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Abstract. In this paper, we introduce an image analysis approach for spatio-temporal seg-8

mentation, quantification and visualization of movement or contraction patterns in 2D+t or9

3D+t microscopy recordings of biological tissues. The imaging pipeline is applied to time10

lapse images of the embryonic development of the red flour beetle Tribolium castaneum11

recorded with light-sheet fluorescence microscopy (LSFM). We are particularly interested in12

the dynamics of extra-embryonic membranes, and provide quantitative evidence of the exis-13

tence of contraction waves during late stages of development. These contraction waves are a14

novel observation of which neither origin, nor function are yet known. The proposed pipeline15

relies on particle image velocimetry (PIV) for quantitative movement analysis, surface de-16

tection, tissue cartography, and an algorithmic approach to detect characteristic movement17

dynamics. This approach locates contraction waves in 2D+t and 3D+t reliably and efficiently18

and allows the automated quantitative analysis, such as the area involved in the contractile19

behavior, contraction wave duration and frequency, path of contractile area, or the relation to20

the spatio-temporal velocity distribution. The pipeline will be used in the future to conduct21

a large-scale characterization and quantification of contraction wave behavior in Tribolium22

castaneum development and can be adapted easily to the identification and segmentation of23

characteristic tissue dynamics in other systems of interest.24

Keywords: Movement segmentation · Particle image velocimetry (PIV) · Tissue cartogra-25

phy · Image analysis · Tissue contraction · Embryonic development · Tribolium castaneum.26

1 Introduction27

We present a method to detect and quantify spatio-temporal dynamic patterns in biological tissues28

characterised by bidirectional motion. The method was developed to systematically detect and29
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analyse the recently observed but yet undescribed phenomenon of contraction waves in the extra-30

embryonic (EE) membranes of the red flour beetle, Tribolium castaneum, during its embryonic31

development.32

Contractile cell dynamics are recognized to play important roles during the development (re-33

viewed in: [29,5]) and evolution of species [16,22,1]. In particular, apical contractions of epithelial34

cells are crucial in morphogenesis [13,14]. Cell contractions have been observed during dorsal clo-35

sure in the most commonly studied insect model organism, Drosophila melanogaster. Here, cells of36

its single EE membrane, the amnioserosa, [21,3], exhibit apical contractions facilitating a reduction37

of EE tissue area [4,19,23].38

In this work, we study EE membrane dynamics in Tribolium. In contrast to Drosophila, where39

the amnioserosa covers only the yolk dorsally, Tribolium presents two large and separate EE mem-40

branes: the amnion, which covers the embryo itself (embryo proper) ventrally, and the serosa which41

covers the whole embryo proper and the yolk. The EE membranes eventually rupture in the an-42

teroventral region and rapidly withdraw to the dorsal side. This process signals the onset of dorsal43

closure [17] which happens roughly one day before hatching. With its architecture and dynamics44

of EE membranes, Tribolium illustrates the embryonic development of the most numerous order of45

insects, Coleoptera [25]. This makes the insect Tribolium castaneum an important emergent model46

organism for analyzing EE dynamics as exemplified by our novel observation of the propagating47

contraction waves.48

Our image analysis approach consists of three main components that address different aspects of49

our specific problem. One key feature stems from the geometry of the EE membranes in Tribolium.50

Namely, the serosa EE membrane is a continuous epithelial layer that covers the whole embryo51

from gastrulation to rupture, which can be geometrically described as a closed surface embedded52

in 3D space. A powerful approach for analyzing such surfaces is through extracting a surface mask53

and projecting the intensities onto 2D maps [6]. We included this approach in our approach, as it54

has the additional advantage of disentangling the dynamics of the EE membranes from movements55

of the embryo proper.56

The second pillar of our approach is ensuring the robust and accurate quantification of tissue57

dynamics based on microscopy data, as any errors in the quantification would propagate to the58

wave segmentation algorithm. We use particle image velocimetry (PIV), which is an image analysis59

technique for computing displacement fields from consecutive images. PIV is commonly used for60

biological images, since it is accurate at quantifying collective cell motion and can be applied to non-61

segmentable data [24,2,11]. Both of these merits stem from the fact that PIV uses cross-correlation,62

which is a translation-invariant pattern-matching operation that produces a maximum peak at the63
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translation that minimises the differences between the cross-correlated images [8]. In particular we64

use the quickPIV package, which is an efficient and free PIV implementation handling 2D and 3D65

images. QuickPIV also includes elemental features and options used here, such as masked PIV and66

normalized cross-correlation using squared differences [18].67

Lastly, our approach proposes an original algorithm for segmenting the characteristic back-and-68

forth motion that we observe during contraction waves in Tribolium. We base our algorithm on a set69

of quantitative angle-based criteria that describe the motion pattern of interest. In particular, we70

observed from multiple embryos that contraction waves are characterized by alternating dorsal and71

ventral movements of large patches of EE membranes cells in Tribolium. They seem to start in the72

anterodorsal area and propagate in the posteroventral direction multiple times before the rupture73

and the withdrawal of EE membranes, which happens at the late stage of embryo development.74

The algorithm has only a few parameters that intuitively shape the range of detectable patterns.75

In the following, we introduce the methods that were used to analyse EE membranes dynamics76

and segment contraction waves. We developed and used methods for both 2D and 3D data and77

applied them to three different representations of our data: (1) 2D maximum intensity projections78

of a lateral view of the embryo, (2) 3D fused volumes from time-lapse LSFM 3D recordings, and (3)79

cylinder projections based on the surface mask where the EE membranes get unrolled and mapped80

to 2D.81

2 Methods82

2.1 Analyzing EE membranes dynamics with PIV83

We used quickPIV [18] to quantify tissue motion in 2D and 3D. In the case of the 3D data,84

we restricted the PIV analyses to the EE membranes by providing a 3D mask of the surface of85

the embryo. This speeds up the computation and results in PIV vector fields that predominantly86

capture EE membranes dynamics, and reduce contributions from the movement of the subjacent87

embryo proper. The 3D surface mask was generated by combining surface masks derived from88

surface meshes of the embryo at different time points (Section 2.3.3). We used the same mask for89

all 3D PIV analyses to ensure that all results share the same set of coordinates.90

We computed PIV between each pair of consecutive frames for the entire 3D+t microscopy91

data, as well as 2D+t projections, resulting in 3D+t and 2D+t vector fields, respectively. In the92

rest of the paper we will refer to an arbitrary vector within the PIV results by its spatial, p = (x, y)93

or p = (x, y, z), and temporal, t, coordinates: vp,t. In addition, the wave segmentation algorithm94

revolves around analyzing the change in direction of a PIV vector over time. In other words, the95
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input to the algorithm is the set of PIV vectors at the spatial coordinate p across all frames, which96

we denote by vp,{t}. We will refer to this as the ”vector time-series at p”.97

2.2 Temporal segmentation of characteristic dynamics based on PIV vector fields98

The temporal wave segmentation algorithm was developed based on the a priori observation that99

EE membranes contraction waves in Tribolium are defined by two consecutive phases of tissue100

movement in different directions: an initial phase of posteroventral movement over several frames,101

followed by a phase of movement with a strong dorsal component for several frames, see Fig. 1A102

and Fig. 1B. We refer to these two phases as the V and D phases, respectively, highlighting the103

importance of the ventral and dorsal components of the movements in the contraction waves. This104

suggests that a time window containing a contraction wave can be identified for a given position105

by a temporal pattern in the PIV vector at p showing the respective characteristic dynamics. To106

allow for a certain amount of flexibility, as ventral and dorsal movements are not perfectly aligned107

with the dorsoventral axis, especially after EE membranes rupture, we construct our algorithm108

around a set of conditions defining the desirable pattern. In particular, we proceed as follows:109

a) We first adopt a sliding window approach to detect frames of maximum and minimum similarity110

with a reference direction for the V phases.111

b) Secondly, we subject each pair of consecutive local maxima and minima from the previous step112

to a set of angle-based and velocity-based criteria to determine whether they correspond to the113

V and D phases of a contraction wave. Through this step we obtain temporal segmentations of114

the waves.115

c) After independently generating a temporal wave segmentation for each spatial position of the116

PIV vector field, we apply post-processing steps to refine the spatial segmentation of the tissue117

involved in the contraction wave.118

2.2.1 Detection of V phase and D phase candidates. The first step in the temporal119

segmentation of the V-D movement pattern relies purely on direction information. Generally, we120

are searching in the PIV vector time series vp,{t} for a pattern of N consecutive vectors pointing121

coherently in one direction, followed by M vectors pointing coherently in a different direction.122

In the case of contraction waves in Tribolium, the direction of the first phase (the V phase) is123

constrained to the posterioventral direction. In our 2D lateral projections, we choose the normalized124

vector representing the angle bisector of the third quadrant (225 degrees, see Fig. 2A). From this125

reference vector, we define a broader region of allowable directions for the V phases by considering126
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an angular spread of ±40 degrees (θr in Fig. 2A). The range of possible directions of the D phase127

is more variable: it is broadly constrained within 180 degrees of the dorsal direction. In addition,128

we impose a minimum angle with the average direction of the V phase (θVD in Fig. 2A).129

This pattern can be detected by a sliding window approach on the normalized PIV vector field.130

For every frame t we compute the dot product between the average vector of the normalized PIV131

vectors around t, [t−N, t+N ], and the normalized reference vector for the V phase, r. Due to the132

sliding window approach this dot product is again a function of time, denoted as ρ(t) (Fig. 2B).133

This measure is maximized if all vectors in the considered window point in the same direction134

as the reference vector. In other words, ρ(t) is maximized when the vectors within [t −N, t +N ]135

display low intra-group variability and simultaneously point in the direction of r. On the other136

hand, ρ(t) is minimized around time points where the PIV vectors in the considered window point137

collectively away from r.138

Most notably, ρ(t) provides an approximate location of the centers of the V and D phases of139

the waves. The local maxima of ρ(t) corresponds to time points of coherent movement in a similar140

direction to r, which correlates with the V phases. On the other hand, the local minima of ρ(t)141

mostly indicate frames where PIV vectors are coherently pointing in a different direction to ρ(t),142

corresponding to the location of the D phases. Local minima can also indicate incoherent movement143

away from ρ(t). Thus, we consider each pair of consecutive local maxima and minima as potential144

landmarks for contraction waves, as illustrated in Fig. 2B.145

The normalized reference vector r plays a major role in this step and the following step of the146

wave segmentation algorithm, and it is important to adjust the direction of r to each representation147

of the dataset. In addition, some representations require different reference vectors for different148

position in the PIV vector field, rp. This is the case for our 3D+t representation and our 2D+t149

cylinder projections, as the ventral direction at each point is determined by the geometry of each150

dataset.151

2.2.2 Extracting wave segmentations. This step takes each pair of consecutive local maxima152

and minima (tmax and tmin) extracted from ρ(t) and evaluates whether the PIV vectors surround-153

ing these time points fit to the expected pattern of the movement direction characteristic of the154

contraction waves. If this is the case, a segmentation of the V and D phases is generated. Both155

of these tasks involve evaluating a set of angle-based criteria: θr, θV, θD and θVD. The segmenta-156

tion step also considers speed-based criteria: Mmin, Mavg. Specifically, we evaluate the following157

set of conditions in the order presented below, where failing any step results in the unsuccessful158

segmentation of a wave:159
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1) We first check whether the PIV vector at tmax (vp,tmax
) points in the reference direction, r. The160

vector at this frame is characterized by low intra-group angle variances, making it representative161

of the movement in the V phase. This is tested with a threshold on the normalized dot product:162

v̂p,tmax
· r > θr (Fig. 2D left).163

2) We then check whether the angle between the representative vectors of the V and D phases164

is noticeable. The representative vector for the D phase is obtained from tmin: vp,tmin
. This is165

tested with a threshold on the following normalized dot product: v̂p,tmax ·v̂p,tmin < θVD (Fig. 2D166

left).167

3) We proceed by creating a segmentation of the V phase by the process described below (illus-168

trated in Fig. 2D middle panel). The segmentation is initialized to contain a single position,169

V = {tV , }. We expand this segmentation by iterating over the adjacent frames starting at tmax170

from nearest to farthest, and deciding whether to add them to V . A frame t is added to V if171

two conditions are met:172

– the vector at t points in a similar direction as the current segmentation of the V phase. Since173

V may contain multiple vectors, this is computed with the dot product with the average174

vector in V : v̂p,t · V⃗avg > θV175

– the vector’s magnitude is sufficiently large: ||v⃗p,t|| > Mmin176

The same process is applied to generate the segmentation of the D phase, with the only difference177

of using θD instead of θV. If the V and D segmentations are not adjacent, the vectors at the178

interface are added to the phase with the most similar direction.179

4) We impose additional conditions on the segmented V and D phases. In particular, we discard180

both the V and D segmentations if the average speed of the V phase is smaller than a threshold,181

Mavg. In addition, we include a threshold on the total distance traveled (total displacement)182

during a wave, which is computed as the sum of magnitudes along the duration of the V and183

D phases of a contraction wave.184

At the end of the segmentation step, we obtain V and D segmentations for each contraction wave185

with low intra-angle variance (parameterized by θV and θD) and significant inter-angle variance186

(determined by θVD). Speed information is used to avoid extending the segmentation over regions187

with insufficient movement. The parameters used to segment contraction waves in the different188

data set representations are provided in Table 1.189

2.2.3 Spatial post-processing of the wave segmentation. The temporal wave segmentation190

algorithm is independently applied to the vector time-series at each spatial coordinate, vp,{t},191

and therefore does not include any operations to ensure that wave segmentations are spatially192
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coherent. However, several factors throughout the pipeline impose spatial coherence of the wave193

segmentation results. Firstly, the phenomenon of interest concerns collective tissue motion, which is194

inherently spatially coherent. Secondly, spatial coherence is increased as a side product of PIV post-195

processing filters, such as local spatio-temporal averaging, which is commonly applied to remove196

high-frequency noise. Therefore, we obtain spatially consistent segmentations during wave events.197

However, we also obtained spurious segmentations in other regions of the embryo, either from198

small wave-like movements in EE membranes or from twitching movements of the embryo proper.199

We remove small wave-like detections with morphological operations. Namely, we perform mor-200

phological opening to the V and D segmentations to remove thin segmentations, followed by a201

high-pass filter by the size of the connected components in the segmented phases. Artifactual seg-202

mentations due to movements in the embryo start after rupture, as EE retraction proceeds and the203

embryo relocates itself within the egg. We remove these by filtering segmentations whose centroid204

is near the head of the embryo.205

2.3 Data processing206

2.3.1 Live imaging and fusion of 3D image volumes. Life imaging time lapses of Tribolium207

embryo development were acquired using digitally scanned laser light sheet fluorescence microscopy208

[9,10]: detection objective 10x 0.3 NA, illumination objective 2.5x 0.06 NA, Andor Clara camera.209

Mounting and sample preparation was performed as previously described [26], with the addition of210

fluorescent beads as fiducial markers to aid registrations. The embryo analyzed in this paper was211

recorded from four directions with rotation steps of 90 degrees at interval of three minutes for a212

total of 100 frames. For each frame, the four directions were registered and fused into one isotropic213

volume [7]. This produced a high-quality 3D+t dataset of 100 frames covering the late stages of214

the development of Tribolium.215

2.3.2 Lateral maximum intensity projections. In addition to the fused data, we generated216

a 2D+t dataset consisting of maximum intensity projections from one of the lateral views of the217

embryo, where the contraction waves are clearly visible.218

2.3.3 Surface mesh. Until rupture, which occurs at frame 80, the EE membranes membrane219

constitute the surface of the embryo. Therefore, we included a data-processing step in our pipeline220

for extracting the surface of each embryo, allowing us to target our analyses to the EE membranes221

signal. The surface detection for each volume was implemented as follows: First we generated a222

binary segmentation of the fused 3D volume into foreground (Tribolium signal) and background.223
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The boundary of this segmentation does not correspond directly to the surface of the embryo,224

because the foreground segmentation is based on the nuclei signal which is inherently sparse. To225

obtain a smooth surface, we sampled a 3D point cloud from the segmentation and computed their226

3D alpha shape with pymeshlab [15], generating a smooth mesh that connects the segmented nuclei227

on the surface. Lastly, we ensure to remove facets in the interior of the alpha shape, as these do228

not correspond to the surface. The surface meshes were used for restricting the PIV analyses to229

the EE membranes, and also for tissue cartography, which is covered in the next section.230

2.3.4 Cylinder projections. To reduce dimensionality and allow analysis with 2D methods,231

we followed the work of Streichan et al. [6] and used their freely available software ”Image Surface232

Analysis Environment” (ImSAnE). This allowed us to generate an atlas of overlapping maps, in233

which we could then analyze the surface dynamics of the EE membranes on cylinder projections.234

Using ImSAnE, we extracted the voxels of interest from the 3D image volume using the surface235

mesh (Section 2.3.3) and projected the voxel intensities to their respective pixels in a flat 2D236

geometry. We included 9 radial layers of the mesh, 6 towards the inside and 3 towards the outside,237

to capture a 10 voxel high radial z′ stack to ensure that we capture all nuclei of EE membranes238

without including signal from the embryo proper inside. This gave us a stack of 10 2D cylinder239

maps from which we created a maximum intensity projection. We represented the information on240

up to two cylinder projections with a 180°rotational offset to each other along the main axis of the241

mesh. We used the respective maximum intensity cylinder projections to create 2D+t time lapse242

videos for 2D PIV.243

We needed to make a few considerations when computing PIV on cylinder projections, espe-244

cially when representing the results on 2D maps. In cylinder projections, both distance and angle245

distortions are introduced. They increase gradually towards the polar region from the equator246

which has no distortion. We corrected for length distortions introduced by cartography to ensure247

that elongated or shortened PIV vectors do not impact our wave segmentation. We used a uniform248

sampling with 10 px distance to create a 2D grid. Using the function properLength in ImSAnE we249

calculated the distance that the sample points would have in 3D space. We obtained two values250

for each 10x10 tile of the grid: longitudinal distortion (from pole to pole) which is characterized251

by shortening towards the poles, and latitudinal distortion (parallel to the equator) which is char-252

acterized by elongation towards the poles. We then multiplied the distortion fields with the 2D253

PIV vector field to obtain corrected vector lengths. We do not correct for angle distortions because254

these only become significant (≫10°) very close to the poles. Instead, we crop the polar regions255

before analysis.256
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2.4 Visualization257

2.4.1 Kymographs. Kymographs are a commonly used method for visualizing spatio-temporal258

(2D+t) datasets as a 2D plot where one of the axes is the temporal dimension. The other axis259

of the plot can correspond to a line in the spatial dimension, or a projection of spatial data onto260

this line. We here used a maximum intensity projection of the data along one of the spatial axes,261

either X or Y, for the kymograph plots. We use kymographs to show the evolution of the wave262

segmentation results across time for the 2D+t dataset of maximum projections, Fig. 2, as well263

as the 2D+t dataset of cylinder projections, Fig. 3. In the case of the maximum projections, we264

generate kymographs along the anteroposterior axis. This projection illustrates changes over time265

in the segmented waves along the vertical axis. In the case of the cylinder projections, we show a266

kymograph along the dorsoventral axis, which depicts the wave segmentations of both sides of the267

embryos over time.268

2.4.2 Divergence maps. While the focus of this paper is on segmenting the contraction waves,269

we briefly explored the concurrence between contraction waves and other vector field descriptors.270

In addition to velocity maps, we computed divergence maps from the PIV result on the 2D cylinder271

projections. The divergence is useful to identify areas where the tissue density increases (constric-272

tion = negative divergence) or decreases (expansion = positive divergence). Divergence is defined273

as the sum of partial derivatives of each vector field component. This is usually implemented by274

computing vector field derivatives between adjacent elements. Computing divergence on immedi-275

ate neighbors requires that the input vector fields be very smooth, which is usually achieved by276

averaging the vector fields with a kernel of a certain size. In these cases, the size of the averaging277

kernel implicitly defines the scale of the divergence. Alternatively, we compute divergence by con-278

structing an expanding template vector field of the desired size and cross-correlating this template279

with each PIV vector field. This expanding template contains normalized vectors pointing away280

from the center of the template. The size of the template determines the scale of the divergence281

patterns. We used a kernel size of 17 × 17 pixels to compute the divergence on the PIV results282

generated from the 2D cylinder projections.283

2.5 Tribolium castaneum husbandry284

Live imaging was performed on a transgenic line of Tribolium castaneum with fluorescently tagged285

cell nuclei that expresses histone-binding nanobodies with mRuby attached - ACOS{ATub’H2A/286

H2B°NB-mRuby} #1. Beatles cultures were maintained under standard conditions at 32 °C, ∼ 70%287

relative humidity [27]. For imaging of the contraction waves, beetles were transferred on fresh flour288
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and embryos were collected for 1h at room temperature, then embryos were incubated for 45h at289

32. Dechorionation was performed during the second day of incubation.290

3 Results291

3.1 Contraction waves correlate with velocity peaks in PIV vector fields.292

By overlaying the lateral maximum intensity projections of two consecutive frames, we can visualize293

the dorsoventral shift in individual cell nuclei (Fig. 1A). PIV on the lateral maximum intensity294

projections captures the contraction waves as large regions of vectors aligned in the dorsoventral295

axis (Fig. 1B). When observing individual positions of the vector fields within the contraction296

waves, we find that the pronounced changes in vector direction are accompanied by high velocities.297

For the temporal resolution used here, the velocities exhibit a peak during the V phase of the waves298

(shown exemplarily for one position in Fig. 1C). However, also for positions outside the contraction299

region high velocities are observed, for instance during rapid retraction of the EE membrane after300

rupture (Fig. 1C). This highlights that velocities alone cannot be used for reliable temporal or301

spatio-temporal segmentation of the waves.302

3.2 Analysis of lateral maximum intensity projections yields a segmentation of303

several contraction waves before rupture and one post-rupture.304

To segment contraction waves we focus on directional information, as the observed pattern, con-305

sisting of a phase of movement in posteroventral direction followed by a phase of movement in306

dorsal direction, is a more characteristic feature of the contraction waves than local velocity peaks.307

The proposed algorithm relies on a set of angle-based criteria that define a flexible set of allowable308

directions for the V and D phases (Fig. 2A). First, we process the PIV vector fields using a sliding309

window approach (Section 2.2, Fig. 2B). From this, we detect candidate positions for the V and D310

phases, and then construct the V phase and D phase segmentations iteratively in a second step.311

In this way, we were able to capture ventral (V) and dorsal (D) phases of variable duration. As a312

first simple test case, we generated segmentations of the contraction waves both in time (Fig. 2C)313

and space (Fig. 2 E, F, G) for 2D microscopy data, in particular for a lateral maximum intensity314

projection of the images.315

The chosen set of parameters requires coherence of direction in the V and D phases, but allows316

for a large flexibility in the angle defining the ventral movement, and also in the relative angles of317

motion between the V and the D phases. With this, the algorithm can detect pre-rupture waves318

(Fig. 2E) and post-rupture waves (Fig. 2F) with the same set of parameters, even though the319
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angular spread between the V and D phases in pre- and post-rupture waves is very different. In320

the kymograph we can identify the presence of five contraction waves before rupture, and one after321

rupture (Fig. 2G).322

After frame 80 the EE membranes rupture and retract to the dorsal side. This involves the323

collective movement of the entire EE membranes and high velocities at the retracting edge. The re-324

traction phase might also introduce significant ventral and dorsal movement components. However,325

the choice of parameters (see Table 1) guarantees that contraction waves can be safely distinguished326

from and are not confused with processes of EE membrane withdrawal.327

3.3 Wave segmentation on the full EE surface illuminates the spatial characteristics328

of the contraction wave.329

In the next step we performed an analysis on the full spatial dynamics of the contraction waves330

in 3D. Because we were only interested in the EE membrane, we extracted the surface from fused331

3D image data (Section 2.3.3, Fig. 3A) and used it as a mask for PIV analysis. Masked data has332

multiple benefits: (1) the input data for 3D PIV is smaller, making PIV computationally cheaper333

and faster, and (2) the mask reduces interfering signals, e.g., motion of embryo proper, which might334

impact PIV results due to signal entanglement.335

We performed 3D PIV on the masked 3D image, and used the same parameters for contraction336

wave detection and segmentation as for the lateral projections (Section 2.3.2). In particular, we used337

a single static reference vector r pointing in ventral direction. With this approach the contraction338

waves are detected, and can be segmented and visualized also in 3D (see Fig. 3B). PIV analysis and339

subsequent contraction wave segmentation in 3D showed that the contraction waves occur on both340

lateral sides and are largely synchronized. With the static reference vector, however, we expect to341

capture only a fraction of the tissue area involved in the contraction dynamics as the movement342

occurs on a curved surface. Hence, movement towards the ventral area involves a dorsal-ventral343

direction only in lateral regions, while in ventral and dorsal areas lateral components dominate. A344

possible solution to better capture the 3D dynamics would be to use a spatially resolved reference345

vector field tangential to the surface.346

Instead, we decided to adopt tissue cartography, a method to represent data from a (closed)347

surface embedded in 3D by projection onto 2D maps (Fig. 3C). PIV was performed on the 2D348

maps, using correction of the length distortions (Section 2.3.4). For wave segmentation we used349

two reference vectors, r1 and r2, for the vectors on the right and left side of the embryo. The direct350

visualization of the contraction waves on the mapped surface, as well as a kymograph along the351

dorsoventral axis allow for a comparison of the waves on the left and the right side of the embryo352
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(Fig. 3D). In this dataset, the contraction waves on the left side precede the waves on the right353

side (Fig. 3D). This phase shift was very small (one frame, i.e., 180 s). The tissue area involved in354

the contraction waves on both lateral side also differs, with the area on the left being consistently355

smaller than the segmented area on the right (Fig. 3C). In addition, the kymograph (Fig. 3D) shows356

that the duration of the V phase is generally shorter than the D phase, a dynamics indicating an357

abrupt contraction followed by an extended relaxation phase. This consistent signature of the two358

contraction wave phases is also supported by the velocity dynamics at individual positions, as359

shown in (Fig. 1C).360

3.4 Repetitive flow pattern of divergence minima coincides with the progression of361

contraction waves.362

Finally, we used the divergence of the vector field to identify tissue regions in the EE membranes363

that, by local constriction (negative divergence) and expansion (positive divergence), could poten-364

tially generate the observed waves. We quantified the local divergence minima and maxima during365

the frames of ongoing contraction waves and overlaid them on the cartography maps (Fig. 3E).366

Coinciding with the small phase shift in the onset of the ventral phase of the contraction waves367

between the two sides of the embryo (Section 3.3), we found a characteristic pattern in the spatial368

localization of the divergence minima for several consecutive time frames (Fig. 3E). Specifically,369

the minima moved from the left side of the embryo proper, down to the posterior pole, and up to370

the right side, coinciding with the progression of a contraction wave and being repeated for each371

detected wave in a similar manner, as shown by augmenting cylinder projections (Fig. 3F).372

4 Conclusion373

We present an approach for the spatio-temporal analysis of movement patterns in 3D biological374

tissues that involves movement quantification by PIV, segmentation of tissue areas showing charac-375

teristic movement behavior, and different representations of 3D microscopy data. Here, we applied376

it to detect contraction waves in the extra-embryonic membranes of the beetle Tribolium casta-377

neum. Central to our approach is the algorithm for the detection and segmentation of biphasic378

movements in 2D+t and 3D+t biological datasets.379

This algorithm is based on selecting a flexible set of rules to detect a priori defined patterns.380

These rules combine angle-based and speed-based criteria, since velocities alone are not enough381

to differentiate between EE contraction waves and other rapid developmental events, e.g. EE382

membranes rupture and retraction. The algorithm includes only a few parameters that control the383
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tolerances, which allowed us to reliably detect both pre- and post-rupture contraction waves. The384

fact that the algorithm accepts a separate reference vector for each position of the vector field385

opens interesting possibilities in the future, e.g. the possibility to define multiple locations around386

which contraction waves may be detected.387

We applied the wave segmentation approach separately to three different representations of388

our Tribolium dataset: (1) lateral maximum intensity projections, (2) surface voxels of 3D fused389

data, (3) cylinder maximum intensity projections. For each of these representations we defined a390

set of reference vectors indicating the wave direction we want to segment. The lateral maximum391

intensity projections require only one reference vector, allowing us to quantify a change in the392

contraction wave orientation after EE membranes rupture. To study the full spatial characteristics393

of the contraction wave, we moved to fused 3D data. In a 3D representation of the data, however,394

we found that using only one reference vector is not sufficient to segment the full area of a wave395

due to Gaussian curvature. Here, each vector field position would require a unique reference vector396

tangential to the surface. Instead of expanding to a field of reference vectors, we created cylinder397

projections on which we could define two mirrored reference vectors and corrected our wave seg-398

mentation for distortions [6]. The advantage of this approach is that we unroll the EE membranes399

into a flat 360 degree longitudinal representation allowing for a curvature-free 2D analysis of the400

surface around the equator and removing potentially coinciding signal from the bulk, specifically401

the embryo proper.402

Additionally, cylinder projections enabled us to track a characteristic ”U”-shaped flow of neg-403

ative divergence in consecutive frames, which was characteristic of multiple waves: the contraction404

propagates posteriorly over one side of the embryo, crosses the ventral line, and moves anteriorly405

over the other side. This might be indicative of a propagating focus of contractility that tugs on406

the neighboring tissue and causes the displacement of nuclei, which we perceive as a contraction407

wave. The trajectory of this contractile focus is non-intuitive, and might hint at a more complex408

interaction between geometry, structural and regulatory elements involved in the contraction wave409

dynamics in this organism. In any case, the repetitive unidirectional shift of the divergence minima410

may be an important biological insight and needs to be supported on a bigger sample size.411

The method presented here in combination with high throughput imaging techniques and412

2D/3D PIV [18] will be used in our future work to not only qualitatively characterize and seg-413

ment the contraction waves but to statistically evaluate the count, size and shape of contraction414

waves over multiple waves in multiple samples. With this, we hope to answer questions revolving415

around contraction wave dynamics: e.g. How many waves occur before and after rupture? Does the416

area of the waves differ between consecutive wave cycles? Do they change their shape, orientation417

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609389doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609389
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 Pereyra et al.

or location? The computing time and robustness of the spatio-temporal segmentation approach418

make it possible to apply it to multiple 3D datasets, acquired with, e.g., light-sheet fluorescence419

microscopy that produces image volumes of 1-5 Terabyte per dataset. This makes the method420

also relevant for smart microscopy where a faster acquisition mode is triggered by a characteristic421

spatio-temporal pattern [12], and therefore allows to image rapid processes of EE membranes, such422

as rupture and retraction, with increased temporal resolution. Moreover, the 3D version of this423

method does not necessarily have to be used on the surface of the sample. Instead, the surface424

layer can be “peeled off” to allow 3D analysis of the bulk of the embryo in order to potentially425

identify wave-like dynamics of the embryo proper or the yolk.426

Similar waves have been studied in other distant biological systems, e.g., a simple marine427

animal Trichoplax adhaerens [1] and an agglomeration of sea star embryos that form a confluent428

sheet [28], where waves occur in the presence of global movements, i.e., locomotion and cluster429

rotation, that could be disentangled by moving to a relative reference frame such that the relative430

(angular) velocity is zero. Our algorithm, however, was designed to segment contraction waves431

in the presence of local spatio-temporal dynamics that are prevalent in multi-layered embryonic432

systems, such as the movement of the yolk and the embryo proper underneath the EE membranes,433

which required an approach based on angles and velocities. In general, the wave detection presented434

in this work, is applicable to other multi-cellular or multi-agent systems and is extendable for other435

spatio-temporal patterns in case they are collective and quantifiable by PIV, e.g., rhythmic yolk436

contractions in goldfish eggs and embryos [20].437
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Table 1: Parameters for wave segmentation algorithm.

Lateral projections 3D fused volumes Cylinder projections

rx − cos(45°) − sin(8.4°) ± cos(45°)
ry − sin(45°) sin(45°) cos(8.4°) − sin(45°)
rz 0 − cos(45°) cos(8.4°) 0

θr 45° 50° 50°
θV 60° 60° 40°
θD 60° 60° 40°
θVD 30° 30° 30°

Mmin 0.5 px/frame 0.5 vx/frame 1.0 px/frame
Mavg 1.0 px/frame 1.0 vx/frame 3.0 px/frame
Mtotal 10 pixels 10 voxels 10 pixels
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14. Mâıtre, J.L., Niwayama, R., Turlier, H., Nédélec, F., Hiiragi, T.: Pulsatile cell-autonomous con-471

tractility drives compaction in the mouse embryo. Nature Cell Biology 17(7), 849–855 (Jun 2015).472

https://doi.org/10.1038/ncb3185473

15. Muntoni, A., Cignoni, P.: PyMeshLab (Jan 2021). https://doi.org/10.5281/zenodo.4438750474

16. Nickel, M.: Kinetics and rhythm of body contractions in the spongetethya wilhelma(porifera:475

Demospongiae). Journal of Experimental Biology 207(26), 4515–4524 (Dec 2004).476

https://doi.org/10.1242/jeb.01289477

17. Panfilio, K.A.: Extraembryonic development in insects and the acrobatics of blastokinesis. Develop-478

mental Biology 313(2), 471–491 (Jan 2008). https://doi.org/10.1016/j.ydbio.2007.11.004479
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Fig. 1: Quantification of contraction waves through PIV. A Lateral view of Tribolium castaneum
(left). Contraction waves are visible from the lateral views as dorsoventral back-and-forth move-
ments of cells of the EE membranen. Each one of the three panels on the right illustrates the
movement of the EE membrane cells by overlying the intensities of two consecutive frames: red for
the first frame and blue for the second frame. B 2D+t PIV results on lateral maximum projections.
The contraction waves are captured in the PIV vector fields and are spatially coherent. Two posi-
tions of the vector field are highlighted: the blue-bordered vectors, and the orange-bordered vectors.
C Temporal evolution of the PIV vectors at the highlighted positions in B. The blue vectors do
not show any contraction waves, but still show sporadic velocity peaks of about 7-10 px/frame
before rupture, as well as a large velocity peak after rupture. The orange vectors illustrate the
appearance of PIV vectors in regions of contraction waves. In particular, this vector series shows
five waves before rupture and at least one wave after the time of rupture. There is a high velocity
peak around frame 90 due to the retracting EE membranes crossing this position of the vector
field.
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Fig. 2: Wave detection algorithm for 2D lateral projections.AWe define a set of allowable directions
for the V phases by considering an angular spread (θr) around the direction of a reference vector
(r). The direction of the D phases is restricted by their angle (θVD) to the average direction of the
preceding V phase. The direction of the D phase is restricted to (−90◦, 90◦) from the dorsal axis, and
by the angle to the average direction of the V phase (θVD). We also limit the spread of the vectors
within the V and D phases, θV and θD.B Sliding window quantification of direction similarity
(ρ(t)) on a vector time series, vp,{t}, between time points 10 and 60. C Wave segmentation results
for the same vector time series. D The segmentations in panel C were generated starting with
pairs of local maxima and minima of ρ(t) whose directions are consistent with the a-priori angles
for the V and D phases (left). The expansions of the V and D segmentations (middle), and their
post-processing (left) are parametrized by angle and speed-based criteria. E Example of 2D wave
segmentation results of a pre-rupture contraction wave. Before rupture, the vectors of the V and
D phases point in opposite directions. F Example of the 2D wave segmentation of a post-rupture
contraction wave. After rupture the angle between the V and D phases is smaller than during pre-
rupture waves. G Kymograph along the anterior-posterior axes of the wave segmentation results
on the 2D+t datasets of maximum projections for all 100 frames.
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Fig. 3: Advanced wave detection pipelines. A Example of surface mesh extraction for one frame. We
used the detected surfaces both as a mask during 3D PIV analyses and to generate a cartographic
representation of the surface. B Wave detection on 3D+t vector fields. C Wave detection on 2D+t
cylinder projections. These projections provide a 360°view of the surface, allowing to detect and
visualize contraction waves continuously on both lateral sides of the embryo. The three panels on
the left-most column show the progression of one contraction wave. The segmentation on the left
side is smaller and precedes the one on the right side. D The kymograph summarizes the wave
detection for multiple frames, showing the presence of five waves before rupture and one after
rupture. E In addition, by analyzing the divergence of the PIV vector fields from the cylinder
projections, we observed a flow of positive and negative divergence extrema from the left side of
the embryo to the right side. This divergence flow correlates with the progression of the wave.
F Negative divergence (convergence) flows during the three waves prior to rupture. We exploit
the periodic boundary of the cylinder projections to visualize the progression of the divergences
flow across time by concatenating a projection of frame 54 three times and representing negative
divergence calculated on frame 42 up to 67.
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