significantly higher expression of both CCR2 and CCR5, which collectively
355 mark type 1 helper T cells (Th1 cells)(27). CCR5 can also act as a co-receptor for HIV entry(28); the lower levels
356 of CCR5 and CD4 expression in the CD4 TEM cells of DST donors may reflect the fact that more of these cells
357 are recently infected/depleted and not yet reconstituted. CD4 TEM cells of ELT patients also have increased

358 CD127 expression, which is a marker of successful immune recovery in HIV-1 infection(29) (**Fig. 5D**).
359 Additionally, as observed in other cell subsets, CD4 TEM cells from DST cohort samples had significantly higher
360 expression of a variety of stress-induced molecules (**Fig. 5E**).
361

CD8 T cells

362
363 **Figure 6.** A) Boxplots showing the frequencies of memory CD8 T cell subsets and NKT cells as a percentage of total CD8+ T cells in
364 each cohort. B) CytoGLMM analysis of total CD8 T cell features that are significant predictors of the ELT cohort (left) and the DST cohort
365 (right). Each row represents one marker. The X axis represents log-odds. Bars represent 95% confidence intervals. Markers whose 95%
366 confidence intervals do not cross the red line are considered to be significant predictors of one cohort over the other. C-E) Boxplots

367 showing the median signal intensity (MSI) in naive CD8 T cells (C) or effector memory CD8 T cells (D-E) four markers that were
368 differentially expressed at the patient level between ELT and DST donors. Markers shown in D are expressed at higher levels in ELT
369 patients; markers shown in E are expressed at higher levels in DST patients. Significance values were determined using a Wilcoxon rank-
370 sum test. ns, p > 0.05. *, p < 0.05. **, p < 0.005. ***, p < 0.0005. ****, p < 0.00005.

371

372 **CD8 T cell memory subsets are significantly altered in ELT children compared to DST children**

373 Finally, we analyzed CD8 T cell subset distribution and phenotype in our delayed short-term-treated (DST) cohort
374 compared to our early long-term-treated (ELT) cohort. Similar to CD4 T cells, we found that CD8 T cell distribution
375 was skewed towards effector memory subsets in DST donors, whereas ELT donors had a higher relative
376 abundance of naive CD8 T cells (**Fig. 6A**). The proportion of central memory CD8 T cells and NKT cells was
377 unchanged (**Fig. 6A**). The overall CD8 T cell pool phenotype was likewise disrupted in the DST cohort; like CD4
378 T cells, the CD8 T cells of these donors had higher expression of stress-induced proteins like LLT-1, MICA/B,
379 CD95, CD38, and ULBPs 1, 2, 5, and 6. ELT CD8 T cells were associated with higher expression of CX3CR1,
380 CD8, CD27, CCR2, and CD48. Interestingly, increased HLA-DR expression, which typically marks CD8 T cell
381 activation, was also associated with the ELT cohort (**Fig. 6B**).

382

383 Whereas naive CD4 T cells differed minimally between DST and ELT donors, naive CD8 T cells had marked
384 differences between the cohorts (**Fig. 6C**). Many more stress-induced molecules, including B7-H6, LFA-3, LLT-
385 1, MICA/B, and Nectin-2 were upregulated in the DST naive CD8 T cells compared to the ELT cohort. Only one
386 marker, CD7, was upregulated on ELT naive CD8 T cells; CD7 expression on CD8 T cells is known to be
387 negatively correlated with HIV response, with high CD7 expression returning upon ART initiation(30) (**Fig. 6C**).
388 By contrast, effector memory CD8 T cells were less altered than effector memory CD4 T cells. CCR2 and CD7
389 were upregulated in the ELT cohort, along with CD27 and CX3CR1 (**Fig. 6D**). Finally, as observed with nearly
390 every other peripheral immune cell subset, DST cohort CD8 effector memory T cells upregulated the stress-
391 induced proteins LLT-1 and MICA/B (**Fig. 6E**).

392

393

394

395

396 **DISCUSSION**

397

398 In this study, we examined how timing and duration of ART impacts immune composition and phenotype in
399 children living with HIV. We utilized two cohorts of ART-treated CLH from Nairobi, Kenya to compare the immune
400 phenotypes of age-matched CLH who were treated early in life and for a longer duration (median duration 62.3
401 months) versus those whose treatment was delayed and therefore had shorter-term ART (median duration 8.5
402 months) at the time of sample collection. Although all CLH were virally suppressed at the time of analysis, we
403 identified striking differences in the peripheral immune systems of early long-term-treated (ELT) children
404 compared to their delayed short-term-treated (DST) counterparts. Overall, we found that the DST children had
405 increased expression of markers of stress and inflammation compared to ELT children. DST children had lower
406 CD4 T cell frequencies and increased abundances of effector memory CD4 and CD8 T cells. Conversely, the
407 ELT children exhibited signs of productive antiviral response, lymphocyte maturity, and resolution of
408 inflammation, along with increased frequencies of CD4 T cells and naive CD4 and CD8 T cells relative to the
409 delayed short-term-treated donors. The high degree of distinction between these two groups of children clearly
410 illustrates the impact of early and longer ART initiation on the pediatric immune system.

411

412 The most consistent finding across cell subsets in our analysis is the upregulation of stress-induced markers in
413 the DST cohort. B7-H6, LFA-3, LLT-1, MICA/B, Nectin-2, poliovirus receptor (CD155), and the ULBP proteins,
414 all of which are stress-induced markers recognized by lymphocyte activating receptors, are consistently
415 expressed at higher levels in the monocytes and T cells of delayed short-term-treated donors. The ubiquitous
416 upregulation of these proteins across all peripheral immune cells analyzed suggest that DST children aberrant
417 inflammation compared to ELT children, which is consistent with findings from other studies that have shown
418 that early ART preserves normal immune function in pediatric cohorts(3,31).

419

420 NK cells are a key component of the anti-HIV immune response(32,33) and our data demonstrate that there are
421 significant differences between the NK cells of the DST and the ELT cohort. Notably, ELT donor NK cells had

422 an increased frequency of CD56^{dim} CD16^{hi} NK cells, which are classically mature NK cells with a high capacity
423 for direct cytotoxicity and ADCC(34,35). The markers which are significantly associated with the ELT cohort,
424 including CD57, Perforin, CD62L, CD16, and NKp30 also support that these donors have NK cells that are more
425 mature and cytotoxic than those of DST donors. These findings were also mirrored in our unsupervised clustering
426 analysis. The increased abundance of NK cells that appear mature and functional in the ELT cohort compared
427 to the DST cohort suggests that ELT donor NK cells have a higher capacity to mount antiviral responses. This
428 is consistent with the finding that children with delayed ART initiation have impaired NK cell responses(3,31), as
429 do individuals with chronic, untreated HIV(36). Our study is not able to determine whether these alterations in
430 NK cell phenotype are due to the late initiation of ART in the DST cohort or their shorter duration of treatment,
431 but future studies should seek to disentangle these factors to further dissect the dynamics of NK cell suppression
432 and recovery following ART initiation in children.

433
434 We observe striking differences in T cell subset frequency between our ELT and DST donors. CD4 T cell
435 frequency, which is lowered in untreated HIV, was significantly lower in the DST donors compared to the ELT
436 donors. We previously found in these cohorts that pediatric patients with delayed onset of ART were unable to
437 fully recover their CD4 T cell counts(37). We also found significant shifts in T cell memory subset distribution in
438 the DST than the ELT cohort: in both the CD4 and CD8 T cell compartments, DST donors had a significant
439 decrease in naive T cell frequency and a corresponding increase in effector memory and effector memory re-
440 expressing CD45RA (EMRA) frequency. This shift was particularly pronounced in CD8 T cells. Loss of naive T
441 cells is a known consequence of untreated HIV-1 infection(38,39) and leaves the host more vulnerable to
442 infection and over-exuberant proinflammatory responses(40). This shift from primarily naive to primarily effector
443 memory T cells in the DST cohort may be caused by the delayed onset of ART, by the persistence of
444 inflammation following untreated HIV infection, shorter duration of ART, or by a combination of these factors.

445
446 There were also profound differences in the phenotypes of total, naive, and effector memory CD4 and CD8 T
447 cells between the DST and ELT cohorts. Higher PD-1 expression on the naive and effector memory CD4 T cells
448 of DST donors may impede the accumulation of productive, antigen-specific T cells in response to infection(41).

449 Meanwhile, ELT donor effector memory CD4 T cells exhibited a phenotype that suggests a productive and
450 appropriate antiviral response, with the upregulation of the Th1 markers CCR2 and CCR5(27), CD7(42), and
451 CD127(29). In the CD8 compartment, we found that effector memory CD8 T cells from ELT donors expressed
452 markers that are suggestive of a protective immune response. These include upregulation of CD27, which
453 promotes survival of activated effector memory CD8 T cells(43); CCR2, which regulates trafficking to the site of
454 viral infection(44); CX3CR1, whose increased expression marks more differentiated CD8 T cells with a higher
455 cytotoxic capacity(45); and CD7, whose expression can be downregulated by untreated HIV-1 infection(30).
456 Finally, the effector memory and naive populations along with the total T cell populations in both the CD4 and
457 CD8 compartments of DST donors were marked by the upregulation of stress-induced proteins. Collectively, the
458 differences in composition and phenotypes of both CD4 and CD8 T cells between the DST and ELT cohorts
459 suggest that ELT donors have a T cell pool which is primed for a productive antiviral response, while DST donors
460 have T cells that are stressed, exhausted, and poorly equipped to mount a successful immune response to new
461 infections.

462
463 This study provides valuable insight into the effects of ART initiation timing and the dynamics of immune
464 reconstitution in children living with HIV, but nevertheless has limitations that must be considered. We compared
465 age-matched children with differences in time to ART initiation and ART duration because child age profoundly
466 influences immune phenotype. However, this meant that the cohorts used in this study have two major
467 distinguishing factors between them that cannot be disentangled; our cohorts differ in both age at ART initiation
468 and in ART duration. Both of these features influence immune restoration.

469
470 The results presented in this study underscore the clinical importance of recognizing the diversity in immune
471 capacity amongst young CLH, which is influenced by duration of ART and age at ART initiation. We
472 examined two pediatric cohorts of the same age with well-suppressed levels of HIV RNA and identified dramatic
473 differences in immune composition and phenotype between the cohorts, with the children who initiated ART later
474 in life and for a shorter duration showing signs of persistent inflammation and immune dysregulation compared
475 to those who were treated soon after birth and for a longer duration. Collectively, these results reinforce that viral

476 suppression by ART in children living with HIV does not return the immune system to a fully “normal” state and
477 earlier longer treatment is required to better reconstitute immune function in CLH.

478

479 **MATERIALS & METHODS**

480

481 **Study Cohorts and Sample Collection**

482 Samples and data used in this study were from two cohorts of pediatric HIV infection conducted in Nairobi,
483 Kenya. Both studies were approved by the University of Washington Institutional Review Board and the Kenyatta
484 National Hospital Ethics and Research Committee. Cohort recruitment and follow-up procedures are described
485 in detail elsewhere(46,47). Briefly, the cohort here referred to as the Early Long-term Treated (ELT) cohort was
486 originally called Optimizing Pediatric HIV Therapy (OPH), NCT00428116, in which HIV-infected, ART-naive
487 infants 1-12 months old were identified at routine HIV-1 testing for prevention of mother-to-child transmission of
488 HIV (PMTCT) clinics and pediatric wards between 2007– 2010. All infants initiated ART after enrollment and
489 were followed for 24 months before being randomized (if eligible) to ART interruption or continued ART(48). In
490 the cohort we refer to here as the Delayed Short-term Treated (DST) cohort [originally called the Pediatric
491 Adherence (PAD) study, NCT00194545], ART-naive children aged 15 months to 12 years who were ART-eligible
492 based on standard of care criteria at the time (WHO disease stage III-IV and/or CD4<15%) were enrolled from
493 Kenyatta National Hospital HIV clinic and pediatric wards between 2004–2007. Children were started on ART
494 and randomized to adherence counseling alone or with a medication diary, then followed monthly for growth,
495 clinical indicators and self-reported adherence.

496

497 For both cohorts, blood was collected at 3-6 month intervals during follow-up and was separated into plasma
498 and peripheral blood mononuclear cells (PBMCs). A subset of cohort participants consented and enrolled in
499 extended follow-up with blood collection through up to 8 years on ART. For the sub-study presented here, we
500 restricted analysis to participants who had PBMC samples available that were collected between 4-8 years of
501 age (to reduce the influence of age-dependent changes in immune profiles) as well as restricted to timepoints

502 when HIV viral load was suppressed below 150 copies/mL during ART at time of CyTOF measurements as well
503 as >3 months prior.

504

505 **HIV RNA and DNA quantification**

506 HIV RNA was previously quantified in longitudinal plasma samples from both cohorts using the Gen-Probe HIV
507 RNA assay, lower limit of detection of 150 copies/ml(46,47). Total and intact HIV proviruses were quantified
508 using the cross-subtype intact proviral DNA assay (CS-IPDA) on DNA from cryopreserved PBMCs(49,50). CS-
509 IPDA was performed in triplicate, with additional replicates performed if no intact HIV proviruses were detected
510 in the first 3 replicates, until either intact proviruses were detected or a minimum of 1e5 cells were interrogated.
511 Both total and intact HIV DNA levels are determined for samples with DNA shearing rates of <40% as measured
512 by the RPP30 reference assay(50,51). Data from samples with >40% DNA shearing (n=1) is limited to total HIV
513 DNA because of the impact of shearing on intact HIV DNA quantification. In this analysis, all samples have
514 detectable total HIV DNA. The CS-IPDA is able to detect a single copy of intact HIV DNA(50), and thus, samples
515 with undetectable intact HIV DNA (n=21) were set to 0.5 copies over the number of cells interrogated normalized
516 to 1e6 cells.

517

518 **PBMC thawing**

519 PBMC were thawed in a 37C water bath and transferred to RPMI 1640 media supplemented with 10% FBS, 1%
520 L-glutamine, and 1% Penicillin-Streptomycin-Amphotericin B solution (complete medium hereafter referred to as
521 "RP10"). PBMC were counted to determine cell count and viability; any samples with a viability of <50% upon
522 thaw were discarded and not used for CyTOF. 0.5e6 PBMC per sample were set aside in a 37C incubator for
523 later staining, while the rest of the cells were used for NK cell isolation.

524

525

526 **NK cell isolation**

527 NK cell isolation was performed on the remaining PBMC for each donor using the Miltenyi MACS Human NK
528 Cell Isolation Kit. This kit isolates NK cells through magnetic bead-based negative selection. After NK cell

529 isolation, the NK cells were counted and plated in a round-bottom 96-well plate for CyTOF staining. The PBMC
530 that had earlier been set aside in the 37C incubator were also transferred to a separate round-bottom 96-well
531 plate.

532

533 **CyTOF staining**

534 The plate containing the isolated NK cells (“NK plate”) and the plate containing the whole PBMC (“PBMC plate”)
535 were centrifuged and all samples were washed once in 1X PBS. The samples were then stained with a Cisplatin-
536 based viability stain at a Cisplatin concentration of 25 uM for 60 seconds; the stain was subsequently quenched
537 with the 1:1 addition of undiluted fetal bovine serum. The samples were washed twice with CyFACS buffer (1X
538 PBS, 0.1% BSA, 2 mM EDTA, 0.05% sodium azide) and then stained for 30 minutes with a Palladium-CD45
539 barcoding scheme as previously described(16). After barcode staining, the samples were washed three times
540 with CyFACS buffer to ensure complete removal of any unbound CD45 antibody and combined into sets of
541 barcodes, hereafter referred to as “barcoded samples”. These barcoded samples were then stained with the
542 surface NK cell panel (NK cell plate) or the surface PBMC panel (PBMC plate) (Table X). All panels were
543 prepared in advance and lyophilized or frozen in aliquots at -80C to ensure consistency between batches. The
544 stained barcoded samples were washed again and fixed in 2% paraformaldehyde (PFA), then permeabilized.
545 The NK cell plate was then stained with the intracellular NK panel (Table X). Finally, the samples were washed
546 thrice more in CyFACS buffer and resuspended in CyPBS supplemented with 2% PFA and an iridium DNA
547 intercalator and stored at 4C until collection. Data were collected on a Helios mass cytometer. Before collection,
548 samples were washed with CyFACS buffer and Milli-Q water before being resuspended in 1x EQ beads
549 (Fluidigm) for collection.

550

551 **CyTOF data pre-processing**

552 Prior to analysis, FCS files were normalized and debarcoded using the functions of the same names in the
553 *Premessa* package(52,53). The normalized and debarcoded FCS files were then transferred to FlowJo v10.9.0,
554 which was used to manually remove EQ beads, doublets, dead cells, and debris from all samples. Any
555 contaminating non-NK cells were manually gated out of the NK cell samples (**Fig. S1-2**). The whole PBMC files

556 were manually gated into major immune cell subsets based on expression of lineage markers; T cells were
557 further divided into memory subsets (**Fig. S1**). The FCS files for each cell subset (monocytes, B cells, total CD4
558 T cells, total CD8 T cells, NK cells, naive CD4 T cells, naive CD8 T cells, effector memory CD4 T cells, and
559 effector memory CD8 T cells) were then exported from FlowJo for further analysis.

560

561 **CyTOF data analysis**

562 The FCS files exported from FlowJo were imported into Rstudio using the *FlowCore* package. Mean signal
563 intensity (MSI) values were arcsinh transformed (cofactor = 5) in order to account for heteroskedasticity in the
564 data. **MU**ltivariate modeling with minimally biased **V**ariable selection in **R** (MUVR) analysis was performed on
565 the samples using the *MUVR* package(17) to identify the key variables in distinguishing between our two cohorts
566 and a generalized linear model (GLM) with the Benjamini-Hochberg correction for multiple hypothesis testing
567 was then used to identify the correlation between each of the variables selected by MUVR and the binary
568 outcome variable (ELT vs. DST).

569

570 Unsupervised analyses of NK cells and monocytes in our dataset were performed by first coercing the relevant
571 FCS files into Seurat objects using the *Seurat* package(54,55). Unsupervised clustering was performed using
572 the Phenotyping by Accelerated Refined Community-partitioning (PARC) algorithm(21). Clustering was
573 performed at multiple different resolutions and we selected a resolution to move forward with by plotting cluster
574 sizes and relationships using the *clustree* package and choosing the resolution at which the cluster identities
575 became relatively stable. UMAP embeddings of the arcsinh transformed data were generated using the *uwot*
576 package; all markers were used in the generation of the UMAP.

577

578 The *CytoGLMM* package was used to identify markers within each cell type that were significantly associated
579 with one cohort over the other. This method is described in more detail elsewhere(19).

580

581

582

583 **Data visualization**
584 Boxplots showing the cell subset frequencies and untransformed MSI values of various markers were generated
585 using the *ggplot2* package. Colors were generated using the *MetBrewer* package or selected manually. UMAPs
586 were plotted using *Seurat*. Heatmaps were generated using the *ComplexHeatmap* package.
587

588 **DATA AND CODE AVAILABILITY**
589

590 The normalized and debarcoded .fcs files for all data used in this study along with their accompanying metadata
591 are available on Immport under accession number SDY2750. The code used for analysis in this study is available
592 at https://github.com/BlishLab/pediatric_hiv_cytof.
593

594 **ACKNOWLEDGEMENTS**
595

596 We thank the children and parents who participated in this study, and the team of researchers at University of
597 Nairobi and Kenyatta National Hospital, including clinicians, laboratory technicians and managers, data
598 managers and peer-mentors. We would like to thank the Stanford Human Immune Monitoring Core (HIMC) for
599 their assistance with the collection of CyTOF data. Thank you to Dr. Geoff Ivison, whose code for formatting
600 CyTOF data for statistical analysis in R was adapted for use in this project. We thank Dr. Aaron Wilk for creating
601 the pipeline used in this manuscript for the unsupervised analysis of CyTOF data. Finally, we thank Dr. Matthew
602 Kaufmann and Minne Lee for their insightful commentary on this work.
603
604
605
606
607
608
609

610 **SUPPLEMENTAL MATERIAL CAPTIONS**

612 **Supplementary Figure 1: Gating strategy for identifying major immune cell subsets within whole PBMC**

613 **CyTOF data.** Example flow plots showing the gating schema used to identify major cell subsets in whole PBMC
614 CyTOF data. A) Gating on normalized, debarcoded .fcs files to remove QC beads, doublets, debris, and dead
615 cells. B) Gating on the live, intact cell population derived in (A) to identify major immune cell subsets for the plots
616 shown in Fig. 2. Arrows indicate downstream gates.

618 **Supplementary Figure 2: Gating strategy for eliminating contaminating non-NK cells within purified NK**

619 **cells CyTOF data.** Example flow plots showing the gating schema used to identify NK cells and NK cell subsets
620 in purified NK cell CyTOF data. A) Gating on normalized, debarcoded .fcs files to remove QC beads, doublets,
621 debris, and dead cells. B) Gating on the live, intact cell population derived in (A) to remove any contaminating
622 non-NK cells. LILRB1/CD56 and HLA-DR/CD56 gates were used to remove CD16+ CD14- monocytes, which
623 express high levels of these markers and are frequently accidentally included in CD56-CD16+ NK cell gates.
624 Arrows indicate downstream gates.

626 **Supplementary Figure 3: Gating strategy for identifying memory T cell subsets within whole PBMC**

627 **CyTOF data.** Example flow plots showing the gating schema used to identify memory T cell subsets in CyTOF
628 data. The first plot (center) shows live, intact, CD3+, CD8+, CD4-, CD56- cells derived from whole PBMC. Arrows
629 indicate downstream gates.

631 **Supplementary Table 1: Markers used in MUVR analysis.**

639 **REFERENCES**

640 1. Biggar RJ, Taha TE, Hoover DR, Yellin F, Kumwenda N, Broadhead R. Higher in utero and perinatal HIV
641 infection risk in girls than boys. *J Acquir Immune Defic Syndr.* 2006 Apr 1;41(4):509–13.

642 2. Teasdale CA, Marais BJ, Abrams EJ. HIV: prevention of mother-to-child transmission. *BMJ Clin Evid*
643 [Internet]. 2011 Jan 17;2011. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/21477392>

644 3. Doria M, Zicari S, Cotugno N, Domínguez-Rodríguez S, Ruggiero A, Pascucci GR, et al. Early ART
645 initiation during infancy preserves natural killer cells in young European adolescents living with HIV
646 (CARMA cohort). *J Int AIDS Soc.* 2021 Jul;24(7):e25717.

647 4. Payne H, Chan MK, Watters SA, Otwombe K, Hsiao NY, Babiker A, et al. Early ART-initiation and longer
648 ART duration reduces HIV-1 proviral DNA levels in children from the CHER trial. *AIDS Res Ther.* 2021
649 Sep 29;18(1):63.

650 5. Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex
651 differences on HIV disease and posttreatment control in children. *Curr Opin HIV AIDS.* 2023 Sep
652 1;18(5):229–36.

653 6. Rinaldi S, Pallikkuth S, Cameron M, de Armas LR, Cotugno N, Dinh V, et al. Impact of Early Antiretroviral
654 Therapy Initiation on HIV-Specific CD4 and CD8 T Cell Function in Perinatally Infected Children. *J*
655 *Immunol.* 2020 Feb 1;204(3):540–9.

656 7. Iyun V, Technau KG, Eley B, Rabie H, Boulle A, Fatti G, et al. Earlier Antiretroviral Therapy Initiation and
657 Decreasing Mortality Among HIV-infected Infants Initiating Antiretroviral Therapy Within 3 Months of Age
658 in South Africa, 2006-2017. *Pediatr Infect Dis J.* 2020 Feb;39(2):127–33.

659 8. Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, et al. Early antiretroviral therapy and
660 mortality among HIV-infected infants. *N Engl J Med.* 2008 Nov 20;359(21):2233–44.

661 9. Cotton MF, Violari A, Otwombe K, Panchia R, Dobbels E, Rabie H, et al. Early time-limited antiretroviral
662 therapy versus deferred therapy in South African infants infected with HIV: results from the children with
663 HIV early antiretroviral (CHER) randomised trial. *Lancet.* 2013 Nov 9;382(9904):1555–63.

664 10. Alvarez P, Mwamzuka M, Marshed F, Kravietz A, Ilmet T, Ahmed A, et al. Immune activation despite
665 preserved CD4 T cells in perinatally HIV-infected children and adolescents. *PLoS One.* 2017 Dec
666 29;12(12):e0190332.

667 11. Goetghebuer T, Le Chenadec J, Haelterman E, Galli L, Dollfus C, Thorne C, et al. Short- and long-term
668 immunological and virological outcome in HIV-infected infants according to the age at antiretroviral
669 treatment initiation. *Clin Infect Dis.* 2012 Mar;54(6):878–81.

670 12. Schröter J, Anelone AJN, de Boer RJ, EPIICAL consortium, EPIICAL consortium. Quantification of CD4
671 Recovery in Early-Treated Infants Living With HIV. *J Acquir Immune Defic Syndr.* 2022 Apr 15;89(5):546–
672 57.

673 13. Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. *Gut*
674 *Microbes.* 2020 Nov 9;12(1):1824564.

675 14. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old
676 age. *Proc Biol Sci.* 2015 Dec 22;282(1821):20143085.

677 15. Moraes-Pinto MI de, Suano-Souza F, Aranda CS. Immune system: development and acquisition of
678 immunological competence. *J Pediatr.* 2021 Mar-Apr;97 Suppl 1(Suppl 1):S59–66.

679 16. Vendrame E, McKechnie JL, Ranganath T, Zhao NQ, Rustagi A, Vergara R, et al. Profiling of the Human
680 Natural Killer Cell Receptor-Ligand Repertoire. *J Vis Exp* [Internet]. 2020 Nov 19;(165). Available from:

681 http://dx.doi.org/10.3791/61912

682 17. Shi L, Westerhuis JA, Rosén J, Landberg R, Brunius C. Variable selection and validation in multivariate
683 modelling. *Bioinformatics*. 2019 Mar 15;35(6):972–80.

684 18. Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, et al. CD62L expression identifies a
685 unique subset of polyfunctional CD56dim NK cells. *Blood*. 2010 Aug 26;116(8):1299–307.

686 19. Seiler C, Ferreira AM, Kronstad LM, Simpson LJ, Le Gars M, Vendrame E, et al. CytoGLMM: conditional
687 differential analysis for flow and mass cytometry experiments. *BMC Bioinformatics*. 2021 Mar
688 22;22(1):137.

689 20. Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, et al. DNAM-1 and the
690 TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer
691 Immunotherapy. *Cancers* [Internet]. 2019 Jun 23;11(6). Available from:
692 http://dx.doi.org/10.3390/cancers11060877

693 21. Stassen SV, Siu DMD, Lee KCM, Ho JWK, So HKH, Tsia KK. PARC: ultrafast and accurate clustering of
694 phenotypic data of millions of single cells. *Bioinformatics*. 2020 May 1;36(9):2778–86.

695 22. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, et al. CX3CR1 is required
696 for monocyte homeostasis and atherogenesis by promoting cell survival. *Blood*. 2009 Jan 22;113(4):963–
697 72.

698 23. Tippett E, Cheng WJ, Westhorpe C, Cameron PU, Brew BJ, Lewin SR, et al. Differential expression of
699 CD163 on monocyte subsets in healthy and HIV-1 infected individuals. *PLoS One*. 2011 May
700 20;6(5):e19968.

701 24. Germain C, Meier A, Jensen T, Knapnougel P, Poupon G, Lazzari A, et al. Induction of lectin-like
702 transcript 1 (LLT1) protein cell surface expression by pathogens and interferon- γ contributes to modulate
703 immune responses. *J Biol Chem*. 2011 Nov 4;286(44):37964–75.

704 25. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK cells and T cells by
705 NKG2D, a receptor for stress-inducible MICA. *Science*. 1999 Jul 30;285(5428):727–9.

706 26. Willinger T, Freeman T, Hasegawa H, McMichael AJ, Callan MFC. Molecular signatures distinguish
707 human central memory from effector memory CD8 T cell subsets. *J Immunol*. 2005 Nov 1;175(9):5895–
708 903.

709 27. Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and
710 Th1/Th2-mediated responses. *Immunol Today*. 1998 Dec;19(12):568–74.

711 28. Blanpain C, Libert F, Vassart G, Parmentier M. CCR5 and HIV infection. *Receptors Channels*.
712 2002;8(1):19–31.

713 29. Xu W, Li J, Wu Y, Zhou J, Zhong J, Lv Q, et al. CD127 Expression in Naive and Memory T Cells in HIV
714 Patients Who Have Undergone Long-Term HAART. *Lab Med*. 2017 Feb;48(1):57–64.

715 30. Aandahl EM, Quigley MF, Moretto WJ, Moll M, Gonzalez VD, Sönnnerborg A, et al. Expansion of CD7(low)
716 and CD7(negative) CD8 T-cell effector subsets in HIV-1 infection: correlation with antigenic load and
717 reversion by antiretroviral treatment. *Blood*. 2004 Dec 1;104(12):3672–8.

718 31. Garcia-Broncano P, Maddali S, Einkauf KB, Jiang C, Gao C, Chevalier J, et al. Early antiretroviral therapy
719 in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile.
720 *Sci Transl Med* [Internet]. 2019 Nov 27;11(520). Available from:
721 http://dx.doi.org/10.1126/scitranslmed.aax7350

722 32. Flórez-Álvarez L, Hernandez JC, Zapata W. NK Cells in HIV-1 Infection: From Basic Science to Vaccine
723 Strategies. *Front Immunol.* 2018 Oct 17;9:2290.

724 33. Hens J, Jennes W, Kestens L. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?
725 *AIDS Res Ther.* 2016 Mar 18;13:15.

726 34. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an
727 important NK cell subset. *Immunology.* 2009 Apr;126(4):458–65.

728 35. Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, et al. Practical NK
729 cell phenotyping and variability in healthy adults. *Immunol Res.* 2015 Jul;62(3):341–56.

730 36. Alrubayyi A, Rowland-Jones S, Peppa D. Natural killer cells during acute HIV-1 infection: clues for HIV-1
731 prevention and therapy. *AIDS.* 2022 Nov 15;36(14):1903–15.

732 37. Ásbjörnsdóttir KH, Hughes JP, Wamalwa D, Langat A, Slyker JA, Okinyi HM, et al. Differences in virologic
733 and immunologic response to antiretroviral therapy among HIV-1-infected infants and children. *AIDS.* 2016
734 Nov 28;30(18):2835–43.

735 38. Di Mascio M, Sereti I, Matthews LT, Natarajan V, Adelsberger J, Lempicki R, et al. Naïve T-cell dynamics
736 in human immunodeficiency virus type 1 infection: effects of highly active antiretroviral therapy provide
737 insights into the mechanisms of naive T-cell depletion. *J Virol.* 2006 Mar;80(6):2665–74.

738 39. Rabin RL, Roederer M, Maldonado Y, Petru A, Herzenberg LA, Herzenberg LA. Altered representation of
739 naive and memory CD8 T cell subsets in HIV-infected children. *J Clin Invest.* 1995 May;95(5):2054–60.

740 40. Schwartz MD, Emerson SG, Punt J, Goff WD. Decreased Naïve T-cell Production Leading to Cytokine
741 Storm as Cause of Increased COVID-19 Severity with Comorbidities. *Aging Dis.* 2020 Jul;11(4):742–5.

742 41. Konkel JE, Frommer F, Leech MD, Yagita H, Waisman A, Anderton SM. PD-1 signalling in CD4(+) T cells
743 restrains their clonal expansion to an immunogenic stimulus, but is not critically required for peptide-
744 induced tolerance. *Immunology.* 2010 May;130(1):92–102.

745 42. Legac E, Autran B, Merle-Beral H, Katlama C, Debre P. CD4+CD7-CD57+ T cells: a new T-lymphocyte
746 subset expanded during human immunodeficiency virus infection. *Blood.* 1992 Apr 1;79(7):1746–53.

747 43. Hendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in
748 generation and establishment of the effector T cell pool. *J Exp Med.* 2003 Nov 3;198(9):1369–80.

749 44. Nansen A, Marker O, Bartholdy C, Thomsen AR. CCR2+ and CCR5+ CD8+ T cells increase during viral
750 infection and migrate to sites of infection. *Eur J Immunol.* 2000 Jul;30(7):1797–806.

751 45. Zwijnenburg AJ, Pokharel J, Varnaité R, Zheng W, Hoffer E, Shryki I, et al. Graded expression of the
752 chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-
753 species interpretation. *Immunity.* 2023 Aug 8;56(8):1955–74.e10.

754 46. Wamalwa D, Benki-Nugent S, Langat A, Tapia K, Ngugi E, Slyker JA, et al. Survival benefit of early infant
755 antiretroviral therapy is compromised when diagnosis is delayed. *Pediatr Infect Dis J.* 2012 Jul;31(7):729–
756 31.

757 47. Wamalwa DC, Farquhar C, Obimbo EM, Selig S, Mbori-Ngacha DA, Richardson BA, et al. Medication
758 diaries do not improve outcomes with highly active antiretroviral therapy in Kenyan children: a randomized
759 clinical trial. *J Int AIDS Soc.* 2009 Jun 24;12:8.

760 48. Wamalwa D, Benki-Nugent S, Langat A, Tapia K, Ngugi E, Moraa H, et al. Treatment interruption after 2-
761 year antiretroviral treatment initiated during acute/early HIV in infancy. *AIDS.* 2016 Sep 24;30(15):2303–
762 13.

763 49. Fish CS, Cassidy NAJ, Levy CN, Hughes SM, Jerome KR, Overbaugh J, et al. Protocol for high-
764 throughput reservoir quantification across global HIV subtypes using a cross-subtype intact proviral DNA
765 assay. *STAR Protoc.* 2022 Dec 16;3(4):101681.

766 50. Cassidy NAJ, Fish CS, Levy CN, Roychoudhury P, Reeves DB, Hughes SM, et al. HIV reservoir
767 quantification using cross-subtype multiplex ddPCR. *iScience.* 2022 Jan 21;25(1):103615.

768 51. Levy CN, Hughes SM, Roychoudhury P, Reeves DB, Amstuz C, Zhu H, et al. A highly multiplexed droplet
769 digital PCR assay to measure the intact HIV-1 proviral reservoir. *Cell Rep Med.* 2021 Apr 20;2(4):100243.

770 52. Zunder ER, Finck R, Behbehani GK, Amir EAD, Krishnaswamy S, Gonzalez VD, et al. Palladium-based
771 mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. *Nat*
772 *Protoc.* 2015 Feb;10(2):316–33.

773 53. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, et al. Normalization of mass
774 cytometry data with bead standards. *Cytometry A.* 2013 May;83(5):483–94.

775 54. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression
776 data. *Nat Biotechnol.* 2015 May;33(5):495–502.

777 55. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of
778 multimodal single-cell data. *Cell.* 2021 Jun 24;184(13):3573–87.e29.

779