

1 Comparing the impact of sample multiplexing approaches for single-cell
2 RNA-sequencing on downstream analysis using cerebellar organoids
3

4 Kseniia Sarieva^{1*}, Theresa Kagermeier^{1,2*}, Vladislav Lysenkov^{3,4}, Zeynep Yentuer^{1,2,5,6}, Katharina Becker¹,
5 Julia Matilainen⁷, Nicolas Casadei^{3,4}, Simone Mayer^{1,5,6,8,9#}

6 1, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

7 2, International Max Planck Research School, Graduate Training Centre of Neuroscience, University of
8 Tübingen, Tübingen, Germany

9 3, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Germany

10 4, NGS Competence Center Tübingen, Tübingen, Germany

11 5, Heidelberger Akademie der Wissenschaften, Heidelberg, Germany

12 6, IMPRS, The Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany

13 7, German PCH patient network (PCH-Familie e.V.), Böblingen, Germany

14 8, Zoological Institute, Karlsruhe Institute of Technology (KIT), Germany

15 9, Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of
16 Technology (KIT), Germany

17

18 *, equal contribution authors

19 #, corresponding author:

20 Prof. Dr. Simone Mayer

21 Address:

22 Wolfgang-Gaede-Straße 1a

23 76131 Karlsruhe, Germany

24 Email: simone.mayer@kit.edu

25 Phone: +49 721 608-47500

26

27 **Abstract**

28 Sample multiplexing provides a solution to limited sample throughput in single-cell RNA sequencing
29 (scRNA-seq) experiments. Different strategies for multiplexing are commercially provided by Parse
30 Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex combined with microfluidic cell
31 capture (10x). However, the extent to which these two techniques differ when characterizing complex
32 tissues such as regionalized neural organoids and whether data generated from the two techniques can
33 be readily integrated is unknown. Cerebellar organoids are a highly relevant model for understanding
34 evolutionary differences, developmental trajectories, and disease mechanisms of this brain region.
35 However, they have not been extensively characterized through scRNA-seq. Therefore, we compared the
36 two multiplexing techniques, 10x and Parse, using cerebellar organoids derived from three stem cell lines.
37 While both strategies demonstrated technical reproducibility and revealed comparable cellular diversity
38 including the main lineages of cerebellar neurons, we found more stressed cells in 10x than in Parse.
39 Additionally, we observed differences in transcript capture, with Parse covering a higher gene biotype
40 diversity and less mitochondrial and ribosomal protein coding transcripts. In summary, we demonstrate
41 that both techniques provide similar insight into cerebellar organoid biology, but flexibility of
42 experimental design, capture of long transcripts, and the level of cell stress caused by the workflow differ.

43

44 **Introduction**

45 Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states,
46 and lineages in various biological systems and provides a new readout in screening applications and drug
47 development^{1,2}. Further, scRNA-seq is broadly applied to investigate cellular mechanisms in various model
48 systems in health and disease³. The use of scRNA-seq has been limited by technically challenging
49 workflows, often resulting in relatively low sample throughput in single experiments^{4,5}. However, an
50 adequate number of cells per sample and sufficient biological replica are essential for the success of
51 single-cell transcriptomic studies. Effective cell sampling maximizes the capture of cellular heterogeneity,
52 allowing for the precise identification and clustering of rare cell populations⁶. Large numbers of cells
53 contribute to robust statistical power, facilitating the detection of subtle changes in gene expression.
54 Biological replicates are crucial to distinguish true biological variability from technical noise, allowing
55 reliable inference of cellular responses to experimental manipulations⁶. Recent advances in
56 commercialized kits have overcome some of the technical obstacles limiting sample throughput by
57 enabling sample multiplexing. Thereby both the number of cells assayed and the number of possible
58 replicates or biological samples in a single experiment can be increased. The different approaches to
59 multiplexing of scRNA-seq are characterized by differential sample throughput. Additionally, multiplexing
60 can help detect multiplets and facilitates their removal prior to analysis⁷. While combinatorial barcoding
61 is inherently multiplexed, microfluidic approaches require an additional labeling step for barcoding,
62 mediated by antibodies or lipids⁸. Thus, from a technical perspective, multiplexing of samples allows
63 upscaling experiments. However, increasing the number of samples remains technically challenging when
64 working with fresh tissue because tissue dissociation, a highly manual process, needs to be
65 parallelized⁹. Fixation of the dissociated cells before capture overcomes this obstacle, and different
66 samples, for instance from different experimental time points, can be processed together, thereby
67 avoiding batch effects of the capture.

68 Two commercialized approaches for sample multiplexing employ these different strategies and are
69 commonly used by laboratories across the globe: 10x Genomics (hereafter, 10x) offers a microfluidic

70 approach, while Parse Biosciences (hereafter, Parse) relies on combinatorial barcoding of fixed cells. The
71 kits allow multiplexing of 12 (10x) or up to 96 samples (Parse). The higher the number of multiplexed
72 samples, the lower are the per-sample costs of cell capture with both strategies. Despite their broad use
73 in the scientific community, the two commercial technologies for multiplexed scRNA-seq, 10x and Parse,
74 need to be compared in depth concerning their performance regarding differential transcript capture, cell
75 type enrichment, and the amount of information that can be inferred from secondary analyses. A recent
76 study compared both technologies using peripheral blood mononuclear cells (PBMCs) and demonstrated
77 that Parse had a higher sensitivity for detecting rare cell types¹⁰. Furthermore, it was shown that Parse
78 covered a wider range of gene lengths, and that 10x was biased towards more GC-rich transcripts¹⁰.
79 However, it remains unclear, to what extent these differences apply and potentially affect downstream
80 analysis of other cell types and highly complex tissue samples that require dissociation.

81 In parallel to scRNA-seq technologies, protocols for human induced pluripotent stem cell (iPSC)-derived
82 organoids have been developed and have rapidly gained importance in biomedical research over the last
83 decade^{3,11,12}. Particularly, the establishment of brain, or neural, organoids has greatly impacted
84 neuroscience research as they allow to investigate the developmental stages that usually happen *in utero*
85 and are experimentally hardly accessible¹³. Over the last few years, the protocols for generating neural
86 organoids have been modified to generate regionalized tissues resembling neocortex, midbrain and
87 cerebellum¹⁴⁻¹⁷. Regionalized neural organoids are more homogeneous and contain specialized cell types
88 compared to non-regionalized organoids and are, therefore, a particularly powerful tool to study human
89 neurodevelopment¹⁸, to model neurological disorders^{19,20}, and to test on- and off-target effects of
90 pharmaceuticals^{21,22}. Despite their advantages and broad application, they can be a challenging model
91 system due to the heterogeneity between batches of differentiation and iPSC lines, the diversity of
92 generated cell types, and off-target tissue^{23,24}. These limitations highlight that neural organoids require
93 comprehensive characterization of cell and tissue types at single cell resolution by high-throughput
94 technologies such as scRNA-seq to exploit their full potential³. Further careful characterization of new
95 protocols with multiple iPSC lines should be performed to ensure reproducibility across cell lines²⁵. While
96 neocortical organoids are broadly used and extensively characterized through scRNA-seq, much less data
97 is available for other regionalized neural organoids such as cerebellar organoids^{15,26-29}.

98 The human cerebellum has long been thought to mainly be involved in motor learning and coordination³⁰,
99 however more recent insights into cerebellar function, describe its major contribution to cognitive
100 functions such as attention, task execution, working memory, language and social behavior³¹, and a role
101 in neurodevelopmental disorders such as autism spectrum disorder (ASD)^{32,33}. Considering that
102 regionalized neural organoids, including cerebellar organoids, depict the cellular compositions and
103 mechanisms of the developing human brain³⁴³⁴³⁴³⁴³⁴³⁴³⁴, they are a promising tool for studying
104 neurodevelopmental disorders affecting the cerebellum. Early developmental stages of cerebellar
105 ontogenesis are conserved across species, with two progenitor zones arising in the rhombencephalon
106 r1^{35,36}. These two progenitor zones are the ventricular zone (VZ) and the rhombic lip (RL). The VZ gives rise
107 to all inhibitory neurons of the future cerebellum, including Purkinje cells (PC) and inhibitory neurons of
108 the deep cerebellar nuclei. In contrast, the RL generates all excitatory neurons, including, for example,
109 granule cells (GC) and excitatory neurons of the deep cerebellar nuclei³⁷. However, the human cerebellum
110 is uniquely characterized by features including changes in neuronal subtype ratios and folial complexity
111 with respect to other mammals^{37,38}. Moreover, a comparison between human and non-human primates

112 has revealed the existence of a distinct basal progenitor population within the VZ and a longer persistence
113 of neural progenitors originating from the RL in humans³⁹.

114 To date, cerebellar disorders such as cerebellar hypoplasias, Dandy-Walker Syndrome, ataxias, and
115 medulloblastoma have mainly been studied in mouse or zebrafish models⁴⁰⁻⁴³. Cerebellar organoid models
116 now provide an interesting avenue to model these disorders in a human tissue context²⁸, as pioneered in
117 several recent studies^{20,44,45}. However, the protocols underlying their generation are still being
118 improved^{15,27,29}, and few single-cell RNA datasets of selected cell lines are available^{15,29,46}. Moreover,
119 recent publications on cerebellar organoid differentiation performed scRNA-seq on only one iPSC line^{27,29}.
120 Hence the reproducibility for different iPSC lines is yet to be tested.

121 Taken together, (regionalized) neural organoids such as cerebellar organoids hold great potential to
122 understand human-specific brain development in health and disease. However, these models can display
123 heterogeneous results and efficiencies across batches and cell lines and require precise characterization
124 of the cellular population and transcriptional profiles. Different scRNA-seq techniques have been reported
125 to show individual strengths and weaknesses in PBMCs¹⁰. To investigate how these differences could
126 potentially impact the analysis of scRNA-seq data of complex, heterogeneous and 3-dimensional (3D)
127 tissue such as regionalized neural organoids, we generated cerebellar organoids from three iPSC lines and
128 performed an in-depth comparison of 10x with Parse on both technical and biological levels.

129 Results

130 Experimental design and quality assessment

131 To assess the reproducibility of cerebellar organoid differentiation and comparability of two scRNA-seq
132 methods, we differentiated three publicly available iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1J)
133 into cerebellar organoids (Fig. 1a). All three cell lines were handled in parallel throughout the culture
134 period. Samples were harvested at day 35 (D35) and day 50 (D50) of differentiation, and pools of 24
135 organoids per cell line and time point were dissociated into single cells. One aliquot of each cell suspension
136 was used to perform 10x, the other to perform Parse scRNA-seq. For 10x, individual samples were labelled
137 with cell multiplexing oligos (CMO), pooled, and then split into two lanes of a 10x chip and processed by
138 10x 3' Gene Expression experimental pipeline (Fig. 1a). In parallel, the second aliquot was fixed according
139 to the Parse protocol and stored at -80°C. Frozen samples of both time points (D35, D50) were
140 subsequently subjected to combinatorial barcoding, and two sub-libraries were sequenced. For simplicity,
141 we will refer to Parse sub-libraries as “libraries” throughout the manuscript. This experimental design
142 enabled us to minimize the effect of biological variability and to focus on differences arising solely from
143 the two techniques, 10x and Parse.

144 For both technologies, libraries were sequenced to achieve over 50,000 reads per cell (Supplementary
145 Table 1). Due to varying sequencing depth, raw FASTQ files were downsampled to 50,000 reads per cell
146 to allow a direct comparison of gene detection sensitivity (Supplementary Table 1). They were further
147 processed through technology-specific alignment pipelines with human genome hg38: cellranger v7.2.0
148 multi pipeline for 10x samples and split-pipe v1.1.2 for Parse samples.

149 We first assessed the library efficiencies for both methods and found that, in both cases, most reads were
150 mapped to the genome (93.2% for 10x, 91.8% for Parse, Supplementary Fig. 1a, Supplementary Table 2).
151 While 56.3% of reads in 10x were mapped to exons, only 30.1% of reads were mapped to exons using
152 Parse (Supplementary Fig. 1a, Supplementary Table 2). Valid barcodes were identified for 97.2% for 10x

153 and 79.9% for Parse (Supplementary Fig. 1a, Supplementary Table 2). The cell recovery rate was 42.7% for
154 10x and 16.5% for Parse (Supplementary Fig. 1b, Supplementary Table 2).

155 To enable further comparisons, the technology-specific cell-by-gene count matrices were merged. We
156 found that 32,408 genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes
157 were uniquely expressed in 10x and Parse datasets, respectively (Supplementary Fig. 1c). While the
158 number of genes in the merged matrix was 62,910, it did not correspond to the number of genes with
159 non-zero expression throughout the cells (Supplementary Fig. 1d). We therefore removed genes that had
160 a non-zero expression in less than 8 cells in the merged count matrix. The resulting count matrix contained
161 38,580 genes.

162 For further analysis, we used the following combination of metadata parameters to assign cells to samples
163 unless stated otherwise: (1) the technology (10x vs Parse); (2) the day of differentiation (D35 vs D50) of
164 cerebellar organoids; and (3) the sequencing library (L1 and L2). Day of differentiation was used as
165 covariate to acknowledge both biological differences in the stage of organoid differentiation and technical
166 differences arising from harvesting D35 and D50 samples on different days. The sequencing library was
167 used as a covariate to show the reproducibility of the workflow within each technology. In both
168 technologies, libraries consisted of different cells, not different sequencing rounds.

169 Cell-level quality control (QC) was performed to remove cells with either a low or high number of detected
170 genes, low number of genes per unique molecular identifier (UMI), and high percentage of mitochondrial
171 protein-coding transcripts (Supplementary Fig. 1e). After QC, we recovered on average 87.2% of cells from
172 10x and 95.6% of cells from Parse datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226
173 cells). The number of detected reads per cell did not vary between the technologies before filtering
174 because of the downsampling of reads approach we took to correct for differences in sequencing depth
175 ($p \geq 0.05$, Supplementary Fig. 1e). However, the number of genes per cell was higher in Parse both before
176 and after QC ($p < 0.001$, Fig. 1b), suggesting that there might have been a higher diversity of detected
177 gene biotypes in the Parse dataset. Indeed, while protein-coding genes were the most abundant gene
178 biotype in both technologies, their percentage of the total reads was significantly smaller in Parse than in
179 10x ($p < 0.001$, 10x, 93.2 ± 2.9 ; Parse, 88.7 ± 2.1 ; mean \pm SD) (Fig. 1b, Supplementary Fig. 1e). In contrast,
180 Parse recovered a higher proportion of non-coding RNAs (ncRNA) reads, including long non-coding RNAs
181 (lncRNA) ($p < 0.001$; 10x, 6.7 ± 3.1 ; Parse, 9.2 ± 2.3 ; mean \pm SD) (Supplementary Fig. 1f), which have
182 previously been shown to be informative for cell type identification⁴⁷. The difference in ncRNAs and exonic
183 reads can be explained by primers used for reverse transcription: Parse uses a mixture of random hexamer
184 and poly-dT barcoded primers for reverse transcription⁸, while 10x uses only poly-dT primers.

185 Additionally, the percentage of mitochondrial and ribosomal protein-coding genes was lower in the Parse
186 than in the 10x samples. In contrast, the percentage of reads originating from transcription factors (TF)
187 among protein-coding genes was higher in the Parse than in the 10x dataset (Fig. 1b, Supplementary Fig.
188 1e). In line with the observation of higher gene biotype diversity in Parse data by Xie and colleagues¹⁰,
189 this suggested differential gene detection between the two technologies. Indeed, when we analyzed the
190 correlation of gene expression between the two technologies across cells, we found only a moderate
191 correlation, which corresponded to previous findings (Pearson's $r = 0.6$) (Fig. 1c)¹⁰.

192 Different bulk and single-cell RNA-seq technologies are known to have biases in gene detection based on
193 gene properties such as GC content and gene length^{10,48}. To characterize these biases in our cerebellar
194 organoid model, we analyzed the correlations between gene abundance and gene length or GC content,

195 respectively, in both technologies (Fig. 1d, Supplementary Fig. 1f). When all expressed genes per
196 technology were used for gene length and GC content analysis, small but statistically significant
197 differences were observed ($p < 0.001$, Supplementary Fig. 1f). However, when we analyzed both
198 parameters in differentially expressed genes (DEG) per technology (10x, 2,737 DEGs; Parse, 4,055 DEGs),
199 we observed large differences in both gene length and GC content, reminiscent of previously published
200 results (transcript length, bp: 10x, 1302.4 ± 728.0 ; Parse, 2715.9 ± 1754.8 ; GC content, %: 10x, 50.3 ± 8.2 ;
201 Parse, 43.8 ± 6.5 ; mean \pm SD)¹⁰. While a bias towards detecting longer genes in Parse was observed both
202 for protein-coding genes and lncRNA, the difference was higher for the former (transcript length, bp:
203 protein-coding genes, 10x, 1300.2 ± 720.3 ; Parse, 2901.1 ± 1748.9 ; lncRNA, 10x, 1352.9 ± 888.7 ; Parse,
204 1595.5 ± 1311.1 ; mean \pm SD) (Supplementary Fig. 1g). Finally, we performed an extensive analysis of gene
205 detection sensitivity and biases largely corroborating results from the previous benchmarking study on
206 PBMCs¹⁰ (Supplementary Table 2) in a different sample type, human cerebellar organoids, therefore
207 suggesting that the observed differences are characteristic features of 10x and Parse technologies
208 independent of the sample type.

209 Technical and biological differences between technologies

210 Following the scRNA-seq QC workflow described above, we normalized the data and revealed highly
211 variable genes for further Principal Component Analysis (PCA) as well as Uniform Manifold Approximation
212 and Projection (UMAP) on unintegrated data (Fig. 2a). As expected from previous results and our findings
213 on the QC level, both PCA and UMAP revealed major differences between the technologies. We
214 hypothesized that these differences may be arising from different sample preparation procedures
215 between the technologies. Single cell suspensions for Parse analysis were immediately fixed and frozen
216 after dissociation, while cells undergoing 10x capture were live cells depleted of nutrients from the media
217 for longer (including time periods for multiplexing with CMOs, transportation to the sequencing facility,
218 cell counting and viability assessment) and passed through microfluidic channels of the instrument before
219 lysis.

220 Hence, we hypothesized that cellular stress may be a major contributor to differences between samples.
221 We analyzed the expression of gene ontology (GO) modules involved in different modalities of cellular
222 stress (e.g., GO terms for response to oxidative stress, cellular response to starvation) as well as
223 downstream effects such as programmed cell death and integrated stress response (ISR) (Supplementary
224 Fig. 2a). Module, or gene signature, expression analysis evaluates the expression of a set of genes rather
225 than individual genes thereby providing hypothesis-driven insights into biological functions⁴⁹. We included
226 a random set of genes of average size of other gene sets into module expression analysis to serve as an
227 internal control (Supplementary Fig. 2a). We performed hierarchical clustering of average GO module
228 expression scores across samples, which revealed that samples from the two technologies clustered apart
229 (Supplementary Fig. 2a). We also noticed that the major differences came from three cellular stress terms:
230 response to oxidative stress, glycolytic process, and ISR signaling (Supplementary Fig. 2a). When using
231 only these three modules and the random set for hierarchical clustering, the results were identical to the
232 full list of cell stress terms (Fig. 2b, Supplementary Fig. 2a).

233 To understand the impact of cell stress on the dataset we further aimed to determine the number of cells
234 with high cell stress transcriptomic signature. Therefore, we performed Gruffi cell stress assessment⁵⁰
235 using two of the top cell stress terms from the module expression analysis: glycolytic process
236 (GO:0006096) and ISR signaling (GO:0140467). With thresholds set to 95.5% quantile for GO:0006096,
237 89.8% quantile for GO:0140467 and no threshold for neurogenesis (GO:0022008) (Supplementary Fig. 2b),

238 we found that the percentage of stressed cells varied between technologies but also between days of
239 organoid differentiation (Fig. 2c,d). There were more stressed cells in the 10x data than in the Parse data,
240 and both technologies captured more stressed cells in D50 than in D35 cerebellar organoids (Fig. 2d). This
241 finding can be explained by the diffusion-based distribution of nutrients in organoids leading to an
242 increasing nutrient deficiency as organoids grow bigger (D50 vs. D35)^{23,51}. We therefore removed cells
243 that were classified as stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis,
244 integrated normalized counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis
245 revealed that the data from the two technologies can be easily integrated (Fig. 2e).

246 To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines,
247 we characterized the cellular diversity within organoids. We first aimed to understand whether organoids
248 had neural identity. We therefore performed reference-query mapping of our dataset onto the human
249 developmental transcriptome using Azimuth^{52,53}. The reference dataset contained cells from 15 organs of
250 human fetuses at 72 to 129 days post-conception, and the cells were captured using sci-RNA-seq3⁵². We
251 first assigned our cells with cell types from this dataset⁵² (Supplementary Fig. 2c). The mapping score was
252 high (0.71 ± 0.17 , mean \pm SD) (Supplementary Fig. 2d), indicating that our dataset corresponded well to
253 the reference dataset⁵³. However, the prediction scores varied between cells (0.59 ± 0.26 , mean \pm SD),
254 with most cells not reaching a high-confidence prediction score of 0.75⁵³. Given the relatively low
255 prediction scores, we did not rely on specific annotation to certain cell types but further grouped the cells
256 into two categories – neural and non-neural (Fig. 2f, Supplementary Table 3). We found a considerable
257 portion of cells having non-neural identity (Fig. 2f) with subsets of cells expressing muscular markers (e.g.,
258 *MYOD1* and *MYOG*⁵⁴) and endo-/mesodermal markers (e.g., *FGF10*, mesenchymal marker⁵⁵) (Fig. 2g). In
259 contrast, most cells classified as neural expressed the pan-neuronal marker *STMN2* (Fig. 2g). Overall, the
260 proportion of neural cells ranged from 46.0% to 60.7% per sample (Fig. 2h). Importantly, considerable
261 differences were observed between the three iPSC lines that the organoids were generated from (Fig. 2i).
262 The BIONi010-C cell line had the highest number of neural cells (range, 74.5 to 89.0%), while KOLF2.1J-
263 derived cerebellar organoids had 23.0 to 50.3% neural cells (Fig. 2i). Interestingly, D35 KOLF2.1J samples
264 had about 50% neural cells, while at D50 only about 25% of cells were identified as neural (Fig. 2i)
265 indicating that cells with neural identity do not proliferate further or die in comparison to other lineages.

266 To cross-validate our assignment to neural and non-neural cells, we adapted Gruffi⁵⁰ for detecting neural
267 and non-neural transcriptomic signatures. For that, we used GO terms for endoderm (GO:0001706, 57.8%
268 quantile threshold) and mesoderm (GO:0001707, 66.7% quantile threshold) formation for selecting non-
269 neural cells and GO terms for nervous system development (GO:0007399, 65.7% quantile threshold) and
270 neurogenesis (GO:0022008, 64.8% quantile threshold) for selecting neural cells (Supplementary Fig. 2e).
271 The results between reference-query mapping and Gruffi were coherent (82.6% classification overlap,
272 Supplementary Fig. 2f). Inconsistent annotations between the two approaches were observed for
273 putatively muscular cells (positive for *MYOG* and *MYOD1*) which were incorrectly classified as neural by
274 Gruffi. We suggest that this discrepancy may be due to the shared excitability between neural and
275 muscular cells.

276 Characterization of neural cell diversity

277 Based on the reference-query mapping with the human developmental transcriptome⁵², we subset neural
278 cells (19,526 neural cells out of 37,452 cells) and additionally downsampled 10x and Parse datasets to an
279 equal number of cells (resulting in 7,212 cells per technology). We subsequently performed the
280 integration and dimensionality reduction approach as described above.

281 Following developmental patterning *in vivo*, various experimental setups *in vitro* have found that
282 forebrain structures develop upon neural induction, unless exposed to caudalizing factors⁵⁶. Additionally,
283 the gene expression program for telencephalon regionalization was upregulated in the cerebellar
284 organoid protocol we used in the current study²⁶. Hence, we aimed to reveal the brain regional identity
285 of the neural cells. We analyzed the correlation of brain regional marker gene expression between our
286 dataset and human brain transcriptomic data from postconceptional week (PCW) 12-13 from
287 BrainSpan^{57,58}. We used the list of brain regional markers compiled from the top 10 markers of different
288 brain regions based on gene expression in E15 mouse brain⁵⁷ (Supplementary Table 4). We found that all
289 our samples had the highest correlation with the cerebellum (Supplementary Fig. 3a). However, when
290 similarity scores were not scaled, we noticed that they were higher for 10x than for Parse samples (Fig.
291 3a). Next, we aimed to assign cell type identities to the neural cells. Combining cerebellar canonical
292 marker gene expression^{37-39,59} combined with differential gene expression (DGE), we identified both RL-
293 derived cellular lineages (RL, granule precursor cells (GPC), and GC) and VZ-derived newborn PCs (Fig.
294 3b,c). A subset of neuronal cells was characterized as hindbrain neurons, and we were not able to further
295 refine our annotations (Fig. 3b). While overall proportions of cells captured by the two technologies were
296 similar (Fig. 3d, Supplementary Fig. 3b), dividing progenitors, PAX6-positive RL and dividing RL cell
297 populations were significantly enriched in the Parse dataset. In contrast, 10x captured more cells in a
298 population that we could not annotate (Unknown 2) (Supplementary Fig. 3b).

299 To characterize the similarity of our cerebellar organoids with the developing human cerebellum, we
300 performed reference-query mapping with the cerebellar transcriptomic dataset generated by Sepp and
301 colleagues³⁸. To ensure that we compared our organoid data with early developmental stages of human
302 cerebellum, we subset the reference dataset³⁸ to only include prenatal samples. While finding a general
303 agreement in cell type annotations, we noticed some differences both in assigned cell type identities (Fig.
304 3e) and prediction scores, which were higher in Parse than in 10x data (Supplementary Fig. 3c). One
305 example of a discrepancy in assigned cell identities was RL cells of different subtypes. These cells were
306 annotated as a plethora of cell types of the human cerebellum (Fig. 3e) and differed between 10x and
307 Parse (Fig. 3e) but with very low prediction scores (Fig. 3f). We believe that the cause for this discrepancy
308 may be that the reference dataset does not have a separate cluster for RL cells³⁸. Instead, RL cells are part
309 of an astroglia cluster consisting of both astroglia and RL cells³⁸. The first separate cluster for RL-derived
310 lineage was nuclear transitory zone neuroblasts (NTZ neuroblast)³⁸, and in our dataset, the cells annotated
311 as NTZ neuroblasts belonged mostly to progenitor 1 and GPC and GPC/GC clusters (Fig. 3b).

312 We further compared our data with the transcriptomic profiles of organoids from the recently published
313 cerebellar organoid differentiation protocol (Supplementary Fig. 3d,e)²⁹. The prediction scores were
314 overall higher than for the comparison with the human cerebellar developmental transcriptome
315 (Supplementary Fig. 3e). This time, however, prediction scores were higher for 10x than for Parse cells
316 (Supplementary Fig. 3f). Interestingly, both reference datasets were obtained from the 10x pipeline, so
317 the discrepancy in prediction scores between our Parse and 10x cells cannot simply be attributed to
318 different technologies used for the generation of reference datasets. Instead, expectedly, our organoid
319 data aligns more with organoid data obtained from a different protocol, than with primary tissue.

320 In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar
321 regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-
322 derived cells. Small differences in the different parameters were found between 10x and Parse
323 technologies.

324 Secondary analysis between techniques reveals differences in cell stress signatures and
325 neurodevelopment-related gene regulatory networks activity

326 In our QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial
327 protein-coding genes between the two technologies (Fig. 1b). We also found a subset of cells expressing
328 cell stress-related genes, and the proportion of these cells was higher for 10x cells (Fig. 2d). Therefore, we
329 next aimed to analyze whether the neural cells preserved these transcriptomic features and performed
330 DGE analysis between the different technologies within individual cell types. For that, we split the dataset
331 by cell type, technology, cell line, and day of differentiation and pseudobulked them for DESeq2. Overall,
332 we found DEGs across all cell types (Fig. 4a, Supplementary Fig. 4a). Especially mitochondrial and
333 ribosomal protein-coding genes were upregulated in 10x compared to Parse across cell types
334 (Supplementary Table 5), including GPCs (Fig. 4b). More genes were upregulated in 10x compared to Parse
335 across all cell types, further highlighting that with equal sequencing depth, 10x captures a lower variety
336 of genes with larger numbers of reads per gene. Interestingly, there were a few genes with large fold
337 change and relatively large p-values upregulated in either of the two technologies. These genes were
338 identified as expressed either in 10x or Parse, as revealed by removing these genes from volcano plots
339 (Supplementary Fig. 4b). To functionally characterize the differences in gene expression between the
340 techniques, we performed gene set enrichment analysis and clustered the output by semantic similarity
341 matrix (Fig. 4c). Here we describe findings for gene set enrichment analysis in GPCs, as a representative
342 cell type with relatively high cell numbers and a medium number of DEGs. In GPCs, the normalized
343 expression score for all statistically significant GO terms was less than 0, indicating their upregulation in
344 10x compared with the Parse dataset (Supplementary Table 6). Among these GO terms, we found a cluster
345 of enriched GO terms related to nucleotide processing as well as a cluster related to mitochondrial
346 respiration. These two clusters of GO terms included not only mitochondrial protein-coding genes as
347 defined in scRNA-seq quality control (i.e., starting with “MT-”, Fig. 1b) but also other genes involved in
348 mitochondrial function, for example, the *NDUF* gene family, which encodes nuclear-encoded genes coding
349 NADH dehydrogenase (ubiquinone) subunits. Another group of enriched GO terms in GPCs was described
350 as related to neuron projection assembly (Fig. 4c).

351 To reveal the upstream mechanisms leading to the described transcriptional changes across cell types we
352 used ingenuity pathway analysis (IPA). After subsetting the results of URA to transcriptional regulators,
353 we found that IPA predicted a variety of transcription factors to be differentially activated in either of the
354 technologies, and that these transcriptional changes were coordinated across cell types (Fig. 4d). For
355 example, we found TFs *XBP1*, *ATF4* and *ATF6*, which are activated upon endoplasmic reticulum stress, and
356 *NFE2L2* and *NRF1*, which mediate the oxidative stress response and are involved in maintaining
357 mitochondria redox homeostasis^{25,60,61} to be upregulated in 10x. These predictions are in line with our
358 previous findings (Fig. 2b, Supplementary Fig. 2a), demonstrating a higher proportion of stressed cells in
359 10x compared to Parse. Since we found that the Parse dataset had a larger proportion of reads originating
360 from TFs, we decided to extend our analysis to gene regulatory network (GRN) analysis using SCENIC⁶².
361 Average area under the curve (AUC) scores per cell type and technology were z-score normalized and
362 subjected to k-means clustering (Fig. 4e). We found that the two technologies clustered apart (column
363 clusters 1 and 3 for 10x, and 2 and 4 for Parse) but also cell types divided into two meta groups based on
364 the activity of GRNs (column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4
365 contained predominantly more progenitor cell types, Fig. 4e). Below, we highlight differences in regulon
366 activity of specific TFs between both technologies and cell types.

367 For example, cell type-specific regulon activity is found in column clusters 3 and 4 (cell types: RL, PAX6 RL,
368 RL-div, Prog-div, Prog 1, Unknown 1, Unknown 2), and especially dividing RL and progenitor cells. These
369 cells had elevated z-scores for the E2F family, which are TFs involved in cell cycle progression and
370 apoptosis⁶³ (Fig. 4e, Supplementary Fig. 4c). In the same row cluster as the E2F family of TFs (row cluster
371 4), there was regulon for NFIA, a TF involved in GC maturation during cerebellar development^{64,65} (Fig. 4e,
372 Supplementary Fig. 4c). Conversely, column clusters 1 and 2 (cell types: HindExN, Prog 2, GPC, GPC/GC,
373 HindN, DAB1/CALB1/CALB2 HindN, Newborn PC), were enriched for ZEB1, a marker of neuronal migration
374 necessary for the proper development of various brain regions and tumorigenesis in pediatric patients,
375 including medulloblastoma⁶⁶ (Fig. 4e, Supplementary Fig. 4c). Specifically newborn PCs were enriched for
376 GBX2 and LHX5 (Fig. 4e). GBX2 is a known homeobox gene that plays a significant role in cerebellar
377 regionalization⁶⁷, and LHX5 is one of the TFs that define PC cell fate⁶⁸ (Fig. 4e, Supplementary Fig. 4c).
378 Collectively, SCENIC analysis revealed cell type-specific regulon activity characteristic for distinct
379 cerebellar cell types irrespective of the technology used for cell capture. Hence both technologies can be
380 used for GRN inference.

381 Although cell type-specific regulon activity signatures could be observed in both technologies, there were
382 also regulons with differential activity between technologies (e.g., a subset of regulons in row cluster 2,
383 Fig. 4e, Supplementary Fig. 4c). Examples of such regulon activity signatures were SCAND1 and ZNF580
384 regulons, two TFs known for their involvement in the cellular response to hypoxic stress^{69,70} but also in
385 mitochondrial and ribosomal functions (Fig. 4e, Supplementary Fig. 4c).

386 Collectively, with our secondary analysis, we confirmed the previous findings that 10x cells had higher
387 expression of ribosomal and mitochondrial protein-coding genes as defined by quality control compared
388 to Parse cells (i.e., gene name pattern “RPS/RPL” for ribosomal and “MT-” for mitochondrial protein-
389 coding genes). Furthermore, we found that other genes with mitochondrial and ribosomal functions were
390 significantly deregulated in the 10x dataset. Additionally, URA predicted a coordinated change in the
391 activity of cellular stress-related transcriptional regulators between 10x and Parse datasets. These findings
392 suggest that 10x cells have a higher expression of cell stress-related transcriptional signatures, and Gruffi-
393 based exclusion of cells with high stress scores did not solve the problem entirely. Finally, SCENIC analysis
394 revealed that regulons are differentially active between cell types in both technologies. Hence,
395 transcriptional differences between technologies did not mask transcriptional differences between cell
396 types.

397 Discussion

398 In this study, we compared two broadly used and commercialized approaches for sample multiplexing of
399 scRNA-seq: 10x Genomics (10x) and Parse Biosciences (Parse). We generated cerebellar organoids, as an
400 example of a complex 3D tissue that requires dissociation, to comprehensively explore the strengths and
401 limitations of each technology. Regionalized neural organoids, such as cerebellar organoids, are
402 commonly used in neuroscience research but can be challenging due to heterogeneity between samples,
403 batches, and iPSC lines. Therefore they require in-depth characterization, for example, by multiplexed
404 scRNA-seq^{11,18}. To compare scRNA-seq datasets across experiments and studies conducted in different
405 labs and to differentiate technical and biological causes of variance, it is essential to understand artefacts
406 and biases introduced by different experimental pipelines of the capture techniques. Specifically, we
407 differentiated three control iPSC lines into cerebellar organoids according to a published protocol¹⁵.
408 Organoids were pooled and dissociated at D35 and D50, and the cells were split into two aliquots, one of
409 which was subjected to the 10x and the other to the Parse multiplexing and sequencing pipelines. The

410 two methods were then compared regarding library efficiency, differential transcript capture, cell type
411 enrichment, and the information obtained from comprehensive secondary analysis.

412 Sample preparation between the two technologies differs considerably: while cells are kept alive for a
413 longer time until lysis in the 10x workflow, Parse samples are fixed directly after dissociation.
414 Consequently, Parse samples do not have to be processed in parallel providing more flexibility during
415 sample processing and allowing the handling of higher sample numbers in one sequencing run. Therefore,
416 we suggest that this approach is advantageous for larger experimental designs.

417 We compared the technical sequencing parameters of both methods. We found that the average cell
418 recovery rate differed considerably between the two techniques. While 42.7% of cells were recovered in
419 the 10x workflow, only 16.5% recovery was achieved in Parse (Supplementary Fig. 1b). For scarce samples
420 a high cell recovery is clearly beneficial to maximize data output. However, we did not observe the lack of
421 certain cell types within the Parse data set, indicating even cell loss across all cell types.

422 For both methods, most reads were mapped to the genome. However, we observed differences in the
423 number of genes detected and their properties. In accordance with the previous study comparing Parse
424 and 10x on PBMCs¹⁰, we found that 10x scRNA-seq resulted in a higher number of detected genes, a higher
425 number of protein-coding genes, and a higher number of genes coding for mitochondrial and ribosomal
426 genes compared to Parse (Fig. 1b, Supplementary Fig. 1e). Furthermore, the GC content of captured
427 transcripts was higher in 10x than in Parse. Our analysis also revealed a bias of 10x in capturing shorter
428 transcripts compared to Parse (Fig. 1d, Supplementary Fig. 1h). Moreover, Parse did not only represent
429 longer transcripts but also covered a wider range of gene lengths (Fig. 1b, Supplementary Fig. 1e). Previous
430 functional analysis showed a connection between the transcript length and specific cellular processes and
431 tissue types⁷¹. While short transcripts are more often associated with skin development and the immune
432 system, longer transcripts more frequently play a role in neuronal development⁷¹. There is growing
433 evidence for long neural genes to be involved in disease mechanisms during development: long genes are
434 more prone to recurrent double-strand break clusters and are implicated in tumor suppression and
435 psychiatric disorders⁷². Further, long genes can contain broad enhancer-like domains, and their
436 transcription is particularly sensitive to alterations in ASD-associated chromatin regulators⁷³. Interestingly,
437 BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation⁷⁴, is
438 predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4d). The clinical
439 features of BCL11b-associated neurodevelopmental disorders include ASD, intellectual disability, and
440 cerebellar hypoplasia⁷⁴, which have been previously modeled in organoids^{19,20}. These findings indicate
441 that transcript length is a critical technical and biological factor that should be considered when planning
442 scRNA-seq experiments and that Parse could be favorable to investigate differences in long transcripts
443 upon experimental manipulation.

444 Further, Parse covered a higher number of transcripts encoding TFs among protein-coding genes (Fig. 1b,
445 Supplementary Fig. 1e). To investigate if this bias had effects on GRN we performed GRN analysis SCENIC.
446 Interestingly, Parse generally had higher z-scores for regulons related to neurodevelopment and
447 maturation (Fig. 4e) in contrast to the upregulation of neuron processes assembly-related terms in 10x in
448 GSEA (Fig. 4c). Additionally, we identified regulons that were differentially regulated between cell types
449 and techniques such as *NFIA* which had higher z-scores in RL-derivates in Parse (Fig. 4e) and is involved in
450 GC maturation but also associated with severe neurodevelopmental disorders and gliomas^{64,65}. Taken
451 together, the GRN analysis reveals not only cell type but also technique-driven regulon activity. This

452 highlights that identical biological samples result in different analysis results downstream depending on
453 the capture technology.

454 Regionalized neural organoids have been reported to show high expression of stress pathway-related
455 transcripts due to *in vitro* culturing conditions and insufficient oxygen supply^{23,50,51,75}. Additionally, tissue
456 dissociation for single-cell sample preparations is known to induce stress response in dissociated cells⁷⁶.

457 During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher
458 in the 10x than in the Parse samples (Fig. 1b), corroborating previous findings¹⁰. While differences for
459 mitochondrial protein-coding transcripts were minor (10x 3.1% vs Parse 1.7%), the differences for
460 ribosomal protein-coding genes were much more pronounced (10x 17.6% vs Parse 0.5%). The DGE analysis
461 revealed the upregulation of mitochondrial protein-coding genes, and other genes involved in
462 mitochondrial function (Fig. 4b). Hence, the differences in mitochondrial transcripts might be partially
463 explained by higher cell stress in the 10x data and mitochondrial involvement in stress response
464 pathways⁷⁷, rather than having solely technical causes.

465 To investigate cell stress in cerebellar organoids in more detail, we analyzed the expression of stress-
466 specific modulators. We identified three stress-related modules (oxidative stress, glycolysis, and
467 integrated stress response (ISR)) that separated the two technologies in hierarchical clustering with both
468 technologies showing a stronger module expression at the later time point and 10x demonstrating a
469 higher overall expression of stress modules. It has previously been described that stress-related pathways
470 are enriched in organoids. Cell-intrinsic mechanisms as well as extrinsic factors such as hypoxia can
471 activate the ISR to restore cellular homeostasis. Different cell stressors can also interact with each other
472 to induce the ISR. For example, upon disruption of endoplasmic reticulum (ER) homeostasis, ER stress is
473 induced and can increase the production of reactive oxygen species (ROS) in mitochondria, which induces
474 oxidative stress⁷⁸. These effects can increase during organoid culture as the tissue grows, which may
475 explain the elevated stress response-associated transcriptional signature at D50 compared to D35 of
476 differentiation (Fig. 2b). Since stressed cells are frequently found in scRNA-seq datasets of organoids, a
477 powerful bioinformatic approach called Gruffi was developed to remove cells with a high cell stress
478 signature from neural organoid datasets⁵⁰. Applying Gruffi to our dataset revealed a noticeably higher
479 percentage of stressed cells in the 10x compared to the Parse dataset at both time points (Fig. 2d). This
480 might stem from the difference in the handling of dissociated cells in the two technologies. In the Parse
481 procedure, cells are fixed directly after dissociation, thus limiting the induction of the expression of stress
482 genes. In contrast, live cells are undergoing the 10x capture, prolonging the period between dissociation
483 and cell lysis during capture, which might increase stress-related responses of live cells found in 10x data.
484 Interestingly, this effect is more pronounced in D50 than in D35 samples indicating that more mature
485 neural cells are more susceptible to the mechanical stress of dissociation and live processing in 10x. These
486 findings suggest that identical samples of cerebellar organoids show a technology and time point-specific
487 stress response reflected by striking differences in the number of cells identified as stressed cells by the
488 Gruffi algorithm (Fig. 2d). Further, we found DEGs, especially mitochondrial and ribosomal protein-coding
489 transcripts between the two technologies across all clusters and gene set enrichment analysis in GPCs
490 revealed deregulation of GO terms related to nucleotide processing and mitochondrial respiration (Fig.
491 4c). To explore which upstream mechanisms could have led to these transcriptional changes, we
492 performed URA. Interestingly, URA for transcriptional regulators predicted the upregulation of ER-stress
493 pathways related TFs *XBP1*, *ATF4*, and *ATF6* as well as oxidative stress mediators *NFE2L2* and *NRF1* in 10x
494 compared to Parse⁷⁸. Together these results suggest that not only the hypoxic culture conditions of

495 organoids⁵¹ but also the single-cell dissociation and capturing pipeline may induce cell stress. The cell
496 capture technology used thus affects the output data obtained from biologically identical samples, and
497 this effect should be considered when interpreting and comparing organoid data to reference datasets.

498 To investigate the biological reproducibility of the organoid differentiation protocol, we assessed the
499 percentage of cells identified as neural based on reference-query mapping with human developmental
500 transcriptome⁵². This analysis showed a commitment towards neural fate in 52.1% of all cells, suggesting
501 the initial tissue specification could be improved in the differentiation protocol. Different neural organoid
502 protocols^{14,79} and a recently published protocol for cerebellar organoids²⁹ use dual SMAD inhibition during
503 the initiation of differentiation to prevent meso- and endodermal fates thus promoting neural induction⁸⁰.
504 In contrast, the cerebellar differentiation protocol used in this study employs only one SMAD pathway
505 inhibitor, the TGF β -inhibitor SB-4321542¹⁵. Dual SMAD inhibition might enhance neuroectodermal
506 commitment in cerebellar organoids.

507 To date, studies employing transcriptional analysis of cerebellar organoids have used only one iPSC
508 line^{27,29}. Interestingly, we observed noticeable differences between the differentiation efficiency of the
509 three control cell lines, with the KOLF2.1J-derived cerebellar organoids demonstrating the lowest number
510 of neural cells, especially pronounced at D50. Considering that all three cell lines were differentiated in
511 parallel to minimize technical confounder effects, this finding implicates that iPSC line-inherent
512 mechanisms can influence the differentiation efficiency⁸¹. This finding highlights the need to use isogenic
513 control iPSCs when analyzing pathogenic variants⁸². Addressing the heterogeneous outcomes of
514 differentiation protocols, a recent study suggests adjusting concentrations of small molecules and growth
515 factors in a cell line-specific manner to decrease the proportion of mesodermal off-target tissue for the
516 differentiation of cortical organoids²⁵. A similar approach could potentially alleviate differences in
517 neuroectodermal fate commitment during cerebellar differentiation across the three iPSC lines used in
518 this study. Taken together, new protocols should be tested and optimized with multiple control iPSC lines
519 to ensure robustness of differentiation efficiency⁸³. Despite the differences between the three iPSC lines
520 used in this study, we demonstrated that cerebellar organoids generated cerebellar cells of both RL and
521 VZ lineage. Comparing our data set with a recently published cerebellar organoid transcriptomic dataset²⁹
522 revealed general agreement with our annotation indicating a similar cellular population resulting from
523 different protocols. However, the cerebellum is a complex brain region with various cell types³⁷ and to
524 what extend different cerebellar organoid protocols recapitulate the whole cerebellum or rather specific
525 regions like the cerebellar nuclei or cerebellar cortex remains to be investigated.

526 In conclusion, our comprehensive comparison of Parse and 10x scRNA-seq sample multiplexing and cell
527 capture strategies encompassed library efficiency, differential transcript capture, cell type preferences,
528 and secondary analysis outcomes, showing distinct strengths and limitations of each method. While both
529 methods provide the experimental benefits of sample multiplexing, we revealed significant differences
530 between the two strategies. Overall, our findings indicate that while 10x provided higher cell recovery and
531 gene detection rates, Parse captured longer transcripts and a wider range of transcript lengths and
532 resulted in lower cell stress. Minimizing cell stress is especially relevant in the context of regionalized
533 neural organoids, in which cell stress may be an important artefact⁵¹. Our detailed secondary analyses
534 demonstrated that these technical differences have relevant biological implications. These insights are
535 crucial for selecting the most suitable scRNA-seq multiplexing technology based on specific research goals.
536 Future studies should consider these factors to improve the accuracy and biological relevance of single-
537 cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid differentiation and in-depth

538 characterization on three iPSC lines and highlighted the importance of employing several cell lines in these
539 studies to encompass cell line-dependent heterogeneity and to produce robust results.

540 Methods

541 iPSC culture

542 Commercially available iPSC lines BIONi010-C (Source: EBiSC), BIONi037-A (Source: EBiSC) and KOLF 2.1J
543 (Source: The Jackson Laboratory) were cultured under standard conditions (37°C, 5% CO₂, and 100%
544 humidity) in E8 Flex medium (BIONi010-C and BIONi037-A) and mTeSR plus (STEMCELL Technologies, Cat.
545 no 100-0276) (Gibco, Cat. no. A2858501) on hESC-qualified growth factor-reduced Matrigel-coated
546 (Corning, Cat. no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed in
547 colonies using Gentle Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once the culture
548 reached 80%-90% confluence. The culture medium was supplemented with Thiazovivin (Sigma-Aldrich,
549 Cat. no. 420220) upon passaging for one day. All cell lines were tested for mycoplasma contamination
550 using PCR Mycoplasma Detection Set (TaKaRa, Cat. no. 6601) and maintained under passage 20. The
551 pluripotency for each cell line was confirmed by immunocytochemistry against OCT4 (rabbit, 1:500,
552 Abcam, Cat. no. ab19857) prior to the start of differentiation.

553 Generation of cerebellar organoids

554 Cerebellar organoids were generated as previously described⁸⁴ with some modifications: 80-90%
555 confluent iPSCs were dissociated into single cells using Accutase (Merck, Cat. no. A6964), and 4,500 cells
556 were seeded per well of 96 well V-bottom low adhesion plates (S-bio, Cat. no. MS-9096VZ) in E8 Flex
557 medium (Gibco, Cat. no. A2858501), supplemented with 10 μM Y-27632 (Cayman Chemical, Cat. no.
558 10005583). Once the aggregates reached a diameter of 250 μm, the medium was changed to growth
559 factor-free chemically defined medium (gfCDM) supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no.
560 100-18B) and 10 μM SB-431542 (Tocris, Cat. No. 1614), and this day was considered day 1 of
561 differentiation (D1). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 μM, respectively.
562 At D14, media was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was
563 changed to Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35
564 onwards, media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793),
565 supplemented with 10 μg/ml BDNF (PeproTech, Cat. no. 450-02), 100 μg/ml GDNF (PeproTech, Cat. no.
566 450-10), 100 mg/ml dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no.
567 4055). All three cell lines were processed in parallel during differentiation, single-cell dissociation, and
568 sequencing.

569 Single-cell dissociation of cerebellar organoids, library preparation, and sequencing

570 On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit
571 (Worthington, Cat.No. LK003150) following a published protocol with minor modifications¹⁴. Cells were
572 counted, and cell suspensions were split into two parts for further processing.

573 Samples for the 10x Genomics (10x) pipeline were labeled with cell multiplexing oligos (CMO, 10x
574 Genomics, Cat. no. 1000261) according to the manufacturer's instructions and subsequently pooled at an
575 equal ratio. The cell count for the cell suspension was determined, and the sample was loaded onto two
576 lanes of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of
577 12,000 (D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next

578 GEM Single Cell 3' kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq
579 6000 with S1 flow cell kit and 100 cycles (Illumina, Cat. no. 20028319).

580 Samples for Parse Bioscience (Parse) workflow were fixed according to the manufacturer's instructions
581 using the Evercode fixation kit for cells (Parse Bioscience, Cat. No. WF300). Fixed Parse samples were
582 stored at -80°C until all samples were harvested. The samples were characterized by the day of
583 differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded
584 as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was
585 performed using a molarity of 62.4 nM and 3% PhiX spike in on the Nova Seq 6000 with SP flow cell kit
586 and 200 cycles (Illumina).

587 Data downsampling, preprocessing, and quality control

588 Initially, the datasets from 10x and Parse pipelines had different sequencing depths and cell numbers
589 (Supplementary Table 1). To compare the two technologies fairly, we downsampled datasets from both
590 technologies to an average of 50,000 reads per cell. The FASTQ files were downsampled with the *seqtk*
591 *sample* tool, and the same seed was applied for the forward and reverse reads. For Parse data, FASTQ
592 files from each of the 2 sub-libraries were demultiplexed into 6 samples. Using *split-pipe* (v1.1.2), the
593 samples were preprocessed, aligned, sorted, annotated, and passed to a DGE (here, digital gene
594 expression), resulting in a count matrix. Afterwards, the 2 sub-libraries were merged with the
595 corresponding *combine* mode of *split-pipe*. For 10x data, read downsampling was performed for individual
596 libraries. Afterwards, downsampled FASTQ files were processed with *cellranger* (v.7.2.0) *multi* pipeline,
597 and cells were assigned with their cell line of origin based on their CMO.

598 Gene names in gene expression matrices between the two technologies were harmonized in the following
599 manner. Firstly, ENSEMBL gene identifiers were used to merge expression matrices. Secondly, ENSEMBL
600 identifiers were replaced by HGNC identifiers wherever possible (41,980 genes), and ENSEMBL identifiers
601 were used in other cases (20,930 genes). The merged gene expression matrix was further converted into
602 Seurat objects (Seurat v.5.1.0). Gene biotypes were retrieved from bioMart using ENSEMBL gene
603 identifiers. Ribosomal protein-coding genes were identified using HGNC gene names starting from
604 RPS/RPL. Mitochondrial protein-coding genes were identified using HGNC gene names starting from MT-
605 . The percentage of gene expression for ribosomal and mitochondrial protein-coding genes as well as for
606 individual gene biotypes were calculated using *PercentageFeatureSet()*. For calculating the percentage of
607 counts originating from transcription factors (TF) among protein-coding genes, the count matrix was first
608 subset to protein-coding genes, and *PercentageFeatureSet()* was applied to this matrix using the list of
609 human TFs⁸⁵.

610 Next, quality control (QC) was performed on cell and gene levels. Cells were excluded if one of the
611 following criteria was met: (1) number of individual genes per cell \leq 2,000; (2) number of individual genes
612 per cell \geq 13,000; (3) number of genes per UMI \leq 0.8; and (4) percentage of mitochondrial genes \geq 8%. We
613 excluded genes from the expression matrices when their cumulative expression across all cells was \leq 8.
614 No ambient RNA and doublet removal were performed.

615 Data normalization, clustering, integration, and dimensionality reduction

616 After QC, data were normalized using *NormalizeData()* function from Seurat with default parameters.
617 Normalized data were scaled, and principal component analysis (PCA) was performed based on the z-
618 scaled expression of the 2,000 most variable features (*FindVariableFeatures()*). Additionally, normalized

619 counts were integrated using *IntegrateData()* function with reciprocal PCA (RPCA). Dimensionality
620 reduction and clustering were performed using both un- and integrated data. *RunUMAP()* function was
621 used to perform dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain
622 clustering was performed using *FindClusters()* function.

623 Technology-specific analyses: correlation analysis, transcript length, and GC content

624 To analyze the correlation of gene expression between technologies, we used cells that passed quality
625 control, averaged the expression of genes for each technology, and calculated Pearson's correlation
626 coefficient. Differentially expressed genes (DEG) between technologies were identified using MAST
627 algorithm implemented in *FindMarkers()* function as previously described¹⁰ with the following cutoffs:
628 absolute log2 fold change (log2FC) > 1, adjusted p-value < 0.01. Gene length and GC content were
629 retrieved from bioMart.

630 Cellular stress assessment

631 Normalized unintegrated counts were used to analyze the expression of cell stress-related gene ontology
632 (GO) terms using *AddModuleScore()* function. We also generated a random set of genes of mean GO term
633 size and analyzed the expression of these genes as a module to use as an internal control for module
634 expression analysis. Hierarchical clustering was performed on mean module expression of cell stress-
635 related GO terms across samples.

636 Gruffi cell stress analysis was performed using normalized unintegrated counts following the authors'
637 instructions⁵⁰. Firstly, two GO terms were chosen for negative selection: glycolytic process (GO:0006096)
638 and integrated stress response signaling (GO:0140467); and one for positive selection: neurogenesis
639 (GO:0022008). Next, module expression of the selected GO terms was analyzed in "granules", and 90%
640 quantile threshold was chosen for selecting stressed cells.

641 Germ layer assessment

642 Normalized integrated counts were used to perform Azimuth reference-query mapping⁵³ of our dataset
643 with human fetal development transcriptome⁵². Cells were further classified as "neural" and "non-neural"
644 based on cell type assignment from Azimuth (Supplementary Table 3).

645 Gruffi differentiation lineage analysis was performed using normalized integrated counts. Firstly, two GO
646 terms were chosen for negative selection: endoderm (GO:0001706) and mesoderm (GO:0001707)
647 formation; and two for positive selection: nervous system development (GO:0007399) and neurogenesis
648 (GO:0022008). Next, module expression of the selected GO terms was analyzed in "granules", and 90%
649 quantile threshold was chosen for selecting neural and non-neural cells.

650 Neural data processing and cell type annotation

651 After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth
652 reference-query mapping and further downsampled to retain the equal number of cells in 10x and Parse
653 datasets (7,212 cells per technology). Data normalization, clustering, integration, and dimensionality
654 reduction workflow steps were repeated as described above.

655 VoxHunt⁵⁷ was used to analyze the brain region identity of the cells. 10 genes with the highest area under
656 the curve (AUC) scores per brain region of the developing mouse brain at E15 were retrieved, resulting in
657 186 unique regional marker genes. These marker genes were used to assess the similarity of gene

658 expression profiles between our samples and BrainSpan human developmental transcriptome⁵⁸ at
659 postconceptional weeks 12 and 13.

660 Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1)
661 retrieving cluster marker genes by *FindAllMarkers()* with MAST (normalized counts provided as input) and
662 ROC (raw counts provided as input) algorithms; (2) visualizing expression of canonical marker genes for
663 cell types in the developing mouse and human cerebellum.

664 Reference-query mapping with published primary cerebellar development and cerebellar
665 organoids transcriptomic datasets

666 For reference-query mapping of our cells that were classified as neural, we first used human cerebellar
667 development transcriptomic dataset³⁸ as a reference. We downsampled the reference dataset to 1,000
668 cells per cell type as defined by the metadata (author_cell_type column). Secondly, we normalized, found
669 variable features, scaled, and performed PCA on both reference and query datasets using Seurat default
670 parameters. Integration was performed using *FindTransferAnchors()* function with the “pcaproject”
671 option and 30 PCs. Predicted cell type annotations and prediction scores were obtained from
672 *TransferData()* function wrapped into *MapQuery()* with default parameters and reference label being
673 “author_cell_type”. Integration with the cerebellar organoids transcriptomic dataset was performed as
674 described above with minor modifications: (1) the complete reference dataset was used for mapping; (2)
675 the reference label was “final.clusters”.

676 Differential gene expression analysis and functional enrichment analysis

677 For differential gene expression (DGE) analysis, the raw counts originating from neural cells were used.
678 First, cells were grouped by cell type, technology, cell line, and day of differentiation, and groups smaller
679 than 20 cells were omitted from further analysis. Gene counts were aggregated by technology, cell line,
680 and day of differentiation using *AggregateExpression()* function with a default option to calculate the sum
681 of raw counts per cell group. Importantly, we did not further downsample our dataset to generate an
682 equal number of cells per cell group. The aggregated counts were used as samples for *DESeq2* (v.1.42.1)
683 differential gene expression analysis between technologies within individual cell types³⁶. Log2FC were
684 shrunk using *apeglm* shrinkage estimator⁸⁷ as implemented in *DESeq2*. Volcano plots were generated
685 using *EnhancedVolcano* library (v.1.20.0).

686 Gene set enrichment analysis (GSEA) with GO terms was performed by *clusterProfiler* (v.4.10.1)⁸⁸ using
687 biological processes ontology as input, gene set size of 50 to 500 genes, false discovery rate (FDR) as a p-
688 value adjustment method, and the threshold for q-value of 0.05. For significantly deregulated GO terms,
689 similarity matrices were calculated and simplified using the *binary cut* approach implemented in
690 *simplifyEnrichment* (v.1.12.0) package⁸⁹.

691 Upstream regulator analysis

692 Upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA) software (Qiagen).
693 Briefly, cell type-specific *DESeq2* output matrices were used for IPA core analysis with the following
694 cutoffs: (1) absolute log2FC > 1; (2) q-value < 0.0001. For visualizations, molecule type was restricted to
695 transcription regulators, and bias-corrected z-scores across cell types were used for hierarchical clustering
696 using the *ComplexHeatmap* package (v.2.18.0). When z-scores were unavailable, they were assigned to 0.

697 Gene regulatory network (GRN) activity analysis

698 We performed GRN analysis closely following the official pySCENIC protocol^{62,90}. First, the annotated raw
699 count matrix produced with Seurat and the list of human TFs were processed, inferencing importance
700 values or the weights of regulatory interactions between TFs and target genes. Second, the inferred
701 interactions ("adjacencies") were searched in the cisTarget databases to identify the enriched binding
702 motifs. Third, TFs and target genes indicated by the enriched motifs were grouped into regulons
703 (regulatory modules of the network). Finally, the regulons were assessed for the enrichment in each cell.
704 With the count matrix as a source of the expression data, cells were assigned scores, i.e., AUC, of the
705 activity levels of their regulons. Z-scores were further calculated based on AUC scores of individual
706 regulons, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons.
707 Regulon target genes and GO Biological Processes were used for gene set overrepresentation analysis
708 (ORA) by clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, false discovery rate (FDR) as a p-
709 value adjustment method, and the threshold for q-value of 0.1.

710 [Statistics](#)

711 R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends. Two-
712 sided unpaired t-tests were used to compare two groups. For comparisons with more than two groups,
713 we used three-way ANOVA. Within a set of comparisons (e.g., for quality control metrics), the Benjamini-
714 Hochberg method of p-value adjustments was used.

715 **Figure legends**

716 **Fig. 1. Study design, quality control, and potential biases in the data.** **a**, Three iPSC lines (BIONi010-C,
717 BIONi037-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids
718 generated from the same cell line were pooled and dissociated into single cells when each single-cell
719 suspension was split into two portions. One set of single-cell suspensions was immediately subjected to
720 sample multiplexing with CellPlex and processed in 10x Genomics 3'GEX+FB pipeline. The second set of
721 single-cell suspensions was frozen until all samples were available. The samples were further processed
722 through Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files
723 were processed with technology-specific computational pipelines. Count matrices were further analyzed.
724 Graphic was created with [BioRender.com](https://biorender.com). **b**, Quality statistics after quality control. Color represents
725 sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
726 (L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences
727 between technologies, *** p < 0.001. **c**, Left, density scatter plot showing correlation of average gene
728 expression between the two technologies. Right, scatter plot showing correlation of average gene
729 expression between the two technologies. Color represents gene group. **d**, Distributions of gene GC
730 content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p
731 < 0.001.

732

733 **Fig. 2. Assessment of neural lineage identity.** **a**, PCA and UMAP plots for globally normalized and
734 unintegrated data. **b**, Heatmap representing mean module expression scores of gene ontology terms
735 related to aspects of cell stress. **c**, UMAP plot representing cell stress status of cells based on Gruffi
736 assessment. **d**, Percentage of stressed cells based on Gruffi assessment. **e**, RPCA and UMAP plots for
737 globally normalized and RPCA-integrated data originating from non-stressed cells. **f**, UMAP plot
738 representing neural lineage status of cells based on reference-query integration with human
739 developmental transcriptome⁵². **g**, Feature plots showing expression of selected genes to highlight
740 developmental lineages. **h**, Percentage of neuroectodermal cells based on reference-query integration
741 with human developmental transcriptome. **i**, Percentage of neuroectodermal cells per cell line based on
742 reference-query integration with human developmental transcriptome. For **a**, **d**, **e**, **h**, **i**, color represents
743 sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
744 (L1 or L2).

745

746 **Fig. 3. Assessment of regional identity and cell type annotation.** **a**, Heatmap of similarity metric of
747 VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain
748 regional markers obtained from Mouse Brain Atlas at E13. **b**, UMAP plots for globally normalized and
749 RPCA-integrated neural data with manually annotated clusters. **c**, Violin plots for expression of canonical
750 markers of hindbrain development. **d**, Stacked bar plot representing average proportion of individual cell
751 types between technologies. **e**, UMAP plot representing cell type identity as assigned based on reference-
752 query integration with human cerebellar transcriptome³⁸. **f**, Feature plots showing prediction score based
753 on reference-query integration with human cerebellar transcriptome.

754

755 **Fig. 4. Differential gene expression between technologies.** **a**, Strip plot displaying DEGs between
756 technologies per cell type. Genes represented in grey are not differentially expressed. Color represents
757 log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10⁻⁴). **b**,
758 Volcano plot representing differential gene expression in GPC cluster. **c**, Heatmap representing semantic
759 similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. **d**,
760 Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores.

761

762

763 **Supplementary Fig. 1. Complementary to Fig. 1. Quality control and gene quantification biases in the**
764 **data.** **a**, Percentage of raw reads mapping to exonic regions, genome, and having valid barcodes. Bars
765 represent the mean; dots represent the individual libraries. **b**, Numbers of input and output cells. Bars
766 represent the mean; for 10x data, dots represent individual libraries; for Parse data, dots represent the
767 total number of cells in the experiment. **c**, Venn diagram of genes expressed in at least 1 cell in each of
768 the two technologies. Color represents technology. **d**, Distribution of the number of cells expressing a
769 gene. **e**, Quality statistics before quality control. Red dashed lines represented threshold values. Color
770 represents sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50),
771 and library (L1 or L2). 10x, n = 33,951, Parse, n = 15,226 cells. Three-way ANOVA, p-values represent
772 differences between technologies, *** p < 0.001. **f**, Stacked bar plot representing average proportion of
773 reads originating from non-protein-coding RNAs (ncRNA). Color represents ncRNA biotype. **g**,
774 Distributions of gene GC content and gene length for all genes expressed in either of the two technologies.
775 Two-sided t-test, *** p < 0.001. **h**, Distributions of gene length for differentially expressed genes per gene
776 biotype between technologies. Two-sided t-test, * p < 0.05, *** p < 0.001.

777

778 **Supplementary Fig. 2. Complementary to Fig. 2. Assessment of neural lineage identity.** **a**, Heatmap
779 representing mean module expression scores of gene ontology terms related to aspects of cell stress. **b**,
780 Histograms representing distribution of granule scores for expression of cell stress modules. Color
781 represents stress classification. Solid black line represents stress threshold. Dashed black line represents
782 90% quantile of the distribution of granule expression score. Dashed blue and red lines represent median
783 values of non- and stressed cells. **c**, UMAP plot representing cell type identity as assigned based on
784 reference-query integration with human developmental transcriptome⁵². **d**, Feature plot showing
785 prediction score based on reference-query integration with human developmental transcriptome. **e**,
786 Feature plots showing module expression scores for GO terms guiding Gruffi-based lineage identity
787 assessment. **f**, UMAP plot representing neural lineage status of cells based on Gruffi-based lineage identity
788 assessment. Three-way ANOVA, p-values represent differences between technologies, n.s. $p \geq 0.05$, * $p <$
789 0.05, ** $p < 0.01$, *** $p < 0.001$.

790

791

792 **Supplementary Fig. 3. Complementary to Fig. 3. Assessment of regional identity and cell type**
793 **annotation.** **a**, Heatmap of scaled similarity metric of VoxHunt algorithm comparing samples with human
794 neocortical RNA-seq data from BrainSpan using brain regional markers obtained from Mouse Brain Atlas
795 at E13. **b**, Permutation test on cell type composition of cerebellar organoids. Differentially abundant cell
796 types are represented in pink. Cell types with FDR less than 0.05 and absolute log2 fold change more than
797 0.58 were considered differentially abundant. **c**, Distribution of prediction scores based on reference-
798 query integration with human cerebellar transcriptome³⁸. **d**, UMAP plot representing cell type identity as
799 assigned based on reference-query integration with cerebellar organoids transcriptome²⁹. **e**, Feature plots
800 showing prediction score based on reference-query integration with cerebellar organoids
801 transcriptome²⁹. **f**, Distribution of prediction scores based on reference-query integration with human
802 cerebellar organoids. For **c** and **f**, color represents sample identity with respect to technology (10x or
803 Parse), day of differentiation (D35 or D50), and library (L1 or L2). For **c** and **f** three-way ANOVA, p-values
804 represent differences between technologies, *** p < 0.001.

805

806 **Supplementary Fig. 4. Complementary to Fig. 4. Differential gene expression between technologies.** **a**,
807 Bar plot representing number of differentially expressed genes per cell type. **b**, Volcano plot representing
808 differential gene expression in GPC cluster without genes that are exclusively expressed in one of the
809 technologies. **c**, Feature plots showing expression of selected TFs (left column), their regulon AUC scores
810 (middle column), and results of gene set overrepresentation analysis in TF target genes within regulons
811 (right column). ZEB1 did not have any significantly enriched GO terms.

812

813 Competing interests

814 The authors declare no competing interests.

815 Data and code availability

816 Code and data will be made available upon peer-reviewed publication of the manuscript.

817 Authors' contributions

818 **KS:** Conceptualization, Methodology, Software, Formal analysis, Writing – Original draft, Writing – Review
819 & Editing, Visualization, Project administration; **TK:** Conceptualization, Methodology, Investigation,
820 Writing – Original draft, Writing – Review & Editing, Visualization, Project administration; **VL:**
821 Methodology, Software, Formal analysis, Writing – Original draft; Writing – Review & Editing; **ZY:**
822 Investigation, Writing – Original draft; Writing – Review & Editing; **KB:** Investigation; Writing – Review &
823 Editing; **JM:** Funding acquisition; Writing – Review & Editing; **NC:** Conceptualization, Methodology, Formal
824 analysis, Writing – Original draft, Writing – Review & Editing, Resources, Supervision; **SM:**
825 Conceptualization, Methodology, Writing – Review & Editing, Resources, Supervision, Funding acquisition.

826 Acknowledgements

827 We thank Antje Schulze-Selting, Elisabeth Gustafsson, Christina Kulka, and Ezgi Atay for technical support.
828 We thank Christopher Sifuentes, Yogesh Singh, and Vincent Hammer for strategic and technical
829 discussions.

830 We are grateful for financial support from the Hertie Foundation (Gemeinnützige Hertie-Stiftung), the
831 Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg state postgraduate fellowship
832 (to TK), Add-on Fellowship of the Joachim Herz Foundation (to KS), and the Heidelberger Akademie der
833 Wissenschaften (WIN Kolleg). NGS sequencing methods were performed with the support of the DFG-
834 funded NGS Competence Center Tübingen (INST 37/1049-1). This project has been made possible in part
835 by grant number 2022-316727 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley
836 Community Foundation. This research has been partially funded by the Deutsche Forschungsgemeinschaft
837 (DFG, German Research Foundation) under Germany's Excellence Strategy via the Excellence Cluster 3D
838 Matter Made to Order (EXC-2082/1 – 390761711).

839 **References**

- 840 1. Li, C. *et al.* Single-cell brain organoid screening identifies developmental defects in autism. *Nature* **621**, 373-380 (2023).
- 841 2. Van de Sande, B. *et al.* Applications of single-cell RNA sequencing in drug discovery and development. *Nat Rev Drug Discov* **22**, 496-520 (2023).
- 842 3. Camp, J.G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue engineering. *Nat Methods* **15**, 661-667 (2018).
- 843 4. Ervony, G.D., Hinch, A.G. & Luo, C. Applications of Single-Cell DNA Sequencing. *Annu Rev Genomics Hum Genet* **22**, 171-197 (2021).
- 844 5. Yasen, A. *et al.* Progress and applications of single-cell sequencing techniques. *Infect Genet Evol* **80**, 104198 (2020).
- 845 6. Luecken, M.D. & Theis, F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. *Mol Syst Biol* **15**, e8746 (2019).
- 846 7. Wolock, S.L., Lopez, R. & Klein, A.M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281-291 e9 (2019).
- 847 8. Rosenberg, A.B. *et al.* Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. *Science* **360**, 176-182 (2018).
- 848 9. Cheng, J., Liao, J., Shao, X., Lu, X. & Fan, X. Multiplexing Methods for Simultaneous Large-Scale Transcriptomic Profiling of Samples at Single-Cell Resolution. *Adv Sci (Weinh)* **8**, e2101229 (2021).
- 849 10. Xie, Y. *et al.* Comparative Analysis of Single-Cell RNA Sequencing Methods with and without Sample Multiplexing. *International Journal of Molecular Sciences* **25**, 3828 (2024).
- 850 11. Camp, J.G. & Treutlein, B. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics. *Development* **144**, 1584-1587 (2017).
- 851 12. Tang, X.Y. *et al.* Human organoids in basic research and clinical applications. *Signal Transduct Target Ther* **7**, 168 (2022).
- 852 13. Lancaster, M.A. & Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. *Nat Protoc* **9**, 2329-40 (2014).
- 853 14. Velasco, S. *et al.* Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. *Nature* **570**, 523-527 (2019).
- 854 15. Silva, T.P. *et al.* Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. *J Vis Exp* (2020).
- 855 16. Susaimanickam, P.J., Kiral, F.R. & Park, I.H. Region Specific Brain Organoids to Study Neurodevelopmental Disorders. *Int J Stem Cells* **15**, 26-40 (2022).
- 856 17. Renner, H. *et al.* A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. *Elife* **9**(2020).
- 857 18. Eichmüller, O.L. & Knoblich, J.A. Human cerebral organoids — a new tool for clinical neurology research. *Nature Reviews Neurology* **18**, 661-680 (2022).
- 858 19. Sarieva, K. *et al.* Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. *Mol Psychiatry* **28**, 5077-5089 (2023).
- 859 20. Kagermeier, T. *et al.* Human organoid model of pontocerebellar hypoplasia 2a recapitulates brain region-specific size differences. *Disease Models & Mechanisms* **17**(2024).
- 860 21. Giorgi, C. *et al.* Brain Organoids: A Game-Changer for Drug Testing. *Pharmaceutics* **16**(2024).
- 861 22. Corsini, N.S. & Knoblich, J.A. Human organoids: New strategies and methods for analyzing human development and disease. *Cell* **185**, 2756-2769 (2022).
- 862 23. Qian, X., Song, H. & Ming, G.L. Brain organoids: advances, applications and challenges. *Development* **146**(2019).

886 24. Andrews, M.G. & Kriegstein, A.R. Challenges of Organoid Research. *Annu Rev Neurosci* **45**, 23-39
887 (2022).

888 25. Bertucci, T. *et al.* Improved Protocol for Reproducible Human Cortical Organoids Reveals Early
889 Alterations in Metabolism with MAPT Mutations. *bioRxiv* (2023).

890 26. Silva, T.P. *et al.* Transcriptome profiling of human pluripotent stem cell-derived cerebellar
891 organoids reveals faster commitment under dynamic conditions. *Biotechnology and*
892 *Bioengineering* **118**, 2781-2803 (2021).

893 27. Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E.B.E. High-resolution transcriptional
894 landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. *Sci*
895 *Rep* **11**, 12959 (2021).

896 28. Muguruma, K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease
897 Modeling with Patient-Derived iPSCs. *Cerebellum* **17**, 37-41 (2018).

898 29. Atamian, A. *et al.* Human cerebellar organoids with functional Purkinje cells. *Cell Stem Cell* **31**,
899 39-51 e6 (2024).

900 30. Schmahmann, J.D. The cerebellum and cognition. *Neurosci Lett* **688**, 62-75 (2019).

901 31. Zhang, P. *et al.* The cerebellum and cognitive neural networks. *Front Hum Neurosci* **17**, 1197459
902 (2023).

903 32. Sathyanesan, A. *et al.* Emerging connections between cerebellar development, behaviour and
904 complex brain disorders. *Nat Rev Neurosci* **20**, 298-313 (2019).

905 33. Mapelli, L., Soda, T., D'Angelo, E. & Prestori, F. The Cerebellar Involvement in Autism Spectrum
906 Disorders: From the Social Brain to Mouse Models. *Int J Mol Sci* **23**(2022).

907 34. (!!! INVALID CITATION !!!).

908 35. Harada, H., Sato, T. & Nakamura, H. Fgf8 signaling for development of the midbrain and
909 hindbrain. *Dev Growth Differ* **58**, 437-45 (2016).

910 36. Lowenstein, E.D., Cui, K. & Hernandez-Miranda, L.R. Regulation of early cerebellar development.
911 *FEBS J* **290**, 2786-2804 (2023).

912 37. Leto, K. *et al.* Consensus Paper: Cerebellar Development. *The Cerebellum* **15**, 789-828 (2016).

913 38. Sepp, M. *et al.* Cellular development and evolution of the mammalian cerebellum. *Nature* **625**,
914 788-796 (2024).

915 39. Haldipur, P. *et al.* Spatiotemporal expansion of primary progenitor zones in the developing
916 human cerebellum. *Science* **366**, 454-460 (2019).

917 40. van der Heijden, M.E. & Sillitoe, R.V. Cerebellar dysfunction in rodent models with dystonia,
918 tremor, and ataxia. *Dystonia* **2**(2023).

919 41. Kamei, T. *et al.* Survival and process outgrowth of human iPSC-derived cells expressing Purkinje
920 cell markers in a mouse model for spinocerebellar degenerative disease. *Experimental*
921 *Neurology*, 114511 (2023).

922 42. Coolen, M. *et al.* Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with
923 cerebellar hypoplasia and disrupt Purkinje cell differentiation. *Am J Hum Genet* **109**, 909-927
924 (2022).

925 43. Kresbach, C. *et al.* Intraventricular SHH inhibition proves efficient in SHH medulloblastoma
926 mouse model and prevents systemic side effects. *Neuro Oncol* **26**, 609-622 (2024).

927 44. van Essen, M.J. *et al.* PTCH1-mutant human cerebellar organoids exhibit altered neural
928 development and recapitulate early medulloblastoma tumorigenesis. *Dis Model Mech* **17**(2024).

929 45. Ballabio, C. *et al.* Modeling medulloblastoma in vivo and with human cerebellar organoids. *Nat*
930 *Commun* **11**, 583 (2020).

931 46. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of
932 polarized cerebellar tissue in 3D culture of human pluripotent stem cells. *Cell Rep* **10**, 537-50
933 (2015).

934 47. Salmen, F. *et al.* High-throughput total RNA sequencing in single cells using VASA-seq. *Nature Biotechnology* **40**, 1780-1793 (2022).

935 48. Zheng, W., Chung, L.M. & Zhao, H. Bias detection and correction in RNA-Sequencing data. *BMC Bioinformatics* **12**, 290 (2011).

936 49. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* **352**, 189-196 (2016).

937 50. Vértesy, Á. *et al.* Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. *The EMBO Journal* **41**, e111118 (2022).

938 51. Bhaduri, A. *et al.* Cell stress in cortical organoids impairs molecular subtype specification. *Nature* **578**, 142-148 (2020).

939 52. Cao, J. *et al.* A human cell atlas of fetal gene expression. *Science* **370**, eaba7721 (2020).

940 53. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e29 (2021).

941 54. Olson, E.N. MyoD family: a paradigm for development. *Genes Dev* **4**, 1454-1461 (1990).

942 55. Itoh, N. FGF10: A multifunctional mesenchymal–epithelial signaling growth factor in development, health, and disease. *Cytokine & Growth Factor Reviews* **28**, 63-69 (2016).

943 56. Wilson, S.W. & Houart, C. Early Steps in the Development of the Forebrain. *Developmental Cell* **6**, 167-181 (2004).

944 57. Fleck, J.S. *et al.* Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases. *Cell Stem Cell* **28**, 1148-1159.e8 (2021).

945 58. Miller, J.A. *et al.* Transcriptional landscape of the prenatal human brain. *Nature* **508**, 199-206 (2014).

946 59. Aldinger, K.A. *et al.* Spatial and cell type transcriptional landscape of human cerebellar development. *Nat Neurosci* **24**, 1163-1175 (2021).

947 60. Chen, X., Shi, C., He, M., Xiong, S. & Xia, X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. *Signal Transduct Target Ther* **8**, 352 (2023).

948 61. Jager, R., Bertrand, M.J., Gorman, A.M., Vandenabeele, P. & Samali, A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. *Biol Cell* **104**, 259-70 (2012).

949 62. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nature Methods* **14**, 1083-1086 (2017).

950 63. DeGregori, J. The genetics of the E2F family of transcription factors: shared functions and unique roles. *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer* **1602**, 131-150 (2002).

951 64. Dini, G. *et al.* NFIA haploinsufficiency: case series and literature review. *Front Pediatr* **11**, 1292654 (2023).

952 65. Chen, K.S., Lim, J.W.C., Richards, L.J. & Bunt, J. The convergent roles of the nuclear factor I transcription factors in development and cancer. *Cancer Lett* **410**, 124-138 (2017).

953 66. Fratini, L. *et al.* Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. *Molecular and Cellular Biochemistry* **476**, 4107-4116 (2021).

954 67. Su, C.Y., Kemp, H.A. & Moens, C.B. Cerebellar development in the absence of Gbx function in zebrafish. *Dev Biol* **386**, 181-90 (2014).

955 68. Zhao, Y. *et al.* LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. *Proceedings of the National Academy of Sciences* **104**, 13182-13186 (2007).

956 69. Tweedie, D. *et al.* Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development. *Journal of Neuroscience Methods* **272**, 4-18 (2016).

981 70. Yin, C. *et al.* RNA-seq Analysis Reveals Potential Molecular Mechanisms of ZNF580/ZFP580
982 Promoting Neuronal Survival and Inhibiting Apoptosis after Hypoxic-ischemic Brain damage.
983 *Neuroscience* **483**, 52-65 (2022).

984 71. Lopes, I., Altab, G., Raina, P. & de Magalhaes, J.P. Gene Size Matters: An Analysis of Gene Length
985 in the Human Genome. *Front Genet* **12**, 559998 (2021).

986 72. Wei, P.C. *et al.* Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural
987 Stem/Progenitor Cells. *Cell* **164**, 644-55 (2016).

988 73. Zhao, Y.T. *et al.* Long genes linked to autism spectrum disorders harbor broad enhancer-like
989 chromatin domains. *Genome Res* **28**, 933-942 (2018).

990 74. Seigfried, F.A. & Britsch, S. The Role of Bcl11 Transcription Factors in Neurodevelopmental
991 Disorders. *Biology (Basel)* **13**(2024).

992 75. Pasca, A.M. *et al.* Human 3D cellular model of hypoxic brain injury of prematurity. *Nat Med* **25**,
993 784-791 (2019).

994 76. Neuschulz, A. *et al.* A single-cell RNA labeling strategy for measuring stress response upon tissue
995 dissociation. *Mol Syst Biol* **19**, e11147 (2023).

996 77. Manoli, I. *et al.* Mitochondria as key components of the stress response. *Trends Endocrinol
997 Metab* **18**, 190-8 (2007).

998 78. Cao, S.S. & Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision
999 and human disease. *Antioxid Redox Signal* **21**, 396-413 (2014).

1000 79. Pasca, A.M. *et al.* Functional cortical neurons and astrocytes from human pluripotent stem cells
1001 in 3D culture. *Nat Methods* **12**, 671-8 (2015).

1002 80. Chambers, S.M. *et al.* Highly efficient neural conversion of human ES and iPS cells by dual
1003 inhibition of SMAD signaling. *Nature Biotechnology* **27**, 275-280 (2009).

1004 81. Volpato, V. & Webber, C. Addressing variability in iPSC-derived models of human disease:
1005 guidelines to promote reproducibility. *Dis Model Mech* **13**(2020).

1006 82. Pantazis, C.B. *et al.* A reference human induced pluripotent stem cell line for large-scale
1007 collaborative studies. *Cell Stem Cell* **29**, 1685-1702 e22 (2022).

1008 83. Sarieva, K. & Mayer, S. The Effects of Environmental Adversities on Human Neocortical
1009 Neurogenesis Modeled in Brain Organoids. *Front Mol Biosci* **8**, 686410 (2021).

1010 84. Silva, T.P. *et al.* Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the
1011 Absence of Co-culture. *Front Bioeng Biotechnol* **8**, 70 (2020).

1012 85. Lambert, S.A. *et al.* The Human Transcription Factors. *Cell* **172**, 650-665 (2018).

1013 86. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
1014 seq data with DESeq2. *Genome Biology* **15**(2014).

1015 87. Zhu, A., Ibrahim, J.G. & Love, M.I. Heavy-tailed prior distributions for sequence count data:
1016 removing the noise and preserving large differences. *Bioinformatics* **35**, 2084-2092 (2019).

1017 88. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The
1018 Innovation* **2**(2021).

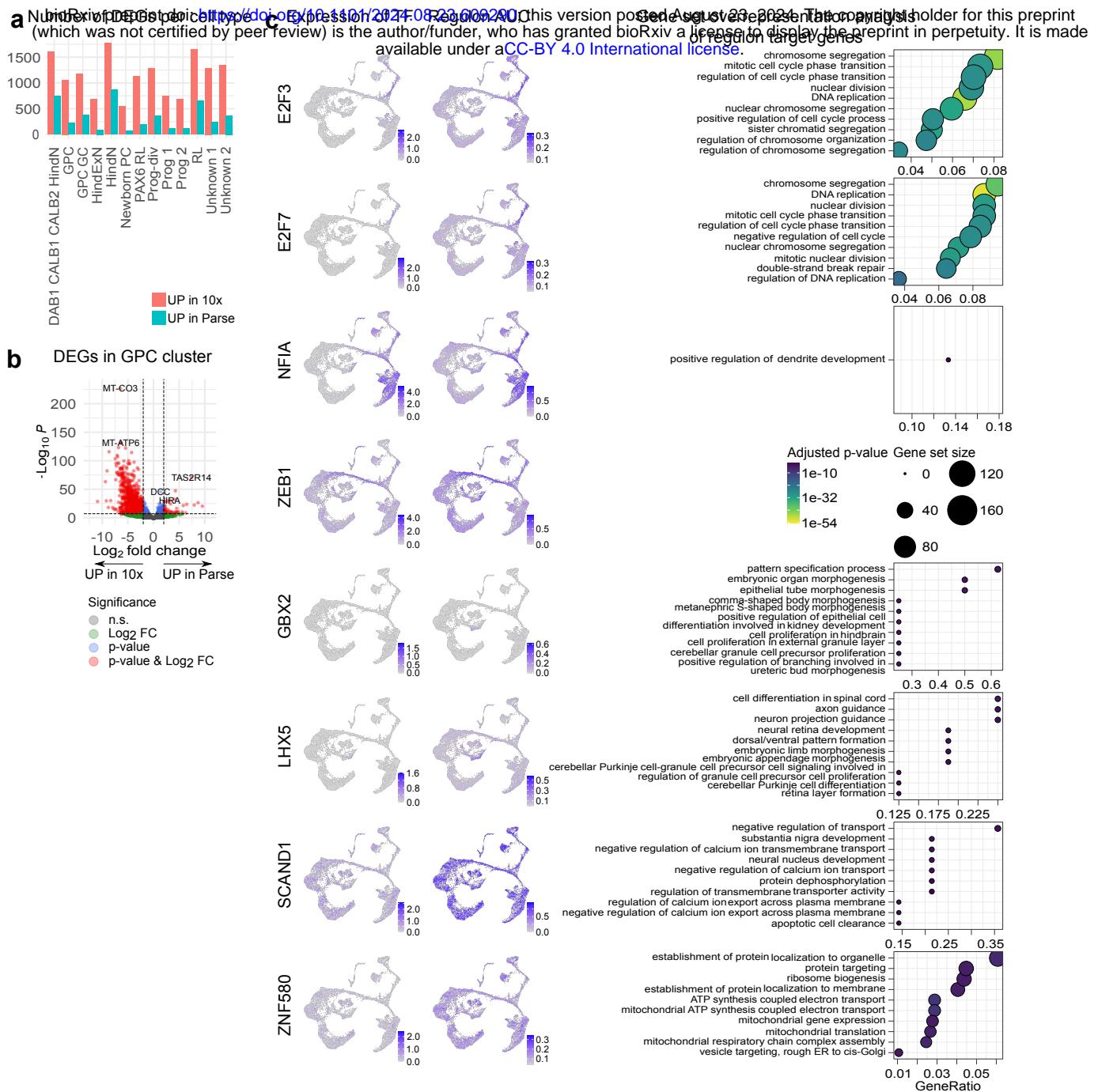
1019 89. Gu, Z. & Hübschmann, D. SimplifyEnrichment: A Bioconductor Package for Clustering and
1020 Visualizing Functional Enrichment Results. *Genomics, Proteomics & Bioinformatics* **21**, 190-
1021 202 (2023).

1022 90. Van De Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory network
1023 analysis. *Nature Protocols* **15**, 2247-2276 (2020).

1024

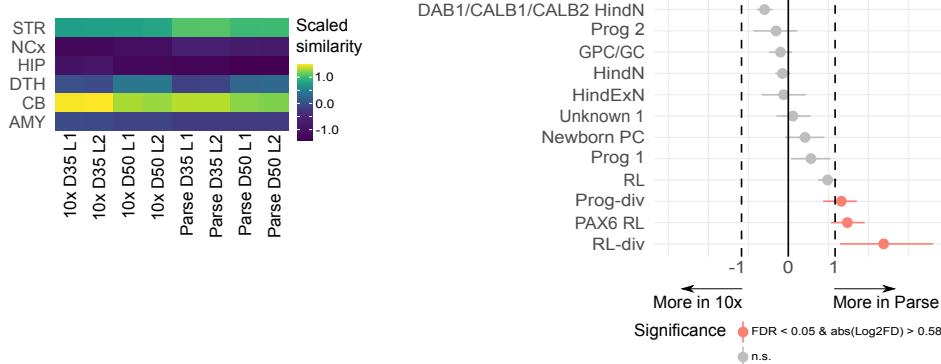
1025

Supplementary Figure 4

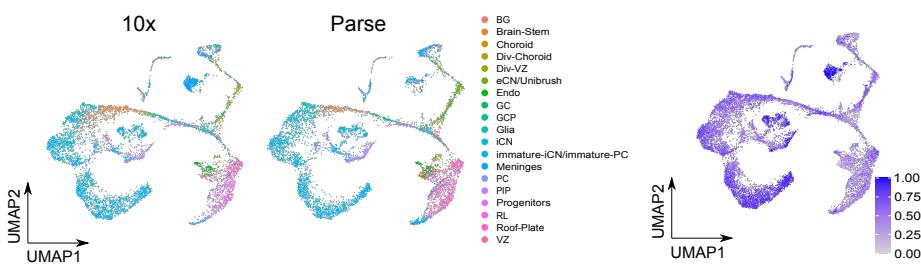


Supplementary Figure 3

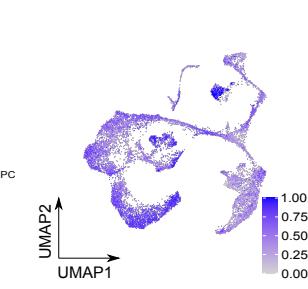
a bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.23.669290>; this version posted August 23, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



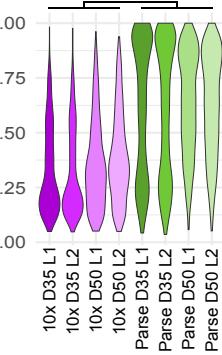
d Reference-query mapping with cerebellar organoids transcriptome (Atamian *et al.*, 2024)



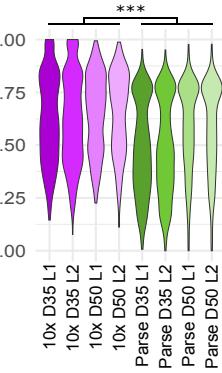
e Prediction scores from reference-query mapping



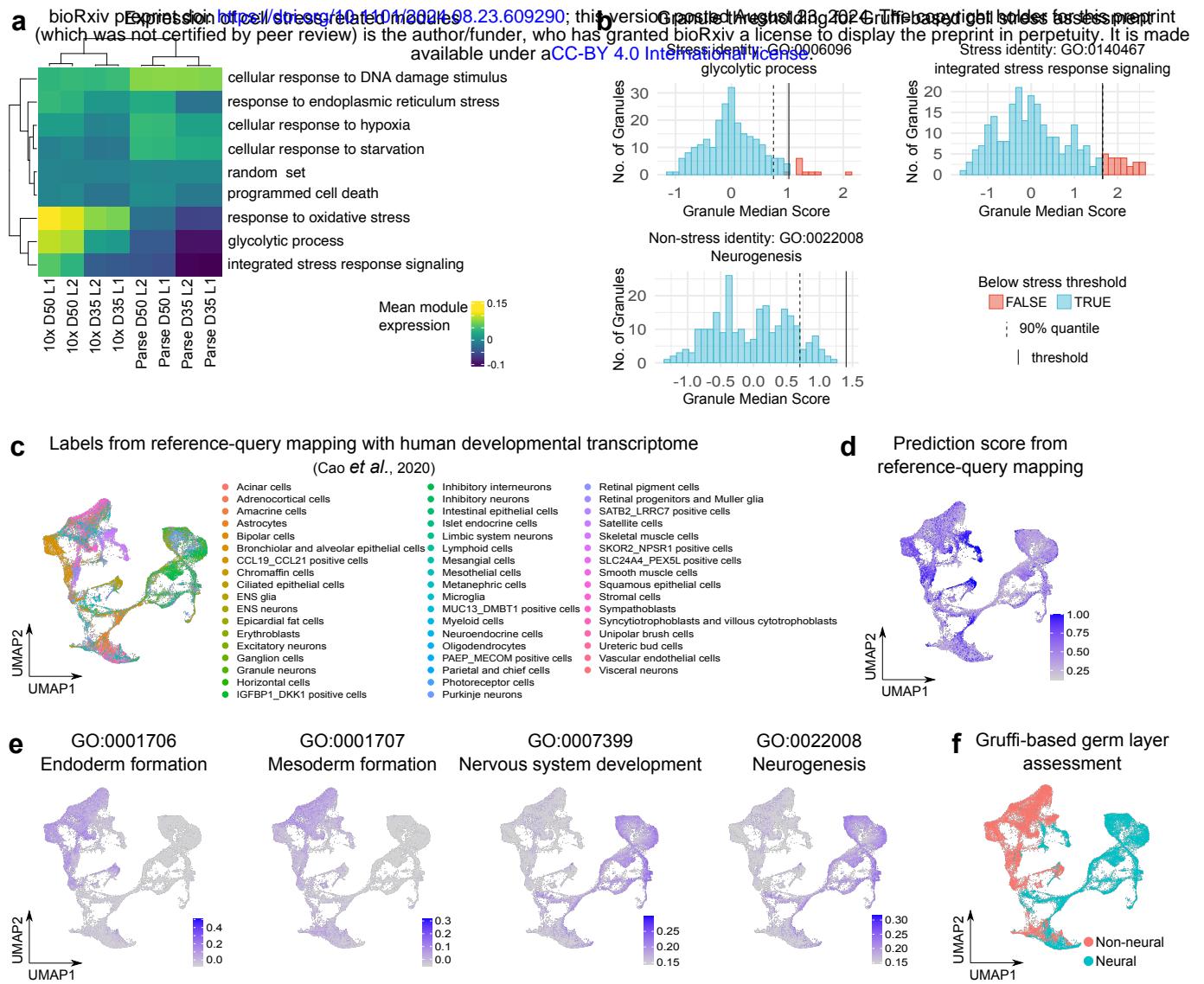
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.531232>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).



f Prediction scores from reference-query mapping with cerebellar organoids transcriptome (Atamian *et al.*, 2024)



Supplementary Figure 2



Supplementary Figure 1

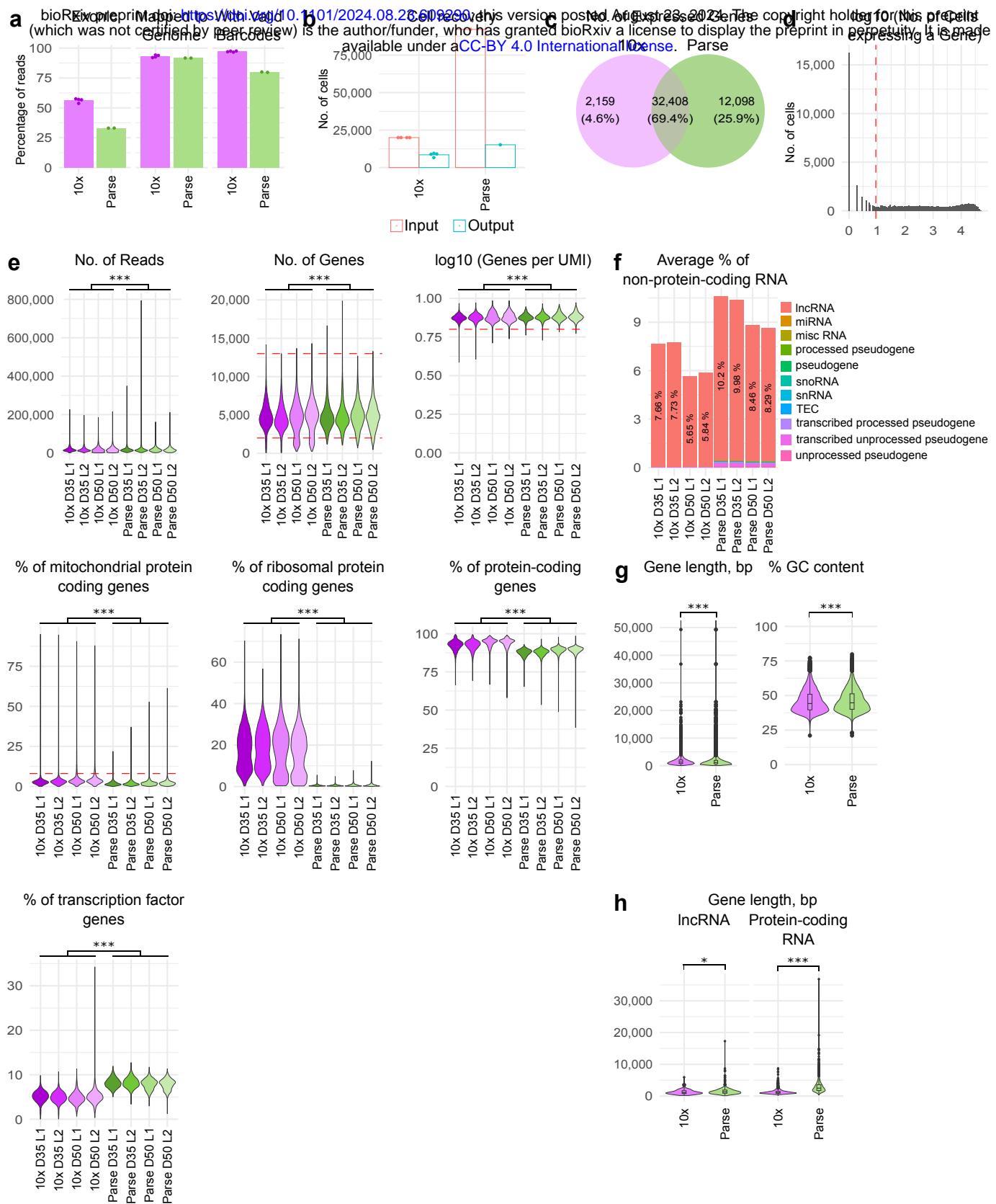


Figure 4

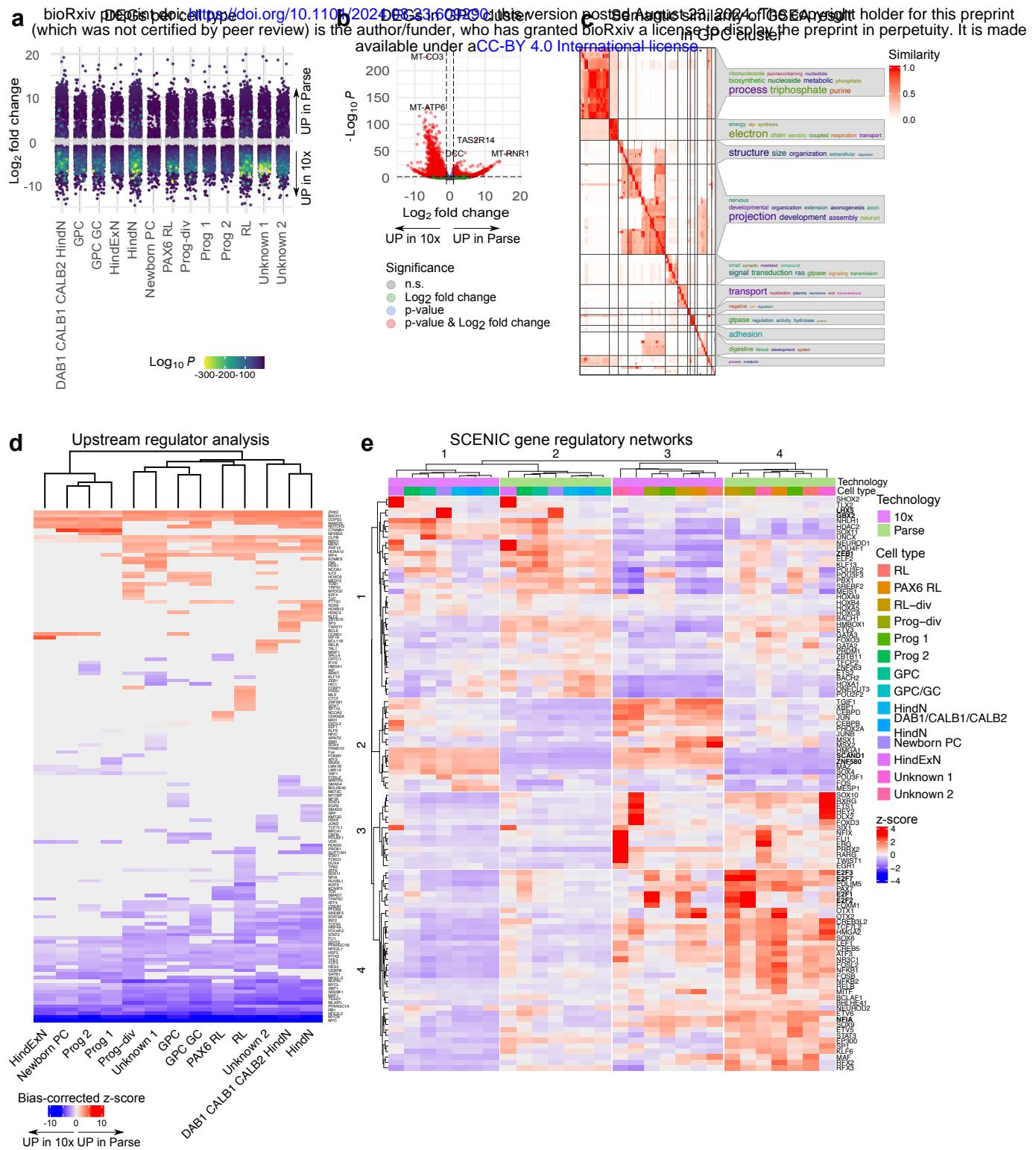


Figure 3

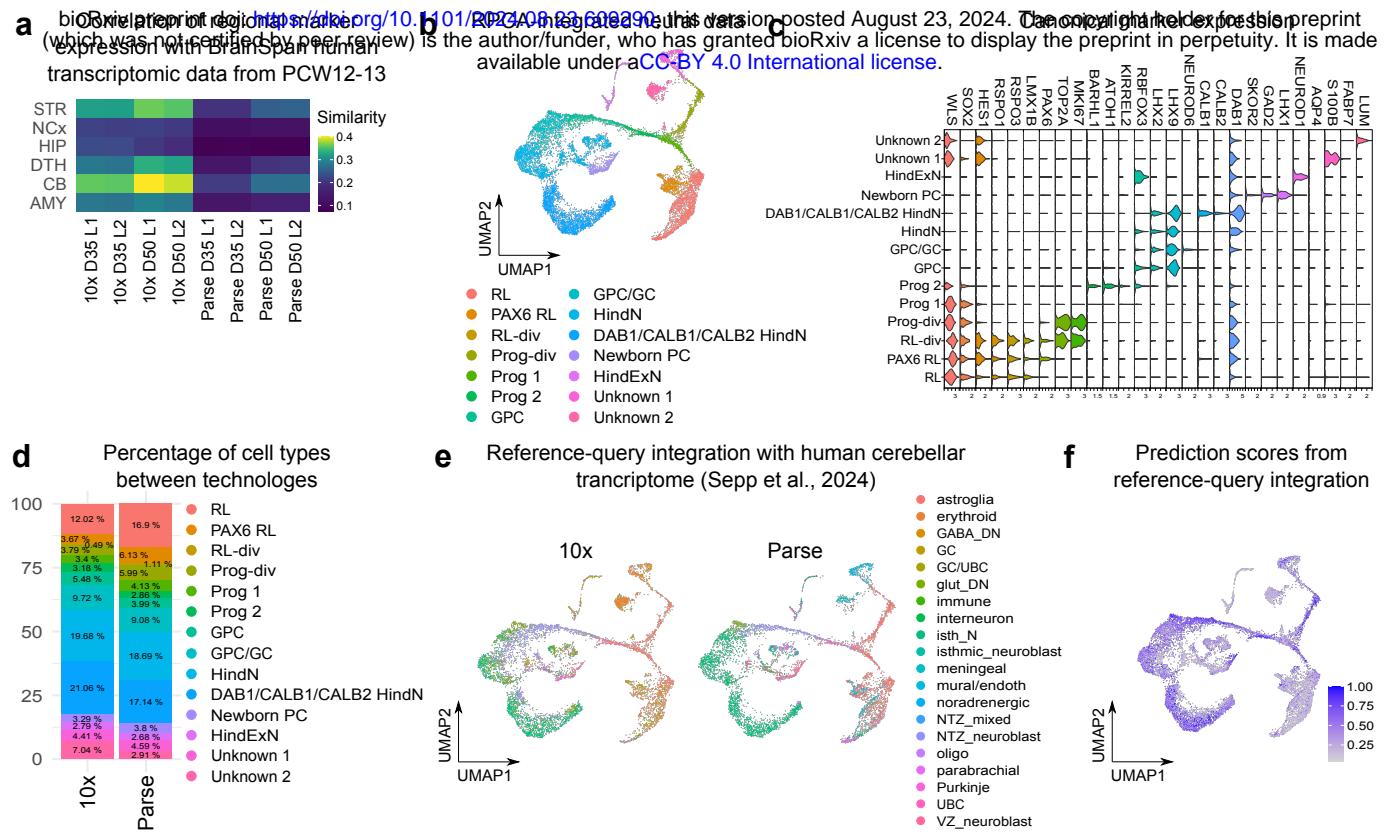


Figure 2

a bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.28.609290>; this version posted August 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

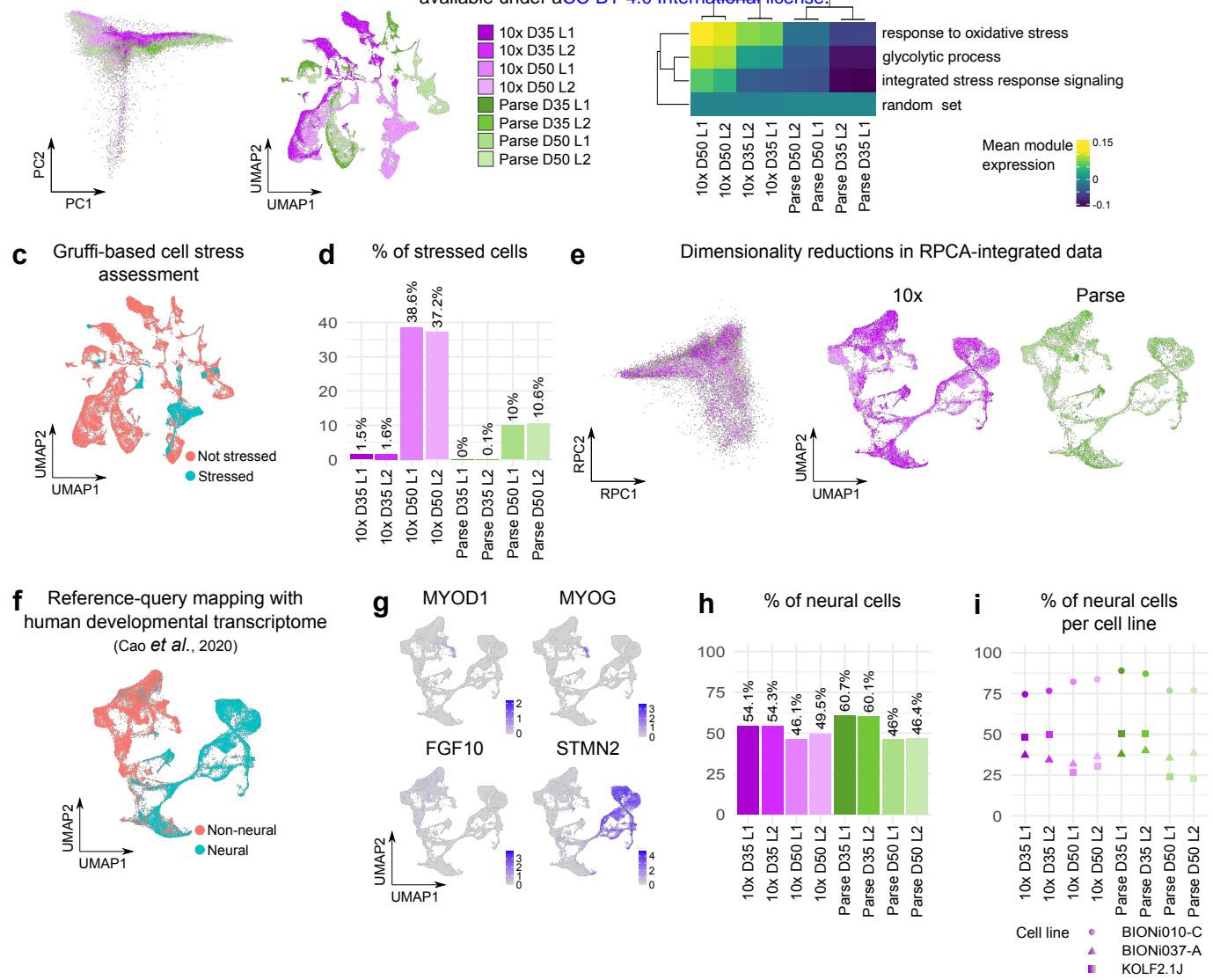


Figure 1

a bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.23.609290>; this version posted August 23, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND license.

