

1 **OPA1 mediates cardiac function and metabolism: in silico and in vivo evidence**

2 Claire Fong-McMaster^{1,2,3}, Serena M. Pulente^{1,3}, Luke Kennedy^{1,2}, Tyler K.T. Smith^{1,2,4},
3 Stephanie Myers^{1,2}, Michel Kanaan^{1,2}, Charbel Karam^{1,2}, Matthew Cope^{1,2}, Ilka Lorenzen-
4 Schmidt³, Craig J. Goergen⁵, Morgan D. Fullerton^{1,2,4,6}, Miroslava Cuperlovic-Culif^{1,2,7}, Erin E.
5 Mulvihill^{1,2,3,8*}, and Mary-Ellen Harper^{1,2*}

6 ¹Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa,
7 Canada

8 ²Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada

9 ³University of Ottawa Heart Institute, Ottawa, Ontario, Canada

10 ⁴Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario,
11 Canada

12 ⁵Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA

13 ⁶Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada

14 ⁷Digital Technologies Research Centre, National Research Council Canada, Ottawa, Canada

15 ⁸Montreal Diabetes Research Group, Montreal, Quebec, Canada

16

17 *Corresponding authors

18

19 Email:

20 emulvihi@uottawa.ca and mharper@uottawa.ca

21 Abstract

22 OPA1 is an inner mitochondrial membrane protein that mediates diverse signaling processes.
23 OPA1 is important for cardiac function and protects against cardiac insults such as ischemia
24 reperfusion injury. We sought to further assess OPA1 in human and mouse cardiac pathologies,
25 hypothesizing that OPA1 may also function in a protective manner in chronic heart failure.
26 Bioinformatic analyses of histological and transcript data from the GTEx database indicated that
27 OPA1 expression levels vary in the human heart, where elevated OPA1 transcript levels were
28 correlated with fatty acid, branch chain amino acid and contractile gene signatures. To
29 experimentally assess these correlations, mice with a 1.5-fold whole body OPA1 overexpression
30 (OPA1-OE) were subjected to transverse aortic constriction surgery and displayed improved 2D
31 and 4D cardiac functional parameters compared to WT mice. OPA1-OE mice had no induction
32 of fibrotic transcript markers and displayed sustained transcript levels of fatty acid, branch chain
33 amino acid and contractile markers. Maximal oxidative capacity was sustained in both WT and
34 OPA1-OE cardiac myofibers post-TAC. These results further demonstrate the important role of
35 OPA1 in mediating cardiac function and highlight protective signaling pathways.

36 Introduction

37 Heart failure affects over 50 million people worldwide with increasing rates attributable to
38 complex etiologies and risk factors^{1,2}. Many pharmacological approaches exist for disease
39 management which include the use of ACE inhibitors, beta blockers, diuretics and SGLT2
40 inhibitors³. These therapies combined with nonpharmacological approaches such as diet and
41 exercise require complex individualized care that is further complicated by comorbidities. Given
42 this landscape, characterizing the underlying mechanisms which contribute to reduced cardiac
43 function at each disease stage is critical to designing new and complementary therapeutic
44 approaches. Emerging evidence points to the potential role of mitochondrial-targeted
45 therapeutics to treat heart failure^{4,5}. Changes in mitochondrial metabolism are evident throughout
46 the progression of heart failure and largely include irregular substrate metabolism, alterations in
47 mitochondrial energetics, reactive oxygen species overload and an imbalance in mitochondrial
48 dynamics⁶.

49 Mitochondria make up 30% of cardiomyocyte volume and undergo cycles of fusion and fission
50 in response to altered energy status or cellular stressors⁷. This dynamic process involves inner
51 mitochondrial membrane (IMM) and outer mitochondrial membrane (OMM) proteins, as well as
52 proteins that tether to adaptor proteins on the OMM⁸. Fission is largely driven by this latter class
53 of proteins, in which dynamin-related protein 1 is recruited to the OMM and constricts
54 mitochondria leading to mitochondrial fission. Fusion is driven by three GTPases, mitofusin 1
55 and 2 on the OMM, as well as optic atrophy protein-1 (OPA1) on the IMM. In addition to
56 mediating mitochondria fusion, OPA1 is linked to oxidative phosphorylation efficiency, cristae
57 morphology, apoptotic signaling, and calcium signaling^{9,10}.

58 In both human and pre-clinical models of heart failure, OPA1 protein abundance has been shown
59 to be lower relative to healthy controls^{11,12}. OPA1 heterozygous mice exhibit impairments in
60 contraction, cardiac output and contractile response when aged or subjected to pressure-
61 overload^{13,14}. Underlying these functional changes are differential calcium handling within

62 cardiomyocytes, abnormal mitochondrial ultrastructure, and altered electron transport chain
63 activity. Conversely, increased *OPA1* protein levels have been shown to be protective during
64 acute myocardial injury by maintaining cristae structure and minimizing apoptotic signaling¹⁵.
65 Beyond protein abundance, *OPA1* processing by the proteases YME1L and OMA1 impacts
66 cardiac function¹⁶⁻¹⁸. Mitochondrial substrate utilization is closely linked to mitochondrial
67 dynamics with evidence highlighting the role of fatty acids in increasing YME1L expression,
68 thereby limiting *OPA1* cleavage and mitochondria fragmentation¹⁹. *OPA1* is also sensitive to
69 redox modifications in the myocardium which can contribute to mitochondrial dysfunction²⁰.
70 Despite knowing that decreased *OPA1* worsens cardiac function, it is unknown how a subtle
71 increase in expression, and importantly one which could be therapeutically achievable, would
72 influence cardiac function in a chronic heart failure state.

73 Given the evidence implicating *OPA1*-mediated mechanisms in various heart failure models, we
74 sought to assess the molecular mechanisms that link *OPA1* and cardiac pathologies. Using
75 human and mouse *in vivo* data, we confirm the role of *OPA1* in mediating cardiac function with
76 links to fatty acid, branch chain amino acid and contractile pathways.

77 Results

78 **OPA1 transcript level correlates with metabolic, contractile, and hypertrophic pathways in** 79 **human left ventricle tissue**

80 *OPA1* expression levels are decreased in human heart failure¹¹, but a correlation of *OPA1*
81 expression and histopathology features of cardiac pathologies has not been characterized. To
82 investigate this, we first assessed human gene expression profiles using the Genotype-Tissue
83 Expression (GTEx) Portal^{21,22} (Fig 1A). RNA-seq data from GTEx left ventricle (LV) samples
84 were filtered based on *OPA1* expression. Top and bottom quintiles of *OPA1* expression were
85 defined from all samples under the same cause of death category (ventilator case, n=246
86 samples). Interestingly, a range of *OPA1* transcript expression was observed (Fig 1B), with a
87 median log₂fold change difference of 1.72 between top and bottom quintile and only small
88 differences in overall gene expression values between the groups (top and bottom median
89 normalized transcript per million (TPM) values: 0.01338 and 0.01344, respectively. p-
90 value=0.000109) (Fig S1A).

91 To explore the relationship between *OPA1* transcript expression and cardiac pathologies, we
92 analyzed histological data from the GTEx portal. Relevant pathology categories in the LV
93 histology samples such as fibrosis, as identified by pathologists²³, were selected and their rates of
94 occurrence compared between the top and bottom *OPA1* expressors, as well as between all
95 samples (Table 1). Fibrosis was identified more frequently in the lowest *OPA1* expressing
96 samples compared to higher expressing *OPA1* LV samples (p=0.0049), and all LV samples
97 (p=0.0203), though fibrosis was not significantly lower in top samples compared to all samples
98 (p=0.1784).

99 Given the role of mitochondrial metabolism and dynamics in cardiac aging^{24,25}, we assessed any
100 potential differences in *OPA1* transcript across all ages. We observed a trend of elevated *OPA1*
101 expression in LV samples aged 20-49 compared to LV samples isolated from those aged 50-79
102 (p=0.0639 in low quintile and p=0.0479 in top quintile) (Fig S1B).

103 To explore the underlying molecular signatures of LV in the top and bottom *OPA1* quintiles, we
104 identified gene expression changes associated with changes in *OPA1*. Three approaches
105 including differential expression analysis, partial least squares discriminant analysis (PLS-DA)²⁶
106 and Relief-based analysis were used to identify statistically relevant genes^{27,28}. Using differential
107 expression analysis, 441 and 488 genes were positively and negatively differentially expressed
108 between the *OPA1* quintiles in LV (Fig 1C). Two machine learning methods (PLS-DA and TuRF
109 algorithms) identified 3582 and 3427 important feature genes, respectively, using variable
110 importance projection (VIP) scores²⁹ for PLS-DA (Fig S1C) and relevance thresholds for TuRF.
111 In comparing *OPA1* high to low expression sample groups, 229 positive differentially expressed
112 genes (DEGs) were identified by all three methods, and only 31 negative DEGs were found by
113 all methods; indicating a more consistent association with increased *OPA1* expression compared
114 to decreased expression.

115 Gene set enrichment was applied to these 229 genes from the conserved gene sets, for KEGG
116 (Fig 1D) and GO Cellular Component terms (Fig S1D). Multiple metabolic pathways were
117 associated with *OPA1* expression including propanoate, branched-chain amino acid, and fatty
118 acid metabolism. Additionally, an enrichment in terms for cardiac muscle contraction and
119 adrenergic signaling was clearly associated with increased *OPA1* expression. Enrichment
120 analysis for the 31 negative conserved DEGs could not be determined due to the limited gene set
121 size. Enrichment in the 488 statistically down-regulated genes identified by differential
122 expression analysis were reported (Fig 1D). We identified immune responses amongst the
123 negatively enriched terms. Amongst enriched cellular component GO terms (Fig S1D), the
124 sarcoplasmic reticulum, TCA complex, and contractile regions (Z disk, I band) are associated
125 with *OPA1* while hemoglobin is amongst the negatively associated terms.

126 STRING^{30,31} interaction networks identified relationships between significant genes through
127 various associations, including protein-protein interaction, text mining, and homology. For the
128 229 upregulated DEGs identified by our differential expression analysis and machine-learning
129 methods, 144 genes have interactions and 126 of these are connected through a central cluster
130 (Fig 1E). *OPA1* is connected to this central cluster via the *LRPPRC*, *PRDX3*, and *APOOL* genes.
131 These data provide evidence for potential protein-protein interactions between *OPA1* and many
132 of the proteins within the enriched functional pathways.

133 **OPA1 overexpression maintains cardiac functional parameters compared to wildtype mice 134 in response to pressure overload**

135 Given the correlation between human *OPA1* mRNA expression and known metabolic pathways
136 involved in heart failure progression, we followed up with *in vivo* work to assess how increased
137 levels of OPA1 would impact cardiac function. To do so, we employed OPA1 overexpressing
138 (OPA1-OE) mice, which exhibit a 1.5-fold whole body overexpression¹⁵, and subjected them to a
139 transverse aortic surgery³² (TAC), where banding is placed around the descending aorta designed
140 to more closely mimic human pathology. Mice subjected to TAC surgery exhibited a heart
141 failure phenotype at 12 weeks post-TAC when compared to sham-operated mice, with
142 statistically significant increases in LV mass, LV end diastolic diameter (LVEDD), and LV end
143 systolic diameter (LVESD) but no changes in lung weight or lung water content (Fig S2A-E).

144 Mice of both genotypes were randomly assigned to receive TAC surgery or sham surgery (Fig
145 2A). At 5-, 8- and 12-weeks post-TAC, OPA1-OE mice had higher ejection fraction evaluated
146 by long axis B mode echocardiography compared to WT mice, indicative of improved cardiac
147 remodeling in response to pressure overload (Fig 2B-C). This was also supported by short axis
148 imaging (Fig 2D) which also showed higher ejection fraction and cardiac output in OPA1-OE
149 TAC mice compared to WT TAC mice (Fig S3A-B). Cardiac structural remodeling was evident
150 in both WT and OPA1-OE TAC mice as both genotypes had significant increases in the heart
151 weight/tibia length (HW/TL) and heart weight/body weight (HW/BW) ratios compared to sham
152 mice (Fig 2E). While both WT and OPA1-OE groups exhibited modest increases in EDV with
153 TAC, OPA1-OE EDV increased to a lesser extent (Fig 2F). The same trend held true for ESV
154 (Fig 2G). Conversely, there were no genotypic changes observed in stroke volume or cardiac
155 output (Fig 2H-I). These data suggest that increased OPA1 expression during pressure overload
156 induced heart failure in mice is protective in maintaining cardiac function.

157 **4D strain analysis identifies differences in global myocardial strain in response to pressure
158 overload**

159 While 2D imaging can detail cardiac remodeling, volumetric measurements are estimated from
160 only one plane of view. To fully characterize volumetric changes in response to TAC surgery,
161 we employed 4D echocardiography, which collects a 3D image at every time point along the
162 short axis using a step motor, allowing for analysis of myocardial kinetics and motion. Using a
163 custom strain technique^{33,34}, we assessed global strain parameters at 12 weeks post-TAC (Fig
164 3A). Global circumferential strain was decreased in both WT and OPA1-OE mice compared to
165 their respective sham mice (Fig 3B). There was a trend for decreased longitudinal strain in WT
166 TAC mice compared to WT sham mice and no significant changes between other groups (Fig
167 3C). Surface area strain was increased in both WT and OPA1-OE TAC mice, but OPA1-OE
168 TAC mice maintained lower strain compared to WT TAC mice (Fig 3D). Finally, transmural (or
169 radial) strain was decreased in WT TAC mice compared to WT sham mice with a trend for
170 decreased transmural strain in OPA1-OE TAC mice compared to OPA1-OE sham mice (Fig 3E).

171 **TAC induces trends for hypertrophic and fibrotic remodeling in WT mice**

172 To address what could mediate the cardioprotective effects of OPA1 overexpression, we
173 assessed markers of hypertrophic and fibrotic remodeling at 12 weeks post-TAC. Cardiac
174 fibrosis is central to the transition from hypertrophy to decompensated heart failure. In classical,
175 more aggressive TAC models, extensive fibrosis is measurable as early as 2 weeks^{35,36}. However,
176 despite having significant decreases in cardiac function, we observed no changes in interstitial
177 and perivascular fibrosis in our more physiological TAC model (Fig 4A-C). In line with our
178 minimal fibrotic phenotype, there were only trends for increased levels of hypertrophy markers
179 including *Nppb* in WT TAC mice (Fig 4D). Similarly, TAC induced modest increases in fibrosis
180 markers including *Tgfb1*, *Colla2*, and *Ctgf* in WT mice compared to sham mice (Fig 4E).
181 However, this was less apparent in OPA1-OE mice.

182 **Transcriptional changes between OPA1-OE and WT TAC mice**

183 Metabolic remodeling through the progression from hypertrophy to heart failure is complex and
184 involves changes in substrate uptake, utilization and oxidative metabolism³⁷. To see if these
185 metabolic pathways were relevant in our model, we assessed transcript levels of fatty acid
186 oxidation and BCAA metabolism markers. Markers of fatty acid metabolism including *Cd36* and
187 *Acadm* were modestly decreased in WT TAC mice compared to WT sham mice, and *Cd36* was
188 significantly lower in WT TAC compared to OPA1-OE TAC mice (Fig 5A-C). BCAA markers
189 including *Bcat2* and *Bckda* were lower in WT TAC mice, but *Bcat2* remained elevated in OPA1-
190 OE TAC mice (Fig 5D-E). Another pathway that was identified to be correlated with OPA1
191 expression was cardiac contraction. Given this, we measured *Atp2a2* transcript levels, which
192 were significantly higher in OPA1-OE TAC mice compared to WT TAC mice (Fig 5F).

193 **Sustained oxidative capacity at 12 weeks post-TAC**

194 We next wanted to assess the implications of OPA1 overexpression to mediate changes in
195 oxidative capacity of the heart. Analyses of maximal oxygen consumption in permeabilized LV
196 myofibers were measured in response to saturating concentrations of palmitoyl carnitine/malate,
197 glutamate/pyruvate, and succinate. Surprisingly, there were no changes between TAC and sham
198 mice of either genotype (Fig 6A-E). Simultaneous measurement of hydrogen peroxide emission
199 to assess reactive oxygen species, indicated no changes between TAC or sham mice of either
200 genotype (Fig 6F-J). In addition, we measured mitochondrial DNA/nuclear DNA ratios and
201 citrate synthase activity as indicators of mitochondrial content and observed no differences (Fig
202 6K-M).

203 **Discussion**

204 In our work, we present the first evidence for the correlation between OPA1 expression levels
205 and advanced characteristics of cardiac pathology in humans. Our analyses of publicly available
206 transcriptomics data from the GTEx consortium indicates that OPA1 mRNA levels vary
207 significantly in left ventricular tissue in the human heart. Higher OPA1 expression was
208 correlated with elevated fatty acid and branched chain amino acid metabolism, and cardiac
209 contractile pathways. We investigated this observation using a mouse model of modest OPA1
210 overexpression, where we observed higher cardiac function and kinetic motion in response to
211 pressure-overload surgery, sustained transcript levels of fatty acid, BCAA and contractile genes
212 with no changes in maximal oxidative capacity.

213 Heart failure is a chronic disease with recent efforts elucidating transcriptional signatures
214 representative of stages of disease progression³⁸. Our transcriptomic analysis of OPA1 levels in
215 the GTEx database identify increased fibrosis in human LV samples within the lowest OPA1
216 expression quintile. These findings highlight a correlation between OPA1 and one of the central
217 pathologies in heart failure. This is in line with the incidence of cardiac pathologies in patients
218 with autosomal dominant optic atrophy, a disease where up to 70-90% patients present with a
219 mutation in OPA1^{39,40}. These clinical reports have noted early-onset myocardial infarction⁴¹,
220 arrhythmia^{42,43}, and hypertrophic cardiomyopathy⁴², calling for the recommendation for further
221 investigation into the connection between OPA1 mutations and cardiac events⁴².

222 Several methodologies are employed to induce heart failure in mice. Most TAC studies use
223 transverse aortic banding with a 27-gauge needle, which induces rapid decreases in cardiac
224 function and subsequent fibrotic remodeling evident within 2 weeks. Previous literature suggests
225 that the placement of the aortic constriction will affect the degree of pressure overload³² and that
226 the degree of constriction affects the severity of hypertrophic and fibrotic remodeling³⁶. We used
227 a less severe model of heart failure, in which the descending aorta is constricted using a 26-
228 gauge needle. We opted to use the descending aortic banding with a 26-gauge needle⁴⁴ to
229 investigate chronic changes and minimize animal mortality. This explains our minimal fibrotic
230 phenotype in both TAC groups and lack of progression to decompensated heart failure.

231 While the link between cardiac function and OPA1 has been assessed using heterozygous
232 models^{13,14,45}, an OPA1 overexpression model¹⁵, and models modulating upstream proteases or
233 cleavage sites¹⁶⁻¹⁸, our work is the first to increase OPA1 levels during a chronic *in vivo* heart
234 failure model. Mild OPA1 overexpression maintained cardiac functional parameters including
235 ejection fraction and fractional shortening, as well as longitudinal and circumferential strain
236 post-TAC compared to WT mice. These results align with data showing that OPA1 heterozygous
237 mice are more sensitive to pressure overload and ischemia/reperfusion^{13,45}. Original
238 characterization of the OPA1-OE mouse model¹⁵ identified no baseline changes in cardiac
239 function or structure at 5 months and protection from ischemia¹⁵. When aged to 9 months, these
240 mice develop non-pathological hypertrophy as indicated by an increased HW/BW ratio. These
241 results may explain how the OPA1-OE mice subjected to TAC resulted in increased HW/BW
242 and HW/TL ratios yet higher functional parameters compared to WT TAC mice. OPA1 has also
243 been implicated in protective cardiac remodeling in response to various treatment interventions
244 *in vivo* such as empagliflozin^{46,47}, irisin⁴⁸ and paeno1⁴⁹. This and other studies highlight OPA1 as
245 a key mediator of protective cardiac phenotypes likely due to several mechanisms including its
246 established role in mediating cristae remodeling and apoptotic signaling, mitochondrial fusion,
247 mitochondrial supercomplexes, oxidative metabolism, and calcium homeostasis.

248 Metabolic changes in heart failure involve alterations in substrate uptake and utilization. Our
249 GTEx analysis and subsequent mRNA transcript data identified that OPA1 is important for
250 regulating fatty acid metabolism. These data further support the link between mitochondrial
251 fusion and fatty acid oxidation previously identified in cardiac tissue¹⁹. Branch chain amino acid
252 catabolism is another central metabolic pathway known to be decreased in heart failure and
253 pressure-overload mouse models^{50,51}. We identified sustained transcript levels of certain BCAA
254 enzymes in OPA1-OE TAC mice compared to WT TAC mice indicating a protective metabolic
255 phenotype within our model. Another indicator of cardioprotection in the OPA1-OE TAC model
256 was increased *Atp2a2* transcript levels compared to WT mice. Calcium signaling is critical for
257 maintaining the function of contractile machinery in the heart⁵². Defects in calcium kinetics have
258 been observed in *Opa1* heterozygous mice^{13,14}. These data further support the importance of
259 OPA1 in oxidative metabolism and calcium signaling in the heart.

260 Heart failure is typically characterized by an “energy deficit” with decreases in electron transport
261 chain activity or maximal oxidative capacity. Given this, we assessed various bioenergetic
262 pathways, identifying no changes in oxidative capacity between sham and TAC mice in response

263 to the sequential addition of fatty acid, complex I, and complex II substrates. In addition, we did
264 not identify changes in mitochondrial content. Previous *in vivo* work has shown that TAC
265 induces changes in maximal oxidative capacity, mitochondrial enzymatic activities and the
266 expression of mRNA and protein levels of mitochondrial DNA^{53,54}. Although these changes may
267 be largely driven by decreases in overall mitochondrial content, our conflicting experimental
268 results highlight important methodological considerations in assessing bioenergetic function. To
269 assess maximal respiratory capacity, we used the sequential addition of saturating concentrations
270 of various substrates. However, this does not fully represent *in vivo* steady state conditions,
271 which may have been altered post-TAC. The subpopulations of mitochondria within cardiac
272 tissue including the subsarcolemmal and interfibrillar mitochondria are differentially affected by
273 pressure-overload⁵⁵ with interfibrillar mitochondria showing more significant decreases in
274 respiratory capacity. In our experiments, we did not separate out these two populations so any
275 functional differences may be masked by measuring the total myofiber response to the substrates.
276 In addition, assessing myofibers bioenergetic capacity instead of isolated mitochondria may
277 explain the lack of functional deficits that we observed⁵⁶. In human work, data has suggested that
278 oxidative capacity is reduced in *ex vivo* myofiber preparations from ventricular tissue of patients
279 with heart failure⁵⁷. These data were supported by decreases in mitochondrial content measures,
280 which may explain the functional changes. Conflicting work has identified preserved respiratory
281 function in isolated mitochondria from human LV tissue⁵⁸ highlighting the disease heterogeneity
282 and the important methodological considerations when assessing bioenergetic function. Our *in*
283 *vivo* TAC model therefore likely represents a less severe form of heart failure that occurs before
284 significant changes to total mitochondrial pools.

285 In conclusion, this study highlights the importance of OPA1 in mediating cardioprotective
286 mechanisms. Our bioinformatic approaches using publicly available human data identified
287 correlations between low *OPA1* expression and cardiac tissue fibrosis as well as the link between
288 *OPA1* and metabolic pathways. Furthermore, *in vivo* in mice support a role for OPA1 in
289 mediating metabolic and contractile signaling. Overall, we provide further evidence for the
290 importance of OPA1 in cardiac function and elucidate gene signatures that underlie this
291 protection.

292 **Limitations**

293 Our study has various limitations which need to be addressed. First, all experiments were
294 performed in male mice. As such we cannot conclude the applicability of these findings in
295 female mice. Secondly, aortic banding around the descending aorta results in difficult imaging of
296 the pressure gradient across the constriction site. Careful use of ultrasound probes with longer
297 scan depth (eg. MX250S) is required to obtain resolution of the descending aortic arch. In
298 addition, the use of other non-invasive measures for surgical validation such as ECG measures
299 will be critical in the future use of this model. The OPA1-OE mouse model exhibits a whole-
300 body overexpression of OPA1, so we cannot conclude that cardiac OPA1 is solely responsible
301 for the protective phenotype observed post-TAC. In addition, we did not assess OPA1 processing
302 and isoforms, which has been elucidated in other cardiac studies¹⁶⁻¹⁸. All endpoint experiments
303 in our study were conducted at 12 weeks post-TAC, which may have limited our findings as

304 mitochondrial content have been shown to transiently increase post-TAC⁵⁹. Instead, we focused
305 on an extended timepoint at 12 weeks post-TAC to assess the role of OPA1 in a more chronic
306 disease state.

307

308 **Methods**

309 **Bioinformatic analyses**

310 All bioinformatic analyses were carried out using Python (Version 3.8.18) with figures and plots
311 generated via the matplotlib⁶⁰ and seaborn⁶¹ libraries. All statistical tests were performed through
312 their respective Scipy method⁶². All data and code for these analyses are available in our Github
313 repository: https://github.com/lkenn012/OPA1_heart_GTE.

314 **GTE gene expression analysis**

315 LV GTE RNA-seq data were collected (TPM, v8) via the GTE Portal API to identify samples
316 within top and bottom quintiles of OPA1 expression. Samples without expression data for OPA1
317 were first removed then TPM values were normalized by trimmed mean of M-values (TMM)⁶³
318 using the conorm library (<https://pypi.org/project/conorm/>). Samples were selected irrespective
319 of age with an equal number of males and females selected. Initially, all RNA-seq samples were
320 considered (n=433), though after selecting top and bottom quintiles by OPA1 expression it was
321 observed that top quintile consisted exclusively of individuals classified as "Ventilator cases"
322 within the Hardy scale cause of death categorizations⁶⁴. Though this represents roughly half of
323 all GTE individuals, to avoid possible confounding factors in the analysis quintiles were again
324 selected from just this subset of samples (n=246). From this subgroup of GTE samples, top and
325 bottom quintiles were selected by OPA1 expression (n=48 per group).

326 **Histology images pathology**

327 LV histology images for OPA1 quintiles were obtained from the National Cancer Institute's
328 Biospecimen Research Database⁶⁵. Histology data were downloaded directly from the GTE
329 histology viewer (<https://gtexportal.org/home/histologyPage>) for comparison of pathologies
330 noted in OPA1 quintiles. Occurrences of pathology categories of interest in each group were
331 compared by chi-squared tests.

332 **Differential gene expression analysis**

333 Differentially expressed genes between OPA1 quintiles were determined as those genes with
334 TMM-normalized expression values with absolute median log₂fold change values greater than
335 1.5 and false discovery rates < 0.01 as computed by Wilcoxon's rank sum test after adjusting for
336 multiple testing by Benjamini-Hockeberg correction (Statsmodels⁶⁶). Genes with unusually large
337 log₂fold changes (>8 or <-8) were also excluded as these likely come from comparisons to
338 samples with no expression of the gene.

339 **Supervised machine learning feature selection**

340 Relevant genes for OPA1 expression were determined by PLS-DA²⁶ for classifying top and
341 bottom quintile GTEx expressors, or as predictors of OPA1 expression across top and bottom
342 quintiles by the multi-round Relief-based approach, TuRF^{27,28}. The PLS-DA algorithm was
343 implemented using the scikit-learn⁶⁷ “PLSRegression” function, with default parameters using z-
344 score normalized gene expression values as features and quintile groups as targets. The multi-
345 round TuRF algorithm²⁸ was implemented via skrebate⁶⁸ with default parameters (using all
346 samples as neighbours for computing weights) and the ReliefF algorithm⁶⁹ as a base (single-
347 round) estimator to predict OPA1 expression across top and bottom expressors.

348 Relevant features were selected according to peak model performance over VIP score
349 thresholds²⁹ for PLS-DA and according to relevance threshold for Relief features.

350 **Gene-set enrichment analysis**

351 Enriched functional terms in important genes for OPA1 expression, defined as the overlapping
352 gene set identified by differential expression and feature selection methods, were identified by
353 ShinyGO⁷⁰ (version 0.80). All genes expressed in GTEx LV samples were used as background
354 and an FDR cutoff of 0.01, and minimum pathway size of 10 were applied to KEGG⁷¹ and gene
355 ontology⁷² term enrichment analysis to identify the top 10 enriched terms and corresponding
356 values for each.

357 **Interaction networks**

358 The STRING database^{30,31} was used to construct interaction networks between the overlapping
359 gene sets in our GTEx analysis. Networks were constructed based on a medium confidence
360 threshold defined by STRING using all interactions sources, with edge thickness proportional to
361 the level of interaction evidence from the various sources. Nodes are coloured by clusters and
362 OPA1 is highlighted.

363 **Animal studies**

364 All experiments involving mice were conducted in accordance with the principles of the
365 Canadian Council of Animal Care and were approved by the Animal Care Committee of the
366 University of Ottawa (UOHI-AUP-2909). Male and female OPA1-OE mice were a kind gift
367 from Dr. Luca Scorrano^{15,73}. Mice were genotyped using the following primers:

368 Transgenic allele (expected size 1200bp):

369 M_OPA1TG_FWD: 5'-GCA ATG ACG TGG TCC TGT TTTG-3'

370 M_OPA1TG_REV: 5'-GAT AGG TCA GGT AAG CAA GCA AC-3'

371 Wildtype allele (expected size 400bp):

372 M_WT_FWD: 5'-CTC CGG AAA GCA GTG AGG TAA G-3'

373 M_WT_REV: 5'-GAG GGA GAA AAA TGC GGA GTG-3'

374 Animals were housed in 12hr/12hr light cycle with access to standard chow and water.

375 **Transverse aortic constriction model**

376 Pressure-overload was induced using a modified transverse aortic constriction model. First, the
377 mice were prepared with three analgesics – buprenorphine (0.05mg/kg S.C. 60 minutes prior to
378 surgery; Meloxicam, 1 mg/kg, S.C. 60 minutes prior to surgery and daily for 3 consecutive days;
379 Buprenorphine Slow Release (lasting 72 hours), 1.2 mg/kg, S.C. prior to start of surgery). 2-4%
380 Isoflurane was used as the anesthetic throughout the surgical operation. Mice were intubated
381 using a 20-gauge intravenous catheter attached to a ventilator set to 130-150 breaths/min with a
382 tidal volume of 0.2mL. Once a sterile incision site was prepared, a transverse incision was made
383 and both layers of the thoracic muscles were separated. The chest cavity was opened at the level
384 of the second intercostal space and a chest retractor was used to spread the opening. The
385 descending aorta was bluntly dissected out visually and a 6-0 silk was passed around the aorta
386 using a Surgipro needle. The silk was tightened around a blunted 26g needle placed parallel to
387 the aorta and secured with two knots. The chest retractor was removed, and the chest cavity was
388 closed with a 6-0 suture tie. Mice remained on the ventilator until spontaneous breathing and
389 received 0.5 mL 37°C S.C. saline injection. Mice were monitored in an incubator with
390 supplemental oxygen (1-2 L/min) at 30°C and then returned to the standard housing rooms after
391 recovery.

392

393 **2D and 4D Echocardiography**

394 Cardiac function was measured using a Vevo3100 System with an MX400 transducer
395 (FUJIFILM VisualSonics, Toronto). Mice were anesthetized using 1.5 -3% isoflurane and 1.5
396 L/min oxygen. Heart rate, respiratory rate and temperature were monitored throughout all 2- and
397 4-dimensional imaging. 2-dimensional images in PLAX B mode and SAX B and M mode were
398 taken at baseline, 5 weeks, 8 weeks and 12weeks post-TAC surgery. Vevo LAB (5.8.2) was used
399 for all 2D analyses.

400 4D mode was used to acquire SAX 4D images using a step size of 0.127 mm and frame rate of
401 400 Hz. 4D strain parameters were analyzed as previous described^{33,34,74} using a custom
402 MATLAB (MathWorks, USA) graphical user interface.

403 **Histological analyses**

404 Heart tissue was fixed in 10% formalin and processed for paraffin-embedding. 4 µm sections
405 were stained with Masson's trichrome to assess collagen. ImageJ Software and the Color
406 Deconvolution tool was used to quantify interstitial and perivascular fibrosis.

407 **High resolution respirometry in permeabilized cardiac fibers**

408 Mitochondrial oxygen consumption was measured using the Oxygraph-2k with an attached
409 fluorometer (OROBOROS Instruments, Innsbruck, Austria). Left ventricular apex tissue was
410 isolated and immediately placed in a 60mm dish containing BIOPS buffer (in mM: CaK₂EGTA
411 2.77; K₂EGTA 7.23; Na₂ATP 5.77; MgCl₂*6H₂O 6.56; taurine 20; Na⁺-2-phosphocreatine 15;
412 imidazole 20; DTT 0.5; MES 50; pH 7.; 4 °C). Cardiac myofibers were gently teased apart using
413 fine-tip tweezers and transferred to a 24 well plate. Fibers were permeabilized using 50 µg/ml

414 saponin in BIOPS for 30 mins. Fibers were washed three times in Miro5 buffer (in mM: 0.5 mM
415 ethylene glycol tetraacetic acid, 3 mM MgCl₂H₂O, 20 mM taurine, 10 mM KH₂PO₄, 20 mM N-
416 2-hydroxyethylpiperazine-N-2-ethane sulfonic acid, 110 mM d-sucrose, 0.1% bovine serum
417 albumin and 60 mM lactobionic acid; pH 7.1, 4 degrees) for 10 mins. Fibers were blotted dry,
418 weighed, and immediately added to the Oxygraph chambers. All samples were run in duplicate at
419 37 °C with a stirring speed of 750 rpm. Hydrogen peroxide emission was measured
420 simultaneously using the fluorimeter with the LED2-Module (525 nM) following the addition of
421 10 µM Amplex UltraRed, 1 U/mL horseradish peroxidase (HRP) and 5 U/mL superoxide
422 dismutase (SOD). The following SUIT protocol was used to assess mitochondrial bioenergetic
423 function: malate (2 mM), palmitoyl carnitine (5mM) (FAO Leak), ADP (5 mM), Mg²⁺ (5 mM)
424 (FAO OXPHOS), pyruvate (5 mM), glutamate (10mM), ADP (5 mM), Mg²⁺ (5 mM) (FAO + CI
425 OXPHOS), succinate (10 mM) (FAO+CI+CII OXPHOS), ADP (5 mM), Mg²⁺ (5 mM),
426 Oligomycin (2 µg/mL) (FAO+CI+CII Leak). All values were corrected for non-mitochondrial
427 respiration.

428 **Enzyme activities**

429 Citrate synthase activity was measured in protein lysates, as previously described⁷⁵. Briefly,
430 activity was measured by calculating the rate of absorbance at 412 nM in 50 mM Tris-HCl (pH
431 8.0), with 0.2 mM DTNB, 0.1 mM acetyl-CoA and 0.25 mM oxaloacetate as the starter chemical
432 using the BioTek Synergy Mx Microplate Reader (BioTek Instruments Inc). Enzyme activity
433 was calculated using the extinction coefficient of 13.6 mM⁻¹cm⁻¹ for citrate synthase.

434 **Mitochondrial/nuclear DNA ratio**

435 DNA was isolated from left ventricular tissue as previously described⁷⁶. Briefly, tissue was
436 homogenized in DNA lysis buffer (5 mM EDTA, 0.2% SDS, 200 mM NaCl, 100 mM Tris, pH
437 8.0) and incubated overnight with proteinase K (ThermoFisher, #25530049). DNA was extracted
438 using phenol/chloroform/isoamyl alcohol (25:24:1; PCIAA) and concentrations were measured
439 using the Nanodrop 2000 (ThermoFisher). qPCR was run using the SsoAdvanced Universal
440 SYBR Green Supermix (Bio-Rad, #1725272) and run on the CFX96 (Bio-Rad) according to
441 manufacturer's protocol. Mitochondrial-encoded gene (*Nd1* and *16sRNA*) CT values were
442 normalized to nuclear-encoded genes (*Hk2* and *B2m*) using the delta delta CT method⁷⁷. Primer
443 sequences are shown in Table S1.

444 **RNA Extraction and Quantitative PCR**

445 Flash frozen left ventricle tissue was homogenized in Trizol (ThermoFisher, #15596026) using
446 the MagNA Lyser (Roche, Germany). RNA was isolated according to manufacturers instructions
447 and equalized using Ultrapure H2O (ThermoFisher, #10977015). cDNA was synthesized using
448 the All-In-One 5X RT MasterMix (ABM, #G592). qPCR was performed using the SsoAdvanced
449 Universal SYBR Green Supermix (Bio-Rad, #1725272) and run on the CFX96 (Bio-Rad).
450 Relative transcript expression was calculated using the delta delta CT method⁷⁷. Genes of interest
451 were normalized to the geometric mean of the Ct values of *B2m* and *Eef1e1*. Primer sequences
452 are shown in Table S1.

453 **Statistical analysis**

454 All statistical tests were computed through their respective Scipy method⁶². Comparison of
455 overall GTEx gene expression was done by Mann-Whitney U test⁷⁸ and OPA1 expression in
456 young and old samples by two-sample T-test⁷⁹. Chi-square test was used to compare pathology
457 occurrence in groups of GTEx histological data⁸⁰.

458 Unless stated or specified, all data are shown as mean \pm SEM. GraphPad Prism software 10.2.3
459 was used for all statistical analyses of the *in vivo* results. For analyses comparing two groups, an
460 unpaired two-tailed Student's t-test was used. In all analyses containing two factors (genotype
461 and surgical intervention), data were analyses using a two-way ANOVA with Tukey's *post-hoc*
462 tests.

463 **Acknowledgments**

464 This work was funded by a Heart and Stroke Grant-in-Aid to M-E.H. and a New Investigator
465 Award to E.E.M. and Canadian Institute of Health Research (E.E.M. Grant Number 186076, M-
466 E.H. Grant Number 143278). CF-M and SP were supported by Frederick Banting and Charles
467 Best Canada Graduate Scholarships Doctoral Awards. L.K was supported by an Ontario
468 Graduate Scholarship. T.K.T.S. was supported by a Vanier Canada Scholarship. S.M. was
469 supported by an OISB-NRC Graduate Student Scholarship. M.C. was supported by a Faculty of
470 Medicine Summer Studentship Program Award. We thank Dr. Luca Scorrano, Dr. Ruth Slack
471 and Dr. Mireille Khacho for providing us with the OPA1-OE mice; Megan Fortier for technical
472 assistance; and Louise Pelletier Histology Core Facility (RRID: SCR_021737) for technical
473 assistance.

474 We also acknowledge Conner C. Earl and the Cardiovascular Imaging Research Laboratory
475 Group at Purdue University for their help and training with the 4D ultrasound graphical user
476 interface and strain analysis code.

477 Schematic figures were created using Biorender.com (publication license: LA277WSPMS).

478 **References**

- 479 1. Yan, T. *et al.* Burden, Trends, and Inequalities of Heart Failure Globally, 1990 to 2019:
480 A Secondary Analysis Based on the Global Burden of Disease 2019 Study. *J. Am. Heart Assoc.*
481 **12**, e027852 (2023).
- 482 2. Khan, M. S. *et al.* Global epidemiology of heart failure. *Nat. Rev. Cardiol.* (2024)
483 doi:10.1038/s41569-024-01046-6.
- 484 3. McDonald, M. *et al.* CCS/CHFS Heart Failure Guidelines Update: Defining a New
485 Pharmacologic Standard of Care for Heart Failure With Reduced Ejection Fraction. *Can. J.*
486 *Cardiol.* **37**, 531–546 (2021).
- 487 4. Sabbah, H. N. Targeting the Mitochondria in Heart Failure. *JACC Basic Transl. Sci.* **5**,
488 88–106 (2020).
- 489 5. Brown, D. A. *et al.* Mitochondrial function as a therapeutic target in heart failure. *Nat.*
490 *Rev. Cardiol.* **14**, 238–250 (2017).
- 491 6. Hinton, A. *et al.* Mitochondrial Structure and Function in Human Heart Failure. *Circ.*
492 *Res.* **135**, 372–396 (2024).
- 493 7. Chen, Y., Liu, Y. & Dorn, G. W. Mitochondrial Fusion is Essential for Organelle
494 Function and Cardiac Homeostasis. *Circ. Res.* **109**, 1327–1331 (2011).
- 495 8. Wai, T. & Langer, T. Mitochondrial Dynamics and Metabolic Regulation. *Trends*
496 *Endocrinol. Metab.* **27**, 105–117 (2016).
- 497 9. Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic Cleavage of Opa1
498 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative
499 Phosphorylation. *Cell Metab.* **19**, 630–641 (2014).
- 500 10. Frezza, C. *et al.* OPA1 controls apoptotic cristae remodeling independently from
501 mitochondrial fusion. *Cell* **126**, 177–189 (2006).
- 502 11. Chen, L., Gong, Q., Stice, J. P. & Knowlton, A. A. Mitochondrial OPA1, apoptosis, and
503 heart failure. *Cardiovasc. Res.* **84**, 91–99 (2009).
- 504 12. Sabbah, H. N., Gupta, R. C., Singh-Gupta, V., Zhang, K. & Lanfear, D. E. Abnormalities
505 of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy
506 with Elamipretide. *Cardiovasc. Drugs Ther.* **32**, 319–328 (2018).
- 507 13. Piquereau, J. *et al.* Down-regulation of OPA1 alters mouse mitochondrial morphology,
508 PTP function, and cardiac adaptation to pressure overload. *Cardiovasc. Res.* **94**, 408–417 (2012).
- 509 14. Chen, L. *et al.* OPA1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial
510 Dysfunction and mtDNA Instability. *J. Am. Heart Assoc.* **1**, e003012 (2012).
- 511 15. Varanita, T. *et al.* The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway
512 Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. *Cell Metab.* **21**, 834–844 (2015).

513 16. Wai, T. *et al.* Imbalanced OPA1 processing and mitochondrial fragmentation cause heart
514 failure in mice. *Science* **350**, aad0116 (2015).

515 17. Acin-Perez, R. *et al.* Ablation of the stress protease OMA1 protects against heart failure
516 in mice. *Sci. Transl. Med.* **10**, eaan4935 (2018).

517 18. Ahola, S. *et al.* Opa1 processing is dispensable in mouse development but is protective in
518 mitochondrial cardiomyopathy. *Sci. Adv.* **10**, eadp0443 (2024).

519 19. Guo, Y. *et al.* Enhancing fatty acid utilization ameliorates mitochondrial fragmentation
520 and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart.
521 *Cardiovasc. Res.* **114**, 979–991 (2018).

522 20. Semenzato, M. *et al.* Oxidization of optic atrophy 1 cysteines occurs during heart
523 ischemia-reperfusion and amplifies cell death by oxidative stress. *Redox Biol.* **63**, 102755 (2023).

524 21. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–
525 585 (2013).

526 22. GTEx Consortium. Genetic effects on gene expression across human tissues. *Nature* **550**,
527 204–213 (2017).

528 23. Carithers, L. J. *et al.* A Novel Approach to High-Quality Postmortem Tissue
529 Procurement: The GTEx Project. *Biopreservation Biobanking* **13**, 311–319 (2015).

530 24. Ali, M. A., Gioscia-Ryan, R., Yang, D., Sutton, N. R. & Tyrrell, D. J. Cardiovascular
531 aging: spotlight on mitochondria. *Am. J. Physiol.-Heart Circ. Physiol.* **326**, H317–H333 (2024).

532 25. Lesnfsky, E. J., Chen, Q. & Hoppel, C. L. Mitochondrial Metabolism in Aging Heart.
533 *Circ. Res.* **118**, 1593–1611 (2016).

534 26. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics.
535 *Chemom. Intell. Lab. Syst.* **58**, 109–130 (2001).

536 27. Kira, K. & Rendell, L. A. A Practical Approach to Feature Selection. in *Machine*
537 *Learning Proceedings 1992* 249–256 (Elsevier, 1992). doi:10.1016/B978-1-55860-247-2.50037-
538 1.

539 28. Moore, J. H. & White, B. C. Tuning ReliefF for Genome-Wide Genetic Analysis. in
540 *Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics* (eds.
541 Marchiori, E., Moore, J. H. & Rajapakse, J. C.) vol. 4447 166–175 (Springer Berlin Heidelberg,
542 Berlin, Heidelberg, 2007).

543 29. Andersen, C. M. & Bro, R. Variable selection in regression—a tutorial. *J. Chemom.* **24**,
544 728–737 (2010).

545 30. Szklarczyk, D. *et al.* The STRING database in 2021: customizable protein–protein
546 networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic*
547 *Acids Res.* **49**, D605–D612 (2021).

548 31. Szklarczyk, D. *et al.* The STRING database in 2023: protein–protein association
549 networks and functional enrichment analyses for any sequenced genome of interest. *Nucleic
550 Acids Res.* **51**, D638–D646 (2023).

551 32. Tarnavski, O. *et al.* Mouse cardiac surgery: comprehensive techniques for the generation
552 of mouse models of human diseases and their application for genomic studies. *Physiol.
553 Genomics* **16**, 349–360 (2004).

554 33. Damen, F. W., Salvas, J. P., Pereyra, A. S., Ellis, J. M. & Goergen, C. J. Improving
555 characterization of hypertrophy-induced murine cardiac dysfunction using four-dimensional
556 ultrasound-derived strain mapping. *Am. J. Physiol.-Heart Circ. Physiol.* **321**, H197–H207
557 (2021).

558 34. Dann, M. M. *et al.* Quantification of murine myocardial infarct size using 2-D and 4-D
559 high-frequency ultrasound. *Am. J. Physiol. Heart Circ. Physiol.* **322**, H359–H372 (2022).

560 35. Huang, M. *et al.* Evaluation of the transverse aortic constriction model in ICR and
561 C57BL/6J mice. *Front. Physiol.* **13**, 1026884 (2022).

562 36. Richards, D. A. *et al.* Distinct Phenotypes Induced by Three Degrees of Transverse
563 Aortic Constriction in Mice. *Sci. Rep.* **9**, 5844 (2019).

564 37. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac Energy
565 Metabolism in Heart Failure. *Circ. Res.* **128**, 1487–1513 (2021).

566 38. Hahn, V. S. *et al.* Myocardial Gene Expression Signatures in Human Heart Failure With
567 Preserved Ejection Fraction. *Circulation* **143**, 120–134 (2021).

568 39. Almind, G. J. *et al.* Dominant optic atrophy in Denmark – report of 15 novel mutations in
569 OPA1, using a strategy with a detection rate of 90%. *BMC Med. Genet.* **13**, 65 (2012).

570 40. Ferré, M. *et al.* Molecular screening of 980 cases of suspected hereditary optic
571 neuropathy with a report on 77 novel OPA1 mutations. *Hum. Mutat.* **30**, E692–E705 (2009).

572 41. Liguori, M. *et al.* A phenotypic variation of dominant optic atrophy and deafness
573 (ADOAD) due to a novel OPA1 mutation. *J. Neurol.* **255**, 127–129 (2008).

574 42. Liskova, P. *et al.* Novel OPA1 missense mutation in a family with optic atrophy and
575 severe widespread neurological disorder. *Acta Ophthalmol. (Copenh.)* **91**, (2013).

576 43. Hudson, G. *et al.* Mutation of OPA1 causes dominant optic atrophy with external
577 ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder
578 of mtDNA maintenance. *Brain* **131**, 329–337 (2008).

579 44. Kuba, K. *et al.* Impaired Heart Contractility in Apelin Gene–Deficient Mice Associated
580 With Aging and Pressure Overload. *Circ. Res.* **101**, (2007).

581 45. Le Page, S. *et al.* Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1^{+/−} Mouse
582 Model. *PLOS ONE* **11**, e0164066 (2016).

583 46. Cai, W., Chong, K., Huang, Y., Huang, C. & Yin, L. Empagliflozin improves
584 mitochondrial dysfunction in diabetic cardiomyopathy by modulating ketone body metabolism
585 and oxidative stress. *Redox Biol.* **69**, 103010 (2024).

586 47. Lyu, Y. *et al.* Empagliflozin ameliorates cardiac dysfunction in heart failure mice via
587 regulating mitochondrial dynamics. *Eur. J. Pharmacol.* **942**, 175531 (2023).

588 48. Xin, T. & Lu, C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes
589 against apoptosis following myocardial infarction. *Aging* **12**, 4474–4488 (2020).

590 49. Liu, C. *et al.* Paeonol promotes Opa1-mediated mitochondrial fusion via activating the
591 CK2 α -Stat3 pathway in diabetic cardiomyopathy. *Redox Biol.* **46**, 102098 (2021).

592 50. Sun, H. *et al.* Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.
593 *Circulation* **133**, 2038–2049 (2016).

594 51. Uddin, G. M. *et al.* Impaired branched chain amino acid oxidation contributes to cardiac
595 insulin resistance in heart failure. *Cardiovasc. Diabetol.* **18**, 86 (2019).

596 52. Fearnley, C. J., Roderick, H. L. & Bootman, M. D. Calcium Signaling in Cardiac
597 Myocytes. *Cold Spring Harb. Perspect. Biol.* **3**, a004242–a004242 (2011).

598 53. Garnier, A. *et al.* Depressed mitochondrial transcription factors and oxidative capacity in
599 rat failing cardiac and skeletal muscles. *J. Physiol.* **551**, 491–501 (2003).

600 54. Abdurrachim, D. *et al.* Diabetic db/db mice do not develop heart failure upon pressure
601 overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and
602 functional adaptations. *Cardiovasc. Res.* **113**, 1148–1160 (2017).

603 55. Schwarzer, M., Schrepper, A., Amorim, P. A., Osterholt, M. & Doenst, T. Pressure
604 overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal
605 mitochondria. *Am. J. Physiol.-Heart Circ. Physiol.* **304**, H529–H537 (2013).

606 56. Picard, M. *et al.* Mitochondrial functional impairment with aging is exaggerated in
607 isolated mitochondria compared to permeabilized myofibers. *Aging Cell* **9**, 1032–1046 (2010).

608 57. Scheiber, D. *et al.* High-resolution respirometry in human endomyocardial biopsies
609 shows reduced ventricular oxidative capacity related to heart failure. *Exp. Mol. Med.* **51**, 1–10
610 (2019).

611 58. Cordero-Reyes, A. M. *et al.* Freshly isolated mitochondria from failing human hearts
612 exhibit preserved respiratory function. *J. Mol. Cell. Cardiol.* **68**, 98–105 (2014).

613 59. Shirakabe, A. *et al.* Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role
614 Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. *Circulation*
615 **133**, 1249–1263 (2016).

616 60. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**, 90–95
617 (2007).

618 61. Waskom, M. *seaborn: statistical data visualization*. *J. Open Source Softw.* **6**, 3021 (2021).

619 62. Virtanen, P. *et al.* *SciPy 1.0: fundamental algorithms for scientific computing in Python*.
620 *Nat. Methods* **17**, 261–272 (2020).

621 63. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential
622 expression analysis of RNA-seq data. *Genome Biol.* **11**, R25 (2010).

623 64. Hardy, J. A. *et al.* The patients dying after long terminal phase have acidotic brains;
624 implications for biochemical measurements on autopsy tissue. *J. Neural Transm.* **61**, 253–264
625 (1985).

626 65. Biospecimen Research Database [Internet]. Bethesda (MD): National Cancer Institute,
627 Biorepositories and Biospecimen Research Branch; [cited 2024 August 15]. Available from
628 <http://biospecimens.cancer.gov/brd>.

629 66. Seabold, Skipper, and Josef Perktold. “statsmodels: Econometric and statistical modeling
630 with python.” Proceedings of the 9th Python in Science Conference. 2010. in.

631 67. Pedregosa, F. *et al.* *Scikit-learn: Machine Learning in Python*. *J. Mach. Learn. Res.* **12**,
632 2825–2830 (2011).

633 68. Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M. & Moore, J. H. Benchmarking
634 relief-based feature selection methods for bioinformatics data mining. *J. Biomed. Inform.* **85**,
635 168–188 (2018).

636 69. Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. in *Machine
637 Learning: ECML-94* (eds. Bergadano, F. & Raedt, L.) vol. 784 171–182 (Springer Berlin
638 Heidelberg, Berlin, Heidelberg, 1994).

639 70. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals
640 and plants. *Bioinformatics* **36**, 2628–2629 (2020).

641 71. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG:
642 integrating viruses and cellular organisms. *Nucleic Acids Res.* **49**, D545–D551 (2021).

643 72. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing
644 strong. *Nucleic Acids Res.* **47**, D330–D338 (2019).

645 73. Cogliati, S. *et al.* Mitochondrial Cristae Shape Determines Respiratory Chain
646 Supercomplexes Assembly and Respiratory Efficiency. *Cell* **155**, 160–171 (2013).

647 74. Damen, F. W. *et al.* Application of 4-D ultrasound-derived regional strain and proteomics
648 analysis in *Nkx2-5* -deficient male mice. *Am. J. Physiol.-Heart Circ. Physiol.* **325**, H293–H310
649 (2023).

650 75. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of
651 mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. *Nat. Protoc.* **7**,
652 1235–1246 (2012).

653 76. Guo, W., Jiang, L., Bhasin, S., Khan, S. M. & Swerdlow, R. H. DNA extraction
654 procedures meaningfully influence qPCR-based mtDNA copy number determination.
655 *Mitochondrion* **9**, 261–265 (2009).

656 77. Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-
657 Time Quantitative PCR and the $2^{-\Delta\Delta CT}$ Method. *Methods* **25**, 402–408 (2001).

658 78. Mann, H. B. & Whitney, D. R. On a Test of Whether one of Two Random Variables is
659 Stochastically Larger than the Other. *Ann. Math. Stat.* **18**, 50–60 (1947).

660 79. Student. The Probable Error of a Mean. *Biometrika* **6**, 1–25 (1908).

661 80. Pearson, K. X. On the criterion that a given system of deviations from the probable in the
662 case of a correlated system of variables is such that it can be reasonably supposed to have arisen
663 from random sampling. *Lond. Edinb. Dublin Philos. Mag. J. Sci.* **50**, 157–175 (1900).

664

665 **Figure Legends**

666 **Figure 1. OPA1 expression in top and bottom quintiles of GTEx left ventricle samples. (A)**
667 Schematic of GTEx data processing and analysis. **(B)** Normalized expression values of OPA1.
668 **(C)** Differential gene expression between top and bottom quintiles of OPA1 expression.
669 Significance thresholds are $|1.5|$ median \log_2 fold change and 0.01 adjusted p-values. **(D)**
670 Enriched KEGG pathways in positive (blue) and negative (orange) DEGs between top and
671 bottom expressors. **(E)** Interaction network of positive DEGs with OPA1 (green). Central cluster
672 nodes are coloured blue, non-central clusters are grey. Edges are defined by interaction
673 confidence through STRING evidence sources.

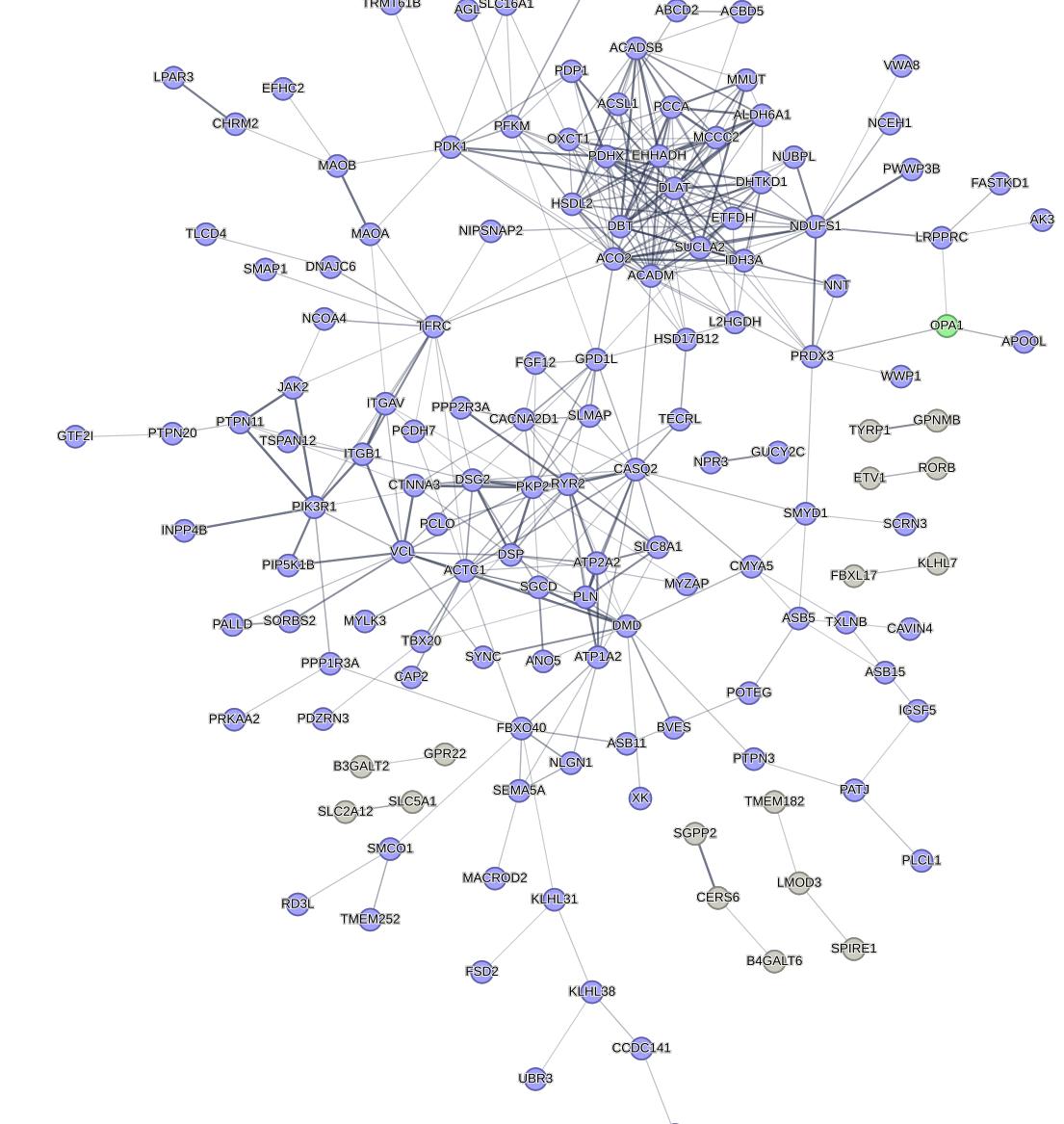
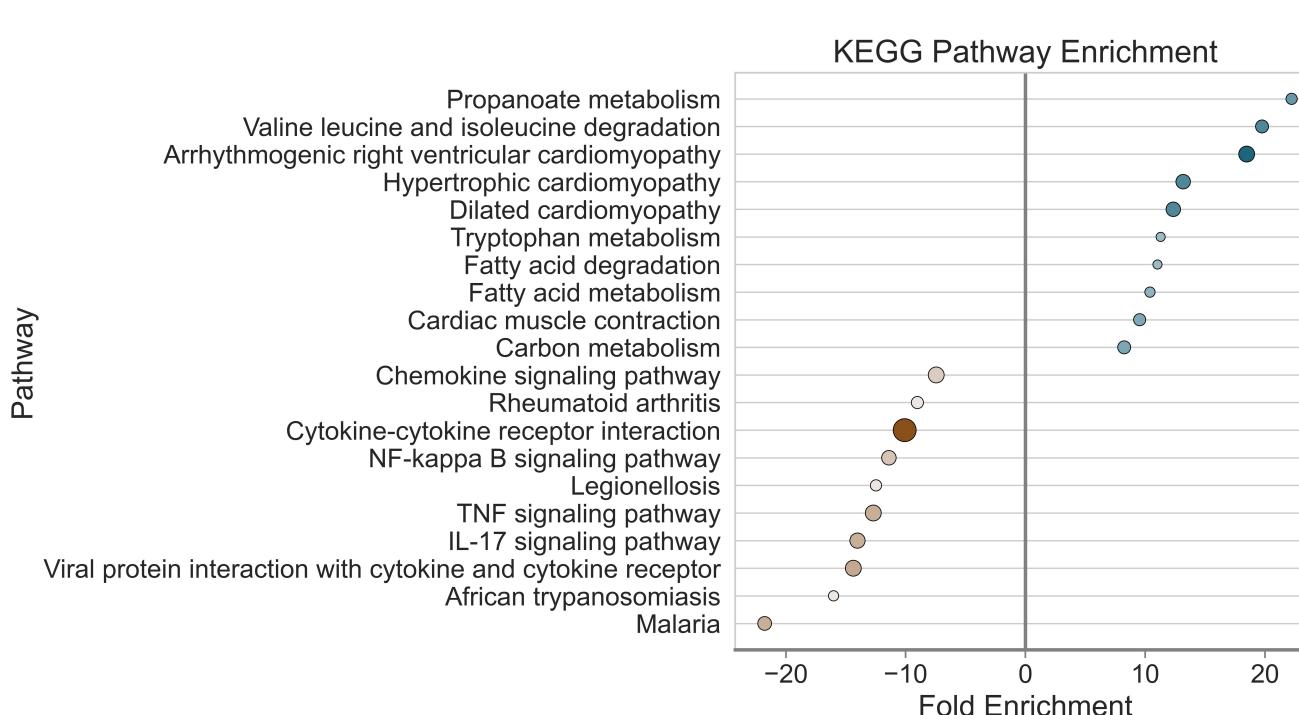
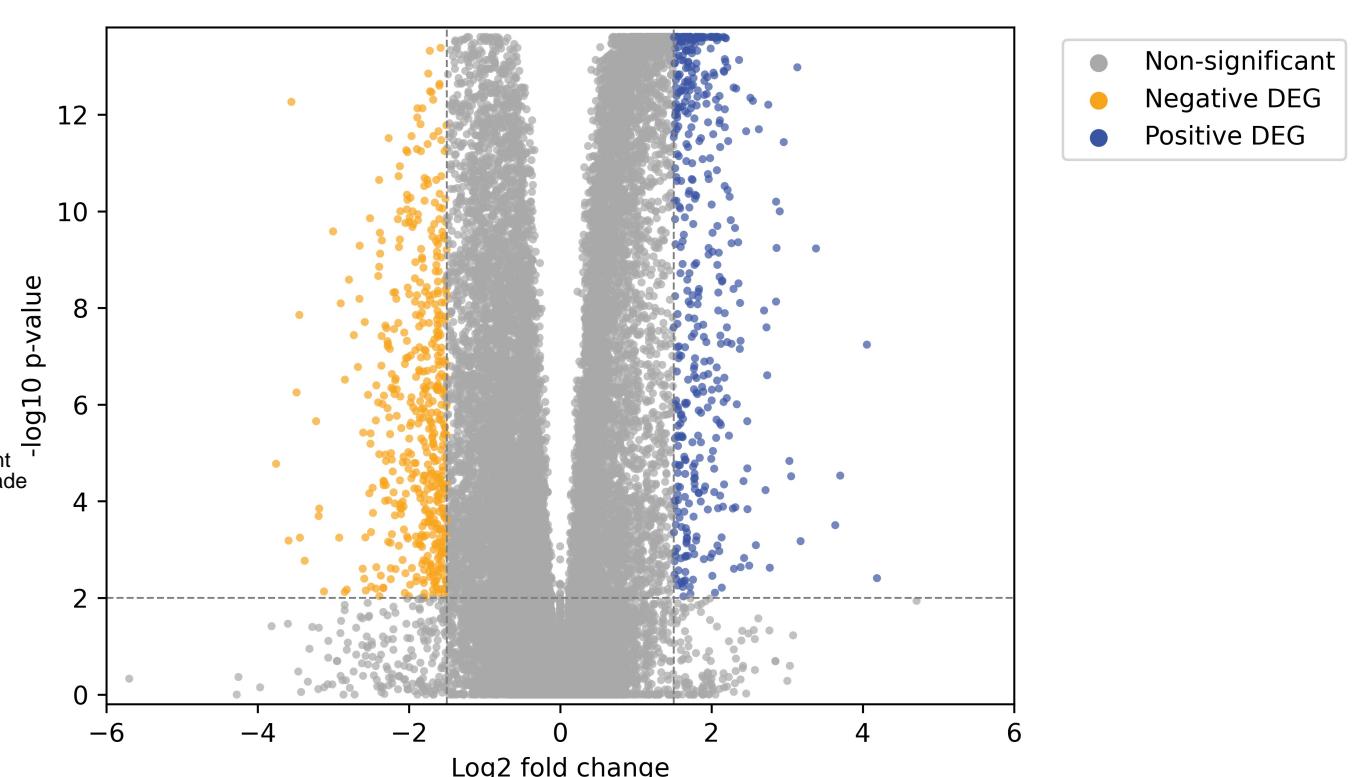
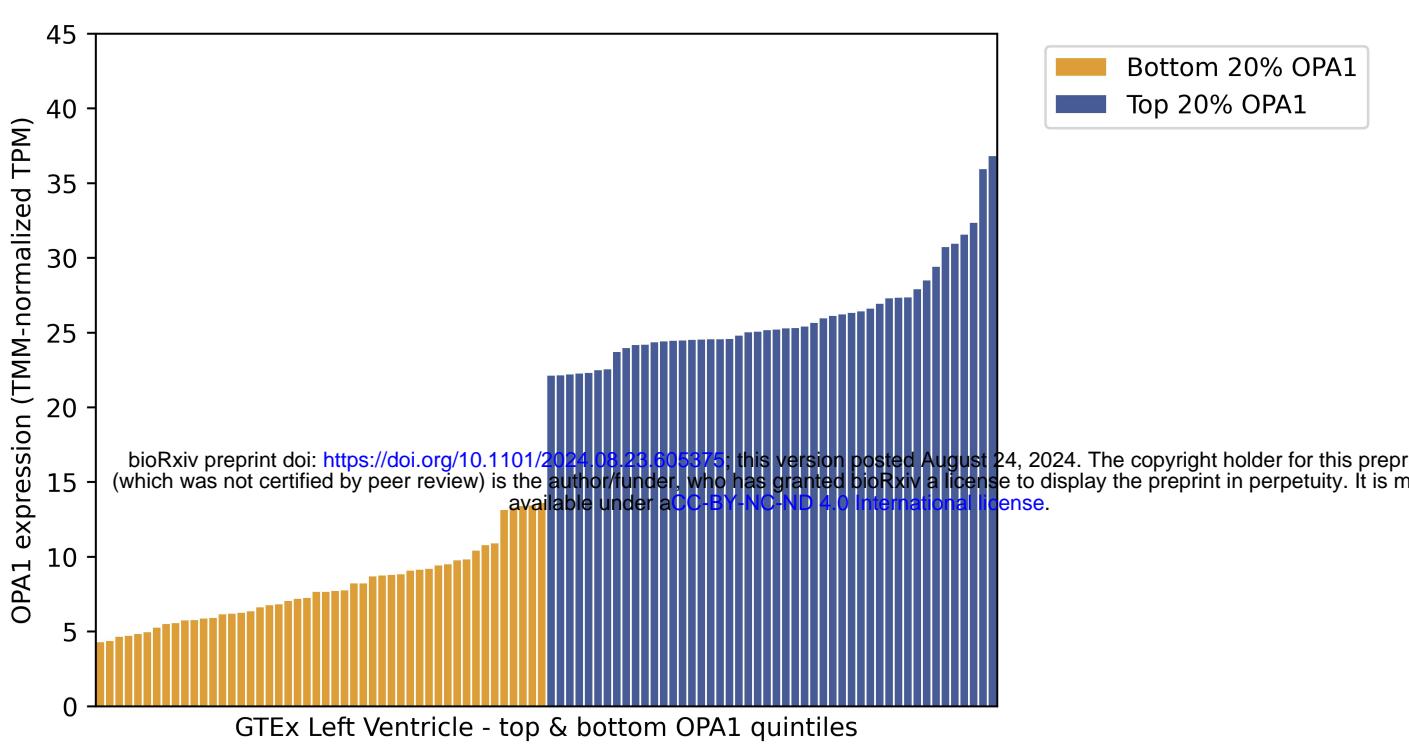
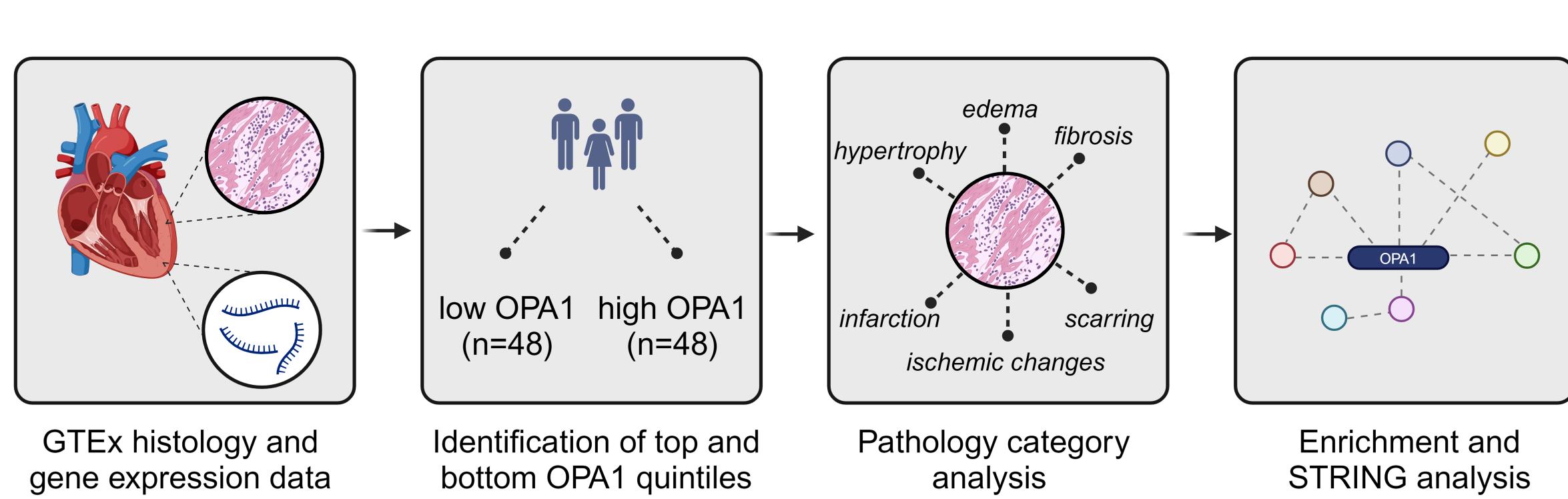
674 **Table 1. Incidence of pathology categories in top and bottom OPA1 quintiles of GTEx left**
675 **ventricle samples.**

676 **Figure 2. OPA1 overexpression mediates cardiac functional protection in a pressure-**
677 **overload model. (A)** Schematic of experimental design and study imaging timepoints. **(B)**
678 Ejection fraction measured by 2D parasternal long axis overall timepoints. **(C)** Ejection fraction
679 measured by 2D parasternal long axis at baseline, 5 weeks, 8 weeks, and 12 weeks post-TAC.
680 **(D)** Representative short axis M-mode images. **(E)** Heart weight to tibia length ratio (HW/TL)
681 and heart weight to body weight (HW/BW) ratio at 12 weeks post-TAC. **(F-I)** 2D parasternal
682 long axis measurements including end diastolic volume (F), end systolic volume (G), stroke
683 volume (H) and cardiac output (I). All data are represented as the mean \pm SEM. P values
684 calculated using a two-way ANOVA with Tukey's post-hoc analysis for (C,E-I).

685 **Figure 3. 4DUS strain analysis identifies changes in global strain parameters post-TAC in**
686 **WT and OPA1-OE mice. (A)** Schematic of global strain orientations. **(B-E)** Global strain
687 parameters including circumferential (B), longitudinal (C), surface area (D), and transmural (E).
688 All data are represented as the mean \pm SEM. P values calculated using a two-way ANOVA with
689 Tukey's post-hoc analysis for (C-F).

690 **Figure 4. Hypertrophic and fibrotic genes are upregulated in WT but not OPA1-OE TAC**
691 **mice. (A)** Representative images of trichrome staining of LV cross sections. **(B-C)**
692 Quantification of perivascular (B) and interstitial fibrosis (C) from trichrome-stained slides. **(D-**
693 **E)** Relative mRNA expression of hypertrophy markers (*Nppa* and *Nppb*) and fibrosis markers
694 (*Tgfb*, *Colla2*, and *Ctgf*) in cardiac tissue at 12 weeks post-TAC. All transcript data are
695 expressed as relative to the geometric mean of *B2m* and *Eef1e1*. All data are represented as the
696 mean \pm SEM. P values calculated using a two-way ANOVA with Tukey's post-hoc analysis for
697 (B-E).

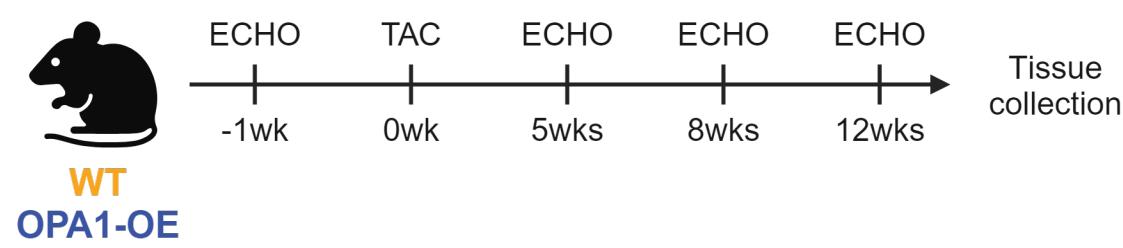
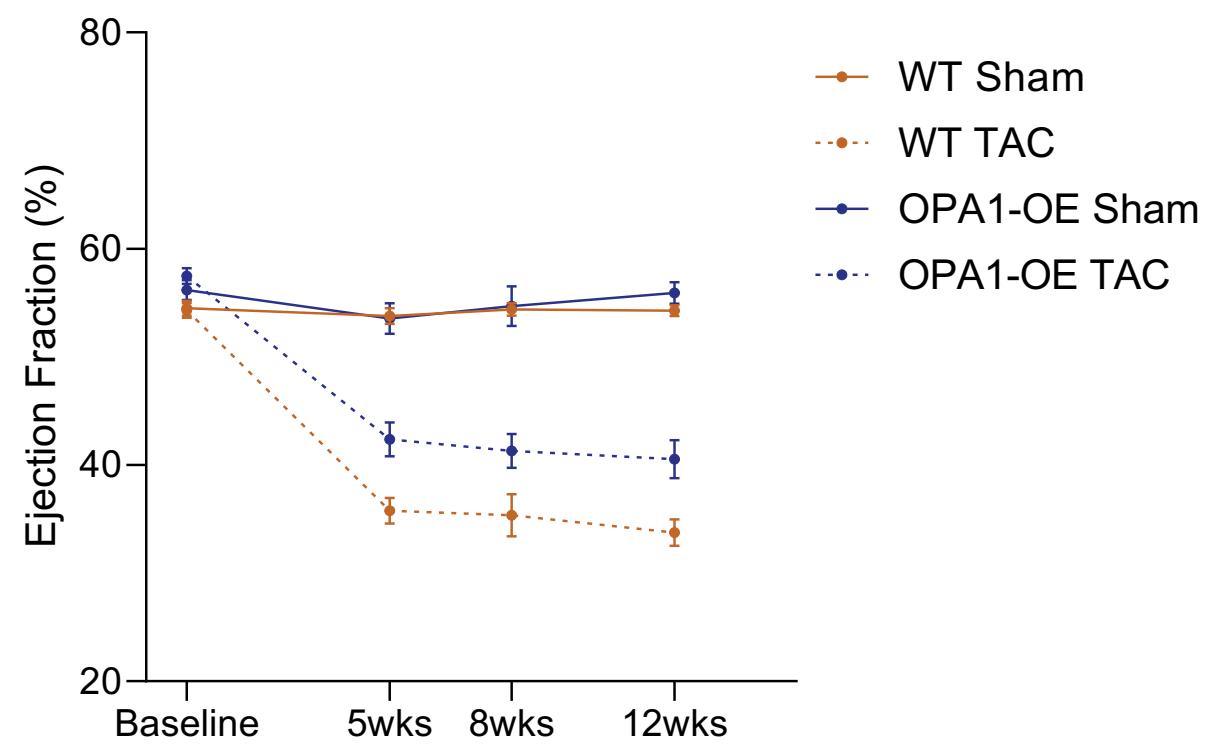
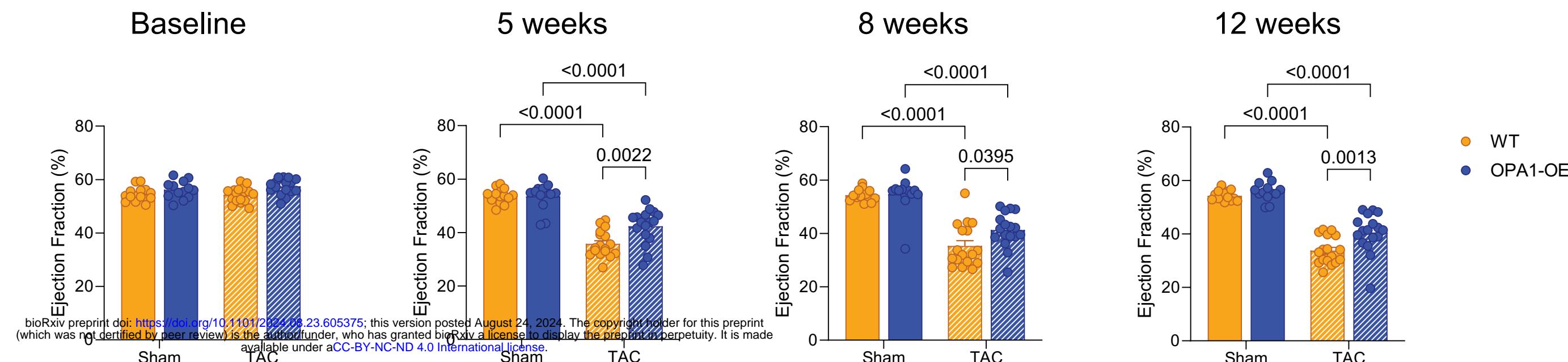
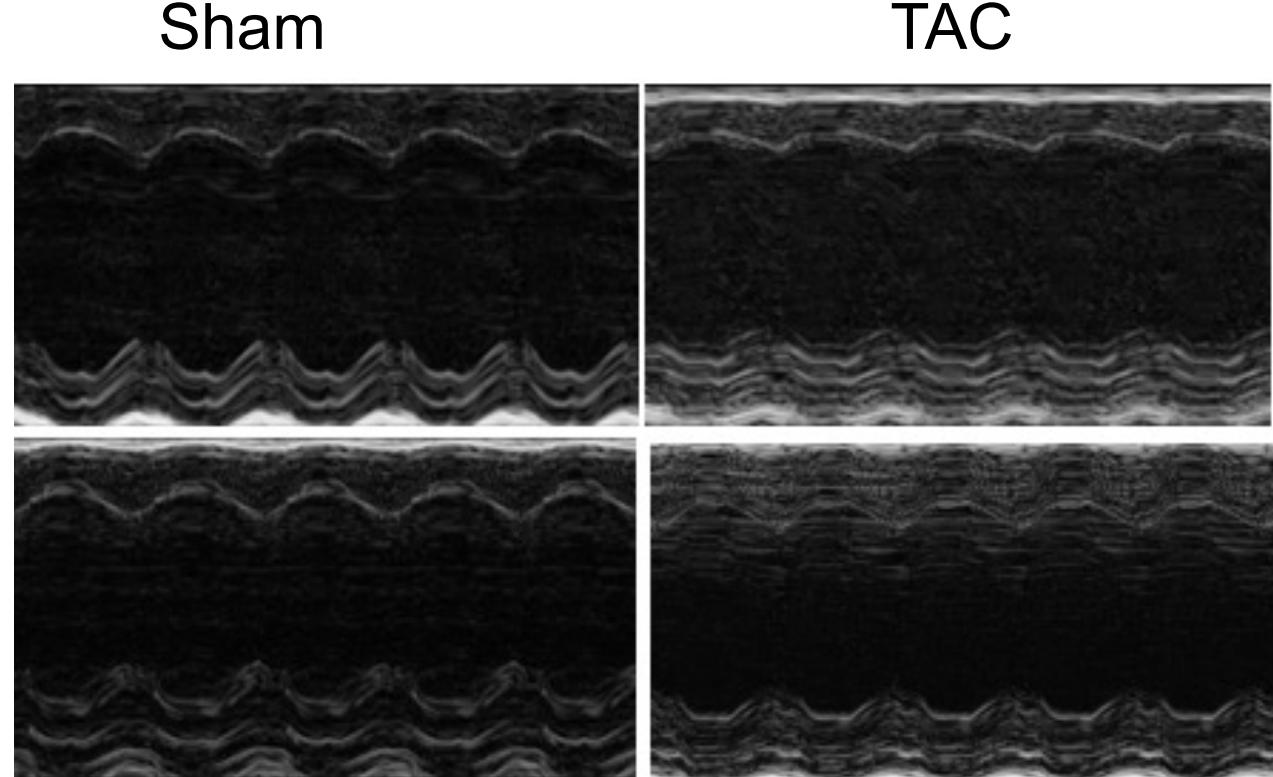
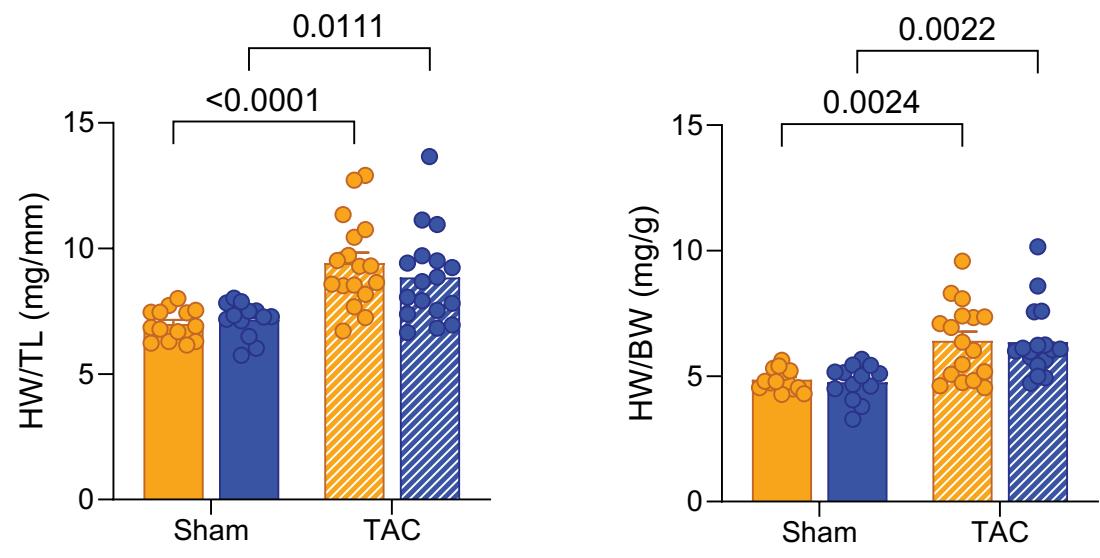
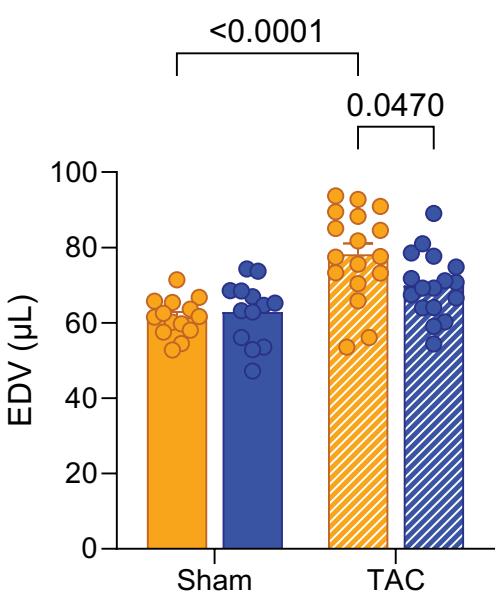
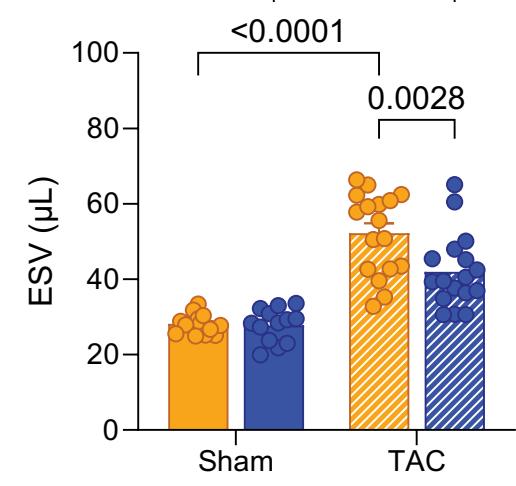
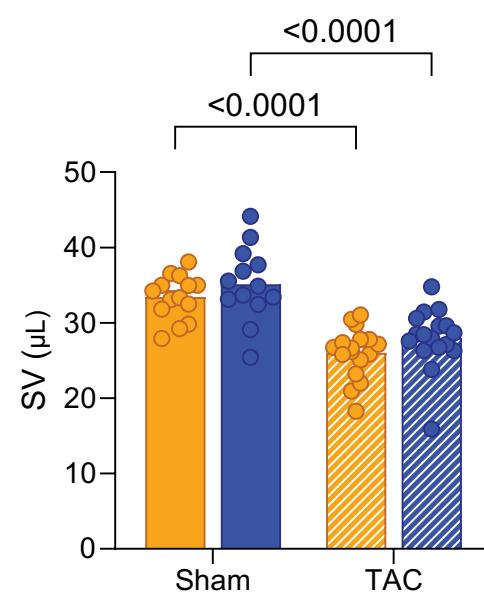
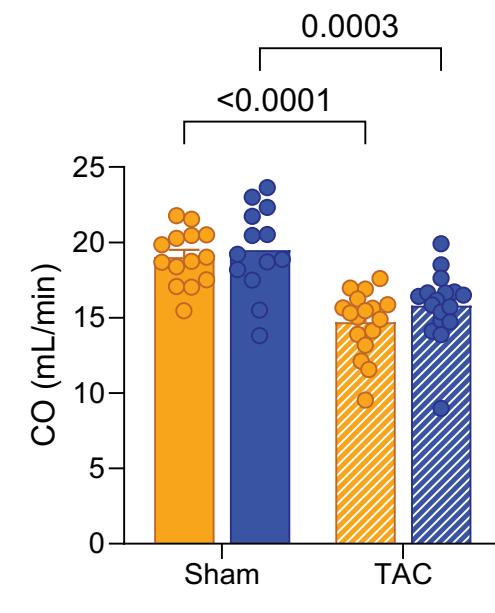
698 **Figure 5. Expression of metabolic and contractile-related genes are higher in OPA1-OE**
699 **TAC mice. (A-F)** Relative mRNA expression of fatty acid metabolism (*Cpt1b*, *Cd36*, and
700 *Acadm*) (A-C), branch chain amino acid metabolism (*Bcat2* and *Bckda*) (D-E) and contraction
701 (*Atp2a2*) (F) in cardiac tissue at 12 weeks post-TAC. All transcript data are expressed as relative
702 to the geometric mean of *B2m* and *Eef1e1*. All data are represented as the mean \pm SEM. P values
703 calculated using a two-way ANOVA with Tukey's post-hoc analysis for (A-F).

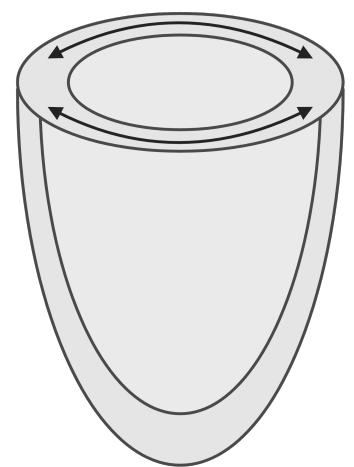
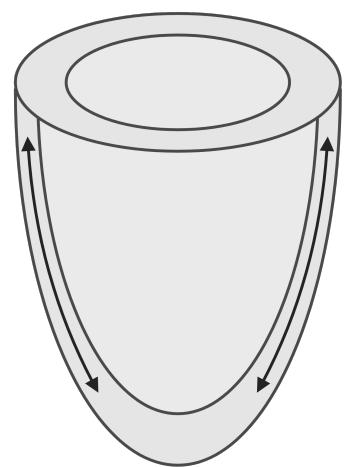
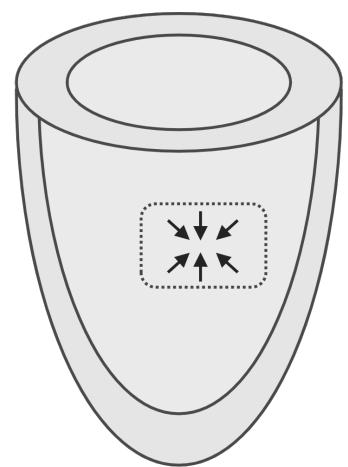
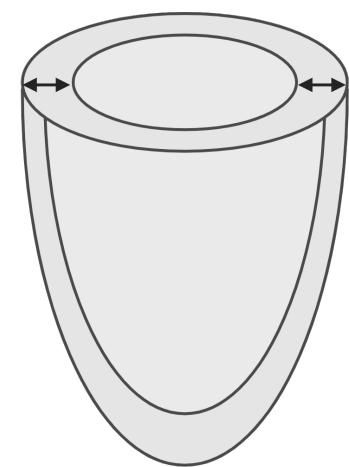
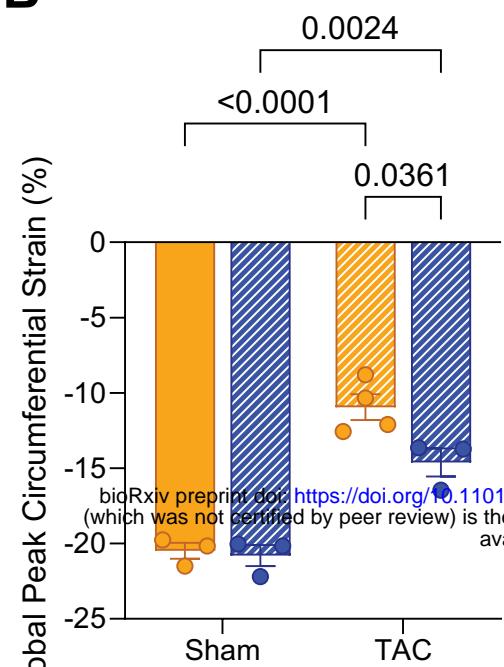
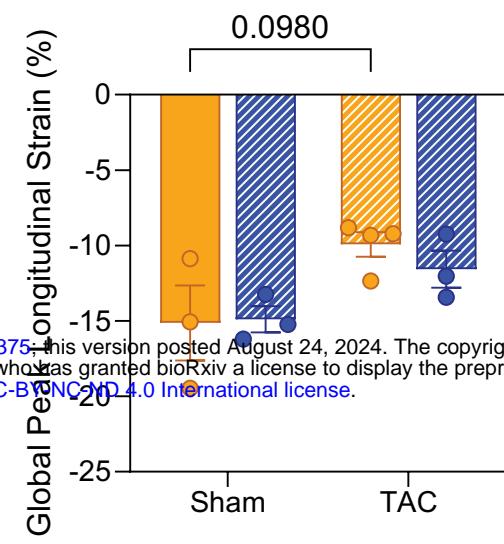
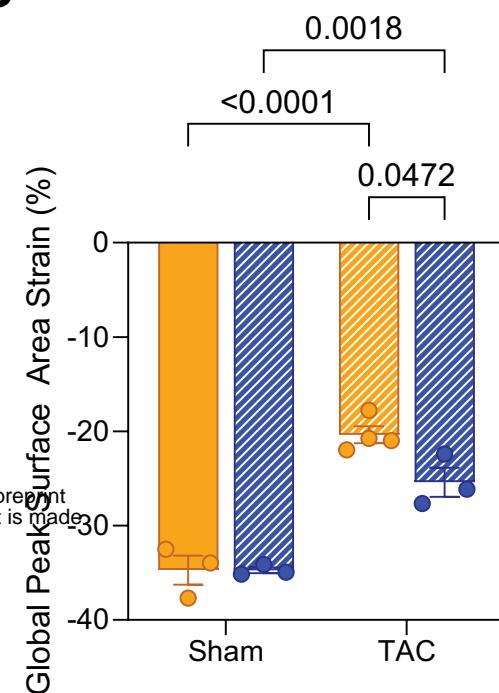
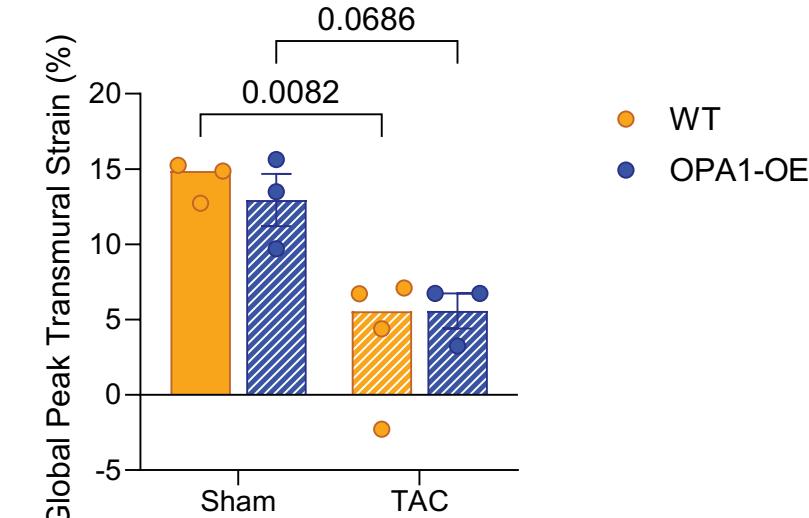





704 **Figure 6. Mitochondria maximal oxidative capacity and hydrogen peroxide emission is**
705 **unchanged in permeabilized myofibers post-TAC. (A-E).** High resolution respirometry
706 measures of oxygen consumption in permeabilized cardiac myofibers. **(F-J)** Hydrogen peroxide
707 emission normalized to oxygen flux. **(M-N)** Ratio of mitochondrial DNA to nuclear DNA
708 measured using primers for *Nd1* and *Hk2* (K) and 16sRNA and B2M (L). **(M)** Citrate synthase
709 activity measured in protein homogenate of cardiac tissue. All data are represented as the mean \pm
710 SEM. P values calculated using a two-way ANOVA with Tukey's post-hoc analysis for (A-F).

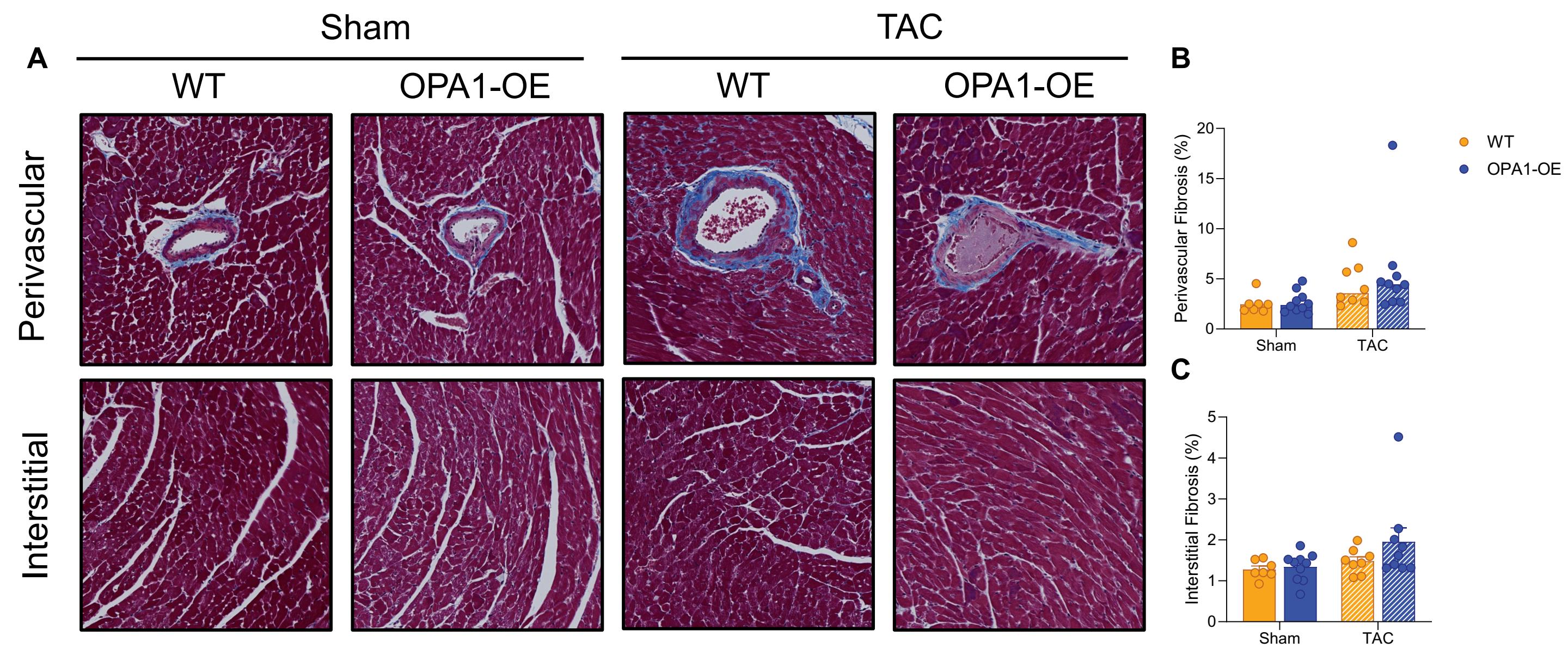
711 **Supplementary Figure 1. Analysis of OPA1 expression in top and bottom quintiles of GTEX**
712 **left ventricle samples. (A)** Distributions of all gene expression values in top and bottom OPA1
713 quintiles. **(B)** OPA1 normalized expression values in samples from individuals under 50
714 ("young") and 50 or older ("old") in top and bottom quintiles. **(C)** Performance of PLS-DA
715 classification of top and bottom OPA1 quintile samples by gene expression. Models are trained
716 with decreasing sized gene sets according to their relative importance by VIP score. The best
717 performing model threshold is indicated. **(D)** Enriched GO cellular component terms in positive
718 (blue) and negative (orange) DEGs between top and bottom expressors. **(E)** Protein-protein
719 interaction network of genes negatively associated with OPA1 expression in LV samples.

720 **Supplementary Figure 2. Heart and lung parameters at 12 weeks post TAC. (A-C)** Cardiac
721 parameters including left ventricle (LV) mass (A), LV end diastole diameter (B), and LV end
722 systolic diameter (C) were measured using 2-dimensional echocardiography m-mode imaging.
723 **(D)** Lung weight/body weight ratio at 12 weeks post-TAC. **(E)** Lung water content was
724 calculated according to the following equation (wet lung weight – dry lung weight)/wet lung
725 weight $\times 100\%$. All data are represented as the mean \pm SEM. P values calculated using an
726 unpaired, two-tailed Student's t-test for (A-E).

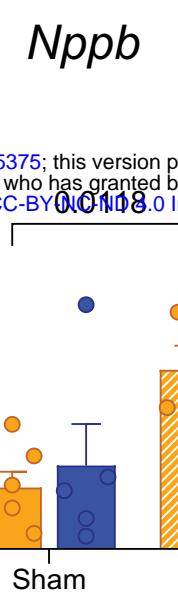
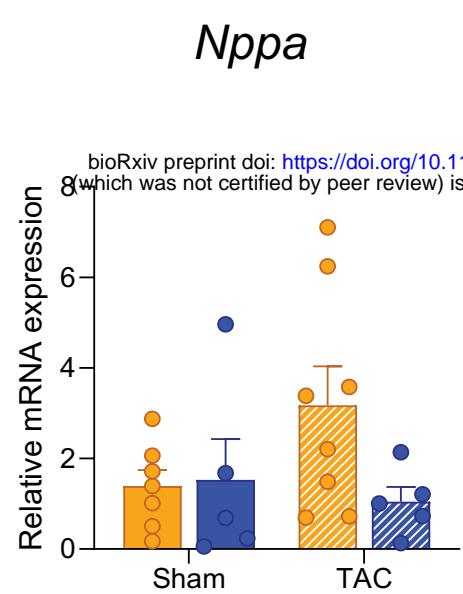
727 **Supplementary Figure 3. Cardiac function is higher in in OPA1-OE compared to WT TAC**
728 **mice. (A)** Ejection fraction and **(B)** fractional shortening were measured using 2-dimensional
729 echocardiography m-mode imaging. All data are represented as the mean \pm SEM. P values
730 calculated using an unpaired, two-tailed Student's t-test for (A-B).










731 **Supplemental Table 1. Primer sequences.**

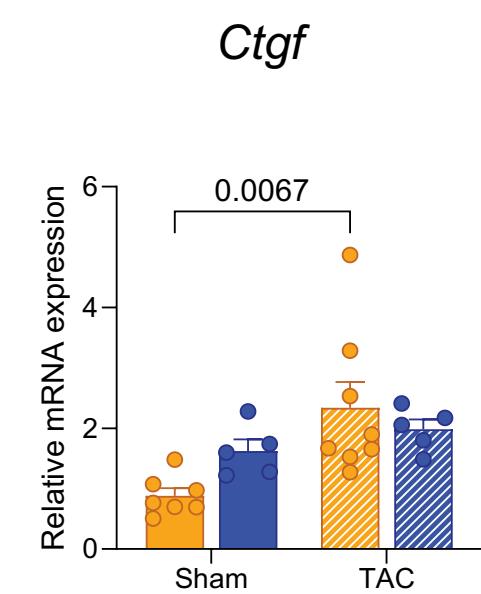
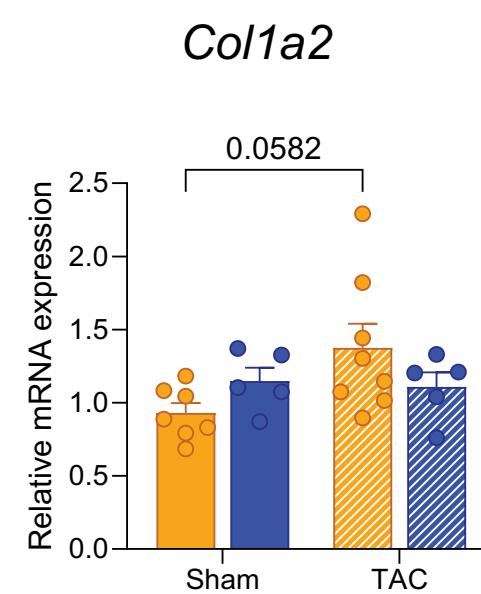
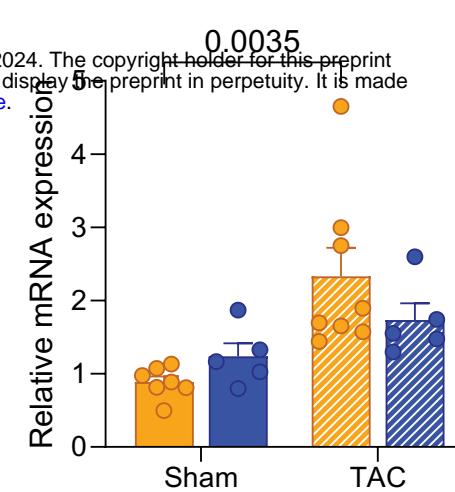









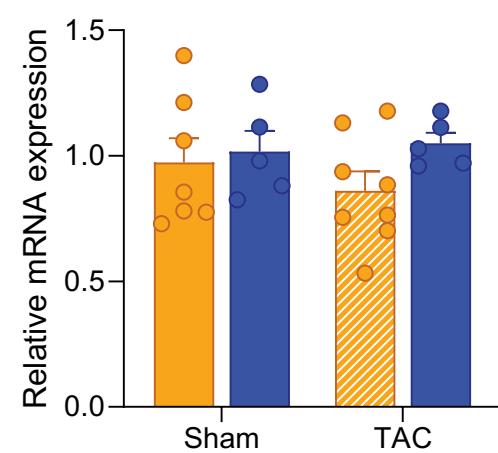
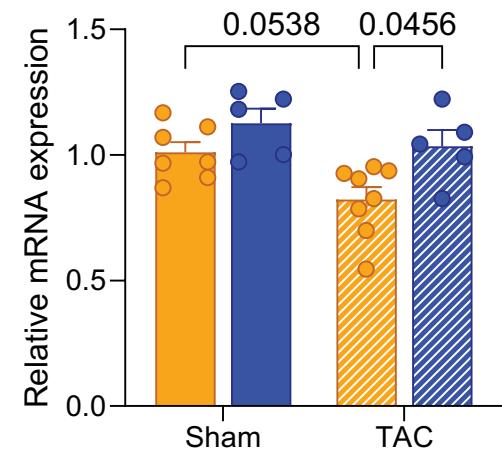
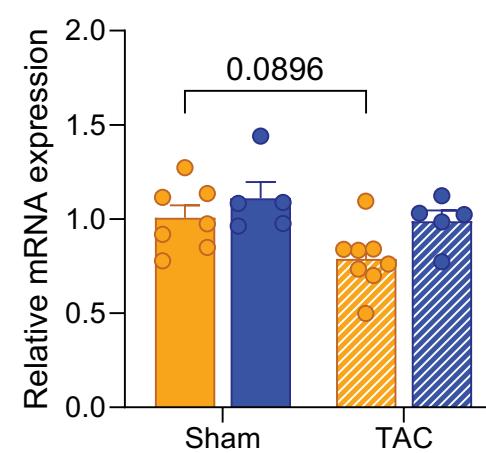
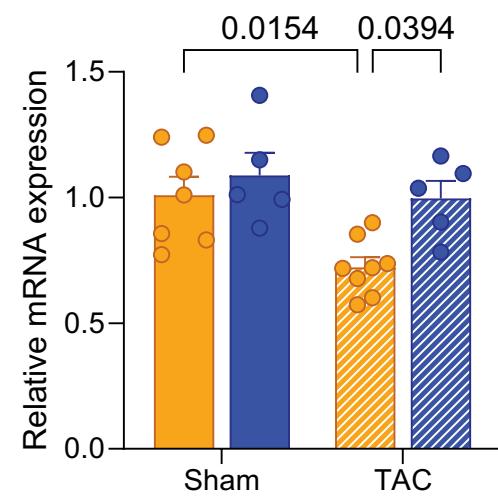
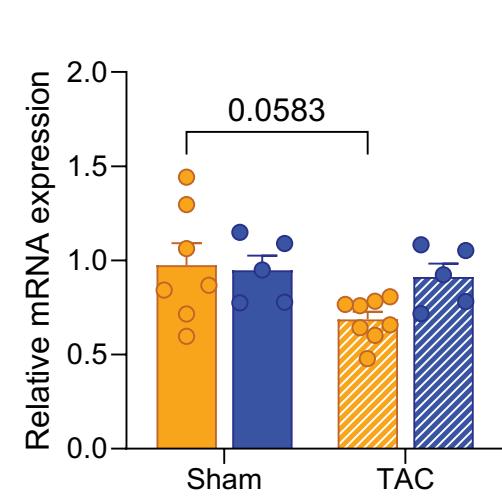
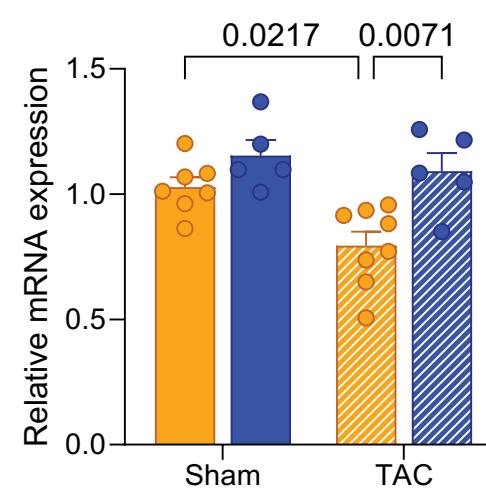

FIGURE 1.

	Pathology category						
	fibrosis	hypertrophy	infarction	ischemic_changes	edema	scarring	
Bottom OPA1	23	2	2	13	0	1	
Top OPA1	9	4	2	16	0	1	
Overall	72	12	7	62	1	5	
Bottom proportion	0.4792	0.0417	0.0417	0.2708	0	0.0208	
Top proportion	0.1875	0.0833	0.0417	0.3333	0	0.0208	
Overall proportion	0.2939	0.0490	0.0286	0.2531	0.0041	0.0204	



bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.23.605375>; this version posted August 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A**B****C****D****E****F****G****H****I****FIGURE 2.**




A**Circumferential Strain****Longitudinal Strain****Surface Area Strain****Transmural Strain****B****C****D****E****FIGURE 3.**







D

E

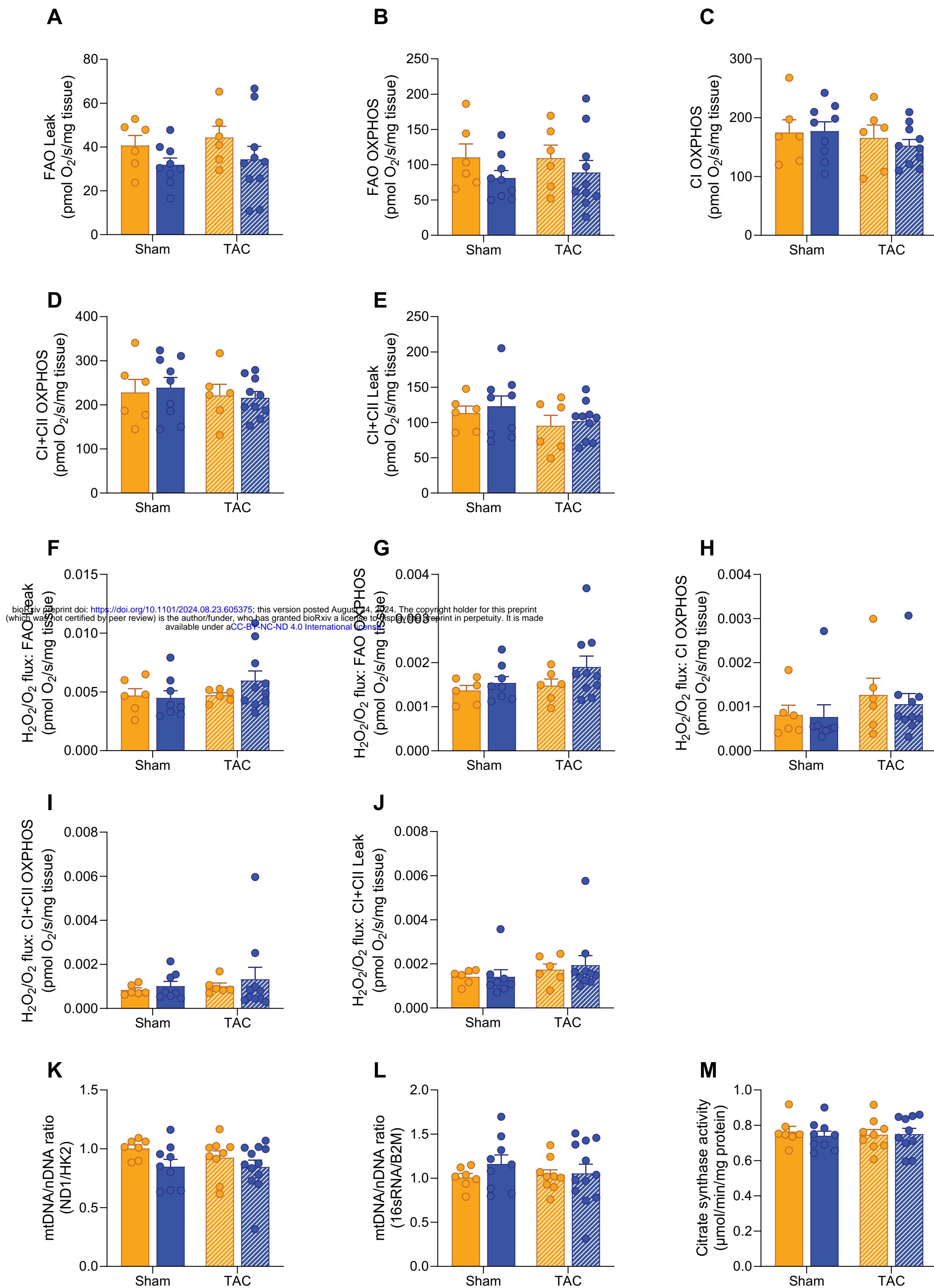
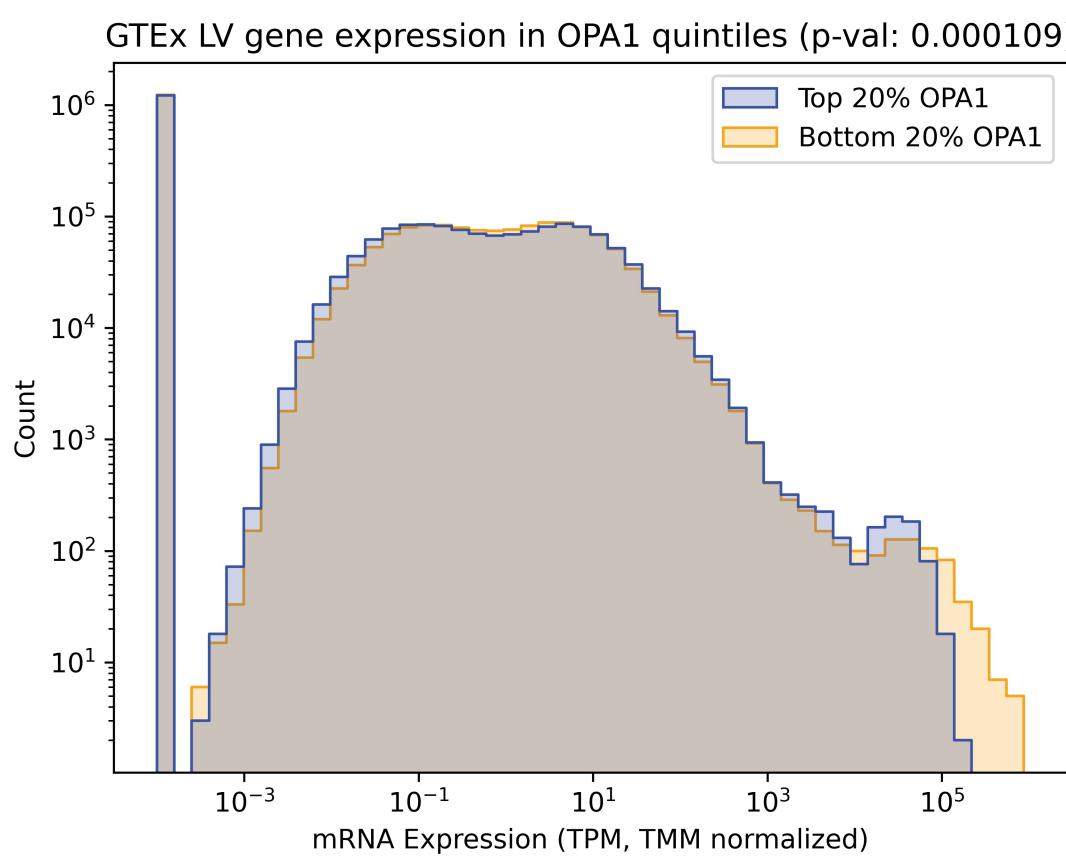
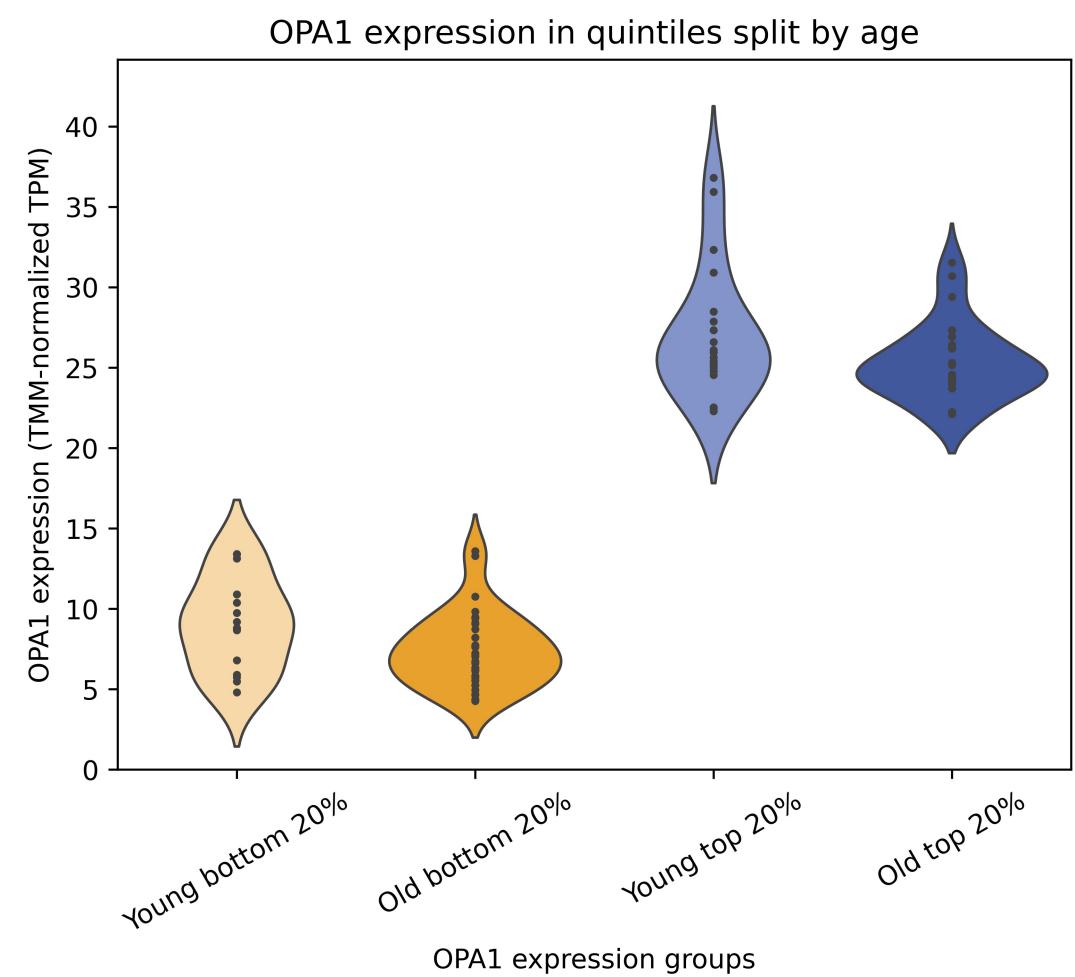
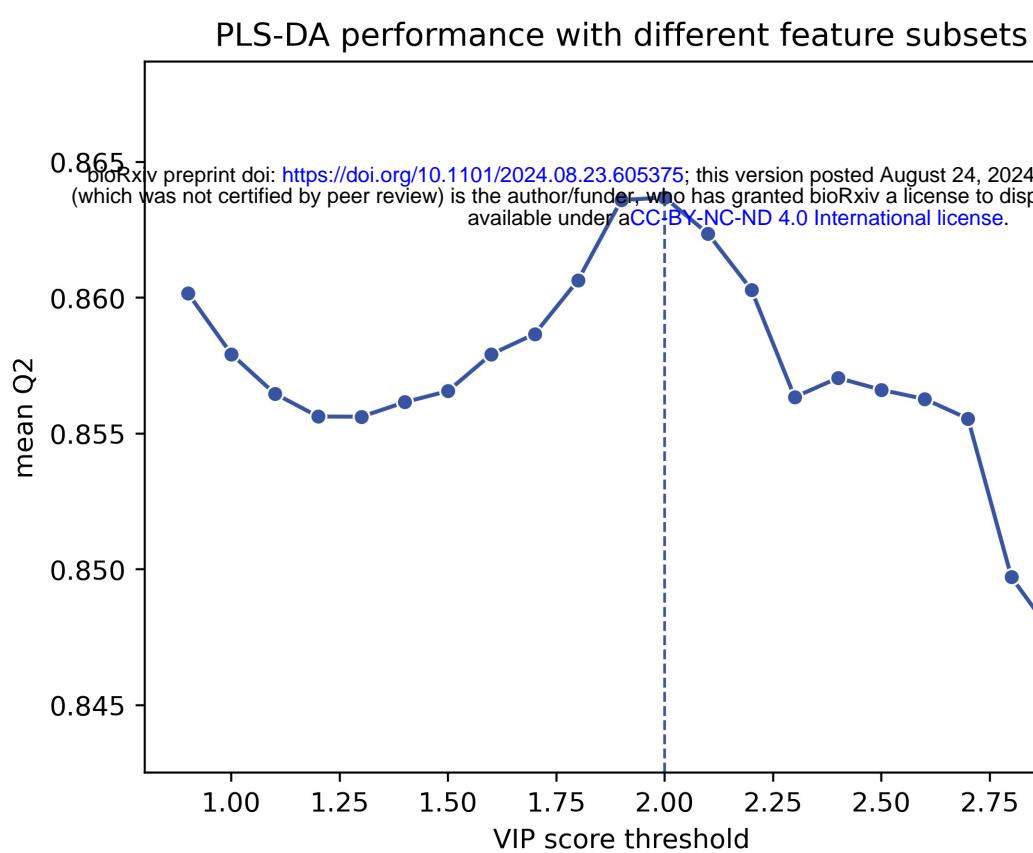
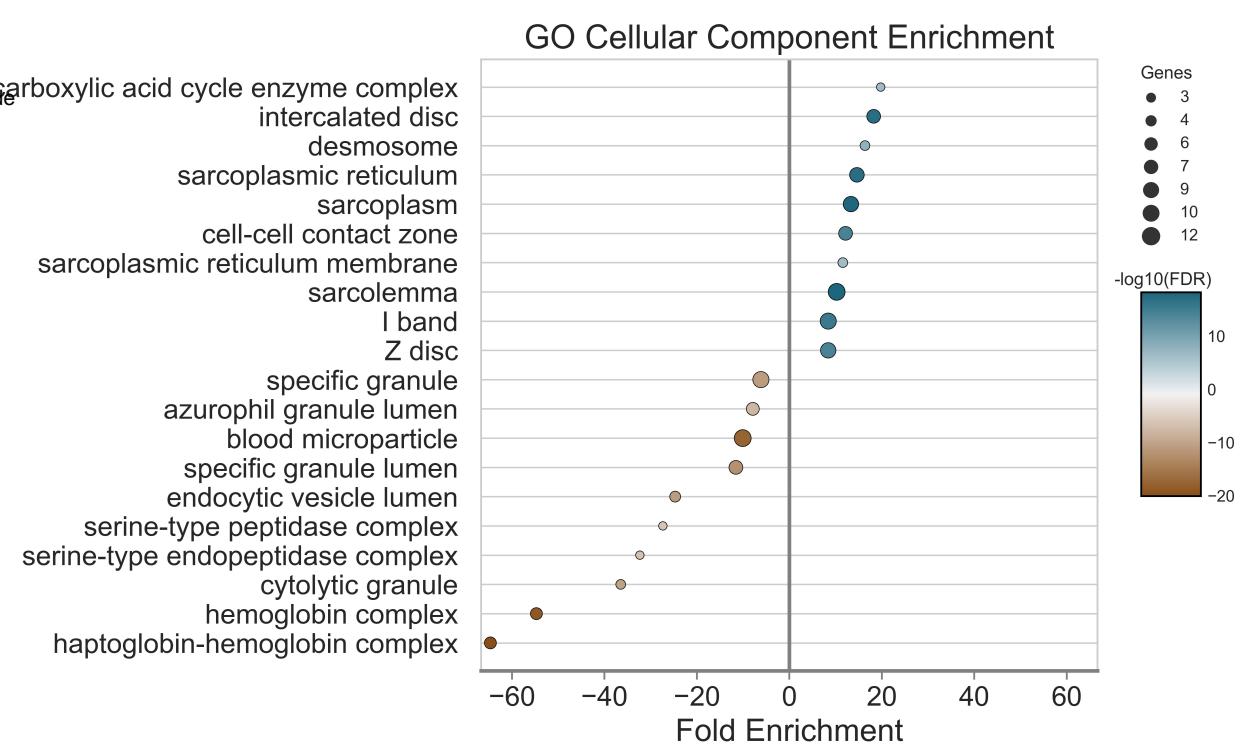
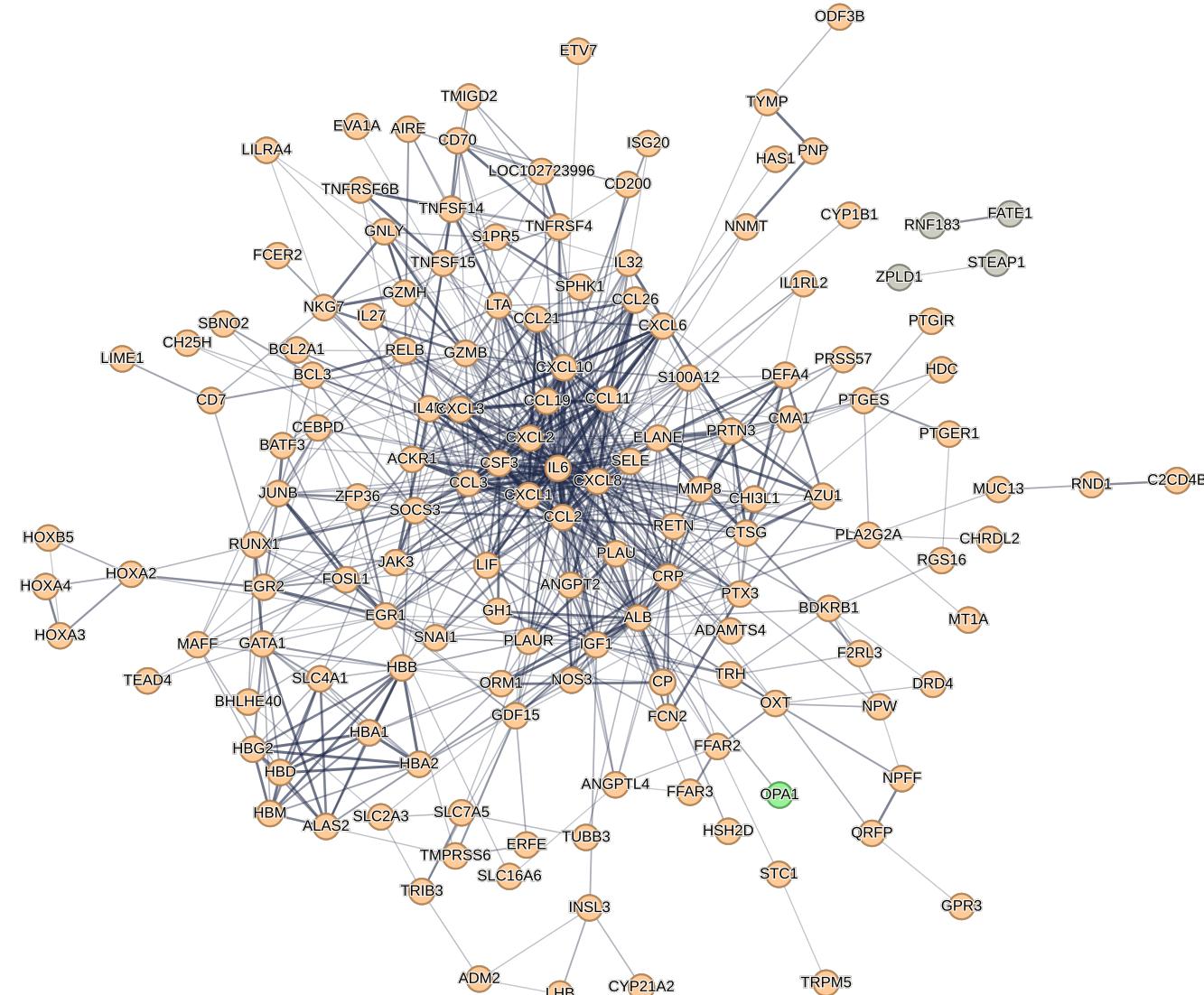
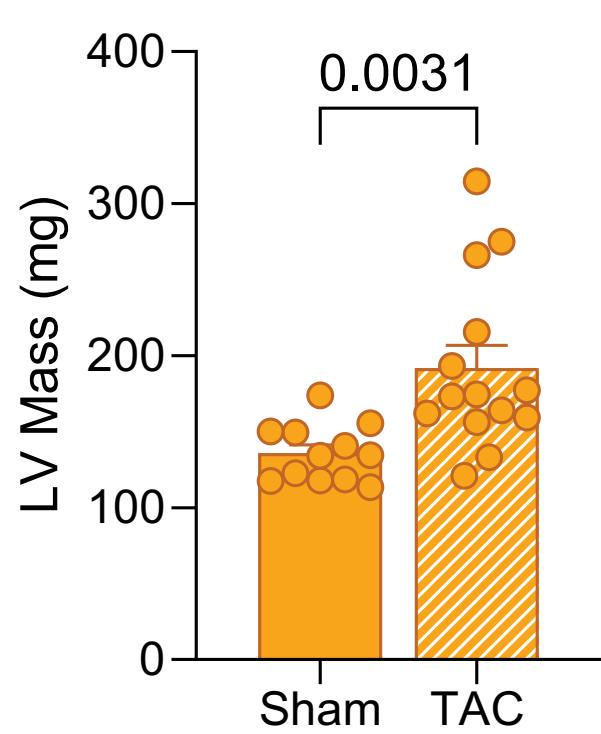
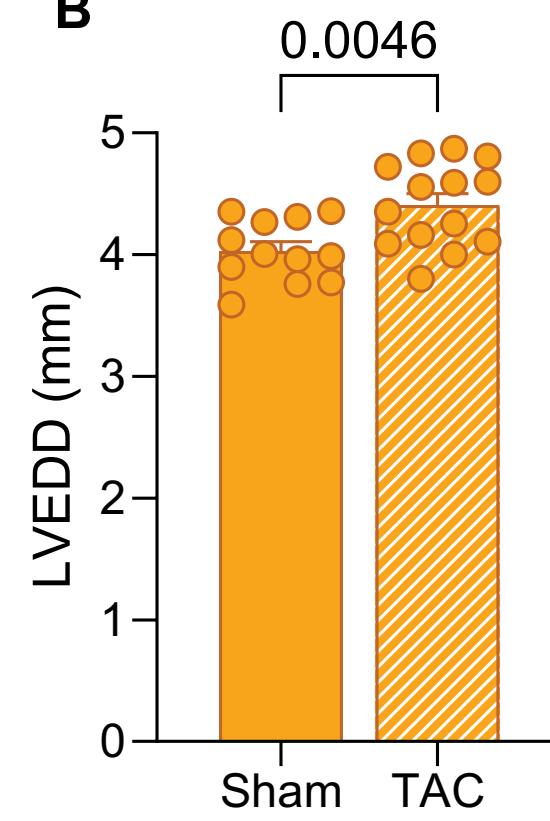
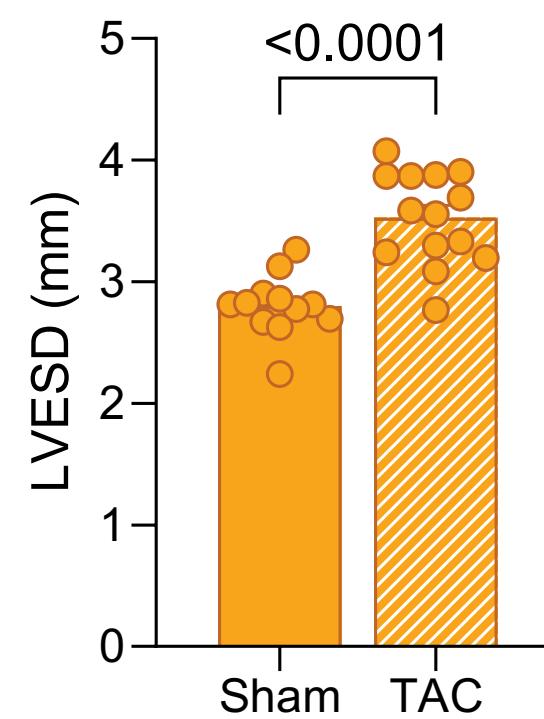
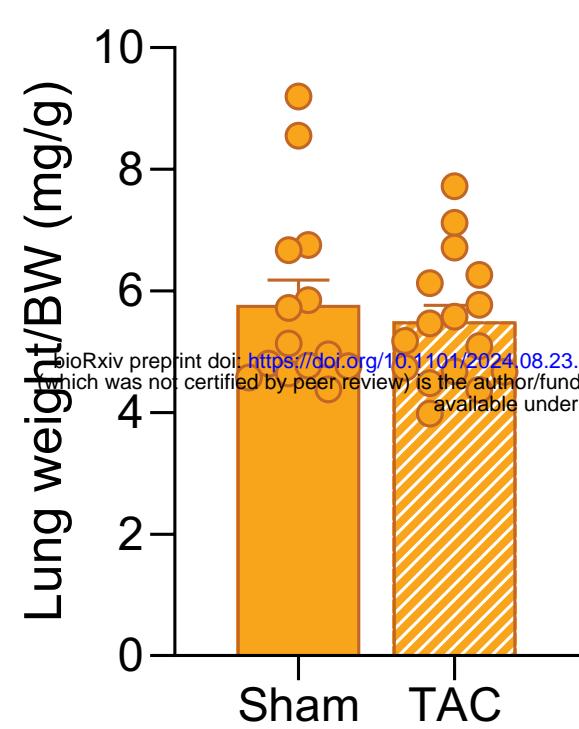
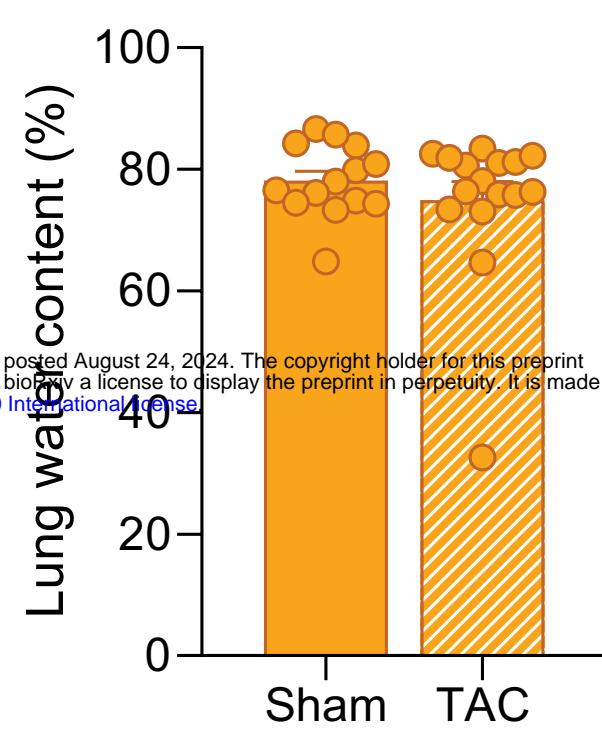


FIGURE 4.






A *Cpt1b***B** *Cd36***C** *Acadm***D** *Bcat2***E** *Bckda***F** *Atp2a2*






bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.23.605375>; this version posted August 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

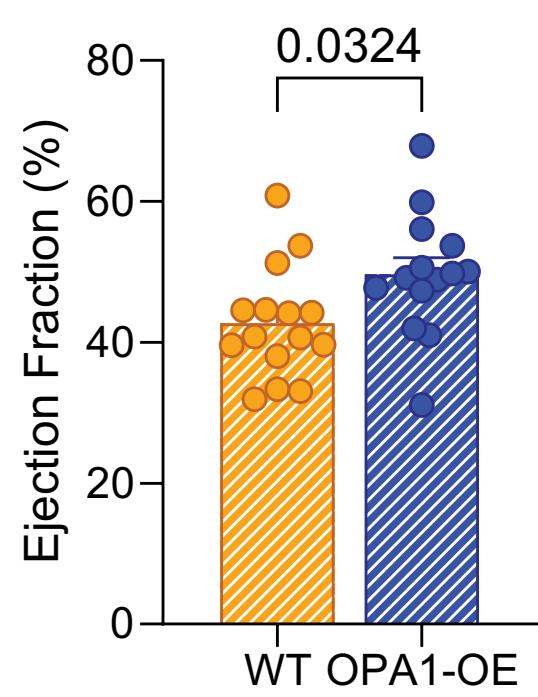
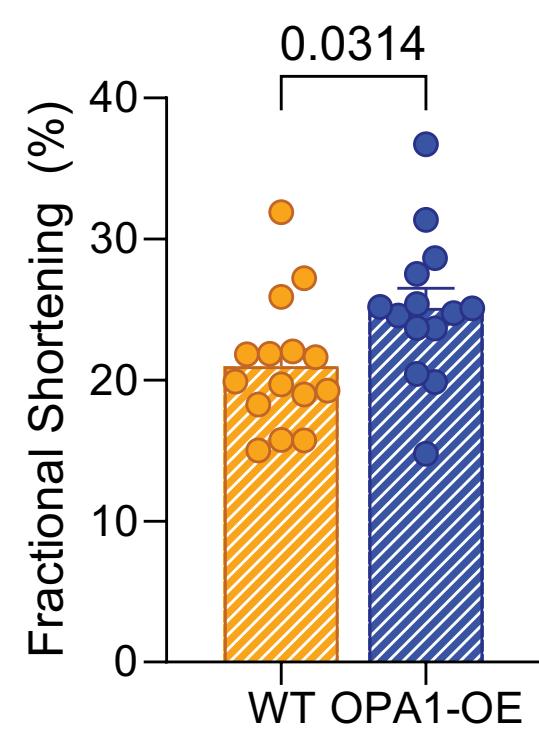


FIGURE 5.

FIGURE 6.

A**B****C****D****E**

A**B****C****D****E**

A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.23.605375>; this version posted August 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
NPPA	GCTTCCAGGCCATATTGGAG	GGGGCATGACCTCATCTT
NPPB	GAGGTCACTCCTATCCTCTGG	GCCATTCCCTCCGACTTTCTC
TGFB2	CTTCGACGTGACAGACGCT	GCAGGGCAGTGTAAACTTATT
COL1A2	AGTCGATGGCTGCTCCAAAA	AGCACCAATGTCCAGAG
CTGF	CAAAGCAGCTGCAAATACCA	GGCAAATGTGTCTCCAGT
CPT1B	ATGTCTACCTCCGAAGCAGGA	GCTGCTGCACATTGTGTTTC
CD36	TGGAGTGGTGATGTTGTTGC	AGCCAGTGTATATGTAGGCTCA
ACADM	ATGACGGAGCAGCCAATGAT	TAATGGCCGCCACATCAGAG
BCAT2	CGGAACGAGCCTCTACGTG	GCTTGTGTGACCATAACCAACA
BCKDHA	CTCCTGTTGGGACGATCTGG	CATTGGGCTGGATGAACCAA
ATP2A2	ATGCTGAAGAACGGAAAAAA <small>bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.605375; this version posted August 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a aCC-BY-NC-ND 4.0 International license.</small>	CTGGAAAATGAGCGGCAAAG
B2M	ATGCTGAAGAACGGAAAAAA	CGGCCATACTGGCATGCTTA
EEF1E1	TCCAGTAAAGAACGACACCCAGA	GACAAAACCAGCGAGACACA
ND1 (mtDNA)	CTAGCAGAAACAAACCGGGC	CCGGCTGCGTATTCTACGTT
HK2 (nDNA)	GCCAGCCTCTCCTGATTTAGTGT	GGGAACACAAAAGACCTCTTCTGG
16sRNA (mtDNA)	CCGCAAGGGAAAGATGAAAGAC	TCGTTGGTTCGGGGTTTC
B2M (nDNA)	ATGGGAAGCCGAACATACTG	CAGTCTCAGTGGGGTGAAT