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Abstract 

Switchgrass (Panicum virgatum L.) is a bioenergy and forage crop. Upland 

switchgrass exhibits superior cold tolerance than lowland ecotype, but the underlying 

molecular mechanisms remain unclear. Here, we presented a high-quality 

haplotype-resolved genome of the upland ecotype 'Jingji31' and conducted 

multi-omics analysis to understand its cold tolerance. The divergence between upland 

and lowland ecotypes of switchgrass occurred after the differentiation of the two 

subgenomes (K and N). Under cold stress, the K subgenome has more differentially 

expressed genes (DEGs). Transcriptome analysis revealed ecotype-specific 
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differential expressions among members of the cold-responsive (COR) gene families. 

Specifically, certain members of the AFB1, ATL80, HOS10, and STRS2 gene families 

exhibited opposite expression changes between the two ecotypes, potentially 

contributing to their differential cold tolerance. By using haplotype-resolved genome, 

we identified more cold-induced allele-specific expressions (ASEs) in the upland 

ecotype, and these ASEs were significantly enriched in the COR gene families. 

Genome-wide association study detected an association signal on Chr3K related to 

overwintering rate, which overlapped with a selective sweep region and contained a 

cytochrome P450 (CYP450) gene highly expressed under cold stress. Heterologous 

overexpression of CYP450 in rice alleviated leaf wilting and improved cold tolerance. 

Our study provides a high-quality haplotype-resolved genome of upland switchgrass, 

to advance conceptual understanding of plant cold tolerance for breeding crops with 

enhanced cold adaptation. 

 

Keywords: upland switchgrass, haplotype-resolved genomes, cold tolerance, 

allele-specific expression, population genetic analysis  
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Introduction 

Switchgrass (P. virgatum) is a perennial C4 grass utilized as both a forage crop 

and a dedicated feedstock for bioenergy production1,2. It comprises two distinct 

ecotypes, lowland and upland, displaying substantial variations in morphology and 

environmental adaptability3,4. The lowland ecotype typically thrives in warm, moist 

environments, featuring greater plant height and broader leaves. In contrast, the 

upland ecotype predominantly inhabits cold, arid areas and is able to overwinter in 

colder temperate zones5. The upland ecotype likely contains gene resources conferring 

cold tolerance that differ from those in the lowland ecotype. 

Due to the frequent occurrence of extreme weather events caused by global 

climate change, stable crop production faces significant challenges. Cold stress is one 

of the most threatening abiotic stresses in the growth and development of plants, 

impacting the geographical distribution of plants and even leading to plant mortality, 

thereby causing a decrease in crop yield6. Additionally, planting switchgrass on 

marginal lands is an effective way to increase its cultivation area, but these lands often 

face various abiotic stresses, especially the threat of low temperature. Upland 

switchgrass represents an ideal model for understanding how plants respond to cold 

stress, as it can successfully overwinter in northern cold regions compared to lowland 

ecotypes. However, few studies have explored the molecular mechanisms underlying 

the regulation of cold stress responses in the upland ecotype relative to the lowland 

ecotype, and the underlying mechanisms remain unclear. 

For most plants with an open-pollination mechanism, the common strategy for 

selecting superior germplasm is to transfer the excellent traits of parents to the 

offspring through hybridization. The improvement of offspring traits is typically 

caused by increased genetic variation and specific expression of allelic genes at 

certain loci7. The time and space-specific expression of different allelic genes can 

result in significant differences in gene products and lead to distinct phenotypes8,9. 

For highly heterozygous switchgrass, the previously reported collapsed representation 

may have overlooked half of the heterozygous variants in the genome and could have 

introduced assembly errors in regions of divergence between haplotypes10. 
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In this study, we uncover the cold tolerance mechanism of upland switchgrass 

through constructing a high quality and haplotype-resolved reference genome of 

upland switchgrass ‘Jingji31’ together with integrating transcriptomics, population 

genetics, and functional validation assays. We identified a large number of COR genes 

with opposite expression trends in upland and lowland switchgrass under cold stress, 

which may contribute to the cold tolerance differences between the two ecotypes. 

Additionally, ASEs were widely present in switchgrass and were induced by cold 

stress, particularly ASEs of certain COR genes. GWAS and selective sweep analysis 

identified a large number of candidate genes potentially associated with cold tolerance, 

among which overexpression of one such candidate gene positively regulated cold 

tolerance. Our findings not only improve the understanding of cold tolerance in 

upland switchgrass to accelerate genome-assisted breeding of cold tolerance in this 

important model energy plant, but also hold promise in promoting comparative 

genomics studies of other crops. 

 

Results and Discussion 

Assembly and annotation of the upland switchgrass genome 

The genome size of the switchgrass upland ecotype ‘Jingji31’ (abbreviated as 

‘JJ31’)was estimated to be ~1.19 Gb using k-mer analysis based on 67.8 Gb (57× 

coverage) of Illumina short-read data (Fig. 1a, Supplementary Table 1, 2). A total of 

53.2 Gb (44.7× coverage) of PacBio high-fidelity long read (HiFi) sequences and 

145.2 Gb (122× coverage) Illumina-sequenced Hi-C data were then generated 

(Supplementary Table 1). Due to the high heterozygosity (1.55%), Hfiasm was used 

for haplotype-resolved de novo assembly using phased assembly graphs11. Two 

phased haplotypes, ‘JJ31-A’ and ‘JJ31-B’, were anchored to pseudo-chromosomes 

using Hi-C reads. The Hi-C interaction map demonstrated that our chromosome-level 

anchoring was of high quality and reliability (Fig. 1b). Furthermore, through 

co-linearity analysis with the previously published lowland ecotype switchgrass 

‘AP13’ genome, all pseudo-chromosomes of the two haplotypes were successfully 
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assigned to different subgenomes, bearing the same chromosome IDs "K" and "N"10 

(Fig. 1c and Supplementary Fig. 1). Ultimately, the genome sizes of ‘JJ31-A’ and 

‘JJ31-B’ were determined to be 1.14 Gb and 1.11 Gb, respectively, with 98.47% 

(‘JJ31-A’) and 99.02% (‘JJ31-B’) of sequences anchored across 18 chromosomes (Fig. 

1d, Table 1, Supplementary Table 3 and 4). Their respective Contig N50 values were 

4.9 times and 4.7 times higher than that of the ‘AP13’ genome (5.5 Mb)10 (Table 1). 

We employed various strategies to assess the quality of the haplotype-resolved 

genomes. We realigned paired-end reads to the two haploid genomes, resulting in 

observed alignment rates of 98.07% and 97.93%, respectively (Supplementary Table 

3). Furthermore, the embryophyta Benchmarking Universal Single-Copy Orthologs 

(BUSCO) analysis indicated completeness rates of 98.4% and 98.1% for the two 

haplotypes (Supplementary Table 3). Using Merqury to calculate quality values (QV), 

‘JJ31-A’ and ‘JJ31-B’ achieved values of 45.16 and 50.27, respectively, exceeding the 

Vertebrate Genomes Project standard of QV4012 (Table 1). The long terminal repeat 

(LTR) assembly index (LAI) for both phased haplotype genomes approached 20, 

nearly meeting the gold standard13 (Supplementary Table 3). These results affirm the 

accuracy, completeness, and contiguity of our two haploid genome assemblies. 

Both haplotype-resolved genomes were annotated with a comprehensive strategy 

that combined homolog prediction, de novo prediction, and other evidence-driven 

predictions. In the two haplotypes, 79,672 and 79,416 protein-coding genes were 

predicted, with 98.9% supported by known gene function databases (Table 1 and 

Supplementary Table 3). The gene models of the two haploid genomes have an 

average coding sequence length of ~1 kb and an average of four exons per gene 

(Supplementary Table 3). We also identified 0.62 and 0.59 Gb repeat sequences, 

accounting for 54.19% and 53.48% of the two haplotypes, respectively, of which 

42.09% and 41.51% are LTRs (Supplementary Table 3). Additionally, we identified 

2,245 and 2,206 miRNAs, 1,264 and 1,291 tRNAs, 9,171 and 5,221 rRNAs, as well 

as 1,190 and 1,154 snRNAs in the two haplotype genomes, respectively 

(Supplementary Table 3). Considering the overall superior quality of the ‘JJ31-B’ 

haplotype, it was selected for subsequent analysis unless otherwise stated. 
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Table 1 Summary of assembly and annotation of two haplotype genomes in upland 

switchgrass 

 JJ31-A JJ31-B 

Contig N50 (Mb) 27.05 25.98 

Contig length (Mb) 1,124.57 1,136.95 

Scaffold N50 (Mb) 67.96 62.02 

Scaffold length (Mb) 1,143.31 1,110.80 

Chromosome anchoring rate (%) 98.47 99.02 

Gene no. 79,672 79,416 

Repeat sequence length (Mb) 619.58 594.02 

Repeat ratio (%) 54.19 53.48 

QV 45.16 50.27 

 

Fig. 1 High-quality haplotype-resolved genome assembly of upland switchgrass 

JJ31. 

a, Flowering morphology of the upland ecotype JJ31. b, Whole genome Hi-C heat 
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map for ‘JJ31-A’ (left) and ‘JJ31-B’ (right). c, The chromosome collinearity between 

the genomes of JJ31 and Alamo. Numbers represent chromosome identifiers. d, 

Genome features of the JJ31 genome. Track ‘a’: chromosome length; track ‘b’: gene 

density; track ‘c’: transposable element (TE) density; track ‘d’: GC content; track 

‘e-g’: gene expression levels in roots, stems, and leaves; track ‘h’: collinearity 

between chromosomes of ‘JJ31-A’ and ‘JJ31-B’. 

 

Enhanced cold tolerance and subgenome dominance in upland switchgrass 

indicated by comparative genomics analysis 

To understand the evolutionary relationship between the two ecotypes of 

switchgrass, we performed comparative genomic analysis by adding several closely 

related species. Based on the phylogenetic tree, we found that the K and N 

subgenomes of switchgrass diverged approximately 6.6 million years ago (Mya), 

while the divergence between switchgrass and P. hallii occurred around 8.8 Mya, 

consistent with previous studies10 (Fig. 2a). It is noteworthy that the K subgenomes of 

the two ecotypes diverged at 2.3 Mya, and the N subgenomes diverged at 2.6 Mya 

(Fig. 2a), suggesting that the divergence between these two ecotypes may have 

occurred during this period. We further determined the divergence time between the 

two ecotypes to be ~2.2 Mya (Ks peak at 0.03) by calculating the synonymous 

substitution rate (Ks) of orthologous gene sets between the different subgenomes of 

the two ecotypes (Fig. 2b and Supplementary Table 5). Combining previous report on 

the tetraploidization time of switchgrass (< 4.6 Mya)10, we hypothesize that the 

evolutionary timeline of switchgrass first involved the differentiation of the N and K 

subgenomes, followed by tetraploidization, and then the differentiation of the two 

ecotypes. 

It was reported that upland switchgrass exhibits better cold tolerance than the 

lowland ecotype14. Compared to the ‘AP13’, 4,147 expanded, 5,030 positively 

selected, and 4,873 specific genes were identified in ‘JJ31’. These genes were 

enriched in several stress-regulated pathways and biological processes 

(Supplementary Fig. 2). The expanded and specific genes in ‘JJ31’ were mainly 
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enriched in calcium channel activity, calcium ion transmembrane transporter activity, 

melatonin receptor activity, and sphingolipid metabolic pathways, which are believed 

to play crucial roles in protecting plants from cold stress15-19. These positively 

selected specific genes were associated with G-protein coupled receptor activity, 

which was involved in signal transduction of plant stress responses20. The above 

results may be one of the reasons leading to the greater cold tolerance of upland 

switchgrass compared to the lowland ecotype. 

Subgenome dominance is a common phenomenon in polyploid plants, prompting 

our investigation into the subgenome characteristics within the two haplotypes of 

upland switchgrass. We employed a sliding window approach (window size 1 Mb) to 

assess gene density and transposable element (TE) density in the two subgenomes. 

Compared to the N subgenomes in ‘JJ31-A’ and ‘JJ31-B’, the K subgenomes 

exhibited higher gene density (71.2 versus 66.2 genes per Mb and 73 versus 67.6 

genes per Mb, P < 0.01), more genes with dominant expression (4,662 versus 4,305 

and 4,715 versus 4,403, P < 0.01), less TE density (53.5 versus 56.4 TEs per Mb and 

52.5 versus 55.7 TEs per Mb, P < 0.01) (Fig. 2c-h and Supplementary Tables 6-9). 

Additionally, the cold stress transcriptome data from both ecotypes revealed slightly 

more DEGs on the K subgenome, suggesting that it might play a more significant role 

in response to cold stress (Supplementary Tables 10). In summary, all our statistics 

regarding the two subgenomes pointed to the K subgenome as the dominant one in 

both haplotypes, consistent with the findings in the ‘AP13’ genome10. 
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Fig. 2 Comparative genomics and subgenome dominance analysis. 

a, Phylogenetic tree and divergence time estimates of ‘JJ31’ and five closely related 

species. The right panel shows the distribution of single-copy, multi-copy, unique, and 

other gene orthologs. b, Evolutionary analysis of the ‘JJ31’ and ‘AP13’. The Ks 

distribution is shown for orthologs in the switchgrass genomes. K and N represent two 

subgenomes, respectively. c, d, Gene density of the two subgenomes in the ‘JJ31-A’ (c) 

and ‘JJ31-B’ (d). e, f, TE density of the two subgenomes in the ‘JJ31-A’ (c) and 

‘JJ31-B’ (d). g, h, Number of dominantly expressed genes in the two subgenomes of 

the ‘JJ31-A’ (g) and ‘JJ31-B’ (h). The statistical window size is 1 Mb. 

Contribution of specific differential expression of COR gene families to the cold 

tolerance differences between the two ecotypes 

The upland ecotype ‘JJ31’ exhibited greater cold tolerance than the lowland 

ecotype ‘Alamo’ (noting that ‘AP13’ was a line/clone selected from ‘Alamo’)14 based 

on the phenotypic and physiological indicators under cold stress (Fig. 3a-c). Leaves of 

both ecotypes showed significant wilting after 56 days of cold treatment, but only 

‘JJ31’ regrew new leaves after returning to room temperature (Fig. 3a). In addition, 

relative water content (RWC), relative electrical conductivity (REC), and 

malondialdehyde (MDA) showed significant changes (P < 0.05) in ‘JJ31’ after 21 
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days of cold stress compared to the control, while in ‘Alamo’, RWC significantly 

decreased and REC and MDA significantly increased after 14 days of cold stress 

compared to the control (P < 0.05) (Fig. 3b,c). The slower physiological changes 

under cold stress might indicate better cold tolerance in ‘JJ31’ than in ‘Alamo’. 

To understand the molecular response mechanisms underlying the greater cold 

tolerance of upland switchgrass, we conducted transcriptome sequencing on the 

leaves and roots of ‘JJ31’ and ‘Alamo’ at three time points under cold stress 

(Supplementary Table 1). Based on KEGG enrichment analysis, the DEGs revealed in 

each comparison group were mainly enriched in circadian rhythm, MAPK signaling 

pathway, and plant hormone signal transduction pathways (Fig. 3d and Supplementary 

Fig. 3). Although both ecotypes relied on similar pathways to respond to cold stress, 

we found that genes related to cold tolerance within these pathways exhibited 

ecotype-specific expression (Fig. 3e). During the initial exposure of plants to cold 

stress, Ca2+ influx induces activity of calmodulin (CaM) and activates downstream 

MEKK1 to positively regulate plant cold tolerance21,22. Our study found that three 

members of the CaM family and one member of the MEKK1 family were specifically 

upregulated in ‘JJ31’, while two and one members of the respective families were 

specifically downregulated in ‘Alamo’ (Fig. 3e). Two transcription factors, PIF3 and 

PIF4, are reported to negatively regulate plant cold tolerance by inhibiting the 

expression of CBF, while the EIN3-BINDING F-BOX 1/2 (EBF1/2) proteins enhance 

cold tolerance by degrading PIF323,24. We found that nine PIF3 genes were 

specifically downregulated in ‘JJ31’, while nine PIF3 and two PIF4 genes were 

specifically upregulated in ‘Alamo’, with two EBF1/2 genes exhibiting opposite 

expression changes (Fig. 3e). Additionally, we found that one LHY, one HY5, and two 

SNRK2 genes were specifically upregulated in ‘JJ31’, while one SNRK2 and one PYL 

were specifically downregulated in ‘Alamo’ (Fig. 3e). These genes have been reported 

to positively regulate plant cold tolerance25-28. These results suggested that the 

ecotype-specific expression of these cold stress regulatory genes might interpret 

differences in cold tolerance between the two ecotypes. 

The above results imply that there may be more cold-response (COR) genes with 
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ecotype-specific expression. We identified 795 COR genes in switchgrass based on 

the 109 COR gene families reported in Arabidopsis29 (Supplementary Table 11). We 

identified 182 and 251 specific DEGs significantly enriched in COR genes in ‘JJ31’ 

and ‘Alamo’, respectively (P = 0.035 and P = 1.0745e-5, Supplementary Fig 4, 

Supplementary Table 12, 13 and Supplementary Note 1). These COR genes belonged 

to 58 and 55 families, respectively, among which members of 25 families showed 

specifically differential expression in the leaves or roots of only one ecotype 

(Supplementary Fig. 5a). The members of 44 COR gene families exhibited differential 

expression in both ecotypes, but we noted that some of these genes showed opposite 

expression changes between the two ecotypes (Supplementary Fig. 5b).  

The auxin signaling F-box protein 1 (AFB1) -mediated auxin signaling pathway 

is involved in plant tolerance to abiotic stresses, and its overexpression can enhance 

plant tolerance to salt and cold stresses30. Three AFB1 genes were upregulated in 

‘JJ31’, while four AFB1 genes were downregulated in ‘Alamo’ (Supplementary Fig. 

5b). ATL80, an E3 ubiquitin ligase and negative regulator in response to cold stress31, 

had three genes downregulated in ‘JJ31’ and one gene upregulated in ‘Alamo’ 

(Supplementary Fig. 5b). The Arabidopsis mutant hos10-1 was reported to be 

completely unable to acclimate to the cold32. We found that 15 HOS10 genes were 

upregulated in ‘JJ31’, while 11 HOS10 genes were downregulated in ‘Alamo’ 

(Supplementary Fig. 5b). Interestingly, although STRESS RESPONSE 

SUPPRESSOR2 (STRS2) was reported to negatively regulate Arabidopsis tolerance 

to salt, osmotic, and heat stress, and not cold stress33, our study found that three 

STRS2 genes were downregulated in ‘JJ31’ and two were upregulated in ‘Alamo’ 

(Supplementary Fig. 5b), which may highlight the role of STRS2 in response to cold 

stress in switchgrass. In summary, the ecotype-specific expression of the above COR 

genes or their opposite expression changes in the two ecotypes might contribute to 

their differences in cold tolerance. 

The transcriptional regulatory pathway dependent on CBF is crucial for plant 

response to cold stress34-36. Similarly, We found that cold response genes in 

CBF-dependent pathway was activated to varying degrees in both ‘JJ31’ and ‘Alamo’, 
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with slight differences between leaves and roots (Fig. 3f). We observed that the 

specific differential expression of MEKK1 and SIZ1 genes occurred only in the leaves, 

while the specific differential expression of CRLKs and ICE1 genes occurred only in 

the roots (Fig. 3f). Additionally, members of the CaM, MPK3/6, and CIPKs families 

tended to exhibit opposite expression trends between the two ecotypes (Fig. 3f). In 

conclusion, through the identification of COR gene families and comparative 

transcriptome analysis, we comprehensively revealed the landscape of differential 

expression of COR genes between the two ecotypes, which may contribute to the 

superior cold tolerance of the upland compared to the lowland ecotype. 
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Fig. 3 Transcriptional landscape differences between the two ecotypes under cold 

stress. 

a, Phenotypic changes of JJ31 and Alamo on days 0, 28, and 56 under cold stress at 

4 °C and recover at room temperature for 28 days. Scale bar indicates 7 cm. b, 

Changes in physiological indicators of JJ31 under control (room temperature) and 
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cold stress (4 °C). From left to right: RWC, REC, and MDA. ** indicates P < 0.005. c, 

Changes in physiological indicators of Alamo under control (room temperature) and 

cold stress (4 °C). From left to right: RWC, REC, and MDA. ** indicates P < 0.005. d, 

KEGG enrichment of all compared DEGs identified in leaves and roots of JJ31 and 

Alamo under cold stress. e, Expression changes of cold-tolerance-related genes in the 

circadian rhythm, MAPK signaling pathway, and plant hormone signaling 

transduction pathways in two ecotypes. f, Expression changes of key genes in the 

CBF-dependent cold response pathway in the two ecotypes. 

 

The involvement of ASE in response to cold stress revealed by 

haplotype-resolved genome 

The haplotype-resolved genome of upland switchgrass enabled us to use 

RNA-seq data to identify ASEs, which have been reported in recent studies to 

profoundly impact plant growth and development37. According to the correlation 

between the number of ASEs and the number of transcriptome samples used in the 

analysis, we aimed to obtain a complete ASE collection in switchgrass using 

sufficient data. We found that the number of ASEs stabilized when the number of 

transcriptome samples reached 15 by utilizing transcriptome data reported by Zuo et 

al (with at least 2 replicates)38(Fig. 4a). A total of 16,801 ASEs were identified in 

switchgrass, with significantly more ASEs biased towards ‘JJ31-A’ expression than 

towards ‘JJ31-B’ (Fig. 4b and Supplementary Table 14). To understand the impact of 

natural selection on ASEs and non-ASEs, we calculated the Ka/Ks ratio between 

allele pairs. Although most allele pairs exhibited low Ka and Ks values, ASEs 

underwent significantly stronger purifying selection pressure compared to non-ASEs 

(Fig. 4c and Supplementary Table 15). To further investigate potential causes of ASE, 

we examined the distribution patterns of SNPs surrounding ASEs and equivalently 

expressed alleles (EEAs). Compared to EEAs, ASEs exhibited significantly higher 

SNP density in the upstream, exonic, intronic, and downstream regions, as with 

previous findings in other plants39 (Fig. 4d). The SNP density in the upstream region 

was higher than that in other regions, suggesting that the occurrence of ASE might 
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correlate with the greater variation in the upstream region of the gene. 

Similarly, we utilized the transcriptome data obtained in this study under cold 

stress to identify ASEs, aiming to explore whether the response of ASE to cold stress 

differs between the two ecotypes (Supplementary Note 2). Compared to the control 

group, a significant increase in ASEs were detected in ‘JJ31’ after experiencing cold 

stress, while no significant change occurred in ‘Alamo’, indicating that more ASEs in 

‘JJ31’ were induced by cold stress (Fig. 4e, Supplementary Table 16, 17). Finally, we 

identified ‘2,620’ and ‘751’ cold-induced ASEs in two tissues of ‘JJ31’ and ‘Alamo’, 

respectively (Supplementary Fig 6, 7, Supplementary Table 18 and Supplementary 

Note 2).  

We further found that 43 cold-induced ASEs were significantly enriched in COR 

genes in ‘JJ31’ (P = 0.0013, Fig. 4f), while there was no significant enrichment in 

‘Alamo’ (P = 0.0783), supporting the importance of ASEs in responding to cold stress 

in ‘JJ31’. Among these genes, we observed that two alleles of a well-known CBF 

gene, PVA_6K02793.1 and PVB_6K02781.1, did not exhibit differential expression in 

the control group, but PVB_6K02781.1 showed significant preferential expression in 

response to cold stress (Fig. 4g). Although the sequence similarity between the two 

alleles is as high as 98.82%, four SNPs cause changes in three amino acids 

(Supplementary Fig. 8). We aligned the RNA-seq data to the reference genome 

‘JJ31-B’ and found a higher proportion of reads containing SNPs corresponding to the 

B allele type, supporting the dominant expression of PVB_6K02781.1 (Fig. 4h). In 

conclusion, our findings indicated the widespread presence of ASE phenomena in 

switchgrass, and more ASEs were involved in the response to cold stress in upland 

switchgrass. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.26.609807doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 4 ASEs in switchgrass. 

a, ASE numbers increase with the quantity of RNA-seq samples. The specified 

number sets were selected randomly from 23 ASE sets with three replicates. b, 

Dominant expressed alleles in two haplotype genomes. c, Ka/Ks of ASE and non-ASE 

genes. Minima and maxima are present in the lower and upper bounds of the whiskers, 

respectively, and the width of violin are densities of Ka/Ks value. P values were 

calculated with two-sided Student’s t-test. d, SNP density in ASE and EEA genes. The 

y axis represents SNP numbers every 100 bp. P values were calculated with two-sided 
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Student’s t-test. *** indicates P < 0.0005. e, Number of ASE genes identified in JJ31 

(left) and Alamo (right) under control (room temperature) and cold stress (4 °C). P 

values were calculated with two-sided Student’s t-test. NS indicates not significant. f, 

The expression changes of alleles of 43 COR genes in JJ31 under control (room 

temperature) and cold stress (4 °C) conditions. ASE of these genes was induced by 

cold stress at least at one time point. g, The expression levels (TPM) of two alleles of 

the CBF gene (PVA_6K02793.1 and PVB_6K02781.1) across different transcriptome 

samples. ** indicates adjusted P-value < 0.01. h, Pattern diagram of PVB_6K02781.1 

advantage expression. Red indicates the allele ID and the corresponding bases and 

encoded amino acid types in ‘JJ31-A’; blue indicates the allele ID and the 

corresponding bases and encoded amino acid types in ‘JJ31-B’. "RNA-seq reads" 

represents the proportion of reads containing different SNP types that map to ‘JJ31-B’. 

From left to right, the RNA-seq reads aligned to the first SNP site are 79, with 92% 

supporting C and 8% supporting G; the RNA-seq reads aligned to the second SNP site 

are 100, with 45% supporting G and 55% supporting C; the RNA-seq reads aligned to 

the third and fourth SNP sites are both 67, with 81% and 85% supporting T and G, 

respectively, and 19% and 13% supporting A and T, respectively. 

 

Identification of genes associated with cold tolerance by population genetic 

analysis 

To explore cold tolerance genes in upland switchgrass at the population level, we 

aligned resequencing data from 340 accessions (242 upland and 98 lowland) reported 

previously to the ‘JJ31’ genome10, resulting in 10,654,902 SNPs and 243,831 SVs 

(Supplementary Fig. 9, Supplementary Table 19 and Supplementary Note 3). A total 

of 103.7 Mb and 125.9 Mb of genomic sequences covering 5,084 and 8,428 genes 

were detected using the sliding window method based on SNPs and SVs, respectively 

(Supplementary Fig. 10). We found that 66 and 111 genes from the two datasets were 

significantly (P = 0.0196 and P = 0.0018, respectively) and annotated as belonging to 

the COR gene family (Supplementary Fig. 10). Among the COR genes identified 

based on SNPs and SVs, approximately 54.5% (36 out of 66) and 62.2% (69 out of 
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111), respectively, showed differential expression under cold stress (Supplementary 

Table 20). These results suggested that the differential selection of certain COR genes 

in the two ecotypes potentially contribute to the differences in cold tolerance. 

To identify candidate genes related to cold tolerance in switchgrass, we 

performed a genome-wide association study (GWAS) on the overwintering rate of 340 

switchgrass accessions reported previously using two variant datasets10 

(Supplementary Fig. 11, 12 and Supplementary Table 21, 22). An association signal 

on Chr3K was simultaneously detected in both SV-GWAS and SNP-GWAS, including 

an overlapping region with the selective sweep region (Fig. 5a). We examined the 

expression of 14 genes around the association signal and found that only 

PVB_3K03605.1 and PVB_3K03611.1 were highly expressed under cold stress (Fig. 

5b and Supplementary Fig. 13). Interestingly, only PVB_3K03611.1 appeared in the 

overlapping region, which encodes cinnamate-4-hydroxylase belonging to the 

CYP450 gene family.  

We found a 61-bp deletion located 300 bp upstream of the promoter region of 

PVB_3K03611.1 (Fig. 5a). We further observed this deletion with frequency 

differences between the two ecotypes, where the 0/1 (heterozygous) and 1/1 

(homozygous) genotypes were present in about 40% of the lowland accessions, while 

the deletion was absent in the upland accessions (Fig. 5c). By analyzing the 

overwintering rate, it was found that only 12% of germplasms with the 0/0 (same as 

the reference) genotype failed to overwinter, while the proportions of germplasms 

with the 0/1 and 1/1 genotypes unable to overwinter were 44% and 86%, respectively 

(Fig. 5d). These results suggested that this deletion was probably under positive 

selection in lowland accessions compared to upland accessions and may be potentially 

associated with cold tolerance. 

To validate the role of PVB_3K03611.1 in cold tolerance, we overexpressed this 

gene in rice for cold tolerance determination. Compared to the wild type (WT) rice, 

the transgenic lines exhibited less leaf withering under cold stress (Fig. 5e). 

Additionally, the transgenic lines displayed significantly higher activities of 

superoxide dismutase (SOD) and peroxidase (POD), as well as significantly lower 
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levels of MDA than those in WT plants when exposed to low temperatures, indicating 

that overexpression of PVB_3K03611.1 enhances the cold tolerance of the transgenic 

lines (Fig. 5f). Collectively, these results supported that the deletion in the promoter 

region of PVB_3K03611.1 might lead to the less cold tolerance trait in the lowland 

ecotypes than the upland ones. 
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Fig. 5 Selective sweep analysis between the two ecotypes and GWAS analysis of 

overwintering rate. 

a, Upper, selective sweep detection between the two ecotypes based on SNPs and SVs 
on chromosome 3K using the Fst method. The black dashed line represents a cutoff 
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window in which the top 5% data points were selected as sweep regions. Middle, 
GWAS analysis of overwintering rate based on SNPs and SVs on chromosome 3K. 
The black dashed line represents the significance threshold based on -log10(P) > 6. 
The gray bars represent the overlapping regions between selective sweeps and GWAS. 
Bottom, schematic diagram of PVB_3K03611.1 and its upstream 61-bp deletion. b, 
The expression levels (TPM) of PVB_3K03611.1 under control and cold stress 
conditions suggest that this gene may potentially positively regulate cold tolerance. 
*** indicates adjusted P-value < 0.001. c, The distribution proportions of three 
genotypes with a 61-bp deletion across different ecotypes of germplasm. 0/0 means 
consistent with the reference genome, 0/1 means heterozygous, and 1/1 means 
homozygous. d, Overwintering survival rate of three genotype accessions in BRKG 
area. e, Phenotypic changes of rice wild type and overexpression lines on days 0, 3, 
and 6 under 4°C cold stress, scale bar represents 7 cm. f, Physiological parameters of 
PVB_3K03611.1 overexpression lines and WT under cold stress. Upper left, relative 
expression levels of PVB_3K03611.1 in WT and overexpression lines. N.D indicates 
not detected; the remaining three figures depict the activities of SOD and POD, as 
well as the MDA content in WT and overexpressing rice lines after 24 h of cold stress 
at 4°C. * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.005. 

 

Methods 

Sample collection and DNA sequencing 

The upland switchgrass cultivar ‘JJ31’ was propagated asexually and planted in three 

pots in the greenhouse and grown at 26/22 °C (day/night) with photoperiod of 14/10 h 

of light/dark. Leaves of plants grown at the E3 stage40 were collected and pooled for 

DNA extraction using the DNAsecure Plant Kit (TIANGEN). For Illumina 

short-reads sequencing, ~1.5 μg of genomic DNA was extracted to construct a short 

insert (350 bp) library using a TruSeq Nano DNA HT Sample Preparation Kit. 

Sequencing was performed using Illumina HiSeq2500 platforms. The raw reads were 

trimmed using Trimmomatic (v.0.36)41 with default parameters. For PacBio HiFi 

sequencing, SMRTbell libraries were constructed using the SMRTbell Express 

Template Prep Kit 2.0 (PacBio, CA). Two single-molecule real-time (SMRT) cells 

were run on the PacBio Sequel II platform. The raw data were processed with the 

SMRT Link (v.9.0) to obtain HiFi reads, using the parameters --min-passes=3 and 

--min-rq=0.99. For Hi-C sequencing, the library construction method was the same to 

the protocol previously used in our laboratory42. The constructed library was 

sequenced using the Illumina NovaSeq 6000 platform. 
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Genome size prospection 

To estimate the genome size, k-mer analysis (K=17) was performed on Illumina short 

reads using Jellyfish (v.2.3.0)43. The genome size, heterozygosity, and repeat 

proportion were estimated by GenomeScope (v.2.0)44 based on the k-mer frequency 

distribution. The principle for calculating genome size is based on the formula:� �

�� � �� � � 	 1� � �� 
 �, where N is the total number of sequence reads, L is the 

average length of the reads, K is the k-mer length, B is the total number of 

low-frequency k-mers, D is the estimated total depth based on k-mer distribution, and 

G is the genome size. 

Genome assembly and pseudochromosome construction 

HiFi reads were assembled into two haplotype-resolved draft genomes using the 

Hifiasm software (v.0.15.5)11. Initially, an all-vs-all pairwise comparison of HiFi reads 

was performed for self-correction. After haplotype-aware error correction, the 

corrected reads were used to construct an assembly graph and generate bubbles within 

this graph. An initial contig assembly based on the overlap graph was obtained using a 

modified “best overlap graph” strategy. During the assembly process, optimized 

parameters suitable for polyploid genomes (--n-hap 4) were added to preserve 

haplotype information as much as possible. Filtered Hi-C reads were aligned to the 

initial contig assembly using BWA (v.0.7.8)45, and the alignment results were used as 

the input in Juicer (v.1.6)46. The 3D-DNA workflow selected only uniquely aligned 

and valid paired-end reads for further assembly47. Finally, the order of scaffolds was 

manually adjusted using Juicebox (v.2.13.07)48 to obtain the final chromosome 

assembly. HiCExplore (v.3.7.2)49 was used to draw heatmaps of the connections 

between chromosomes. 

Genome assessment 

To assess the quality of the genome assembly for accuracy, completeness, and 

continuity, we used BWA (v.0.7.8)45 to map high-quality Illumina paired-end reads to 

the genome, evaluating the alignment rate and coverage. BUSCO (v.4.1.2)50 and the 

CEGMA (v.2.5)51 were used to check the completeness of the genome assembly or 

annotation. The quality of the genome was further assessed by calculating the QV 
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values with Merqury (v.1.3)52 and the LAI with LTR_retriever (v.2.9.8)13. 

Annotation of repetitive sequences 

We annotated the repetitive sequences by combining homology-based alignment and 

de novo prediction. The homology-based alignment method used RepeatMasker 

(v.4.0.5)53 and RepeatProteinMask (v.4.0.5)53 to identify sequences similar to known 

repetitive sequences based on the RepBase database (http://www.girinst.org/repbase)54. 

The de novo prediction method utilized LTR_FINDER (v.1.0.7)55, Piler (v.3.3.0)56, 

RepeatScout (v.1.0.5)57, and RepeatModeler (v.1.0.8)58 to construct a de novo repeat 

sequence library, followed by the use of RepeatMasker (v.4.0.5)53 to predict the 

repetitive sequences in this library. 

Prediction of gene structure 

The gene structure was annotated by integrating de novo prediction, homology-based 

prediction, and transcriptome-based prediction. De novo prediction involved using 

software such as AUGUSTUS (v.3.2.3)59, GENSCAN (v.1.0)60, GlimmerHMM 

(v.3.0.1)61, geneid (v.1.4)62, and NAP (v.2013.11.29)63 to predict coding regions from 

the genome with repetitive sequences masked. The homology-based prediction 

method downloaded protein sequence files of Arabidopsis, rice, Panicum miliaceum, 

Panicum hallii, and the published genome of a switchgrass line ‘AP13’ selected from 

the lowland ecotype ‘Alamo’ in the Phytozome database 

(https://phytozome-next.jgi.doe.gov/) and the National Center for Biotechnology 

Information (NCBI, https://www.ncbi.nlm.nih.gov/). These protein sequences were 

aligned to the two haplotype genomes of upland switchgrass using tblastN (v.2.2.26)64 

with an e-value threshold of 1e-5. The Solar (v.0.9.6)65 software was used to integrate 

the BLAST results, and GeneWise (v.2.4.1)66 was employed to predict the precise 

gene structures in the corresponding genomic regions. The transcriptome-based 

prediction method used TopHat (v.2.0.13)67 and Cufflinks (v.2.1.1)68 to align 

transcriptome data to the two haplotype genomes. Trinity (v.2.1.1)69 was utilized to 

assemble RNA-seq data to create pseudo-expressed sequence tags (pseudo-ESTs), 

which were then mapped to the two haplotype genomes. Finally, EVidenceModeler 

(v.1.1.1)70 was used to integrate the gene sets obtained from the three methods into a 
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non-redundant, more complete gene set (EVM sets). The Program to Assemble 

Spliced Alignments (PASA)71 was used to correct the EVM sets, adding information 

such as UTRs and alternative splicing, to obtain the final gene set. 

Annotation of protein-coding genes and non-coding RNA 

Six databases were used for the functional annotation of coding genes, including 

Swiss-Prot (http://www.uniprot.org/)72, InterPro (https://www.ebi.ac.uk/interpro/)73, 

the Non-Redundant Protein Sequence database (NR, ftp://ftp.ncbi.nih.gov/blast/db/), 

the Pfam database (https://pfam-legacy.xfam.org/)74, the KEGG 

(http://www.genome.jp/kegg/)75, and the GO database 

(http://www.geneontology.org/page/go-database)76. 

miRNA, rRNA, and snRNA were predicted in the genome using INFERNAL 

(v.1.1.5)77 with the Rfam database (https://rfam.org/)78. For tRNA, tRNAscan-SE 

(v.2.0.12)79 was used to predict tRNA sequences in the two haplotype genomes based 

on the structural characteristics of tRNA. 

Phylogenetic tree construction and divergence time estimation 

BLASTP (v.2.7.1) was used to perform BLAST searches against the protein 

sequences from P. hallii, Z. mays, S. bicolor, and O. sativa, as well as the two 

subgenomes of ‘JJ31-B’ and ‘AP13’, with a default E-value of 1e-5. Orthofinder 

(v.2.3.1)80 with default parameters was then used to cluster the filtered BLAST results 

into paralogous and orthologous groups. The sequences of single-copy gene families 

were aligned using MUSCLE (v.3.8.31)81, and the alignment results were 

concatenated to form a super alignment matrix. RAxML (v.8.0.19; 

http://sco.h-its.org/exelixis/web/software/raxml/index.html)82 was used to construct 

the phylogenetic tree using the maximum likelihood method, with bootstrap values set 

to 100. The divergence time of each node on the phylogenetic tree was estimated 

using the MCMCTree program (v.4.5; 

http://abacus.gene.ucl.ac.uk/software/paml.html)82 with phylogenetic analysis by 

maximum likelihood (PAML) with the parameter settings ‘burn-in=10000, 

sample-number=100000, sample-frequency=2’. The TimeTree database 

(http://www.timetree.org/)83 provided species divergence times. On the basis of the 
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orthologous genes for the two subgenomes each of ‘JJ31-B’ and ‘AP13’, the 

synonymous substitution (Ks) were calculated. The formula t = Ks/2r was used to 

estimate the divergence time between species, where r is the neutral substitution rate 

(r = 6.96 × 10−9)28,84,85. 

Identification of the COR gene families 

The protein sequences of Arabidopsis and rice were downloaded from the TAIR 

(https://www.arabidopsis.org) and RGAP (http://rice.plantbiology.msu.edu) databases, 

respectively. Based on the 115 COR genes reported in Arabidopsis, we used BLASTP 

(v.2.7.1) to identify the COR protein sequences in rice, with an e-value set to 1e-1029. 

The top-ranked protein sequences were combined with the Arabidopsis protein 

sequences to create a merged library. Subsequently, we identified the COR protein 

sequences in ‘JJ31-B’ using an e-value of 1e-10 and identity > 60%29. 

Transcriptomic analyses of switchgrass under low temperature 

Seeds of ‘JJ31’ and ‘Alamo’ were planted in plastic pots (10 × 15 × 6 cm) filled with 

quartz sand and placed in a growth chamber (26 °C with 14 hours of light, 22 °C with 

10 hours of darkness). Cold stress treatment was then applied to E3 stage40 seedlings 

of both ecotypes, with conditions set to 4 °C with 14 hours of light and 4 °C with 10 

hours of darkness, while the control group was maintained under normal conditions. 

After 12, 24, and 48 hours of cold stress treatment, the leaves and roots of JJ31 and 

Alamo were collected and stored at −80 °C. Three biological replicates were set for 

each treatment and control, with each replicate consisting of a mixture of three 

seedlings. RNA was extracted from the mixed samples using the RNeasy Plant Mini 

Kit (QIAGEN), and the quality of RNA was assessed by RNA gel electrophoresis. 

High-quality RNA was used to construct cDNA libraries with the NEBNext Ultra 

Directional RNA Library Prep Kit. Transcriptome sequencing was performed on the 

Illumina HiSeq X platform. The raw data were processed to remove adapters and 

low-quality nucleotide sequences using Trimmomatic (v.0.36)41. The quality of the 

filtered data was assessed using FastQC (v.0.11.9, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A genome index file 

was built with Kallisto (v.0.46.0)86 using ‘JJ31-B’ as the reference genome. 
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Subsequently, the filtered transcriptome clean reads were aligned to the index file to 

obtain gene count values and transcripts per million (TPM). DESeq2 (v.1.24.0)87 was 

employed for identifying DEGs (|log2 (fold change)| ≥ 0.8 and adjusted P-value < 

0.05) based on gene count values. GO and KEGG enrichment analyses were 

performed using the OmicShare tools (http://omicshare.com/tools). 

Physiological index measurement 

Leaves of E3 stage40 seedlings of ‘JJ31’ and ‘Alamo’ were used for physiological 

measurements, with the cultivation methods and conditions being the same as those 

used for the seedlings prepared for transcriptome sequencing. The RWC, REC, and 

MDA content of the leaves were measured on seedlings after 1, 7, 14, 21, 28, and 35 

days under both cold treatment and normal conditions. Transgenic rice and WT rice 

were cultivated for 45 d under 26°C with 14 hours of light and 22°C with 10 hours of 

darkness, followed by cold stress treatment at 4°C. After 24 h of cold stress, the MDA 

content and the activities of POD and SOD enzymes were quantified using rice leaves. 

The RWC of the leaves was determined using the saturated weighing method88 based 

on the formula RWC = (FW-DW)/(TW-DW), where FW refers to the fresh weight of 

leaves taken from the same part of seedlings, TW is the saturated fresh weight of these 

leaves after absorbing water, DW refers to the dry weight of leaves after soaking, 

blanching at 105 � for 30 minutes, and then drying at 65 � until a constant weight is 

reached. The measurements of REC, MDA, POD, and SOD were based on the 

methods previously described by our laboratory42. 

Differential expression analysis of allelic genes 

Protein sequences from the two haplotype genomes were retrieved using TBtools 

(v.2.069)89. The proteins in ‘JJ31-A’ were compared to those in ‘JJ31-B’ using 

BLASTP (v.2.7.1), and syntenic blocks within the genomes were identified using 

MCScanX90 with default parameters. Finally, gene pairs with unique alignment 

relationships between the ‘JJ31-A’ and ‘JJ31-B’ genomes were obtained, with alleles 

required to originate from the same pair of homologous chromosomes. The sequences 

of ‘JJ31-A’ and ‘JJ31-B’ were combined into a single file39. An index file for the 

combined sequences was created using Kallisto (v.0.46.0)86,91, and the clean RNA-seq 
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data were aligned to the index file to obtain gene count values. Pairwise comparisons 

of allelic genes (JJ31-A/JJ31-B) were performed using DESeq2 (v.1.24.0)87 based on 

the gene count values to identify differentially expressed genes, with criteria set at 

|log2(fold change)| ≥ 1 and adjusted P-value < 0.05. Genes meeting the following 

three conditions were identified as ASE genes: (1) the fold change of one allele 

compared to the other was > 2 or < 0.5; (2) TPM values > 1 in all transcriptome 

samples; (3) differential expression of alleles in at least one transcriptome sample. 

Transcriptome samples involved in ASE identification had at least two replicates. 

SNP calling 

SNP calling was performed using GATK (v.4.3.0.0)92, with detection by 

HaplotypeCaller and genotyping via GenotypeGVCFs. The SelectVariants tool was 

used to obtain a collection of SNPs based on the "--select-type-to-include SNP" 

parameter. This collection was then filtered using the parameters "QD < 2.0 || FS > 

60.0 || SOR > 3.0 || MQ < 40.0 || MQRankSum < -12.5." Finally, VCFtools 

(v.0.1.16)93 was employed to further filter the data using parameters with 

"--max-missing 0.9, --maf 0.05, --minDP 10." 

SV detection 

To improve the accuracy of structural variant (SV) identification, we employed three 

tools: Manta (v.1.6.0)94, Delly (v.1.1.6)95, and LUMPY (v.0.3.1)96. First, we used 

LUMPY with the parameters -P -B -S -D to detect SVs, excluding insertions.We 

filtered results lacking split read support and conducted genotyping with SVTyper 

(v.0.7.1)97. The other two tools were used with their default settings for both SV 

detection and genotyping. Finally, we merged and filtered the results from these three 

tools using SURVIVOR (v.1.0.7)98, with the parameters set to “SURVIVOR merge 

1000 3 1 1 0 50.” Only SVs identified by all three tools were retained. 

Selective sweep analysis 

To identify genomic regions under selection in upland relative to lowland ecotypes, 

we used VCFtools (v.0.1.16)93 to perform Fst analysis based on a sliding window of 

100 kb with a step size of 10 kb99. The top 5% windows were identified as selective 

sweeps100. 
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Genome-wide association study 

To improve the accuracy of GWAS results, we filtered the SNP and SV variant 

datasets, removing data with a minor allele frequency (MAF) < 0.05 or missing rate > 

0.2. Association analysis was performed using GEMMA (v.0.94.1)101 based on a 

mixed linear model. The model is calculated as y = Xα + Sβ + Kμ + e, where y 

represents the phenotype, X represents the genotype, S is the population structure 

matrix, and K is the kinship matrix. Xα and Sβ represent fixed effects, while Kμ and e 

represent random effects. 

Transgenic rice validation 

The CDS sequence of PVB_3K03611.1 was synthesized using gene synthesis methods 

and inserted into the pCAMBIA3300-35S-EGFP vector under the control of the 35S 

promoter. The wild rice variety used for transgenic verification experiments in this 

study was Nipponbare (O. sativa L. spp. japonica). The transformation was 

performed using the Agrobacterium-mediated method as described by Hiei et al102. 

Firstly, Agrobacterium was added to the infection solution to prepare a resuspension 

with OD600 = 0.2. The rice callus was immersed in the Agrobacterium resuspension 

for 10-15 min, and then co-cultivated on medium at 20 °C for 48-72 h. The callus was 

then transferred to the selection medium and cultured in the dark at 26 °C for 20-30 d. 

The positive callus tissues screened were inoculated into the secondary screening 

medium and cultured at 26 � in the dark for 7-10 d. The positive callus tissues that 

passed the secondary screening were inoculated into the differentiation medium and 

cultured at 25-27 � in the light for 15-20 d. After the 2-5 cm buds appeared, they 

were inoculated into the rooting medium and cultured at 30 � in the light for 7-10 d. 

PCR-positive seedlings were transplanted into soil and grown under conditions of 

26 °C with 14 h of light and 22 °C with 10 h of darkness. When the plants reached the 

four-leaf stage, real-time quantitative PCR was performed, with each sample tested in 

three technical replicates. Primer information is provided in Supplementary Table 23. 
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