

1 **The genomic outcomes of hybridization vary over time within a monkeyflower radiation**
2
3
4

5 **Aidan W Short¹ and Matthew A Streisfeld^{1,2}**
6

7 ¹Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289
8

9 ²Author for Correspondence: mstreis@uoregon.edu
10
11
12
13
14
15

16 **Abstract:** The accumulation of genetic differences through time can lead to reproductive
17 isolation between populations and the origin of new species. However, hybridization between
18 emerging species can occur at any point before isolation is complete. The evolutionary
19 consequences of this hybridization may vary depending on when it occurred. If hybridization
20 occurred later during the process, when ecological and genetic differences have accumulated
21 between diverging lineages, low hybrid fitness can result in selection against gene flow. If
22 hybridization occurred earlier, when barriers present were too weak to limit introgression, then
23 hybridization can lead to genetic swamping. Alternatively, adaptive introgression can occur at
24 any point during speciation. Thus, by understanding the history and genomic consequences of
25 hybridization at different points along the speciation continuum, we can begin to understand how
26 variation present within populations translates to divergence between species. Here, we
27 identified the genomic signals of introgressive hybridization at different points during the
28 divergence of two monkeyflower taxa endemic to the Channel Islands of California. We found
29 that both ancient and recent introgression have shaped their genomes, but the impacts of
30 selection on this foreign material varied. There was no signal of selection against ancient
31 introgression, but we did find strong evidence for selection against recent introgression,
32 potentially because there are more reproductive barriers in place now, reducing fitness in recent
33 hybrids. Thus, this study reveals that hybridization can occur at multiple points throughout the
34 divergence history of a radiation, but the processes shaping genome wide levels of introgression
35 can change over time.

36

37

38

39 1 INTRODUCTION

40 Phenotypic and genetic differences that evolve between populations can lead to the accumulation
41 of reproductive barriers and the origin of new species (Mayr 1942, Coyne & Orr 2004).
42 Determining how reproductive isolation develops through time is critical for understanding how
43 variation within populations translates to divergence between species (Matute & Cooper 2021).
44 Although previously believed to be rare, hybridization between emerging species is now known
45 to be common (Roux et al. 2016, Martin & Jiggins 2017, Malinsky et al. 2018, Stankowski et al.
46 2019, Liu et al. 2022). Depending on when it occurs, hybridization and subsequent gene flow
47 between diverging lineages (i.e., introgression) can have various evolutionary consequences. For
48 example, introgression can expose genetic incompatibilities that promote speciation (Coughlan
49 & Matute 2020), it can swamp out divergence (Todesco et al. 2016), or in some cases, it can lead
50 to the transfer of beneficial alleles across taxonomic boundaries (Suarez-Gonzalez et al. 2018).
51 Thus, understanding the evolutionary history and genomic consequences of introgressive
52 hybridization can help reveal the processes contributing to divergence and speciation (Harrison
53 & Larson 2016, Ravinet et al. 2017).

54 In their classic study, Coyne & Orr (1989) found that reproductive isolation accumulated with
55 levels of sequence divergence between multiple pairs of *Drosophila* species, a finding that has
56 been supported in various other groups of divergent taxa (Moyle et al. 2004; Merot et al. 2017).
57 Given that reproductive isolation takes time to arise, hybridization can occur at multiple points
58 throughout the divergence of any pair of species (e.g. Martin et al. 2013, Malinsky et al. 2018,
59 Meier et al. 2019, 2023). Although various modeling and simulation approaches have attempted
60 to reveal the timing of past gene flow events, there remain serious challenges to accurately
61 parameterize the models (Momigliano et al. 2021). Another option is to take advantage of the
62 taxonomic diversity available in evolutionary radiations. By performing tests for introgression
63 among the taxa in a radiation, it is possible to estimate the relative timing of introgression.
64 Martin et al. (2013) used the diversity among *Heliconius* butterflies to demonstrate a history of
65 continuous hybridization during the divergence of currently sympatric species pairs. Malinsky et
66 al. (2018) expanded on this approach by performing tests for introgression between all sets of
67 taxa in the Lake Malawi cichlid radiation, enabling researchers to evaluate which lineages
68 showed evidence of hybridization and when it was likely to have occurred across the phylogeny
69 of the group. They identified evidence of extensive ancient hybridization between the ancestors
70 of modern cichlid lineages, as well as recent hybridization among closely related species found
71 in similar ecological niches. These studies highlight how the taxonomic diversity present in
72 evolutionary radiations can be used to identify the relative timing of past gene flow events. In
73 this study, we expand on these previous examples to develop tests for the timing of introgression
74 between island and mainland taxa in a radiation of monkeyflowers.

75 In addition to characterizing the evolutionary history of gene flow, understanding the fitness
76 consequences of this hybridization can provide clues about the accumulation of reproductive
77 isolation. In most cases, when functionally-relevant genetic variation is transferred into a foreign
78 genetic background, it will decrease fitness, resulting in the removal of these alleles due to
79 negative selection (Mallet 2005). These introgression-resistant loci are termed “barrier loci,” and
80 as time proceeds, they should accumulate across the genome, leading to increased reproductive
81 isolation (Wu 2001, Feder et al. 2012). However, positive selection following introgression can

82 also result in the preservation and eventual fixation of these alleles (i.e. adaptive introgression)
83 (Suarez-Gonzalez et al. 2018). For example, introgression of genetic material into a species that
84 recently experienced a population bottleneck can introduce the necessary genetic variation to
85 mitigate the negative effects of any deleterious genetic load that has accumulated (Schumer et al.
86 2018, Liu et al. 2022). Alternatively, the introgression of ecologically beneficial alleles can lead
87 to adaptation, but this is expected to produce a more localized signature across the genome. By
88 contrast, post-divergence gene flow can have no fitness consequences, in which case allele
89 frequencies will be influenced primarily by genetic drift (Schumer et al. 2018).

90 To distinguish among these evolutionary processes, we expect certain genome-wide relationships
91 to emerge. For example, the recombination rate determines how quickly introgressed alleles will
92 be separated from resident alleles. Thus, we expect selection to rapidly remove deleterious,
93 immigrant alleles in regions of low recombination where they remain linked with resident alleles.
94 This will result in a positive relationship between introgression and recombination rate, provided
95 the effects of reproductive isolation are widespread across the genome (Brandvain et al. 2014,
96 Schumer et al. 2018, Martin et al. 2019). Similarly, because gene flow opposes divergence, we
97 would expect a negative relationship between introgression and genetic divergence (Martin et al.
98 2013, Martin et al. 2019). In contrast, the repeated fixation of adaptively introgressed alleles will
99 result in a genome-wide, negative relationship between introgression and recombination rate,
100 such that longer, introgressed haplotypes are preserved in regions of low recombination
101 (Duranton & Pool 2022, Feng et al. 2024). While this pattern is expected in scenarios where
102 introgression acts to mitigate the widespread, deleterious effects of genetic load, introgression
103 that results in local adaptation to a particular ecological environment will not lead to this
104 genome-wide relationship. Finally, no relationship between introgression and recombination rate
105 would imply the action of neutral processes (Schumer et al. 2018).

106 In this study, we take advantage of the diversity in the *Mimulus aurantiacus* species complex to
107 investigate the evolutionary history and genomic consequences of introgression between a pair of
108 taxa restricted to the Channel Islands off the coast of California. The *M. aurantiacus* complex is
109 a radiation of seven closely related, woody shrub subspecies distributed throughout California
110 that display extensive phenotypic variation in their floral and vegetative traits and diverged from
111 their sister species roughly one million years ago (Tulig 2000, Tulig & Nesom 2012, Chase et al.
112 2017; Stankowski et al. 2019). However, despite extensive phenotypic differentiation, there is
113 evidence of hybridization between many of the taxa (Streisfeld & Kohn 2005, Stankowski et al.
114 2019, Short & Streisfeld 2023). Indeed, ancient introgression resulted in the repeated evolution
115 of red flowers, a trait that has been shown to contribute to both pollinator adaptation and
116 speciation in this group (Stankowski & Streisfeld 2015, Short & Streisfeld 2023, Sobel &
117 Streisfeld 2015, Stankowski et al. 2017). The Channel Islands are currently inhabited by two
118 subspecies of *M. aurantiacus* that are known to hybridize (Wells 1980, Chase et al. 2017). The
119 red-flowered subspecies *parviflorus* is endemic to many of the islands (Tulig 2000, Tulig &
120 Nesom 2012) but is listed as rare by the California Native Plant Society (2023). Subspecies
121 *longiflorus* has larger, yellow flowers and is found both on the Channel Islands and throughout
122 mainland southern California (Tulig 2000, Tulig & Nesom 2012). Both taxa occur in close
123 contact on the islands, where they tend to inhabit dry, hillside habitats in the chaparral (Beeks
124 1962).
125

126 We used whole genome sequence data from individuals sampled across the radiation to address
127 three primary objectives. First, we developed an approach that incorporates multiple tests of
128 introgression to estimate the history of hybridization among taxa and determine the relative
129 timing of past gene flow events. Second, we assessed the genome-wide impacts of this
130 introgression. Finally, we examined the relationship between introgression and recombination
131 rate at different points throughout the history of the radiation to determine which processes have
132 likely contributed to these patterns through time. Our results reveal that both recent and ancient
133 introgression have shaped the genomic landscapes of these island taxa. Moreover, we found that
134 the fitness effects of introgressed alleles can vary through time, such that the effects of selection
135 against gene flow appear to increase with time, implying the accumulation of reproductive
136 isolation.

137

138 **2 MATERIALS AND METHODS**

139

140 **2.1 Genome sequencing and variant calling**

141 Leaf tissue was collected from 27 samples from four locations on Santa Cruz Island, California,
142 USA (Table S1), consisting of red-flowered *parviflorus*, yellow-flowered *longiflorus*, and their
143 putative hybrids. Tissue was dried in silica in the field, and DNA was isolated using the Zymo
144 Plant and Seed DNA kit following the manufacturer's instructions. Sequencing libraries were
145 prepared according to Gaio et al (2022), with slight modifications. Bead-Linked Transposase
146 from the Illumina Nextera XT Kit was used for initial tagmentation, generating insert sizes in the
147 range of 400 – 1200 bp. Multiplexed libraries were sequenced on the Illumina Novaseq 6000
148 using paired-end 150 bp reads at the University of Oregon's Genomics Core Facility.

149 New sequences from Santa Cruz Island were combined with previously generated whole genome
150 sequences from various *M. aurantiacus* subspecies from Stankowski et al. (2019) and Short &
151 Streisfeld (2023), resulting in a final dataset containing 74 individuals. Raw reads were filtered
152 using *fastp* to remove reads with uncalled bases or poor quality scores (Chen et al. 2018). The
153 retained reads were then aligned to the reference assembly (Stankowski et al 2019) using *BWA*
154 version 0.7.17 (Li & Durbin 2009). An average of 90.56% of reads aligned (range: 75.45% –
155 95.33%), and the average sequencing depth was 10 \times per individual (range: 6–18 \times). PCR
156 duplicates were marked using *Picard* (<https://broadinstitute.github.io/picard/>). Variant calling
157 was performed following Stankowski et al. (2019). We then phased the VCF using *BEAGLE*
158 (Browning & Browning 2007), and further filtered the VCF file for biallelic SNPs using *vcftools*
159 (Danecek et al. 2011). The final data set contained 12,749,566 SNPs across all 74 samples.
160 Finally, we ran *UnifiedGenotyper* with the EMIT_ALL_CONFIDENT_SITES option to output
161 all variant and invariant genotyped sites.

162

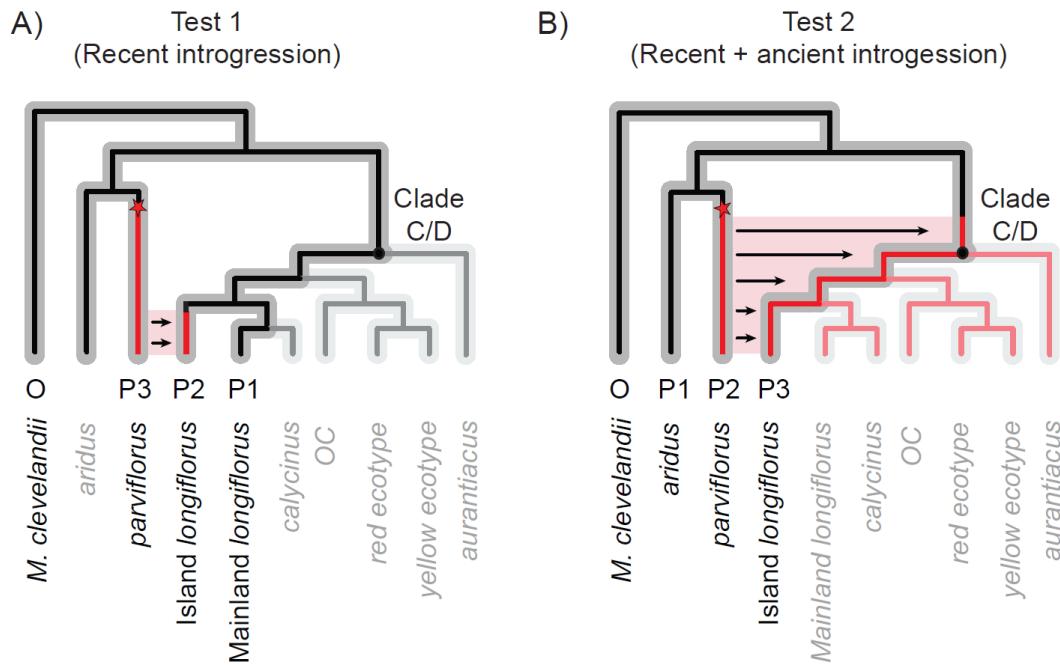
163 **2.2 Admixture, PCA, and phylogenetic analysis**

164

165 To determine how the island samples were related to the other taxa in the complex, we used
166 *Admixture* (Alexander et al. 2009) to estimate ancestry proportions from all samples, with the
167 number of clusters (K) set from 2 to 11. To further estimate ancestry among the admixed island
168 samples and assess the relationship between samples collected on Santa Cruz Island and the
169 mainland, we re-ran *Admixture* at K=2, but only using samples of *parviflorus*, *calycinus*, and

170 Island and mainland *longiflorus*. Samples from the island that showed no evidence of admixture
171 at K = 2 were used to assign individuals to subspecies. Admixed individuals were removed from
172 further analysis, as they likely represented contemporary hybrids. To further assess clustering
173 patterns among these samples, we also performed a principal components analysis (PCA) in
174 *Plink* using the 31 samples from the island and the 7 mainland *longiflorus*.

175 To determine the phylogenetic relationships among samples from the island and mainland, we
176 generated a maximum likelihood consensus tree using *IQ-TREE* v1.6.12 (Nguyen et al. 2015).
177 We used a concatenated dataset consisting of 12,749,566 biallelic SNPs that did not include
178 island samples that showed evidence of admixture in the above analyses (resulting in 63
179 individuals, see Results).


180 2.3 Tests for the timing of admixture

181
182 To test for genome wide evidence of introgression, we used *dsuite* (Malinsky et al. 2021) to
183 calculate Patterson's D (Green et al. 2010) and the *f4*-ratio (Reich et al. 2009) for all possible
184 trios of ingroup taxa, using *M. clevelandii* as the outgroup. Patterson's D and the *f4*-ratio
185 measure asymmetries in the numbers of sites with ABBA and BABA patterns (where A and B
186 are ancestral and derived alleles, respectively) across a phylogeny with three ingroup taxa and an
187 outgroup that have the relationship (((P1, P2), P3) O). A significant excess of either pattern gives
188 a nonzero value of D, which is taken as evidence that gene flow has occurred between P3 and
189 one of the sister taxa. We then calculated the *fbranch* statistic to identify recent and historical
190 signatures of hybridization (Malinsky et al. 2018, 2021). Given a set of *f4*-ratios calculated for all
191 possible trios among a set of closely related taxa, *fbranch* uses the inferred phylogenetic
192 relationship among these taxa, as well as variation in the phylogenetic distance between the sister
193 taxa used as P1 and P2, to assign introgression to specific branches on a phylogenetic tree.

194 To estimate how introgression varied across the genome, we calculated the admixture proportion
195 (f_d) (Martin et al 2015) in 100 kb non-overlapping windows using the *ABBABABAwindows.py*
196 Python script (https://github.com/simonhmartin/genomics_general). Similar to Patterson's D and
197 the *f4*-ratio, f_d searches for asymmetries in the number of ABBA and BABA sites across the
198 genome, but it has been optimized specifically for use in genomic windows.

199 In addition to examining how f_d varies across the genome, we took advantage of the diversity of
200 taxa in the *M. aurantiacus* species complex to estimate the relative timing of introgression
201 between the taxa on Santa Cruz Island (Fig 1). Specifically, alleles that were introgressed into
202 the common ancestor of Island and mainland *longiflorus* should be present in roughly equal
203 proportions in both descendant lineages, making it difficult for f_d to distinguish shared ancestral
204 variation from introgression. However, by gradually increasing the phylogenetic distance
205 between the two sister taxa used in these tests, we should be able to identify introgression that
206 occurred at various points further back in time (Martin et al 2013; Short and Streisfeld 2023).
207 This can be identified as an increase in mean f_d with levels of sequence divergence.
208 Alternatively, if introgression occurred only after the divergence between Island and mainland
209 *longiflorus*, then we would not expect f_d to increase with levels of sequence divergence.

210 To examine this, we ran two distinct tests for introgression by varying the set of taxa used in
211 each test (Fig 1). To identify the potential for recent introgression, we calculated mean f_d among
212 100 kb windows, setting Island *longiflorus* as P2, *parviflorus* as P3, and varying the taxon used
213 as P1. Hereafter, we refer to these as Test 1. Then, to determine whether there was evidence for
214 recent and ancient introgression, we took advantage of the more extensive divergence between
215 *parviflorus* and *aridus*, which occurred prior to the split between taxa in clades C and D

Figure 1. Evolutionary radiations can be used to estimate the relative timing of introgression. (A-B) In a four-taxon tree, with three ingroup taxa (P1–P3) and an outgroup (O), introgression between P2 and P3 only can be identified if gene flow occurred after the split between the two sister taxa (P1 and P2). The species tree from the *M. aurantiacus* radiation is presented in gray, with tips grayed out to show only the four taxa used in the tests for introgression (denoted by P1–P3, and O). The ancestral (black) and derived (red) alleles at a locus are indicated as lines. Mutations are indicated by red stars. By using different pairs of taxa with increasing levels of divergence from one another as P1 and P2, we can track introgression that occurred further back in time. (A) To estimate recent introgression (i.e., the genetic variation that was introgressed after the divergence of Island and mainland *longiflorus*), we performed Test 1, which includes mainland *longiflorus* as P1, Island *longiflorus* as P2, and *parviflorus* as P3. (B) To estimate recent ancient introgression (i.e., any genetic variation that was exchanged between the ancestor of *parviflorus* and the common ancestor of clades C and D), we performed Test 2, which includes the more distantly related *aridus* and *parviflorus* as P1 and P2, and Island *longiflorus* as P3. The tests performed do not specify the direction of introgression. For simplicity, the examples shown in the figure do not indicate directionality, but the same conclusion would be drawn about the timing of introgression if the direction was reversed.

216 (Stankowski et al 2019). If introgression predated the divergence between Island and mainland
217 *longiflorus*, then we would expect f_d to increase when these more distantly related taxa were
218 included as P1 and P2. Thus, we set *aridus* as P1, *parviflorus* as P2, and Island *longiflorus* as P3.
219 These analyses will be referred to as Test 2. *M. clevelandii* was used as the outgroup for all
220 calculations of f_d .

221 To further demonstrate whether there was recent introgression between *parviflorus* and Island
222 *longiflorus*, we re-calculated Test 2 to obtain the mean f_d among windows using *aridus* as P1,

223 *parviflorus* as P2, and the various taxa from clades C and D as P3. Among these tests, if mean f_d
224 is greatest when Island *longiflorus* is P3, this would indicate both ancient introgression that
225 predated the divergence of clades C and D, as well as recent introgression between Island
226 *longiflorus* and *parviflorus*. However, if introgression occurred recently between *parviflorus* and
227 any of the other taxa in clades C and D, then we would expect f_d to be equal to or greater than the
228 f_d value calculated using Island *longiflorus* as P3.

229 To test for significant differences among the mean f_d values, we fit linear models, with f_d as the
230 dependent variable and sequence divergence (da) between P1 and P2 as the independent variable.
231 We then used the *emmeans* package in R (Lenth, 2019) to perform pairwise comparisons of the
232 estimated marginal mean f_d values from the linear model. To estimate levels of sequence
233 divergence, we calculated da, which describes the difference in divergence between taxa (d_{xy})
234 relative to the mean diversity within taxa (π). We calculated d_{xy} and π in 100 kb windows using
235 *PIXY* version 1.2.5 (Korunes & Samuk, 2021), with both variant and invariant sites included.

236 2.4 The relationship between genome wide phylogenetic discordance and introgression

237 To further describe the history of introgression with *parviflorus*, we explored patterns of
238 phylogenetic discordance across the genome using *TWISST* (Martin & Van Belleghem 2017).
239 Given a set of samples from multiple ingroup taxa, *TWISST* builds trees in genomic windows and
240 then calculates the support for that topology among all possible topologies, which is referred to
241 as the topology weighting. If all samples from each taxon are reciprocally monophyletic, then
242 that topology is given a weighting of 1.0 for that window. Topological discordance among
243 samples within a taxon will result in lower topology weightings for that window. We used
244 *TWISST* to identify variation in the relationships among *aridus*, *parviflorus*, Island *longiflorus*,
245 and mainland *longiflorus* in 100 kb genomic windows, with *M. clevelandii* as the outgroup. With
246 four ingroup taxa, this resulted in 15 possible topologies, which were then partitioned into those
247 that support: *a*) the species tree, where *aridus* and *parviflorus* were sister and reciprocally
248 monophyletic relative to Island *longiflorus* and mainland *longiflorus*; *b*) the introgression tree,
249 where *parviflorus* and Island *longiflorus* were sister to one another relative to *aridus* and
250 mainland *longiflorus*; and *c*) the ancient introgression tree, where *parviflorus* was sister to
251 mainland and Island *longiflorus* relative to *aridus*. By quantifying variation in the support for
252 these topologies across the genome, we can identify how often ancient and recent introgression
253 contributed to phylogenetic discordance.

254 However, topological discordance can also be influenced by incomplete lineage sorting. Thus, to
255 confirm that regions with high support for the introgression or ancient introgression trees were
256 consistent with admixture, we first identified 100 kb windows with topology weightings of 1.0
257 for the species tree, introgression tree, or the ancient introgression tree, and then investigated the
258 distribution of f_d values within these windows. We calculated f_d from Test 1 (with mainland
259 *longiflorus* as P1) to identify the effects of recent introgression, while f_d from Test 2 (with Island
260 *longiflorus* as P3) was used to identify the combined effects of recent and ancient introgression.
261 By taking the difference between these two sets of f_d values, we should be able to identify only
262 the signal of ancient introgression, which we refer to as “ancient f_d .” For example, when
263 mainland and Island *longiflorus* are set as P1 and P2 in Test 1, we can only identify introgression
264 with *parviflorus* that has occurred since they diverged from each other (Fig 1). However, when

265 *aridus* and *parviflorus* are set as P1 and P2 in Test 2, the more ancient divergence between them
266 allows us to identify older introgression with the ancestor of *parviflorus* that occurred prior to the
267 split between clades C and D, as well as recent introgression that occurred after the divergence
268 between mainland and Island *longiflorus*. Thus, the difference between the two provides us with
269 the signal of ancient introgression that occurred prior to the split of clades C and D. We
270 determined how ancient and recent introgression impacted the relationships among these taxa by
271 quantifying the topology weightings for the species tree, introgression tree, and ancient
272 introgression tree within the top 5% of f_d windows.

273 **2.5 The genomic consequences of introgression**

274 Genome wide heterogeneity in admixture can be caused by one (or a combination) of several
275 processes: selection against gene flow, adaptive introgression, or genetic drift. To determine
276 which of these processes may be contributing to genome wide variation in introgression, we
277 estimated the relationship between the recombination rate, relative genetic divergence (F_{ST}), and
278 f_d due to both recent and ancient introgression. Under a model of polygenic selection against
279 gene flow, we expect a negative relationship between f_d and F_{ST} , but a positive relationship
280 between f_d and recombination rate (Brandvain et al. 2014, Schumer et al. 2018, Liu et al. 2022).
281 Alternatively, if there is a genome-wide signal of adaptive introgression, which could occur to
282 mitigate the effects of deleterious genetic load induced by hybridization (Feng et al. 2024), then
283 we would expect a negative relationship between f_d and recombination rate (Duranton & Pool
284 2022). In the absence of selection, we expect no relationship between f_d and recombination rate.
285 Finally, as reproductive isolation accumulates through time, we expect a stronger positive
286 relationship between recombination and f_d for estimates of recent introgression but a weaker
287 relationship with ancient introgression. This is because fewer reproductive barriers would be in
288 place if gene flow occurred deeper in the past.

289 F_{ST} was estimated between *parviflorus* and Island *longiflorus* in 100 kb non-overlapping
290 windows using the *popgenwindows.py* Python script
291 (https://github.com/simonhmartin/genomics_general), with only variant sites included. f_d values
292 from Test 1, Test 2, and “ancient f_d ” were correlated with F_{ST} using Spearman’s correlation
293 coefficient in R. To estimate the relationship between f_d and recombination rate, we partitioned
294 the f_d values calculated in 100kb windows into quantile bins of recombination rates that were
295 calculated previously in 500 kb windows by Stankowski et al. (2019). We then calculated the
296 mean and 95% confidence intervals for f_d within each recombination rate quantile bin and fit a
297 linear model with f_d as the dependent variable and the recombination rate quantile bins as the
298 independent variable. We then used the *emmeans* package (Lenth, 2019) to perform pairwise
299 comparisons of the estimated marginal mean f_d values for the different quantile bins from the
300 linear model.

301 It has also been hypothesized that introgression between closely related island endemic taxa may
302 contribute to the maintenance of high levels of genetic diversity among island taxa that are
303 geographically isolated from other populations of the same taxon (Carlquist 1966). If differences
304 in genetic load between mainland and island endemics affect the outcomes of introgression
305 between these taxa, we would expect to find reduced genetic diversity and a lower effective
306 population size in the island taxa as compared to their mainland relatives (Schumer et al. 2018 ,

307 Liu et al. 2022). To determine whether there is evidence of reduced genetic diversity among the
308 hybridizing island taxa, we asked whether the mean π in both island subspecies differed among
309 the other taxa in the complex. To identify differences in the effective population sizes of these
310 species, we used PSMC (Li and Durbin 2011) to estimate the effective population size through
311 time for all samples from the island taxa and their most closely related mainland relatives. In
312 accordance with Stankowski et al. (2023), we assumed a generation time of 2 years and a
313 mutation rate of 7×10^{-9} for these calculations.

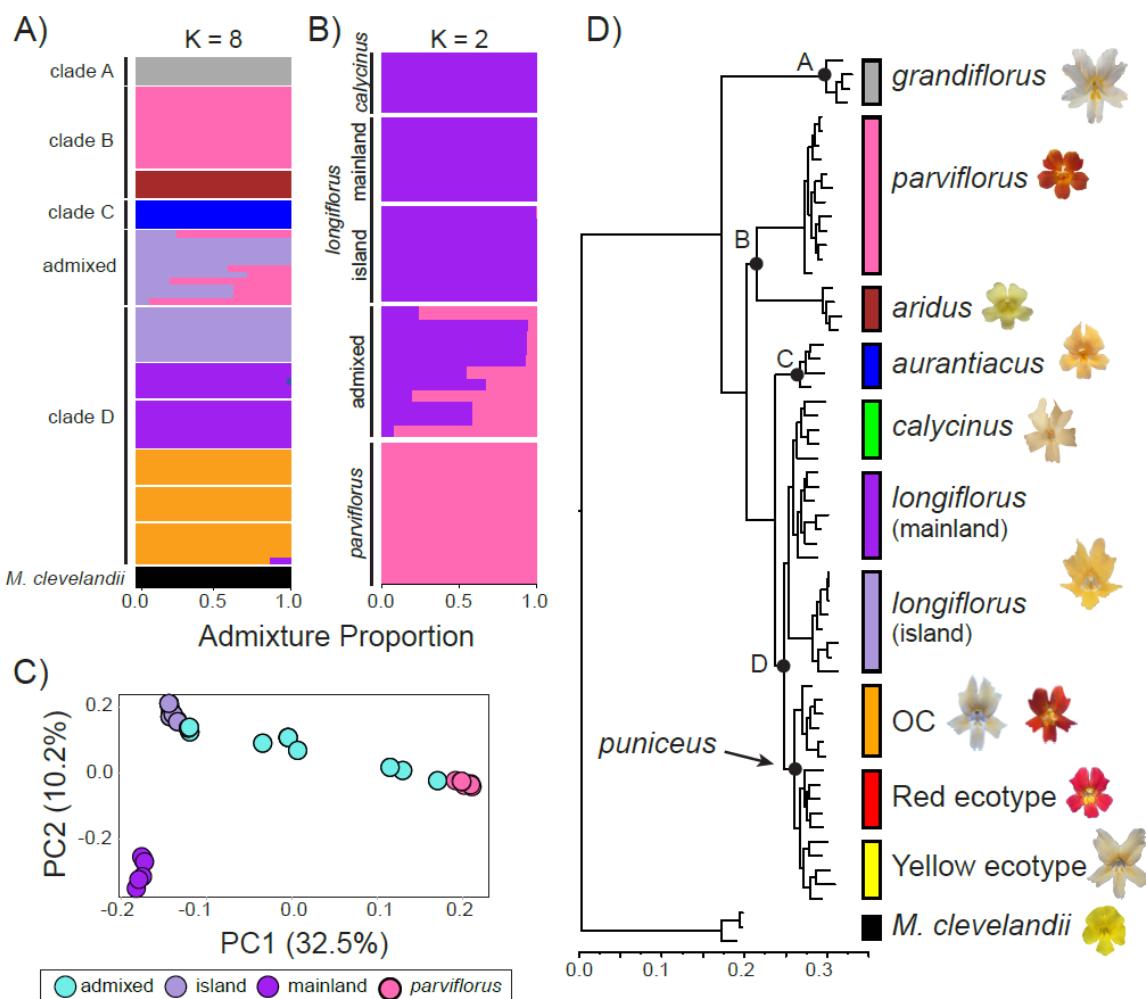
314 **2.6 Identifying signatures of adaptive introgression**

315 Extensive heterogeneity in admixture across the genome raises the possibility that adaptive
316 introgression has maintained foreign ancestry in particular regions. To determine whether
317 regions of elevated f_d display signatures of adaptive introgression between *parviflorus* and island
318 *longiflorus*, we calculated the frequency of Q95 sites found in windows across the genome
319 (Racimo et al. 2016, Feng et al. 2024). Q95 sites are defined as those that are fixed (at a
320 frequency of 1.0) in the donor taxon, near fixation (at a frequency greater than the 95th
321 percentile) in the recipient taxon, and absent in the taxon that is sister to the recipient. Thus, any
322 derived alleles that are present at high frequency in a recipient taxon that are also absent in the
323 unadmixed sister taxon but are fixed in a more distantly related donor taxon, are candidates for
324 adaptive introgression. Genomic regions that display an excess of these putatively adaptively
325 introgressed alleles are even more likely to have been targets of positive selection, because
326 selection will have correlated effects on linked sites. Thus, by identifying an elevated frequency
327 of Q95 sites in 100 kb windows across the genome, we should be able to identify genomic
328 regions that have been adaptively introgressed.

329 To identify Q95 sites, we first identified all derived SNPs that were polymorphic among
330 samples. Derived SNPs were defined as those that were fixed in *M. clevelandii* and variant in at
331 least one chromosome from samples of mainland *longiflorus*, Island *longiflorus*, *parviflorus*, or
332 *aridus*. We then determined the number of derived sites that were fixed in *parviflorus*, absent in
333 mainland *longiflorus*, and present in at least one haplotype in Island *longiflorus*. These
334 represented sites that were introgressed from *parviflorus* into Island *longiflorus*. The 95th
335 percentile of the allele frequency distribution among introgressed sites in Island *longiflorus*
336 (=0.875) was used as a cutoff to identify adaptively introgressed sites (i.e., Q95 sites) (Racimo et
337 al. 2016, Feng et al. 2024). For each 100 kb window, we then divided the number of Q95 sites by
338 the total number of derived SNPs that were present on at least one chromosome in Island
339 *longiflorus* to estimate the frequency of Q95 sites in each window.

340
341 To identify signatures of adaptive introgression that were transferred from Island *longiflorus* into
342 *parviflorus*, we identified derived SNPs that were fixed in Island *longiflorus*, present on at least
343 one haplotype in *parviflorus*, but were absent in mainland *longiflorus*. In this case, the 95th
344 percentile of the allele frequency distribution in *parviflorus* included only sites fixed in
345 *parviflorus*. We then divided the number of Q95 sites by the total number of derived SNPs that
346 were present on at least one chromosome in *parviflorus* in 100 kb windows.

347
348 To further explore signatures of adaptive introgression for the region with the highest frequency
349 of Q95 sites across the genome, we calculated f_d , d_{xy} , F_{ST} , π , and the frequency of Q95 sites in 10
350 kb windows with 1000 bp steps (see Results).


351 **3 RESULTS**

352

353 **3.1 Evolutionary relationships and hybridization on Santa Cruz Island**

354

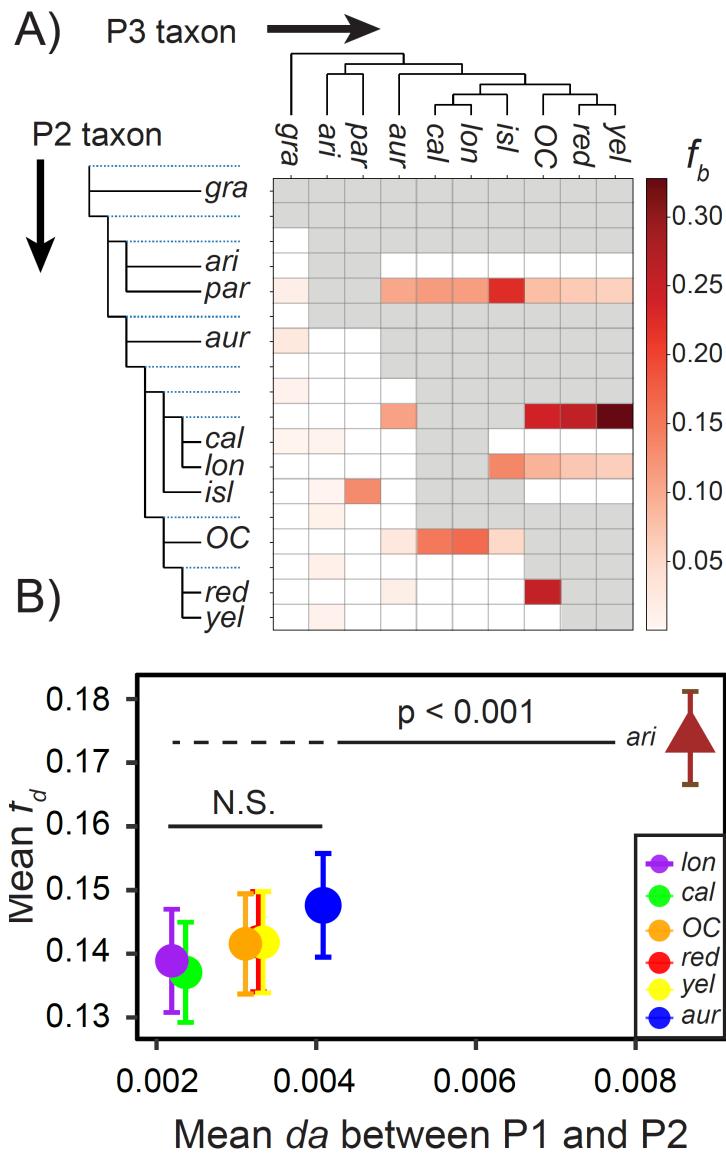
355 At $K=8$, *Admixture* assigned samples to ancestry groups that were consistent with previous
 356 analyses of the phylogenetic history of these subspecies (Fig 2A, Fig S1) (Chase et al. 2017,
 357 Stankowski et al. 2019, Short and Streisfeld 2023). The newly sequenced Santa Cruz Island
 358 samples contained a mixture of individuals with both pure and admixed ancestry, suggesting the
 359 occurrence of ongoing hybridization between *parviflorus* and Island *longiflorus* (Fig 2A). By re-
 360 running *Admixture* at $K=2$, including only the island samples, as well as mainland *longiflorus*
 361 and *calycinus*, we identified 12 “unadmixed” *parviflorus* and 8 “unadmixed” Island *longiflorus*

Figure 2. The relationships among the taxa in the *M. aurantiacus* species complex. (A) The ancestry proportions from *Admixture* at $K=8$ for all the subspecies and their sister species, *M. clevelandii*. (B) Ancestry proportions at $K=2$ from a run that included only the island samples, mainland *longiflorus*, and *calycinus*. (C) Plot of the first two principal components from the island samples and mainland *longiflorus*. The percent variation explained by each axis is reported. (D) Phylogenetic tree showing evolutionary relationships, with representative photographs of each taxon’s flower. The four major clades of the radiation are labelled with black letters. The tips corresponding to each taxon are indicated by a colored bar.

362 (with q-scores greater than 0.99; Fig 2B). We also identified 11 admixed samples from Santa
363 Cruz Island, which were removed from subsequent analyses. Results from the PCA were largely
364 consistent with Admixture, with “unadmixed” Island *longiflorus* and *parviflorus* samples
365 clustering separately along PC1 and admixed samples distributed between them (Fig 2C).

366 The consensus species tree was consistent with previous analyses that revealed four primary
367 clades (Stankowski and Streisfeld 2015, Chase et al. 2017, Short & Streisfeld 2023). Clade A
368 consisted entirely of subspecies *grandiflorus*, clade B showed *parviflorus* and *aridus* as sister
369 taxa, clade C consisted entirely of *aurantiacus*, and the remaining taxa from southern California
370 comprised the diverse clade D (Fig 2D). Within clade D, Island *longiflorus* was sister to both
371 mainland *longiflorus* and *calycinus*. To confirm this relationship, an additional run of Admixture
372 was performed at K=3 (Fig S2), revealing three distinct ancestry groups that corresponded to
373 Island *longiflorus*, mainland *longiflorus*, and *calycinus*.

374


375 **3.2 Evidence of recent and ancient hybridization**

376

377 Consistent with Stankowski et al (2019), our calculations of the *fbranch* statistic revealed
378 evidence of widespread introgression, particularly among the very recently diverged taxa within
379 clades C and D (Fig 3A). In addition, we identified evidence of hybridization between
380 *aurantiacus* and *grandiflorus*, as well as between *aridus* and the clade D taxa, confirming
381 previous results by Short and Streisfeld (2023). We observed a strong signal of introgression
382 between *parviflorus* and all the taxa from clades C and D, but this signal was the strongest
383 between *parviflorus* and Island *longiflorus* (Fig 3A). This raises the possibility that there may
384 have been recent introgression between *parviflorus* and Island *longiflorus*, as well as historical
385 hybridization between *parviflorus* and the ancestor of clades C and D.

386 To test these hypotheses, we performed calculations of f_d using taxa at various levels of sequence
387 divergence from one another. This allowed us to identify recent and historical signals of
388 introgression (Fig 1). From Test 1, we identified no significant increase in mean f_d with sequence
389 divergence (da) when the different taxa from clades C and D were set as P1 (Fig 3B, Table S2).
390 This indicates introgression was recent and occurred only after the split between Island and
391 mainland *longiflorus*. However, when the more diverged *aridus* and *parviflorus* were set as P1
392 and P2 in Test 2, we found a significantly higher mean f_d (Fig 3B, Table S2), indicating both
393 recent hybridization between Island *longiflorus* and *parviflorus*, as well as ancient hybridization
394 between the ancestor of modern *parviflorus* and the ancestor of clades C and D. In addition,
395 mean f_d was greatest when island *longiflorus* was set as P3 (Fig S3, Table S3), confirming that
396 Test 2 identified the signals of both recent and ancient introgression. In addition to the presence
397 of ongoing hybridization between the island taxa, these results reveal that introgression with

398 *parviflorus* has occurred at two time points, once between its ancestor and the ancestor of clades
 399 C and D, and then again, in the more recent past with Island *longiflorus*.

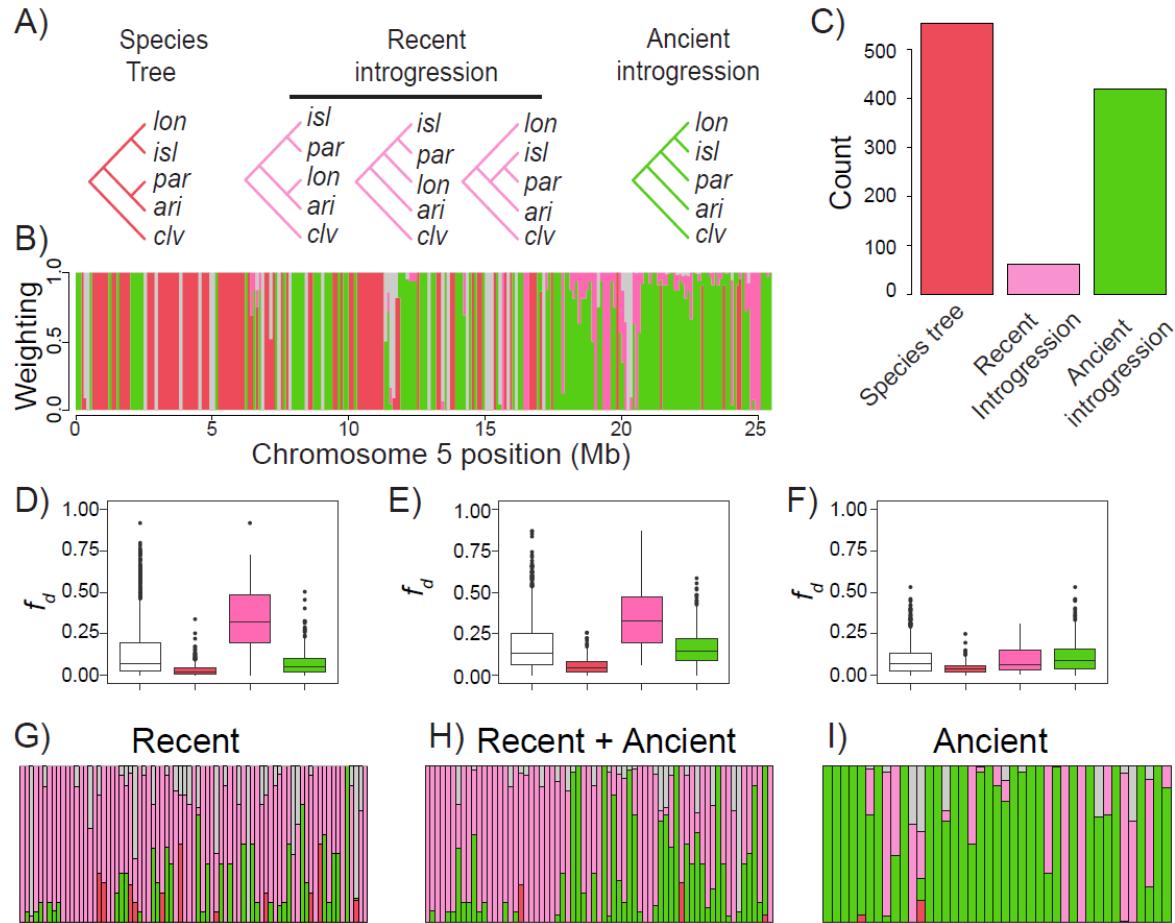


Figure 3. Hybridization history in the *Mimulus aurantiacus* species complex. (A) Genome-wide patterns of introgression using the f -branch statistic (f_b). This analysis uses knowledge of the relationships among taxa and the results of the f_4 -ratio (calculated using all possible trios of ingroup taxa) to estimate the relative position of hybridization on a species tree. The color gradient represents the values of f_b , with darker colors indicating greater evidence of introgression. (B) Mean and 95% confidence intervals for Test 1 and Test 2 f_d values calculated in 100 kb windows are plotted against mean sequence divergence (da) between the taxa used as P1 and P2 for the calculation of f_d . Test 1 calculations of f_d were performed using the various clade C and D taxa as P1, Island *longiflorus* as P2, and *parviflorus* as P3. Test 2 calculations of f_d were performed using *aridus* as P1, *parviflorus* as P2, and Island *longiflorus* as P3. Colors indicate the P1 taxon used to calculate f_d for the specific test, with mainland *longiflorus* in purple (*lon*), *calycinus* in green (*cal*), Orange County *puniceus* in orange (*OC*), the red ecotype in red (*red*), the yellow ecotype in yellow (*yel*), *aurantiacus* in blue (*aur*), and *aridus* in brown (*ari*). Shapes indicate which test was performed, with circles indicating Test 1 and triangles indicating Test 2.

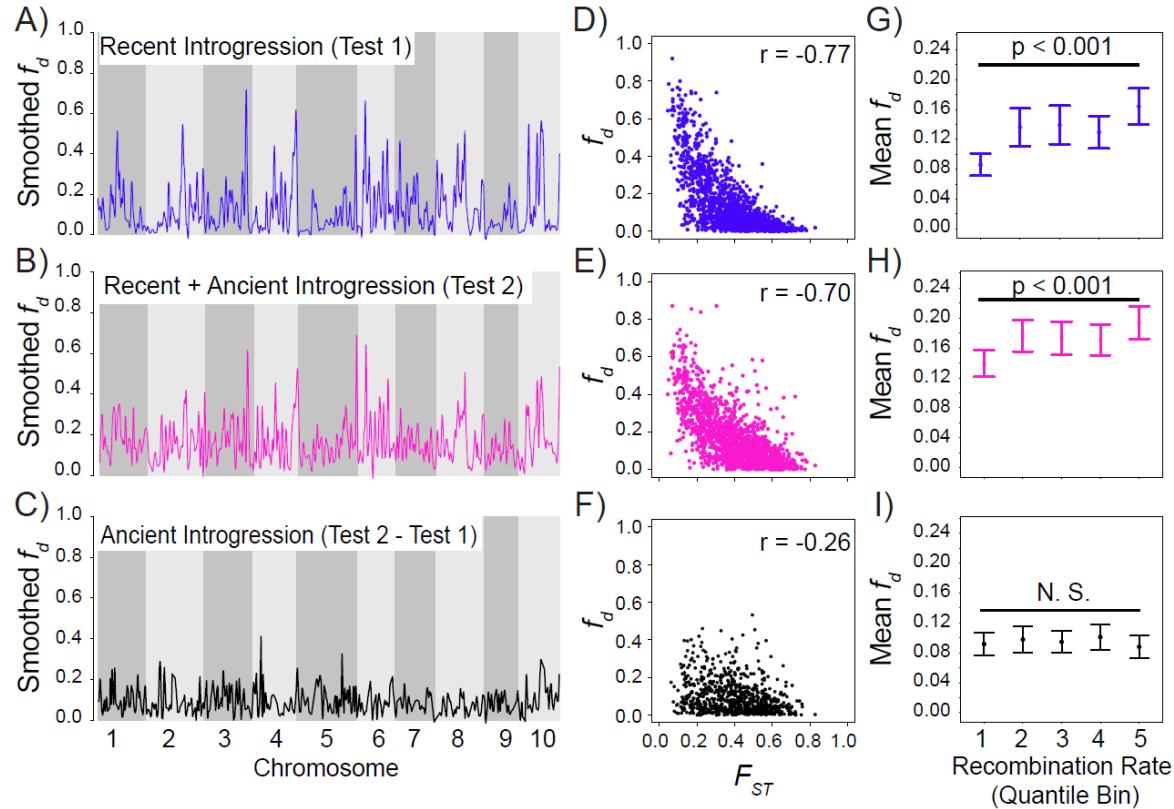
400

401 3.3 Ancient and recent hybridization contribute to genome wide phylogenetic discordance

402 Using TWISST, we defined tree topologies that supported the ‘species tree,’ a set of
 403 ‘introgression trees’ where Island *longiflorus* and *parviflorus* were sister, and an ‘ancient
 404 introgression’ topology where *parviflorus* was sister to both mainland and Island *longiflorus* (Fig
 405 4A). By scanning the genome for the distribution of these tree topologies, we found widespread

Figure 4. Genome wide variation in levels of phylogenetic discordance. (A) Topologies that represent the species tree (red), recent introgression trees (pink), and the ancient introgression tree (green). (B) Representative variation in topology weighting across chromosome 5. Red bars indicate support for the species tree, pink bars indicate support for the recent introgression tree, green bars indicate support for the ancient introgression tree, and gray bars indicate no support for these topologies. (C) The number of 100 kb windows across the genome containing a topology weighting of 1.0 for the species tree, recent introgression tree, and the ancient introgression tree. (D-F) Distribution of f_d values among windows with a topology weighting of 1.0 for either the species tree (red), recent introgression tree (pink), or the ancient introgression tree (green). The distribution for the entire genome is provided in white. (D) Test 1 f_d values. (E) Test 2 f_d values. (F) Ancient f_d values, calculated by taking the difference between Test 2 and Test 1 f_d values. (G-I) Distribution of topology weightings among the 5% of windows with the highest f_d values. (G) Test 1 f_d values. (H) Test 2 f_d values. (I) Ancient f_d values.

406 evidence of phylogenetic discordance (Fig 4B). We identified 553 windows with topology
 407 weightings of 1.0 for the species tree, 61 windows that supported the introgression tree, and 419
 408 trees that matched the ancient introgression tree (Fig 4C) (a remaining 915 windows did not
 409 match any of these topologies or had topology weightings less than 1.0, which we refer to as
 410 ‘unresolved’). Despite there being nearly as many topologies that supported a history of
 411 introgression as the species tree, this phylogenetic discordance also may have been caused by
 412 incomplete lineage sorting.


413 To determine if discordance could be attributed to introgression or incomplete lineage sorting,
414 we tested for an association between these topologies and f_d across the genome. Consistent with a
415 primary role for introgression, we found that windows supporting the ‘introgression tree’
416 displayed higher Test 1 and Test 2 f_d values than the other topologies (Figs 4D and 4E).
417 However, there were some windows with high support for the ‘introgression tree’ that had low
418 values of f_d , suggesting that some of the discordance may have been caused by incomplete
419 lineage sorting. In windows with complete support for the ‘ancient introgression tree,’ f_d values
420 from Test 2 were higher than for Test 1 (compare Fig 4D and 4E), again consistent with Test 2
421 identifying signals of both recent and ancient introgression. When we calculated the difference
422 between f_d values from Test 2 and Test 1, the windows with the highest ‘ancient f_d ’ values
423 largely corresponded to those with complete support for the ‘ancient introgression’ topology (Fig
424 4F). By focusing only on the top 5% of windows with the highest f_d for both Test 1 and Test 2,
425 we found greater support for the ‘introgression’ and ‘ancient introgression’ topologies (Figs 4G-
426 H), with more evidence of ancient introgression for Test 2. This pattern became even more clear
427 when we plotted the distribution of topologies for the top 5% of ‘ancient f_d ’ values (Fig 4I). Thus,
428 while there is some evidence for incomplete lineage sorting, much of the phylogenetic
429 discordance appears to be caused by recent and ancient introgression.

430 3.4 The genomic consequences of recent and ancient hybridization

431 We identified extensive variation in the extent of introgression across the genome (Fig 5, S4).
432 Raw values of f_d in 100 kb windows ranged from 0.0 to around 0.9 (Fig S4). To determine the
433 evolutionary processes responsible for this extreme heterogeneity in introgression across the
434 genome, we compared f_d with levels of genetic divergence and recombination rates. We
435 identified a strong negative relationship between f_d and F_{ST} for both Test 1 and Test 2 ($r > -0.70$;
436 Fig. 5D, 5E), implying that negative selection has likely purged deleterious foreign genetic
437 variation across the genome. By contrast, although the relationship between F_{ST} and f_d remained
438 negative when we examined the impacts of ancient introgression, it was considerably weaker ($r =$
439 -0.26, Fig 5F).

440 We found an overall positive relationship between recombination rate and mean f_d for Tests 1
441 and 2 (Fig 5G, 5H). Specifically, the recombination rate quantile bin with the lowest
442 recombination (0–0.824 cM/Mb) had significantly lower mean f_d values than the highest
443 recombination quantile (3.66–10.9 cM/Mb) for both Tests 1 and 2 (Table S4, S5). In addition, for
444 Test 1, mean f_d in the lowest recombination rate quantile was significantly lower than all four of
445 the remaining higher quantiles, but this was not the case for Test 2, which showed no significant
446 differences in mean f_d among intermediate recombination quantile bins. The slightly weaker
447 relationship for Test 2 suggests the possibility that the effects of selection may have varied
448 through time. Consistent with this hypothesis, we identified no significant difference in ancient f_d
449 values between any of the recombination rate bins (Figure 5I, Table S6).

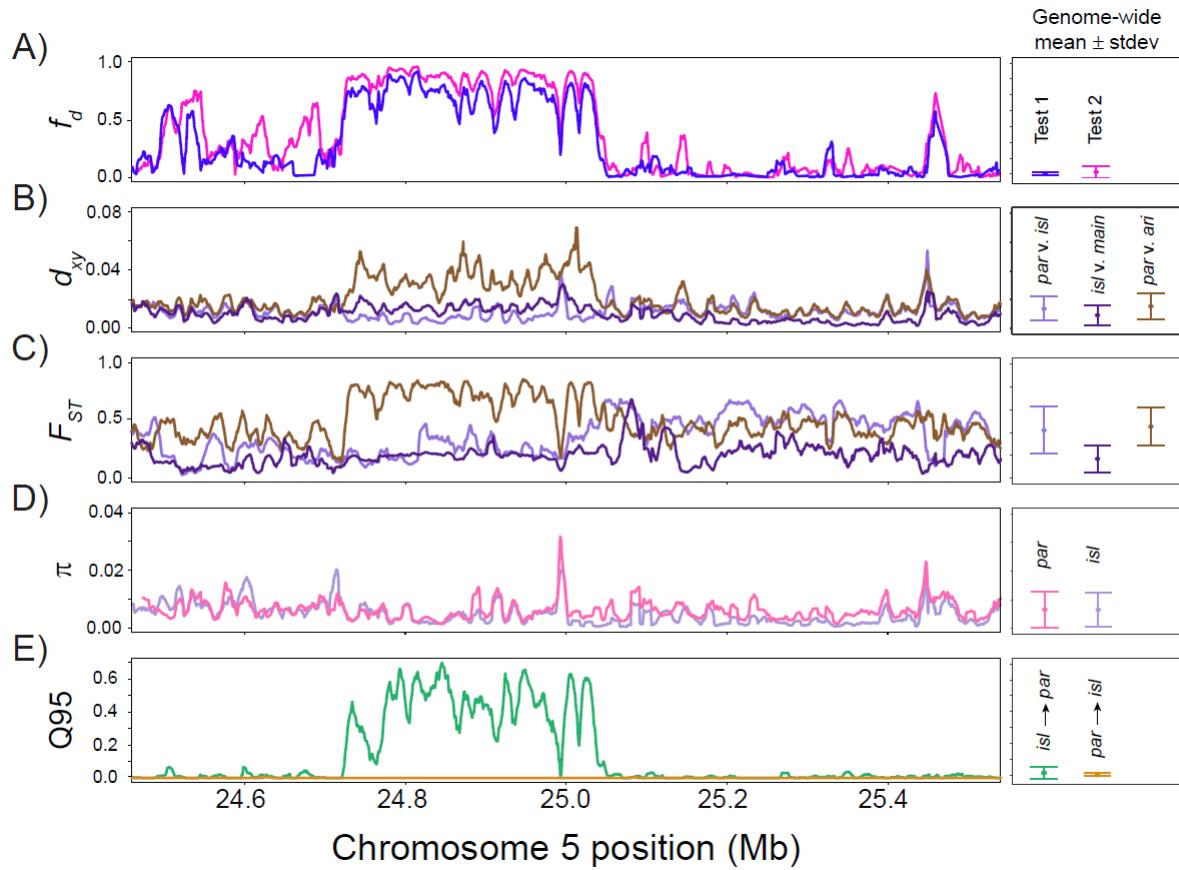

450 We observed no difference in average nucleotide diversity (π) among taxa, including the island
 451 endemics (Fig S5). Furthermore, we found no evidence for recent or historical reductions in
 452 effective population size in the island taxa (Fig S6). However, we did observe a small increase in
 453 effective population size in *parviflorus* and Island *longiflorus* around 100,000 years ago,
 454 suggesting that hybridization between these subspecies may have started around that time.

Figure 5. Genome wide variation in introgression. (A-C) Loess-smoothed f_d values plotted across the 10 chromosomes of the *M. aurantiacus* genome. Colors indicate how the f_d values were calculated: (A) Test 1 f_d values, (B) Test 2 f_d values, (C) Ancient f_d . (D-F) Scatterplots showing the relationship between f_d and genetic differentiation (F_{ST}) between Island *longiflorus* and *parviflorus*, with the correlation coefficient between the statistics in the upper right hand corner of each plot. (D) The relationship between recent introgression (i.e., Test 1 f_d) and F_{ST} . (E) The relationship between both recent and ancient introgression (i.e., Test 2 f_d) and F_{ST} . (F) The relationship between ancient introgression and F_{ST} . (G-I) Mean and 95% confidence intervals of f_d calculated among quantile bins of recombination rate. Quantile bins of recombination rate are as follows: 1 = 0–0.824 cM/Mb; 2 = 0.824–1.51 cM/Mb; 3 = 1.51–2.33 cM/Mb; 4 = 2.33–3.66 cM/Mb; 5 = 3.66–10.9 cM/Mb. (G) Test 1 f_d values, (H) Test 2 f_d values, and (I) ancient f_d values.

455 **3.5 Evidence of localized adaptive introgression**

456 To investigate evidence for adaptive introgression in regions of elevated f_d , we calculated the
 457 frequency of Q95 sites in 100 kb windows across the genome (Fig S7). As might be expected,
 458 most windows displayed no increases in the frequency of Q95 sites. However, we did identify
 459 clear pileups of elevated Q95 ratios in a few regions (Fig S7), with one region in particular
 460 showing more than 40% of derived sites within two adjacent windows that matched the Q95
 461 pattern (chromosome 5, 24.7-24.9 Mbp). These same windows had f_d values greater than 0.85 for

Figure 6. Hybridization leads to adaptive introgression from Island *longiflorus* into *parviflorus*. On the left, the admixture proportion (f_d), genetic divergence (d_{xy}), genetic differentiation (F_{ST}), genetic diversity (π), and Q95 are plotted across an 800 kb region on chromosome 5 identified as a candidate region using the Q95 statistic (Fig S7). On the right of each plot is the genome-wide mean \pm standard deviation of each statistic, calculated in 10 kb windows and 1000 bp steps across all 10 chromosomes. (A) Both Test 1 and Test 2 f_d values indicate a defined region of elevated introgression. (B) d_{xy} between *parviflorus* and *aridus* (brown) is clearly elevated across this region. However, d_{xy} between *parviflorus* and Island *longiflorus* (light purple) and d_{xy} between Island and mainland *longiflorus* (purple) are nearly equal to genome wide levels. (C) F_{ST} between *parviflorus* and Island *longiflorus* (light purple) is reduced in this region, and F_{ST} between Island and mainland *longiflorus* (purple) is nearly equal to genome wide levels. F_{ST} between *parviflorus* and *aridus* (brown) displays a clear increase in this region as compared to genome wide levels. (D) No clear decrease in π was observed for either *parviflorus* (pink) or Island *longiflorus* (light purple). (E) A clear increase in the number of alleles that are shared between Island *longiflorus* and *parviflorus* but absent in *aridus* (green) was observed within this region. In contrast, no increase in the number of alleles that are shared between *parviflorus* and Island *longiflorus* but absent in mainland *longiflorus* (yellow) was observed within this region, indicating unidirectional introgression from Island *longiflorus* into *parviflorus*.

462 Test 2 and about 0.7 for Test 1 (Fig S4). Such an elevated local signal of introgression
 463 surrounded by regions of considerably higher admixture suggests the possibility of adaptive
 464 introgression. In addition, although we found an overall positive relationship between f_d and π ,
 465 these two windows have the highest f_d for both Tests 1 and 2 but some of the lowest nucleotide
 466 diversity across the genome (Fig S8).

467 By zooming in on this region on chromosome 5, we identified a strong signal of introgression
 468 that spanned approximately 300 kb (Fig 6A). Furthermore, we also identified reduced d_{xy} and F_{ST}

469 between *parviflorus* and Island *longiflorus* and a clear increase in the frequency of Q95 sites
470 transferred from Island *longiflorus* into *parviflorus* (Fig 6). In contrast, we did not see a signal of
471 elevated Q95 when considering introgression in the other direction. In addition, we also
472 identified elevated F_{ST} and d_{xy} between *parviflorus* and *aridus*, but no clear increase in F_{ST} or d_{xy}
473 between Island and mainland *longiflorus* (Figure 6B, 6C), providing further support that adaptive
474 introgression in this region occurred from Island *longiflorus* into *parviflorus*. However, we
475 observed no clear decrease in π for either Island taxon (Figure 6D).

476 4 Discussion

477

478 Hybridization can occur throughout the history of a radiation, but the evolutionary consequences
479 of this mixing can vary over time. In this study, we took advantage of the diversity of taxa
480 present in the *Mimulus aurantiacus* species complex to demonstrate that introgressive
481 hybridization occurred at different points during the history of the group. We identified evidence
482 of recent introgression between a pair of island endemic taxa, as well as ancient hybridization
483 between their ancestors. Moreover, by comparing the relationship between introgression and
484 recombination rate at these different time points, we found that selection against recent gene
485 flow on the island is more prevalent than following ancient hybridization, likely due to the
486 accumulation of reproductive barriers through time. Although it is possible that time has eroded
487 previous signatures of selection against ancient introgression, we identified widespread
488 phylogenetic discordance associated with ancient introgression, which suggests that much of the
489 signal of ancient introgression has been preserved over time.

490

491 **4.1 Recent and ancient hybridization contribute to distinct signals of introgression between** 492 **a pair of island endemic monkeyflower subspecies**

493

494 By examining the history of hybridization between these island taxa, we demonstrate how the
495 diversity of taxa present within evolutionary radiations can be used to estimate the relative
496 timing of past hybridization events. Martin et al. (2013) first demonstrated that it was possible to
497 detect introgression that occurred further back in time by increasing the level of sequence
498 divergence between the sister pair of ingroup taxa used in a four taxon test of introgression.
499 Malinsky et al. (2018) advanced this approach by developing a statistic to estimate the relative
500 timing of hybridization across a phylogenetic tree. In the current study, we further expand on
501 these methods by performing two tests that can: 1) estimate levels of recent introgression in a
502 genomic window, and 2) identify levels of ancient and recent introgression. These tests rely on
503 the variation in the divergence times between a pair of hybridizing taxa and their respective sister
504 taxa.

505

506 Specifically, we used Test 1 to demonstrate that hybridization between Island *longiflorus* and
507 *parviflorus* began after Island and mainland *longiflorus* diverged from each other. This is
508 because average levels of f_d remain similar regardless of which taxon is used as P1 in the test
509 (Fig 3B). We then performed additional tests for introgression using the sister pair of *aridus* and
510 *parviflorus* as P1 and P2 to identify introgression that occurred prior to the divergence of clades
511 C and D (Test 2). Because *parviflorus* and *aridus* are more diverged from each other than any of
512 the taxa within clades C and D, Test 2 can detect recent hybridization between *parviflorus* and
513 Island *longiflorus*, as well as any ancient introgression that occurred between the ancestor of

514 *parviflorus* and the common ancestor of clades C and D. The difference between these two tests
515 can be used to obtain an estimate of ancient introgression.

516
517 Although *parviflorus* is currently endemic to the Channel Islands, these results suggest that the
518 ancestor of *parviflorus* was likely also present on the mainland of California, where it hybridized
519 with the common ancestor of clades C and D at some point in the past. It has been argued that all
520 plant species currently found on the Channel Islands are descended from mainland California
521 ancestors (Axelrod 1965, Thorne 1969, Schoenherr et al. 2003). Furthermore, many of the
522 woody plant species restricted to the Channel Islands were found on the mainland in the past,
523 where they appear to have been driven to extinction by changing climate conditions (Axelrod
524 1965). Many of the Channel Island's endemic species are believed to have migrated from the
525 mainland during the Pleistocene glacial period when sea levels were lower (Johnson 1978, Muhs
526 et al. 2015, Mychajliw et al. 2020). During this period, Santa Cruz Island was connected to Santa
527 Rosa and Anacapa Islands, and the distance between these islands and the mainland was only
528 between 6-10 km (Johnson 1978, Muhs et al. 2015), making dispersal to the islands possible.
529 Furthermore, consistent with what we report here in *Mimulus*, there is also evidence of ancient
530 and recent introgression between a pair of Channel Island endemic oak species (Ortego et al.
531 2018, Mead 2023, Mead et al. 2024). One of the island species appears to be a relic of a now
532 extinct species that was present on the mainland, and the other is widely distributed on both the
533 mainland and the Channel Islands. This raises the possibility that hybridization may be a
534 common feature among closely related Channel Island endemics.

535
536 Indeed, hybridization between plant species on the Channel Islands appears to be common
537 (Thorne 1969), which is consistent with a general finding of increased hybridization between
538 closely related island endemics (Carlquist 1966, Reatini & Vision 2023). One proposed
539 explanation for this is that hybridization can mitigate the effects of deleterious genetic load that
540 accumulates in geographically isolated, small populations (Carlquist 1966). However, we
541 observed no reductions in genetic diversity or effective population size in the island taxa,
542 suggesting that there is no evidence of greater genetic load in either island taxon. Nevertheless,
543 given that the samples of *parviflorus* and Island *longiflorus* sequenced here continue to display
544 evidence of admixture, it is possible that these patterns of diversity and population size may be
545 attributable to their shared history of introgression. Additional sampling from the other Channel
546 Islands where the two taxa do not occur in sympatry will be necessary to test this hypothesis
547 further.

548
549 **4.2 Variation in the fitness effects of introgression over time**

550
551 Speciation is a continuous process that involves the accumulation of reproductive isolation
552 (Stankowski and Ravinet 2021). Multiple factors will determine the rate at which isolation
553 evolves, but the time since divergence has been shown to be highly relevant (Coyne and Orr
554 1989). Thus, at any point along the speciation continuum before reproductive isolation is
555 complete, hybrids can form, leading to the potential for gene flow between emerging species.
556 The consequences of this gene flow for fitness will depend on the extent of isolation that has
557 evolved and the environments that the taxa inhabit. For example, if a pair of taxa has only
558 recently diverged, many of the variants exchanged between them will likely have few deleterious
559 effects on fitness. However, as divergence times increase and more reproductive isolation

560 becomes established, selection against hybrids may be stronger. Alternatively, variants
561 transferred between taxa may be beneficial in a shared ecological environment. By identifying
562 variation in the timing of introgression between taxa, we were able to reveal that the
563 consequences of introgression for fitness also varied over time.

564
565 By building phylogenetic trees in windows across the genome, we found widespread
566 phylogenetic discordance due to a combination of recent and ancient hybridization and
567 incomplete lineage sorting. Surprisingly, we identified nearly equal numbers of windows that
568 supported the species tree and the ancient introgression tree, suggesting that the signal of ancient
569 introgression is widespread throughout the genome. In contrast, we identified a much smaller
570 number of windows that supported the introgression tree, suggesting that recent introgression
571 was limited to fewer regions throughout the genome.

572
573 To estimate the fitness effects of introgression, we compared the relationship between
574 recombination rate and recent and ancient introgression. Selection against introgression should
575 result in a positive relationship between introgression and local levels of recombination, because
576 the recombination rate determines how quickly introgressed alleles will be separated from
577 resident alleles. If selection acts against foreign variants, it should rapidly remove deleterious
578 alleles in regions of low recombination where they remain linked with resident alleles
579 (Brandvain et al. 2014, Schumer et al. 2018, Martin et al. 2019). Consistent with this expectation,
580 we found that recent introgression between *parviflorus* and Island *longiflorus* was positively
581 related to recombination rate, suggesting that admixed variants were often deleterious. By
582 contrast, there was no relationship between ancient introgression and recombination rate. These
583 findings imply that reproductive isolation has accumulated between *parviflorus* and Island
584 *longiflorus*, such that more recent gene exchange between these diverged taxa resulted in
585 selection against gene flow. By contrast, shortly after the split between their ancestors, there
586 were likely fewer reproductive barriers in place, allowing free exchange of genetic information
587 and a corresponding signal of neutral introgression. However, reproductive isolation is not
588 complete between *parviflorus* and Island *longiflorus*, as numerous contemporary hybrids were
589 detected in our samples (Fig 2B, 2C). Thus, additional work characterizing the components and
590 extent of reproductive isolation, as well as the fitness of hybrids between these taxa will be
591 needed to confirm these conclusions.

592
593 Another explanation for these findings is that the signatures of selection against ancient
594 introgression have eroded over time. Although difficult to assess directly, we found widespread
595 evidence of ancient introgression across the genome (Fig 4C), suggesting that much of this signal
596 has been maintained through time. Indeed, the presence of numerous genomic windows with
597 high support for the ancient introgression topology is consistent with anciently introgressed
598 alleles being largely neutral. Although some windows likely display high support for the ancient
599 introgression topology due to incomplete lineage sorting, windows of elevated “ancient f_d ”
600 display strong support for the ancient introgression topology, suggesting that ancient
601 introgression is at least partially contributing to this pattern. Moreover, many cases of
602 widespread phylogenetic discordance (Nelson et al. 2021, Zhang et al. 2021a) and adaptive
603 introgression (Meier, et al. 2017, Malinsky et al. 2018, Ma et al. 2019, Zhang et al. 2021b, Short
604 & Streisfeld 2023) appear to be the result of ancient introgression, further implying that selection
605 against introgression was weaker earlier in the divergence history of these taxa.

606
607 Finally, by examining f_d values from Test 1 and Test 2 across the genome, we found extensive
608 variation in genome wide levels of introgression, with some windows being nearly fixed for
609 introgressed alleles. This raises the possibility that adaptation has contributed to the localized
610 maintenance of introgressed alleles. Despite evidence that selection against recent gene flow was
611 the primary factor shaping the heterogeneous patterns of introgression between *parviflorus* and
612 Island *longiflorus*, we also found evidence for localized increases in the frequency of Q95 sites.
613 Specifically, we identified a region on chromosome 5 in *parviflorus* that was nearly fixed for
614 Island *longiflorus* alleles. Thus, although most alleles exchanged between these taxa likely
615 decreased fitness, some introgressed alleles appear to have increased fitness. Both taxa inhabit
616 similar environments and often occur in sympatry, implying that they experience many of the
617 same selection pressures on Santa Cruz Island. Thus, the transfer of alleles from Island
618 *longiflorus* into *parviflorus* may have been facilitated by their shared environments, but future
619 studies on the ecology and physiology of these taxa will be needed to identify potential selective
620 agents contributing to adaptation.
621

622 In conclusion, we identified evidence of selection against recent introgression between
623 *parviflorus* and Island *longiflorus*, potentially because more reproductive barriers are currently in
624 place. However, we found no current signal of selection between their ancestors. Thus, this study
625 reveals that hybridization can occur at multiple points throughout the divergence history of a
626 radiation, but the processes that shape their genomes can change over time.
627

628 **Data Accessibility Statement**

629
630 Raw sequencing reads were downloaded from the Short-Read Archive (SRA) from bioproject
631 ID: PRJNA549183. New sequencing reads generated here have been uploaded and added to
632 bioproject ID PRJNA1149754. VCF files and population genomic data have been deposited to
633 xxxx . The reference assembly and annotation are available at mimubase.org. Computer scripts
634 used for population genomic analyses are available on Github at:
635 https://github.com/awshort/Channel_Islands_monkeyflower_hybridization. Samples were
636 collected from Santa Cruz Island according to the Scientific Research and Collecting Permit
637 from the National Parks Service (CHIS-2024-SCI-0008).
638

639 **Benefit-Sharing Statement**

640
641 Benefits generated: Benefits from this research accrue from the sharing of our data and results on
642 public databases as described above.
643
644

645 **Author contributions**

646
647 A.W.S. and M.A.S. designed the study, conducted all analyses, and wrote the manuscript.
648

649 **Funding**

650 This project was supported by National Science Foundation DEB-20551242 to M.A.S.
651

652 *Conflict of interest:* The authors declare no conflicts of interest.

653

654 Acknowledgments

655

656 We would like to thank Jessie Crown for help in extracting the DNA for this project. We would
657 also like to thank Peter Ralph, Andrew Kern, Yaniv Brandvain, and Bill Cresko for providing
658 valuable feedback and discussion. We would also like to thank Doug Turnbull and Jason
659 Carriere for preparing the libraries and conducting the Illumina sequencing at the UO Genomics
660 & Cell Characterization Core Facility (GC3F). We would like to thank Dr. Cameron B. Williams
661 for helping us to secure a scientific research and collection permit, and the National Park Service
662 for granting us this permit.

663

664 REFERENCES

665 Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in
666 unrelated individuals. *Genome research*, 19(9), 1655-1664.

667 Axelrod, D. I. (1965). Geologic history of the California insular flora. Pages 267-315 In: 1st
668 Symposium on the Biology of the California Islands. National Park Service, 1965. 267-314.

669 Beeks, R. M. (1962). Variation and hybridization in southern California populations of *Diplacus*
670 (Scrophulariaceae). *Aliso* 5: 83 – 122.

671 Brandvain, Y., Kenney, A. M., Flagel, L., Coop, G., & Sweigart, A. L. (2014). Speciation and
672 introgression between *Mimulus nasutus* and *Mimulus guttatus*. *PLoS Genetics*, 10(6), e1004410.
673 <https://doi.org/10.1371/journal.pgen.1004410>

674 Brauer, C. J., Sandoval-Castillo, J., Gates, K., Hammer, M. P., Unmack, P. J., Bernatchez, L., &
675 Beheregaray, L. B. (2023). Natural hybridization reduces vulnerability to climate change. *Nature*
676 *Climate Change*, 13(3), 282-289.

677 Browning, S. R., & Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-
678 data inference for whole-genome association studies by use of localized haplotype clustering.
679 *The American Journal of Human Genetics*, 81(5), 1084-1097.

680 California Native Plant Society (CNPS). 2023. Inventory of Rare and Endangered Plants (online
681 edition, v8-01a). California Native Plant Society. Sacramento. Accessed 29 Nov 2023.

682 Carlquist, S. (1966). The biota of long-distance dispersal. I. Principles of dispersal and evolution.
683 *The Quarterly Review of Biology*, 41(3), 247-270.

684 Chase, M. A., Stankowski, S., & Streisfeld, M. A. (2017). Genomewide variation provides
685 insight into evolutionary relationships in a monkeyflower species complex (*Mimulus* sect.
686 *Diplacus*). *American Journal of Botany*, 104(10), 1510–1521. <https://doi.org/10.3732/ajb.1700234>

688 Coughlan, J. M., & Matute, D. R. (2020). The importance of intrinsic postzygotic barriers
689 throughout the speciation process. *Philosophical Transactions of the Royal Society B*, 375(1806),
690 20190533.

691 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
692 Lunter, G., Marth, G.T., Sherry, S.T., & McVean, G. (2011). The variant call format and
693 VCFtools. *Bioinformatics*, 27(15), 2156-2158.

694 Duranton, M., & Pool, J. E. (2022). Interactions between natural selection and recombination
695 shape the genomic landscape of introgression. *Molecular biology and evolution*, 39(7), msac122.

696 Feng, X., Merilä, J., & Löytynoja, A. (2024). Secondary contact, introgressive hybridization and
697 genome stabilization in sticklebacks. *Molecular Biology and Evolution*, msae031.

698 Gaio, D., Anantanawat, K., To, J., Liu, M., Monahan, L., & Darling, A. E. (2022). Hackflex:
699 low-cost, high-throughput, Illumina Nextera Flex library construction. *Microbial Genomics*,
700 8(1), 000744.

701 Gompert, Z., & Alex Buerkle, C. (2010). INTROGRESS: a software package for mapping
702 components of isolation in hybrids. *Molecular Ecology Resources*, 10(2), 378-384.

703 Harrison, R. G., & Larson, E. L. (2016). Heterogeneous genome divergence, differential
704 introgression, and the origin and structure of hybrid zones. *Molecular ecology*, 25(11), 2454-
705 2466.

706 Johnson, D. L. (1978). The Origin of Island Mastodons and the Quaternary Land Bridge of the
707 Northern Channel Islands, California1. *Quaternary research*, 10(2), 204-225.

708

709 Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-
710 genome sequences. *Nature*, 475(7357), 493-496.

711

712 Liu, S., Zhang, L., Sang, Y., Lai, Q., Zhang, X., Jia, C., Long, Z., Wu, J., Ma, T., Mao, K.,
713 Street, N. R., Ingvarsson, P. K., Liu, J., & Wang, J. (2022). Demographic history and natural
714 selection shape patterns of deleterious mutation load and barriers to introgression across *Populus*
715 genome. *Molecular Biology and Evolution*, 39(2), msac008.
716 <https://doi.org/10.1093/molbev/msac008>

717

718 Ma, Y., Wang, J.I., Hu, Q., Li, J., Sun, Y., Zhang, L., Abbott, R.J., Liu, J. & Mao, K. (2019).
719 Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species
720 complex. *Communications Biology*, 2(1), 213.

721

722 Malinsky, M., Svardal, H., Tyers, A. M., Miska, E. A., Genner, M. J., Turner, G. F., & Durbin,
723 R. (2018). Whole-genome sequences of Malawi cichlids reveal multiple radiations
724 interconnected by gene flow. *Nature ecology & evolution*, 2(12), 1940-1955.

725

726 Malinsky, M., Matschiner, M., & Svardal, H. (2021). Dsuite-Fast D-statistics and related
727 admixture evidence from VCF files. *Molecular ecology resources*, 21(2), 584-595.

728

729 Mallet, J. (2005). Hybridization as an invasion of the genome. *Trends in Ecology & Evolution*,
730 20(5), 229–237. <https://doi.org/10.1016/j.tree.2005.02.010>

731

732 Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F.,
733 Blaxter, M., Manica, A., Mallet, J., & Jiggins, C. D. (2013). Genome-wide evidence for
734 speciation with gene flow in *Heliconius* butterflies. *Genome Research*, 23(11), 1817–1828.
735 <https://doi.org/10.1101/gr.159426.113>

736

737 Martin, S. H., & Van Belleghem, S. M. (2017). Exploring evolutionary relationships across the
738 genome using topology weighting. *Genetics*, 206(1), 429-438.

739

740 Martin, S. H., & Jiggins, C. D. (2017). Interpreting the genomic landscape of
741 introgression. *Current opinion in genetics & development*, 47, 69-74.

742

743 Martin, S. H., Davey, J. W., Salazar, C., & Jiggins, C. D. (2019). Recombination rate variation
744 shapes barriers to introgression across butterfly genomes. *PLoS Biology*, 17(2), e2006288.
745 <https://doi.org/10.1371/journal.pbio.2006288>

746

747 Mead, A. (2023). *The genomic basis of adaptation to climate across oak (Quercus) species and*
748 *populations in California*. University of California, Los Angeles.

749

750 Mead, A., Fitz-Gibbon, S., Knapp, J., & Sork, V. (2024). Comparison of conservation strategies
751 for California Channel Island Oak (Quercus tomentella) using climate suitability predicted from
752 genomic data. *bioRxiv*, 2024-05.

753

754 Meier, J. I., Marques, D. A., Mwaiko, S., Wagner, C. E., Excoffier, L., & Seehausen, O. (2017).
755 Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nature communications*, 8(1),
756 14363.

757

758 Meier, J. I., Stelkens, R. B., Joyce, D. A., Mwaiko, S., Phiri, N., Schliewen, U. K., Selz, O. M.,
759 Wagner, C. E., Katongo, C., & Seehausen, O. (2019). The coincidence of ecological opportunity
760 with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. *Nature*
761 *communications*, 10(1), 5391.

762

763 Meier, J. I., McGee, M. D., Marques, D. A., Mwaiko, S., Kishe, M., Wandera, S., Neumann, D.,
764 Mrossi, H., Chapman, L. J., Chapman, C.A., Kaufman, L., Taabu-Munyaho, A., Wagner, C. E.,
765 Bruggman, R., Excoffier, L., & Seehausen, O. (2023). Cycles of fusion and fission enabled rapid
766 parallel adaptive radiations in African cichlids. *Science*, 381(6665), eade2833.

767

768 Momigliano, P., Florin, A. B., & Merilä, J. (2021). Biases in demographic modeling affect our
769 understanding of recent divergence. *Molecular biology and evolution*, 38(7), 2967-2985.

770

771 Muhs, D. R., Simmons, K. R., Groves, L. T., McGeehin, J. P., Schumann, R. R., & Agenbroad,
772 L. D. (2015). Late Quaternary sea-level history and the antiquity of mammoths (*Mammuthus*
773 *exilis* and *Mammuthus columbi*), Channel Islands National Park, California, USA. *Quaternary*
774 *Research*, 83(3), 502-521.

775

776 Mychajliw, A. M., Rick, T. C., Dagtas, N. D., Erlandson, J. M., Culleton, B. J., Kennett, D. J.,
777 Buckley, M., & Hofman, C. A. (2020). Biogeographic problem-solving reveals the Late
778 Pleistocene translocation of a short-faced bear to the California Channel Islands. *Scientific*
779 *reports*, 10(1), 15172.

780

781 Nelson, T. C., Stathos, A. M., Vanderpool, D. D., Finseth, F. R., Yuan, Y. W., & Fishman, L.
782 (2021). Ancient and recent introgression shape the evolutionary history of pollinator adaptation
783 and speciation in a model monkeyflower radiation (*Mimulus* section *Erythranthe*). *PLoS*
784 *Genetics*, 17(2), e1009095.

785

786 Ortego, J., Gugger, P. F., & Sork, V. L. (2018). Genomic data reveal cryptic lineage
787 diversification and introgression in Californian golden cup oaks (section *Protobalanus*). *New*
788 *Phytologist*, 218(2), 804-818.

789

790 Racimo, F., Marnetto, D., & Huerta-Sánchez, E. (2016) Signatures of archaic adaptive
791 introgression in present-day human populations. *Mol Biol Evol*. 2016;34(2):296–317.
792 <https://doi.org/10.1093/molbev/msw216>.

793

794 Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., Noor, M.A.F.,
795 Mehlig, B., & Westram, A. M. (2017). Interpreting the genomic landscape of speciation: a road
796 map for finding barriers to gene flow. *Journal of evolutionary biology*, 30(8), 1450-1477.

797

798 Reatini, B., & Vision, T. J. (2023). The two faces of secondary contact on islands: Introgressive
799 hybridization between endemics and reproductive interference between endemics and introduced
800 species. *Journal of Biogeography*, 00, 1–16. <https://doi.org/10.1111/jbi.14759>

801

802 Roux, C., Fraisse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding
803 light on the grey zone of speciation along a continuum of genomic divergence. *PLoS biology*,
804 14(12), e2000234.

805

806 Schoenherr, A. A., Feldmeth, C. R., & Emerson, M. J. (2003). *Natural history of the islands of*
807 *California* (Vol. 61). Univ of California Press.

808

809 Schumer, M., Xu, C., Powell, D. L., Durvasula, A., Skov, L., Holland, C., Blazier, J. C.,
810 Sankararaman, S., Andolfatto, P., Rosenthal, G. G., & Przeworski, M. (2018). Natural selection
811 interacts with recombination to shape the evolution of hybrid genomes. *Science*, 360(6389), 656–
660. <https://doi.org/10.1126/science.aar3684>

812

813 Short, A. W., & Streisfeld, M. A. (2023). Ancient hybridization leads to the repeated evolution
814 of red flowers across a monkeyflower radiation. *Evolution Letters*, 7(5), 293-304.

815 Stankowski, S., Chase, M. A., Fuiten, A. M., Rodrigues, M. F., Ralph, P. L., & Streisfeld, M. A.
816 (2019). Widespread selection and gene flow shape the genomic landscape during a radiation of
817 monkeyflowers. *PLoS biology*, 17(7), e3000391.

818

819 Stone, B. W., & Wessinger, C. A. (2024). Ecological diversification in an adaptive radiation of
820 plants: the role of de novo mutation and introgression. *Molecular Biology and Evolution*, 41(1),
821 msae007.

822

823 Suarez-Gonzalez, A., Lexer, C., & Cronk, Q. C. (2018). Adaptive introgression: a plant
824 perspective. *Biology letters*, 14(3), 20170688.

825

826 Thorne, R. F. (1969). The California Islands. *Annals of the Missouri Botanical Garden*, 391-408.

827

828 Todesco, M., Pascual, M.A., Owens, G.L., Ostevik, K.L., Moyers, B.T., Hübner, S., Heredia,
829 S.M., Hahn, M.A., Caseys, C., Bock, D.G., & Rieseberg, L.H. (2016). Hybridization and
830 extinction. *Evolutionary applications*, 9(7), 892-908.

831

832 Tulig, M. (2000). Morphological variation in *Mimulus* section *Diplacus* (Scro- phulariaceae).
833 Ph.D. dissertation, California State Polytechnic University, Pomona, California, USA.

834

835 Tulig, M. C. and G. L. Nesom. (2012). Taxonomic overview of *Diplacus* sect. *Diplacus*
836 (Phrymaceae). *Phytoneuron*, 45, 1–20.

837

838 Wells, H. (1980). A distance coefficient as a hybridization index: An example using *Mimulus*
839 *longiflorus* and *M. flemingii* (Scrophulariaceae) from Santa Cruz Island, California. *Taxon*, 29,
840 53–65.

841

842 Zhang, D., Rheindt, F.E., She, H., Cheng, Y., Song, G., Jia, C., Qu, Y., Alström, P., & Lei, F.
843 (2021a). Most genomic loci misrepresent the phylogeny of an avian radiation because of ancient
844 gene flow. *Systematic Biology*, 70(5), 961-975.

845

846 Zhang, X., Witt, K.E., Bañuelos, M.M., Ko, A., Yuan, K., Xu, S., Nielsen, R., & Huerta-
847 Sanchez, E. (2021b). The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans.
848 *Proceedings of the National Academy of Sciences*, 118(22), p.e2020803118.

849

850
851

Supplemental Material

852 **Table S1.** Sampling locations and number of samples sequenced from each location for this
853 study. Four additional samples from ECSC were sequenced in Stankowski et al. 2019.

Population	number of samples	Latitude	Longitude
ECSC	3	34.018	-119.673
SC2	8	34.01915	-119.6804
SC3	7	34.01925	-119.68023
SCB	9	34.019267	-119.68493

854
855

856 **Table S2.** The t-ratio from a linear mixed-effects model testing if the mean admixture proportion
857 (f_d) varied due to the divergence between the taxa used as P1 and P2 for the calculation of f_d . The
858 name of the taxon used as P1, and the mean taxonomic divergence (da) between the taxa used as
859 P1 and P2 are presented. Statistical significance is denoted as: *** for $p < 0.001$, ** for $p < 0.01$,
860 and * for $p < 0.05$.
861

Factor Level	Estimate	df	t-ratio (Fd)
<i>aridus</i> (0.00868) vs <i>aurantiacus</i> (0.00409)	0.02629	10587	4.621***
<i>aridus</i> (0.00868) vs <i>calycinus</i> (0.00236)	0.03681	10587	6.588***
<i>aridus</i> (0.00868) vs <i>longiflorus</i> (0.00219)	0.035	10587	6.269***
<i>aridus</i> (0.00868) vs OC (0.00333)	0.03209	10587	5.726***
<i>aridus</i> (0.00868) vs red (0.00328)	0.032	10587	5.709***
<i>aridus</i> (0.00868) vs yellow (0.00311)	0.03233	10587	5.765***
<i>aurantiacus</i> (0.00409) vs <i>calycinus</i> (0.00236)	0.01052	10587	1.831
<i>aurantiacus</i> (0.00409) vs <i>longiflorus</i> (0.00219)	0.00871	10587	1.517
<i>aurantiacus</i> (0.00409) vs OC (0.00333)	0.0058	10587	1.007
<i>aurantiacus</i> (0.00409) vs red (0.00328)	0.00571	10587	0.991
<i>aurantiacus</i> (0.00409) vs yellow (0.00311)	0.006	10587	1.048
<i>calycinus</i> (0.00236) vs <i>longiflorus</i> (0.00219)	-0.00181	10587	-0.32
<i>calycinus</i> (0.00236) vs OC (0.00333)	-0.00472	10587	-0.833
<i>calycinus</i> (0.00236) vs red (0.00328)	-0.00481	10587	-0.849
<i>calycinus</i> (0.00236) vs yellow (0.00311)	-0.00448	10587	-0.79
<i>longiflorus</i> (0.00219) vs OC (0.00333)	-0.00291	10587	-0.514
<i>longiflorus</i> (0.00219) vs red (0.00328)	-0.003	10587	-0.53
<i>longiflorus</i> (0.00219) vs yellow (0.00311)	-0.00267	10587	-0.471
OC (0.00333) vs red (0.00328)	-0.00009	10587	-0.016
OC (0.00333) vs yellow (0.00311)	0.00024	10587	0.042
red (0.00328) vs yellow (0.00311)	0.00033	10587	0.058

862
863
864

865 **Table S3.** The t-ratio from a linear mixed-effects model testing if admixture proportion (f_d)
866 varied due to the divergence between Island *longiflorus* and the taxon used as P3 for the
867 calculation of f_d . The name of the taxon used as P3 and the mean taxonomic divergence between
868 Island *longiflorus* and the taxon used as P3 for the calculation of f_d are presented. Statistical
869 significance is denoted as: *** for $p < 0.001$, ** for $p < 0.01$, and * for $p < 0.05$.
870

Factor Level	Estimate	df	t-ratio (Fd)
<i>aurantiacus</i> (0.00409) vs <i>calycinus</i> (0.00236)	-0.01163	9044	-2.54
<i>aurantiacus</i> (0.00409) vs CI <i>longiflorus</i> (0.0)	-0.06997	9044	-16.035***
<i>aurantiacus</i> (0.00409) vs <i>longiflorus</i> (0.00219)	-0.01129	9044	-2.48
<i>aurantiacus</i> (0.00409) vs OC (0.00333)	-0.00909	9044	-1.942
<i>aurantiacus</i> (0.00409) vs red (0.00328)	-0.01068	9044	-2.248
<i>aurantiacus</i> (0.00409) vs yellow (0.00311)	-0.01018	9044	-2.13
<i>calycinus</i> (0.00236) vs CI <i>longiflorus</i> (0.0)	-0.05833	9044	-13.188***
<i>calycinus</i> (0.00236) vs <i>longiflorus</i> (0.00219)	0.00034	9044	0.074
<i>calycinus</i> (0.00236) vs OC (0.00333)	0.00254	9044	0.536
<i>calycinus</i> (0.00236) vs red (0.00328)	0.00096	9044	0.199
<i>calycinus</i> (0.00236) vs yellow (0.00311)	0.00145	9044	0.301
CI <i>longiflorus</i> (0.0) vs <i>longiflorus</i> (0.00219)	0.05867	9044	13.351***
CI <i>longiflorus</i> (0.0) vs OC (0.00333)	0.06087	9044	13.443***
CI <i>longiflorus</i> (0.0) vs red (0.00328)	0.05929	9044	12.897***
CI <i>longiflorus</i> (0.0) vs yellow (0.00311)	0.05978	9044	12.917***
<i>longiflorus</i> (0.00219) vs OC (0.00333)	0.0022	9044	0.467
<i>longiflorus</i> (0.00219) vs red (0.00328)	0.00062	9044	0.129
<i>longiflorus</i> (0.00219) vs yellow (0.00311)	0.00111	9044	0.231
OC (0.00333) vs red (0.00328)	-0.00158	9044	-0.323
OC (0.00333) vs yellow (0.00311)	-0.00109	9044	-0.221
red (0.00328) vs yellow (0.00311)	0.005	9044	0.099

871
872

873 **Table S4.** The t-ratio from a linear mixed-effects model testing if the mean admixture proportion
874 for Test 1 f_d varies among recombination rate quantile bins. Quantile bins of recombination rate
875 (in cM/Mb) are presented. Statistical significance is denoted as: *** for $p < 0.001$, ** for $p <$
876 0.01, and * for $p < 0.05$. Calculations of Test 1 f_d were performed using mainland *longiflorus* as
877 P1, Island *longiflorus* as P2, and *parviflorus* as P3. *M. clevelandii* was used as the outgroup.
878

Factor Level	Estimate	df	t-ratio (Fd)
[0,0.824] vs (0.824,1.51]	0.04604	1463	3.419**
[0,0.824] vs (1.51,2.33]	0.04239	1463	3.156*
[0,0.824] vs (2.33,3.66]	0.04099	1463	3.085*
[0,0.824] vs (3.66,10.9]	0.07756	1463	5.939***
(0.824,1.51] vs (1.51,2.33]	0.00365	1463	0.271
(0.824,1.51] vs (2.33,3.66]	0.00505	1463	0.380
(0.824,1.51] vs (3.66,10.9]	-0.03152	1463	-2.411
(1.51,2.33] vs (2.33,3.66]	0.00140	1463	0.106
(1.51,2.33] vs (3.66,10.9]	-0.03517	1463	-2.698
(2.33,3.66] vs (3.66,10.9]	-0.03657	1463	-2.838*

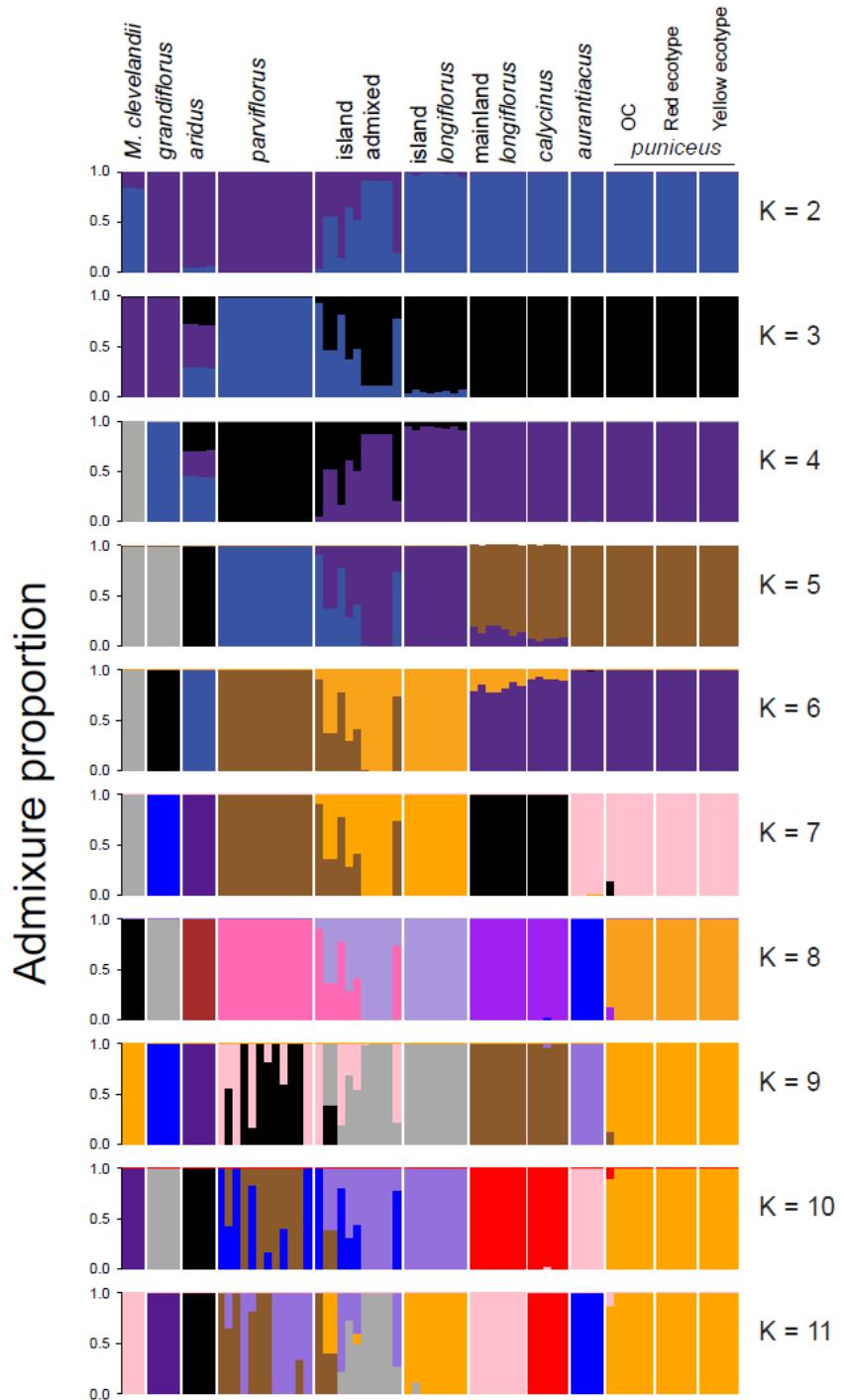
879
880

881 **Table S5.** The t-ratio from a linear mixed-effects model testing if the Test 2 admixture
882 proportion (fd) varies among recombination rate quantile bins. Quantile bins of recombination
883 rate (in cM/Mb) are presented. Statistical significance is denoted as: *** for $p < 0.001$, ** for $p <$
884 0.01, and * for $p < 0.05$. Calculations of Test 2 fd were performed using *aridus* as P1, *parviflorus*
885 as P2, and Island *longiflorus* as P3. *M. clevelandii* was used as the outgroup.
886

Factor Level	Estimate	df	t-ratio (Fd)
[0,0.824] vs (0.824,1.51]	0.02829	1514	2.322
[0,0.824] vs (1.51,2.33]	0.02597	1514	2.114
[0,0.824] vs (2.33,3.66]	0.02086	1514	1.739
[0,0.824] vs (3.66,10.9]	0.05104	1514	4.258***
(0.824,1.51] vs (1.51,2.33]	0.00232	1514	0.191
(0.824,1.51] vs (2.33,3.66]	0.00744	1514	0.626
(0.824,1.51] vs (3.66,10.9]	-0.02275	1514	-1.918
(1.51,2.33] vs (2.33,3.66]	0.00511	1514	0.427
(1.51,2.33] vs (3.66,10.9]	-0.02507	1514	-2.095
(2.33,3.66] vs (3.66,10.9]	-0.03018	1514	-2.587

887
888

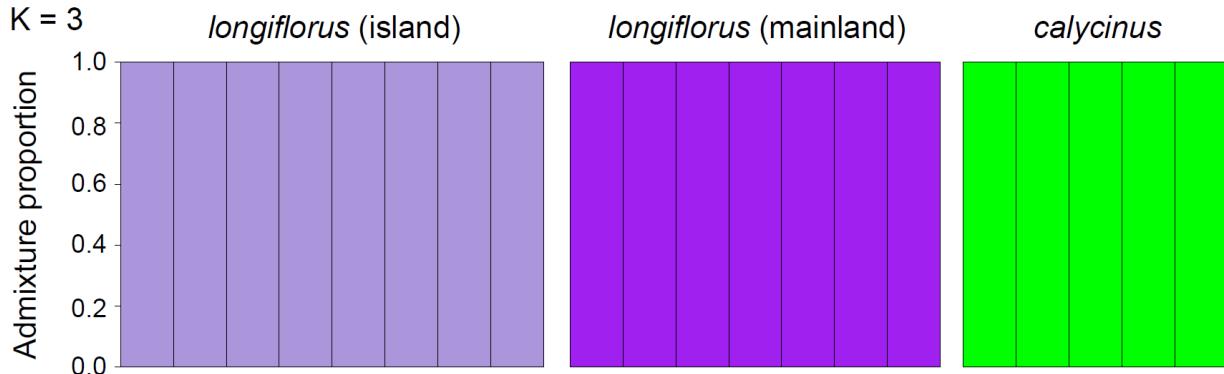
889 **Table S6.** The t-ratio from a linear mixed-effects model testing if the ancient admixture
890 proportion (f_d) varies among recombination rate quantile bins. Quantile bins of recombination
891 rate (in cM/Mb) are presented. Statistical significance is denoted as: *** for $p < 0.001$, ** for $p <$
892 0.01, and * for $p < 0.05$. Ancient f_d was calculated by taking the difference between f_d calculated
893 from Test 2 and Test 1.


894

Factor Level	Estimate	df	t-ratio (Fd)
[0,0.824] vs (0.824,1.51]	-0.00643	1049	-0.633
[0,0.824] vs (1.51,2.33]	-0.01527	1049	-1.506
[0,0.824] vs (2.33,3.66]	-0.01299	1049	-1.303
[0,0.824] vs (3.66,10.9]	-0.01479	1049	-1.433
(0.824,1.51] vs (1.51,2.33]	0.00884	1049	0.862
(0.824,1.51] vs (2.33,3.66]	0.00656	1049	0.650
(0.824,1.51] vs (3.66,10.9]	0.00836	1049	0.801
(1.51,2.33] vs (2.33,3.66]	-0.00229	1049	-0.227
(1.51,2.33] vs (3.66,10.9]	-0.00048	1049	-0.046
(2.33,3.66] vs (3.66,10.9]	0.00181	1049	0.176

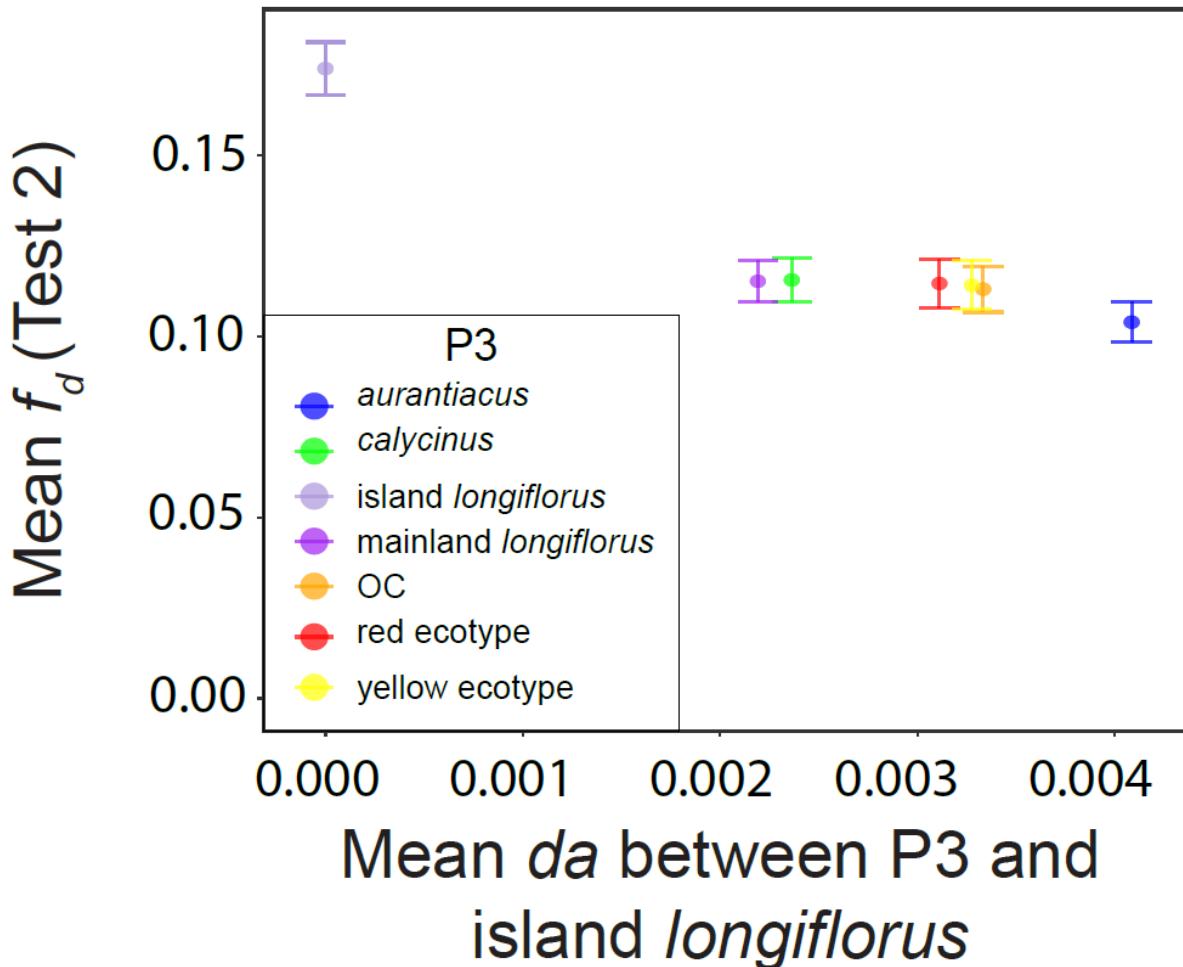
895

896

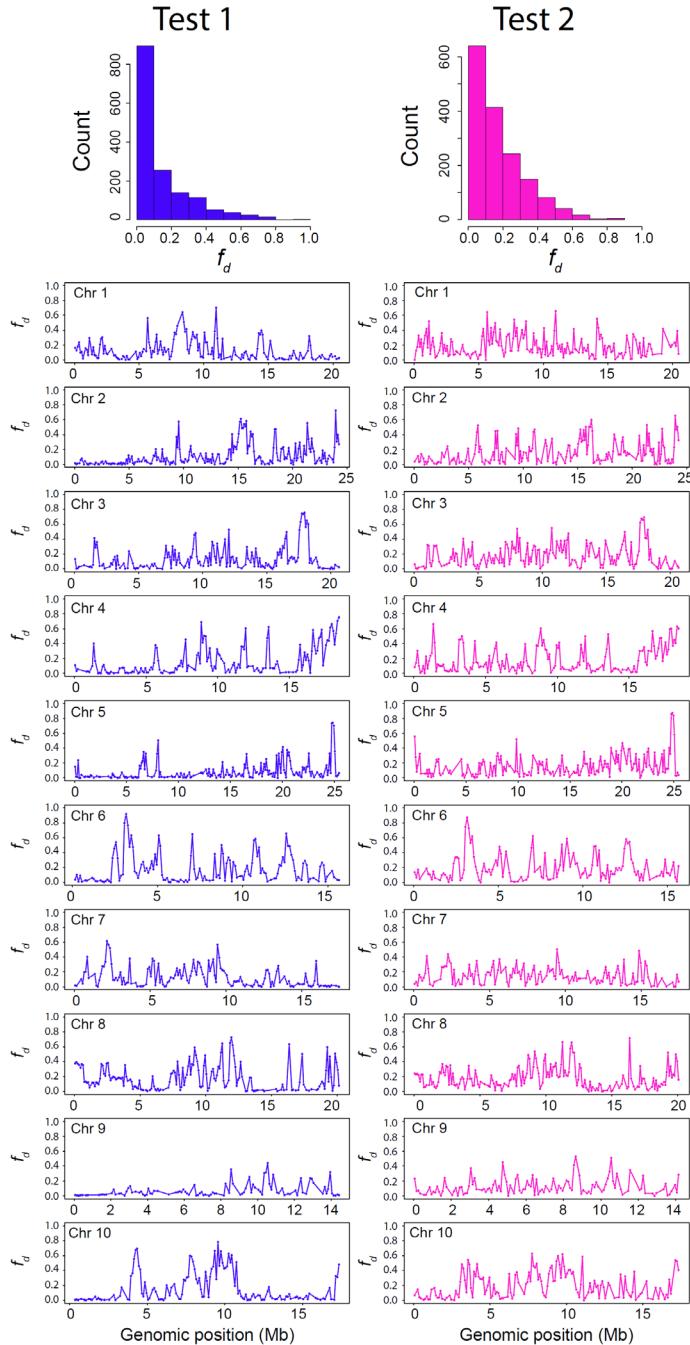

897

898
899
900
901
902

Figure S1. The ancestry proportions from *Admixture* at $K = 2$ to $K = 11$ for samples from all the subspecies and their sister species, *M. clevelandii*.

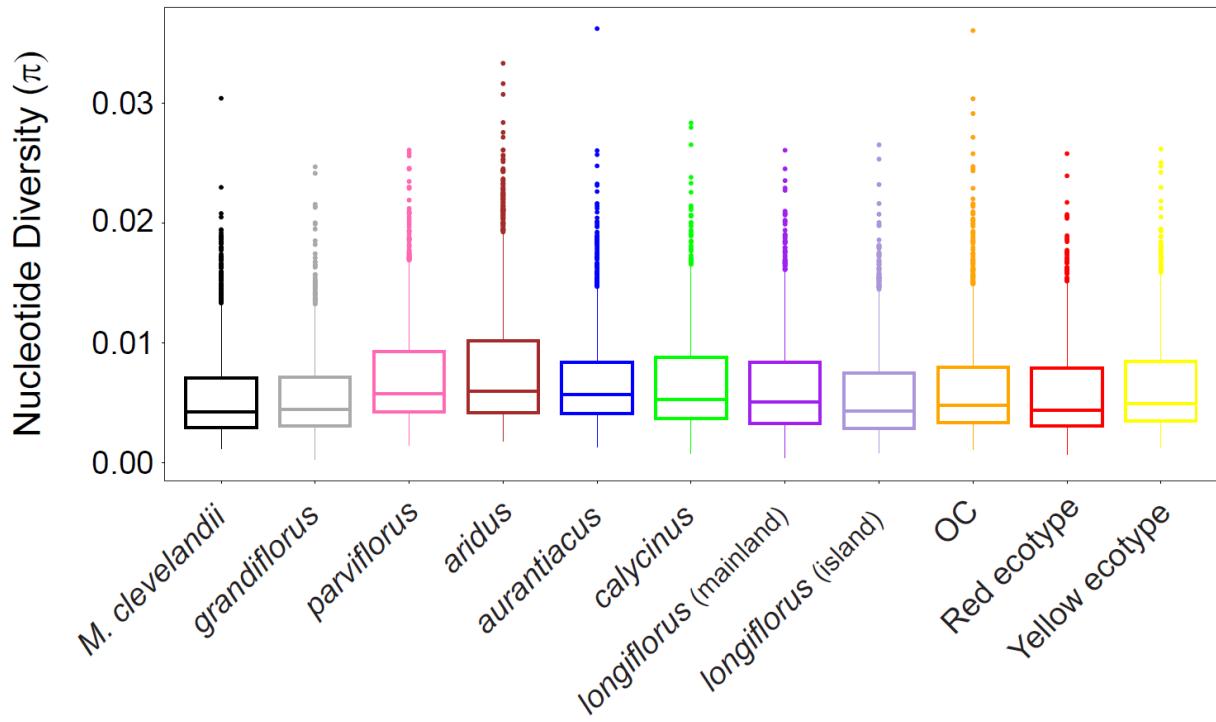

903
904

905
906
907
908

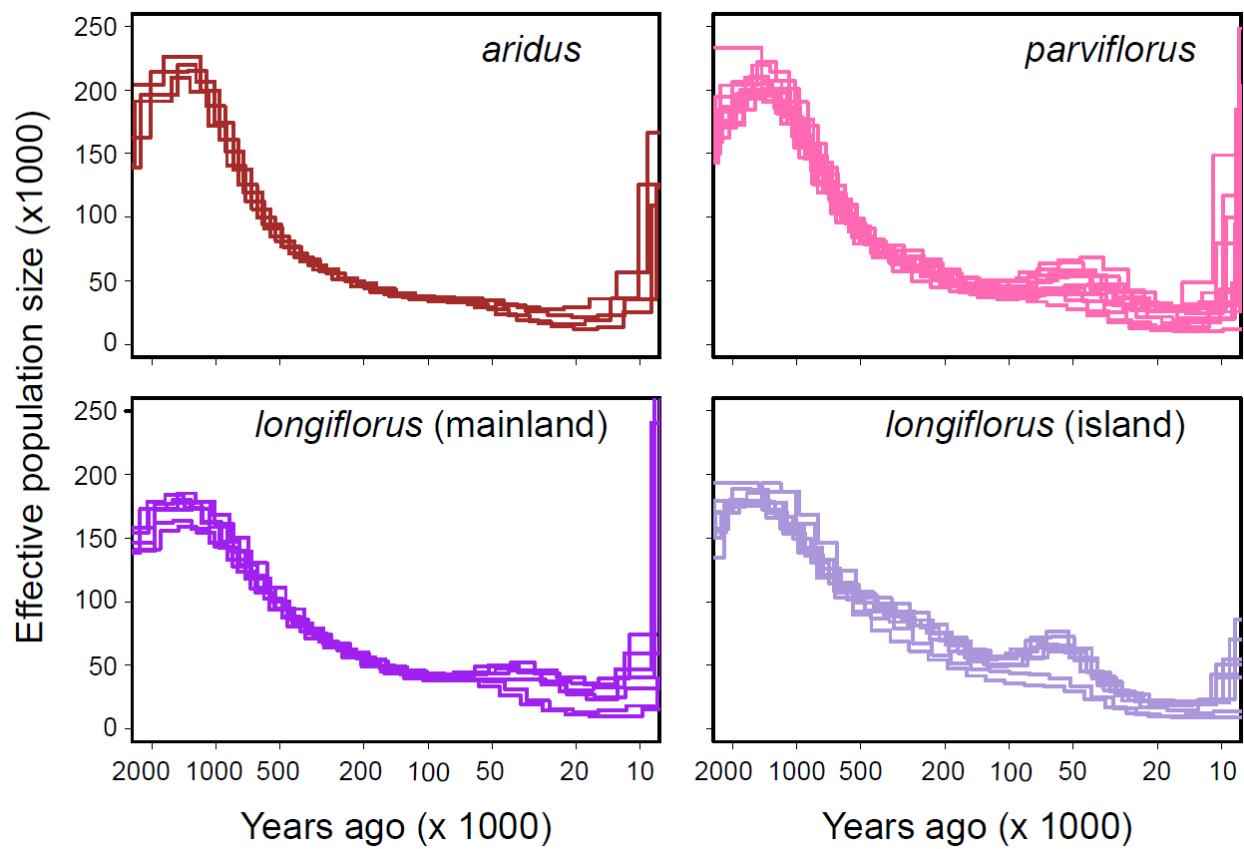

Figure S2. The ancestry proportions from *Admixture* at K = 3 from a run that included only the island *longiflorus*, mainland *longiflorus*, and *calycinus* samples.

909
910

911
912
913
914
915
916
917
918
919


Figure S3. Mean and 95% confidence intervals of Test 2 f_d values calculated in 100kb windows are plotted against mean levels of sequence divergence (da) between Island *longiflorus* and the clade C or D taxa used as P3 for the calculation of f_d . Test 2 calculations of f_d were performed using *aridus* as P1, *parviflorus* as P2, and the various clade C and D taxa as P3. Colors indicate the P3 taxon used to calculate f_d .

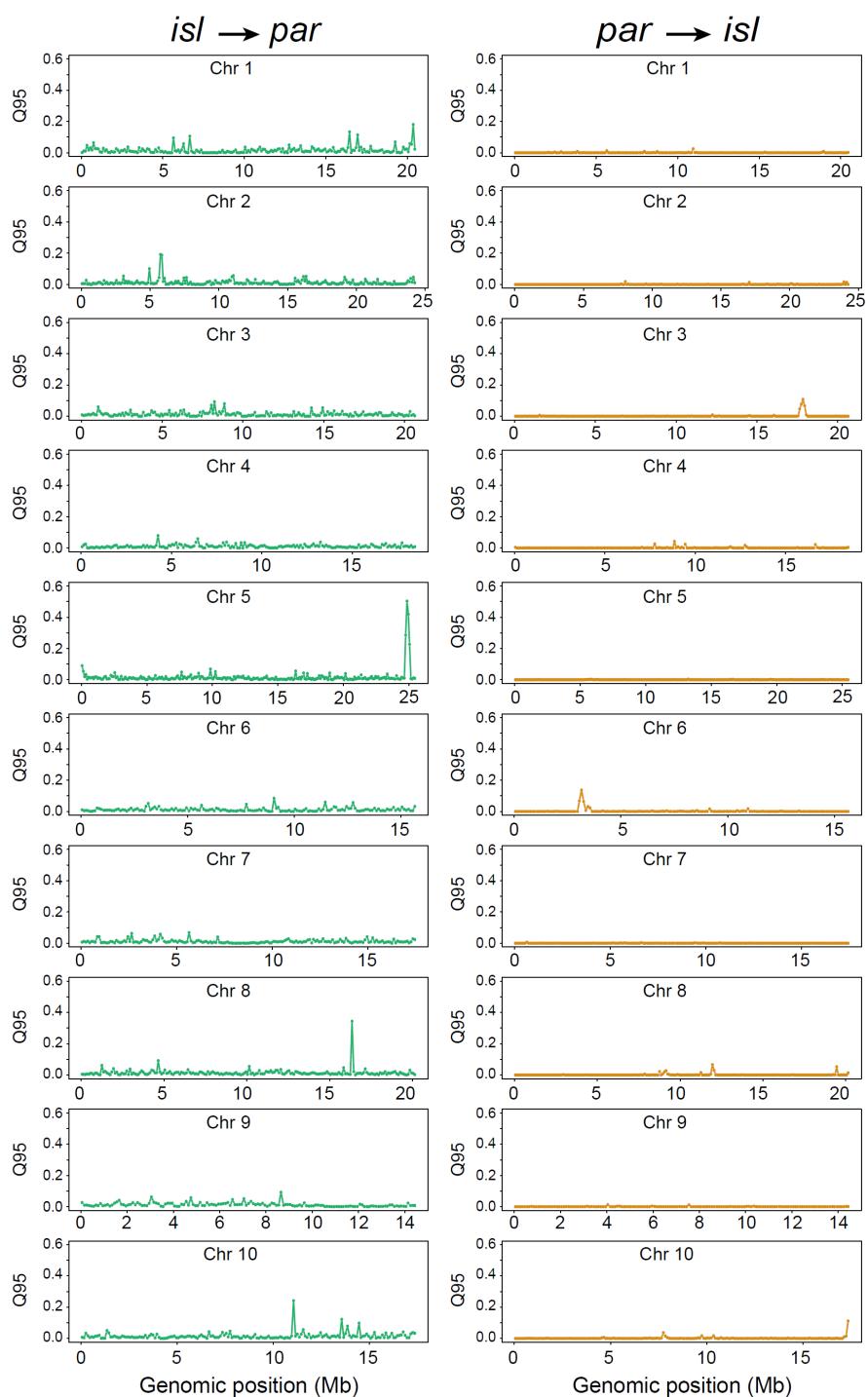
920
921
922
923
924
925
926
927


Figure S4. Histogram of the distribution of the raw Test 1 (blue) and Test 2 (pink) f_d values calculated in 100 kb windows. Genome wide variation of raw f_d values plotted across the 10 chromosomes of the *M. aurantiacus* genome. Test 1 f_d values are in blue and Test 2 f_d values are in pink. Test 1 calculations of f_d were performed using mainland *longiflorus* as P1, island *longiflorus* as P2, and *parviflorus* as P3. Test 2 calculations of f_d were performed using *aridus* as P1, *parviflorus* as P2, and island *longiflorus* as P3.

928
929

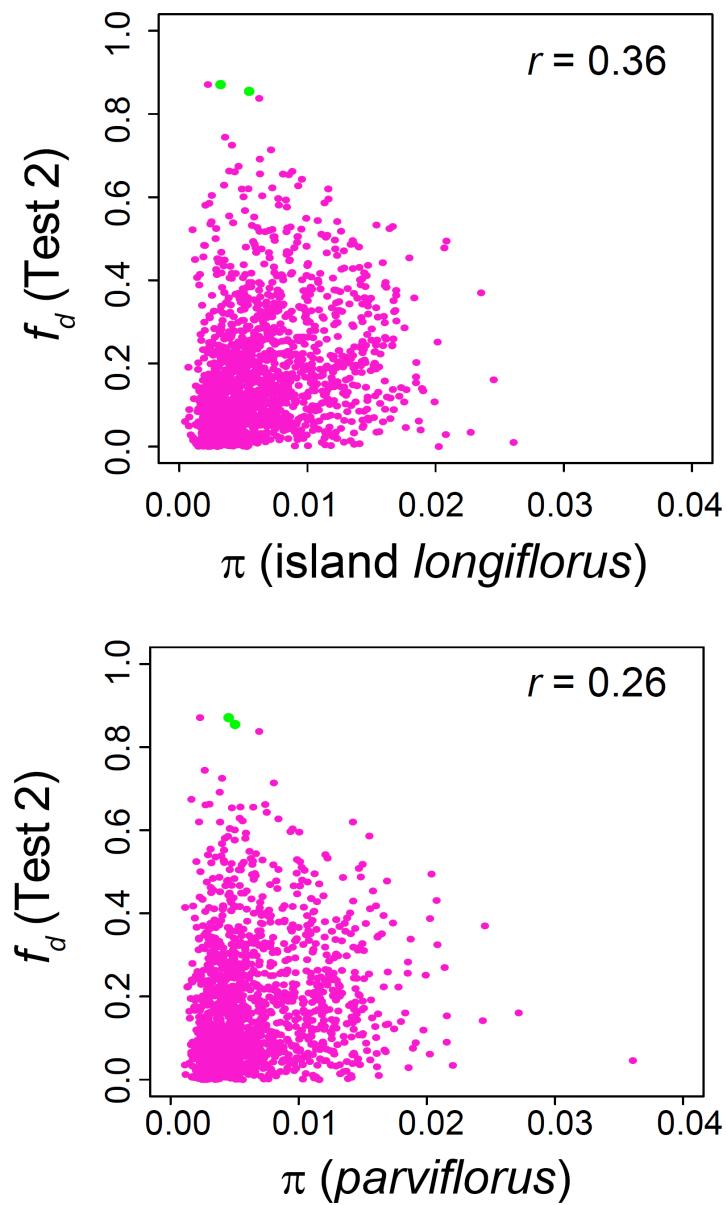
930
931
932 **Figure S5.** Boxplots of the distribution of nucleotide diversity (π) calculated in 100 kb windows
933 for all the subspecies and their sister species, *M. clevelandii*.
934

935


936

937

938 **Figure S6.** The estimated variation in effective population size over time from PSMC for each
939 sequenced sample of *aridus*, *parviflorus*, mainland *longiflorus*, and island *longiflorus*.


940

941

942 **Figure S7.** Genome wide variation in the Q95 statistic calculated in 100 kb windows plotted
943 across the 10 chromosomes of the *M. aurantiacus* genome. Colors indicate the directionality of
944 introgression, with gene flow from Island *longiflorus* into *parviflorus* in green, and gene flow
945 from *parviflorus* into Island *longiflorus* in yellow.
946

947

948

949 **Figure S8.** Scatterplots showing the relationship between Test 2 f_d and nucleotide diversity ($π$)
950 for Island *longiflorus* (top) and *parviflorus* (bottom). The correlation coefficient between the
951 statistics is presented in the upper right-hand corner of each plot. Test 2 calculations of f_d were
952 performed using *aridus* as P1, *parviflorus* as P2, and Island *longiflorus* as P3. Green points
953 indicate the windows with the highest f_d and Q95 on chromosome 5.

954