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Abstract 
Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging 
(MALDI MSI) and immunofluorescence microscopy holds great potential for understanding 
pathological mechanisms by mapping molecular signatures from the tissue microenvironment 
to specific cell populations. However, existing open-source software solutions for analysis of 
MALDI MSI data are incomplete, require programming skills and contain laborious manual 
steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate 
impactful biological discoveries across interdisciplinary research fields. Here we present 
msiFlow, an accessible open-source, platform-independent and vendor-neutral software for 
end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging 
data. msiFlow integrates all necessary steps from import and pre-processing of raw MALDI 
MSI data to visual analysis output, as well as registration, along with state-of-the-art and newly 
developed algorithms, into automated workflows. Using msiFlow, we unravel the molecular 
heterogeneity of leukocytes in infected tissues by spatial regulation of ether-linked 
phospholipids containing arachidonic acid. We anticipate that msiFlow will facilitate the broad 
applicability of MSI in the emerging field of multimodal imaging to uncover context-dependent 
cellular regulations in disease states.  
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Introduction 
The cellular heterogeneity in tissues has a reciprocal and decisive influence on the 
microenvironment and enables a balance between homeostasis and inflammation. Intra- and 
intercellular communication is key in both tissue homeostasis and inflammation, and lipids are 
emerging as critical regulators and key molecules in these processes1. Moreover, the lipid 
landscape was recently defined as a feature of immune cell identity2. Upon inflammation, 
neutrophils, the most abundant circulating white blood cell subset, readily infiltrate into and 
navigate through the tissue. Herein, they respond to a plethora of signals from the 
microenvironment by synthesis of lipid messengers, such as arachidonic acid (AA) and the 
oxidised metabolites prostaglandins and leukotrienes, influencing recruitment, phenotype, and 
function of neutrophils3-5. In urinary tract infection (UTI), the third most common bacterial 
infection in humans6,7 induced by uropathogenic Escherichia coli (UPEC)8, neutrophils and 
urothelial cells are critical cell populations which provide the first immunological barrier for the 
containment of infection9-11. Data on lipidomic adaptations of urothelial cells and neutrophils in 
UTI are missing, as algorithms assigning lipids to specific cell populations in tissues are scarce, 
hindering novel insights into the decisive role of lipids in regulating mechanisms of 
inflammation and resolution.  

  
In order to decipher the cellular interplay and the behaviour of specific cell populations in 
tissues, methods are required enabling in-depth lipidomic profiling with spatial resolution in the 
micrometer range. Immunofluorescence microscopy (IFM) efficiently determines the 
distribution of various cell types in tissue niches with high spatial resolution12. In contrast 
matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) with 
laser-induced postionisation (MALDI-2) provides a label-free technology to investigate the 
spatial distribution of a large number of lipids and metabolites that are predominantly 
inaccessible by IFM13. Moreover, transmission-mode MALDI-2 (t-MALDI-2) with a high-
resolution pixel size of 1 µm was introduced recently14,15. Thus, combining IFM and MALDI 
MSI would enable the assignment of the spatial lipidome to specific cell populations. A recent 
study integrated multiplex IFM and MSI to map myeloid heterogeneity in its metabolic and 
cellular context16. However, analysis of high-dimensional MALDI MSI data and image co-
registration to IFM remains challenging due to the lack of algorithms and complete workflows, 
that allow reproducible and automated pre-processing, analysis and visualisation of MALDI 
MSI data17,18. As technology advances to achieve higher resolutions, data sizes are increasing, 
thereby further complicating data handling. Therefore, most commercial software solutions 
offer a user interface to pre-processed data with reduced size. Although this enables 
interactive data visualisation and analysis, it offers limited transparency and control over data 
pre-processing and data quality. In contrast to commercial software, which often remains a 
black-box for users, existing open-source software offers incomplete solutions, as it is mostly 
designed for specific tasks (e.g. individual pre-processing steps, image registration, analysis 
or visualisation) and often requires programming skills or contains laborious manual steps (e.g. 
manually selecting off-/on-tissue regions)18-24. As a result, customised data analysis pipelines 
are constructed from a pool of open-source packages, in-house developed or commercially 
available software, hindering reproducible and high-throughput analyses and deterring non-
expert users. 
 
In this study, we aimed to bridge this gap by developing msiFlow, an open-source software 
that integrates all steps from import and pre-processing of raw multimodal and multi-vendor 
imaging data to registration, analysis and visualisation in automated workflows. The workflows 
operate fully automatically on all major operating systems. By employing msiFlow in a clinically 
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relevant proof-of-concept study, we provide novel insights into the spatial lipidomic interactome 
in UTI, revealing a hitherto unknown heterogeneity of neutrophils important for the immune 
response against invading pathogens.   
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Results 
The msiFlow software 
High-dimensional molecular imaging through MALDI MSI holds great potential for 
comprehensive spatial mapping of the cellular heterogeneity in tissues and deciphering 
complex molecular interactions within the tissue microenvironment. However, the lack of open-
source and easy-to-use software for automated MSI data processing and analysis greatly 
complicates reproducible and precise mapping of molecular landscapes in situ. To solve this 
problem, we integrated, optimised and further developed existing bioinformatic methods for 
data pre-processing, registration, analysis and visualisation into msiFlow, a collection of 
automated Snakemake workflows enabling reproducible and scalable analyses25. We applied 
msiFlow using a correlative imaging approach consisting of high resolution (t-)MALDI-2 MSI 
and IFM in an experimental model of UTI. For this purpose, consecutive mouse bladder 
sections of 8 µm were measured by IFM, t-MALDI-2 MSI and MALDI-2 MSI with a pixel size of 
0.2 µm, 2 µm and 5 µm respectively (Fig. 1A). t-MALDI-2 data were measured by orbitrap and 
MALDI-2 MSI by time-of-flight (TOF). The generated multimodal imaging data were processed 
and analysed by msiFlow.  
 
msiFlow contains 7 Snakemake workflows for pre-processing, registration, segmentation, and 
analysis/visualisation. We have deliberately divided the software into 7 main workflows to 
make the application highly flexible and modular. This modular software design enables easy 
integration of individual workflows of msiFlow into existing analysis pipelines.  It is also possible 
to combine multiple workflows of msiFlow into one workflow via Snakemake. All workflows are 
integrated into a Docker26 image enabling easy-to-use execution on all major operating 
systems. Each workflow can be run fully automatically through one command in the terminal. 
Parameters used by msiFlow are defined in one configuration file and can be adjusted by the 
user depending on the instrument’s setting (e.g. mass and spatial resolution) and preferred 
methods. msiFlow also provides a browser-based interface to adjust the parameters and run 
the workflows (Supplementary Fig. 1). A detailed description of all parameters and the 
configurations used in this study for MSI pre-processing is provided in Supplementary Table 1 
and on GitHub for all workflows.  
 
msiFlow includes a MSI pre-processing workflow which imports raw MSI files from different 
vendors (Bruker and Thermo Fisher), processes all files in parallel, and outputs the processed 
data in the open standard imzML format along with quality control visualisations (Fig. 1B). The 
workflow contains steps for spectral smoothing, peak picking, peak alignment, matrix removal, 
peak filtering, normalisation, outlier removal and de-isotoping to generate an 
endogenous/tissue-origin mono-isotopic peak list (see method details in Methods). We 
established two UMAP-based clustering approaches to automatically identify and remove off-
tissue/matrix pixels and outliers enhancing data quality for subsequent analysis. To this end 
MALDI-2 MSI data of each sample were reduced to two dimensions by UMAP27 followed by 
HDBSCAN clustering28 (Supplementary Fig. 2A). The cluster connected to most border points 
of the measured area was considered the off-tissue cluster (Supplementary Fig. 2B). Clusters 
with high correlation to the off-tissue cluster were combined to an extended off-tissue cluster 
(Supplementary Fig. 2C) and post-processed to remove isolated objects and fill holes 
(Supplementary Fig. 2D). With this unsupervised approach we prevent the need of defining 
known matrix peaks beforehand which are often not consistent throughout all datasets. 
However, msiFlow also implements a supervised approach based on known matrix peaks. For 
identification of outliers, data of all samples were reduced to two dimensions by UMAP followed 
by HDBSCAN clustering (Supplementary Fig. 3A) and sample-specific clusters (SSC) were 
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identified in which 70% of pixels originate from one sample (Supplementary Fig. 3B). Finally, 
samples in which most pixels were SSC pixels were considered sample outliers 
(Supplementary Fig. 3C-D).  
 
In addition to MSI pre-processing, msiFlow provides a workflow for IFM pre-processing and 
image co-registration to combine MSI and IFM data. In the pre-processing workflow, noise is 
removed from the images by rolling-ball background subtraction and Gaussian smoothing, 
followed by contrast normalisation (Fig. 1B bottom). Here extremely high/low intensities are 
suppressed to enhance image contrast. After data pre-processing, MALDI-2 MSI data are 
combined with the IFM data through image co-registration in which a transformation aligns a 
moving to a fixed image (Fig. 1C). Several methods have been developed to generate one 
image out of a MALDI MSI dataset to spatially visualise molecular differences and similarities29. 
Here we used UMAP to reduce the MALDI-2 MSI data to one dimension. Through this 
approach, we receive one value for each pixel spectrum which can be visualised as a greyscale 
image. This UMAP image represents the main tissue structure. From IFM we used the 
autofluorescence (AF) image as it similarly represents the main tissue structure. Registration 
to the MALDI-2 MSI data was performed using symmetric normalisation implemented in the 
Advanced Normalisation Tools (ANTs) library30. To account for tissue deformations between 
the consecutive sections, the workflow uses rigid, affine, and deformable transformation with 
mutual information as the optimisation metric.  
 
From the pre-processed (and registered) data, regions of interest (ROIs) are extracted through 
two segmentation workflows (one for MSI and one for IFM data) (Fig. 1D). The MSI 
segmentation workflow includes state-of-the-art dimensionality reduction methods (PCA, t-
SNE31, UMAP) and clustering algorithms (k-means, spatial k-means32, HDBSCAN, 
hierarchical, gaussian mixture models) to perform unsupervised segmentation which extracts 
the main tissue context. The IFM segmentation workflow uses a thresholding-based approach 
to segment specific markers.   
 
For analysing the ROIs msiFlow contains 3 analysis workflows. The first analysis workflow is 
designed to identify and compare molecular changes in different ROIs (e.g. tissue regions) 
between two groups by applying statistical analysis. The workflow outputs volcano plots, pie 
charts, Venn diagrams and heatmaps of the regulated lipids (Fig. 2E right). The second 
analysis workflow unravels molecular signatures of the ROIs (e.g. cell populations) by using 
machine learning-based classification (e.g. tree-based classifiers such as AdaBoost, 
LightGBM33, XGBoost34), explainable AI methods (e.g. shapely additive values (SHAP))35,36 
and correlation (e.g. Spearman and Pearson) (Fig. 2E top left). The third analysis workflow 
applies a UMAP-based clustering approach to reveal molecular heterogeneity in the ROIs (e.g. 
cell populations) and plots the heterogeneous lipid signals in UMAPs (Fig. 2E bottom left).  
 
Spatial lipidomic changes in the infected urinary bladder 
We applied msiFlow to MALDI MSI data of the clinically relevant model of UTI to reveal niche-
specific molecular changes upon infections with UPEC. To segment the urinary bladder into 
the main tissue compartments, we applied dimensionality reduction by UMAP followed by 
HDBSCAN clustering with manual refinement to the MALDI MSI data. To indicate the 
molecular changes in the different tissue regions, MS spectra from control and infected 
samples were visualised and compared by the 2D UMAP embedding (Fig. 2A). Annotation of 
the spectra to specific tissue areas, i.e., lamina propria (lp), muscle (msc) and urothelium (uro), 
indicates specific lipidomic signatures in the different tissue regions in control and infected 
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samples (Fig. 2B). In addition, the UMAP visualisation indicates specific tissue layers, such as 
the urothelium, with strong changes upon infection. Spatial mapping of the UMAP 
representation visualises the different tissue regions (Fig. 2C). Next, we generated tentative 
lipid annotations for the m/z values by using the bulk structure search from the LipidMaps 
Website (www.lipidmaps.org) and searched for expected lipid classes and [M+H]+, [M+Na]+ 
and [M+K]+ precursor ions with a mass tolerance of +/- 0.01 m/z. For further analysis, m/z 
signals without potential lipid matches were filtered out in order to eliminate non-lipid peaks 
(e.g. in-source fragments or chemical background). Then we compared the lipidomic changes 
separately in the urothelium, lamina propria and muscle. Therefore, we performed statistical 
analysis of the mean intensities of urothelial, lamina propria and muscle pixels of infected vs. 
control samples and performed MALDI MSI in data-dependent acquisition (DDA) mode to 
validate the lipids (Supplementary Table 2). This analysis indicated the strongest lipidomic 
alterations in the urothelium, the site of bacterial tissue entry, across various lipid classes 
(Fig. 2D-E). The main altered lipid classes included triacylglyerols (TG), diacylglycerols (DG) 
and phosphatidycholines (PC), all of which were upregulated in the infected urothelium 
(Fig. 2F-G). Among other lipids, TG 54:4 was exclusively expressed in the urothelium 
(Fig. 2H). In contrast, PC O-32:0 was not only expressed in the urothelium, but also in the 
lamina propria close to the urothelial expression of TG 54:4. High resolution MSI (2 µm) by t-
MALDI-2 revealed the distribution of the UPEC infection by PE 33:1 (704.52 m/z), an odd chain 
fatty acyl PE known to be highly expressed in E.coli37 (Fig. 2H). The t-MALDI-2 measurement 
further indicated the presence of ramified cells (PC O-32:0) in the bladder tissue and 
phagocytosis of bacteria in TG 54:4-rich urothelial areas by those highly ramified cells. 
 
Identification of lipidomic signatures of neutrophils 
Among others, neutrophils are critical immune cells during bacterial infections and efficiently 
migrate into infected tissue areas to phagocytose bacteria10. We detected Ly6G+ neutrophils 
in the lamina propria around blood vessels and in the infected urothelium suggesting directed 
migration towards the infection (Supplementary Fig. 4). Microscopy also indicated 
downregulation of CXCR2 in the urothelium, suggesting niche-specific desensitisation of this 
chemokine receptor at the site of infection (Supplementary Fig. 4).  
 
To unravel the niche-specific lipidomic signature of neutrophils, we used our multimodal 
imaging workflow and performed IFM and MSI on the timsTOF fleX instrument on consecutive 
tissue sections one day after infection. Ly6G, a specific marker for neutrophils, was used to 
localise neutrophils across the tissue and actin, expressed in the muscle tissue, was used to 
demarcate the organ boundaries to the outside tissue areas and the lamina propria (Fig. 3A). 
For image co-registration, the AF channel from IFM was used as moving and the UMAP 
representation from MSI as fixed image (Fig. 3B). The learned transformation was applied to 
all IFM image channels. The registration result was validated by the Jaccard index for the 
overlap between transformed urothelial mask from IFM and MSI (average 0.8 Jaccard). 
Registered Ly6G images were segmented to annotate the pixel spectra according to 
neutrophil-rich areas. Then a binary tree-based classifier was trained with the Ly6G-annotated 
pixel spectra to extract lipidomic signatures of neutrophils (Fig. 3C). The most important lipids 
to classify Ly6G+/- pixel spectra were several ether-linked PCs (Fig. 3D). For the classification 
model, lipids that are anti-correlated with neutrophils or present in very low abundance in 
neutrophils are as important as lipids which are highly correlated to neutrophils or present in 
very high abundance. To distinguish between lipids that are highly and lowly abundant in 
neutrophils, the bar plot is colour-coded according to Pearson’s correlation (Fig. 3D). The lipid 
with the highest feature importance and correlation for neutrophils was PC O-36:4 (Fig. 3E). 
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LC-MS/MS (Supplementary Fig. 5) and in situ MS/MS (Supplementary Fig. 6) indicated that 
PC O-36:4 contains the esterified AA.  
 
To validate our results, we performed MALDI-2 MSI from bone marrow (BM)-derived 
neutrophils and applied our data pre-processing workflow (Supplementary Fig. 7A). To extract 
the main peaks from BM neutrophils, we filtered the peaks based on their spatial coherence 
and average intensity. The filtered peaks include the top 4 lipids (M+H) for bladder neutrophils. 
These lipids are expressed at a very high level in BM neutrophils, indicating that our imaging 
workflow identifies cell population-specific lipids (Supplementary Fig. 7B).  
 
Lipidomic heterogeneity of neutrophils in the infected urinary bladder 
Neutrophils can adopt specific maturation states in secondary lymphoid organs such as the 
bone marrow and spleen, thus establishing significant heterogeneity that is important for 
defence against pathogens. However, little is known about this heterogeneity in infected 
organs, although certain cellular states may represent specific adaptations to the tissue 
environment and infectious conditions. To reveal the lipidomic heterogeneity of neutrophils in 
the infected urinary bladder, we used msiFlow. Here registered Ly6G images were first 
segmented and annotated according to the tissue region (urothelium, lamina propria and 
muscle) in which they are localised (Fig. 4A-B), followed by dimensionality reduction by UMAP 
(Fig. 4C). Next HDBSCAN clustering of MSI spectra of Ly6G+ pixels was performed, generating 
3 clusters (Fig. 4D-E). A classification model was trained on the clustered Ly6G+ pixel data to 
identify the lipids with the strongest feature importance and SHAP values. We found that PC O-
36:4 was the most important lipid for the classification model based on the feature importance 
(Fig. 4F). Mapping of the clusters to the different tissue compartments revealed that neutrophils 
in cluster 0 are mainly located in the urothelium by 83%, neutrophils in cluster 1 are mainly 
located in the lamina propria by 88% and neutrophils in cluster 2 are equally distributed in the 
lamina propria (52.7%) and muscle (46.4%) (Fig. 4G). In addition, binary classifiers were 
trained for each class which revealed class-specific lipidomic signatures (Fig. 5H-J). The 
distribution of the top lipids showed strong expression of DG 34:2 (575.5 m/z) in cluster 0 
(Fig. 5H), PC O-36:4 (768.59 m/z) in cluster 1 (Figure 4J) and SM 42:2;O2 (851.54 m/z) in 
cluster 2 (Fig. 4I). These data demonstrate the spatial expression of PC O-36:4, which contains 
the immunologically important metabolite AA, in neutrophils in different tissue niches in the 
urinary bladder. msiFlow resolved the lipidomic heterogeneity of neutrophils in infected tissue 
areas, shedding new light on the tissue-specific lipidomic adaptations of neutrophils and 
providing new possibilities for the adaptations of an immunological response in tissues.   
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Discussion 
In this study msiFlow, a powerful open-source end-to-end software for automated pre-
processing, analysis, visualisation, and registration of MALDI MSI and IFM data was 
generated.  Using msiFlow, we clarified the cell-specific lipidomic adaptations of urothelial 
cells and neutrophils in UTI at a high spatial resolution and identified specific ether-linked 
PCs and the AA metabolism by neutrophils in certain tissue niches.   
 
With msiFlow, we address the current lack of complete, automated, and open-source MSI 
software by integrating all necessary steps, from raw data import to multivariate analysis 
and visual output, as well as registration into msiFlow. All steps are automated in 
Snakemake workflows, which enables parallel data processing for high-throughput 
analyses. All workflows can be run via a single command in the terminal on all major 
operating systems and do not require complicated package installations, as we incorporated 
all workflows into a Docker image, making it broadly applicable and suitable for non-
programmers compared to common software which only runs on Windows (e.g. SCiLS Lab, 
LipoStar and msiQuant38) or requires programming skills (e.g. Cardinal). Nevertheless, 
msiFlow provides full flexibility to define all desired steps and preferred methods to be 
executed by specifying a manageable number of parameters in one configuration file. In 
addition, msiFlow is fully developed in the open-source programming language Python, as 
opposed to the widely used proprietary programming language MATLAB. Thus, msiFlow is 
more affordable and accessible than commercial or proprietary software developed in 
MATLAB16,22,39. Unlike most software that only accepts data in imzML format21,22,38-41, 
msiFlow accepts raw timsTOF data in addition to imzML, preventing the need for additional 
software for data parsing and the dependence on manufacturer-specific software.  
 
We have made special efforts to develop a complete pre-processing pipeline to filter the data 
into an endogenous/tissue-origin mono-isotopic peak list for downstream analysis. Simple 
peak picking is often not sufficient to filter out non-informative or exogenous signals (e.g. from 
matrix, isotopes and chemical noise) from raw spectra42. Such unfiltered data can lead to 
prediction models learning from non-biological meaningful signals. Therefore, our workflow 
includes a peak filtering step in addition to standard peak picking. Our workflow performs pixel-
wise peak-picking and utilises the spatial information for peak filtering by computing the spatial 
coherence metric43, presenting a significant improvement over common MS software that uses 
single mass spectra without considering spatial information44. In addition, we have developed 
two UMAP-based clustering approaches that sufficiently determine matrix/off-tissue pixels and 
outliers in datasets fully automatically, which was previously often done manually (e.g. manual 
selection of specific regions in SCiLS Lab).  The automated matrix detection approach is 
applicable for whole-sample measurements due to its reliance on tissue architecture 
and borders and the outlier detection approach is effective for multi-sample datasets as it relies 
on spectral similarity across multiple samples. Our workflow also provides visual results after 
each pre-processing step, offering transparency and the possibility of quality control compared 
to commercial software.  
  
msiFlow not only enables end-to-end analysis of MSI data, but also registration with IFM for 
multimodal imaging, complementing existing open-source software which either does not 
include registration41 or focuses on registration without data pre-processing and analysis18. In 
this study we registered IFM to high-resolution MALDI MSI to account for the emerging interest 
in multimodal analyses. Typically, immunohistochemistry of tissue sections is registered to 
molecular data from MSI and annotated by pathologists45,46. However, registration with IFM 
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enables the precise localisation of specific cell populations to characterise the phenotypical 
and molecular heterogeneity of cells in the tissue context. We deliberately used consecutive 
sections as the washing steps of the staining procedure of cell-specific molecules strongly 
reduces the signal-to-noise of the spatial lipidome. Thus, our approach avoids this problem by 
registering imaging data from consecutive tissue sections. However, we acknowledge 
limitations in achieving complete cell-specificity due to the usage of consecutive tissue sections 
and lateral diffusion of lipids from surrounding cells during MSI sample preparation. While our 
automated registration approach might be less accurate than the popular landmark-based 
registration selecting features present in both modalities16,47 or laser ablation marks from MSI18, 
it does not require manual steps and is not dependent on a post-acquisition pattern. 
Furthermore, our MSI data of BM-derived neutrophils revealed a substantial abundance of the 
identified lipids, validating the adequacy of our image registration, segmentation, and feature 
extraction approach for identifying molecular signals associated with particular cells within 
tissue sections to a certain degree. 
 
So far, msiFlow does not include an annotation or interpretation step, as we see the main aim 
of the software in identifying interesting molecular patterns and preliminary candidates, which 
can be validated by MS/MS in a next step. However, as msiFlow provides a mono-isotopic 
peak list and contains a mass alignment procedure, tentative lipid annotations for interesting 
candidates can be made through mass matching to databases, such as LipidMaps, as 
presented in this study. Due to the modular software design, an annotation routine as well as 
available software for biological interpretation48 can easily be added in the future. Moreover, 
we anticipate that msiFlow can be scaled to other MSI modalities, such as metabolomics and 
proteomics. 
 
To demonstrate the strength of our multimodal imaging approach and msiFlow to biological 
research, we applied msiFlow to lipidomic MSI and IFM data of UPEC-infected bladders. This 
revealed high abundance of ether-linked PCs in neutrophils, which is in line with previous 
studies2,49,50. Polyunsaturated fatty acids (PUFAs) containing lipids, such as PC O-36:4, 
strongly influence cellular function via effects on membrane properties, and by acting as a 
precursor pool for lipid mediators, such as AA. Among others, these mediators are 
enzymatically converted by cyclooxygenase and lipoxygenase to generate eicosanoids, such 
as prostaglandins and leukotrienes4. These metabolites are critical for neutrophil migration and 
swarming in the 3-dimensional tissue context51. Recently, changes in the composition of PCs 
were observed during neutrophil differentiation stages, indicating reduced abundance of this 
PUFA in mature stages of neutrophils2. Similarly, we found that PC O-36:4 was most abundant 
in neutrophils after extravasation in the lamina propria, but not detectable at the site of infection 
in the urothelium, suggesting metabolic oxidation of AA into leukotrienes to facilitate neutrophil 
swarming towards the local infection in the urothelium. Besides AA oxidation, the reduced 
abundance of PC O-36:4 in the urothelium could also indicate neutrophil apoptosis, as it is 
assumed that ether-linked PCs are important membrane components required for neutrophil 
survival52. Taken together, msiFlow revealed a heterogeneous distribution of PC O-36:4 in 
neutrophils, indicating a critical and spatial role of PC O-36:4 in neutrophil state and function.  
 
With the advent of our established software and the high-resolution t-MALDI-2 MSI 
technologies, we found an increased expression of molecules in the population of urothelial 
cells important for mucus production and modulation of the bacterial colonisation, such as PCs, 
DGs and TGs53,54. Our t-MALDI-2 MSI data revealed an accumulation of TGs in the urothelium 
close to the bacteria. Interestingly, TGs were also among the lipids with the highest feature 
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importance and correlation to neutrophils in the urothelium. TGs are stored in lipid droplets 
(LDs), which have been described as sites of eicosanoid synthesis55. It is also known that 
defence molecules, such as Cathelicidin (CAMP) and histones, accumulate on the LDs of 
challenged cells which makes them more resistant to bacterial species including E.coli56, 
potentially through the mechanism of neutrophil extracellular traps (NETs)56. Hence, our 
findings suggest an important role of LDs in supporting the immune defence against UPECs 
in UTI through eicosanoid synthesis and NET formation.   
  
In conclusion, we established an open-source, platform-independent and vendor-neutral 
software for automated, end-to-end, transparent, reproducible, and scalable multimodal MSI 
and IFM image analysis with a low barrier to entry. Using msiFlow, we not only identified 
lipidomic signatures of neutrophils, validated by MSI of BM neutrophils and in line with previous 
studies, but also unravelled a hitherto unknown lipidomic heterogeneity of neutrophils in UTI. 
This is an essential step towards uncovering the context-dependent regulation of leukocytes 
in inflammatory conditions. The easy usability and completeness of our software will facilitate 
the applicability of MSI in the emerging field of multimodal imaging.   
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Figures 
 

 

Fig. 1: Workflow for correlative multimodal mass spectrometry imaging and 
immunofluorescence microscopy data. (A) Consecutive mouse bladder sections of 8 µm 
are measured by immunofluorescence microscopy (green), matrix-assisted laser desorption 
ionisation combined with laser-induced postionisation mass spectrometry imaging (MALDI-2 
MSI) (blue) and transmission-mode MALDI-2 MSI (red) with a lateral resolution of 0.2 µm, 5 µm 
and 2 µm respectively. MALDI-2 MSI data are measured by time-of-flight (TOF) and t-MALDI-
2 data by orbitrap. (B) The pre-processing workflow takes the raw MSI data in the common 
data formats as input and outputs the processed data (proces. data). (B1) The workflow 
integrates raw files as input. (B2) Spectra are Savitzky-Golay smoothed. (B3) Peaks with a 
user-defined signal-to-noise are selected. (B4) A common mass-to-charge vector is formed by 
a kernel-based clustering approach. Peaks are aligned by nearest-neighbour mapping. 
(B5) UMAP clusters which are connected to most pixels of the border of the measured area 
are considered matrix/off-tissue clusters. (B6) Ions with low spatial coherence (SC), a measure 
for ion’s informativeness, are removed. (B7) Data are normalised to the total ion current (TIC) 
or median fold change (MFC). (B8) UMAP clusters in which most pixels originate from one 
sample are considered outliers. (B9) De-isotoping exploits the theoretical isotope pattern. The 
software contains an optional step for IFM pre-processing and image registration to combine 
MSI and IFM. The IFM pre-processing step removes noise from the microscopy images by 
rolling-ball background subtraction and Gaussian smoothing, followed by contrast 
normalisation using percentile stretching. This suppresses extremely high/low intensities to 
enhance image contrast. (C) The registration step combines MSI and IFM data. Therefore, a 
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selected channel from IFM (here the autofluorescence image) is used as moving image and 
the UMAP image from MSI is used as fixed image. The learned transformation is applied to all 
other IFM image channels which results in transformed data. (D) Imaging data are segmented 
and visualised by UMAP. Each point in the UMAP visualisation represents one MSI data 
point/pixel. Segmentation of the Ly6G IFM image indicates the distribution of neutrophils (top). 
The MSI data is segmented into its main tissue regions (bottom). (E) Lipidomic signatures of 
segmented regions and cell populations are extracted. Cell-specific changes between 
segmented regions are extracted by machine learning-based classification and correlation (top 
left) and statistical analysis (top right). The distribution of the most important lipids for the 
classification model are visualised by UMAP (bottom left). The lipidomic changes in the 
segmented tissue regions are illustrated in Venn diagrams (bottom middle). The regulated lipid 
classes are depicted in pie charts (bottom middle) and heatmaps (bottom right). 
Immunofluorescence (immunofl.), processed data (proces. data), transformed data (transf. 
data), annotated pixel spectra (annot. pixel spectra), lamina propria (lp), muscle (msc), 
urothelium (uro), control (ctrl), infected (infct).  
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Fig. 2: Significant lipidomic adaptations in the urothelium upon infection. (A) UMAP 
embedding of MALDI MSI data of 4 control (grey) and 4 infected (red) bladder sections (n=8). 
(B) UMAP embedding colour-coded according to the muscle (msc), lamina propria (lp) and 
urothelium (uro) in the control (light-coloured) and infected (dark-coloured) tissue sections. 
(C) Spatial mapping of the UMAP clusters shown in B in an infected tissue section. 
(D) Average spectra of the different tissue regions (msc, lp and uro) were extracted and 
statistically analysed. Venn diagrams revealing the number of significantly downregulated (left) 
and upregulated (right) lipids (p-value < 0.05 and |log2(FC)| > 0.5). (E) Pie chart showing the 
percentage of lipid classes regulated in the infected urothelium. (F) Heatmap showing the 
average intensity of regulated lipids (p-value < 0.05 and |log2(FC)| > 1) in the urothelium for 
each sample. (G) The significantly regulated lipids (p-value < 0.05 and |log2(FC)| > 1) in the 
urothelium are labelled in the Volcano plot. Lipids validated by on-tissue MS/MS are marked 
with *, and by LC-MS/MS are marked with #. Statistical significance was tested by Welch’s t-
test for normally distributed populations and Wilcoxon rank-sum test for non-normally 
distributed populations. n=8 (4 control versus 4 infected). (H) Spatial distribution of regulated 
lipids and E.coli (PE 33:1) in an infected bladder measured by t-MALDI-2 MSI. Scale bars 
indicate 300 µm and 50 µm in the zoom. Diglyceride (DG), phosphatidylcholine (PC), ether-
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linked phosphatidylcholine (PC O), phosphatidylethanolamine (PE), sterole (ST), triglyceride 
(TG).  
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Fig. 3: Image co-registration and machine learning-based classification extract spatial 
lipidomic signatures of neutrophils. (A) IFM of Ly6G for neutrophils (red) and actin for 
smooth muscle cells (blue) was performed on consecutive bladder sections to the MALDI MSI 
sections. (B) IFM images were registered to the MALDI MSI images via symmetric 
normalisation implemented in the Advanced Normalisation Tools (ANTs) library. The AF image 
from IFM was used as moving image and the UMAP image from MSI served as fixed image. 
The learned transformation was applied to all IFM image channels. We validated the 
registration result by the Jaccard index for the overlap between transformed urothelial mask 
from IFM (green) and MSI (magenta). We applied spatial k-means clustering on the MSI data 
and selected the cluster containing the urothelium. The urothelial mask from microscopy was 
manually created. (C) Segmentation of the registered Ly6G images was performed to annotate 
the pixel spectra into neutrophil/non-neutrophil pixels. Then a machine learning-based 
classification model was trained with the annotated pixel spectra for neutrophils. (D) Feature 
importance ranking revealing the top 10 lipids which are most important for the classifier to 
distinguish neutrophil and non-neutrophil pixels. The bars are colour-coded according to 
Pearson’s correlation coefficient. While a high correlation indicates high co-localisation, a low 
correlation indicates no co-localisation. We identified several ether-linked phospholipids, which 
were further characterised by on-tissue MS/MS (marked with *), to be highly correlated to 
neutrophils distribution. The top lipid was also validated by LC-MS/MS (marked with #). (E) Ion 
image of the top lipid identified for neutrophils distribution on the consecutive section to the 
IFM section shown in A. Immunofluorescence microscopy (IFM), mass spectrometry imaging 
(MSI), autofluorescence (AF), Jacc. (Jaccard), annot. (annotated), machine learning (ML), 
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Pearson’s correlation (corr.), urothelium (uro), lamina propria (lp), muscle (msc). Scale bars 
indicate 500 µm.  
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Fig. 4: Lipidomic heterogeneity of neutrophils. (A) Registered Ly6G image showing the 
distribution of neutrophils in the uro, lp and msc. (B) Segmented Ly6G image, colour-coded 
according to the different tissue regions. (C) UMAP of Ly6G+ pixel spectra in 4 infected bladder 
samples (n=4) colour-coded according to the different tissue regions. (D) HDBSCAN clustering 
was performed on the UMAP embedding of Ly6G+ pixel spectra. The spatial distribution of the 
3 main clusters is shown in the image of an infected bladder region. (E) HDBSCAN clusters 
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shown in the UMAP embedding of Ly6G+ pixels. Cluster -1 indicates noise pixels. (F) A 
XGBoost multi-class classifier was trained on the annotated clustered pixel spectra to extract 
the mean SHAP values of the 10 most important lipids based on the feature importance. The 
top 10 lipids are shown in ascending order according to their feature importance. 
(G) Distribution of cluster pixels in the different tissue regions. (H-J) A XGBoost binary 
classifier was trained for each cluster to reveal cluster-specific lipidomic signatures. The 
resulting top 10 lipids based on their feature importance are shown in the bar plots (left) and 
coloured according to their Pearson’s correlation. Signal intensities of lipids with the highest 
feature importance and positive Pearson’s correlation for cluster 0 (H), cluster 1 (I) and cluster 
2 (J) shown in the UMAP (middle) and a spatial heat map (right). Urothelium (uro), lamina 
propria (lp) and muscle (msc). Scale bars indicate 200 µm. n=4 (UPEC infected).  
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Methods 
Animal studies 
Female C57BL/6 mice were used throughout the experiments. Animals were purchased from 
Charles River Laboratories and maintained under specific-pathogen-free conditions in the 
central animal facility at the University Hospital 
Essen. The local review board (Bezirksregierung Köln, Landesamt für Natur, Umwelt und 
Verbraucherschutz NRW in Recklinghausen, Germany) approved the animal experiments. 
 
Urinary tract infection model 
UPEC strain 536 (O6:K15:H31) was cultured for 3 h at 37 °C in LB medium. The bacteria were 
harvested by centrifugation at 1500 × g for 20 minutes and then the OD(600) was measured. 
The bacteria were resuspended at a concentration of 1010 bacteria/ml in sterile PBS. A mixture 
of ketamine and xylazine 80/10mg/kg body weight in 150μl PBS was injected intraperitoneally 
to anesthetise the mice. The infection of the animals was induced by transurethral inoculation 
of 5 × 108 UPEC in 0.05 ml PBS using a soft polyethylene catheter. 
  
Immunofluorescence microscopy (IFM) 
Urinary bladders were fixed overnight in PLP buffer [pH 7.4, 0.05 M phosphate buffer 
containing 0.1 M L-lysine, 2 mg/ml sodium periodate, and paraformaldehyde with a final w/v 
concentration of 1%], equilibrated in 30% sucrose for 24h and stored at -80°C. Bladder tissue 
was cut into 8 µm thick sections at -20°C using a cryostat. Unspecific binding was blocked by 
incubation of the sections with PBS containing 1% BSA and 0.05% Triton X-100 for 1 
hour. Bladder sections were mounted into MACSwell sample carriers, blocked using a 
blocking buffer containing 10% BSA and 2% goat serum for 1h at RT before nuclei were 
counterstained using DAPI-staining solution (Miltenyi Biotec) according to the manufacturer’s 
recommendations before being placed into a MACSima imaging system. Sections were then 
incubated with directly conjugated antibodies against Ly6G (1A8, Miltenyi Biotec, PE,1:50), 
EpCAM (REA977, Miltenyi Biotec, APC,1:50), SMA (REAL650, Miltenyi Biotec, FITC, 1:300) 
and CXCR2 (SA044G4, BioLegend, PE, 1:50). Acquired pictures were stitched using the 
preprocessing pipeline in MACS iQ View Analysis Software (Miltenyi Biotec) for downstream 
analysis. 
 
Matrix-assisted laser desorption mass spectrometry imaging (MALDI MSI) 
Unfixed tissue sections of infected and uninfected bladders were thawed under a gentle stream 
of dry N2 gas. For t-MALDI measurements, the tissue sections were washed with 250 µL of a 
150 mM ammonium acetate solution to remove alkali metal salts and dried again under a 
gentle stream of dry N2 gas. 2,5-DHAP matrix was applied onto the tissue section by 
sublimation in a home-build sublimation device described earlier by Bien et al. 57 1.5 mL of a 
20 mg/mL solution of 2,5-DHAP in acetone was filed into the matrix reservoir and heated to 
about 120 °C which caused the acetone to evaporate. The sample was mounted to the cold 
side of the sublimation device and kept at around 4 °C at an approximate vertical distance of 
6 cm above the matrix reservoir. The sublimation device was evacuated to a pressure of about 
5 x 10-3 mbar and the sublimation was conducted for 10 min. The samples were measured 
immediately after sublimation. 
 
All MALDI MSI measurements were carried out in positive-ion mode. MALDI-2-MSI data with 
a pixel size of 5 µm was acquired with a timsTOF fleX MALDI-2 (QTOF) instrument with 
microGRID extension (Bruker Daltonics, Bremen, Germany). The MALDI and postionisation 
laser were operated with a pulse repetition rate of 1 kHz and a delay of 10 µs. The ablation 
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laser power was set to 80% with 25 shots per pixel. The ion detection range was set 
to m/z 300-1500. 
 
The TIMS separated MS/MS measurement was acquired with a pixel size of 50 µm with 250 
laser shots, a 1/k0 range from 1.4-1.8 with N2 as collision gas, a ramp time of 250 ms, an 
isolation window of 1 Da and 30 eV collision energy. 
 
The t-MALDI-2 MSI data with a pixel size of 2 µm was acquired with a setup which has been 
described in detail previously 14,58. For this a Q Exactive Plus Orbitrap mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany) equipped with a modified dual-ion funnel source 
(Spectroglyph, Kennewick, WA, USA), which enabled transmission mode illumination and 
MALDI-2 postionisation, was used. Both lasers were operated with a pulse repetition rate of 
100 Hz and a delay of 10 µs. A mass resolution of 70000 (defined for m/z 200) with a fixed 
injection time of 250 ms and an ion detection range of m/z 350-1500 were used. MALDI-DDA-
MSI was used to confirm some of the tentatively annotated lipids with on-tissue MS/MS. For 
this a similar approach to the one used by Ellis et al. 59 was chosen, which alternates full-scan 
and MS/MS pixel. For this front side illumination was used with a step size in x- and y-direction 
of 10 µm and 20 µm respectively. For the full scan pixels an ion detection range of m/z 550-
1500 was used. For DDA MS/MS measurements an isolation window of 1 Da and a fixed first 
mass of m/z 100 with a NCE of 25 were used. The exclusion time was set to 30 s. The mass 
resolution for both full scan and MS/MS was set to 70000 and the injection time was fixed at 
250 ms. The MALDI-DDA-MSI data was analysed using Lipostar MSI (vs. 1.3, Molecular 
Horizon, Bettona, Italy) and annotated using the Lipid Maps Structure Database 
(https://www.lipidmaps.org/databases/lmsd).  
 
Isolation of bone marrow-derived neutrophils 
Bone marrow derived neutrophils were obtained using a mouse Neutrophil Isolation Kit 
(Miltenyi Biotec, 130-097-658) following the manufacturer’s instructions. In brief, the bone 
marrow of a femur was flushed, and erythrocytes lysed using RBC Lysis Buffer (BioLegend, 
420302; 1 min on ice). Cells were then sequentially incubated with Neutrophil Biotin-Antibody 
Cocktail and Anti-Biotin Microbeads before neutrophils were isolated using a negative 
selection on a magentic column. The isolated neutrophils were then centrifuged onto slides 
using a cytospin centrifuge, fixed for 5 min using 4% formaldehyde, washed two times with 
500 µL PBS followed by two washes with 500 µL of a 150 mM ammonium acetate solution to 
remove the PBS. For MALDI-MSI matrix application was carried out as described above and 
the cells were measured with 50 µm pixel size on the timsTOF fleX MALDI-2 (QTOF). 
 
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
Lipids were extracted using methyl tert-butyl ether (MTBE) extraction and analysed with liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) as reported earlier60. In brief, snap-
frozen urinary bladder tissues were homogenised in ice-cold IPA:H2O (1:1 v/v; 150μL), spiked 
with 10μL of SPLASH lipid standard mix, and then subjected to liquid-liquid extraction using 
MeOH, MTBE, and water solvent mixture with a final ratio of 1:3:1 (v/v/v). The upper organic 
phase was collected, dried out under a nitrogen gas stream, and reconstituted in 100μL of 
ACN:IPA:H2O buffer (65:30:5 v/v/v). Resuspended lipid extracts (10μL) were loaded on a 
reversed-phase ACQUITY UPLC HSS T3 (1.8 μm, 100 × 2.1 mm, Waters Corporation) column 
and separated using a Vanquish Duo UHPLC-system (Thermo Fisher Scientific, Waltham, MA, 
USA) with a flow rate of 250 μL/min. The mobile phases consisted of eluent A (H2O:ACN, 
40:60 v/v) and eluent B (IPA:ACN, 90:10 v/v) both with 10mM ammonium formate and 0.1% 
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formic acid. All the datasets were acquired independently in negative- and positive-ion mode 
in a data-dependent manner using Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo 
Fisher Scientific, Waltham, MA, USA) equipped with a heated electrospray ionisation source. 
Lipids were annotated and validated with lipid class and molecular-species specific diagnostic 
fragment ions61. 
 
MSI data pre-processing 
MALDI MSI data were pre-processed by custom-designed Python scripts which were 
automated in a Snakemake62 pipeline. The pipeline takes raw timsTOF files as input, 
processes all files in parallel, and outputs the processed data in imzML format along with 
various quality control visualisations for each step. All parameters used within this study are 
listed in Supplementary Table 1. In the first step Savitzky-Golay smoothing63 was used to 
reduce spectral random noise. Centroid spectra were extracted by using the find_peaks 
function from the SciPy signal processing library with default parameters. Peaks with a signal-
to-noise ratio of at least 3 were selected. The noise was calculated by the median absolute 
deviation. To eliminate mass drifts, the pipeline contains an alignment procedure using a 
kernel-based clustering approach adapted from pyBASIS20. Here peaks which were present in 
at least 3% of all pixels across all samples formed the common m/z vector to which the peaks 
were aligned by nearest-neighbour mapping. Then off-tissue/matrix pixels were identified and 
removed for each dataset (Figure S1). To identify matrix pixels, data of each sample were first 
reduced to two dimensions by using UMAP followed by HDBSCAN clustering. The cluster 
which was connected to most pixels of the border of the measured area was considered the 
matrix cluster. Clusters with a Spearman correlation above 0.7 to the matrix cluster were 
combined to an extended matrix cluster. In the third step the binary image of the extended 
matrix cluster was post-processed by removing isolated objects of up to 5 pixels followed by a 
binary closing operation using a 5x5 pixel square structuring element for the dilation and a 2x2 
pixel square structuring element for the erosion. For the post-processing the scikit-image and 
SciPy libraries were used. After matrix removal the spatial coherence43 was calculated for each 
ion which measures it’s informativeness. Ions with low spatial coherence were removed. Then 
the data were normalised by median-fold-change (MFC) normalisation to account for intra-
sample and inter-sample variation. To indicate spectra variations among the samples, a 
UMAP-based outlier detection method was applied (Figure S2). Here the data of all samples 
were first reduced to two dimensions by using UMAP followed by HDBSCAN clustering. Then 
sample-specific clusters (SSC) were identified. SSCs are clusters in which most pixels 
originate from one sample. Finally, samples in which most pixels were SSC pixels were 
considered sample outliers. De-isotoping was performed as last step. In an iterative approach, 
isotopes were identified based on their theoretical m/z value within a predefined tolerance 
range and their theoretical intensity pattern. 
 
Lipid annotation 
In the first step, a list of tentative annotations of m/z values were made by using the bulk 
structure search provided on the LipidMaps website (www.lipidmaps.org). We searched for 
matches between all expected lipid classes (fatty acids/esters [FA], ceramides [Cer], 
sphingomyelins [SM], hexosyl ceramides [HexCer], triglycerols [TG], diglycerols [DG], 
glycerophosphocholines [PC], glycerophosphates [PA], glycerophosphoserines [PS], 
glycerophosphoethanolamines [PE], glycerophosphoglycerols [PG], sterols [ST]) and 
[M+H]+, [M+Na]+ and [M+K]+ precursor ions with a mass tolerance of +/- 0.01 m/z. 
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This list was then manually curated considering the biological context and expanded with the 
annotations gained from MALDI-DDA-MSI as well as other on-tissue MALDI MS/MS 
experiments. In addition, some lipids were validated by LC-MS/MS, as described in LC-MS/MS 
validation strategy for lipid annotations64. If no further information from MS/MS was gained, the 
annotation is only based on the lipid species level, which means in the context of ether lipids, 
that 1-O-alkyl lipids with at least one double bond could also be interpreted as 1-O-alkenyl 
ethers, as described in lipid nomenclature guidelines65. 
 
Data analysis, statistics and visualisation 
Tissue segmentation was performed on the full m/z spectrum of all control and infected urinary 
bladder sections by UMAP (n_neighbors=10, min_dist=0.0, dist_metric=’cosine’) followed by 
HDBSCAN clustering (min_samples=50, min_cluster_size=10000). The clusters were 
manually merged into super-clusters which represent the main tissue context (urothelium, 
lamina propria and muscle).  
 
Then mean spectra of the pixel clusters were extracted and statistically analysed using the 
Python package SciPy. The standard t-test was used for normally distributed populations with 
equal variances and the Welch’s t-test for normally distributed populations with unequal 
variances. Non-normally distributed populations were statistically analysed by the Wilcoxon 
rank-sum test. The Shapiro-Wilk test and Levene test was used to test for normal distribution 
and equal variances. The ratio between the means of two populations (here control and 
infected) was determined as log2(fold change).  
 
For the lipidomic analysis of neutrophils, we reduced the m/z spectrum by filtering out m/z-
values for which no lipid in the database could be matched based on our m/z tolerance, as 
well as tissue-specific m/z-values with a Pearson’s correlation (SciPy Python package) above 
0.5 to one of the tissue regions extracted from the previous tissue segmentation (urothelium, 
lamina propria, muscle). To differentiate between Ly6G+ and Ly6G- pixels, we segmented the 
registered Ly6G images using the Python package Scikit-image. First images were Gaussian 
smoothed with sigma=1 followed by Otsu thresholding. Finally small objects (below 10 pixels 
size) were removed. Unsupervised clustering of Ly6G+ pixels was performed by UMAP 
(n_neighbors=3, min_dist=0.0, dist_metric=’cosine’) followed by HDBSCAN clustering 
(min_samples=30, min_cluster_size=500). 
 
Important lipids for the ROIs (here tissue regions and neutrophils) were extracted by using 
Extreme Gradient Boosting (XGBoost)-based classification with class weights, Pearson’s 
correlation and SHAP values. Therefore, the Python packages XGBoost, SciPy and SHAP 
were used. Class weights were calculated by #samples / (#classes * #occurences) using the 
Python package scikit-learn. 
 
The Python packages Pandas, Seaborn, Matplotlib and matplotlib-venn were used to generate 
all visualisations (volcano plots, scatterplots, pie charts, Venn diagrams, segmented images, 
and bar plots). 
 
Microscopy data pre-processing  
Images were pre-processed by rolling-ball background subtraction, Gaussian smoothing with 
sigma=3 followed by percentile stretching using the Python library scikit-image.  
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Registration of microscopy and MALDI MSI 
Initial transformation of the images was performed in Fiji for microscopy (rotation and cropping) 
to match the imaged tissue region and orientation of both modalities. For precise registration 
we used symmetric normalisation (SyNRA) as transformation, consisting of rigid, affine and 
deformable transformation, and Mattes mutual information as optimisation metric implemented 
in the Advanced Normalisation Tools (ANTs) library30. We down sampled the microscopy 
image, using linear interpolation, to the same spatial dimensions as the MALDI image using 
the Python package ImgAug (https://github.com/aleju/imgaug). The down sampled AF from 
microscopy was used as moving image and the UMAP image from MSI, which visualises the 
main tissue structure similar to the AF image, was used as fixed image. We validated the 
registration result by the Jaccard index for the overlap between registered urothelial mask from 
microscopy and MSI mask. We applied spatial k-means clustering on the MSI data and 
selected the cluster containing the urothelium. The urothelial mask from microscopy was 
manually created.  
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Data availability 
The intermediate pre-processing results of the MALDI-2 MSI bladder data are available upon 
request due to data size. All other (t-)MALDI-2 MSI and IFM data (raw and generated results) 
were deposited at Zenodo (https://doi.org/10.5281/zenodo.11913042).  
 
Code availability 
The msiFlow source code is publicly available on GitHub 
(https://github.com/Immunodynamics-Engel-Lab/msiflow). 
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