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Abstract 27 

Sample multiplexing provides a solution to limited sample throughput in single-cell RNA sequencing 28 

(scRNA-seq) experiments. Different strategies for multiplexing are commercially provided by Parse 29 

Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex combined with microfluidic cell 30 

capture (10x). However, the extent to which these two techniques differ when characterizing complex 31 

tissues such as regionalized neural organoids and whether data generated from the two techniques can 32 

be readily integrated is unknown. Cerebellar organoids are a highly relevant model for understanding 33 

evolutionary differences, developmental trajectories, and disease mechanisms of this brain region. 34 

However, they have not been extensively characterized through scRNA-seq. Therefore, we compared the 35 

two multiplexing techniques, 10x and Parse, using cerebellar organoids derived from three stem cell lines. 36 

While both strategies demonstrated technical reproducibility and revealed comparable cellular diversity 37 

including the main lineages of cerebellar neurons, we found more stressed cells in 10x than in Parse. 38 

Additionally, we observed differences in transcript capture, with Parse covering a higher gene biotype 39 

diversity and less mitochondrial and ribosomal protein coding transcripts. In summary, we demonstrate 40 

that both techniques provide similar insight into cerebellar organoid biology, but flexibility of 41 

experimental design, capture of long transcripts, and the level of cell stress caused by the workflow differ. 42 

 43 

Introduction 44 

Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states, 45 

and lineages in various biological systems and provides a new readout in screening applications and drug 46 

development1,2. Further, scRNA-seq is broadly applied to investigate cellular mechanisms in various model 47 

systems in health and disease3. The use of scRNA-seq has been limited by technically challenging 48 

workflows, often resulting in relatively low sample throughput in single experiments4,5. However, an 49 

adequate number of cells per sample and sufficient biological replica are essential for the success of 50 

single-cell transcriptomic studies. Effective cell sampling maximizes the capture of cellular heterogeneity, 51 

allowing for the precise identification and clustering of rare cell populations6. Large numbers of cells 52 

contribute to robust statistical power, facilitating the detection of subtle changes in gene expression. 53 

Biological replicates are crucial to distinguish true biological variability from technical noise, allowing 54 

reliable inference of cellular responses to experimental manipulations6. Recent advances in 55 

commercialized kits have overcome some of the technical obstacles limiting sample throughput by 56 

enabling sample multiplexing. Thereby both the number of cells assayed and the number of possible 57 

replicates or biological samples in a single experiment can be increased. The different approaches to 58 

multiplexing of scRNA-seq are characterized by differential sample throughput. Additionally, multiplexing 59 

can help detect multiplets and facilitates their removal prior to analysis7. While combinatorial barcoding 60 

is inherently multiplexed, microfluidic approaches require an additional labeling step for barcoding, 61 

mediated by antibodies or lipids8. Thus, from a technical perspective, multiplexing of samples allows 62 

upscaling experiments. However, increasing the number of samples remains technically challenging when 63 

working with fresh tissue because tissue dissociation, a highly manual process, needs to be 64 

parallelized9. Fixation of the dissociated cells before capture overcomes this obstacle, and different 65 

samples, for instance from different experimental time points, can be processed together, thereby 66 

avoiding batch effects of the capture. 67 

Two commercialized approaches for sample multiplexing employ these different strategies and are 68 

commonly used by laboratories across the globe: 10x Genomics (hereafter, 10x) offers a microfluidic 69 
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approach, while Parse Biosciences (hereafter, Parse) relies on combinatorial barcoding of fixed cells. The 70 

kits allow multiplexing of 12 (10x) or up to 96 samples (Parse). The higher the number of multiplexed 71 

samples, the lower are the per-sample costs of cell capture with both strategies. Despite their broad use 72 

in the scientific community, the two commercial technologies for multiplexed scRNA-seq, 10x and Parse, 73 

need to be compared in depth concerning their performance regarding differential transcript capture, cell 74 

type enrichment, and the amount of information that can be inferred from secondary analyses. A recent 75 

study compared both technologies using peripheral blood mononuclear cells (PBMCs) and demonstrated 76 

that Parse had a higher sensitivity for detecting rare cell types10. Furthermore, it was shown that Parse 77 

covered a wider range of gene lengths, and that 10x was biased towards more GC-rich transcripts10. 78 

However, it remains unclear, to what extent these differences apply and potentially affect downstream 79 

analysis of other cell types and highly complex tissue samples that require dissociation.  80 

In parallel to scRNA-seq technologies, protocols for human induced pluripotent stem cell (iPSC)-derived 81 

organoids have been developed and have rapidly gained importance in biomedical research over the last 82 

decade3,11,12. Particularly, the establishment of brain, or neural, organoids has greatly impacted 83 

neuroscience research as they allow to investigate the developmental stages that usually happen in utero 84 

and are experimentally hardly accessible13. Over the last few years, the protocols for generating neural 85 

organoids have been modified to generate regionalized tissues resembling neocortex, midbrain and 86 

cerebellum14-17. Regionalized neural organoids are more homogeneous and contain specialized cell types 87 

compared to non-regionalized organoids and are, therefore, a particularly powerful tool to study human 88 

neurodevelopment18, to model neurological disorders19,20, and to test on- and off-target effects of 89 

pharmaceuticals21,22. Despite their advantages and broad application, they can be a challenging model 90 

system due to the heterogeneity between batches of differentiation and iPSC lines, the diversity of 91 

generated cell types, and off-target tissue23,24. These limitations highlight that neural organoids require 92 

comprehensive characterization of cell and tissue types at single cell resolution by high-throughput 93 

technologies such as scRNA-seq to exploit their full potential3. Further careful characterization of new 94 

protocols with multiple iPSC lines should be performed to ensure reproducibility across cell lines25.  While 95 

neocortical organoids are broadly used and extensively characterized through scRNA-seq, much less data 96 

is available for other regionalized neural organoids such as cerebellar organoids15,26-29.  97 

The human cerebellum has long been thought to mainly be involved in motor learning and coordination30, 98 

however more recent insights into cerebellar function, describe its major contribution to cognitive 99 

functions such as attention, task execution, working memory, language and social behavior31, and a role 100 

in neurodevelopmental disorders such as autism spectrum disorder (ASD)32,33. Considering that 101 

regionalized neural organoids, including cerebellar organoids, depict the cellular compositions and 102 

mechanisms of the developing human brain3434343434343434, they are a promising tool for studying 103 

neurodevelopmental disorders affecting the cerebellum. Early developmental stages of cerebellar 104 

ontogenesis are conserved across species, with two progenitor zones arising in the rhombencephalon 105 

r135,36. These two progenitor zones are the ventricular zone (VZ) and the rhombic lip (RL). The VZ gives rise 106 

to all inhibitory neurons of the future cerebellum, including Purkinje cells (PC) and inhibitory neurons of 107 

the deep cerebellar nuclei. In contrast, the RL generates all excitatory neurons, including, for example, 108 

granule cells (GC) and excitatory neurons of the deep cerebellar nuclei37. However, the human cerebellum 109 

is uniquely characterized by features including changes in neuronal subtype ratios and folial complexity 110 

with respect to other mammals37,38. Moreover, a comparison between human and non-human primates 111 
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has revealed the existence of a distinct basal progenitor population within the VZ and a longer persistence 112 

of neural progenitors originating from the RL in humans39. 113 

To date, cerebellar disorders such as cerebellar hypoplasias, Dandy-Walker Syndrome, ataxias, and 114 

medulloblastoma have mainly been studied in mouse or zebrafish models40-43. Cerebellar organoid models 115 

now provide an interesting avenue to model these disorders in a human tissue context28, as pioneered in 116 

several recent studies20,44,45. However, the protocols underlying their generation are still being 117 

improved15,27,29, and few single-cell RNA datasets of selected cell lines are available15,29,46. Moreover, 118 

recent publications on cerebellar organoid differentiation performed scRNA-seq on only one iPSC line27,29. 119 

Hence the reproducibility for different iPSC lines is yet to be tested. 120 

Taken together, (regionalized) neural organoids such as cerebellar organoids hold great potential to 121 

understand human-specific brain development in health and disease. However, these models can display 122 

heterogeneous results and efficiencies across batches and cell lines and require precise characterization 123 

of the cellular population and transcriptional profiles. Different scRNA-seq techniques have been reported 124 

to show individual strengths and weaknesses in PBMCs10. To investigate how these differences could 125 

potentially impact the analysis of scRNA-seq data of complex, heterogeneous and 3-dimensional (3D) 126 

tissue such as regionalized neural organoids, we generated cerebellar organoids from three iPSC lines and 127 

performed an in-depth comparison of 10x with Parse on both technical and biological levels. 128 

Results 129 

Experimental design and quality assessment 130 

To assess the reproducibility of cerebellar organoid differentiation and comparability of two scRNA-seq 131 

methods, we differentiated three publicly available iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1J) 132 

into cerebellar organoids (Fig. 1a). All three cell lines were handled in parallel throughout the culture 133 

period. Samples were harvested at day 35 (D35) and day 50 (D50) of differentiation, and pools of 24 134 

organoids per cell line and time point were dissociated into single cells. One aliquot of each cell suspension 135 

was used to perform 10x, the other to perform Parse scRNA-seq. For 10x, individual samples were labelled 136 

with cell multiplexing oligos (CMO), pooled, and then split into two lanes of a 10x chip and processed by 137 

10x 3’ Gene Expression experimental pipeline (Fig. 1a). In parallel, the second aliquot was fixed according 138 

to the Parse protocol and stored at -80°C. Frozen samples of both time points (D35, D50) were 139 

subsequently subjected to combinatorial barcoding, and two sub-libraries were sequenced. For simplicity, 140 

we will refer to Parse sub-libraries as “libraries” throughout the manuscript. This experimental design 141 

enabled us to minimize the effect of biological variability and to focus on differences arising solely from 142 

the two techniques, 10x and Parse. 143 

For both technologies, libraries were sequenced to achieve over 50,000 reads per cell (Supplementary 144 

Table 1). Due to varying sequencing depth, raw FASTQ files were downsampled to 50,000 reads per cell 145 

to allow a direct comparison of gene detection sensitivity (Supplementary Table 1). They were further 146 

processed through technology-specific alignment pipelines with human genome hg38: cellranger v7.2.0 147 

multi pipeline for 10x samples and split-pipe v1.1.2 for Parse samples. 148 

We first assessed the library efficiencies for both methods and found that, in both cases, most reads were 149 

mapped to the genome (93.2% for 10x, 91.8% for Parse, Supplementary Fig. 1a, Supplementary Table 2). 150 

While 56.3% of reads in 10x were mapped to exons, only 30.1% of reads were mapped to exons using 151 

Parse (Supplementary Fig. 1a, Supplementary Table 2). Valid barcodes were identified for 97.2% for 10x 152 
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and 79.9% for Parse (Supplementary Fig. 1a, Supplementary Table 2). The cell recovery rate was 42.7% for 153 

10x and 16.5% for Parse (Supplementary Fig. 1b, Supplementary Table 2). 154 

To enable further comparisons, the technology-specific cell-by-gene count matrices were merged. We 155 

found that 32,408 genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes 156 

were uniquely expressed in 10x and Parse datasets, respectively (Supplementary Fig. 1c). While the 157 

number of genes in the merged matrix was 62,910, it did not correspond to the number of genes with 158 

non-zero expression throughout the cells (Supplementary Fig. 1d). We therefore removed genes that had 159 

a non-zero expression in less than 8 cells in the merged count matrix. The resulting count matrix contained 160 

38,580 genes. 161 

For further analysis, we used the following combination of metadata parameters to assign cells to samples 162 

unless stated otherwise: (1) the technology (10x vs Parse); (2) the day of differentiation (D35 vs D50) of 163 

cerebellar organoids; and (3) the sequencing library (L1 and L2). Day of differentiation was used as 164 

covariate to acknowledge both biological differences in the stage of organoid differentiation and technical 165 

differences arising from harvesting D35 and D50 samples on different days. The sequencing library was 166 

used as a covariate to show the reproducibility of the workflow within each technology. In both 167 

technologies, libraries consisted of different cells, not different sequencing rounds. 168 

Cell-level quality control (QC) was performed to remove cells with either a low or high number of detected 169 

genes, low number of genes per unique molecular identifier (UMI), and high percentage of mitochondrial 170 

protein-coding transcripts (Supplementary Fig. 1e). After QC, we recovered on average 87.2% of cells from 171 

10x and 95.6% of cells from Parse datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226 172 

cells). The number of detected reads per cell did not vary between the technologies before filtering 173 

because of the downsampling of reads approach we took to correct for differences in sequencing depth 174 

(p ≥ 0.05, Supplementary Fig. 1e). However, the number of genes per cell was higher in Parse both before 175 

and after QC (p < 0.001, Fig. 1b), suggesting that there might have been a higher diversity of detected 176 

gene biotypes in the Parse dataset. Indeed, while protein-coding genes were the most abundant gene 177 

biotype in both technologies, their percentage of the total reads was significantly smaller in Parse than in 178 

10x (p < 0.001, 10x, 93.2 ± 2.9; Parse, 88.7 ± 2.1; mean ± SD) (Fig. 1b, Supplementary Fig. 1e). In contrast, 179 

Parse recovered a higher proportion of non-coding RNAs (ncRNA) reads, including long non-coding RNAs 180 

(lncRNA) (p < 0.001; 10x, 6.7 ± 3.1; Parse, 9.2 ± 2.3; mean ± SD) (Supplementary Fig. 1f), which have 181 

previously been shown to be informative for cell type identification47. The difference in ncRNAs and exonic 182 

reads can be explained by primers used for reverse transcription: Parse uses a mixture of random hexamer 183 

and poly-dT barcoded primers for reverse transcription8, while 10x uses only poly-dT primers. 184 

Additionally, the percentage of mitochondrial and ribosomal protein-coding genes was lower in the Parse 185 

than in the 10x samples. In contrast, the percentage of reads originating from transcription factors (TF) 186 

among protein-coding genes was higher in the Parse than in the 10x dataset (Fig. 1b, Supplementary Fig. 187 

1e). In line with the observation of higher gene biotype diversity in Parse data by Xie and colleagues 10, 188 

this suggested differential gene detection between the two technologies. Indeed, when we analyzed the 189 

correlation of gene expression between the two technologies across cells, we found only a moderate 190 

correlation, which corresponded to previous findings (Pearson’s r = 0.6) (Fig. 1c)10. 191 

Different bulk and single-cell RNA-seq technologies are known to have biases in gene detection based on 192 

gene properties such as GC content and gene length10,48. To characterize these biases in our cerebellar 193 

organoid model, we analyzed the correlations between gene abundance and gene length or GC content, 194 
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respectively, in both technologies (Fig. 1d, Supplementary Fig. 1f). When all expressed genes per 195 

technology were used for gene length and GC content analysis, small but statistically significant 196 

differences were observed (p < 0.001, Supplementary Fig. 1f). However, when we analyzed both 197 

parameters in differentially expressed genes (DEG) per technology (10x, 2,737 DEGs; Parse, 4,055 DEGs), 198 

we observed large differences in both gene length and GC content, reminiscent of previously published 199 

results (transcript length, bp: 10x, 1302.4 ± 728.0; Parse, 2715.9 ± 1754.8; GC content, %: 10x, 50.3 ± 8.2; 200 

Parse, 43.8 ± 6.5; mean ± SD)10. While a bias towards detecting longer genes in Parse was observed both 201 

for protein-coding genes and lncRNA, the difference was higher for the former (transcript length, bp: 202 

protein-coding genes, 10x, 1300.2 ± 720.3; Parse, 2901.1 ± 1748.9; lncRNA, 10x, 1352.9 ± 888.7; Parse, 203 

1595.5 ± 1311.1; mean ± SD) (Supplementary Fig. 1g). Finally, we performed an extensive analysis of gene 204 

detection sensitivity and biases largely corroborating results from the previous benchmarking study on 205 

PBMCs10 (Supplementary Table 2) in a different sample type, human cerebellar organoids, therefore 206 

suggesting that the observed differences are characteristic features of 10x and Parse technologies 207 

independent of the sample type. 208 

Technical and biological differences between technologies 209 

Following the scRNA-seq QC workflow described above, we normalized the data and revealed highly 210 

variable genes for further Principal Component Analysis (PCA) as well as Uniform Manifold Approximation 211 

and Projection (UMAP) on unintegrated data (Fig. 2a). As expected from previous results and our findings 212 

on the QC level, both PCA and UMAP revealed major differences between the technologies. We 213 

hypothesized that these differences may be arising from different sample preparation procedures 214 

between the technologies. Single cell suspensions for Parse analysis were immediately fixed and frozen 215 

after dissociation, while cells undergoing 10x capture were live cells depleted of nutrients from the media 216 

for longer (including time periods for multiplexing with CMOs, transportation to the sequencing facility, 217 

cell counting and viability assessment) and passed through microfluidic channels of the instrument before 218 

lysis. 219 

Hence, we hypothesized that cellular stress may be a major contributor to differences between samples. 220 

We analyzed the expression of gene ontology (GO) modules involved in different modalities of cellular 221 

stress (e.g., GO terms for response to oxidative stress, cellular response to starvation) as well as 222 

downstream effects such as programmed cell death and integrated stress response (ISR) (Supplementary 223 

Fig. 2a). Module, or gene signature, expression analysis evaluates the expression of a set of genes rather 224 

than individual genes thereby providing hypothesis-driven insights into biological functions49. We included 225 

a random set of genes of average size of other gene sets into module expression analysis to serve as an 226 

internal control (Supplementary Fig. 2a). We performed hierarchical clustering of average GO module 227 

expression scores across samples, which revealed that samples from the two technologies clustered apart 228 

(Supplementary Fig. 2a). We also noticed that the major differences came from three cellular stress terms: 229 

response to oxidative stress, glycolytic process, and ISR signaling (Supplementary Fig. 2a). When using 230 

only these three modules and the random set for hierarchical clustering, the results were identical to the 231 

full list of cell stress terms (Fig. 2b, Supplementary Fig. 2a). 232 

To understand the impact of cell stress on the dataset we further aimed to determine the number of cells 233 

with high cell stress transcriptomic signature. Therefore, we performed Gruffi cell stress assessment50 234 

using two of the top cell stress terms from the module expression analysis: glycolytic process 235 

(GO:0006096) and ISR signaling (GO:0140467). With thresholds set to 95.5% quantile for GO:0006096, 236 

89.8% quantile for GO:0140467 and no threshold for neurogenesis (GO:0022008) (Supplementary Fig. 2b), 237 
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we found that the percentage of stressed cells varied between technologies but also between days of 238 

organoid differentiation (Fig. 2c,d). There were more stressed cells in the 10x data than in the Parse data, 239 

and both technologies captured more stressed cells in D50 than in D35 cerebellar organoids (Fig. 2d). This 240 

finding can be explained by the diffusion-based distribution of nutrients in organoids leading to an 241 

increasing nutrient deficiency as organoids grow bigger (D50 vs. D35)23,51. We therefore removed cells 242 

that were classified as stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis, 243 

integrated normalized counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis 244 

revealed that the data from the two technologies can be easily integrated (Fig. 2e). 245 

To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines, 246 

we characterized the cellular diversity within organoids. We first aimed to understand whether organoids 247 

had neural identity. We therefore performed reference-query mapping of our dataset onto the human 248 

developmental transcriptome using Azimuth52,53. The reference dataset contained cells from 15 organs of 249 

human fetuses at 72 to 129 days post-conception, and the cells were captured using sci-RNA-seq352. We 250 

first assigned our cells with cell types from this dataset52 (Supplementary Fig. 2c). The mapping score was 251 

high (0.71 ± 0.17, mean ± SD) (Supplementary Fig. 2d), indicating that our dataset corresponded well to 252 

the reference dataset53. However, the prediction scores varied between cells (0.59 ± 0.26, mean ± SD), 253 

with most cells not reaching a high-confidence prediction score of 0.7553. Given the relatively low 254 

prediction scores, we did not rely on specific annotation to certain cell types but further grouped the cells 255 

into two categories – neural and non-neural (Fig. 2f, Supplementary Table 3). We found a considerable 256 

portion of cells having non-neural identity (Fig. 2f) with subsets of cells expressing muscular markers (e.g., 257 

MYOD1 and MYOG54) and endo-/mesodermal markers (e.g., FGF10, mesenchymal marker55) (Fig. 2g). In 258 

contrast, most cells classified as neural expressed the pan-neuronal marker STMN2 (Fig. 2g). Overall, the 259 

proportion of neural cells ranged from 46.0% to 60.7% per sample (Fig. 2h). Importantly, considerable 260 

differences were observed between the three iPSC lines that the organoids were generated from (Fig. 2i). 261 

The BIONi010-C cell line had the highest number of neural cells (range, 74.5 to 89.0%), while KOLF2.1J-262 

derived cerebellar organoids had 23.0 to 50.3% neural cells (Fig. 2i). Interestingly, D35 KOLF2.1J samples 263 

had about 50% neural cells, while at D50 only about 25% of cells were identified as neural (Fig. 2i) 264 

indicating that cells with neural identity do not proliferate further or die in comparison to other lineages. 265 

To cross-validate our assignment to neural and non-neural cells, we adapted Gruffi50 for detecting neural 266 

and non-neural transcriptomic signatures. For that, we used GO terms for endoderm (GO:0001706, 57.8% 267 

quantile threshold) and mesoderm (GO:0001707, 66.7% quantile threshold) formation for selecting non-268 

neural cells and GO terms for nervous system development (GO:0007399, 65.7% quantile threshold) and 269 

neurogenesis (GO:0022008, 64.8% quantile threshold) for selecting neural cells (Supplementary Fig. 2e). 270 

The results between reference-query mapping and Gruffi were coherent (82.6% classification overlap, 271 

Supplementary Fig. 2f). Inconsistent annotations between the two approaches were observed for 272 

putatively muscular cells (positive for MYOG and MYOD1) which were incorrectly classified as neural by 273 

Gruffi. We suggest that this discrepancy may be due to the shared excitability between neural and 274 

muscular cells. 275 

Characterization of neural cell diversity 276 

Based on the reference-query mapping with the human developmental transcriptome52, we subset neural 277 

cells (19,526 neural cells out of 37,452 cells) and additionally downsampled 10x and Parse datasets to an 278 

equal number of cells (resulting in 7,212 cells per technology). We subsequently performed the 279 

integration and dimensionality reduction approach as described above. 280 
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Following developmental patterning in vivo, various experimental setups in vitro have found that 281 

forebrain structures develop upon neural induction, unless exposed to caudalizing factors56. Additionally, 282 

the gene expression program for telencephalon regionalization was upregulated in the cerebellar 283 

organoid protocol we used in the current study26. Hence, we aimed to reveal the brain regional identity 284 

of the neural cells. We analyzed the correlation of brain regional marker gene expression between our 285 

dataset and human brain transcriptomic data from postconceptional week (PCW) 12-13 from 286 

BrainSpan57,58. We used the list of brain regional markers compiled from the top 10 markers of different 287 

brain regions based on gene expression in E15 mouse brain57 (Supplementary Table 4). We found that all 288 

our samples had the highest correlation with the cerebellum (Supplementary Fig. 3a). However, when 289 

similarity scores were not scaled, we noticed that they were higher for 10x than for Parse samples (Fig. 290 

3a). Next, we aimed to assign cell type identities to the neural cells. Combining cerebellar canonical 291 

marker gene expression37-39,59 combined with differential gene expression (DGE), we identified both RL-292 

derived cellular lineages (RL, granule precursor cells (GPC), and GC) and VZ-derived newborn PCs (Fig. 293 

3b,c). A subset of neuronal cells was characterized as hindbrain neurons, and we were not able to further 294 

refine our annotations (Fig. 3b). While overall proportions of cells captured by the two technologies were 295 

similar (Fig. 3d, Supplementary Fig. 3b), dividing progenitors, PAX6-positive RL and dividing RL cell 296 

populations were significantly enriched in the Parse dataset. In contrast, 10x captured more cells in a 297 

population that we could not annotate (Unknown 2) (Supplementary Fig. 3b). 298 

To characterize the similarity of our cerebellar organoids with the developing human cerebellum, we 299 

performed reference-query mapping with the cerebellar transcriptomic dataset generated by Sepp and 300 

colleagues 38. To ensure that we compared our organoid data with early developmental stages of human 301 

cerebellum, we subset the reference dataset38 to only include prenatal samples. While finding a general 302 

agreement in cell type annotations, we noticed some differences both in assigned cell type identities (Fig. 303 

3e) and prediction scores, which were higher in Parse than in 10x data (Supplementary Fig. 3c). One 304 

example of a discrepancy in assigned cell identities was RL cells of different subtypes. These cells were 305 

annotated as a plethora of cell types of the human cerebellum (Fig. 3e) and differed between 10x and 306 

Parse (Fig. 3e) but with very low prediction scores (Fig. 3f). We believe that the cause for this discrepancy 307 

may be that the reference dataset does not have a separate cluster for RL cells38. Instead, RL cells are part 308 

of an astroglia cluster consisting of both astroglia and RL cells38. The first separate cluster for RL-derived 309 

lineage was nuclear transitory zone neuroblasts (NTZ neuroblast)38, and in our dataset, the cells annotated 310 

as NTZ neuroblasts belonged mostly to progenitor 1 and GPC and GPC/GC clusters (Fig. 3b). 311 

We further compared our data with the transcriptomic profiles of organoids from the recently published 312 

cerebellar organoid differentiation protocol (Supplementary Fig. 3d,e)29. The prediction scores were 313 

overall higher than for the comparison with the human cerebellar developmental transcriptome 314 

(Supplementary Fig. 3e). This time, however, prediction scores were higher for 10x than for Parse cells 315 

(Supplementary Fig. 3f). Interestingly, both reference datasets were obtained from the 10x pipeline, so 316 

the discrepancy in prediction scores between our Parse and 10x cells cannot simply be attributed to 317 

different technologies used for the generation of reference datasets. Instead, expectedly, our organoid 318 

data aligns more with organoid data obtained from a different protocol, than with primary tissue. 319 

In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar 320 

regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-321 

derived cells. Small differences in the different parameters were found between 10x and Parse 322 

technologies.  323 
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Secondary analysis between techniques reveals differences in cell stress signatures and 324 

neurodevelopment-related gene regulatory networks activity 325 

In our QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial 326 

protein-coding genes between the two technologies (Fig. 1b). We also found a subset of cells expressing 327 

cell stress-related genes, and the proportion of these cells was higher for 10x cells (Fig. 2d). Therefore, we 328 

next aimed to analyze whether the neural cells preserved these transcriptomic features and performed 329 

DGE analysis between the different technologies within individual cell types. For that, we split the dataset 330 

by cell type, technology, cell line, and day of differentiation and pseudobulked them for DESeq2. Overall, 331 

we found DEGs across all cell types (Fig. 4a, Supplementary Fig. 4a). Especially mitochondrial and 332 

ribosomal protein-coding genes were upregulated in 10x compared to Parse across cell types 333 

(Supplementary Table 5), including GPCs (Fig. 4b). More genes were upregulated in 10x compared to Parse 334 

across all cell types, further highlighting that with equal sequencing depth, 10x captures a lower variety 335 

of genes with larger numbers of reads per gene. Interestingly, there were a few genes with large fold 336 

change and relatively large p-values upregulated in either of the two technologies. These genes were 337 

identified as expressed either in 10x or Parse, as revealed by removing these genes from volcano plots 338 

(Supplementary Fig. 4b). To functionally characterize the differences in gene expression between the 339 

techniques, we performed gene set enrichment analysis and clustered the output by semantic similarity 340 

matrix (Fig. 4c). Here we describe findings for gene set enrichment analysis in GPCs, as a representative 341 

cell type with relatively high cell numbers and a medium number of DEGs. In GPCs, the normalized 342 

expression score for all statistically significant GO terms was less than 0, indicating their upregulation in 343 

10x compared with the Parse dataset (Supplementary Table 6). Among these GO terms, we found a cluster 344 

of enriched GO terms related to nucleotide processing as well as a cluster related to mitochondrial 345 

respiration. These two clusters of GO terms included not only mitochondrial protein-coding genes as 346 

defined in scRNA-seq quality control (i.e., starting with “MT-”, Fig. 1b) but also other genes involved in 347 

mitochondrial function, for example, the NDUF gene family, which encodes nuclear-encoded genes coding 348 

NADH dehydrogenase (ubiquinone) subunits. Another group of enriched GO terms in GPCs was described 349 

as related to neuron projection assembly (Fig. 4c).  350 

To reveal the upstream mechanisms leading to the described transcriptional changes across cell types we 351 

used ingenuity pathway analysis (IPA). After subsetting the results of URA to transcriptional regulators, 352 

we found that IPA predicted a variety of transcription factors to be differentially activated in either of the 353 

technologies, and that these transcriptional changes were coordinated across cell types (Fig. 4d). For 354 

example, we found TFs XBP1, ATF4 and ATF6, which are activated upon endoplasmic reticulum stress, and 355 

NFE2L2 and NRF1, which mediate the oxidative stress response and are involved in maintaining 356 

mitochondria redox homeostasis25,60,61 to be upregulated in 10x. These predictions are in line with our 357 

previous findings (Fig. 2b, Supplementary Fig. 2a), demonstrating a higher proportion of stressed cells in 358 

10x compared to Parse. Since we found that the Parse dataset had a larger proportion of reads originating 359 

from TFs, we decided to extend our analysis to gene regulatory network (GRN) analysis using SCENIC62. 360 

Average area under the curve (AUC) scores per cell type and technology were z-score normalized and 361 

subjected to k-means clustering (Fig. 4e). We found that the two technologies clustered apart (column 362 

clusters 1 and 3 for 10x, and 2 and 4 for Parse) but also cell types divided into two meta groups based on 363 

the activity of GRNs (column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4 364 

contained predominantly more progenitor cell types, Fig. 4e). Below, we highlight differences in regulon 365 

activity of specific TFs between both technologies and cell types.  366 
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For example, cell type-specific regulon activity is found in column clusters 3 and 4 (cell types: RL, PAX6 RL, 367 

RL-div, Prog-div, Prog 1, Unknown 1, Unknown 2), and especially dividing RL and progenitor cells. These 368 

cells had elevated z-scores for the E2F family, which are TFs involved in cell cycle progression and 369 

apoptosis63 (Fig. 4e, Supplementary Fig. 4c). In the same row cluster as the E2F family of TFs (row cluster 370 

4), there was regulon for NFIA, a TF involved in GC maturation during cerebellar development64,65 (Fig. 4e, 371 

Supplementary Fig. 4c). Conversely, column clusters 1 and 2 (cell types: HindExN, Prog 2, GPC, GPC/GC, 372 

HindN, DAB1/CALB1/CALB2 HindN, Newborn PC), were enriched for ZEB1, a marker of neuronal migration 373 

necessary for the proper development of various brain regions and tumorigenesis in pediatric patients, 374 

including medulloblastoma66 (Fig. 4e, Supplementary Fig. 4c). Specifically newborn PCs were enriched for 375 

GBX2 and LHX5 (Fig. 4e). GBX2 is a known homeobox gene that plays a significant role in cerebellar 376 

regionalization67, and LHX5 is one of the TFs that define PC cell fate68 (Fig. 4e, Supplementary Fig. 4c). 377 

Collectively, SCENIC analysis revealed cell type-specific regulon activity characteristic for distinct 378 

cerebellar cell types irrespective of the technology used for cell capture.  Hence both technologies can be 379 

used for GRN inference.  380 

Although cell type-specific regulon activity signatures could be observed in both technologies, there were 381 

also regulons with differential activity between technologies (e.g., a subset of regulons in row cluster 2, 382 

Fig. 4e, Supplementary Fig. 4c). Examples of such regulon activity signatures were SCAND1 and ZNF580 383 

regulons, two TFs known for their involvement in the cellular response to hypoxic stress69,70 but also in 384 

mitochondrial and ribosomal functions (Fig. 4e, Supplementary Fig. 4c). 385 

Collectively, with our secondary analysis, we confirmed the previous findings that 10x cells had higher 386 

expression of ribosomal and mitochondrial protein-coding genes as defined by quality control compared 387 

to Parse cells (i.e., gene name pattern “RPS/RPL” for ribosomal and “MT-” for mitochondrial protein-388 

coding genes). Furthermore, we found that other genes with mitochondrial and ribosomal functions were 389 

significantly deregulated in the 10x dataset. Additionally, URA predicted a coordinated change in the 390 

activity of cellular stress-related transcriptional regulators between 10x and Parse datasets. These findings 391 

suggest that 10x cells have a higher expression of cell stress-related transcriptional signatures, and Gruffi-392 

based exclusion of cells with high stress scores did not solve the problem entirely. Finally, SCENIC analysis 393 

revealed that regulons are differentially active between cell types in both technologies. Hence, 394 

transcriptional differences between technologies did not mask transcriptional differences between cell 395 

types. 396 

Discussion 397 

In this study, we compared two broadly used and commercialized approaches for sample multiplexing of 398 

scRNA-seq: 10x Genomics (10x) and Parse Biosciences (Parse). We generated cerebellar organoids, as an 399 

example of a complex 3D tissue that requires dissociation, to comprehensively explore the strengths and 400 

limitations of each technology. Regionalized neural organoids, such as cerebellar organoids, are 401 

commonly used in neuroscience research but can be challenging due to heterogeneity between samples, 402 

batches, and iPSC lines. Therefore they require in-depth characterization, for example, by multiplexed 403 

scRNA-seq11,18. To compare scRNA-seq datasets across experiments and studies conducted in different 404 

labs and to differentiate technical and biological causes of variance, it is essential to understand artefacts 405 

and biases introduced by different experimental pipelines of the capture techniques. Specifically, we 406 

differentiated three control iPSC lines into cerebellar organoids according to a published protocol15. 407 

Organoids were pooled and dissociated at D35 and D50, and the cells were split into two aliquots, one of 408 

which was subjected to the 10x and the other to the Parse multiplexing and sequencing pipelines. The 409 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


two methods were then compared regarding library efficiency, differential transcript capture, cell type 410 

enrichment, and the information obtained from comprehensive secondary analysis.  411 

Sample preparation between the two technologies differs considerably: while cells are kept alive for a 412 

longer time until lysis in the 10x workflow, Parse samples are fixed directly after dissociation. 413 

Consequently, Parse samples do not have to be processed in parallel providing more flexibility during 414 

sample processing and allowing the handling of higher sample numbers in one sequencing run. Therefore, 415 

we suggest that this approach is advantageous for larger experimental designs. 416 

We compared the technical sequencing parameters of both methods. We found that the average cell 417 

recovery rate differed considerably between the two techniques. While 42.7% of cells were recovered in 418 

the 10x workflow, only 16.5% recovery was achieved in Parse (Supplementary Fig. 1b). For scarce samples 419 

a high cell recovery is clearly beneficial to maximize data output. However, we did not observe the lack of 420 

certain cell types within the Parse data set, indicating even cell loss across all cell types.  421 

For both methods, most reads were mapped to the genome. However, we observed differences in the 422 

number of genes detected and their properties. In accordance with the previous study comparing Parse 423 

and 10x on PBMCs10, we found that 10x scRNA-seq resulted in a higher number of detected genes, a higher 424 

number of protein-coding genes, and a higher number of genes coding for mitochondrial and ribosomal 425 

genes compared to Parse (Fig. 1b, Supplementary Fig. 1e). Furthermore, the GC content of captured 426 

transcripts was higher in 10x than in Parse. Our analysis also revealed a bias of 10x in capturing shorter 427 

transcripts compared to Parse (Fig. 1d, Supplementary Fig. 1h). Moreover, Parse did not only represent 428 

longer transcripts but also covered a wider range of gene lengths (Fig. 1b, Supplementary Fig. 1e). Previous 429 

functional analysis showed a connection between the transcript length and specific cellular processes and 430 

tissue types71. While short transcripts are more often associated with skin development and the immune 431 

system, longer transcripts more frequently play a role in neuronal development71. There is growing 432 

evidence for long neural genes to be involved in disease mechanisms during development: long genes are 433 

more prone to recurrent double-strand break clusters and are implicated in tumor suppression and 434 

psychiatric disorders72. Further, long genes can contain broad enhancer-like domains, and their 435 

transcription is particularly sensitive to alternations in ASD-associated chromatin regulators73. 436 

Interestingly, BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation74, is 437 

predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4d). The clinical 438 

features of BCL11b-associated neurodevelopmental disorders include ASD, intellectual disability, and 439 

cerebellar hypoplasia74, which have been previously modeled in organoids19,20. These findings indicate 440 

that transcript length is a critical technical and biological factor that should be considered when planning 441 

scRNA-seq experiments and that Parse could be favorable to investigate differences in long transcripts 442 

upon experimental manipulation. 443 

Further, Parse covered a higher number of transcripts encoding TFs among protein-coding genes (Fig. 1b, 444 

Supplementary Fig. 1e). To investigate if this bias had effects on GRN we performed GRN analysis SCENIC.  445 

Interestingly, Parse generally had higher z-scores for regulons related to neurodevelopment and 446 

maturation (Fig. 4e) in contrast to the upregulation of neuron processes assembly-related terms in 10x in 447 

GSEA (Fig. 4c). Additionally, we identified regulons that were differentially regulated between cell types 448 

and techniques such as NFIA which had higher z-scores in RL-derivates in Parse (Fig. 4e) and is involved in 449 

GC maturation but also associated with severe neurodevelopmental disorders and gliomas64,65. Taken 450 

together, the GRN analysis reveals not only cell type but also technique-driven regulon activity. This 451 
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highlights that identical biological samples result in different analysis results downstream depending on 452 

the capture technology.  453 

Regionalized neural organoids have been reported to show high expression of stress pathway-related 454 

transcripts due to in vitro culturing conditions and insufficient oxygen supply23,50,51,75. Additionally, tissue 455 

dissociation for single-cell sample preparations is known to induce stress response in dissociated cells76.  456 

During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher 457 

in the 10x than in the Parse samples (Fig. 1b), corroborating previous findings10. While differences for 458 

mitochondrial protein-coding transcripts were minor (10x 3.1% vs Parse 1.7%), the differences for 459 

ribosomal protein-coding genes were much more pronounced (10x 17.6% vs Parse 0.5%). The DGE analysis 460 

revealed the upregulation of mitochondrial protein-coding genes, and other genes involved in 461 

mitochondrial function (Fig. 4b). Hence, the differences in mitochondrial transcripts might be partially 462 

explained by higher cell stress in the 10x data and mitochondrial involvement in stress response 463 

pathways77, rather than having solely technical causes.  464 

To investigate cell stress in cerebellar organoids in more detail, we analyzed the expression of stress-465 

specific modulators. We identified three stress-related modules (oxidative stress, glycolysis, and 466 

integrated stress response (ISR)) that separated the two technologies in hierarchical clustering with both 467 

technologies showing a stronger module expression at the later time point and 10x demonstrating a 468 

higher overall expression of stress modules. It has previously been described that stress-related pathways 469 

are enriched in organoids. Cell-intrinsic mechanisms as well as extrinsic factors such as hypoxia can 470 

activate the ISR to restore cellular homeostasis. Different cell stressors can also interact with each other 471 

to induce the ISR. For example, upon disruption of endoplasmic reticulum (ER) homeostasis, ER stress is 472 

induced and can increase the production of reactive oxygen species (ROS) in mitochondria, which induces 473 

oxidative stress78. These effects can increase during organoid culture as the tissue grows, which may 474 

explain the elevated stress response-associated transcriptional signature at D50 compared to D35 of 475 

differentiation (Fig. 2b). Since stressed cells are frequently found in scRNA-seq datasets of organoids, a 476 

powerful bioinformatic approach called Gruffi was developed to remove cells with a high cell stress 477 

signature from neural organoid datasets50. Applying Gruffi to our dataset revealed a noticeably higher 478 

percentage of stressed cells in the 10x compared to the Parse dataset at both time points (Fig. 2d). This 479 

might stem from the difference in the handling of dissociated cells in the two technologies. In the Parse 480 

procedure, cells are fixed directly after dissociation, thus limiting the induction of the expression of stress 481 

genes. In contrast, live cells are undergoing the 10x capture, prolonging the period between dissociation 482 

and cell lysis during capture, which might increase stress-related responses of live cells found in 10x data. 483 

Interestingly, this effect is more pronounced in D50 than in D35 samples indicating that more mature 484 

neural cells are more susceptible to the mechanical stress of dissociation and live processing in 10x. These 485 

findings suggest that identical samples of cerebellar organoids show a technology and time point-specific 486 

stress response reflected by striking differences in the number of cells identified as stressed cells by the 487 

Gruffi algorithm (Fig. 2d). Further, we found DEGs, especially mitochondrial and ribosomal protein-coding 488 

transcripts between the two technologies across all clusters and gene set enrichment analysis in GPCs 489 

revealed deregulation of GO terms related to nucleotide processing and mitochondrial respiration (Fig. 490 

4c). To explore which upstream mechanisms could have led to these transcriptional changes, we 491 

performed URA. Interestingly, URA for transcriptional regulators predicted the upregulation of ER-stress 492 

pathways related TFs XBP1, ATF4, and ATF6 as well as oxidative stress mediators NFE2L2 and NRF1 in 10x 493 

compared to Parse78. Together these results suggest that not only the hypoxic culture conditions of 494 
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organoids51 but also the single-cell dissociation and capturing pipeline may induce cell stress. The cell 495 

capture technology used thus affects the output data obtained from biologically identical samples, and 496 

this effect should be considered when interpreting and comparing organoid data to reference datasets.  497 

To investigate the biological reproducibility of the organoid differentiation protocol, we assessed the 498 

percentage of cells identified as neural based on reference-query mapping with human developmental 499 

transcriptome52. This analysis showed a commitment towards neural fate in 52.1% of all cells, suggesting 500 

the initial tissue specification could be improved in the differentiation protocol. Different neural organoid 501 

protocols14,79 and a recently published protocol for cerebellar organoids29 use dual SMAD inhibition during 502 

the initiation of differentiation to prevent meso- and endodermal fates thus promoting neural induction80. 503 

In contrast, the cerebellar differentiation protocol used in this study employs only one SMAD pathway 504 

inhibitor, the TGFß-inhibitor SB-432154215. Dual SMAD inhibition might enhance neuroectodermal 505 

commitment in cerebellar organoids. 506 

To date, studies employing transcriptional analysis of cerebellar organoids have used only one iPSC 507 

line27,29. Interestingly, we observed noticeable differences between the differentiation efficiency of the 508 

three control cell lines, with the KOLF2.1J-derived cerebellar organoids demonstrating the lowest number 509 

of neural cells, especially pronounced at D50. Considering that all three cell lines were differentiated in 510 

parallel to minimize technical confounder effects, this finding implicates that iPSC line-inherent 511 

mechanisms can influence the differentiation efficiency81.  This finding highlights the need to use isogenic 512 

control iPSCs when analyzing pathogenic variants82. Addressing the heterogeneous outcomes of 513 

differentiation protocols, a recent study suggests adjusting concentrations of small molecules and growth 514 

factors in a cell line-specific manner to decrease the proportion of mesodermal off-target tissue for the 515 

differentiation of cortical organoids25. A similar approach could potentially alleviate differences in 516 

neuroectodermal fate commitment during cerebellar differentiation across the three iPSC lines used in 517 

this study. Taken together, new protocols should be tested and optimized with multiple control iPSC lines 518 

to ensure robustness of differentiation efficiency83. Despite the differences between the three iPSC lines 519 

used in this study, we demonstrated that cerebellar organoids generated cerebellar cells of both RL and 520 

VZ lineage. Comparing our data set with a recently published cerebellar organoid transcriptomic dataset29 521 

revealed general agreement with our annotation indicating a similar cellular population resulting from 522 

different protocols. However, the cerebellum is a complex brain region with various cell types37 and to 523 

what extend different cerebellar organoid protocols recapitulate the whole cerebellum or rather specific 524 

regions like the cerebellar nuclei or cerebellar cortex remains to be investigated. 525 

In conclusion, our comprehensive comparison of Parse and 10x scRNA-seq sample multiplexing and cell 526 

capture strategies encompassed library efficiency, differential transcript capture, cell type preferences, 527 

and secondary analysis outcomes, showing distinct strengths and limitations of each method. While both 528 

methods provide the experimental benefits of sample multiplexing, we revealed significant differences 529 

between the two strategies. Overall, our findings indicate that while 10x provided higher cell recovery and 530 

gene detection rates, Parse captured longer transcripts and a wider range of transcript lengths and 531 

resulted in lower cell stress. Minimizing cell stress is especially relevant in the context of regionalized 532 

neural organoids, in which cell stress may be an important artefact51. Our detailed secondary analyses 533 

demonstrated that these technical differences have relevant biological implications. These insights are 534 

crucial for selecting the most suitable scRNA-seq multiplexing technology based on specific research goals. 535 

Future studies should consider these factors to improve the accuracy and biological relevance of single-536 

cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid differentiation and in-depth 537 
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characterization on three iPSC lines and highlighted the importance of employing several cell lines in these 538 

studies to encompass cell line-dependent heterogeneity and to produce robust results.  539 

Methods 540 

iPSC culture  541 

Commercially available iPSC lines BIONi010-C (Source: EBiSC), BIONi037-A (Source: EBiSC) and KOLF 2.1J 542 

(Source: The Jackson Laboratory) were cultured under standard conditions (37°C, 5% CO2, and 100% 543 

humidity) in E8 Flex medium (BIONi010-C and BIONi037-A) and mTeSR plus (STEMCELL Technologies, Cat. 544 

no 100-0276) (Gibco, Cat. no. A2858501) on hESC-qualified growth factor-reduced Matrigel-coated 545 

(Corning, Cat. no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed in 546 

colonies using Gentle Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once the culture 547 

reached 80%-90% confluency. The culture medium was supplemented with Thiazovivin (Sigma-Aldrich, 548 

Cat. no. 420220) upon passaging for one day. All cell lines were tested for mycoplasma contamination 549 

using PCR Mycoplasma Detection Set (TaKaRa, Cat. no. 6601) and maintained under passage 20. The 550 

pluripotency for each cell line was confirmed by immunocytochemistry against OCT4 (rabbit, 1:500, 551 

Abcam, Cat. no. ab19857) prior to the start of differentiation. 552 

Generation of cerebellar organoids 553 

Cerebellar organoids were generated as previously described84 with some modifications: 80-90% 554 

confluent iPSCs were dissociated into single cells using Accutase (Merck, Cat. no. A6964), and 4,500 cells 555 

were seeded per well of 96 well V-bottom low adhesion plates (S-bio, Cat. no. MS-9096VZ) in E8 Flex 556 

medium (Gibco, Cat. no. A2858501), supplemented with 10 μM Y-27632 (Cayman Chemical, Cat. no. 557 

10005583). Once the aggregates reached a diameter of 250 μm, the medium was changed to growth 558 

factor-free chemically defined medium (gfCDM) supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no. 559 

100-18B) and 10 μM SB-431542 (Tocris, Cat. No. 1614), and this day was considered day 1 of 560 

differentiation (D1). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 μM, respectively. 561 

At D14, media was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was 562 

changed to Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35 563 

onwards, media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793), 564 

supplemented with 10 μg/ml BDNF (PeproTech, Cat. no. 450-02), 100 μg/ml GDNF (PeproTech, Cat. no. 565 

450-10), 100 mg/ml dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no. 566 

4055). All three cell lines were processed in parallel during differentiation, single-cell dissociation, and 567 

sequencing. 568 

Single-cell dissociation of cerebellar organoids, library preparation, and sequencing 569 

On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit 570 

(Worthington, Cat.No. LK003150) following a published protocol with minor modifications14. Cells were 571 

counted, and cell suspensions were split into two parts for further processing. 572 

Samples for the 10x Genomics (10x) pipeline were labeled with cell multiplexing oligos (CMO, 10x 573 

Genomics, Cat. no. 1000261) according to the manufacturer’s instructions and subsequently pooled at an 574 

equal ratio. The cell count for the cell suspension was determined, and the sample was loaded onto two 575 

lanes of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of 576 

12,000 (D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next 577 
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GEM Single Cell 3’ kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq 578 

6000 with S1 flow cell kit and 100 cycles (Illumina, Cat. no. 20028319). 579 

Samples for Parse Bioscience (Parse) workflow were fixed according to the manufacturer's instructions 580 

using the Evercode fixation kit for cells (Parse Bioscience, Cat. No. WF300). Fixed Parse samples were 581 

stored at –80°C until all samples were harvested. The samples were characterized by the day of 582 

differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded 583 

as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was 584 

performed using a molarity of 62.4 nM and 3% PhiX spike in on the Nova Seq 6000 with SP flow cell kit 585 

and 200 cycles (Illumina). 586 

Data downsampling, preprocessing, and quality control 587 

Initially, the datasets from 10x and Parse pipelines had different sequencing depths and cell numbers 588 

(Supplementary Table 1). To compare the two technologies fairly, we downsampled datasets from both 589 

technologies to an average of 50,000 reads per cell. The FASTQ files were downsampled with the seqtk 590 

sample tool, and the same seed was applied for the forward and reverse reads. For Parse data, FASTQ 591 

files from each of the 2 sub-libraries were demultiplexed into 6 samples. Using split-pipe (v1.1.2), the 592 

samples were preprocessed, aligned, sorted, annotated, and passed to a DGE (here, digital gene 593 

expression), resulting in a count matrix. Afterwards, the 2 sub-libraries were merged with the 594 

corresponding combine mode of split-pipe. For 10x data, read downsampling was performed for individual 595 

libraries. Afterwards, downsampled FASTQ files were processed with cellranger (v.7.2.0) multi pipeline, 596 

and cells were assigned with their cell line of origin based on their CMO. 597 

Gene names in gene expression matrices between the two technologies were harmonized in the following 598 

manner. Firstly, ENSEMBL gene identifiers were used to merge expression matrices. Secondly, ENSEMBL 599 

identifiers were replaced by HGCN identifiers wherever possible (41,980 genes), and ENSEMBL identifiers 600 

were used in other cases (20,930 genes). The merged gene expression matrix was further converted into 601 

Seurat objects (Seurat v.5.1.0). Gene biotypes were retrieved from bioMart using ENSEMBL gene 602 

identifiers. Ribosomal protein-coding genes were identified using HGCN gene names starting from 603 

RPS/RPL. Mitochondrial protein-coding genes were identified using HGCN gene names starting from MT-604 

. The percentage of gene expression for ribosomal and mitochondrial protein-coding genes as well as for 605 

individual gene biotypes were calculated using PercentageFeatureSet(). For calculating the percentage of 606 

counts originating from transcription factors (TF) among protein-coding genes, the count matrix was first 607 

subset to protein-coding genes, and PercentageFeatureSet() was applied to this matrix using the list of 608 

human TFs85. 609 

Next, quality control (QC) was performed on cell and gene levels. Cells were excluded if one of the 610 

following criteria was met: (1) number of individual genes per cell ≤ 2,000; (2) number of individual genes 611 

per cell ≥ 13,000; (3) number of genes per UMI ≤ 0.8; and (4) percentage of mitochondrial genes ≥ 8%. We 612 

excluded genes from the expression matrices when their cumulative expression across all cells was ≤ 8. 613 

No ambient RNA and doublet removal were performed. 614 

Data normalization, clustering, integration, and dimensionality reduction 615 

After QC, data were normalized using NormalizeData() function from Seurat with default parameters. 616 

Normalized data were scaled, and principal component analysis (PCA) was performed based on the z-617 

scaled expression of the 2,000 most variable features (FindVariableFeatures()). Additionally, normalized 618 
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counts were integrated using IntegrateData() function with reciprocal PCA (RPCA). Dimensionality 619 

reduction and clustering were performed using both un- and integrated data. RunUMAP() function was 620 

used to perform dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain 621 

clustering was performed using FindClusters() function. 622 

Technology-specific analyses: correlation analysis, transcript length, and GC content 623 

To analyze the correlation of gene expression between technologies, we used cells that passed quality 624 

control, averaged the expression of genes for each technology, and calculated Pearson’s correlation 625 

coefficient. Differentially expressed genes (DEG) between technologies were identified using MAST 626 

algorithm implemented in FindMarkers() function as previously described10 with the following cutoffs: 627 

absolute log2 fold change (log2FC) > 1, adjusted p-value < 0.01. Gene length and GC content were 628 

retrieved from bioMart. 629 

Cellular stress assessment 630 

Normalized unintegrated counts were used to analyze the expression of cell stress-related gene ontology 631 

(GO) terms using AddModuleScore() function. We also generated a random set of genes of mean GO term 632 

size and analyzed the expression of these genes as a module to use as an internal control for module 633 

expression analysis. Hierarchical clustering was performed on mean module expression of cell stress-634 

related GO terms across samples.  635 

Gruffi cell stress analysis was performed using normalized unintegrated counts following the authors’ 636 

instructions50. Firstly, two GO terms were chosen for negative selection: glycolytic process (GO:0006096) 637 

and integrated stress response signaling (GO:0140467); and one for positive selection: neurogenesis 638 

(GO:0022008). Next, module expression of the selected GO terms was analyzed in “granules”, and 90% 639 

quantile threshold was chosen for selecting stressed cells. 640 

Germ layer assessment 641 

Normalized integrated counts were used to perform Azimuth reference-query mapping53 of our dataset 642 

with human fetal development transcriptome52. Cells were further classified as “neural” and “non-neural” 643 

based on cell type assignment from Azimuth (Supplementary Table 3). 644 

Gruffi differentiation lineage analysis was performed using normalized integrated counts. Firstly, two GO 645 

terms were chosen for negative selection: endoderm (GO:0001706) and mesoderm (GO:0001707) 646 

formation; and two for positive selection: nervous system development (GO:0007399) and neurogenesis 647 

(GO:0022008). Next, module expression of the selected GO terms was analyzed in “granules”, and 90% 648 

quantile threshold was chosen for selecting neural and non-neural cells. 649 

Neural data processing and cell type annotation 650 

After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth 651 

reference-query mapping and further downsampled to retain the equal number of cells in 10x and Parse 652 

datasets (7,212 cells per technology). Data normalization, clustering, integration, and dimensionality 653 

reduction workflow steps were repeated as described above.  654 

VoxHunt57 was used to analyze the brain region identity of the cells. 10 genes with the highest area under 655 

the curve (AUC) scores per brain region of the developing mouse brain at E15 were retrieved, resulting in 656 

186 unique regional marker genes. These marker genes were used to assess the similarity of gene 657 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


expression profiles between our samples and BrainSpan human developmental transcriptome58 at 658 

postconceptional weeks 12 and 13.  659 

Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1) 660 

retrieving cluster marker genes by FindAllMarkers() with MAST (normalized counts provided as input) and 661 

ROC (raw counts provided as input) algorithms; (2) visualizing expression of canonical marker genes for 662 

cell types in the developing mouse and human cerebellum. 663 

Reference-query mapping with published primary cerebellar development and cerebellar 664 

organoids transcriptomic datasets 665 

For reference-query mapping of our cells that were classified as neural, we first used human cerebellar 666 

development transcriptomic dataset38 as a reference. We downsampled the reference dataset to 1,000 667 

cells per cell type as defined by the metadata (author_cell_type column). Secondly, we normalized, found 668 

variable features, scaled, and performed PCA on both reference and query datasets using Seurat default 669 

parameters. Integration was performed using FindTransferAnchors() function with the “pcaproject” 670 

option and 30 PCs. Predicted cell type annotations and prediction scores were obtained from 671 

TransferData() function wrapped into MapQuery() with default parameters and reference label being 672 

“author_cell_type”. Integration with the cerebellar organoids transcriptomic dataset was performed as 673 

described above with minor modifications: (1) the complete reference dataset was used for mapping; (2) 674 

the reference label was “final.clusters”. 675 

Differential gene expression analysis and functional enrichment analysis 676 

For differential gene expression (DGE) analysis, the raw counts originating from neural cells were used. 677 

First, cells were grouped by cell type, technology, cell line, and day of differentiation, and groups smaller 678 

than 20 cells were omitted from further analysis. Gene counts were aggregated by technology, cell line, 679 

and day of differentiation using AggregateExpression() function with a default option to calculate the sum 680 

of raw counts per cell group. Importantly, we did not further downsample our dataset to generate an 681 

equal number of cells per cell group. The aggregated counts were used as samples for DESeq2 (v.1.42.1) 682 

differential gene expression analysis between technologies within individual cell types86. Log2FC were 683 

shrunken using apeglm shrinkage estimator87 as implemented in DESeq2. Volcano plots were generated 684 

using EnhancedVolcano library (v.1.20.0). 685 

Gene set enrichment analysis (GSEA) with GO terms was performed by clusterProfiler (v.4.10.1)88 using 686 

biological processes ontology as input, gene set size of 50 to 500 genes, false discovery rate (FDR) as a p-687 

value adjustment method, and the threshold for q-value of 0.05. For significantly deregulated GO terms, 688 

similarity matrices were calculated and simplified using the binary cut approach implemented in 689 

simplifyEnrichment (v.1.12.0) package89. 690 

Upstream regulator analysis 691 

Upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA) software (Qiagen). 692 

Briefly, cell type-specific DESeq2 output matrices were used for IPA core analysis with the following 693 

cutoffs: (1) absolute log2FC > 1; (2) q-value < 0.0001. For visualizations, molecule type was restricted to 694 

transcription regulators, and bias-corrected z-scores across cell types were used for hierarchical clustering 695 

using the ComplexHeatmap package (v.2.18.0). When z-scores were unavailable, they were assigned to 0. 696 
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Gene regulatory network (GRN) activity analysis  697 

We performed GRN analysis closely following the official pySCENIC protocol62,90. First, the annotated raw 698 

count matrix produced with Seurat and the list of human TFs were processed, inferencing importance 699 

values or the weights of regulatory interactions between TFs and target genes. Second, the inferred 700 

interactions ("adjacencies") were searched in the cisTarget databases to identify the enriched binding 701 

motifs. Third, TFs and target genes indicated by the enriched motifs were grouped into regulons 702 

(regulatory modules of the network). Finally, the regulons were assessed for the enrichment in each cell. 703 

With the count matrix as a source of the expression data, cells were assigned scores, i.e., AUC, of the 704 

activity levels of their regulons. Z-scores were further calculated based on AUC scores of individual 705 

regulons, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons. 706 

Regulon target genes and GO Biological Processes were used for gene set overrepresentation analysis 707 

(ORA) by clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, false discovery rate (FDR) as a p-708 

value adjustment method, and the threshold for q-value of 0.1. 709 

Statistics 710 

R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends. Two-711 

sided unpaired t-tests were used to compare two groups. For comparisons with more than two groups, 712 

we used three-way ANOVA. Within a set of comparisons (e.g., for quality control metrics), the Benjamini-713 

Hochberg method of p-value adjustments was used.   714 
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Figure legends 715 

Fig. 1. Study design, quality control, and potential biases in the data. a, Three iPSC lines (BIONi010-C, 716 

BIONi037-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids 717 

generated from the same cell line were pooled and dissociated into single cells when each single-cell 718 

suspension was split into two portions. One set of single-cell suspensions was immediately subjected to 719 

sample multiplexing with CellPlex and processed in 10x Genomics 3’GEX+FB pipeline. The second set of 720 

single-cell suspensions was frozen until all samples were available. The samples were further processed 721 

though Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files 722 

were processed with technology-specific computational pipelines. Count matrices were further analyzed. 723 

Graphic was created with BioRender.com. b, Quality statistics after quality control. Color represents 724 

sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library 725 

(L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences 726 

between technologies, *** p < 0.001. c, Left, density scatter plot showing correlation of average gene 727 

expression between the two technologies. Right, scatter plot showing correlation of average gene 728 

expression between the two technologies. Color represents gene group. d, Distributions of gene GC 729 

content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p 730 

< 0.001. 731 
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Fig. 2. Assessment of neural lineage identity. a, PCA and UMAP plots for globally normalized and 733 

unintegrated data. b, Heatmap representing mean module expression scores of gene ontology terms 734 

related to aspects of cell stress. c, UMAP plot representing cell stress status of cells based on Gruffi 735 

assessment. d, Percentage of stressed cells based on Gruffi assessment. e, RPCA and UMAP plots for 736 

globally normalized and RPCA-integrated data originating from non-stressed cells. f, UMAP plot 737 

representing neural lineage status of cells based on reference-query integration with human 738 

developmental transcriptome52. g, Feature plots showing expression of selected genes to highlight 739 

developmental lineages. h, Percentage of neuroectodermal cells based on reference-query integration 740 

with human developmental transcriptome. i, Percentage of neuroectodermal cells per cell line based on 741 

reference-query integration with human developmental transcriptome. For a, d, e, h, i, color represents 742 

sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library 743 

(L1 or L2). 744 
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Fig. 3. Assessment of regional identity and cell type annotation. a, Heatmap of similarity metric of 746 

VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain 747 

regional markers obtained from Mouse Brain Atlas at E13. b, UMAP plots for globally normalized and 748 

RPCA-integrated neural data with manually annotated clusters. c, Violin plots for expression of canonical 749 

markers of hindbrain development. d, Stacked bar plot representing average proportion of individual cell 750 

types between technologies. e, UMAP plot representing cell type identity as assigned based on reference-751 

query integration with human cerebellar transcriptome38. f, Feature plots showing prediction score based 752 

on reference-query integration with human cerebellar transcriptome. 753 
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Fig. 4. Differential gene expression between technologies. a, Strip plot displaying DEGs between 755 

technologies per cell type. Genes represented in grey are not differentially expressed. Color represents 756 

log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10-4). b, 757 

Volcano plot representing differential gene expression in GPC cluster. c, Heatmap representing semantic 758 

similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. d, 759 

Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores. 760 

 761 
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Supplementary Fig. 1. Complementary to Fig. 1. Quality control and gene quantification biases in the 763 

data. a, Percentage of raw reads mapping to exonic regions, genome, and having valid barcodes. Bars 764 

represent the mean; dots represent the individual libraries. b, Numbers of input and output cells. Bars 765 

represent the mean; for 10x data, dots represent individual libraries; for Parse data, dots represent the 766 

total number of cells in the experiment. c, Venn diagram of genes expressed in at least 1 cell in each of 767 

the two technologies. Color represents technology. d, Distribution of the number of cells expressing a 768 

gene. e, Quality statistics before quality control. Red dashed lines represented threshold values. Color 769 

represents sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), 770 

and library (L1 or L2). 10x, n = 33,951, Parse, n = 15,226 cells. Three-way ANOVA, p-values represent 771 

differences between technologies, *** p < 0.001. f, Stacked bar plot representing average proportion of 772 

reads originating from non-protein-coding RNAs (ncRNA). Color represents ncRNA biotype. g, 773 

Distributions of gene GC content and gene length for all genes expressed in either of the two technologies. 774 

Two-sided t-test, *** p < 0.001. h, Distributions of gene length for differentially expressed genes per gene 775 

biotype between technologies. Two-sided t-test, * p < 0.05, *** p < 0.001. 776 
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Supplementary Fig. 2. Complementary to Fig. 2. Assessment of neural lineage identity. a, Heatmap 778 

representing mean module expression scores of gene ontology terms related to aspects of cell stress. b, 779 

Histograms representing distribution of granule scores for expression of cell stress modules. Color 780 

represents stress classification. Solid black line represents stress threshold. Dashed black line represents 781 

90% quantile of the distribution of granule expression score. Dashed blue and red lines represent median 782 

values of non- and stressed cells. c, UMAP plot representing cell type identity as assigned based on 783 

reference-query integration with human developmental transcriptome52. d, Feature plot showing 784 

prediction score based on reference-query integration with human developmental transcriptome. e, 785 

Feature plots showing module expression scores for GO terms guiding Gruffi-based lineage identity 786 

assessment. f, UMAP plot representing neural lineage status of cells based on Gruffi-based lineage identity 787 

assessment. Three-way ANOVA, p-values represent differences between technologies, n.s. p ≥ 0.05, * p < 788 

0.05, ** p < 0.01, *** p < 0.001. 789 

 790 
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Supplementary Fig. 3. Complementary to Fig. 3. Assessment of regional identity and cell type 792 

annotation. a, Heatmap of scaled similarity metric of VoxHunt algorithm comparing samples with human 793 

neocortical RNA-seq data from BrainSpan using brain regional markers obtained from Mouse Brain Atlas 794 

at E13. b, Permutation test on cell type composition of cerebellar organoids. Differentially abundant cell 795 

types are represented in pink. Cell types with FDR less than 0.05 and absolute log2 fold change more than 796 

0.58 were considered differentially abundant. c, Distribution of prediction scores based on reference-797 

query integration with human cerebellar transcriptome38. d, UMAP plot representing cell type identity as 798 

assigned based on reference-query integration with cerebellar organoids transcriptome29. e, Feature plots 799 

showing prediction score based on reference-query integration with cerebellar organoids 800 

transcriptome29. f, Distribution of prediction scores based on reference-query integration with human 801 

cerebellar organoids. For c and f, color represents sample identity with respect to technology (10x or 802 

Parse), day of differentiation (D35 or D50), and library (L1 or L2). For c and f three-way ANOVA, p-values 803 

represent differences between technologies, *** p < 0.001. 804 
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Supplementary Fig. 4. Complementary to Fig. 4. Differential gene expression between technologies. a, 806 

Bar plot representing number of differentially expressed genes per cell type. b, Volcano plot representing 807 

differential gene expression in GPC cluster without genes that are exclusively expressed in one of the 808 

technologies. c, Feature plots showing expression of selected TFs (left column), their regulon AUC scores 809 

(middle column), and results of gene set overrepresentation analysis in TF target genes within regulons 810 

(right column). ZEB1 did not have any significantly enriched GO terms. 811 

  812 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


Competing interests 813 

The authors declare no competing interests. 814 

Data and code availability 815 

Code and data will be made available upon peer-reviewed publication of the manuscript. 816 

Authors’ contributions 817 

KS: Conceptualization, Methodology, Software, Formal analysis, Writing – Original draft, Writing – Review 818 

& Editing, Visualization, Project administration; TK: Conceptualization, Methodology, Investigation, 819 

Writing – Original draft, Writing – Review & Editing, Visualization, Project administration; VL: 820 

Methodology, Software, Formal analysis, Writing – Original draft; Writing – Review & Editing; ZY: 821 

Investigation, Writing – Original draft; Writing – Review & Editing; KB: Investigation; Writing – Review & 822 

Editing; JM: Funding acquisition; Writing – Review & Editing; NC: Conceptualization, Methodology, Formal 823 

analysis, Writing – Original draft, Writing – Review & Editing, Resources, Supervision; SM: 824 

Conceptualization, Methodology, Writing – Review & Editing, Resources, Supervision, Funding acquisition. 825 

Acknowledgements 826 

We thank Antje Schulze-Selting, Elisabeth Gustafsson, Christina Kulka, and Ezgi Atay for technical support. 827 

We thank Christopher Sifuentes, Yogesh Singh, and Vincent Hammer for strategic and technical 828 

discussions. 829 

We are grateful for financial support from the Hertie Foundation (Gemeinnützige Hertie-Stiftung), the 830 

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg state postgraduate fellowship 831 

(to TK), Add-on Fellowship of the Joachim Herz Foundation (to KS), and the Heidelberger Akademie der 832 

Wissenschaften (WIN Kolleg). NGS sequencing methods were performed with the support of the DFG-833 

funded NGS Competence Center Tübingen (INST 37/1049-1). This project has been made possible in part 834 

by grant number 2022-316727 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley 835 

Community Foundation. This research has been partially funded by the Deutsche Forschungsgemeinschaft 836 

(DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D 837 

Matter Made to Order (EXC-2082/1 – 390761711).  838 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


References 839 

1. Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. 840 
Nature 621, 373-380 (2023). 841 

2. Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and 842 
development. Nat Rev Drug Discov 22, 496-520 (2023). 843 

3. Camp, J.G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue 844 
engineering. Nat Methods 15, 661-667 (2018). 845 

4. Evrony, G.D., Hinch, A.G. & Luo, C. Applications of Single-Cell DNA Sequencing. Annu Rev 846 
Genomics Hum Genet 22, 171-197 (2021). 847 

5. Yasen, A. et al. Progress and applications of single-cell sequencing techniques. Infect Genet Evol 848 
80, 104198 (2020). 849 

6. Luecken, M.D. & Theis, F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol 850 
Syst Biol 15, e8746 (2019). 851 

7. Wolock, S.L., Lopez, R. & Klein, A.M. Scrublet: Computational Identification of Cell Doublets in 852 
Single-Cell Transcriptomic Data. Cell Syst 8, 281-291 e9 (2019). 853 

8. Rosenberg, A.B. et al. Single-cell profiling of the developing mouse brain and spinal cord with 854 
split-pool barcoding. Science 360, 176-182 (2018). 855 

9. Cheng, J., Liao, J., Shao, X., Lu, X. & Fan, X. Multiplexing Methods for Simultaneous Large-Scale 856 
Transcriptomic Profiling of Samples at Single-Cell Resolution. Adv Sci (Weinh) 8, e2101229 857 
(2021). 858 

10. Xie, Y. et al. Comparative Analysis of Single-Cell RNA Sequencing Methods with and without 859 
Sample Multiplexing. International Journal of Molecular Sciences 25, 3828 (2024). 860 

11. Camp, J.G. & Treutlein, B. Human organomics: a fresh approach to understanding human 861 
development using single-cell transcriptomics. Development 144, 1584-1587 (2017). 862 

12. Tang, X.Y. et al. Human organoids in basic research and clinical applications. Signal Transduct 863 
Target Ther 7, 168 (2022). 864 

13. Lancaster, M.A. & Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem 865 
cells. Nat Protoc 9, 2329-40 (2014). 866 

14. Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human 867 
cerebral cortex. Nature 570, 523-527 (2019). 868 

15. Silva, T.P. et al. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent 869 
Stem Cells and Characterization by Immunostaining. J Vis Exp (2020). 870 

16. Susaimanickam, P.J., Kiral, F.R. & Park, I.H. Region Specific Brain Organoids to Study 871 
Neurodevelopmental Disorders. Int J Stem Cells 15, 26-40 (2022). 872 

17. Renner, H. et al. A fully automated high-throughput workflow for 3D-based chemical screening 873 
in human midbrain organoids. Elife 9(2020). 874 

18. Eichmüller, O.L. & Knoblich, J.A. Human cerebral organoids — a new tool for clinical neurology 875 
research. Nature Reviews Neurology 18, 661-680 (2022). 876 

19. Sarieva, K. et al. Human brain organoid model of maternal immune activation identifies radial 877 
glia cells as selectively vulnerable. Mol Psychiatry 28, 5077-5089 (2023). 878 

20. Kagermeier, T. et al. Human organoid model of pontocerebellar hypoplasia 2a recapitulates 879 
brain region-specific size differences. Disease Models & Mechanisms 17(2024). 880 

21. Giorgi, C. et al. Brain Organoids: A Game-Changer for Drug Testing. Pharmaceutics 16(2024). 881 
22. Corsini, N.S. & Knoblich, J.A. Human organoids: New strategies and methods for analyzing 882 

human development and disease. Cell 185, 2756-2769 (2022). 883 
23. Qian, X., Song, H. & Ming, G.L. Brain organoids: advances, applications and challenges. 884 

Development 146(2019). 885 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


24. Andrews, M.G. & Kriegstein, A.R. Challenges of Organoid Research. Annu Rev Neurosci 45, 23-39 886 
(2022). 887 

25. Bertucci, T. et al. Improved Protocol for Reproducible Human Cortical Organoids Reveals Early 888 
Alterations in Metabolism with MAPT Mutations. bioRxiv (2023). 889 

26. Silva, T.P. et al. Transcriptome profiling of human pluripotent stem cell‐derived cerebellar 890 
organoids reveals faster commitment under dynamic conditions. Biotechnology and 891 
Bioengineering 118, 2781-2803 (2021). 892 

27. Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E.B.E. High-resolution transcriptional 893 
landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci 894 
Rep 11, 12959 (2021). 895 

28. Muguruma, K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease 896 
Modeling with Patient-Derived iPSCs. Cerebellum 17, 37-41 (2018). 897 

29. Atamian, A. et al. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell 31, 898 
39-51 e6 (2024). 899 

30. Schmahmann, J.D. The cerebellum and cognition. Neurosci Lett 688, 62-75 (2019). 900 
31. Zhang, P. et al. The cerebellum and cognitive neural networks. Front Hum Neurosci 17, 1197459 901 

(2023). 902 
32. Sathyanesan, A. et al. Emerging connections between cerebellar development, behaviour and 903 

complex brain disorders. Nat Rev Neurosci 20, 298-313 (2019). 904 
33. Mapelli, L., Soda, T., D'Angelo, E. & Prestori, F. The Cerebellar Involvement in Autism Spectrum 905 

Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 23(2022). 906 
34. (!!! INVALID CITATION !!! ). 907 
35. Harada, H., Sato, T. & Nakamura, H. Fgf8 signaling for development of the midbrain and 908 

hindbrain. Dev Growth Differ 58, 437-45 (2016). 909 
36. Lowenstein, E.D., Cui, K. & Hernandez-Miranda, L.R. Regulation of early cerebellar development. 910 

FEBS J 290, 2786-2804 (2023). 911 
37. Leto, K. et al. Consensus Paper: Cerebellar Development. The Cerebellum 15, 789-828 (2016). 912 
38. Sepp, M. et al. Cellular development and evolution of the mammalian cerebellum. Nature 625, 913 

788-796 (2024). 914 
39. Haldipur, P. et al. Spatiotemporal expansion of primary progenitor zones in the developing 915 

human cerebellum. Science 366, 454-460 (2019). 916 
40. van der Heijden, M.E. & Sillitoe, R.V. Cerebellar dysfunction in rodent models with dystonia, 917 

tremor, and ataxia. Dystonia 2(2023). 918 
41. Kamei, T. et al. Survival and process outgrowth of human iPSC-derived cells expressing Purkinje 919 

cell markers in a mouse model for spinocerebellar degenerative disease. Experimental 920 
Neurology, 114511 (2023). 921 

42. Coolen, M. et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with 922 
cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 109, 909-927 923 
(2022). 924 

43. Kresbach, C. et al. Intraventricular SHH inhibition proves efficient in SHH medulloblastoma 925 
mouse model and prevents systemic side effects. Neuro Oncol 26, 609-622 (2024). 926 

44. van Essen, M.J. et al. PTCH1-mutant human cerebellar organoids exhibit altered neural 927 
development and recapitulate early medulloblastoma tumorigenesis. Dis Model Mech 17(2024). 928 

45. Ballabio, C. et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat 929 
Commun 11, 583 (2020). 930 

46. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of 931 
polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10, 537-50 932 
(2015). 933 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


47. Salmen, F. et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nature 934 
Biotechnology 40, 1780-1793 (2022). 935 

48. Zheng, W., Chung, L.M. & Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC 936 
Bioinformatics 12, 290 (2011). 937 

49. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell 938 
RNA-seq. Science 352, 189-196 (2016). 939 

50. Vértesy, Á. et al. Gruffi: an algorithm for computational removal of stressed cells from brain 940 
organoid transcriptomic datasets. The EMBO Journal 41, e111118 (2022). 941 

51. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 942 
578, 142-148 (2020). 943 

52. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020). 944 
53. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 (2021). 945 
54. Olson, E.N. MyoD family: a paradigm for development. Genes Dev 4, 1454-1461 (1990). 946 
55. Itoh, N. FGF10: A multifunctional mesenchymal–epithelial signaling growth factor in 947 

development, health, and disease. Cytokine & Growth Factor Reviews 28, 63-69 (2016). 948 
56. Wilson, S.W. & Houart, C. Early Steps in the Development of the Forebrain. Developmental Cell 949 

6, 167-181 (2004). 950 
57. Fleck, J.S. et al. Resolving organoid brain region identities by mapping single-cell genomic data 951 

to reference atlases. Cell Stem Cell 28, 1148-1159.e8 (2021). 952 
58. Miller, J.A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199-206 953 

(2014). 954 
59. Aldinger, K.A. et al. Spatial and cell type transcriptional landscape of human cerebellar 955 

development. Nat Neurosci 24, 1163-1175 (2021). 956 
60. Chen, X., Shi, C., He, M., Xiong, S. & Xia, X. Endoplasmic reticulum stress: molecular mechanism 957 

and therapeutic targets. Signal Transduct Target Ther 8, 352 (2023). 958 
61. Jager, R., Bertrand, M.J., Gorman, A.M., Vandenabeele, P. & Samali, A. The unfolded protein 959 

response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol 960 
Cell 104, 259-70 (2012). 961 

62. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nature Methods 962 
14, 1083-1086 (2017). 963 

63. DeGregori, J. The genetics of the E2F family of transcription factors: shared functions and unique 964 
roles. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1602, 131-150 (2002). 965 

64. Dini, G. et al. NFIA haploinsufficiency: case series and literature review. Front Pediatr 11, 966 
1292654 (2023). 967 

65. Chen, K.S., Lim, J.W.C., Richards, L.J. & Bunt, J. The convergent roles of the nuclear factor I 968 
transcription factors in development and cancer. Cancer Lett 410, 124-138 (2017). 969 

66. Fratini, L. et al. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with 970 
microRNAs and long noncoding RNAs. Molecular and Cellular Biochemistry 476, 4107-4116 971 
(2021). 972 

67. Su, C.Y., Kemp, H.A. & Moens, C.B. Cerebellar development in the absence of Gbx function in 973 
zebrafish. Dev Biol 386, 181-90 (2014). 974 

68. Zhao, Y. et al. LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control 975 
Purkinje cell differentiation in the developing cerebellum. Proceedings of the National Academy 976 
of Sciences 104, 13182-13186 (2007). 977 

69. Tweedie, D. et al. Mild traumatic brain injury-induced hippocampal gene expressions: The 978 
identification of target cellular processes for drug development. Journal of Neuroscience 979 
Methods 272, 4-18 (2016). 980 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


70. Yin, C. et al. RNA-seq Analysis Reveals Potential Molecular Mechanisms of ZNF580/ZFP580 981 
Promoting Neuronal Survival and Inhibiting Apoptosis after Hypoxic-ischemic Brain damage. 982 
Neuroscience 483, 52-65 (2022). 983 

71. Lopes, I., Altab, G., Raina, P. & de Magalhaes, J.P. Gene Size Matters: An Analysis of Gene Length 984 
in the Human Genome. Front Genet 12, 559998 (2021). 985 

72. Wei, P.C. et al. Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural 986 
Stem/Progenitor Cells. Cell 164, 644-55 (2016). 987 

73. Zhao, Y.T. et al. Long genes linked to autism spectrum disorders harbor broad enhancer-like 988 
chromatin domains. Genome Res 28, 933-942 (2018). 989 

74. Seigfried, F.A. & Britsch, S. The Role of Bcl11 Transcription Factors in Neurodevelopmental 990 
Disorders. Biology (Basel) 13(2024). 991 

75. Pasca, A.M. et al. Human 3D cellular model of hypoxic brain injury of prematurity. Nat Med 25, 992 
784-791 (2019). 993 

76. Neuschulz, A. et al. A single-cell RNA labeling strategy for measuring stress response upon tissue 994 
dissociation. Mol Syst Biol 19, e11147 (2023). 995 

77. Manoli, I. et al. Mitochondria as key components of the stress response. Trends Endocrinol 996 
Metab 18, 190-8 (2007). 997 

78. Cao, S.S. & Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision 998 
and human disease. Antioxid Redox Signal 21, 396-413 (2014). 999 

79. Pasca, A.M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells 1000 
in 3D culture. Nat Methods 12, 671-8 (2015). 1001 

80. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual 1002 
inhibition of SMAD signaling. Nature Biotechnology 27, 275-280 (2009). 1003 

81. Volpato, V. & Webber, C. Addressing variability in iPSC-derived models of human disease: 1004 
guidelines to promote reproducibility. Dis Model Mech 13(2020). 1005 

82. Pantazis, C.B. et al. A reference human induced pluripotent stem cell line for large-scale 1006 
collaborative studies. Cell Stem Cell 29, 1685-1702 e22 (2022). 1007 

83. Sarieva, K. & Mayer, S. The Effects of Environmental Adversities on Human Neocortical 1008 
Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 8, 686410 (2021). 1009 

84. Silva, T.P. et al. Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the 1010 
Absence of Co-culture. Front Bioeng Biotechnol 8, 70 (2020). 1011 

85. Lambert, S.A. et al. The Human Transcription Factors. Cell 172, 650-665 (2018). 1012 
86. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-1013 

seq data with DESeq2. Genome Biology 15(2014). 1014 
87. Zhu, A., Ibrahim, J.G. & Love, M.I. Heavy-tailed prior distributions for sequence count data: 1015 

removing the noise and preserving large differences. Bioinformatics 35, 2084-2092 (2019). 1016 
88. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The 1017 

Innovation 2(2021). 1018 
89. Gu, Z. & Hübschmann, D. SimplifyEnrichment: A Bioconductor Package for Clustering and 1019 

Visualizing Functional Enrichment Results. Genomics, Proteomics &amp; Bioinformatics 21, 190-1020 
202 (2023). 1021 

90. Van De Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network 1022 
analysis. Nature Protocols 15, 2247-2276 (2020). 1023 

 1024 

 1025 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


Gene set overrepresentation analysis
of regulon target genes

a cNumber of DEGs per cell type

0

500

1000

1500

D
A

B
1

 C
A

L
B

1
 C

A
L

B
2

 H
in

d
N

G
P

C
G

P
C

 G
C

H
in

d
E

xN
H

in
d

N
N

e
w

b
o

rn
 P

C
P

A
X

6
 R

L
P

ro
g

-d
iv

P
ro

g
 1

P
ro

g
 2 R
L

UP in 10x

UP in Parse

b

Log2 fold change

−L
o
g

1
0
P

DEGs in GPC cluster

UP in 10x UP in Parse

DCC
HIRA

MT-ATP6

MT-CO3

TAS2R14

0

50

100

150

200

-10 -5 0 5 10

Significance
n.s.
Log2 FC
p-value
p-value & Log2 FC

U
nk

no
w

n 
1

U
nk

no
w

n 
2

Expression of TF Regulon AUC

GeneRatio

2.0
1.0
0.0

E
2F

3

0.1
0.2
0.3

E
2F

7

0.1
0.2
0.32.0

1.0
0.0

N
F

IA

0.0
2.0
4.0

0.0

0.5

Z
E

B
1

0.0

2.0

4.0

0.0

0.5

0.1
0.2
0.3

Z
N

F
58

0

2.0
1.0
0.0

LH
X

5

0.1
0.3
0.5

0.0

0.8

1.6

0.0
0.2
0.4
0.6

G
B

X
2

0.0
0.5
1.0
1.5

S
C

A
N

D
1

2.0
1.0
0.0 0.0

0.5

regulation of chromosome segregation
regulation of chromosome organization

sister chromatid segregation
positive regulation of cell cycle process

nuclear chromosome segregation
DNA replication
nuclear division

regulation of cell cycle phase transition
mitotic cell cycle phase transition

chromosome segregation

0.04 0.06 0.08

regulation of DNA replication
double-strand break repair

mitotic nuclear division
nuclear chromosome segregation

negative regulation of cell cycle
regulation of cell cycle phase transition

mitotic cell cycle phase transition
nuclear division
DNA replication

chromosome segregation

0.04 0.06 0.08

apoptotic cell clearance
negative regulation of calcium ion export across plasma membrane

regulation of calcium ionexport across plasma membrane
regulation of transmembrane transporter activity

protein dephosphorylation
negative regulation of calcium ion transport

neural nucleus development
negative regulation of calcium ion transmembrane transport

substantia nigra development
negative regulation of transport

0.15 0.25 0.35

0.01 0.03 0.05

vesicle targeting, rough ER to cis-Golgi
mitochondrial respiratory chain complex assembly

mitochondrial translation
mitochondrial gene expression

mitochondrial ATP synthesis coupled electron transport
ATP synthesis coupled electron transport

establishment of protein localization to membrane
ribosome biogenesis

protein targeting
establishment of protein localization to organelle

positive regulation of branching involved in
ureteric bud morphogenesis

cerebellar granule cell precursor proliferation
cell proliferation in external granule layer

hindbraincell proliferation in
differentiation involved in kidney development

positive regulation of epithelial cell
metanephric S-shaped body morphogenesis

morphogenesiscomma-shaped body
epithelial tube morphogenesis

embryonic organ morphogenesis
pattern specification process

0.3 0.4 0.5 0.6

retina layer formation
cerebellar Purkinje cell differentiation

cerebellar Purkinje cell-granule cell precursor cell signaling involved in
regulation of granule cell precursor cell proliferation

embryonic appendage morphogenesis
embryonic limb morphogenesis
dorsal/ventral pattern formation

neural retina development
neuron projection guidance

axon guidance
cell differentiation in spinal cord

0.125 0.175 0.225

positive regulation of dendrite development

0.10 0.14 0.18

1e-54

1e-32

1e-10

Adjusted p-value

0

40

80

120

160

Gene set size

Supplementary Figure 4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

Unknown 2

Unknown 1

d Reference-query mapping with cerebellar organoids 
trancriptome (Atamian et al., 2024)

e Prediction scores from 
reference-query mapping

BG
Brain-Stem
Choroid
Div-Choroid
Div-VZ
eCN/Unibrush
Endo
GC
GCP
Glia
iCN
immature-iCN/immature-PC
Meninges
PC
PIP
Progenitors
RL
Roof-Plate
VZ

0.00

0.25

0.50

0.75

1.00

a Correlation of regional marker 
expression with BrainSpan human 

transcriptomic data from PCW12-13

AMY
CB

DTH
HIP

NCx
STR

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

Scaled
similarity

-1.0

0.0

1.0

RL-div
PAX6 RL
Prog-div

RL
Prog 1

Newborn PC

HindExN
HindN

GPC/GC
Prog 2

DAB1/CALB1/CALB2 HindN
GPC

-1 0 1

More in 10x More in Parse

b cDistribution of cell types between technologies

0.00

0.25

0.50

0.75

1.00

Prediction scores from reference-query 
integration with human cerebellar 

trancriptome (Sepp et al., 2024)

0.00

0.25

0.50

0.75

1.00

Prediction scores from reference-query 
mapping with cerebellar organoids 

trancriptome (Atamian et al., 2024)

f

***

***10x Parse

FDR < 0.05 & abs(Log2FD) > 0.58

n.s.

Significance

Supplementary Figure 3

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

a b Granule thresholding for Gruffi-based cell stress assessment

cellular response to DNA damage stimulus

response to endoplasmic reticulum stress

cellular response to hypoxia

cellular response to starvation

random set

programmed cell death

response to oxidative stress

glycolytic process

integrated stress response signaling

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
D

35
L1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

N
o.

 o
f G

ra
nu

le
s

Granule Median Score

Non-stress identity: GO:0022008
Neurogenesis

0

10

20

-1.0 -0.5 0.0 0.5 1.0 1.5

Expression of cell stress-related modules

Stress identity: GO:0006096
glycolytic process

N
o.

 o
f G

ra
nu

le
s

20

0

10

30

-1 0 1 2
Granule Median Score

Stress identity: GO:0140467
integrated stress response signaling

0

5

10

15

20

-1 0 1 2
Granule Median Score

N
o.

 o
f G

ra
nu

le
s

e GO:0001706
Endoderm formation

0.0

0.2

0.4

GO:0001707
Mesoderm formation

0.0
0.1
0.2
0.3

Neural
Non-neural

Gruffi-based germ layer
assessment

f

Labels from reference-query mapping with human developmental transcriptome 
(Cao et al., 2020)

c d
Acinar cells
Adrenocortical cells
Amacrine cells
Astrocytes
Bipolar cells
Bronchiolar and alveolar epithelial cells
CCL19_CCL21 positive cells
Chromaffin cells
Ciliated epithelial cells
ENS glia
ENS neurons
Epicardial fat cells
Erythroblasts
Excitatory neurons
Ganglion cells
Granule neurons
Horizontal cells
IGFBP1_DKK1 positive cells

Inhibitory interneurons
Inhibitory neurons
Intestinal epithelial cells
Islet endocrine cells
Limbic system neurons
Lymphoid cells
Mesangial cells
Mesothelial cells
Metanephric cells
Microglia
MUC13_DMBT1 positive cells
Myeloid cells
Neuroendocrine cells
Oligodendrocytes
PAEP_MECOM positive cells
Parietal and chief cells
Photoreceptor cells
Purkinje neurons

Retinal pigment cells
Retinal progenitors and Muller glia
SATB2_LRRC7 positive cells
Satellite cells
Skeletal muscle cells
SKOR2_NPSR1 positive cells
SLC24A4_PEX5L positive cells
Smooth muscle cells
Squamous epithelial cells
Stromal cells
Sympathoblasts
Syncytiotrophoblasts and villous cytotrophoblasts
Unipolar brush cells
Ureteric bud cells
Vascular endothelial cells
Visceral neurons

Prediction score from 
reference-query mapping

0.25

0.50

0.75

1.00

FALSE TRUE

Below stress threshold

90% quantile

threshold

0.15

0.20

0.25

GO:0007399
Nervous system development

0.15
0.20
0.25
0.30

GO:0022008
Neurogenesis

Mean module
expression

0.15

0

-0.1

Supplementary Figure 2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


a
P

er
ce

nt
ag

e 
of

 r
ea

ds

0

25

50

75

100

Mapped to
Genome

Exonic With Valid
Barcodes

b

0

25,000

50,000

75,000

N
o.

 o
f c

el
ls

OutputInput

Cell recovery c
10x Parse

2,159

(4.6%)

12,098

(25.9%)

32,408

(69.4%)

No. of Expressed Genes

N
o.

 o
f c

el
ls

log10 (No. of Cells
expressing a Gene)

0

5,000

10,000

15,000

0 1 2 3 4

d

f Average % of 
non-protein-coding RNA

lncRNA
miRNA
misc RNA
processed pseudogene

pseudogene

snoRNA
snRNA
TEC
transcribed processed pseudogene

transcribed unprocessed pseudogene

unprocessed pseudogene

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

7
.6

6
 %

7
.7

3
 %

5
.6

5
 %

5
.8

4
 %

1
0

.2
 %

9
.9

8
 %

8
.4

6
 %

8
.2

9
 %

0

3

6

9

10
x

P
ar

se

10
x

P
ar

se

10
x

P
ar

se

10
x

P
ar

se

Protein-coding
RNA

lncRNA
h

0

10,000

20,000

30,000

* ***

Gene length, bp

10
x

P
ar

se

P
ar

se

10
x

***

% GC content

***

Gene length, bpg

0

25

50

75

100

0

10,000

20,000

30,000

40,000

50,000

10
x

P
ar

se

10
x

P
ar

se0

20

40

60

% of ribosomal protein
coding genes

% of protein-coding
genes

0

25

50

75

% of mitochondrial protein
coding genes

0

25

50

75

100

*********

10
x 

D
35

 L
1

10
x

D
35

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
D

35
 L

2

10
x 

D
50

 L
1

10
x

D
50

 L
2

P
ar

se
 D

50
 L

1

P
ar

se
D

50
 L

2

10
x 

D
35

 L
1

10
x

D
35

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
D

35
 L

2

10
x 

D
50

 L
1

10
x

D
50

 L
2

P
ar

se
 D

50
 L

1

P
ar

se
D

50
 L

2

10
x 

D
35

 L
1

10
x

D
35

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
D

35
 L

2

10
x 

D
50

 L
1

10
x

D
50

 L
2

P
ar

se
 D

50
 L

1

P
ar

se
D

50
 L

2

0

10

20

30

% of transcription factor
genes

***

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

0

200,000

400,000

600,000

800,000

No. of GenesNo. of Readse log10 (Genes per UMI)
***

0

5,000

10,000

15,000

20,000

0.00

0.25

0.50

0.75

1.00

*** ***

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

Supplementary Figure 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


−4

−2

0

2

4
z-score

Unknown 1

Unknown 2

U
nk

no
w
n 

2

U
nk

no
w
n 

1

Significance
n.s.
Log2 fold change
p-value
p-value & Log2 fold change

a b cDEGs per cell type
D

A
B

1
 C

A
L

B
1

 C
A

L
B

2
 H

in
d

N

G
P

C

G
P

C
 G

C
H

in
d

E
xN

H
in

d
N

N
e

w
b

o
rn

 P
C

P
A

X
6

 R
L

P
ro

g
-d

iv

P
ro

g
 1

P
ro

g
 2 R
L

-10

0

10

20

Log2 fold change

−L
o
g

1
0
P

U
P

 in
 1

0x
U

P
 in

 P
ar

se

DEGs in GPC cluster

Lo
g

2
fo

ld
 c

h
a

n
g

e

UP in 10x UP in Parse

process triphosphate purine

biosynthetic nucleoside metabolic phosphate

ribonucleoside purinecontaining nucleotide

electron chain aerobic coupled respiration transport

energy atp synthesis

structure size organization extracellular regulation

projection development assembly neuron

developmental organization extension axonogenesis axon

nervous

signal transduction ras gtpase signaling transmission

small synaptic mediated compound

transport localization plasma membrane acid transmembrane

negative cell regulation

gtpase regulation activity hydrolase positive

adhesion

digestive tissue development system

process metabolic

Semantic similarity of GSEA result
in GPC cluster

d

-300-200-100
Log10 P

Upstream regulator analysis

ZHX2
BACH1
COPS5
NANOG
NOTCH3
CTNNB1
NFKBIA
CLPB
MXD1
MEN1
PHF12
HOXA10
IRF4
EOMES
PML
PDX1
NCOA1
ILF3
HOXC6
MED13
TOB1
TRPS1
MYOCD
E2F4
Tcf7
PTTG1
SOX9
HOXB13
HDAC5
KLF2
ZBTB7A
SP3
TWIST1
BCL6
CCND1
HIF1A
BCL11B
RELB
TAL1
NRIP1
SALL4
CRTC1
IFI16
HMGA1
AIP
ARNT
KLF15
ZEB1
HIC1
FOXP1
PIAS1
MLX
CTCF
ZNF281
SOX7
SP110
NCOA2
CDKN2A
MXI1
OVOL2
E2F1
KLF6
NFIC
ARNT2
SIM1
SOX4
PSMD10
Fus
FOXM1
ATF3
SNAI2
LMX1B
LMX1A
YAP1
FOSL2
WWTR1
SMAD4
BHLHE40
MEF2C
MYCBP
NFYA
STAT4
EGR2
SMAD3
SRF
KMT2D
H2AX
JUND
TCF7L1
BRCA1
CBFB
POU5F1
VDR
RUNX3
PROX1
SUPT16H
STAT1
FOXO1
DUX4
TP63
ATF6
SOX11
NFIA
RUVBL1
IKZF3
KCNIP3
TOX
SMAD7
TFAP2C
ATF4
CREB1
PFDN5
SREBF2
STAT5B
IRF2
TCF20
HNF4A
POU4F2
STAT3
FLI1
DDIT3
PPARGC1B
NFE2L1
HSF2
PITX2
TFE3
TCF4
HES3
CEBPB
SATB1
NKX2−3
NUPR1
MYCL
XBP1
SREBF1
NRF1
TEAD1
MLXIPL
PPARGC1A
RB1
NFE2L2
MYCN
MYC

H
in
dE

xN

N
ew

bo
rn

 P
C

Pro
g 

2

Pro
g 

1

Pro
g−

di
v

G
PC

G
PC

 G
C

PA
X6 

R
L

R
L

DAB1 
C
ALB

1 
C
ALB

2 
H
in
dN

H
in
dN

UP in 10x UP in Parse

0 10-10

Bias-corrected z-score

e SCENIC gene regulatory networks

Technology
Cell type

10x
Parse

Technology

RL

PAX6 RL

RL−div

Prog−div

Prog 1

Prog 2

GPC

GPC/GC

HindN
DAB1/CALB1/CALB2 

HindN
Newborn PC

HindExN

Cell type

DCC

MT-ATP6

MT-CO3

MT-RNR1

TAS2R14

0

50

100

150

200

-10 0 10 20

Similarity
1.0

0.5

0.0

U
nk

no
w

n 
1

U
nk

no
w

n 
2

1 2 3 4

1
2

3
4

SHOX2
TLX2
LHX5
GBX2
NHLH1
HDAC2
SOX11
UNCX
NEUROD1
POU4F1
ZEB1
ELF2
KLF13
POU3F2
POU3F3
PBX1
SREBF2
MEIS1
HOXA9
HOXB4
HOXA5
HOXC8
BACH1
HMBOX1
ETV3
GATA3
FOXO3
GATA2
PRDM1
ZBTB11
TFCP2
ZNF263
ETS2
BACH2
HOXA1
ONECUT3
POU2F2
TGIF1
XBP1
CEBPD
JUN
CEBPB
PHOX2A
JUNB
MSX1
MSX2
HMGA1
SCAND1
ZNF580
MAZ
SOX4
POU3F1
FOS
MESP1
SOX10
RXRG
ETS1
HEY2
DLX2
FOXD3
SIX1
NFIX
FLI1
ERG
PRRX2
RARG
TWIST1
EGR1
E2F3
E2F7
PDLIM5
PAX7
E2F1
E2F2
FOXM1
OTX1
OTX2
CREB3L2
TCF7L2
HMGA2
SOX6
LEF1
CREB5
ATF3
NR3C1
FOSL2
NFKB1
FOSB
NFKB2
RELB
MITF
BCLAF1
BHLHE41
NEUROD2
ETV6
NFIA
SOX9
ETV5
STAT3
EP300
SP1
KLF6
MAF
RFX2
RFX3

Figure 4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

10x Parse

Unknown 2
Unknown 1

Unknown 1
Unknown 2

Unknown 1

a Correlation of regional marker 
expression with BrainSpan human 

transcriptomic data from PCW12-13

AMY
CB

DTH
HIP

NCx
STR

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

Similarity

Reference-query integration with human cerebellar 
trancriptome (Sepp et al., 2024)

f Prediction scores from 
reference-query integration

astroglia
erythroid
GABA_DN
GC
GC/UBC
glut_DN
immune
interneuron
isth_N
isthmic_neuroblast
meningeal
mural/endoth
noradrenergic
NTZ_mixed
NTZ_neuroblast
oligo
parabrachial
Purkinje
UBC
VZ_neuroblast

0.25

0.50

0.75

1.00

b RPCA-integrated neural data

UMAP1

U
M

A
P

2

RL
PAX6 RL
RL-div
Prog-div
Prog 1
Prog 2
GPC

GPC/GC
HindN
DAB1/CALB1/CALB2 HindN
Newborn PC
HindExN

W
L

S
S

O
X

2
H

E
S

1
R

S
P

O
1

R
S

P
O

3
L

M
X

1
B

P
A

X
6

T
O

P
2

A
M

K
I6

7
B

A
R

H
L

1
A

T
O

H
1

K
IR

R
E

L
2

R
B

F
O

X
3

L
H

X
2

L
H

X
9

N
E

U
R

O
D

6
C

A
L

B
1

C
A

L
B

2
D

A
B

1
S

K
O

R
2

G
A

D
2

L
H

X
1

N
E

U
R

O
D

1
A

Q
P

4
S

1
0

0
B

F
A

B
P

7
L

U
M

RL
PAX6 RL

RL-div

Prog-div
Prog 1
Prog 2

GPC
GPC/GC

HindN
DAB1/CALB1/CALB2 HindN

Newborn PC

HindExN

3 2 2 2 3 2 2 3 3 1.5 1.5 2 3 2 3 2 3 3 5 2 2 2 2 0.9 3 2 2

Canonical marker expressionc

ed Percentage of cell types
between technologes

12.02 %

3.67 %
0.49 %

3.79 %
3.4 %

3.18 %
5.48 %

9.72 %

19.68 %

21.06 %

3.29 %
2.79 %
4.41 %

7.04 %

16.9 %

6.13 %
1.11 %

5.99 %

4.13 %
2.86 %
3.99 %

9.08 %

18.69 %

17.14 %

3.8 %
2.68 %
4.59 %
2.91 %0

25

50

75

100

10
x

P
ar

se

RL
PAX6 RL
RL-div
Prog-div
Prog 1
Prog 2
GPC
GPC/GC
HindN
DAB1/CALB1/CALB2 HindN
Newborn PC
HindExN

Unknown 2

0.4

0.3

0.2

0.1

Figure 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


UMAP1

U
M

A
P

2

a Dimensionality reductions in unintegrated data

10x D35 L1
10x D35 L2
10x D50 L1
10x D50 L2
Parse D35 L1
Parse D35 L2
Parse D50 L1
Parse D50 L2

PC1

P
C

2

b Expression of cell stress-related modules

10
x 

D
35

 L
1

10
x

D
35

 L
2

10
x 

D
50

 L
1

10
x

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
D

50
 L

2

response to oxidative stress

glycolytic process

integrated stress response signaling

random set

Mean module
expression

0.15

0

-0.1

UMAP1

U
M

A
P

2

RPC1
R

P
C

2
UMAP1

U
M

A
P

2

1
.5

%

1
.6

%

3
8

.6
%

3
7

.2
%

0
% 0
.1

%

1
0

%

1
0

.6
%

0

10

20

30

40

d % of stressed cellsc Gruffi-based cell stress
assessment

Stressed
Not stressed

e Dimensionality reductions in RPCA-integrated data

10x Parse

UMAP1

U
M

A
P

2

Neural
Non-neural

Reference-query mapping with 
human developmental transcriptome 

(Cao et al., 2020)

f

UMAP1

U
M

A
P

2

g MYOD1 MYOG

FGF10 STMN2

5
4

.1
%

5
4

.3
%

4
6

.1
%

4
9

.5
%

6
0

.7
%

6
0

.1
%

4
6

%

4
6

.4
%

0

25

50

75

100

h % of neural cells i % of neural cells
per cell line

0

25

50

75

100

BIONi010-C
BIONi037-A
KOLF2.1J

Cell line

2

1

0

3
2
1
0

3
2
1
0

2
0

4

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

Figure 2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/


c d

Average gene count, 10x

A
ve

ar
ge

 g
en

e 
co

un
t, 

P
ar

se

Average gene count, 10x

A
ve

ar
ge

 g
en

e 
co

un
t, 

P
ar

se

Gene count
highlow mitochondrial ribosomal other

Gene group

Pearson r = 0.6

0.001

0.100

10.000

0.001 0.100 10.000

1,000.000

0.001

0.100

10.000

0.001 0.100 10.000

1,000.000 Gene length, bp

0

10,000

20,000

30,000

% GC content

0

25

50

75

100

*** ***

10
x

P
ar

se 10
x

P
ar

se

0

5

10

No. of Genes % of mitochondrial protein
coding genes

% of ribosomal protein
coding genes

% of protein-coding
genes

% of transcription factor
genes

b

0

5,000

10,000

0

2

4

6

8

0

25

50

75

100

0

20

40

*** *** *** *********

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1
P

ar
se

 D
35

 L
2

P
ar

se
 D

50
 L

1
P

ar
se

 D
50

 L
2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

10
x 

D
35

 L
1

10
x 

D
35

 L
2

10
x 

D
50

 L
1

10
x 

D
50

 L
2

P
ar

se
 D

35
 L

1

P
ar

se
 D

35
 L

2

P
ar

se
 D

50
 L

1

P
ar

se
 D

50
 L

2

a

Figure 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609290doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

