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Abstract

Switchgrass (Panicum virgatum L.) is a bioenergy and forage crop. Upland
switchgrass exhibits superior cold tolerance than lowland ecotype, but the underlying
molecular mechanisms remain unclear. Here, we presented a high-quality
haplotype-resolved genome of the upland ecotype 'Jingji31l" and conducted
multi-omics analysis to understand its cold tolerance. The divergence between upland
and lowland ecotypes of switchgrass occurred after the differentiation of the two
subgenomes (K and N). Under cold stress, the K subgenome has more differentially

expressed genes (DEGs). Transcriptome analysis revealed ecotype-specific
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differential expressions among members of the cold-responsive (COR) gene families.
Specifically, certain members of the AFB1, ATL80, HOSLO, and STRS2 gene families
exhibited opposite expression changes between the two ecotypes, potentially
contributing to their differential cold tolerance. By using haplotype-resolved genome,
we identified more cold-induced allele-specific expressions (ASEs) in the upland
ecotype, and these ASEs were significantly enriched in the COR gene families.
Genome-wide association study detected an association signal on Chr3K related to
overwintering rate, which overlapped with a selective sweep region and contained a
cytochrome P450 (CYP450) gene highly expressed under cold stress. Heterologous
overexpression of CYP450 in rice alleviated leaf wilting and improved cold tolerance.
Our study provides a high-quality haplotype-resolved genome of upland switchgrass,
to advance conceptual understanding of plant cold tolerance for breeding crops with

enhanced cold adaptation.
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I ntroduction

Switchgrass (P. virgatum) is a perennial C4 grass utilized as both a forage crop
and a dedicated feedstock for bioenergy production’?. It comprises two distinct
ecotypes, lowland and upland, displaying substantial variations in morphology and
environmental adaptability®*. The lowland ecotype typically thrives in warm, moist
environments, featuring greater plant height and broader leaves. In contrast, the
upland ecotype predominantly inhabits cold, arid areas and is able to overwinter in
colder temperate zones®. The upland ecotype likely contains gene resources conferring
cold tolerance that differ from those in the lowland ecotype.

Due to the frequent occurrence of extreme weather events caused by global
climate change, stable crop production faces significant challenges. Cold stress is one
of the most threatening abiotic stresses in the growth and development of plants,
impacting the geographical distribution of plants and even leading to plant mortality,
thereby causing a decrease in crop yield®. Additionally, planting switchgrass on
marginal lands is an effective way to increase its cultivation area, but these lands often
face various abiotic stresses, especially the threat of low temperature. Upland
switchgrass represents an ideal model for understanding how plants respond to cold
stress, as it can successfully overwinter in northern cold regions compared to lowland
ecotypes. However, few studies have explored the molecular mechanisms underlying
the regulation of cold stress responses in the upland ecotype relative to the lowland
ecotype, and the underlying mechanisms remain unclear.

For most plants with an open-pollination mechanism, the common strategy for
selecting superior germplasm is to transfer the excellent traits of parents to the
offspring through hybridization. The improvement of offspring traits is typically
caused by increased genetic variation and specific expression of allelic genes at
certain loci’. The time and space-specific expression of different allelic genes can
result in significant differences in gene products and lead to distinct phenotypes®®.
For highly heterozygous switchgrass, the previously reported collapsed representation
may have overlooked half of the heterozygous variants in the genome and could have

introduced assembly errors in regions of divergence between haplotypes™.
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In this study, we uncover the cold tolerance mechanism of upland switchgrass
through constructing a high quality and haplotype-resolved reference genome of
upland switchgrass ‘Jingji31’ together with integrating transcriptomics, population
genetics, and functional validation assays. We identified a large number of COR genes
with opposite expression trends in upland and lowland switchgrass under cold stress,
which may contribute to the cold tolerance differences between the two ecotypes.
Additionally, ASEs were widely present in switchgrass and were induced by cold
stress, particularly ASEs of certain COR genes. GWAS and selective sweep analysis
identified a large number of candidate genes potentially associated with cold tolerance,
among which overexpression of one such candidate gene positively regulated cold
tolerance. Our findings not only improve the understanding of cold tolerance in
upland switchgrass to accelerate genome-assisted breeding of cold tolerance in this
important model energy plant, but also hold promise in promoting comparative

genomics studies of other crops.

Results and Discussion

Assembly and annotation of the upland switchgrass genome

The genome size of the switchgrass upland ecotype ‘Jingji31’ (abbreviated as
*JJ31")was estimated to be ~1.19 Gb using k-mer analysis based on 67.8 Gb (57%
coverage) of lllumina short-read data (Fig. 1a, Supplementary Table 1, 2). A total of
53.2 Gb (44.7x coverage) of PacBio high-fidelity long read (HiFi) sequences and
145.2 Gb (122x coverage) lllumina-sequenced Hi-C data were then generated
(Supplementary Table 1). Due to the high heterozygosity (1.55%), Hfiasm was used
for haplotype-resolved de novo assembly using phased assembly graphs™. Two
phased haplotypes, ‘JJ31-A’ and ‘JJ31-B’, were anchored to pseudo-chromosomes
using Hi-C reads. The Hi-C interaction map demonstrated that our chromosome-level
anchoring was of high quality and reliability (Fig. 1b). Furthermore, through
co-linearity analysis with the previously published lowland ecotype switchgrass

‘AP13’ genome, all pseudo-chromosomes of the two haplotypes were successfully
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assigned to different subgenomes, bearing the same chromosome IDs "K" and "N"*°
(Fig. 1c and Supplementary Fig. 1). Ultimately, the genome sizes of ‘JJ31-A’ and
‘JJ31-B’ were determined to be 1.14 Gb and 1.11 Gb, respectively, with 98.47%
(“JJ31-A’) and 99.02% (“JJ31-B’) of sequences anchored across 18 chromosomes (Fig.
1d, Table 1, Supplementary Table 3 and 4). Their respective Contig N50 values were
4.9 times and 4.7 times higher than that of the ‘AP13’ genome (5.5 Mb)° (Table 1).

We employed various strategies to assess the quality of the haplotype-resolved
genomes. We realigned paired-end reads to the two haploid genomes, resulting in
observed alignment rates of 98.07% and 97.93%, respectively (Supplementary Table
3). Furthermore, the embryophyta Benchmarking Universal Single-Copy Orthologs
(BUSCO) analysis indicated completeness rates of 98.4% and 98.1% for the two
haplotypes (Supplementary Table 3). Using Merqury to calculate quality values (QV),
‘JJ31-A’ and ‘JJ31-B’ achieved values of 45.16 and 50.27, respectively, exceeding the
Vertebrate Genomes Project standard of QV40* (Table 1). The long terminal repeat
(LTR) assembly index (LAI) for both phased haplotype genomes approached 20,
nearly meeting the gold standard®® (Supplementary Table 3). These results affirm the
accuracy, completeness, and contiguity of our two haploid genome assemblies.

Both haplotype-resolved genomes were annotated with a comprehensive strategy
that combined homolog prediction, de novo prediction, and other evidence-driven
predictions. In the two haplotypes, 79,672 and 79,416 protein-coding genes were
predicted, with 98.9% supported by known gene function databases (Table 1 and
Supplementary Table 3). The gene models of the two haploid genomes have an
average coding sequence length of ~1 kb and an average of four exons per gene
(Supplementary Table 3). We also identified 0.62 and 0.59 Gb repeat sequences,
accounting for 54.19% and 53.48% of the two haplotypes, respectively, of which
42.09% and 41.51% are LTRs (Supplementary Table 3). Additionally, we identified
2,245 and 2,206 miRNAs, 1,264 and 1,291 tRNAs, 9,171 and 5,221 rRNAs, as well
as 1,190 and 1,154 snRNAs in the two haplotype genomes, respectively
(Supplementary Table 3). Considering the overall superior quality of the ‘JJ31-B’

haplotype, it was selected for subsequent analysis unless otherwise stated.
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Table 1 Summary of assembly and annotation of two haplotype genomes in upland

switchgrass

JJ31-A JJ31-B
Contig N50 (Mb) 27.05 25.98
Contig length (Mb) 1,124.57 1,136.95
Scaffold N50 (Mb) 67.96 62.02
Scaffold length (Mb) 1,143.31 1,110.80
Chromosome anchoring rate (%) 98.47 99.02
Gene no. 79,672 79,416
Repeat sequence length (Mb) 619.58 594.02
Repeat ratio (%) 54.19 53.48
Qv 45.16 50.27
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Fig. 1 High-quality haplotype-resolved genome assembly of upland switchgrass
JJ3L.
a, Flowering morphology of the upland ecotype JJ31. b, Whole genome Hi-C heat
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map for ‘JJ31-A’ (left) and ‘JJ31-B’ (right). ¢, The chromosome collinearity between
the genomes of JJ31 and Alamo. Numbers represent chromosome identifiers. d,
Genome features of the JJ31 genome. Track ‘a’: chromosome length; track ‘b’: gene
density; track ‘c’: transposable element (TE) density; track ‘d’: GC content; track
‘e-g’: gene expression levels in roots, stems, and leaves; track ‘h’: collinearity

between chromosomes of ‘JJ31-A’ and ‘JJ31-B’.

Enhanced cold tolerance and subgenome dominance in upland switchgrass
indicated by compar ative genomics analysis

To understand the evolutionary relationship between the two ecotypes of
switchgrass, we performed comparative genomic analysis by adding several closely
related species. Based on the phylogenetic tree, we found that the K and N
subgenomes of switchgrass diverged approximately 6.6 million years ago (Mya),
while the divergence between switchgrass and P. hallii occurred around 8.8 Mya,
consistent with previous studies™ (Fig. 2a). It is noteworthy that the K subgenomes of
the two ecotypes diverged at 2.3 Mya, and the N subgenomes diverged at 2.6 Mya
(Fig. 2a), suggesting that the divergence between these two ecotypes may have
occurred during this period. We further determined the divergence time between the
two ecotypes to be ~2.2 Mya (Ks peak at 0.03) by calculating the synonymous
substitution rate (Ks) of orthologous gene sets between the different subgenomes of
the two ecotypes (Fig. 2b and Supplementary Table 5). Combining previous report on
the tetraploidization time of switchgrass (< 4.6 Mya)'®, we hypothesize that the
evolutionary timeline of switchgrass first involved the differentiation of the N and K
subgenomes, followed by tetraploidization, and then the differentiation of the two
ecotypes.

It was reported that upland switchgrass exhibits better cold tolerance than the
lowland ecotype®. Compared to the ‘AP13’, 4,147 expanded, 5,030 positively
selected, and 4,873 specific genes were identified in ‘JJ31°. These genes were
enriched in several stress-regulated pathways and biological processes

(Supplementary Fig. 2). The expanded and specific genes in ‘JJ31’ were mainly
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enriched in calcium channel activity, calcium ion transmembrane transporter activity,
melatonin receptor activity, and sphingolipid metabolic pathways, which are believed
to play crucial roles in protecting plants from cold stress™™°. These positively
selected specific genes were associated with G-protein coupled receptor activity,
which was involved in signal transduction of plant stress responses®. The above
results may be one of the reasons leading to the greater cold tolerance of upland
switchgrass compared to the lowland ecotype.

Subgenome dominance is a common phenomenon in polyploid plants, prompting
our investigation into the subgenome characteristics within the two haplotypes of
upland switchgrass. We employed a sliding window approach (window size 1 Mb) to
assess gene density and transposable element (TE) density in the two subgenomes.
Compared to the N subgenomes in ‘JJ31-A" and ‘JJ31-B’, the K subgenomes
exhibited higher gene density (71.2 versus 66.2 genes per Mb and 73 versus 67.6
genes per Mb, P < 0.01), more genes with dominant expression (4,662 versus 4,305
and 4,715 versus 4,403, P < 0.01), less TE density (53.5 versus 56.4 TEs per Mb and
52.5 versus 55.7 TEs per Mb, P < 0.01) (Fig. 2c-h and Supplementary Tables 6-9).
Additionally, the cold stress transcriptome data from both ecotypes revealed slightly
more DEGs on the K subgenome, suggesting that it might play a more significant role
in response to cold stress (Supplementary Tables 10). In summary, all our statistics
regarding the two subgenomes pointed to the K subgenome as the dominant one in

both haplotypes, consistent with the findings in the ‘AP13’ genome™®.
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Fig. 2 Compar ative genomics and subgenome dominance analysis.
a, Phylogenetic tree and divergence time estimates of ‘JJ31’ and five closely related
species. The right panel shows the distribution of single-copy, multi-copy, unique, and
other gene orthologs. b, Evolutionary analysis of the ‘JJ31° and ‘AP13’. The Ks
distribution is shown for orthologs in the switchgrass genomes. K and N represent two
subgenomes, respectively. ¢, d, Gene density of the two subgenomes in the ‘JJ31-A’ (c)
and ‘JJ31-B’ (d). e f, TE density of the two subgenomes in the ‘JJ31-A’ (c) and
‘JJ31-B’ (d). g, h, Number of dominantly expressed genes in the two subgenomes of
the “JJ31-A’ (g) and ‘JJ31-B’ (h). The statistical window size is 1 Mb.
Contribution of specific differential expression of COR gene families to the cold
toler ance differ ences between the two ecotypes

The upland ecotype “JJ31° exhibited greater cold tolerance than the lowland
ecotype ‘Alamo’ (noting that ‘AP13’ was a line/clone selected from ‘Alamo’)* based
on the phenotypic and physiological indicators under cold stress (Fig. 3a-c). Leaves of
both ecotypes showed significant wilting after 56 days of cold treatment, but only
‘JJ31° regrew new leaves after returning to room temperature (Fig. 3a). In addition,
relative water content (RWC), relative electrical conductivity (REC), and

malondialdehyde (MDA) showed significant changes (P < 0.05) in ‘JJ31° after 21
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days of cold stress compared to the control, while in ‘Alamo’, RWC significantly
decreased and REC and MDA significantly increased after 14 days of cold stress
compared to the control (P < 0.05) (Fig. 3b,c). The slower physiological changes
under cold stress might indicate better cold tolerance in ‘JJ31’ than in ‘Alamo’.

To understand the molecular response mechanisms underlying the greater cold
tolerance of upland switchgrass, we conducted transcriptome sequencing on the
leaves and roots of “JJ31° and ‘Alamo’ at three time points under cold stress
(Supplementary Table 1). Based on KEGG enrichment analysis, the DEGs revealed in
each comparison group were mainly enriched in circadian rhythm, MAPK signaling
pathway, and plant hormone signal transduction pathways (Fig. 3d and Supplementary
Fig. 3). Although both ecotypes relied on similar pathways to respond to cold stress,
we found that genes related to cold tolerance within these pathways exhibited
ecotype-specific expression (Fig. 3e). During the initial exposure of plants to cold
stress, Ca®* influx induces activity of calmodulin (CaM) and activates downstream
MEKK1 to positively regulate plant cold tolerance?>*. Our study found that three
members of the CaM family and one member of the MEKK1 family were specifically
upregulated in “JJ31’, while two and one members of the respective families were
specifically downregulated in ‘Alamo’ (Fig. 3e). Two transcription factors, PIF3 and
PIF4, are reported to negatively regulate plant cold tolerance by inhibiting the
expression of CBF, while the EIN3-BINDING F-BOX 1/2 (EBF1/2) proteins enhance
cold tolerance by degrading PIF32%. We found that nine PIF3 genes were
specifically downregulated in ‘JJ31’, while nine PIF3 and two PIF4 genes were
specifically upregulated in ‘Alamo’, with two EBF1/2 genes exhibiting opposite
expression changes (Fig. 3e). Additionally, we found that one LHY, one HY5, and two
SNRK2 genes were specifically upregulated in “‘JJ31°, while one SNRK2 and one PYL
were specifically downregulated in ‘Alamo’ (Fig. 3e). These genes have been reported

to positively regulate plant cold tolerance??®

. These results suggested that the
ecotype-specific expression of these cold stress regulatory genes might interpret
differences in cold tolerance between the two ecotypes.

The above results imply that there may be more cold-response (COR) genes with
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ecotype-specific expression. We identified 795 COR genes in switchgrass based on
the 109 COR gene families reported in Arabidopsis® (Supplementary Table 11). We
identified 182 and 251 specific DEGs significantly enriched in COR genes in ‘JJ31’
and ‘Alamo’, respectively (P = 0.035 and P = 1.0745e-5, Supplementary Fig 4,
Supplementary Table 12, 13 and Supplementary Note 1). These COR genes belonged
to 58 and 55 families, respectively, among which members of 25 families showed
specifically differential expression in the leaves or roots of only one ecotype
(Supplementary Fig. 5a). The members of 44 COR gene families exhibited differential
expression in both ecotypes, but we noted that some of these genes showed opposite
expression changes between the two ecotypes (Supplementary Fig. 5b).

The auxin signaling F-box protein 1 (AFB1) -mediated auxin signaling pathway
is involved in plant tolerance to abiotic stresses, and its overexpression can enhance
plant tolerance to salt and cold stresses®. Three AFB1 genes were upregulated in
*JJ31’, while four AFB1 genes were downregulated in ‘Alamo’ (Supplementary Fig.
5b). ATL80, an E3 ubiquitin ligase and negative regulator in response to cold stress®,
had three genes downregulated in “JJ31° and one gene upregulated in ‘Alamo’
(Supplementary Fig. 5b). The Arabidopsis mutant hosl0-1 was reported to be
completely unable to acclimate to the cold®. We found that 15 HOSLO genes were
upregulated in ‘JJ31’, while 11 HOSIO genes were downregulated in ‘Alamo’
(Supplementary  Fig. 5b). Interestingly, although STRESS RESPONSE
SUPPRESSOR2 (STRS2) was reported to negatively regulate Arabidopsis tolerance
to salt, osmotic, and heat stress, and not cold stress*, our study found that three
STRX2 genes were downregulated in ‘JJ31” and two were upregulated in ‘Alamo’
(Supplementary Fig. 5b), which may highlight the role of STRS2 in response to cold
stress in switchgrass. In summary, the ecotype-specific expression of the above COR
genes or their opposite expression changes in the two ecotypes might contribute to
their differences in cold tolerance.

The transcriptional regulatory pathway dependent on CBF is crucial for plant

34-36

response to cold stress™ . Similarly, We found that cold response genes in

CBF-dependent pathway was activated to varying degrees in both *JJ31” and ‘Alamo’,


https://doi.org/10.1101/2024.08.26.609807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609807; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with slight differences between leaves and roots (Fig. 3f). We observed that the
specific differential expression of MEKK1 and SIZ1 genes occurred only in the leaves,
while the specific differential expression of CRLKs and ICEL genes occurred only in
the roots (Fig. 3f). Additionally, members of the CaM, MPK3/6, and CIPKs families
tended to exhibit opposite expression trends between the two ecotypes (Fig. 3f). In
conclusion, through the identification of COR gene families and comparative
transcriptome analysis, we comprehensively revealed the landscape of differential
expression of COR genes between the two ecotypes, which may contribute to the

superior cold tolerance of the upland compared to the lowland ecotype.
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Fig. 3 Transcriptional landscape differences between the two ecotypes under cold
stress.

a, Phenotypic changes of JJ31 and Alamo on days 0, 28, and 56 under cold stress at
4 °C and recover at room temperature for 28 days. Scale bar indicates 7 cm. b,

Changes in physiological indicators of JJ31 under control (room temperature) and
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cold stress (4 °C). From left to right: RWC, REC, and MDA. ** indicates P < 0.005. c,
Changes in physiological indicators of Alamo under control (room temperature) and
cold stress (4 °C). From left to right: RWC, REC, and MDA.. ** indicates P < 0.005. d,
KEGG enrichment of all compared DEGs identified in leaves and roots of JJ31 and
Alamo under cold stress. e, Expression changes of cold-tolerance-related genes in the
circadian rhythm, MAPK signaling pathway, and plant hormone signaling
transduction pathways in two ecotypes. f, Expression changes of key genes in the

CBF-dependent cold response pathway in the two ecotypes.

The involvement of ASE in response to cold stress revealed by
haplotype-resolved genome

The haplotype-resolved genome of upland switchgrass enabled us to use
RNA-seq data to identify ASEs, which have been reported in recent studies to
profoundly impact plant growth and development®’. According to the correlation
between the number of ASEs and the number of transcriptome samples used in the
analysis, we aimed to obtain a complete ASE collection in switchgrass using
sufficient data. We found that the number of ASEs stabilized when the number of
transcriptome samples reached 15 by utilizing transcriptome data reported by Zuo et
al (with at least 2 replicates)®(Fig. 4a). A total of 16,801 ASEs were identified in
switchgrass, with significantly more ASEs biased towards ‘JJ31-A’ expression than
towards ‘JJ31-B’ (Fig. 4b and Supplementary Table 14). To understand the impact of
natural selection on ASEs and non-ASEs, we calculated the Ka/Ks ratio between
allele pairs. Although most allele pairs exhibited low Ka and Ks values, ASEs
underwent significantly stronger purifying selection pressure compared to non-ASEs
(Fig. 4c and Supplementary Table 15). To further investigate potential causes of ASE,
we examined the distribution patterns of SNPs surrounding ASEs and equivalently
expressed alleles (EEAs). Compared to EEAs, ASEs exhibited significantly higher
SNP density in the upstream, exonic, intronic, and downstream regions, as with
previous findings in other plants® (Fig. 4d). The SNP density in the upstream region

was higher than that in other regions, suggesting that the occurrence of ASE might
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correlate with the greater variation in the upstream region of the gene.

Similarly, we utilized the transcriptome data obtained in this study under cold
stress to identify ASEs, aiming to explore whether the response of ASE to cold stress
differs between the two ecotypes (Supplementary Note 2). Compared to the control
group, a significant increase in ASEs were detected in ‘JJ31” after experiencing cold
stress, while no significant change occurred in ‘Alamo’, indicating that more ASEs in
*JJ31” were induced by cold stress (Fig. 4e, Supplementary Table 16, 17). Finally, we
identified ‘2,620 and ‘751’ cold-induced ASEs in two tissues of ‘JJ31’ and ‘Alamo’,
respectively (Supplementary Fig 6, 7, Supplementary Table 18 and Supplementary
Note 2).

We further found that 43 cold-induced ASEs were significantly enriched in COR
genes in ‘JJ31’ (P = 0.0013, Fig. 4f), while there was no significant enrichment in
‘Alamo’ (P = 0.0783), supporting the importance of ASEs in responding to cold stress
in *JJ31°. Among these genes, we observed that two alleles of a well-known CBF
gene, PVA 6K02793.1 and PVB_6K02781.1, did not exhibit differential expression in
the control group, but PVB_6K02781.1 showed significant preferential expression in
response to cold stress (Fig. 4g). Although the sequence similarity between the two
alleles is as high as 98.82%, four SNPs cause changes in three amino acids
(Supplementary Fig. 8). We aligned the RNA-seq data to the reference genome
‘JJ31-B’ and found a higher proportion of reads containing SNPs corresponding to the
B allele type, supporting the dominant expression of PVB_6K02781.1 (Fig. 4h). In
conclusion, our findings indicated the widespread presence of ASE phenomena in
switchgrass, and more ASEs were involved in the response to cold stress in upland

switchgrass.
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Fig. 4 ASEsin switchgrass.

a, ASE numbers increase with the quantity of RNA-seq samples. The specified
number sets were selected randomly from 23 ASE sets with three replicates. b,
Dominant expressed alleles in two haplotype genomes. ¢, Ka/Ks of ASE and non-ASE
genes. Minima and maxima are present in the lower and upper bounds of the whiskers,
respectively, and the width of violin are densities of Ka/Ks value. P values were
calculated with two-sided Student’s t-test. d, SNP density in ASE and EEA genes. The

y axis represents SNP numbers every 100 bp. P values were calculated with two-sided
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Student’s t-test. *** indicates P < 0.0005. e, Number of ASE genes identified in JJ31
(left) and Alamo (right) under control (room temperature) and cold stress (4 °C). P
values were calculated with two-sided Student’s t-test. NS indicates not significant. f,
The expression changes of alleles of 43 COR genes in JJ31 under control (room
temperature) and cold stress (4 °C) conditions. ASE of these genes was induced by
cold stress at least at one time point. g, The expression levels (TPM) of two alleles of
the CBF gene (PVA_6K02793.1 and PVB_6K02781.1) across different transcriptome
samples. ** indicates adjusted P-value < 0.01. h, Pattern diagram of PVB_6K02781.1
advantage expression. Red indicates the allele ID and the corresponding bases and
encoded amino acid types in ‘JJ31-A’; blue indicates the allele ID and the
corresponding bases and encoded amino acid types in ‘JJ31-B’. "RNA-seq reads"
represents the proportion of reads containing different SNP types that map to ‘JJ31-B’.
From left to right, the RNA-seq reads aligned to the first SNP site are 79, with 92%
supporting C and 8% supporting G; the RNA-seq reads aligned to the second SNP site
are 100, with 45% supporting G and 55% supporting C; the RNA-seq reads aligned to
the third and fourth SNP sites are both 67, with 81% and 85% supporting T and G,

respectively, and 19% and 13% supporting A and T, respectively.

Identification of genes associated with cold tolerance by population genetic
analysis

To explore cold tolerance genes in upland switchgrass at the population level, we
aligned resequencing data from 340 accessions (242 upland and 98 lowland) reported
previously to the “3J31’ genome™, resulting in 10,654,902 SNPs and 243,831 SVs
(Supplementary Fig. 9, Supplementary Table 19 and Supplementary Note 3). A total
of 103.7 Mb and 125.9 Mb of genomic sequences covering 5,084 and 8,428 genes
were detected using the sliding window method based on SNPs and SVs, respectively
(Supplementary Fig. 10). We found that 66 and 111 genes from the two datasets were
significantly (P = 0.0196 and P = 0.0018, respectively) and annotated as belonging to
the COR gene family (Supplementary Fig. 10). Among the COR genes identified
based on SNPs and SVs, approximately 54.5% (36 out of 66) and 62.2% (69 out of


https://doi.org/10.1101/2024.08.26.609807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609807; this version posted August 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

111), respectively, showed differential expression under cold stress (Supplementary
Table 20). These results suggested that the differential selection of certain COR genes
in the two ecotypes potentially contribute to the differences in cold tolerance.

To identify candidate genes related to cold tolerance in switchgrass, we
performed a genome-wide association study (GWAS) on the overwintering rate of 340
switchgrass accessions reported previously using two variant datasets™
(Supplementary Fig. 11, 12 and Supplementary Table 21, 22). An association signal
on Chr3K was simultaneously detected in both SV-GWAS and SNP-GWAS, including
an overlapping region with the selective sweep region (Fig. 5a). We examined the
expression of 14 genes around the association signal and found that only
PVB_3K03605.1 and PVB_3K03611.1 were highly expressed under cold stress (Fig.
5b and Supplementary Fig. 13). Interestingly, only PVB 3K03611.1 appeared in the
overlapping region, which encodes cinnamate-4-hydroxylase belonging to the
CYP450 gene family.

We found a 61-bp deletion located 300 bp upstream of the promoter region of
PVB_3K03611.1 (Fig. 5a). We further observed this deletion with frequency
differences between the two ecotypes, where the 0/1 (heterozygous) and 1/1
(homozygous) genotypes were present in about 40% of the lowland accessions, while
the deletion was absent in the upland accessions (Fig. 5c). By analyzing the
overwintering rate, it was found that only 12% of germplasms with the 0/0 (same as
the reference) genotype failed to overwinter, while the proportions of germplasms
with the 0/1 and 1/1 genotypes unable to overwinter were 44% and 86%, respectively
(Fig. 5d). These results suggested that this deletion was probably under positive
selection in lowland accessions compared to upland accessions and may be potentially
associated with cold tolerance.

To validate the role of PVB_3K03611.1 in cold tolerance, we overexpressed this
gene in rice for cold tolerance determination. Compared to the wild type (WT) rice,
the transgenic lines exhibited less leaf withering under cold stress (Fig. 5e).
Additionally, the transgenic lines displayed significantly higher activities of

superoxide dismutase (SOD) and peroxidase (POD), as well as significantly lower
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levels of MDA than those in WT plants when exposed to low temperatures, indicating
that overexpression of PVB_3K03611.1 enhances the cold tolerance of the transgenic
lines (Fig. 5f). Collectively, these results supported that the deletion in the promoter
region of PVB_3K03611.1 might lead to the less cold tolerance trait in the lowland

ecotypes than the upland ones.
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Fig. 5 Selective sweep analysis between the two ecotypes and GWAS analysis of

overwintering rate.

a, Upper, selective sweep detection between the two ecotypes based on SNPs and SVs
on chromosome 3K using the Fst method. The black dashed line represents a cutoff
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window in which the top 5% data points were selected as sweep regions. Middle,
GWAS analysis of overwintering rate based on SNPs and SVs on chromosome 3K.
The black dashed line represents the significance threshold based on -logio(P) > 6.
The gray bars represent the overlapping regions between selective sweeps and GWAS.
Bottom, schematic diagram of PVB_3K03611.1 and its upstream 61-bp deletion. b,
The expression levels (TPM) of PVB_3K03611.1 under control and cold stress
conditions suggest that this gene may potentially positively regulate cold tolerance.
*** indicates adjusted P-value < 0.001. c, The distribution proportions of three
genotypes with a 61-bp deletion across different ecotypes of germplasm. 0/0 means
consistent with the reference genome, 0/1 means heterozygous, and 1/1 means
homozygous. d, Overwintering survival rate of three genotype accessions in BRKG
area. e, Phenotypic changes of rice wild type and overexpression lines on days 0, 3,
and 6 under 4°C cold stress, scale bar represents 7 cm. f, Physiological parameters of
PVB_3K03611.1 overexpression lines and WT under cold stress. Upper left, relative
expression levels of PVB_3K03611.1 in WT and overexpression lines. N.D indicates
not detected; the remaining three figures depict the activities of SOD and POD, as
well as the MDA content in WT and overexpressing rice lines after 24 h of cold stress
at 4°C. * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.005.

Methods

Sample collection and DNA sequencing

The upland switchgrass cultivar ‘JJ31’ was propagated asexually and planted in three
pots in the greenhouse and grown at 26/22 °C (day/night) with photoperiod of 14/10 h
of light/dark. Leaves of plants grown at the E3 stage*® were collected and pooled for
DNA extraction using the DNAsecure Plant Kit (TIANGEN). For Illumina
short-reads sequencing, ~1.5 ug of genomic DNA was extracted to construct a short
insert (350 bp) library using a TruSeq Nano DNA HT Sample Preparation Kit.
Sequencing was performed using Illumina HiSeq2500 platforms. The raw reads were
trimmed using Trimmomatic (v.0.36)* with default parameters. For PacBio HiFi
sequencing, SMRTbell libraries were constructed using the SMRTbell Express
Template Prep Kit 2.0 (PacBio, CA). Two single-molecule real-time (SMRT) cells
were run on the PacBio Sequel Il platform. The raw data were processed with the
SMRT Link (v.9.0) to obtain HiFi reads, using the parameters --min-passes=3 and
--min-rg=0.99. For Hi-C sequencing, the library construction method was the same to
the protocol previously used in our laboratory®. The constructed library was

sequenced using the Illumina NovaSeq 6000 platform.
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Genome size prospection

To estimate the genome size, k-mer analysis (K=17) was performed on Illumina short
reads using Jellyfish (v.2.3.0)*. The genome size, heterozygosity, and repeat
proportion were estimated by GenomeScope (v.2.0)** based on the k-mer frequency
distribution. The principle for calculating genome size is based on the formula:G =
(Nx (L—k+1)—B) /D, where N is the total number of sequence reads, L is the
average length of the reads, K is the k-mer length, B is the total number of
low-frequency k-mers, D is the estimated total depth based on k-mer distribution, and
G is the genome size.

Genome assembly and pseudochromosome construction

HiFi reads were assembled into two haplotype-resolved draft genomes using the
Hifiasm software (v.0.15.5)*. Initially, an all-vs-all pairwise comparison of HiFi reads
was performed for self-correction. After haplotype-aware error correction, the
corrected reads were used to construct an assembly graph and generate bubbles within
this graph. An initial contig assembly based on the overlap graph was obtained using a
modified “best overlap graph” strategy. During the assembly process, optimized
parameters suitable for polyploid genomes (--n-hap 4) were added to preserve
haplotype information as much as possible. Filtered Hi-C reads were aligned to the
initial contig assembly using BWA (v.0.7.8)*°, and the alignment results were used as
the input in Juicer (v.1.6)*. The 3D-DNA workflow selected only uniquely aligned
and valid paired-end reads for further assembly*’. Finally, the order of scaffolds was
manually adjusted using Juicebox (v.2.13.07)*® to obtain the final chromosome
assembly. HiCExplore (v.3.7.2)* was used to draw heatmaps of the connections
between chromosomes.

Genome assessment

To assess the quality of the genome assembly for accuracy, completeness, and
continuity, we used BWA (v.0.7.8)* to map high-quality Illumina paired-end reads to
the genome, evaluating the alignment rate and coverage. BUSCO (v.4.1.2)® and the
CEGMA (v.2.5)** were used to check the completeness of the genome assembly or

annotation. The quality of the genome was further assessed by calculating the QV
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values with Merqury (v.1.3)*? and the LAI with LTR_retriever (v.2.9.8)".

Annotation of repetitive sequences

We annotated the repetitive sequences by combining homology-based alignment and
de novo prediction. The homology-based alignment method used RepeatMasker
(v.4.0.5)> and RepeatProteinMask (v.4.0.5)*® to identify sequences similar to known
repetitive sequences based on the RepBase database (http://www.girinst.org/repbase)®.
The de novo prediction method utilized LTR_FINDER (v.1.0.7)>, Piler (v.3.3.0)%,
RepeatScout (v.1.0.5)°’, and RepeatModeler (v.1.0.8)* to construct a de novo repeat
sequence library, followed by the use of RepeatMasker (v.4.0.5)>* to predict the
repetitive sequences in this library.

Prediction of genestructure

The gene structure was annotated by integrating de novo prediction, homology-based
prediction, and transcriptome-based prediction. De novo prediction involved using
software such as AUGUSTUS (v.3.2.3)*°, GENSCAN (v.1.0)°°, GlimmerHMM
(v.3.0.1)%, geneid (v.1.4)%?, and NAP (v.2013.11.29)* to predict coding regions from
the genome with repetitive sequences masked. The homology-based prediction
method downloaded protein sequence files of Arabidopsis, rice, Panicum miliaceum,
Panicum hallii, and the published genome of a switchgrass line ‘AP13’ selected from
the lowland ecotype ‘Alamo’ in the Phytozome database
(https://phytozome-next.jgi.doe.gov/) and the National Center for Biotechnology
Information (NCBI, https://www.ncbi.nlm.nih.gov/). These protein sequences were
aligned to the two haplotype genomes of upland switchgrass using tblastN (v.2.2.26)*
with an e-value threshold of 1e”. The Solar (v.0.9.6)% software was used to integrate
the BLAST results, and GeneWise (v.2.4.1)°° was employed to predict the precise
gene structures in the corresponding genomic regions. The transcriptome-based
prediction method used TopHat (v.2.0.13)°” and Cufflinks (v.2.1.1)%® to align
transcriptome data to the two haplotype genomes. Trinity (v.2.1.1)% was utilized to
assemble RNA-seq data to create pseudo-expressed sequence tags (pseudo-ESTS),
which were then mapped to the two haplotype genomes. Finally, EVidenceModeler

(v.1.1.1)" was used to integrate the gene sets obtained from the three methods into a
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non-redundant, more complete gene set (EVM sets). The Program to Assemble
Spliced Alignments (PASA)™ was used to correct the EVM sets, adding information
such as UTRs and alternative splicing, to obtain the final gene set.
Annotation of protein-coding genes and non-coding RNA
Six databases were used for the functional annotation of coding genes, including
Swiss-Prot (http://www.uniprot.org/)”?, InterPro (https://www.ebi.ac.uk/interpro/)’,
the Non-Redundant Protein Sequence database (NR, ftp:/ftp.ncbi.nih.gov/blast/db/),
the  Pfam  database (https://pfam-legacy.xfam.org/)”,  the = KEGG
(http://www.genome.jp/kegg/) ", and the GO database
(http://ww.geneontology.org/page/go-database) .

miRNA, rRNA, and snRNA were predicted in the genome using INFERNAL
(v.1.1.5)"" with the Rfam database (https://rfam.org/)’®. For tRNA, tRNAscan-SE
(v.2.0.12)" was used to predict tRNA sequences in the two haplotype genomes based
on the structural characteristics of tRNA.
Phylogenetic tree construction and divergence time estimation
BLASTP (v.2.7.1) was used to perform BLAST searches against the protein
sequences from P. hallii, Z. mays, S bicolor, and O. sativa, as well as the two
subgenomes of ‘JJ31-B’ and ‘AP13’, with a default E-value of 1e®. Orthofinder
(v.2.3.1)® with default parameters was then used to cluster the filtered BLAST results
into paralogous and orthologous groups. The sequences of single-copy gene families
were aligned using MUSCLE (v.3.8.31)*, and the alignment results were
concatenated to form a super alignment matrix. RAxXML (v.8.0.19;
http://sco.h-its.org/exelixis/web/software/raxml/index.html)®* was used to construct
the phylogenetic tree using the maximum likelihood method, with bootstrap values set
to 100. The divergence time of each node on the phylogenetic tree was estimated
using the MCMCTree program (v.4.5;
http://abacus.gene.ucl.ac.uk/software/paml.html)® with phylogenetic analysis by
maximum likelihood (PAML) with the parameter settings ‘burn-in=10000,
sample-number=100000, = sample-frequency=2’.  The  TimeTree  database

(http://www.timetree.org/)® provided species divergence times. On the basis of the
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orthologous genes for the two subgenomes each of ‘JJ31-B’ and ‘AP13’, the
synonymous substitution (Ks) were calculated. The formula t = Ks/2r was used to
estimate the divergence time between species, where r is the neutral substitution rate
(r=6.96 x 107°)%848

I dentification of the COR gene families

The protein sequences of Arabidopsis and rice were downloaded from the TAIR
(https://www.arabidopsis.org) and RGAP (http://rice.plantbiology.msu.edu) databases,
respectively. Based on the 115 COR genes reported in Arabidopsis, we used BLASTP
(v.2.7.1) to identify the COR protein sequences in rice, with an e-value set to 1e-10%°.
The top-ranked protein sequences were combined with the Arabidopsis protein
sequences to create a merged library. Subsequently, we identified the COR protein
sequences in “JJ31-B’ using an e-value of 1e-10 and identity > 60%%°.
Transcriptomic analyses of switchgrassunder low temperature

Seeds of ‘JJ31” and ‘Alamo’ were planted in plastic pots (10 x 15 x 6 cm) filled with
quartz sand and placed in a growth chamber (26 °C with 14 hours of light, 22 °C with
10 hours of darkness). Cold stress treatment was then applied to E3 stage®® seedlings
of both ecotypes, with conditions set to 4 °C with 14 hours of light and 4 °C with 10
hours of darkness, while the control group was maintained under normal conditions.
After 12, 24, and 48 hours of cold stress treatment, the leaves and roots of JJ31 and
Alamo were collected and stored at —80 °C. Three biological replicates were set for
each treatment and control, with each replicate consisting of a mixture of three
seedlings. RNA was extracted from the mixed samples using the RNeasy Plant Mini
Kit (QIAGEN), and the quality of RNA was assessed by RNA gel electrophoresis.
High-quality RNA was used to construct cDNA libraries with the NEBNext Ultra
Directional RNA Library Prep Kit. Transcriptome sequencing was performed on the
Illumina HiSeq X platform. The raw data were processed to remove adapters and
low-quality nucleotide sequences using Trimmomatic (v.0.36)*. The quality of the
filtered data was assessed using FastQC (v.0.11.9,
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A genome index file

was built with Kallisto (v.0.46.0)% using ‘JJ31-B’ as the reference genome.
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Subsequently, the filtered transcriptome clean reads were aligned to the index file to
obtain gene count values and transcripts per million (TPM). DESeq2 (v.1.24.0)%” was
employed for identifying DEGs (Jlog, (fold change)| > 0.8 and adjusted P-value <
0.05) based on gene count values. GO and KEGG enrichment analyses were
performed using the OmicShare tools (http://omicshare.com/tools).

Physiological index measurement

Leaves of E3 stage™ seedlings of ‘JJ31° and ‘Alamo’ were used for physiological
measurements, with the cultivation methods and conditions being the same as those
used for the seedlings prepared for transcriptome sequencing. The RWC, REC, and
MDA content of the leaves were measured on seedlings after 1, 7, 14, 21, 28, and 35
days under both cold treatment and normal conditions. Transgenic rice and WT rice
were cultivated for 45 d under 26°C with 14 hours of light and 22°C with 10 hours of
darkness, followed by cold stress treatment at 4°C. After 24 h of cold stress, the MDA
content and the activities of POD and SOD enzymes were quantified using rice leaves.
The RWC of the leaves was determined using the saturated weighing method® based
on the formula RWC = (FW-DW)/(TW-DW), where FW refers to the fresh weight of
leaves taken from the same part of seedlings, TW s the saturated fresh weight of these
leaves after absorbing water, DW refers to the dry weight of leaves after soaking,
blanching at 105 [J for 30 minutes, and then drying at 65 LI until a constant weight is
reached. The measurements of REC, MDA, POD, and SOD were based on the
methods previously described by our laboratory™.

Differential expression analysis of allelic genes

Protein sequences from the two haplotype genomes were retrieved using TBtools
(v.2.069)*. The proteins in ‘JJ31-A’ were compared to those in ‘JJ31-B’ using
BLASTP (v.2.7.1), and syntenic blocks within the genomes were identified using
MCScanX® with default parameters. Finally, gene pairs with unique alignment
relationships between the ‘JJ31-A’ and ‘JJ31-B’ genomes were obtained, with alleles
required to originate from the same pair of homologous chromosomes. The sequences
of “JJ31-A’ and “JJ31-B’ were combined into a single file**. An index file for the

86,91

combined sequences was created using Kallisto (v.0.46.0)™", and the clean RNA-seq
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data were aligned to the index file to obtain gene count values. Pairwise comparisons
of allelic genes (JJ31-A/JJ31-B) were performed using DESeq2 (v.1.24.0)*” based on
the gene count values to identify differentially expressed genes, with criteria set at
|logz(fold change)| > 1 and adjusted P-value < 0.05. Genes meeting the following
three conditions were identified as ASE genes: (1) the fold change of one allele
compared to the other was > 2 or < 0.5; (2) TPM values > 1 in all transcriptome
samples; (3) differential expression of alleles in at least one transcriptome sample.
Transcriptome samples involved in ASE identification had at least two replicates.
SNP calling

SNP calling was performed using GATK (v.4.3.0.0)%, with detection by
HaplotypeCaller and genotyping via GenotypeGVCFs. The SelectVariants tool was

used to obtain a collection of SNPs based on the "--select-type-to-include SNP"
parameter. This collection was then filtered using the parameters "QD < 2.0 || FS >
60.0 || SOR > 3.0 | MQ < 40.0 || MQRankSum < -12.5." Finally, VCFtools
(v.0.1.16)* was employed to further filter the data using parameters with
"--max-missing 0.9, --maf 0.05, --minDP 10."

SV detection

To improve the accuracy of structural variant (SV) identification, we employed three
tools: Manta (v.1.6.0)*, Delly (v.1.1.6)*, and LUMPY (v.0.3.1)®. First, we used
LUMPY with the parameters -P -B -S -D to detect SVs, excluding insertions.We
filtered results lacking split read support and conducted genotyping with SVTyper
(v.0.7.1)%". The other two tools were used with their default settings for both SV
detection and genotyping. Finally, we merged and filtered the results from these three
tools using SURVIVOR (v.1.0.7)%, with the parameters set to “SURVIVOR merge
1000 311 050.” Only SVs identified by all three tools were retained.

Selective sweep analysis

To identify genomic regions under selection in upland relative to lowland ecotypes,
we used VCFtools (v.0.1.16)* to perform Fst analysis based on a sliding window of
100 kb with a step size of 10 kb®. The top 5% windows were identified as selective

sweeps™®.
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Genome-wide association study

To improve the accuracy of GWAS results, we filtered the SNP and SV variant
datasets, removing data with a minor allele frequency (MAF) < 0.05 or missing rate >
0.2. Association analysis was performed using GEMMA (v.0.94.1)'"* based on a
mixed linear model. The model is calculated as y = Xa + §F + Ku + e, where y
represents the phenotype, X represents the genotype, S is the population structure
matrix, and K is the kinship matrix. Xa and S represent fixed effects, while Kx and e
represent random effects.

Transgenicrice validation

The CDS sequence of PVB_3K03611.1 was synthesized using gene synthesis methods
and inserted into the pCAMBIA3300-35S-EGFP vector under the control of the 35S
promoter. The wild rice variety used for transgenic verification experiments in this
study was Nipponbare (O. sativa L. spp. japonica). The transformation was
performed using the Agrobacterium-mediated method as described by Hiei et al'®.
Firstly, Agrobacterium was added to the infection solution to prepare a resuspension
with ODgyo = 0.2. The rice callus was immersed in the Agrobacterium resuspension
for 10-15 min, and then co-cultivated on medium at 20 °C for 48-72 h. The callus was
then transferred to the selection medium and cultured in the dark at 26 °C for 20-30 d.
The positive callus tissues screened were inoculated into the secondary screening
medium and cultured at 26 (7 in the dark for 7-10 d. The positive callus tissues that
passed the secondary screening were inoculated into the differentiation medium and
cultured at 25-27 [ in the light for 15-20 d. After the 2-5 cm buds appeared, they
were inoculated into the rooting medium and cultured at 30 I in the light for 7-10 d.
PCR-positive seedlings were transplanted into soil and grown under conditions of
26 °C with 14 h of light and 22 °C with 10 h of darkness. When the plants reached the
four-leaf stage, real-time quantitative PCR was performed, with each sample tested in

three technical replicates. Primer information is provided in Supplementary Table 23.
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