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Abstract

Sample multiplexing provides a solution to limited sample throughput in single-cell RNA sequencing
(scRNA-seq) experiments. Different strategies for multiplexing are commercially provided by Parse
Biosciences combinatorial barcoding (Parse) and 10x Genomics CellPlex combined with microfluidic cell
capture (10x). However, the extent to which these two techniques differ when characterizing complex
tissues such as regionalized neural organoids and whether data generated from the two techniques can
be readily integrated is unknown. Cerebellar organoids are a highly relevant model for understanding
evolutionary differences, developmental trajectories, and disease mechanisms of this brain region.
However, they have not been extensively characterized through scRNA-seq. Therefore, we compared the
two multiplexing techniques, 10x and Parse, using cerebellar organoids derived from three stem cell lines.
While both strategies demonstrated technical reproducibility and revealed comparable cellular diversity
including the main lineages of cerebellar neurons, we found more stressed cells in 10x than in Parse.
Additionally, we observed differences in transcript capture, with Parse covering a higher gene biotype
diversity and less mitochondrial and ribosomal protein coding transcripts. In summary, we demonstrate
that both techniques provide similar insight into cerebellar organoid biology, but flexibility of
experimental design, capture of long transcripts, and the level of cell stress caused by the workflow differ.

Introduction

Single-cell RNA-sequencing (scRNA-seq) has revolutionized our approach to characterize cell types, states,
and lineages in various biological systems and provides a new readout in screening applications and drug
development?, Further, scRNA-seq is broadly applied to investigate cellular mechanisms in various model
systems in health and disease®. The use of scRNA-seq has been limited by technically challenging
workflows, often resulting in relatively low sample throughput in single experiments*>. However, an
adequate number of cells per sample and sufficient biological replica are essential for the success of
single-cell transcriptomic studies. Effective cell sampling maximizes the capture of cellular heterogeneity,
allowing for the precise identification and clustering of rare cell populations®. Large numbers of cells
contribute to robust statistical power, facilitating the detection of subtle changes in gene expression.
Biological replicates are crucial to distinguish true biological variability from technical noise, allowing
reliable inference of cellular responses to experimental manipulations®. Recent advances in
commercialized kits have overcome some of the technical obstacles limiting sample throughput by
enabling sample multiplexing. Thereby both the number of cells assayed and the number of possible
replicates or biological samples in a single experiment can be increased. The different approaches to
multiplexing of scRNA-seq are characterized by differential sample throughput. Additionally, multiplexing
can help detect multiplets and facilitates their removal prior to analysis’. While combinatorial barcoding
is inherently multiplexed, microfluidic approaches require an additional labeling step for barcoding,
mediated by antibodies or lipids®. Thus, from a technical perspective, multiplexing of samples allows
upscaling experiments. However, increasing the number of samples remains technically challenging when
working with fresh tissue because tissue dissociation, a highly manual process, needs to be
parallelized®. Fixation of the dissociated cells before capture overcomes this obstacle, and different
samples, for instance from different experimental time points, can be processed together, thereby
avoiding batch effects of the capture.

Two commercialized approaches for sample multiplexing employ these different strategies and are
commonly used by laboratories across the globe: 10x Genomics (hereafter, 10x) offers a microfluidic
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70  approach, while Parse Biosciences (hereafter, Parse) relies on combinatorial barcoding of fixed cells. The
71 kits allow multiplexing of 12 (10x) or up to 96 samples (Parse). The higher the number of multiplexed
72  samples, the lower are the per-sample costs of cell capture with both strategies. Despite their broad use
73 in the scientific community, the two commercial technologies for multiplexed scRNA-seq, 10x and Parse,
74 need to be compared in depth concerning their performance regarding differential transcript capture, cell
75  type enrichment, and the amount of information that can be inferred from secondary analyses. A recent
76 study compared both technologies using peripheral blood mononuclear cells (PBMCs) and demonstrated
77 that Parse had a higher sensitivity for detecting rare cell types'®. Furthermore, it was shown that Parse
78  covered a wider range of gene lengths, and that 10x was biased towards more GC-rich transcripts®.
79 However, it remains unclear, to what extent these differences apply and potentially affect downstream
80 analysis of other cell types and highly complex tissue samples that require dissociation.

81 In parallel to scRNA-seq technologies, protocols for human induced pluripotent stem cell (iPSC)-derived
82  organoids have been developed and have rapidly gained importance in biomedical research over the last
83  decade*'t?, Particularly, the establishment of brain, or neural, organoids has greatly impacted
84 neuroscience research as they allow to investigate the developmental stages that usually happen in utero
85  and are experimentally hardly accessible®. Over the last few years, the protocols for generating neural
86 organoids have been modified to generate regionalized tissues resembling neocortex, midbrain and
87  cerebellum!*?', Regionalized neural organoids are more homogeneous and contain specialized cell types
88  compared to non-regionalized organoids and are, therefore, a particularly powerful tool to study human
89  neurodevelopment!®, to model neurological disorders!®?°, and to test on- and off-target effects of
90 pharmaceuticals??2. Despite their advantages and broad application, they can be a challenging model
91 system due to the heterogeneity between batches of differentiation and iPSC lines, the diversity of
92  generated cell types, and off-target tissue?>?*, These limitations highlight that neural organoids require
93  comprehensive characterization of cell and tissue types at single cell resolution by high-throughput
94  technologies such as scRNA-seq to exploit their full potential®. Further careful characterization of new
95 protocols with multiple iPSC lines should be performed to ensure reproducibility across cell lines®. While
96  neocortical organoids are broadly used and extensively characterized through scRNA-seq, much less data
97 s available for other regionalized neural organoids such as cerebellar organoids!>#2,

98  The human cerebellum has long been thought to mainly be involved in motor learning and coordination®,

99  however more recent insights into cerebellar function, describe its major contribution to cognitive
100 functions such as attention, task execution, working memory, language and social behavior®!, and a role
101  in neurodevelopmental disorders such as autism spectrum disorder (ASD)3223, Considering that
102 regionalized neural organoids, including cerebellar organoids, depict the cellular compositions and
103  mechanisms of the developing human brain3434343434343434  they are a promising tool for studying
104  neurodevelopmental disorders affecting the cerebellum. Early developmental stages of cerebellar
105 ontogenesis are conserved across species, with two progenitor zones arising in the rhombencephalon
106  r1*7° These two progenitor zones are the ventricular zone (VZ) and the rhombic lip (RL). The VZ gives rise
107  to all inhibitory neurons of the future cerebellum, including Purkinje cells (PC) and inhibitory neurons of
108  the deep cerebellar nuclei. In contrast, the RL generates all excitatory neurons, including, for example,
109  granule cells (GC) and excitatory neurons of the deep cerebellar nuclei®’. However, the human cerebellum
110 is uniquely characterized by features including changes in neuronal subtype ratios and folial complexity
111 with respect to other mammals®”*¢. Moreover, a comparison between human and non-human primates
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112 has revealed the existence of a distinct basal progenitor population within the VZ and a longer persistence
113 of neural progenitors originating from the RL in humans®°.

114  To date, cerebellar disorders such as cerebellar hypoplasias, Dandy-Walker Syndrome, ataxias, and
115  medulloblastoma have mainly been studied in mouse or zebrafish models*®*3, Cerebellar organoid models
116  now provide an interesting avenue to model these disorders in a human tissue context?, as pioneered in
117  several recent studies?®***>, However, the protocols underlying their generation are still being
118  improved®?”%, and few single-cell RNA datasets of selected cell lines are available’>?%¢, Moreover,
119  recent publications on cerebellar organoid differentiation performed scRNA-seq on only one iPSC line?”?°,
120 Hence the reproducibility for different iPSC lines is yet to be tested.

121  Taken together, (regionalized) neural organoids such as cerebellar organoids hold great potential to
122 understand human-specific brain development in health and disease. However, these models can display
123 heterogeneous results and efficiencies across batches and cell lines and require precise characterization
124  of the cellular population and transcriptional profiles. Different scRNA-seq techniques have been reported
125  to show individual strengths and weaknesses in PBMCs'’. To investigate how these differences could
126  potentially impact the analysis of scRNA-seq data of complex, heterogeneous and 3-dimensional (3D)
127  tissue such as regionalized neural organoids, we generated cerebellar organoids from three iPSC lines and
128  performed an in-depth comparison of 10x with Parse on both technical and biological levels.

129  Results

130  Experimental design and quality assessment

131  To assess the reproducibility of cerebellar organoid differentiation and comparability of two scRNA-seq
132 methods, we differentiated three publicly available iPSC lines (BIONi010-C, BIONi037-A, and KOLF2.1))
133 into cerebellar organoids (Fig. 1a). All three cell lines were handled in parallel throughout the culture
134  period. Samples were harvested at day 35 (D35) and day 50 (D50) of differentiation, and pools of 24
135  organoids per cell line and time point were dissociated into single cells. One aliquot of each cell suspension
136  was used to perform 10x, the other to perform Parse scRNA-seq. For 10x, individual samples were labelled
137  with cell multiplexing oligos (CMOQ), pooled, and then split into two lanes of a 10x chip and processed by
138 10x 3’ Gene Expression experimental pipeline (Fig. 1a). In parallel, the second aliquot was fixed according
139  to the Parse protocol and stored at -80°C. Frozen samples of both time points (D35, D50) were
140  subsequently subjected to combinatorial barcoding, and two sub-libraries were sequenced. For simplicity,
141  we will refer to Parse sub-libraries as “libraries” throughout the manuscript. This experimental design
142  enabled us to minimize the effect of biological variability and to focus on differences arising solely from
143 the two techniques, 10x and Parse.

144  For both technologies, libraries were sequenced to achieve over 50,000 reads per cell (Supplementary
145  Table 1). Due to varying sequencing depth, raw FASTQ files were downsampled to 50,000 reads per cell
146  to allow a direct comparison of gene detection sensitivity (Supplementary Table 1). They were further
147  processed through technology-specific alignment pipelines with human genome hg38: cellranger v7.2.0
148 multi pipeline for 10x samples and split-pipe v1.1.2 for Parse samples.

149 We first assessed the library efficiencies for both methods and found that, in both cases, most reads were
150  mapped to the genome (93.2% for 10x, 91.8% for Parse, Supplementary Fig. 1a, Supplementary Table 2).
151 While 56.3% of reads in 10x were mapped to exons, only 30.1% of reads were mapped to exons using
152 Parse (Supplementary Fig. 1a, Supplementary Table 2). Valid barcodes were identified for 97.2% for 10x
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153  and 79.9% for Parse (Supplementary Fig. 1a, Supplementary Table 2). The cell recovery rate was 42.7% for
154  10x and 16.5% for Parse (Supplementary Fig. 1b, Supplementary Table 2).

155  To enable further comparisons, the technology-specific cell-by-gene count matrices were merged. We
156  found that 32,408 genes had a non-zero expression in both technologies, while 2,159 and 12,098 genes
157  were uniquely expressed in 10x and Parse datasets, respectively (Supplementary Fig. 1c). While the
158 number of genes in the merged matrix was 62,910, it did not correspond to the number of genes with
159 non-zero expression throughout the cells (Supplementary Fig. 1d). We therefore removed genes that had
160  anon-zero expression in less than 8 cells in the merged count matrix. The resulting count matrix contained
161 38,580 genes.

162 For further analysis, we used the following combination of metadata parameters to assign cells to samples
163 unless stated otherwise: (1) the technology (10x vs Parse); (2) the day of differentiation (D35 vs D50) of
164  cerebellar organoids; and (3) the sequencing library (L1 and L2). Day of differentiation was used as
165  covariate to acknowledge both biological differences in the stage of organoid differentiation and technical
166 differences arising from harvesting D35 and D50 samples on different days. The sequencing library was
167 used as a covariate to show the reproducibility of the workflow within each technology. In both
168  technologies, libraries consisted of different cells, not different sequencing rounds.

169  Cell-level quality control (QC) was performed to remove cells with either a low or high number of detected
170  genes, low number of genes per unique molecular identifier (UMI), and high percentage of mitochondrial
171 protein-coding transcripts (Supplementary Fig. 1e). After QC, we recovered on average 87.2% of cells from
172 10x and 95.6% of cells from Parse datasets (10x, 29,505 out of 33,951 cells; Parse, 14,542 out of 15,226
173 cells). The number of detected reads per cell did not vary between the technologies before filtering
174  because of the downsampling of reads approach we took to correct for differences in sequencing depth
175 (p =0.05, Supplementary Fig. 1e). However, the number of genes per cell was higher in Parse both before
176  and after QC (p < 0.001, Fig. 1b), suggesting that there might have been a higher diversity of detected
177  gene biotypes in the Parse dataset. Indeed, while protein-coding genes were the most abundant gene
178  biotype in both technologies, their percentage of the total reads was significantly smaller in Parse than in
179 10x (p < 0.001, 10x, 93.2 + 2.9; Parse, 88.7 £ 2.1; mean % SD) (Fig. 1b, Supplementary Fig. 1e). In contrast,
180 Parse recovered a higher proportion of non-coding RNAs (ncRNA) reads, including long non-coding RNAs
181 (IncRNA) (p < 0.001; 10x, 6.7 + 3.1; Parse, 9.2 + 2.3; mean * SD) (Supplementary Fig. 1f), which have
182 previously been shown to be informative for cell type identification®’. The difference in ncRNAs and exonic
183 reads can be explained by primers used for reverse transcription: Parse uses a mixture of random hexamer
184  and poly-dT barcoded primers for reverse transcription®, while 10x uses only poly-dT primers.

185  Additionally, the percentage of mitochondrial and ribosomal protein-coding genes was lower in the Parse
186  than in the 10x samples. In contrast, the percentage of reads originating from transcription factors (TF)
187 among protein-coding genes was higher in the Parse than in the 10x dataset (Fig. 1b, Supplementary Fig.
188 1e). In line with the observation of higher gene biotype diversity in Parse data by Xie and colleagues *°,
189  this suggested differential gene detection between the two technologies. Indeed, when we analyzed the
190 correlation of gene expression between the two technologies across cells, we found only a moderate
191  correlation, which corresponded to previous findings (Pearson’s r = 0.6) (Fig. 1c)*°.

192 Different bulk and single-cell RNA-seq technologies are known to have biases in gene detection based on
193 gene properties such as GC content and gene length®*, To characterize these biases in our cerebellar
194  organoid model, we analyzed the correlations between gene abundance and gene length or GC content,
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195 respectively, in both technologies (Fig. 1d, Supplementary Fig. 1f). When all expressed genes per
196  technology were used for gene length and GC content analysis, small but statistically significant
197  differences were observed (p < 0.001, Supplementary Fig. 1f). However, when we analyzed both
198  parameters in differentially expressed genes (DEG) per technology (10x, 2,737 DEGs; Parse, 4,055 DEGSs),
199  we observed large differences in both gene length and GC content, reminiscent of previously published
200 results (transcript length, bp: 10x, 1302.4 + 728.0; Parse, 2715.9 = 1754.8; GC content, %: 10x, 50.3 + 8.2;
201 Parse, 43.8 + 6.5; mean + SD)*. While a bias towards detecting longer genes in Parse was observed both
202 for protein-coding genes and IncRNA, the difference was higher for the former (transcript length, bp:
203 protein-coding genes, 10x, 1300.2 + 720.3; Parse, 2901.1 + 1748.9; IncRNA, 10x, 1352.9 + 888.7; Parse,
204 1595.5 + 1311.1; mean + SD) (Supplementary Fig. 1g). Finally, we performed an extensive analysis of gene
205  detection sensitivity and biases largely corroborating results from the previous benchmarking study on
206 PBMCs™ (Supplementary Table 2) in a different sample type, human cerebellar organoids, therefore
207  suggesting that the observed differences are characteristic features of 10x and Parse technologies
208 independent of the sample type.

209  Technical and biological differences between technologies

210 Following the scRNA-seq QC workflow described above, we normalized the data and revealed highly
211  variable genes for further Principal Component Analysis (PCA) as well as Uniform Manifold Approximation
212 and Projection (UMAP) on unintegrated data (Fig. 2a). As expected from previous results and our findings
213 on the QC level, both PCA and UMAP revealed major differences between the technologies. We
214  hypothesized that these differences may be arising from different sample preparation procedures
215 between the technologies. Single cell suspensions for Parse analysis were immediately fixed and frozen
216  after dissociation, while cells undergoing 10x capture were live cells depleted of nutrients from the media
217  for longer (including time periods for multiplexing with CMOs, transportation to the sequencing facility,
218 cell counting and viability assessment) and passed through microfluidic channels of the instrument before
219  lysis.

220 Hence, we hypothesized that cellular stress may be a major contributor to differences between samples.
221  We analyzed the expression of gene ontology (GO) modules involved in different modalities of cellular
222 stress (e.g., GO terms for response to oxidative stress, cellular response to starvation) as well as
223  downstream effects such as programmed cell death and integrated stress response (ISR) (Supplementary
224  Fig. 2a). Module, or gene signature, expression analysis evaluates the expression of a set of genes rather
225  thanindividual genes thereby providing hypothesis-driven insights into biological functions*’. We included
226  arandom set of genes of average size of other gene sets into module expression analysis to serve as an
227  internal control (Supplementary Fig. 2a). We performed hierarchical clustering of average GO module
228  expression scores across samples, which revealed that samples from the two technologies clustered apart
229  (Supplementary Fig. 2a). We also noticed that the major differences came from three cellular stress terms:
230  response to oxidative stress, glycolytic process, and ISR signaling (Supplementary Fig. 2a). When using
231 only these three modules and the random set for hierarchical clustering, the results were identical to the
232 full list of cell stress terms (Fig. 2b, Supplementary Fig. 2a).

233  Tounderstand the impact of cell stress on the dataset we further aimed to determine the number of cells
234 with high cell stress transcriptomic signature. Therefore, we performed Gruffi cell stress assessment®
235 using two of the top cell stress terms from the module expression analysis: glycolytic process
236  (G0O:0006096) and ISR signaling (GO:0140467). With thresholds set to 95.5% quantile for GO:0006096,
237  89.8% quantile for GO:0140467 and no threshold for neurogenesis (GO:0022008) (Supplementary Fig. 2b),
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238  we found that the percentage of stressed cells varied between technologies but also between days of
239  organoid differentiation (Fig. 2c,d). There were more stressed cells in the 10x data than in the Parse data,
240  and both technologies captured more stressed cells in D50 than in D35 cerebellar organoids (Fig. 2d). This
241  finding can be explained by the diffusion-based distribution of nutrients in organoids leading to an
242  increasing nutrient deficiency as organoids grow bigger (D50 vs. D35)?*°1, We therefore removed cells
243 that were classified as stressed by Gruffi (6,595 out of 44,047 cells that passed QC) from further analysis,
244 integrated normalized counts by sample using reciprocal PCA, and repeated PCA and UMAP. This analysis
245 revealed that the data from the two technologies can be easily integrated (Fig. 2e).

246  To analyze the biological reproducibility of the cerebellar organoid protocol between different iPSC lines,
247  we characterized the cellular diversity within organoids. We first aimed to understand whether organoids
248  had neural identity. We therefore performed reference-query mapping of our dataset onto the human
249  developmental transcriptome using Azimuth®?°3, The reference dataset contained cells from 15 organs of
250  human fetuses at 72 to 129 days post-conception, and the cells were captured using sci-RNA-seq3>%. We
251  first assigned our cells with cell types from this dataset® (Supplementary Fig. 2c). The mapping score was
252 high (0.71 £ 0.17, mean % SD) (Supplementary Fig. 2d), indicating that our dataset corresponded well to
253 the reference dataset>®. However, the prediction scores varied between cells (0.59 + 0.26, mean + SD),
254  with most cells not reaching a high-confidence prediction score of 0.75%. Given the relatively low
255 prediction scores, we did not rely on specific annotation to certain cell types but further grouped the cells
256  into two categories — neural and non-neural (Fig. 2f, Supplementary Table 3). We found a considerable
257 portion of cells having non-neural identity (Fig. 2f) with subsets of cells expressing muscular markers (e.g.,
258  MYOD1 and MYOG"*) and endo-/mesodermal markers (e.g., FGF10, mesenchymal marker>®) (Fig. 2g). In
259  contrast, most cells classified as neural expressed the pan-neuronal marker STMN2 (Fig. 2g). Overall, the
260 proportion of neural cells ranged from 46.0% to 60.7% per sample (Fig. 2h). Importantly, considerable
261  differences were observed between the three iPSC lines that the organoids were generated from (Fig. 2i).
262  The BIONi010-C cell line had the highest number of neural cells (range, 74.5 to 89.0%), while KOLF2.1J-
263  derived cerebellar organoids had 23.0 to 50.3% neural cells (Fig. 2i). Interestingly, D35 KOLF2.1J samples
264  had about 50% neural cells, while at D50 only about 25% of cells were identified as neural (Fig. 2i)
265 indicating that cells with neural identity do not proliferate further or die in comparison to other lineages.

266  To cross-validate our assignment to neural and non-neural cells, we adapted Gruffi*® for detecting neural
267 and non-neural transcriptomic signatures. For that, we used GO terms for endoderm (G0:0001706, 57.8%
268  quantile threshold) and mesoderm (G0O:0001707, 66.7% quantile threshold) formation for selecting non-
269 neural cells and GO terms for nervous system development (GO:0007399, 65.7% quantile threshold) and
270  neurogenesis (G0O:0022008, 64.8% quantile threshold) for selecting neural cells (Supplementary Fig. 2e).
271  The results between reference-query mapping and Gruffi were coherent (82.6% classification overlap,
272 Supplementary Fig. 2f). Inconsistent annotations between the two approaches were observed for
273 putatively muscular cells (positive for MYOG and MYOD1) which were incorrectly classified as neural by
274  Gruffi. We suggest that this discrepancy may be due to the shared excitability between neural and
275 muscular cells.

276  Characterization of neural cell diversity

277 Based on the reference-query mapping with the human developmental transcriptome®?, we subset neural
278 cells (19,526 neural cells out of 37,452 cells) and additionally downsampled 10x and Parse datasets to an
279 equal number of cells (resulting in 7,212 cells per technology). We subsequently performed the
280 integration and dimensionality reduction approach as described above.
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281 Following developmental patterning in vivo, various experimental setups in vitro have found that
282 forebrain structures develop upon neural induction, unless exposed to caudalizing factors>®. Additionally,
283  the gene expression program for telencephalon regionalization was upregulated in the cerebellar
284  organoid protocol we used in the current study®®. Hence, we aimed to reveal the brain regional identity
285 of the neural cells. We analyzed the correlation of brain regional marker gene expression between our
286  dataset and human brain transcriptomic data from postconceptional week (PCW) 12-13 from
287  BrainSpan®’*. We used the list of brain regional markers compiled from the top 10 markers of different
288 brain regions based on gene expression in E15 mouse brain®’ (Supplementary Table 4). We found that all
289  our samples had the highest correlation with the cerebellum (Supplementary Fig. 3a). However, when
290  similarity scores were not scaled, we noticed that they were higher for 10x than for Parse samples (Fig.
291  3a). Next, we aimed to assign cell type identities to the neural cells. Combining cerebellar canonical
292  marker gene expression® %> combined with differential gene expression (DGE), we identified both RL-
293 derived cellular lineages (RL, granule precursor cells (GPC), and GC) and VZ-derived newborn PCs (Fig.
294 3b,c). A subset of neuronal cells was characterized as hindbrain neurons, and we were not able to further
295 refine our annotations (Fig. 3b). While overall proportions of cells captured by the two technologies were
296 similar (Fig. 3d, Supplementary Fig. 3b), dividing progenitors, PAX6-positive RL and dividing RL cell
297  populations were significantly enriched in the Parse dataset. In contrast, 10x captured more cells in a
298  population that we could not annotate (Unknown 2) (Supplementary Fig. 3b).

299  To characterize the similarity of our cerebellar organoids with the developing human cerebellum, we
300 performed reference-query mapping with the cerebellar transcriptomic dataset generated by Sepp and
301  colleagues 8. To ensure that we compared our organoid data with early developmental stages of human
302 cerebellum, we subset the reference dataset® to only include prenatal samples. While finding a general
303 agreement in cell type annotations, we noticed some differences both in assigned cell type identities (Fig.
304  3e) and prediction scores, which were higher in Parse than in 10x data (Supplementary Fig. 3c). One
305 example of a discrepancy in assigned cell identities was RL cells of different subtypes. These cells were
306 annotated as a plethora of cell types of the human cerebellum (Fig. 3e) and differed between 10x and
307 Parse (Fig. 3e) but with very low prediction scores (Fig. 3f). We believe that the cause for this discrepancy
308 may be that the reference dataset does not have a separate cluster for RL cells®. Instead, RL cells are part
309 of an astroglia cluster consisting of both astroglia and RL cells®®. The first separate cluster for RL-derived
310 lineage was nuclear transitory zone neuroblasts (NTZ neuroblast)®, and in our dataset, the cells annotated
311  as NTZ neuroblasts belonged mostly to progenitor 1 and GPC and GPC/GC clusters (Fig. 3b).

312  We further compared our data with the transcriptomic profiles of organoids from the recently published
313  cerebellar organoid differentiation protocol (Supplementary Fig. 3d,e)?°. The prediction scores were
314  overall higher than for the comparison with the human cerebellar developmental transcriptome
315 (Supplementary Fig. 3e). This time, however, prediction scores were higher for 10x than for Parse cells
316  (Supplementary Fig. 3f). Interestingly, both reference datasets were obtained from the 10x pipeline, so
317  the discrepancy in prediction scores between our Parse and 10x cells cannot simply be attributed to
318  different technologies used for the generation of reference datasets. Instead, expectedly, our organoid
319  dataaligns more with organoid data obtained from a different protocol, than with primary tissue.

320 In summary, we found that the cerebellar organoids indeed acquired a mid-gestational human cerebellar
321 regional identity. We also found robust differentiation into both major cerebellar lineages, RL- and VZ-
322  derived cells. Small differences in the different parameters were found between 10x and Parse
323  technologies.
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324  Secondary analysis between techniques reveals differences in cell stress signatures and
325 neurodevelopment-related gene regulatory networks activity

326 In our QC, we found differences in the percentage of reads originating from ribosomal and mitochondrial
327  protein-coding genes between the two technologies (Fig. 1b). We also found a subset of cells expressing
328 cell stress-related genes, and the proportion of these cells was higher for 10x cells (Fig. 2d). Therefore, we
329 next aimed to analyze whether the neural cells preserved these transcriptomic features and performed
330 DGE analysis between the different technologies within individual cell types. For that, we split the dataset
331 by cell type, technology, cell line, and day of differentiation and pseudobulked them for DESeq2. Overall,
332  we found DEGs across all cell types (Fig. 4a, Supplementary Fig. 4a). Especially mitochondrial and
333 ribosomal protein-coding genes were upregulated in 10x compared to Parse across cell types
334  (Supplementary Table 5), including GPCs (Fig. 4b). More genes were upregulated in 10x compared to Parse
335  across all cell types, further highlighting that with equal sequencing depth, 10x captures a lower variety
336 of genes with larger numbers of reads per gene. Interestingly, there were a few genes with large fold
337  change and relatively large p-values upregulated in either of the two technologies. These genes were
338 identified as expressed either in 10x or Parse, as revealed by removing these genes from volcano plots
339 (Supplementary Fig. 4b). To functionally characterize the differences in gene expression between the
340 techniques, we performed gene set enrichment analysis and clustered the output by semantic similarity
341 matrix (Fig. 4c). Here we describe findings for gene set enrichment analysis in GPCs, as a representative
342  cell type with relatively high cell numbers and a medium number of DEGs. In GPCs, the normalized
343  expression score for all statistically significant GO terms was less than 0, indicating their upregulation in
344 10x compared with the Parse dataset (Supplementary Table 6). Among these GO terms, we found a cluster
345  of enriched GO terms related to nucleotide processing as well as a cluster related to mitochondrial
346 respiration. These two clusters of GO terms included not only mitochondrial protein-coding genes as
347 defined in scRNA-seq quality control (i.e., starting with “MT-", Fig. 1b) but also other genes involved in
348  mitochondrial function, for example, the NDUF gene family, which encodes nuclear-encoded genes coding
349 NADH dehydrogenase (ubiquinone) subunits. Another group of enriched GO terms in GPCs was described
350 as related to neuron projection assembly (Fig. 4c).

351  Toreveal the upstream mechanisms leading to the described transcriptional changes across cell types we
352 used ingenuity pathway analysis (IPA). After subsetting the results of URA to transcriptional regulators,
353  we found that IPA predicted a variety of transcription factors to be differentially activated in either of the
354  technologies, and that these transcriptional changes were coordinated across cell types (Fig. 4d). For
355 example, we found TFs XBP1, ATF4 and ATF6, which are activated upon endoplasmic reticulum stress, and
356  NFE2L2 and NRF1, which mediate the oxidative stress response and are involved in maintaining
357  mitochondria redox homeostasis®*®>%! to be upregulated in 10x. These predictions are in line with our
358  previous findings (Fig. 2b, Supplementary Fig. 2a), demonstrating a higher proportion of stressed cells in
359 10x compared to Parse. Since we found that the Parse dataset had a larger proportion of reads originating
360 from TFs, we decided to extend our analysis to gene regulatory network (GRN) analysis using SCENIC®?,
361  Average area under the curve (AUC) scores per cell type and technology were z-score normalized and
362  subjected to k-means clustering (Fig. 4e). We found that the two technologies clustered apart (column
363 clusters 1 and 3 for 10x, and 2 and 4 for Parse) but also cell types divided into two meta groups based on
364 the activity of GRNs (column clusters 1 and 2 were enriched in neurons, while column clusters 3 and 4
365 contained predominantly more progenitor cell types, Fig. 4e). Below, we highlight differences in regulon
366  activity of specific TFs between both technologies and cell types.
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367 For example, cell type-specific regulon activity is found in column clusters 3 and 4 (cell types: RL, PAX6 RL,
368 RL-div, Prog-div, Prog 1, Unknown 1, Unknown 2), and especially dividing RL and progenitor cells. These
369 cells had elevated z-scores for the E2F family, which are TFs involved in cell cycle progression and
370  apoptosis®® (Fig. 4e, Supplementary Fig. 4c). In the same row cluster as the E2F family of TFs (row cluster
371  4), there was regulon for NFIA, a TF involved in GC maturation during cerebellar development®®* (Fig. 4e,
372  Supplementary Fig. 4c). Conversely, column clusters 1 and 2 (cell types: HindExN, Prog 2, GPC, GPC/GC,
373 HindN, DAB1/CALB1/CALB2 HindN, Newborn PC), were enriched for ZEB1, a marker of neuronal migration
374 necessary for the proper development of various brain regions and tumorigenesis in pediatric patients,
375 including medulloblastoma®® (Fig. 4e, Supplementary Fig. 4c). Specifically newborn PCs were enriched for
376 GBX2 and LHX5 (Fig. 4e). GBX2 is a known homeobox gene that plays a significant role in cerebellar
377  regionalization®’, and LHX5 is one of the TFs that define PC cell fate®® (Fig. 4e, Supplementary Fig. 4c).
378  Collectively, SCENIC analysis revealed cell type-specific regulon activity characteristic for distinct
379 cerebellar cell types irrespective of the technology used for cell capture. Hence both technologies can be
380  used for GRN inference.

381  Although cell type-specific regulon activity signatures could be observed in both technologies, there were
382  also regulons with differential activity between technologies (e.g., a subset of regulons in row cluster 2,
383 Fig. 4e, Supplementary Fig. 4c). Examples of such regulon activity signatures were SCAND1 and ZNF580
384  regulons, two TFs known for their involvement in the cellular response to hypoxic stress®®’° but also in
385 mitochondrial and ribosomal functions (Fig. 4e, Supplementary Fig. 4c).

386  Collectively, with our secondary analysis, we confirmed the previous findings that 10x cells had higher
387  expression of ribosomal and mitochondrial protein-coding genes as defined by quality control compared
388  to Parse cells (i.e., gene name pattern “RPS/RPL” for ribosomal and “MT-" for mitochondrial protein-
389  coding genes). Furthermore, we found that other genes with mitochondrial and ribosomal functions were
390 significantly deregulated in the 10x dataset. Additionally, URA predicted a coordinated change in the
391  activity of cellular stress-related transcriptional regulators between 10x and Parse datasets. These findings
392  suggest that 10x cells have a higher expression of cell stress-related transcriptional signatures, and Gruffi-
393  based exclusion of cells with high stress scores did not solve the problem entirely. Finally, SCENIC analysis
394  revealed that regulons are differentially active between cell types in both technologies. Hence,
395  transcriptional differences between technologies did not mask transcriptional differences between cell
396 types.

397  Discussion

398 In this study, we compared two broadly used and commercialized approaches for sample multiplexing of
399  scRNA-seq: 10x Genomics (10x) and Parse Biosciences (Parse). We generated cerebellar organoids, as an
400 example of a complex 3D tissue that requires dissociation, to comprehensively explore the strengths and
401 limitations of each technology. Regionalized neural organoids, such as cerebellar organoids, are
402 commonly used in neuroscience research but can be challenging due to heterogeneity between samples,
403 batches, and iPSC lines. Therefore they require in-depth characterization, for example, by multiplexed
404  scRNA-seq''® To compare scRNA-seq datasets across experiments and studies conducted in different
405 labs and to differentiate technical and biological causes of variance, it is essential to understand artefacts
406 and biases introduced by different experimental pipelines of the capture techniques. Specifically, we
407 differentiated three control iPSC lines into cerebellar organoids according to a published protocol®.
408 Organoids were pooled and dissociated at D35 and D50, and the cells were split into two aliquots, one of
409  which was subjected to the 10x and the other to the Parse multiplexing and sequencing pipelines. The
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410 two methods were then compared regarding library efficiency, differential transcript capture, cell type
411 enrichment, and the information obtained from comprehensive secondary analysis.

412  Sample preparation between the two technologies differs considerably: while cells are kept alive for a
413 longer time until lysis in the 10x workflow, Parse samples are fixed directly after dissociation.
414  Consequently, Parse samples do not have to be processed in parallel providing more flexibility during
415  sample processing and allowing the handling of higher sample numbers in one sequencing run. Therefore,
416  we suggest that this approach is advantageous for larger experimental designs.

417  We compared the technical sequencing parameters of both methods. We found that the average cell
418  recovery rate differed considerably between the two techniques. While 42.7% of cells were recovered in
419  the 10x workflow, only 16.5% recovery was achieved in Parse (Supplementary Fig. 1b). For scarce samples
420  ahigh cell recovery is clearly beneficial to maximize data output. However, we did not observe the lack of
421  certain cell types within the Parse data set, indicating even cell loss across all cell types.

422 For both methods, most reads were mapped to the genome. However, we observed differences in the
423 number of genes detected and their properties. In accordance with the previous study comparing Parse
424  and 10x on PBMCs®, we found that 10x scRNA-seq resulted in a higher number of detected genes, a higher
425 number of protein-coding genes, and a higher number of genes coding for mitochondrial and ribosomal
426  genes compared to Parse (Fig. 1b, Supplementary Fig. 1e). Furthermore, the GC content of captured
427  transcripts was higher in 10x than in Parse. Our analysis also revealed a bias of 10x in capturing shorter
428  transcripts compared to Parse (Fig. 1d, Supplementary Fig. 1h). Moreover, Parse did not only represent
429 longer transcripts but also covered a wider range of gene lengths (Fig. 1b, Supplementary Fig. 1e). Previous
430 functional analysis showed a connection between the transcript length and specific cellular processes and
431  tissue types’t. While short transcripts are more often associated with skin development and the immune
432  system, longer transcripts more frequently play a role in neuronal development’. There is growing
433  evidence for long neural genes to be involved in disease mechanisms during development: long genes are
434  more prone to recurrent double-strand break clusters and are implicated in tumor suppression and
435 psychiatric disorders’?. Further, long genes can contain broad enhancer-like domains, and their
436  transcription is particularly sensitive to alternations in ASD-associated chromatin regulators’.
437  Interestingly, BCL11b (CTIP2) (102,911 bps), a TF crucial for neuronal maturation and differentiation’?, is
438  predicted to be upregulated in Parse in DAB1/CALB1/CALB2 HindN in our data (Fig. 4d). The clinical
439 features of BCL11lb-associated neurodevelopmental disorders include ASD, intellectual disability, and
440  cerebellar hypoplasia’®, which have been previously modeled in organoids'®®. These findings indicate
441  that transcript length is a critical technical and biological factor that should be considered when planning
442  scRNA-seq experiments and that Parse could be favorable to investigate differences in long transcripts
443 upon experimental manipulation.

444 Further, Parse covered a higher number of transcripts encoding TFs among protein-coding genes (Fig. 1b,
445  Supplementary Fig. 1e). To investigate if this bias had effects on GRN we performed GRN analysis SCENIC.
446 Interestingly, Parse generally had higher z-scores for regulons related to neurodevelopment and
447 maturation (Fig. 4e) in contrast to the upregulation of neuron processes assembly-related terms in 10x in
448  GSEA (Fig. 4c). Additionally, we identified regulons that were differentially regulated between cell types
449 and techniques such as NFIA which had higher z-scores in RL-derivates in Parse (Fig. 4e) and is involved in
450 GC maturation but also associated with severe neurodevelopmental disorders and gliomas®®. Taken
451  together, the GRN analysis reveals not only cell type but also technique-driven regulon activity. This
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452 highlights that identical biological samples result in different analysis results downstream depending on
453  the capture technology.

454  Regionalized neural organoids have been reported to show high expression of stress pathway-related
455  transcripts due to in vitro culturing conditions and insufficient oxygen supply?*°%>17> Additionally, tissue
456 dissociation for single-cell sample preparations is known to induce stress response in dissociated cells’®.

457 During QC, we found that the percentage of mitochondrial and ribosomal protein-coding genes was higher
458 in the 10x than in the Parse samples (Fig. 1b), corroborating previous findings'®. While differences for
459 mitochondrial protein-coding transcripts were minor (10x 3.1% vs Parse 1.7%), the differences for
460 ribosomal protein-coding genes were much more pronounced (10x 17.6% vs Parse 0.5%). The DGE analysis
461 revealed the upregulation of mitochondrial protein-coding genes, and other genes involved in
462 mitochondrial function (Fig. 4b). Hence, the differences in mitochondrial transcripts might be partially
463  explained by higher cell stress in the 10x data and mitochondrial involvement in stress response
464  pathways”’, rather than having solely technical causes.

465  To investigate cell stress in cerebellar organoids in more detail, we analyzed the expression of stress-
466 specific modulators. We identified three stress-related modules (oxidative stress, glycolysis, and
467  integrated stress response (ISR)) that separated the two technologies in hierarchical clustering with both
468  technologies showing a stronger module expression at the later time point and 10x demonstrating a
469  higher overall expression of stress modules. It has previously been described that stress-related pathways
470  are enriched in organoids. Cell-intrinsic mechanisms as well as extrinsic factors such as hypoxia can
471  activate the ISR to restore cellular homeostasis. Different cell stressors can also interact with each other
472  toinduce the ISR. For example, upon disruption of endoplasmic reticulum (ER) homeostasis, ER stress is
473 induced and can increase the production of reactive oxygen species (ROS) in mitochondria, which induces
474 oxidative stress’®. These effects can increase during organoid culture as the tissue grows, which may
475  explain the elevated stress response-associated transcriptional signature at D50 compared to D35 of
476  differentiation (Fig. 2b). Since stressed cells are frequently found in scRNA-seq datasets of organoids, a
477  powerful bioinformatic approach called Gruffi was developed to remove cells with a high cell stress
478  signature from neural organoid datasets®. Applying Gruffi to our dataset revealed a noticeably higher
479  percentage of stressed cells in the 10x compared to the Parse dataset at both time points (Fig. 2d). This
480  might stem from the difference in the handling of dissociated cells in the two technologies. In the Parse
481 procedure, cells are fixed directly after dissociation, thus limiting the induction of the expression of stress
482  genes. In contrast, live cells are undergoing the 10x capture, prolonging the period between dissociation
483  and cell lysis during capture, which might increase stress-related responses of live cells found in 10x data.
484 Interestingly, this effect is more pronounced in D50 than in D35 samples indicating that more mature
485 neural cells are more susceptible to the mechanical stress of dissociation and live processing in 10x. These
486  findings suggest that identical samples of cerebellar organoids show a technology and time point-specific
487  stress response reflected by striking differences in the number of cells identified as stressed cells by the
488  Gruffialgorithm (Fig. 2d). Further, we found DEGs, especially mitochondrial and ribosomal protein-coding
489  transcripts between the two technologies across all clusters and gene set enrichment analysis in GPCs
490 revealed deregulation of GO terms related to nucleotide processing and mitochondrial respiration (Fig.
491 4c). To explore which upstream mechanisms could have led to these transcriptional changes, we
492 performed URA. Interestingly, URA for transcriptional regulators predicted the upregulation of ER-stress
493 pathways related TFs XBP1, ATF4, and ATF6 as well as oxidative stress mediators NFE2L2 and NRF1 in 10x
494  compared to Parse’®. Together these results suggest that not only the hypoxic culture conditions of
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495  organoids®® but also the single-cell dissociation and capturing pipeline may induce cell stress. The cell
496 capture technology used thus affects the output data obtained from biologically identical samples, and
497  this effect should be considered when interpreting and comparing organoid data to reference datasets.

498 To investigate the biological reproducibility of the organoid differentiation protocol, we assessed the
499  percentage of cells identified as neural based on reference-query mapping with human developmental
500 transcriptome®’. This analysis showed a commitment towards neural fate in 52.1% of all cells, suggesting
501 theinitial tissue specification could be improved in the differentiation protocol. Different neural organoid
502  protocols**”?and a recently published protocol for cerebellar organoids?®® use dual SMAD inhibition during
503 theinitiation of differentiation to prevent meso- and endodermal fates thus promoting neural induction®’.
504  In contrast, the cerebellar differentiation protocol used in this study employs only one SMAD pathway
505 inhibitor, the TGFR-inhibitor SB-4321542%>. Dual SMAD inhibition might enhance neuroectodermal
506 commitment in cerebellar organoids.

507 To date, studies employing transcriptional analysis of cerebellar organoids have used only one iPSC
508 line?”?, Interestingly, we observed noticeable differences between the differentiation efficiency of the
509 three control cell lines, with the KOLF2.1J-derived cerebellar organoids demonstrating the lowest number
510 of neural cells, especially pronounced at D50. Considering that all three cell lines were differentiated in
511 parallel to minimize technical confounder effects, this finding implicates that iPSC line-inherent
512 mechanisms can influence the differentiation efficiency®!. This finding highlights the need to use isogenic
513 control iPSCs when analyzing pathogenic variants®?. Addressing the heterogeneous outcomes of
514 differentiation protocols, a recent study suggests adjusting concentrations of small molecules and growth
515 factors in a cell line-specific manner to decrease the proportion of mesodermal off-target tissue for the
516  differentiation of cortical organoids®. A similar approach could potentially alleviate differences in
517  neuroectodermal fate commitment during cerebellar differentiation across the three iPSC lines used in
518  this study. Taken together, new protocols should be tested and optimized with multiple control iPSC lines
519  to ensure robustness of differentiation efficiency®. Despite the differences between the three iPSC lines
520 used in this study, we demonstrated that cerebellar organoids generated cerebellar cells of both RL and
521  VZlineage. Comparing our data set with a recently published cerebellar organoid transcriptomic dataset?
522  revealed general agreement with our annotation indicating a similar cellular population resulting from
523  different protocols. However, the cerebellum is a complex brain region with various cell types®” and to
524  what extend different cerebellar organoid protocols recapitulate the whole cerebellum or rather specific
525 regions like the cerebellar nuclei or cerebellar cortex remains to be investigated.

526  In conclusion, our comprehensive comparison of Parse and 10x scRNA-seq sample multiplexing and cell
527  capture strategies encompassed library efficiency, differential transcript capture, cell type preferences,
528  and secondary analysis outcomes, showing distinct strengths and limitations of each method. While both
529  methods provide the experimental benefits of sample multiplexing, we revealed significant differences
530 between the two strategies. Overall, our findings indicate that while 10x provided higher cell recovery and
531 gene detection rates, Parse captured longer transcripts and a wider range of transcript lengths and
532 resulted in lower cell stress. Minimizing cell stress is especially relevant in the context of regionalized
533 neural organoids, in which cell stress may be an important artefact®!. Our detailed secondary analyses
534  demonstrated that these technical differences have relevant biological implications. These insights are
535 crucial for selecting the most suitable scRNA-seq multiplexing technology based on specific research goals.
536 Future studies should consider these factors to improve the accuracy and biological relevance of single-
537 cell transcriptomic analyses. Finally, we demonstrated cerebellar organoid differentiation and in-depth
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538 characterization on three iPSC lines and highlighted the importance of employing several cell lines in these
539  studies to encompass cell line-dependent heterogeneity and to produce robust results.

540 Methods

541  iPSC culture

542  Commercially available iPSC lines BIONi010-C (Source: EBiSC), BIONi037-A (Source: EBiSC) and KOLF 2.1J
543 (Source: The Jackson Laboratory) were cultured under standard conditions (37°C, 5% CO2, and 100%
544  humidity) in E8 Flex medium (BIONi010-C and BIONi037-A) and mTeSR plus (STEMCELL Technologies, Cat.
545 no 100-0276) (Gibco, Cat. no. A2858501) on hESC-qualified growth factor-reduced Matrigel-coated
546  (Corning, Cat. no. 354277) cell culture dishes (Greiner, Cat. no. 657160). Passaging was performed in
547  colonies using Gentle Dissociation Reagent (STEMCELL Technologies, Cat. no. 07174) once the culture
548  reached 80%-90% confluency. The culture medium was supplemented with Thiazovivin (Sigma-Aldrich,
549 Cat. no. 420220) upon passaging for one day. All cell lines were tested for mycoplasma contamination
550 using PCR Mycoplasma Detection Set (TaKaRa, Cat. no. 6601) and maintained under passage 20. The
551 pluripotency for each cell line was confirmed by immunocytochemistry against OCT4 (rabbit, 1:500,
552  Abcam, Cat. no. ab19857) prior to the start of differentiation.

553  Generation of cerebellar organoids

554  Cerebellar organoids were generated as previously described® with some modifications: 80-90%
555 confluent iPSCs were dissociated into single cells using Accutase (Merck, Cat. no. A6964), and 4,500 cells
556  were seeded per well of 96 well V-bottom low adhesion plates (S-bio, Cat. no. MS-9096VZ) in E8 Flex
557  medium (Gibco, Cat. no. A2858501), supplemented with 10 uM Y-27632 (Cayman Chemical, Cat. no.
558 10005583). Once the aggregates reached a diameter of 250 um, the medium was changed to growth
559  factor-free chemically defined medium (gfCDM) supplemented with 50 ng/ml FGF2 (PeproTech, Cat. no.
560 100-18B) and 10 uM SB-431542 (Tocris, Cat. No. 1614), and this day was considered day 1 of
561 differentiation (D1). At D7, FGF2 and SB-431542 were reduced to 33.3 ng/ml and 6.67 uM, respectively.
562 At D14, media was supplemented with 100 ng/ml FGF19 (PeproTech, Cat. No. 100-32). The medium was
563  changed to Neurobasal Medium at D21, supplemented with 300 ng/ml SDF-1 from D28 to D34. From D35
564  onwards, media was changed to complete BrainPhys (StemCell Technologies, Cat. no. 5793),
565  supplemented with 10 pg/ml BDNF (PeproTech, Cat. no. 450-02), 100 pg/ml GDNF (PeproTech, Cat. no.
566  450-10), 100 mg/ml dbcAMP (PeproTech, Cat. no. 1698950) and 250 mM ascorbic acid (Tocris, Cat. no.
567  4055). All three cell lines were processed in parallel during differentiation, single-cell dissociation, and
568 sequencing.

569  Single-cell dissociation of cerebellar organoids, library preparation, and sequencing

570 On D35 and D50, 24 organoids per cell line were pooled and dissociated using the Papain dissociation kit
571 (Worthington, Cat.No. LK003150) following a published protocol with minor modifications'*. Cells were
572 counted, and cell suspensions were split into two parts for further processing.

573  Samples for the 10x Genomics (10x) pipeline were labeled with cell multiplexing oligos (CMO, 10x
574  Genomics, Cat. no. 1000261) according to the manufacturer’s instructions and subsequently pooled at an
575 equal ratio. The cell count for the cell suspension was determined, and the sample was loaded onto two
576  lanes of a Chromium Next Gen Chip G (10x Genomics, Cat. no. 1000120) with a targeted cell recovery of
577 12,000 (D35) and 14,000 (D50) cells per lane. Library preparation was performed with the Chromium Next
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578  GEM Single Cell 3’ kit v3.1 (10x Genomics, Cat. no. 1000268), and sequencing was performed on NovaSeq
579 6000 with S1 flow cell kit and 100 cycles (Illumina, Cat. no. 20028319).

580  Samples for Parse Bioscience (Parse) workflow were fixed according to the manufacturer's instructions
581 using the Evercode fixation kit for cells (Parse Bioscience, Cat. No. WF300). Fixed Parse samples were
582  stored at —80°C until all samples were harvested. The samples were characterized by the day of
583 differentiation (D35 or D50) and cell line (BIONi010-C, BIONi037-A, or KOLF2.1J). Every sample was loaded
584  as a technical duplicate into 2 independent wells, with all samples spanning wells 1-12. Sequencing was
585 performed using a molarity of 62.4 nM and 3% PhiX spike in on the Nova Seq 6000 with SP flow cell kit
586 and 200 cycles (lllumina).

587  Data downsampling, preprocessing, and quality control

588 Initially, the datasets from 10x and Parse pipelines had different sequencing depths and cell numbers
589 (Supplementary Table 1). To compare the two technologies fairly, we downsampled datasets from both
590 technologies to an average of 50,000 reads per cell. The FASTQ files were downsampled with the seqtk
591  sample tool, and the same seed was applied for the forward and reverse reads. For Parse data, FASTQ
592 files from each of the 2 sub-libraries were demultiplexed into 6 samples. Using split-pipe (v1.1.2), the
593  samples were preprocessed, aligned, sorted, annotated, and passed to a DGE (here, digital gene
594  expression), resulting in a count matrix. Afterwards, the 2 sub-libraries were merged with the
595 corresponding combine mode of split-pipe. For 10x data, read downsampling was performed for individual
596 libraries. Afterwards, downsampled FASTQ files were processed with cellranger (v.7.2.0) multi pipeline,
597  and cells were assigned with their cell line of origin based on their CMO.

598  Gene names in gene expression matrices between the two technologies were harmonized in the following
599 manner. Firstly, ENSEMBL gene identifiers were used to merge expression matrices. Secondly, ENSEMBL
600 identifiers were replaced by HGCN identifiers wherever possible (41,980 genes), and ENSEMBL identifiers
601  were used in other cases (20,930 genes). The merged gene expression matrix was further converted into
602  Seurat objects (Seurat v.5.1.0). Gene biotypes were retrieved from bioMart using ENSEMBL gene
603 identifiers. Ribosomal protein-coding genes were identified using HGCN gene names starting from
604 RPS/RPL. Mitochondrial protein-coding genes were identified using HGCN gene names starting from MT-
605 . The percentage of gene expression for ribosomal and mitochondrial protein-coding genes as well as for
606 individual gene biotypes were calculated using PercentageFeatureSet(). For calculating the percentage of
607  counts originating from transcription factors (TF) among protein-coding genes, the count matrix was first
608  subset to protein-coding genes, and PercentageFeatureSet() was applied to this matrix using the list of
609  human TFs®.

610 Next, quality control (QC) was performed on cell and gene levels. Cells were excluded if one of the
611  following criteria was met: (1) number of individual genes per cell < 2,000; (2) number of individual genes
612 per cell =2 13,000; (3) number of genes per UMI £ 0.8; and (4) percentage of mitochondrial genes > 8%. We
613 excluded genes from the expression matrices when their cumulative expression across all cells was < 8.
614 No ambient RNA and doublet removal were performed.

615  Data normalization, clustering, integration, and dimensionality reduction

616  After QC, data were normalized using NormalizeData() function from Seurat with default parameters.
617 Normalized data were scaled, and principal component analysis (PCA) was performed based on the z-
618  scaled expression of the 2,000 most variable features (FindVariableFeatures()). Additionally, normalized
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619  counts were integrated using IntegrateData() function with reciprocal PCA (RPCA). Dimensionality
620  reduction and clustering were performed using both un- and integrated data. RunUMAP() function was
621 used to perform dimensionality reduction with 30 neighbors and 30 principal components (PC). Louvain
622 clustering was performed using FindClusters() function.

623  Technology-specific analyses: correlation analysis, transcript length, and GC content

624  To analyze the correlation of gene expression between technologies, we used cells that passed quality
625  control, averaged the expression of genes for each technology, and calculated Pearson’s correlation
626 coefficient. Differentially expressed genes (DEG) between technologies were identified using MAST
627  algorithm implemented in FindMarkers() function as previously described® with the following cutoffs:
628  absolute log2 fold change (log2FC) > 1, adjusted p-value < 0.01. Gene length and GC content were
629 retrieved from bioMart.

630  Cellular stress assessment

631 Normalized unintegrated counts were used to analyze the expression of cell stress-related gene ontology
632 (GO) terms using AddModuleScore() function. We also generated a random set of genes of mean GO term
633  size and analyzed the expression of these genes as a module to use as an internal control for module
634 expression analysis. Hierarchical clustering was performed on mean module expression of cell stress-
635 related GO terms across samples.

636 Gruffi cell stress analysis was performed using normalized unintegrated counts following the authors’
637  instructions®. Firstly, two GO terms were chosen for negative selection: glycolytic process (GO:0006096)
638  and integrated stress response signaling (G0:0140467); and one for positive selection: neurogenesis
639 (G0:0022008). Next, module expression of the selected GO terms was analyzed in “granules”, and 90%
640 guantile threshold was chosen for selecting stressed cells.

641  Germ layer assessment

642 Normalized integrated counts were used to perform Azimuth reference-query mapping® of our dataset
643  with human fetal development transcriptome??. Cells were further classified as “neural” and “non-neura
644  based on cell type assignment from Azimuth (Supplementary Table 3).

III

645  Gruffi differentiation lineage analysis was performed using normalized integrated counts. Firstly, two GO
646  terms were chosen for negative selection: endoderm (G0O:0001706) and mesoderm (G0:0001707)
647  formation; and two for positive selection: nervous system development (GO:0007399) and neurogenesis
648  (G0:0022008). Next, module expression of the selected GO terms was analyzed in “granules”, and 90%
649  quantile threshold was chosen for selecting neural and non-neural cells.

650  Neural data processing and cell type annotation

651  After germ layer assessment, the dataset was subset to neural cells by labels originating from Azimuth
652 reference-query mapping and further downsampled to retain the equal number of cells in 10x and Parse
653 datasets (7,212 cells per technology). Data normalization, clustering, integration, and dimensionality
654  reduction workflow steps were repeated as described above.

655 VoxHunt®’ was used to analyze the brain region identity of the cells. 10 genes with the highest area under
656  the curve (AUC) scores per brain region of the developing mouse brain at E15 were retrieved, resulting in
657 186 unique regional marker genes. These marker genes were used to assess the similarity of gene
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658  expression profiles between our samples and BrainSpan human developmental transcriptome®® at
659  postconceptional weeks 12 and 13.

660  Cell type annotation was performed for clusters at resolution 0.9 by a combination of approaches: (1)
661 retrieving cluster marker genes by FindAlIMarkers() with MAST (normalized counts provided as input) and
662 ROC (raw counts provided as input) algorithms; (2) visualizing expression of canonical marker genes for
663 cell types in the developing mouse and human cerebellum.

664  Reference-query mapping with published primary cerebellar development and cerebellar
665  organoids transcriptomic datasets

666 For reference-query mapping of our cells that were classified as neural, we first used human cerebellar
667  development transcriptomic dataset® as a reference. We downsampled the reference dataset to 1,000
668 cells per cell type as defined by the metadata (author_cell_type column). Secondly, we normalized, found
669  variable features, scaled, and performed PCA on both reference and query datasets using Seurat default
670  parameters. Integration was performed using FindTransferAnchors() function with the “pcaproject”
671 option and 30 PCs. Predicted cell type annotations and prediction scores were obtained from
672 TransferData() function wrapped into MapQuery() with default parameters and reference label being
673 “author_cell_type”. Integration with the cerebellar organoids transcriptomic dataset was performed as
674  described above with minor modifications: (1) the complete reference dataset was used for mapping; (2)
675  the reference label was “final.clusters”.

676  Differential gene expression analysis and functional enrichment analysis

677 For differential gene expression (DGE) analysis, the raw counts originating from neural cells were used.
678 First, cells were grouped by cell type, technology, cell line, and day of differentiation, and groups smaller
679  than 20 cells were omitted from further analysis. Gene counts were aggregated by technology, cell line,
680  and day of differentiation using AggregateExpression() function with a default option to calculate the sum
681  of raw counts per cell group. Importantly, we did not further downsample our dataset to generate an
682  equal number of cells per cell group. The aggregated counts were used as samples for DESeq2 (v.1.42.1)
683  differential gene expression analysis between technologies within individual cell types®®. Log2FC were
684  shrunken using apeg/m shrinkage estimator?’ as implemented in DESeq2. Volcano plots were generated
685 using EnhancedVolcano library (v.1.20.0).

686  Gene set enrichment analysis (GSEA) with GO terms was performed by clusterProfiler (v.4.10.1)% using
687  biological processes ontology as input, gene set size of 50 to 500 genes, false discovery rate (FDR) as a p-
688  value adjustment method, and the threshold for g-value of 0.05. For significantly deregulated GO terms,
689  similarity matrices were calculated and simplified using the binary cut approach implemented in
690  simplifyEnrichment (v.1.12.0) package®.

691  Upstream regulator analysis

692 Upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA) software (Qiagen).
693 Briefly, cell type-specific DESeq2 output matrices were used for IPA core analysis with the following
694  cutoffs: (1) absolute log2FC > 1; (2) g-value < 0.0001. For visualizations, molecule type was restricted to
695  transcription regulators, and bias-corrected z-scores across cell types were used for hierarchical clustering
696  using the ComplexHeatmap package (v.2.18.0). When z-scores were unavailable, they were assigned to 0.
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697  Gene regulatory network (GRN) activity analysis

698  We performed GRN analysis closely following the official pySCENIC protocol®®°°, First, the annotated raw
699  count matrix produced with Seurat and the list of human TFs were processed, inferencing importance
700 values or the weights of regulatory interactions between TFs and target genes. Second, the inferred
701 interactions ("adjacencies") were searched in the cisTarget databases to identify the enriched binding
702 motifs. Third, TFs and target genes indicated by the enriched motifs were grouped into regulons
703 (regulatory modules of the network). Finally, the regulons were assessed for the enrichment in each cell.
704 With the count matrix as a source of the expression data, cells were assigned scores, i.e., AUC, of the
705 activity levels of their regulons. Z-scores were further calculated based on AUC scores of individual
706  regulons, and k-means clustering of z-scores was performed to reveal groups of co-regulated regulons.
707 Regulon target genes and GO Biological Processes were used for gene set overrepresentation analysis
708 (ORA) by clusterProfiler (v.4.10.1) with gene set size of 5 to 500 genes, false discovery rate (FDR) as a p-
709 value adjustment method, and the threshold for g-value of 0.1.

710  Statistics

711 R v.4.3.2 was used for statistical analysis. Statistical tests are described in text and figure legends. Two-
712 sided unpaired t-tests were used to compare two groups. For comparisons with more than two groups,
713  we used three-way ANOVA. Within a set of comparisons (e.g., for quality control metrics), the Benjamini-
714  Hochberg method of p-value adjustments was used.
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715  Figure legends

716  Fig. 1. Study design, quality control, and potential biases in the data. a, Three iPSC lines (BIONi010-C,
717 BIONi0O37-A, and KOLF2.1J) were differentiated to cerebellar organoids until days 35 and 50. The organoids
718  generated from the same cell line were pooled and dissociated into single cells when each single-cell
719 suspension was split into two portions. One set of single-cell suspensions was immediately subjected to
720  sample multiplexing with CellPlex and processed in 10x Genomics 3'GEX+FB pipeline. The second set of
721  single-cell suspensions was frozen until all samples were available. The samples were further processed
722 though Parse Biosciences Evercode v2 pipeline. Libraries were sequenced, and the resulting FASTQ files
723  were processed with technology-specific computational pipelines. Count matrices were further analyzed.
724 Graphic was created with BioRender.com. b, Quality statistics after quality control. Color represents
725  sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
726 (L1 or L2). 10x, n = 29,505, Parse, n = 14,542 cells. Three-way ANOVA, p-values represent differences
727 between technologies, *** p < 0.001. ¢, Left, density scatter plot showing correlation of average gene
728  expression between the two technologies. Right, scatter plot showing correlation of average gene
729 expression between the two technologies. Color represents gene group. d, Distributions of gene GC
730 content and gene length for differentially expressed genes between technologies. Two-sided t-test, *** p
731 <0.001.

732
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733  Fig. 2. Assessment of neural lineage identity. a, PCA and UMAP plots for globally normalized and
734 unintegrated data. b, Heatmap representing mean module expression scores of gene ontology terms
735 related to aspects of cell stress. ¢, UMAP plot representing cell stress status of cells based on Gruffi
736 assessment. d, Percentage of stressed cells based on Gruffi assessment. e, RPCA and UMAP plots for
737  globally normalized and RPCA-integrated data originating from non-stressed cells. f, UMAP plot
738  representing neural lineage status of cells based on reference-query integration with human
739  developmental transcriptome®. g, Feature plots showing expression of selected genes to highlight
740 developmental lineages. h, Percentage of neuroectodermal cells based on reference-query integration
741  with human developmental transcriptome. i, Percentage of neuroectodermal cells per cell line based on
742 reference-query integration with human developmental transcriptome. For a, d, e, h, i, color represents
743  sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50), and library
744  (Llorl2).

745
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746  Fig. 3. Assessment of regional identity and cell type annotation. a, Heatmap of similarity metric of
747  VoxHunt algorithm comparing samples with human neocortical RNA-seq data from BrainSpan using brain
748  regional markers obtained from Mouse Brain Atlas at E13. b, UMAP plots for globally normalized and
749 RPCA-integrated neural data with manually annotated clusters. ¢, Violin plots for expression of canonical
750  markers of hindbrain development. d, Stacked bar plot representing average proportion of individual cell
751  types between technologies. e, UMAP plot representing cell type identity as assigned based on reference-
752 query integration with human cerebellar transcriptome®. f, Feature plots showing prediction score based
753  on reference-query integration with human cerebellar transcriptome.

754
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Fig. 4. Differential gene expression between technologies. a, Strip plot displaying DEGs between
technologies per cell type. Genes represented in grey are not differentially expressed. Color represents
log10 adjusted p-value for differentially expressed genes (absolute log2 fold change > 1, FDR < 10%). b,
Volcano plot representing differential gene expression in GPC cluster. ¢, Heatmap representing semantic
similarity between GO terms identified as significantly deregulated in GPC cluster by GSEA analysis. d,
Heatmap representing z-scores for SCENIC regulon activity calculated based on AUC scores.
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763  Supplementary Fig. 1. Complementary to Fig. 1. Quality control and gene quantification biases in the
764  data. a, Percentage of raw reads mapping to exonic regions, genome, and having valid barcodes. Bars
765 represent the mean; dots represent the individual libraries. b, Numbers of input and output cells. Bars
766 represent the mean; for 10x data, dots represent individual libraries; for Parse data, dots represent the
767  total number of cells in the experiment. ¢, Venn diagram of genes expressed in at least 1 cell in each of
768  the two technologies. Color represents technology. d, Distribution of the number of cells expressing a
769  gene. e, Quality statistics before quality control. Red dashed lines represented threshold values. Color
770  represents sample identity with respect to technology (10x or Parse), day of differentiation (D35 or D50),
771 and library (L1 or L2). 10x, n = 33,951, Parse, n = 15,226 cells. Three-way ANOVA, p-values represent
772 differences between technologies, *** p < 0.001. f, Stacked bar plot representing average proportion of
773 reads originating from non-protein-coding RNAs (ncRNA). Color represents ncRNA biotype. g,
774  Distributions of gene GC content and gene length for all genes expressed in either of the two technologies.
775  Two-sided t-test, *** p <0.001. h, Distributions of gene length for differentially expressed genes per gene
776 biotype between technologies. Two-sided t-test, * p < 0.05, *** p < 0.001.

777
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778  Supplementary Fig. 2. Complementary to Fig. 2. Assessment of neural lineage identity. a, Heatmap
779 representing mean module expression scores of gene ontology terms related to aspects of cell stress. b,
780 Histograms representing distribution of granule scores for expression of cell stress modules. Color
781 represents stress classification. Solid black line represents stress threshold. Dashed black line represents
782 90% quantile of the distribution of granule expression score. Dashed blue and red lines represent median
783  values of non- and stressed cells. ¢, UMAP plot representing cell type identity as assigned based on
784 reference-query integration with human developmental transcriptome®?. d, Feature plot showing
785 prediction score based on reference-query integration with human developmental transcriptome. e,
786 Feature plots showing module expression scores for GO terms guiding Gruffi-based lineage identity
787 assessment. f, UMAP plot representing neural lineage status of cells based on Gruffi-based lineage identity
788  assessment. Three-way ANOVA, p-values represent differences between technologies, n.s. p 2 0.05, * p <
789  0.05, ** p<0.01, *** p <0.001.

790
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792  Supplementary Fig. 3. Complementary to Fig. 3. Assessment of regional identity and cell type
793  annotation. a, Heatmap of scaled similarity metric of VoxHunt algorithm comparing samples with human
794  neocortical RNA-seq data from BrainSpan using brain regional markers obtained from Mouse Brain Atlas
795  at E13. b, Permutation test on cell type composition of cerebellar organoids. Differentially abundant cell
796  types are represented in pink. Cell types with FDR less than 0.05 and absolute log2 fold change more than
797  0.58 were considered differentially abundant. c, Distribution of prediction scores based on reference-
798 query integration with human cerebellar transcriptome3®. d, UMAP plot representing cell type identity as
799 assigned based on reference-query integration with cerebellar organoids transcriptome?. e, Feature plots
800 showing prediction score based on reference-query integration with cerebellar organoids
801  transcriptome?. f, Distribution of prediction scores based on reference-query integration with human
802  cerebellar organoids. For ¢ and f, color represents sample identity with respect to technology (10x or
803 Parse), day of differentiation (D35 or D50), and library (L1 or L2). For ¢ and f three-way ANOVA, p-values
804  represent differences between technologies, *** p < 0.001.
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806  Supplementary Fig. 4. Complementary to Fig. 4. Differential gene expression between technologies. a,
807 Bar plot representing number of differentially expressed genes per cell type. b, Volcano plot representing
808  differential gene expression in GPC cluster without genes that are exclusively expressed in one of the
809  technologies. c, Feature plots showing expression of selected TFs (left column), their regulon AUC scores
810 (middle column), and results of gene set overrepresentation analysis in TF target genes within regulons
811 (right column). ZEB1 did not have any significantly enriched GO terms.

812


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted August 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

813 Competing interests
814  The authors declare no competing interests.

815  Data and code availability
816  Code and data will be made available upon peer-reviewed publication of the manuscript.

817  Authors’ contributions

818  KS: Conceptualization, Methodology, Software, Formal analysis, Writing — Original draft, Writing — Review
819 & Editing, Visualization, Project administration; TK: Conceptualization, Methodology, Investigation,
820  Writing — Original draft, Writing — Review & Editing, Visualization, Project administration; VL:
821 Methodology, Software, Formal analysis, Writing — Original draft; Writing — Review & Editing; ZY:
822 Investigation, Writing — Original draft; Writing — Review & Editing; KB: Investigation; Writing — Review &
823 Editing; JM: Funding acquisition; Writing — Review & Editing; NC: Conceptualization, Methodology, Formal
824 analysis, Writing — Original draft, Writing — Review & Editing, Resources, Supervision; SM:
825  Conceptualization, Methodology, Writing — Review & Editing, Resources, Supervision, Funding acquisition.

826  Acknowledgements

827  We thank Antje Schulze-Selting, Elisabeth Gustafsson, Christina Kulka, and Ezgi Atay for technical support.
828 We thank Christopher Sifuentes, Yogesh Singh, and Vincent Hammer for strategic and technical
829  discussions.

830 We are grateful for financial support from the Hertie Foundation (Gemeinnlitzige Hertie-Stiftung), the
831 Ministerium fir Wissenschaft, Forschung und Kunst Baden-Wirttemberg state postgraduate fellowship
832 (to TK), Add-on Fellowship of the Joachim Herz Foundation (to KS), and the Heidelberger Akademie der
833  Wissenschaften (WIN Kolleg). NGS sequencing methods were performed with the support of the DFG-
834  funded NGS Competence Center Tubingen (INST 37/1049-1). This project has been made possible in part
835 by grant number 2022-316727 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley
836  Community Foundation. This research has been partially funded by the Deutsche Forschungsgemeinschaft
837  (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D
838 Matter Made to Order (EXC-2082/1 —390761711).


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted August 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

839  References

840 1. Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism.
841 Nature 621, 373-380 (2023).

842 2. Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and

843 development. Nat Rev Drug Discov 22, 496-520 (2023).

844 3. Camp, J.G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue
845 engineering. Nat Methods 15, 661-667 (2018).

846 4. Evrony, G.D., Hinch, A.G. & Luo, C. Applications of Single-Cell DNA Sequencing. Annu Rev

847 Genomics Hum Genet 22, 171-197 (2021).

848 5. Yasen, A. et al. Progress and applications of single-cell sequencing techniques. Infect Genet Evol
849 80, 104198 (2020).

850 6. Luecken, M.D. & Theis, F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol
851 Syst Biol 15, 8746 (2019).

852 7. Wolock, S.L., Lopez, R. & Klein, A.M. Scrublet: Computational Identification of Cell Doublets in
853 Single-Cell Transcriptomic Data. Cell Syst 8, 281-291 e9 (2019).

854 8. Rosenberg, A.B. et al. Single-cell profiling of the developing mouse brain and spinal cord with
855 split-pool barcoding. Science 360, 176-182 (2018).

856 9. Cheng, J., Liao, J., Shao, X., Lu, X. & Fan, X. Multiplexing Methods for Simultaneous Large-Scale
857 Transcriptomic Profiling of Samples at Single-Cell Resolution. Adv Sci (Weinh) 8, €2101229

858 (2021).

859 10. Xie, Y. et al. Comparative Analysis of Single-Cell RNA Sequencing Methods with and without
860 Sample Multiplexing. International Journal of Molecular Sciences 25, 3828 (2024).

861 11. Camp, J.G. & Treutlein, B. Human organomics: a fresh approach to understanding human

862 development using single-cell transcriptomics. Development 144, 1584-1587 (2017).

863 12. Tang, X.Y. et al. Human organoids in basic research and clinical applications. Signal Transduct
864 Target Ther 7, 168 (2022).

865 13. Lancaster, M.A. & Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem
866 cells. Nat Protoc 9, 2329-40 (2014).

867 14. Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human

868 cerebral cortex. Nature 570, 523-527 (2019).

869 15. Silva, T.P. et al. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent
870 Stem Cells and Characterization by Immunostaining. J Vis Exp (2020).

871 16. Susaimanickam, P.J., Kiral, F.R. & Park, I.H. Region Specific Brain Organoids to Study

872 Neurodevelopmental Disorders. Int J Stem Cells 15, 26-40 (2022).

873 17. Renner, H. et al. A fully automated high-throughput workflow for 3D-based chemical screening
874 in human midbrain organoids. Elife 9(2020).

875 18. Eichmdiiller, O.L. & Knoblich, J.A. Human cerebral organoids — a new tool for clinical neurology
876 research. Nature Reviews Neurology 18, 661-680 (2022).

877 19. Sarieva, K. et al. Human brain organoid model of maternal immune activation identifies radial
878 glia cells as selectively vulnerable. Mol Psychiatry 28, 5077-5089 (2023).

879  20. Kagermeier, T. et al. Human organoid model of pontocerebellar hypoplasia 2a recapitulates
880 brain region-specific size differences. Disease Models & Mechanisms 17(2024).

881 21. Giorgi, C. et al. Brain Organoids: A Game-Changer for Drug Testing. Pharmaceutics 16(2024).
882 22. Corsini, N.S. & Knoblich, J.A. Human organoids: New strategies and methods for analyzing
883 human development and disease. Cell 185, 2756-2769 (2022).

884 23. Qian, X., Song, H. & Ming, G.L. Brain organoids: advances, applications and challenges.

885 Development 146(2019).


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted August 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

886 24. Andrews, M.G. & Kriegstein, A.R. Challenges of Organoid Research. Annu Rev Neurosci 45, 23-39
887 (2022).

888  25. Bertucci, T. et al. Improved Protocol for Reproducible Human Cortical Organoids Reveals Early
889 Alterations in Metabolism with MAPT Mutations. bioRxiv (2023).

890 26. Silva, T.P. et al. Transcriptome profiling of human pluripotent stem cell-derived cerebellar
891 organoids reveals faster commitment under dynamic conditions. Biotechnology and

892 Bioengineering 118, 2781-2803 (2021).

893 27. Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E.B.E. High-resolution transcriptional
894 landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci
895 Rep 11, 12959 (2021).

896 28. Muguruma, K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease
897 Modeling with Patient-Derived iPSCs. Cerebellum 17, 37-41 (2018).

898 29. Atamian, A. et al. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell 31,
899 39-51 e6 (2024).

900  30. Schmahmann, J.D. The cerebellum and cognition. Neurosci Lett 688, 62-75 (2019).
901 31. Zhang, P. et al. The cerebellum and cognitive neural networks. Front Hum Neurosci 17, 1197459

902 (2023).

903  32. Sathyanesan, A. et al. Emerging connections between cerebellar development, behaviour and
904 complex brain disorders. Nat Rev Neurosci 20, 298-313 (2019).

905 33. Mapelli, L., Soda, T., D'Angelo, E. & Prestori, F. The Cerebellar Involvement in Autism Spectrum
906 Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 23(2022).

907  34. (MV INVALID CITATION !11).
908 35. Harada, H., Sato, T. & Nakamura, H. Fgf8 signaling for development of the midbrain and

909 hindbrain. Dev Growth Differ 58, 437-45 (2016).

910 36. Lowenstein, E.D., Cui, K. & Hernandez-Miranda, L.R. Regulation of early cerebellar development.
911 FEBS J 290, 2786-2804 (2023).

912 37. Leto, K. et al. Consensus Paper: Cerebellar Development. The Cerebellum 15, 789-828 (2016).
913  38. Sepp, M. et al. Cellular development and evolution of the mammalian cerebellum. Nature 625,
914 788-796 (2024).

915  39. Haldipur, P. et al. Spatiotemporal expansion of primary progenitor zones in the developing

916 human cerebellum. Science 366, 454-460 (2019).

917  40. van der Heijden, M.E. & Sillitoe, R.V. Cerebellar dysfunction in rodent models with dystonia,
918 tremor, and ataxia. Dystonia 2(2023).

919  41. Kamei, T. et al. Survival and process outgrowth of human iPSC-derived cells expressing Purkinje
920 cell markers in a mouse model for spinocerebellar degenerative disease. Experimental

921 Neurology, 114511 (2023).

922 42 Coolen, M. et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with
923 cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 109, 909-927
924 (2022).

925 43, Kresbach, C. et al. Intraventricular SHH inhibition proves efficient in SHH medulloblastoma

926 mouse model and prevents systemic side effects. Neuro Oncol 26, 609-622 (2024).

927 44, van Essen, M.J. et al. PTCH1-mutant human cerebellar organoids exhibit altered neural

928 development and recapitulate early medulloblastoma tumorigenesis. Dis Model Mech 17(2024).
929 45, Ballabio, C. et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat
930 Commun 11, 583 (2020).

931 46. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of

932 polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10, 537-50

933 (2015).


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted August 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

934  47. Salmen, F. et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nature
935 Biotechnology 40, 1780-1793 (2022).
936 48. Zheng, W., Chung, L.M. & Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC

937 Bioinformatics 12, 290 (2011).

938  49. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell

939 RNA-seq. Science 352, 189-196 (2016).

940 50. Vértesy, A. et al. Gruffi: an algorithm for computational removal of stressed cells from brain

941 organoid transcriptomic datasets. The EMBO Journal 41, e111118 (2022).

942 51. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature
943 578, 142-148 (2020).

944 52. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).
945  53. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 (2021).
946 54. Olson, E.N. MyoD family: a paradigm for development. Genes Dev 4, 1454-1461 (1990).

947 55. Itoh, N. FGF10: A multifunctional mesenchymal—epithelial signaling growth factor in

948 development, health, and disease. Cytokine & Growth Factor Reviews 28, 63-69 (2016).

949  56. Wilson, S.W. & Houart, C. Early Steps in the Development of the Forebrain. Developmental Cell
950 6, 167-181 (2004).

951  57. Fleck, J.S. et al. Resolving organoid brain region identities by mapping single-cell genomic data
952 to reference atlases. Cell Stem Cell 28, 1148-1159.e8 (2021).

953  58. Miller, J.A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199-206
954 (2014).

955  59. Aldinger, K.A. et al. Spatial and cell type transcriptional landscape of human cerebellar

956 development. Nat Neurosci 24, 1163-1175 (2021).

957 60. Chen, X., Shi, C., He, M., Xiong, S. & Xia, X. Endoplasmic reticulum stress: molecular mechanism
958 and therapeutic targets. Signal Transduct Target Ther 8, 352 (2023).

959 61. Jager, R., Bertrand, M.J., Gorman, A.M., Vandenabeele, P. & Samali, A. The unfolded protein
960 response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol
961 Cell 104, 259-70 (2012).

962  62. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nature Methods
963 14, 1083-1086 (2017).

964  63. DeGregori, J. The genetics of the E2F family of transcription factors: shared functions and unique
965 roles. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1602, 131-150 (2002).

966  64. Dini, G. et al. NFIA haploinsufficiency: case series and literature review. Front Pediatr 11,

967 1292654 (2023).

968 65. Chen, K.S., Lim, J.W.C., Richards, L.J. & Bunt, J. The convergent roles of the nuclear factor |

969 transcription factors in development and cancer. Cancer Lett 410, 124-138 (2017).

970  66. Fratini, L. et al. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with

971 microRNAs and long noncoding RNAs. Molecular and Cellular Biochemistry 476, 4107-4116

972 (2021).

973 67. Su, C.Y., Kemp, H.A. & Moens, C.B. Cerebellar development in the absence of Gbx function in
974 zebrafish. Dev Biol 386, 181-90 (2014).

975 68. Zhao, Y. et al. LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control

976 Purkinje cell differentiation in the developing cerebellum. Proceedings of the National Academy
977 of Sciences 104, 13182-13186 (2007).

978  69. Tweedie, D. et al. Mild traumatic brain injury-induced hippocampal gene expressions: The

979 identification of target cellular processes for drug development. Journal of Neuroscience

980 Methods 272, 4-18 (2016).


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted August 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

981 70. Yin, C. et al. RNA-seq Analysis Reveals Potential Molecular Mechanisms of ZNF580/ZFP580

982 Promoting Neuronal Survival and Inhibiting Apoptosis after Hypoxic-ischemic Brain damage.
983 Neuroscience 483, 52-65 (2022).
984 71. Lopes, |., Altab, G., Raina, P. & de Magalhaes, J.P. Gene Size Matters: An Analysis of Gene Length
985 in the Human Genome. Front Genet 12, 559998 (2021).
986 72. Wei, P.C. et al. Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural
987 Stem/Progenitor Cells. Cell 164, 644-55 (2016).
988 73. Zhao, Y.T. et al. Long genes linked to autism spectrum disorders harbor broad enhancer-like
989 chromatin domains. Genome Res 28, 933-942 (2018).
990 74. Seigfried, F.A. & Britsch, S. The Role of Bcl11 Transcription Factors in Neurodevelopmental
991 Disorders. Biology (Basel) 13(2024).
992 75. Pasca, A.M. et al. Human 3D cellular model of hypoxic brain injury of prematurity. Nat Med 25,
993 784-791 (2019).
994 76. Neuschulz, A. et al. A single-cell RNA labeling strategy for measuring stress response upon tissue
995 dissociation. Mol Syst Biol 19, e11147 (2023).
996 77. Manoli, I. et al. Mitochondria as key components of the stress response. Trends Endocrinol
997 Metab 18, 190-8 (2007).
998 78. Cao, S.S. & Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision
999 and human disease. Antioxid Redox Signal 21, 396-413 (2014).
1000  79. Pasca, A.M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells
1001 in 3D culture. Nat Methods 12, 671-8 (2015).
1002  80. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual
1003 inhibition of SMAD signaling. Nature Biotechnology 27, 275-280 (2009).
1004  81. Volpato, V. & Webber, C. Addressing variability in iPSC-derived models of human disease:
1005 guidelines to promote reproducibility. Dis Model Mech 13(2020).
1006 82. Pantazis, C.B. et al. A reference human induced pluripotent stem cell line for large-scale
1007 collaborative studies. Cell Stem Cell 29, 1685-1702 e22 (2022).
1008 83. Sarieva, K. & Mayer, S. The Effects of Environmental Adversities on Human Neocortical
1009 Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 8, 686410 (2021).
1010  84. Silva, T.P. et al. Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the
1011 Absence of Co-culture. Front Bioeng Biotechnol 8, 70 (2020).

1012 85. Lambert, S.A. et al. The Human Transcription Factors. Cell 172, 650-665 (2018).
1013 86. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-

1014 seq data with DESeq2. Genome Biology 15(2014).

1015 87. Zhu, A., Ibrahim, J.G. & Love, M.I. Heavy-tailed prior distributions for sequence count data:
1016 removing the noise and preserving large differences. Bioinformatics 35, 2084-2092 (2019).
1017  88. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The
1018 Innovation 2(2021).

1019  89. Gu, Z. & Hilbschmann, D. SimplifyEnrichment: A Bioconductor Package for Clustering and
1020 Visualizing Functional Enrichment Results. Genomics, Proteomics &amp; Bioinformatics 21, 190-
1021 202 (2023).

1022 90. Van De Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network
1023 analysis. Nature Protocols 15, 2247-2276 (2020).

1024

1025


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Supplementary Figure 4

a NuritsexiviDEEs pdicbipEéd gb0 ExXpres b 20 2408836109280 his version pogedd\sglst@depiesbntatiarpapipfsidolder for this preprint
(which was not certified by peer teview) is the author/funder, who has granted bioRxiv agfzggggkgp, @é}@[ﬁygtgﬁégreprint in perpetuity. It is made
nse.

1500
1000 -
00 &
o QuaLMLALLILE &
0
>N d-A
2825025 ook <o
EOQUWECELHES 23
I a2I5Xoaa 28
g °T goo €<
2 3 55 ~
o z w
E L
a
<
O
o [ UP in 10x
< .
a B UP in Parse
. <
b DEGs in GPC cluster T
P4
—
m
L
N
0 -
-10 -5 0 5 10
Log, fold change
- —_—
UPin 10x UPin Parse
Significance Q
ns. m
Logp FC O]
p-value
p-value & Log2 FC
wn
x
I
4
—
a
Z
<
(@]
(2]
o
[ee]
wn
L
Z
N

available under aCC-BY 4.0 International lice

o=N
coo

o=~
oumou

16
0.8

chromosome segregation —

mitotic cell cycle phase transition —
regulation of cell cycle phase transition -
nuclear division -

DNA replication —{

nuclear chromosome segregation —
positive regulation of cell cycle process —
sister chromatid segregation -

0.3 regulation of chromosome organization -

02 regulation of chromosome segregation

0.1
0.04 0.06 0.08

chromosome segregation —
X DNA replication -
* nuclear division -
/ mitotic cell cycle phase transition —
% regulation of cell cycle phase transition —{
negative regulation of cell cycle -
nuclear chromosome segregation —
03 mitotic nuclear division -
g double-strand break repair -{

g? regulation of DNA replication

0.04 0.06 0.08

positive regulation of dendrite development - ]

T T T T T
0.10 0.14 0.18
Adjusted p-value Gene set size
1e-10 - 0 . 120

1e-32
40 . 160
1e-54 .
o«

pattern specification process — °

embryonic organ morphogenesis |

epithelial tube morphogenesis —{

comma-shaped bod morpno enesis -

metanephric S-shaped bod¥ morpl ogenesns,

positive regulation of epithelial cell |
differentiation involved in kidney development

cell proliferation in hindbrain |

0.6 cell proliferation in external granule layer —{
I 0.4 cerebellar granule cell precursor proliferation -
0.2 positive regulation of branching involved in
0.0 ureteric bud morphogenesis T T T T
0.3 0.4 0.5 0.6
cell differentiation in spinal cord - ]
axon guidance — ]
neuron projection guidance — (]
neural retina development —{ 3
dorsal/ventral pattern formation - 3
’ embryonic limb morphogenesis —{ L[]
L embryonic appendage morphogenesis _| °
cerebellar Purkinje cell-granule cell precursor cell signaling involved in _| °
05 regulation of granule cell precursor cell proliferation | 7
io 3 cerebellar Purklrge_ cell differentiation
0.1 retina layer formation - T i

T T T
0.125 0.175 0.225
negative regulation of transport - o
substantia nigra development —{
negative regulation of calcium ion transmembrane transport -
neural nucleus development
negative regulation of calcium ion transport —
protein dephosphorylation —{
regulation of transmembrane transporter activity -
regulation of calcium ionexport across plasma membrane —{®
negative regulation of calcium ion export across plasma membrane — @
apoptotic cell clearance —{®

0.15 0.25 0.35

establishment of protein localization to organelle - .

protein targeting -
NEER ribosome biogenesis
ment of protein ization to membrane -

ATP synthesis coupled electron transport -

mitochondrial ATP synthesis coupled electron transport —{
mitochondrial gene expression —

mitochondrial translation -

mitochondrial respiratory chain complex assembly -
vesicle targeting, rough ER to cis-Golgi @

T T T T T T
0.01 0.03 0.05
GeneRatio


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Supplementary Figure 3

a  biosxiglptiepr nxgidnmmumrg/m.m /2maa@eeaawtgbsmmmmk ligyies 23, ZggdPﬁ'étﬁmmysqdﬂtéwdnnfmfdmmpanuat
(@m%mﬂﬁtﬁ% RSRuReRMigHEwW) is egg;“gg{graﬁrﬁw;& ?BsYgAlia(?tligetr)rI]cﬁélr\{a?Illtfgr?ssee to diSplayfPARBHW R REFASHEErdudimade
transcriptomic data from PCW12-13 0 \ | trancriptome (Sepp et al., 2024)

GPC 1 1 Kokok
DAB1/CALB1/CALB2 HindN l l
STR Scaled Prog 2 1 1 1.00
NHCI:; similarity GPC/GC : :
ally 10 HindN | | 0.75
CcB 0.0 HindExN 1 1
Ay Unknown 1 ' '
SN DYDY Do 1.0 Newborn PC : : 0.50
WY O oWV Iy 9 o Prog 1 1 1
8 8 B 8 8 8 8 8 RL 1 1 0.25
3533 %888 Prog-div | ) :
T ST <S558 8 PAX6 RL ! !
o o
&= e RL-div : : 000 " fv we o o
1 0 1 [T B QT T |
22223588
More in 10x More in Parse E o e a % o % =
535335333853
Significance & FDR < 0.05 & abs(Log2FD) > 0.58 ~Fe-e 5 EEE
[ N a M s W a
d Reference-query mapping with cerebellar organoids e Prediction scores from f Prediction scores from reference-query
trancriptome (Atamian et al., 2024) reference-query mapping mapping with cerebellar organoids
trancriptome (Atamian et al., 2024)
10x Parse 5 e [
S 1.00

Div-vZ
€CN/Unibrush
Endo

GC

Gep

Glia

iCN
immature-iCN/immature-PC
Meninges

PC

PIP
Progenitors
RL

eeecvo0c0vvccee

Roof-Plate
vz

UMAP2
LA N ]
UMAP2

UMAP1

10x D35 L1
10x D35 L2
10x D50 L1
10x D50 L2
Parse D35 L1
Parse D35 L2

0.75
0.50
1.00
075
0.50 0.25
0.25
0.00 0.00
i
o
e}
o
o
o
©
o

Parse D50 L2 <>—


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Supplementary Figure 2

a  DbioRxiv pexpistsioi ifpeil doesgizhicddil30ar8.23.609290; thijyversioGpsikdtireghsl ABgZ0RGriffelaydighll ktidss tysbisiprentrint
(whic rtified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuita/. It is made

available under aCC-BY 4.0 |nt§mati|&6?ﬂitnb@ﬁ§t996096 S"esj identity: GO: 40467|
. ic pr integrat tri r n ignalin
cellular response to DNA damage stimulus » glycolytic process » egrated siress response signaling
S ° 1 o2
response to endoplasmic reticulum stress 3 30 ! E 12
; S 20 1 o
cellular response to hypoxia 5 510
cellular response to starvation 5 10 ' % 5
random set 20 L L. . 20 |
programmed cell death -1 0 1 2 -1 0 1 2
response to oxidative stress Granule Median Score Granule Median Score
glycolytic process Non-stress identity: GO:0022008
integrated stress response signaling ” Neurogenesis
SNN S NS Ny 2 Below stress threshold
20 !
2 29 3 3 3 ] 3 Mean module 015 § ! [CIFALSE [ | TRUE
[a il el ol allalalla) : 0] H . .
expression 1 90% quantile
55553888 0 510 | o0%a
T fegd 01 g 0 ! | threshold
-1.0-0.5 0.0 0.5 1.0 1.5
Granule Median Score
c Labels from reference-query mapping with human developmental transcriptome d Prediction score from
(Cao et al., 2020) reference-query mapping
® Acinar cells ® Inhibitory interneurons © Retinal pigment cells
® Adrenocortical cells ® Inhibitory neurons © Retinal progenitors and Muller glia
® Amacrine cells ® |Intestinal epithelial cells ® SATB2_LRRC?7 positive cells
® Astrocytes ® Islet endocrine cells © Satellite cells
® Bipolar cells ® Limbic system neurons © Skeletal muscle cells
@ Bronchiolar and alveolar epithelial cells® Lymphoid cells ® SKOR2_NPSR1 positive cells
® CCL19_CCL21 positive cells ® Mesangial cells ® SLC24A4_PEXSL positive cells
® Chromaffin cells ® Mesothelial cells ® Smooth muscle cells
® Ciliated epithelial cells ® Metanephric cells @ Squamous epithelial cells
® ENSglia ® Microglia @ Stromal cells
® ENS neurons ® MUC13_DMBT1 positive cells ® Sympathoblasts
@ Epicardial fat cells ® Myeloid cells @ Syncytiotrophoblasts and villous cytotrophoblasts.
N ® Erythroblasts ® Neuroendocrine cells ® Unipolar brush cells o~
% ® Excitatory neurons @ Oligodendrocytes ® Ureteric bud cells o
= ® Ganglion cells ® PAEP_MECOM positive cells ® Vascular endothelial cells g
) ® Granule neurons ® Parietal and chief cells ® Visceral neurons )
UMAP1 ® Horizontal cells ® Photoreceptor cells
® IGFBP1_DKK1 positive cells @ Purkinje neurons
e G0:0001706 G0:0001707 G0:0007399 G0:0022008 f Gruffi-based germ layer
Endoderm formation Mesoderm formation Nervous system development Neurogenesis assessment
.; ,ri
N 0.3 0.30 N
o I“ 02 I0-25 : Io.25 %
Z 02 01 0.20 020 < ® Non-neural
> 0.0 0.0 0.15 0.15 2 ® Neural

UMAP1


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Supplementary Figure 1

a  bioREopieprimajs _'ehttpSWﬂ‘ihiW&O.?Ol/ZOM.OS.Z&éﬂ)%&WéWS versicg posted. Afi@xgirassedBerde copyright holdtey for(Nis pfepsing
(which was not cejiifigshBY lRfEERMEW) IS the author/funder, who has granted bioRxiv a license to display the preprint in gerpetiity ' isgirge
100 + o 79}S&Blable under aCC-BY 4.0 Internationalliense. Parse |

12) oo ’
3 1 ” 15,000 ‘
o 75 3 |
3 o ‘
o 50 i 5 50000 2,159 32,408 12,098 @ ‘
8 g (46%)  (69.4%) (25.9%) g10.000 ‘
c .. Y
§ 25 25,000 5 ‘
& = 2 |
o 0 5,000 ‘
s & & 8 & @ 3 8 !
- @ R © AR © - T |
o o o a 0 ||I‘-—_-‘
[IInput []Output 0 1 2 3 4
e No. of Reads No. of Genes log10 (Genes per UMI)  § Average % of
e e Hokk non-protein-coding RNA
800,000 20,000 1.00 B IncRNA
b & ,@tt@%} 9 M miRNA
600,000 15,000 0.75 [ misc RNA
,,,,,,, . M processed pseudogene
[ pseudogene
400,000 10,000 0.50 6 B snoRNA
[l snRNA
W TEC
200,000 5,000 0.25 3 [ transcribed processed pseudogene
J {L - - [ transcribed unprocessed pseudogene
0 > 0 0.00 1] I unprocessed pseudogene
S8D959o0Y SNIYIYNITY S9I95D95D9 Y T
VKOOV o VLo WKYo VYOO WY Do STNTNT NS
85858855 85558535 585885838 22228233
55558888 55558888 55328888 S
efe s £FEE E8EL 9999_%8%@
efad
% of mitochondrial protein % of ribosomal protein % of protein-coding g Gene length, bp % GC content

coding genes

*ok K

- —

coding genes

KoKk

genes

KKK
KoKk

_ —— _ —
100 50,000 100
40,000
75 60 7STYTT 75
30,000
50
50 40 50 20,000
25
- 20 05 10,000
i 0 <>
P S o JaUsl o 5 8 5 8
S99y oYy S99 9oYy SYNoDY9oD9oDYy & &
VY 9O oWwwvo Y O oW v o o VYO oWWoO o
BR888888 BR8888A88 BR888388
553383888 553358388 53338888
efad cfEe efed

% of transcription factor
genes

KKK
- —

30

20

10xD35 L1 —@—

10x D35 L2
10x D50 L1
10xD50 L2 < ———
Parse D35 L1 O
Parse D352  —<>—
Parse D50L1  —<( -
Parse D50 L2 —< >

Gene length, bp

IncRNA  Protein-coding
RNA

30,000
20,000

10,000

o <
3

Parse
10x

Parse @p——e————


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Figure 4

a  bioRxiv p&Gispaeiceitppédoi.org/10.110f202HEa3BCFROQ tsterversion gostﬁérﬁagtbtsﬁﬁllaﬁ@llofTGSEQpﬂwﬂﬁ holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted BioRxiv a |Icel‘|ﬁ@p@§p‘|§§éme preprint in perpetuity. It is made

rn:\hnnnl
20 I - avallablﬁT%gsc??r aCC-BY 4.0 Int i Similarity
PR | . J 9 e 10
o AN ': ) % 200 biosynthetic nucleoside metabolic posphate I
)} ad s P process triphosphate purine
a 05
§ 10 e:_- o 150 I
G o 2 CEDETS 00
kel 0 D 3 100 el(;ctron chain aerobic coupled respration transport
“% l é 50 = B structure size organization exrscouar wmer
D —
L < 0 - .
R S Ey % 10 0 10 20 L ]
. developmental organization extension axonogenesis axon
b 226 s e Log, fold change - Projection development sscemly -ercn
= - - ——> .
B5O0F2220 o c ¢ UPin10x UP in Parse i '
= (6] =cC o 2 Q2
I ggfgxoaa 22 o
g O£ 'g oo :é) _Dé Significance 5|gnal | anetuction ras gipase spraing tansmison
= (] ns.
S z Logy fold change ArANSPOM keskston prans ceres i v =
o p-value e
9 p-value & L092 fold change | [T otpase requaton sctuty yorohse e
< X adhesion
@] digestive tssue devolopment systom
o Logio P NN ¥ ] —
< -300-200-100
a
d Upstream regulator analysis e SCENIC gene regulatory networks
1 2 3 4
A A T 5 =
Eechtnology
[ I TN B N O T e
—l [ ] stggxz Technology
— ?255%% ﬂ- - E%q 10x
—_— b M = — éB g? Parse
R D1
B {E- = EEE;?' Cell type
L — - B 05 =ik mn
g*?’.‘%“’ - —— - - XA‘FZ ¥ PAX6 RL
i { Eg&fﬁ M RL—div
i Evedk: [ Prog—div
oy -
— 25 — 5@@% W Prog 1
l g%ﬁ%‘w M Prog 2
HEn 563
. morc
B ] oNgsrs Il GPC/GC
& = ey HindN
) = = EE"; .DAB1/CALB1/CALBZ
%E PHOX2A HlndN
| Y [ I I Newborn PC
«;ﬁ sl HindExN
5 | — 51 Unknown 1
gsﬂ“’ g%gz; ¥ Unknown 2
B = Epe  z-score
— || o W,
— §g§§im g‘ 21 °
= ECHI -2
Soiin T E2F:
E%;;‘ | | [ - E{ims I-4
=1 S = = g%;%m
iy 2
el REB5
Ok - — 1561
—=— 5
e - I
- B, | B
i E NEDROD2
Hen 1A
XS
NS NS AL MNY TS | E%X%
R S KO &S S
.Qg(’ N Q€ Q@qo‘)’i{)& QQO +° 00$ AT lE - EEEFSO
s T oF F = = KR
> )
N
Bias-corrected z-score ‘?&
e
0 0 10 >
o‘?‘

- ———>
UP in 10x UP in Parse


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Figure 3

a bi@@niulafmwhﬂtmgidmw#méorgllo.
(RS ¥GsTitResTRSRUReRMGHEW)
transcriptomic data from PCW12-13

,32;5 SiTLIarity
HIP :
DTH I°-3
CB 0.2
AMY 0.1
YIS YT YISy
E8E88E88%
5333888 8
TTTTESES

100

50

25

Percentage of cell types
between technologes

RL

PAX6 RL
RL-div
Prog-div
Prog 1

Prog 2

GPC
GPC/GC
HindN
DAB1/CALB1/CALB2 HindN
Newborn PC
HindExN
Unknown 1
Unknown 2

x
o
-

Parse

the author/funder, who has grante
available under-aCC-BY 4.0 International license.

y €

v/

SIM
ZX0Ss
LS3H
LOdsy
£€0dsy
gIXINT
9Xvd
vZdol
L9IN

@01/&@&4#0&@&&1@29%&% c?ersio%osted August 23, 2024. Taacoieplighttreldexpessbisrpreprint
1 ioRxiv a license to display the preprint in perpetuity. It is made
4

LIHYvVE
rAESIS]]
€X049y
ZXH1
BXH1
9aodN3
197v0o
2ga1vo

Unknown 2

Unknown 1

HindExN-

Newborn PC
DAB1/CALB1/CALB2 HindN:
HindN:

GPC/GC

GPCt

Prog 2

Prog 1
Prog-div-
RL-div{¢)

PAX6 RL-
RL-

y

UMAP2

GPC/GC

HindN
DAB1/CALB1/CALB2 HindN
Newborn PC

HindExN

RL-div
Prog-div
Prog 1

[ [tHOLY
T]LaoynaN

T
T

Tlzavo

T
T

Y ¥ Y]|iava

Y YTV 79T

T
T
T

T

T

T

T
-
B

T
T

T
T

T
T
rTr T

T

TYOYYT Y

Unknown 1
Unknown 2

Prog 2
GPC

Reference-query integration with human cerebellar
trancriptome (Sepp et al., 2024)

e

astroglia
erythroid
GABA_DN

GC

GC/UBC
glut_DN
immune
interneuron
isth_N
isthmic_neuroblast
meningeal
mural/endoth
noradrenergic
NTZ_mixed
NTZ_neuroblast
oligo
parabrachial
Purkinje

uBC
VZ_neuroblast

Parse

UMAP2

UMAP1

Prediction scores from
reference-query integration

UMAP2

UMAP1


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Figure 2

a  bioRxiv ppprishsiondlityséladigslo. LMiElsrated8datat09290; this versjgn posExbfeigiich 23, calltrddwerotyigtighoblalder for this preprint
(which was not certified by peer review) is the author/funder, who has grant€d bioRxj T to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 Internati license,

Il 10x D35 L1 response to oxidative stress

5 13; ng t% glycolytic process

[[] 10x D50 L2 integrated stress response signaling
[ Parse D35 L1 random set

] Parse D35 L2

AT B0 IR AR B
. ™ [] Parse D50 L1 23233313143 Mean module 015
8 g [[] Parse D50 L2 [l il =lal=l-=] expression
PC1 UMAP1 SELEL 04
Gruffi-based cell stress % of stressed cells Dimensionality reductions in RPCA-integrated data
(o] e
assessment o
o g 10x Parse
QL N
A™ 40 RC
iy NS
by, &
Sy L »,Jéé 30
TN X o E
1 D 20 < & f ;
. ; S o ‘
o ;I 0§ 8 , 2 N :
o +— X 1)
] {;‘ONot stressed O ——— o ©° g
=) ® Stressed S8 YIS 9o Yy
v 1K 9O o W W 9 o RPC1
83888388
535388883
efed
f Reference-query mapping with g MYOD1 MYOG h % of neural cells i % of neural cells
human developmental transcriptome per cell line
(Cao et al., 2020) o 100 100
X R R® 1
75 T H e Ra s o« 75 e °®
2 I3 ¥ & £ © © o e <
1 2 w0 W 5 g o ©
0 $ 50 ~ ¥ 50 w = =
FGF10 STMN2 A, A A
25 25
s ® Non-neural ~ ] SY9ST YISy o™ S8 YS9 ITY
2 ® Neural o . VWY 9O oW 92 o 0K O oW 9O o
UMAP1 < Iz } , SR888888%8 88888888
UMAP1 R B TS T <S5 8 & &
[ N s W N s [ Na W« o
Cellline ¢ BIONi010-C
4 BIONi037-A

= KOLF2.1J


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

Figure 1

a

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609290; this version posted Augusﬁé%&ggﬂﬂgbf copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BYGbGHtunrnmlﬁnMak&densg.

BIONi010-C

BIONi037-A

Day 35 and 50

Differentiation

_—

KOLF2.1J

induced pluripotent
stem cells (iPSC)

No. of Genes

— —
8
10,000 6
4
5,000
2
0 0
A AR IR IR |
VLo OoWDO o
[sed Yol [sed v
88088888
x x [ ()
EEEER R RN
e
1,000.000
C Pearson r = 0.6

Avearge gene count, Parse

10.000

0.001
Average gene count, 10x

Gene count

low I

. . s N2y’ B
Dissociation JIORY

pool of cells

> A N\
-
\&_/-
single-cell suspension

pools of cerebellar
organoids

i

10x D35 L1
10x D35 L2

high

% of mitochondrial protein

coding genes

10x D50 L1 —==l
10x D50 L2 == e
Parse D35L1 < ———

Parse D35 L2

0.100 10.000

*
*
*

Avearge gene count, Parse

ParseDSOL1 < o=
ParseD50L2 <

1,000.000

10.000

0.100

0.001

// 1Y

e 7>

AN

\&_/-

of cells

fixation and
freezing

% of ribosomal protein
coding genes

KKK
_ —

100

40 75
50
20
25

0 0

L2

10xD50 L1 <Ol
10xD50L2 € e
-
-
—
—

Parse D35 L1

10x D35 L2
Parse D35

10x D35 L1
Parse D50 L1
Parse D50 L2

30,000

20,000

10,000

0.001 0.100 10.000

Average gene count, 10x

Gene group
* mitochondrial * ribosomal e other

% of protein-coding

genes

%k k

048k s dl

10x D35 L1
10x D35 L2
10x D50 L1
10x D50 L2
Parse D35 L1
Parse D35 L2
Parse D50 L1

Gene length, bp

kK k
1

1

10x

Parse

split multiplexed pool

Parse Biosciences workflow

YYYTErTY

o Y

N

sequencing

/

cell-bead
emulsion

combinatorial

barcoding

% of transcription factor
genes

%k k
_ —1

5
0
- — - -~

] DI BT BRI BRI |
[=3 VWY Qo WVY Qo
0 S R e B Ys WS IS BT e BT
o 0Oonp0AQp0AQ0AQn
0] X x X x 0 0 9 o0
@ e g o
© A T 0 g O g
o oo Qan

% GC content

3k k

1
100
75
50
25
0

3 8

= IS

o


https://doi.org/10.1101/2024.08.23.609290
http://creativecommons.org/licenses/by/4.0/

