

1
2 **Inhibiting EZH2 complements steroid effects in Duchenne muscular**
3 **dystrophy**
4

5 Eun Young Jeon¹, Yejin Kwak², Hyeji Kang^{1,3}, Se Young Jin⁴, Soojin Park⁵, Ryeo
6 Gyeong Kim⁶, Dayoung Ko⁷, Jae-Kyung Won⁸, Anna Cho⁶, Inkyung Jung⁴, Chul-
7 Hwan Lee^{1,3,9}, Jeongbin Park^{2,10}, Hyun-Young Kim⁷, Jong-Hee Chae^{5,11*}, Murim
8 Choi^{1*}
9

10 ¹Department of Biomedical Sciences, Seoul National University College of
11 Medicine; Seoul, Republic of Korea

12 ²Department of Biomedical Convergence Engineering, Pusan National University;
13 Yangsan, Republic of Korea

14 ³Department of Pharmacology, Seoul National University College of Medicine;
15 Seoul, Republic of Korea

16 ⁴Department of Biological Sciences, Korea Advanced Institute of Science and
17 Technology (KAIST); Daejeon, Republic of Korea

18 ⁵Department of Genomic Medicine, Seoul National University Hospital; Seoul,
19 Republic of Korea

20 ⁶Department of Pediatrics, Rare Disease Center, Seoul National University
21 Bundang Hospital; Gyeonggi-do, Republic of Korea

22 ⁷Department of Pediatric surgery, Seoul National University Children's Hospital;
23 Seoul, Republic of Korea

⁸Department of Pathology, Seoul National University Hospital, Seoul National

University College of Medicine; Seoul, Republic of Korea

⁹Cancer Research Institute, Seoul National University College of Medicine; Seoul, Republic of Korea

¹⁰School of Biomedical Convergence Engineering, Pusan National University; Yangsan, Republic of Korea

¹¹Department of Pediatrics, Seoul National University College of Medicine; Seoul, Republic of Korea

*Corresponding authors. Email: murimchoi@snu.ac.kr and chaeped1@snu.ac.kr

j6 **Abstract**

j7 Duchenne muscular dystrophy (DMD) is a devastating X-linked disorder caused
j8 by mutations in the dystrophin gene. Despite recent advances in understanding
j9 the disease etiology and applying emerging treatment methodologies,
j10 glucocorticoid derivatives remain the only general therapeutic option that can slow
j11 disease development. However, the precise molecular mechanism of
j12 glucocorticoid action remains unclear, and there is still need for additional
j13 remedies to complement the treatment. Here, using single-nucleus RNA-
j14 sequencing and spatial transcriptome analyses of human and mouse muscles, we
j15 investigated pathogenic features in DMD patients and palliative effects of
j16 glucocorticoids. Our approach further illuminated the importance of proliferating
j17 satellite cells, and revealed increased activity of a signal transduction pathway
j18 involving EZH2 in the patient cells. Subsequent administration of EZH2 inhibitors
j19 to *Dmd* mutant mice resulted in improved muscle phenotype through maintaining
j20 the immune-suppressing effect but overriding the muscle weakness and
j21 fibrogenic effects exerted by glucocorticoids. Our analysis reveals pathogenic
j22 mechanisms that can be readily targeted by extant therapeutic options for DMD.

j3

j4 **Teaser**

j5 A survey of DMD tissues in human and mouse suggests EZH2 as a critical factor
j6 in DMD satellite cells; its inhibition resulted in better prognosis.

j7

j8

59 **Introduction**

60 Duchenne muscular dystrophy (DMD) is a severe, progressive, and muscle-
61 wasting X-linked genetic disorder that affects about 1 in 5,000 males (1).
62 Mutations in the dystrophin gene are responsible for both DMD and Becker
63 muscular dystrophy (BMD), a relatively less severe and heterogeneous form of
64 dystrophinopathy (2). The severe symptoms of DMD and relative ease of access
65 to the affected tissue made it one of the first target diseases for emerging cell-
66 and gene-based therapeutic approaches. However, attempts involving viral
67 transfer of the *DMD* gene or gene activation machinery via the CRISPR system
68 have yielded unsatisfactory outcomes (3-5). Therefore, while studies have
69 demonstrated gene editing therapies, there remain challenges in validating the
70 clinical benefits and controlling potential off-target effects that need to be
71 addressed before clinical application (6).

72 At present, the standard of care for DMD still relies on glucocorticoids (e.g.,
73 deflazacort and prednisone), mitigating the disease progression by reducing
74 inflammation-induced muscle damage, which minimizes muscle strength loss (7-
75 9). Indeed, treatment with deflazacort delays the onset of cardiomyopathy in DMD
76 patients until the age of 18 and increases patient survival by over 5–15 years (10).
77 However, the precise action of deflazacort in DMD muscle tissue is still unclear,
78 and its long-term administration has well-documented side effects such as
79 obesity, behavioral changes, short stature, and osteopenia (11). There have been
80 a few attempts to treat DMD using chemical compound; for example, cyclosporine
81 is administered as an immunosuppressant (12, 13), suramin attenuates cardiac
82 dysfunction in a DMD mouse model (14), and forskolin has improved muscle

33 performance and regenerative capacities in a DMD rat model (15). However,
34 while these experimental treatments show promise, it remains crucial to continue
35 pursuing for more effective and safely approved drugs for DMD; especially, a
36 therapeutic that complements deflazacort function would be of great benefit to
37 DMD patients.

38 Satellite cells constitute a heterogenous population of stem cells that play
39 indispensable roles in the development, preservation, and regenerative processes
40 of skeletal muscles (16). These cells can be distinguished by expression of the
41 transcription factor paired-box 7 (PAX7), which has the critical role of enforcing
42 the myogenic program within them (17). In DMD, the absence of dystrophin
43 expression leads to impaired regeneration and exacerbating muscle wasting (18).
44 In addition to PAX7, polycomb repressive complex 2 (PRC2) has a crucial role in
45 regulating stem-like processes in satellite cells; in cultured skeletal muscle cells, it
46 regulates the cell cycle by controlling proliferation through methylation of histone 3
47 lysine 27 (H3K27me3). Especially, elevated expression of its histone
48 methyltransferase subunit Ezh2 in cultured mouse cells has been shown to
49 inhibited muscle differentiation (19). Therefore, perturbation of EZH2 in satellite
50 cells may provide a new opportunity for influencing myocyte differentiation in
51 skeletal muscle.

52 To further understand the molecular mechanism of deflazacort in DMD and to
53 suggest additional therapeutic options for the disease, we performed a
54 comparative analysis of human DMD and BMD patients and *Dmd* mutant mice
55 with or without deflazacort treatment. This study design intended selective
56 utilization of human and mouse systems in modeling DMD and steroid treatment.

7 Subsequently, we reveal disease-specific features in DMD muscle tissues and
8 demonstrate molecular mechanisms underlying the beneficial effects of
9 deflazacort, as well as new potential therapeutic strategies for using EZH2
10 inhibitors, GSK126 and Tazemetostat, to improve muscle phenotype in
11 combination with glucocorticoids. The beneficial effect was found not only in
12 satellite cells, but also in other cell types, such as immune cells and
13 fibro/adipogenic progenitors (FAPs). Ultimately, our results elucidate a
14 compensatory mechanism of stem cell stimulation on the established effect of
15 deflazacort.

18 **Results**

19 **Cellular profiles of muscle tissues in human cases and a DMD mouse model**

20 Single-nucleus RNA-seq (snRNA-seq) was performed on fresh frozen muscle
21 cells obtained from three male individuals with DMD, three male individuals with
22 BMD, and five healthy control subjects (Methods; Fig. 1A and fig. S1). All
23 participants were under the age of 17. Of the patients with BMD, two exhibited
24 deletion mutations (p.Glu2147_Gln2171del and exon 30-42 del), while the third
25 had a stop codon mutation (p.Ser1273X) in dystrophin gene. Among the DMD
26 cases, two had stop codon mutations (p.Arg195X and p.Gln423X), and one
27 patient had a frameshift insertion mutation (p.His3299Glnfs*15) (table S1).

28 Following snRNA-seq of these muscle samples, quality filtering was performed
29 and 60,886 nuclei were retained for subsequent analyses. We captured 11 main
30 cell types, including type I and II muscle cells, FAPs, satellite cells, and myeloid
31 cells (Fig. 1B). Notably, patients with BMD and DMD exhibited expansion of FAP
32 and myeloid lineages, concomitant with a decline in muscle cell populations (Fig.
33 1C, D, fig. S2). The proportion of immune cells in BMD did not show a significant
34 difference from controls.

35 We also performed snRNA-seq on fresh frozen muscle cells from two male wild-
36 type DBA/2J mice, two male D2.B10-*DMD*^{mdx}/J (or *mdx*) mice, and two male *mdx*
37 mice administered with deflazacort (Methods, Fig. 1A and fig. S1). The two mice
38 in each genotype group is consisted of a 7- and a 28-week-old mouse, as *mdx*
39 mice show a notable decline in skeletal muscle function as early as seven weeks
40 and in cardiac function by 28 weeks (20). Seven distinct cell types were identified
41 from 21,295 nuclei (Fig. 1E). Like human patient muscles, *mdx* muscles exhibited

i2 a decrease in muscle cells and an increase in myeloid and lymphoid cell
i3 subpopulations (Fig. 1F, G). In *mdx* animals subjected to deflazacort treatment,
i4 noticeable reduction of myeloid cell frequencies and increase of muscle cells were
i5 evident. Inflammatory myeloid cell population marked by *Cd44* and *Itgam* genes
i6 drove this change (fig. S2). In the comparative analysis between 7- and 28-week-
i7 old mice, we repeatedly observed a notable increase of Wnt signaling gene
i8 expression. The hallmark was upregulation of *Tcf7l2*, a transcription factor for Wnt
i9 signaling, target genes of which were confirmed to have increased expression in
i0 seven-week-old *mdx* mice as assayed by SCENIC (fig. S3). This observation was
i1 not seen in wild type mice or in *mdx* mice given deflazacort.

i2 Concurrently with the snRNA-seq profiling, spatial transcriptomics was conducted
i3 on a subset of two DMD patients and one healthy samples using the Visium
i4 method (Fig. 1H and fig. S4). The control subject showed mainly muscle-specific
i5 expression profiles, aligning with the observed cellular composition. However, the
i6 two slides derived from DMD patients exhibited substantial augmentation of
i7 myeloid cell expression profiles, indicating a pronounced shift in the cellular
i8 landscape. Cell type co-occurrence analysis further demonstrated an increase in
i9 the co-occurrence of satellite cells, myeloid cells, and lymphoid cells, suggesting
i0 local interactions among these cells in the DMD muscle (Fig. 1I, J).

i1
i2 **Effects of deflazacort in humans and a mouse DMD model**

i3 To investigate the molecular consequences of deflazacort treatment in humans
i4 and a mouse models of DMD, we conducted a comprehensive investigation of
i5 differentially expressed genes (DEGs). In myeloid cells, a cluster of guanine

56 nucleotide exchange factors (GEFs) encompassing *DOCK2*, *DOCK8*, and
57 *DOCK10* displayed significant upregulation across BMD, DMD, and *mdx* mice
58 when compared to corresponding controls (Fig. 2A, B), implying upregulation of
59 RhoA-mediated actin remodeling, cell migration, and subsequent immune
60 activation (21, 22). Administration of deflazacort resulted in a decreased
61 expression of these genes. Binding sites for NR3C1, a dedicated nuclear receptor
62 for glucocorticoid, were identified near *DOCK2*, *DOCK8*, and *DOCK10* loci,
63 suggesting that these genes can be direct downstream factors of deflazacort (Fig.
64 2C, fig. S5).

65 Similarly, we investigated DEGs within lymphoid cells (Fig. 2D). Genes linked to
66 hematopoiesis, B cell differentiation, survival, Ig production, and the
67 PI3K/AKT/MTOR pathway exhibited increased expression across BMD, DMD and
68 *mdx* lymphocytes (Fig. 2E). Upon deflazacort administration, expression of these
69 genes was attenuated (Fig. 2D).

70 In contrast to the discernible improvements seen in myeloid and lymphoid cells
71 following deflazacort intervention, no enhancement was observed within satellite,
72 muscle, and FAP clusters (Fig. 2F, G, H). Indeed, genes related to regulation of
73 satellite cell growth and muscle regeneration were depleted (Fig. 2F) (23-26), and
74 muscle structural genes (Fig. 2G) displayed decreased expression following
75 deflazacort administration. The concomitant elevated presence of pro-fibrotic FAP
76 markers (Fig. 2H, I) suggests a potential avenue for intervention as FAP cells are
77 capable of differentiating towards either adipogenic or myofibroblast lineages (Fig.
78 2J) (27, 28). Therefore, although deflazacort positively affects immune cells

39 through controlling inflammatory signaling pathways, it also exacerbates muscle
40 structure deficits and fibrosis in DMD muscles.

41

42 ***EZH2* is expressed in proliferating satellites**

43 Since deflazacort mainly exerts its beneficial effects in muscle through immune
44 modulation, we sought to identify a distinct pathway that can provide additional,
45 complementary benefit in DMD treatment. First, we examined variations in gene
46 expression across the trajectory of muscle differentiation from satellite cells to
47 myocytes among control, BMD and DMD muscles. Figure 3A focuses on the
48 muscle structure development and muscle cell differentiation pathways that were
49 specifically upregulated in controls compared to BMD and DMD muscles.

50 The results of this analysis led us to focus on satellite cells, as they are the source
51 of myocytes (29, 30) and proliferate in response to a various kinds of muscle
52 damages (31-33). First, we assigned each cell type a quantitative score for cell
53 proliferation based on expression of G2/M and S phase markers (Methods; Fig.
54 3B). Notably, satellite cells included a group of actively proliferative cells within
55 samples originating from both BMD patients (3.01%; $P = 2.1 \times 10^{-6}$) and DMD
56 patients (5.21%; $P = 5.2 \times 10^{-16}$), demonstrating elevation of proliferative activity in
57 compensation for damaged muscle tissues. This observation was specific to
58 satellite cells (Fig. 3B and fig. S6). Similar scoring of cell types was performed for
59 markers of apoptotic and necrotic cell death, but found no substantial differences
60 between healthy and patient cells (fig. S6).

61 Next, we examined genes showing differential expression profiles in proliferating
62 satellite cells across control, BMD, and DMD muscles. This revealed a group of

genes enriched for cell cycle (GO:1903047; $P_{adj} = 9.6 \times 10^{-15}$) (Fig. 3C). Among these, *EZH2* stood out for being known to play a key role in regulating gene expression in muscle cells, and for drugs targeting its gene products being actively used for cancers (34, 35). The differential expression of *EZH2* in both DMD patients and *mdx* mice was corroborated through data integration with publicly available datasets (36, 37) (Fig. 3D). Therefore, proliferating satellite cells mark increased activity of a signal transduction pathway that engages *EZH2* and proteins associated with cell cycle progression in the cells of muscular dystrophy patients.

Administration of an EZH2 inhibitor improves muscle phenotype in mice

Downregulation of *Ezh2* is known to cause muscle gene activation and myoblast differentiation (38), while its increased expression inhibits muscle differentiation *in vitro* (19). Therefore, we sought to test if administration of an EZH2 inhibitor elicits an improvement in muscle phenotype in DMD through increased muscle cell differentiation. EZH2 inhibitors, GSK126 and Tazemetostat, were administrated with or without deflazacort to *mdx* mice (Fig. 4A). Representative hematoxylin and eosin (H&E) staining images representing each treatment group's quadriceps muscles are presented in Fig. 4B; this staining revealed features characteristic of dystrophinopathy. Especially, *Dmd* mice treated with EZH2 inhibitors exhibited improvement in dystrophinopathy in comparison to vehicle-treated mutant mice, in a degree similar or better compared to deflazacort-treated mice (Fig. 4C-E, fig. S7). When relative areas of collagen were compared, *Dmd* mice treated with EZH2 inhibitors exhibited improvement in dystrophinopathy in comparison to

17 vehicle-treated mutant mice, in a degree similar to deflazacort-treated mice (Fig.
18 4E). Grip strength was significantly increased in mice given Tazemetostat with or
19 without deflazacort compared to deflazacort-only mice (Fig. 4F).

10

11 **EZH2 inhibition compensates negative effects of deflazacort in *mdx* mice**

12 To understand the potential consequences of EZH2 inhibition, we performed

13 snRNA-seq on muscle samples from mice given various drug treatments.

14 Following quality control measures, a total of 37,464 nuclei were retained for

15 subsequent analyses (Fig. 5A). Distinct patterns emerged within the cellular

16 landscape, wherein myeloid and lymphoid lineage cells displayed the most

17 pronounced expansion in untreated *mdx* mice, while muscle cells exhibited

18 expansion in *mdx* mice given GSK126 (Fig. 5B). Cell-cycle scoring of myeloid

19 lineage cells revealed a notable variance, with untreated *mdx* mice manifesting

20 the highest proliferative status ($P < 2.2 \times 10^{-16}$; Fig. 5C). Differential expression

21 analyses of cytokine- and inflammation-related genes uncovered upregulation in

22 untreated *mdx* mice compared to counterparts administered deflazacort and/or

23 GSK126 (Fig. 5D). Especially, the pro-fibrotic genes in FAP cells illustrated in

24 Figure 2H were downregulated in mice that received GSK126 (Fig. 5E).

25 Next, we focused on the beneficial effect of EZH2 inhibition on the myocyte

26 differentiation process. Leveraging single-cell regulatory network inference and

27 clustering analyses, we observed *mdx* mice treated with GSK126 showing

28 activation of *Myog*, a transcription factor pivotal to muscle differentiation, within

29 satellite cells (Fig. 6A, B). In contrast, untreated counterparts did not show *Myog*

30 activation (fig. S8). Figure 6C presents the computed t-distributed stochastic

51 neighbor embedding (t-SNE) visualization of all cells based on the *Pax7* (a pan-
52 satellite cell marker) and *Myog* activity in *mdx* mice given GSK126. Genes
53 associated with muscle structural elements, illustrated in Figure 2G, also
54 demonstrated elevated expression in *mdx* mice treated with GSK126, signifying a
55 potential beneficial effect on muscle architecture (Fig. 6D). To explain this
56 unexpected effect, we queried EZH2-binding sites in muscle cells using ENCODE
57 project data. This revealed a group of genes that were both differentially
58 expressed in proliferating satellite cells and bound by EZH2 to be enriched for cell
59 polarity-related genes (Fig. 6E, F), suggesting a possible restoration of muscle
60 stem cell polarity due to EZH2 inhibition. Binding sites for EZH2 were identified
61 near the *JAM3* locus, one of the genes that were differentially expressed in
62 patients' proliferating satellite cells and also were bound by EZH2 (Fig. 6F).
63 Indeed, a heatmap of the differentiation trajectory analysis revealed disrupted
64 signatures in *mdx* mice, specifically an overall increase in cell cycle and
65 proliferation markers (Fig. 6G). However, following administration of deflazacort
66 and GSK126, the gene expression pattern resembled that of the wild type. The
67 same pattern persists when GSK126 is given alone (fig. S9).
68
69

30 **Discussion**

31 DMD is both the most prevalent and the most severe form of muscular dystrophy,
32 typically resulting in a life expectancy limited to the early 20s (39, 40). Steroids still
33 remain as the standard of care despite known side effects such as obesity and
34 osteopenia (41); development of additional treatments thus remains imperative.

35 Using snRNA-seq to capture the transcriptomes of individual muscle cells from
36 human patients and model mice, we have uncovered a notable expansion of
37 *EZH2* expression within proliferating satellite cells. Furthermore, we have
38 demonstrated that inhibition of *EZH2* has the potential to mitigate immune signals
39 and ameliorate the phenotypic manifestations of DMD.

40 Currently, four antisense oligonucleotides (ASOs) that are designed to induce
41 skipping of exon 45, 51, or 53 of dystrophin have been granted conditional
42 approval by the Food and Drug Administration (FDA) (1, 41, 42). However, the
43 ASO method is specific to particular *DMD* mutations and therefore shows limited
44 applicability. Recently, the FDA also approved a minigene therapy exclusively for
45 the treatment of ambulatory DMD pediatric patients within the specific age range
46 of 4-5 years (3). However, a clinical benefit such as enhanced motor function has
47 not been confirmed, and the FDA has mandated the company to conduct a
48 comprehensive clinical study to validate the drug's clinical advantages as a
49 condition for maintaining approval (4). Moreover, even patients successfully
50 treated with these approaches will still be administered steroids. Therefore, there
51 is still critical need for a therapeutic method that can be applied on a broad range
52 of DMD patients and complement steroids.

3 A few recent studies have examined the pathophysiology of DMD muscles at the
4 single-cell level. Scripture-Adams *et al.* analyzed skeletal muscle cellular diversity
5 in human patients and *mdx* mice with and without exon skipping therapy (36).
6 Another study observed increased expression of FAP cells, consistent with our
7 findings, and upregulation of plasminogen activator inhibitor-1 (*PAI1*) in dystrophic
8 endothelial cells (37). In the skeletal muscle of mice with *DMD* exon 51 deletion,
9 another study identified distinctive myonuclear subtypes within dystrophin
10 myofibers and explored transcriptional pathways associated with degeneration
11 and regeneration in DMD (43). Consistent with the previous reports, we observed
12 both DMD patients and *mdx* mice displaying reduced myocytes and increased
13 immune cells, which imbalance was partly reverted in mice by the administration
14 of deflazacort. The profiles of BMD muscle were closer to normal than those of
15 DMD (Fig. 1D), reflecting the milder symptoms of BMD patients. It would be of
16 interest to further investigate the genetic and phenotypic correlation of *DMD*
17 mutations and disease severity (44). Remarkably, our study uncovered a co-
18 localization of satellite cells and immune cells in the inflamed muscle tissue of
19 DMD patients (Fig. 1I-J, fig. S10). This close proximity of satellite cells and
20 immune cells may possibly account for the increased expression of *EZH2* and
21 increased inflammation observed in DMD patients. Although steroids are
22 commonly used in the clinic, the particular molecular cascades they alter have
23 remained elusive. In this study, we found that deflazacort treatment reduced actin
24 remodeling and inflammatory signals in immune cells through NR3C1 binding
25 elements, suggesting a possible mode of action of steroids in DMD treatment (Fig.
26 2).

17 Previous studies have observed cellular consequences of reduced EZH2 function
18 in various biological contexts. In cancers, *EZH2* knockdown induces cell cycle
19 arrest and impairs *in vitro* migration and invasion (45-47), while depletion of *Ezh2*
20 results in diminished activation of macrophages and microglia (48). Here we
21 further demonstrated molecular mechanisms underlying the immunosuppressive
22 effects of *Ezh2* inhibition. Inflammatory monocyte-derived macrophages were
23 known to play a critical role in DMD pathogenesis, and CCR2 deficiency helped
24 restore the macrophage polarization balance by preventing an excessive shift
25 towards a proinflammatory phenotype (49). *CCR2* was decreased with EZH2
26 inhibitor treatment (Fig. 5D), suggesting that CCR2 could potentially be targeted
27 therapeutically with EZH2 inhibitor.

28 Through genome-wide mapping of histone modifications in muscle satellite cells
29 and studying mice lacking *Ezh2* in satellite cells, it was discovered that *Ezh2*
30 activity is required for satellite cell proliferation (50). In the context of DMD, *EZH2*
31 appears to be a double-edged sword. On one hand, increased presence of EZH2
32 in satellite cells could be beneficial, potentially serving as a compensatory
33 mechanism to counteract the detrimental effects of DMD through supporting
34 satellite cell proliferation. However, inhibiting EZH2 may encourage satellite cells
35 to differentiate and contribute to muscle repair. Striking the right balance between
36 promoting proliferation and differentiation of satellite cells may optimize
37 therapeutic strategies for DMD patients. A previous study demonstrated that
38 satellite cell-specific ablation of *Ezh2* in mice resulted in reduced muscle mass
39 and impaired regeneration (51). This experimental outcome reflects different
40 experimental conditions, with ours being based on pharmacological inhibition in

51 mature muscle. Nevertheless, the study also observed increased expression of
52 myogenic and satellite cell-specific expression, consistent with our findings (51).
53 Here, we elucidated the precise role of EZH2 and its implications in DMD
54 treatment. The augmented expression of EZH2 in proliferating satellite cells
55 supports a state of active proliferation and hence hindered muscle differentiation
56 (19) (Fig. 3). Administration of EZH2 inhibitors in *mdx* mice reduced fibrosis (Fig.
57 4). These findings underscore the potential contribution of EZH2 inhibitors to the
58 attenuation of adipogenic or fibrotic regions (Fig. 5E). Furthermore, we observed
59 GSK126 administration bolstering the expression of genes associated with muscle
60 organization through forming a series of differentiating lineages from *Pax7⁺Myog⁻*,
61 *Pax7⁺Myog⁺* and finally the *Pax7⁺Myog⁺* fetal myocytes-like lineage (Fig. 6A-C, fig.
62 S11) (52). The beneficial effect was not only found in satellite cells, but also in
63 other cell types.

64 Recently, Auger *et al.* demonstrated a non-transcriptional pathway that steroid
65 can incur anti-inflammatory effects by reshaping the mitochondrial metabolism of
66 macrophages, leading to increased tricarboxylic acid cycle (TCA) activity and
67 subsequent itaconate synthesis (53). Increased TCA activity was also observed in
68 our data with mice given deflazacort alone (fig. S12). However, of these
69 signatures no longer persisted in mice given EZH2 inhibitor. It appears that the
70 inhibition of EZH2 overrides the upregulation of TCA cycle.

71 Although our findings suggest EZH2 inhibition as a novel therapeutic option that
72 can be used in conjunction with deflazacort, more detailed molecular mechanisms
73 are still needed. The ChIP-seq analysis of proliferating satellite cells might offer
74 insights into the direct targets of EZH2 inhibition. However, such an experiment

75 cannot presently be performed owing to the paucity of human proliferating satellite
76 cells. We anticipate that the advent of new methodologies that require less
77 sample input will help to elucidate these direct targets. In addition to that
78 methodological limitation, it is notable that myofibers in DMD are known to
79 undergo necrotic and apoptotic processes (54, 55); however, none of the these
80 signatures were detected in our analysis (fig. S6). Presumably the cells harboring
81 these signatures were filtered out during the quality control step. We aimed to
82 utilize two different species assuming their conserved response to *DMD* mutation.
83 However, there appears to be a noticeable discrepancy in the effect on lymphoid
84 cells (Fig. 2D). Specifically, despite the parallel responses observed in myeloid
85 cells (Fig. 2A), human lymphoid cells exhibited a lesser degree of susceptibility
86 compared to their mouse counterparts.
87 Collectively, our comparative analysis of human patients and a mouse DMD
88 model have unveiled genes and pathways that exhibit selective downregulation in
89 immune cells and concurrent upregulation in muscle organizational cells. This
90 discovery suggests a novel therapeutic target with promising implications for the
91 treatment of DMD.

14 **Materials and Methods**

15

16 **Human participants**

17 Muscle biopsies from patients were performed in accordance with informed
18 written consent from Seoul National Hospital Children's Hospital institutional
19 review board (IRB)-approved protocols (#1009-030-331). The patients did not
20 take any medication at the time of the biopsy. Muscle samples were taken from
21 the quadriceps femoris and frozen with isopentane cooled in liquid nitrogen as
22 described previously (56). Healthy muscle samples were acquired from the
23 quadriceps or abdomen of subjects undergoing surgery for non-muscular
24 symptoms.

25

26 **Mouse strains**

27 DBA/2J and DBA/2J-mdx mice (D2.B10-*Dmd*^{mdx}/J), hereafter denoted as *mdx*
28 mice, were purchased from the Jackson Laboratory (JAX ID: 013141; Bar Harbor,
29 ME). All experiments were approved by the Institutional Animal Care and Use
30 Committee in Seoul National University Hospital (#20-0216-S1A0) and animals
31 were maintained in a facility accredited by AAALAC International (#001169) in
32 accordance with the Guide for the Care and Use of Laboratory Animals 8th edition,
33 NRC. Muscle samples were taken from the hindlimb and quadriceps and frozen
34 with liquid nitrogen.

35

36 **Generating and processing snRNA-seq data**

1 All muscle samples were processed and snRNA-seq data generated by
2 GENINUS (Seoul, Republic of Korea). After the frozen tissue was homogenized
3 and nuclei were counted, the nuclei were isolated using flow cytometry. Single-cell
4 capture, barcoding and library preparation were performed following the 10x
5 Genomics Single cell Chromium 3' protocols (V3: CG000183). cDNA library
6 quality was determined using an Agilent Bioanalyzer. Paired-end 200 bp reads
7 were generated on an Illumina NovaSeq5000/6000.

8

9 **Analysis of snRNA-seq data**

10 Generated FASTQ files were mapped to either human (GRCh38/hg38 pre-mRNA
11 genome) or mouse (mm10) transcriptome references provided by 10x Genomics
12 using Cell Ranger v6.0.0. The output was processed using Seurat v4.0.1 (57). We
13 then applied standard cell filtering criteria (nFeature_RNA > 200, nFeature_RNA <
14 5,000, percent.mt < 5). Nuclei that passed the filtering were normalized and
15 integrated with LIGER v1.0.0 (58).

16 Genes that were differentially expressed between patient and control tissues were
17 defined in each cluster using the FindMarker function of Seurat. SCENIC v1.3.1
18 was used to infer transcription factor-target relationships (59). CellChat was used
19 to infer intercellular communications (60). Slingshot was used for cell lineage and
20 pseudotime inference (61). TradeSeq was used for trajectory-based differential
21 expression analysis (62). Gene set enrichment analysis was performed using the
22 *escape* R package, v1.99.0 (63). For mouse immune sub-clustering analysis, data
23 from the Single-Cell Muscle Project was used (64-67).

i1 **Gene set enrichment analysis**

i2 Cell-cycle scores were assigned using the CellCycleSoring() function in Seurat.

i3 Scoring was based on the strategy described by Tirosh *et al.* (68). Gene set

i4 enrichment analysis was performed using the escape R package v1.99.0 (63).

i5 Gene sets were derived from the Molecular Signature Database

i6 (<https://www.gsea-msigdb.org/gsea/msigdb/>).

i7 **Generation, processing, and analysis of spatial transcriptomics data**

i8 Samples processing and data generation using the Visium platform was done by

i9 GENINUS. Experiments were performed using the Visium Spatial Platform 3' v1

i10 (PN-1000193, PN-1000184, PN-1000215). Sequencing reads from Visium ST

i11 (10x Genomics) experiments were first preprocessed with Space Ranger v1.3.1

i12 and mapped to the human reference genome (GRCh38). The count matrices

i13 were subsequently analyzed using cell2location v0.1.3 (69). To discriminate

i14 transcriptionally distinct cell populations with MERFISH, we designed a panel of

i15 300 genes selected based on cluster markers identified from snRNA-seq data.

i16 **ChIP-seq data analysis**

i17 ChIP-seq data for NR3C1 (A549 cells: ENCFF638NRS), H3K4me1 (A549 cells:

i18 ENCFF040HPO), H3K27ac (A549 cells: ENCFF541LPH), EZH2 (myoblast:

i19 ENCFF353VYD; H1 cells: ENCFF109KCQ), and H3K27me3 (myoblast:

i20 ENCFF261INX) in the bigwig format were downloaded from the ENCODE project

i21 (<https://www.encodeproject.org/>) and visualized in UCSC Genome Browser (70).

i22 ChIPseeker (71, 72) was used to annotate ChIP peaks.

5

6 **Drug treatment**

7 Deflazacort (SML0123-10MG; Sigma, St. Louis, MO) was formulated as a 0.2
8 mg/ml suspension in a solution comprised of DMSO (10%), PEG300 (40%),
9 Tween-80 (5%), and saline (45%). This formulation was administered at a dose of
10 1 mg/kg by intraperitoneal injection once a week for 28 days to four week-old
11 mice. GSK126 (S7061; Selleck chemicals, Houston, TX) was administered to
12 four-week-old mice by intraperitoneal injection once every two days for 28 days at
13 a dose of 50 mg/kg in 20% Captisol (35, 73). Tazemetostat (S7128; Selleck
14 Chemicals, Houston, TX) (400 mg/kg, 0.5% CMCNa and 0.1% Tween80 in water)
15 was orally administrated daily for 28 days (74, 75).

16

17 **Histology and image quantification**

18 After embedding fixed tissues in paraffin, 4- μ m sections were stained with
19 Masson's trichrome stain using the Biognost Masson Trichrome kit (MST-K-500)
20 according to the manufacturer's protocol and imaged at 40x using a ZEISS
21 Axioscan 7 (ZEISS, Germany). To quantify areas of collagen, Python's PIL Image
22 and ImageDraw modules were employed to automate the quantification of tissue
23 and collagen regions in Masson's trichrome histological images. Samples were
24 triplicated. Images were segmented using thresholds and quantified through pixel
25 counting.

26 For FibroNest (PharmaNest, Princeton, NJ) analysis, the images were cleaned
27 and processed for anomalies such as scanning stripes, image compression
28 artifacts, rinsing artefacts, dusts, and saturated pixels. The digital images were

39 then processed and segmented to allocate the collagen biological marker to a
40 specific channel, as FibroNext selects a region of interest based on collagen
41 fibers. These analyses were blinded to clinical and histological data.

42

43 **Behavioral tests**

44 The behavioral assessment was conducted one day prior to tissue collection.
45 Mice were moved to the behavioral assessment room 30 minutes before the test
46 to allow them to acclimate to the new environment. For T-bar grip strength test,
47 the forepaws were stably positioned on the T-bar, and the mouse was pulled
48 gently backward to measure the strength of the forelimb. For grip strength test,
49 the grid was attached securely to the sensor. Both its forepaws and hindpaws
50 were stably positioned. The mouse gently pulled backwards, and while sliding
51 down, the force with which it grips the wire was measured. The tests were
52 repeated three times.

53

54 **Statistical analysis**

55 For statistical analysis, R version 4 was used. Statistical analyses for single-cell
56 genomics experiments are described in the preceding subsections. Statistical
57 comparisons between groups were assessed with Fisher's exact test (Fig. 3B) or *t*
58 tests. A *P*-value of ≤ 0.05 was considered statistically significant.

1 References

- 2 1. D. Duan, N. Goemans, S. i. Takeda, E. Mercuri, A. Aartsma-Rus, Duchenne
3 muscular dystrophy. *Nature Reviews Disease Primers* **7**, 13 (2021).
- 4 2. J. K. Mah, L. Korngut, J. Dykeman, L. Day, T. Pringsheim, N. Jette, A systematic
5 review and meta-analysis on the epidemiology of Duchenne and Becker muscular
6 dystrophy. *Neuromuscular Disorders* **24**, 482-491 (2014).
- 7 3. S. M. Hoy, Delandistrogene Moxeparvovoc: First Approval. *Drugs* **83**, 1323-1329
8 (2023).
- 9 4. FDA. (<https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-treatment-certain-patients-duchenne-muscular-dystrophy>, 2023),
10 vol. 2023.
- 11 5. A. Lek, B. Wong, A. Keeler, M. Blackwood, K. Ma, S. Huang, K. Sylvia, A. R.
12 Batista, R. Artinian, D. Kokoski, S. Parajuli, J. Putra, C. K. Carreon, H. Lidov, K.
13 Woodman, S. Pajusalu, J. M. Spinazzola, T. Gallagher, J. LaRovere, D.
14 Balderson, L. Black, K. Sutton, R. Horgan, M. Lek, T. Flotte, Death after High-
15 Dose rAAV9 Gene Therapy in a Patient with Duchenne's Muscular Dystrophy. *N
16 Engl J Med* **389**, 1203-1210 (2023).
- 17 6. E. Erkut, T. Yokota, CRISPR Therapeutics for Duchenne Muscular Dystrophy. *Int
18 J Mol Sci* **23**, (2022).
- 19 7. S. Kim, K. A. Campbell, D. J. Fox, D. J. Matthews, R. Valdez, M. D. STARnet,
20 Corticosteroid Treatments in Males With Duchenne Muscular Dystrophy:
21 Treatment Duration and Time to Loss of Ambulation. *J Child Neurol* **30**, 1275-
22 1280 (2015).

14 8. S. Kourakis, C. A. Timpani, D. G. Campelj, P. Hafner, N. Gueven, D. Fischer, E.
15 Rybalka, Standard of care versus new-wave corticosteroids in the treatment of
16 Duchenne muscular dystrophy: Can we do better? *Orphanet Journal of Rare
17 Diseases* **16**, 117 (2021).

18 9. D. J. Birnkrant, K. Bushby, C. M. Bann, B. A. Alman, S. D. Apkon, A. Blackwell, L.
19 E. Case, L. Cripe, S. Hadjiyannakis, A. K. Olson, D. W. Sheehan, J. Bolen, D. R.
20 Weber, L. M. Ward, Diagnosis and management of Duchenne muscular
21 dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic
22 management. *The Lancet Neurology* **17**, 347-361 (2018).

23 10. M. Guglieri, K. Bushby, M. P. McDermott, K. A. Hart, R. Tawil, W. B. Martens, B.
24 E. Herr, E. McColl, C. Speed, J. Wilkinson, J. Kirschner, W. M. King, M. Eagle, M.
25 W. Brown, T. Willis, R. C. Griggs, F.-D. I. o. t. M. S. Group, V. Straub, H. van
26 Ruiten, A. M. Childs, E. Ciafaloni, P. B. Shieh, S. Spinty, L. Maggi, G. Baranello,
27 R. J. Butterfield, I. A. Horrocks, H. Roper, Z. Alhaswani, K. M. Flanigan, N. L.
28 Kuntz, A. Manzur, B. T. Darras, P. B. Kang, L. Morrison, M. Krzesniak-Swinarska,
29 J. K. Mah, T. E. Mongini, F. Ricci, M. von der Hagen, R. S. Finkel, K. O'Reardon,
30 M. Wicklund, A. Kumar, C. M. McDonald, J. J. Han, N. Joyce, E. K. Henricson, U.
31 Schara-Schmidt, A. Gangfuss, E. Wilichowski, R. J. Barohn, J. M. Statland, C.
32 Campbell, G. Vita, G. L. Vita, J. F. Howard, Jr., I. Hughes, H. J. McMillan, E.
33 Pegoraro, L. Bello, W. B. Burnette, M. Thangarajh, T. Chang, Effect of Different
34 Corticosteroid Dosing Regimens on Clinical Outcomes in Boys With Duchenne
35 Muscular Dystrophy: A Randomized Clinical Trial. *JAMA* **327**, 1456-1468 (2022).

36 11. F. Takeuchi, H. Nakamura, N. Yonemoto, H. Komaki, R. L. Rosales, A. J.
37 Kornberg, A. H. Bretag, C. Dejthevaporn, K. J. Goh, Y.-J. Jong, D.-S. Kim, S. V.

58 Khadilkar, D. Shen, K. T. Wong, J. Chai, S. H.-S. Chan, S. Khan, O. Ohnmar, I.
59 Nishino, S. i. Takeda, I. Nonaka, Clinical practice with steroid therapy for
60 Duchenne muscular dystrophy: An expert survey in Asia and Oceania. *Brain and*
61 *Development* **42**, 277-288 (2020).

62 12. J. G. Tidball, M. Wehling-Henricks, Evolving Therapeutic Strategies for Duchenne
63 Muscular Dystrophy: Targeting Downstream Events. *Pediatric Research* **56**, 831-
64 841 (2004).

65 13. P. K. Law, T. G. Goodwin, Q. Fang, V. Duggirala, C. Larkin, J. A. Florendo, D. S.
66 Kirby, M. B. Deering, H. J. Li, M. Chen, T. J. Yoo, J. Cornett, L. M. Li, A. Shirzad,
67 T. Quinley, R. L. Holcomb, Feasibility, Safety, and Efficacy of Myoblast Transfer
68 Therapy on Duchenne Muscular Dystrophy Boys. *Cell Transplantation* **1**, 235-244
69 (1992).

70 14. D. De Oliveira Moreira, J. A. Pereira, A. P. Taniguti, C. Y. Matsumura, L. A.
71 Ramos, M. A. Areas, H. S. Neto, M. J. Marques, Suramin attenuates dystrophin-
72 deficient cardiomyopathy in the mdx mouse model of duchenne muscular
73 dystrophy. *Muscle Nerve* **48**, 911-919 (2013).

74 15. V. Taglietti, K. Kefi, L. Rivera, O. Bergiers, N. Cardone, F. Coupier, S. Gioftsidi,
75 B. Drayton-Libotte, C. Hou, F.-J. Authier, F. Pietri-Rouxel, M. Robert, D. Bremond-
76 Gignac, C. Bruno, C. Fiorillo, E. Malfatti, P. Lafuste, L. Tiret, F. Relaix, Thyroid-
77 stimulating hormone receptor signaling restores skeletal muscle stem cell
78 regeneration in rats with muscular dystrophy. *Science Translational Medicine* **15**,
79 eadd5275 (2023).

30 16. C. A. Collins, I. Olsen, P. S. Zammit, L. Heslop, A. Petrie, T. A. Partridge, J. E.
31 Morgan, Stem cell function, self-renewal, and behavioral heterogeneity of cells
32 from the adult muscle satellite cell niche. *Cell* **122**, 289-301 (2005).

33 17. Y. X. Wang, M. A. Rudnicki, Satellite cells, the engines of muscle repair. *Nat Rev
34 Mol Cell Biol* **13**, 127-133 (2011).

35 18. N. C. Chang, F. P. Chevalier, M. A. Rudnicki, Satellite Cells in Muscular
36 Dystrophy - Lost in Polarity. *Trends Mol Med* **22**, 479-496 (2016).

37 19. G. Caretti, M. Di Padova, B. Micales, G. E. Lyons, V. Sartorelli, The Polycomb
38 Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle
39 differentiation. *Genes Dev* **18**, 2627-2638 (2004).

40 20. W. D. Coley, L. Bogdanik, M. C. Vila, Q. Yu, J. H. Van Der Meulen, S.
41 Rayavarapu, J. S. Novak, M. Nearing, J. L. Quinn, A. Saunders, C. Dolan, W.
42 Andrews, C. Lammert, A. Austin, T. A. Partridge, G. A. Cox, C. Lutz, K. Nagaraju,
43 Effect of genetic background on the dystrophic phenotype in mdx mice. *Hum Mol
44 Genet* **25**, 130-145 (2016).

45 21. H. Ryu, H. N. Lee, J. Ju, J.-B. Park, E. Oh, M. Z. Lin, J. Seong, Combinatorial
46 effects of RhoA and Cdc42 on the actin cytoskeleton revealed by photoswitchable
47 GEFs. *Sensors and Actuators B: Chemical* **369**, (2022).

48 22. M. Bros, K. Haas, L. Moll, S. Grabbe, RhoA as a Key Regulator of Innate and
49 Adaptive Immunity. *Cells* **8**, (2019).

50 23. S. Gioftsidi, F. Relaix, P. Mourikis, The Notch signaling network in muscle stem
51 cells during development, homeostasis, and disease. *Skeletal Muscle* **12**, 9
52 (2022).

3 24. R. Gill, L. Hitchins, F. Fletcher, G. K. Dhoot, Sulf1A and HGF regulate satellite-cell
4 growth. *J Cell Sci* **123**, 1873-1883 (2010).

5 25. C. E. Holterman, F. Le Grand, S. Kuang, P. Seale, M. A. Rudnicki, Megf10
6 regulates the progression of the satellite cell myogenic program. *J Cell Biol* **179**,
7 911-922 (2007).

8 26. K. B. Umansky, Y. Gruenbaum-Cohen, M. Tsoory, E. Feldmesser, D. Goldenberg,
9 O. Brenner, Y. Groner, Runx1 Transcription Factor Is Required for Myoblasts
0 Proliferation during Muscle Regeneration. *PLoS Genet* **11**, e1005457 (2015).

1 27. T. Molina, P. Fabre, N. A. Dumont, Fibro-adipogenic progenitors in skeletal
2 muscle homeostasis, regeneration and diseases. *Open Biol* **11**, 210110 (2021).

3 28. B. Malecova, S. Gatto, U. Etxaniz, M. Passafaro, A. Cortez, C. Nicoletti, L.
4 Giordani, A. Torcinaro, M. De Bardi, S. Bicciato, F. De Santa, L. Madaro, P. L.
5 Puri, Dynamics of cellular states of fibro-adipogenic progenitors during
6 myogenesis and muscular dystrophy. *Nature Communications* **9**, 3670 (2018).

7 29. Z. Yablonka-Reuveni, The skeletal muscle satellite cell: still young and fascinating
8 at 50. *J Histochem Cytochem* **59**, 1041-1059 (2011).

9 30. F. Relaix, M. Bencze, M. J. Borok, A. Der Vartanian, F. Gattazzo, D.
0 Mademtzoglou, S. Perez-Diaz, A. Prola, P. C. Reyes-Fernandez, A. Rotini,
1 Taglietti, Perspectives on skeletal muscle stem cells. *Nature Communications* **12**,
2 692 (2021).

3 31. P. Sousa-Victor, L. Garcia-Prat, P. Munoz-Canoves, Control of satellite cell
4 function in muscle regeneration and its disruption in ageing. *Nat Rev Mol Cell Biol*
5 **23**, 204-226 (2022).

16 32. J. E. Morgan, T. A. Partridge, Muscle satellite cells. *Int J Biochem Cell Biol* **35**,
17 1151-1156 (2003).

18 33. N. A. Dumont, C. F. Bentzinger, M. C. Sincennes, M. A. Rudnicki, Satellite Cells
19 and Skeletal Muscle Regeneration. *Compr Physiol* **5**, 1027-1059 (2015).

20 34. K. H. Kim, C. W. Roberts, Targeting EZH2 in cancer. *Nat Med* **22**, 128-134
21 (2016).

22 35. M. T. McCabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson, G. S. Van Aller,
23 Y. Liu, A. P. Graves, A. Della Pietra, 3rd, E. Diaz, L. V. LaFrance, M. Mellinger, C.
24 Duquenne, X. Tian, R. G. Kruger, C. F. McHugh, M. Brandt, W. H. Miller, D.
25 Dhanak, S. K. Verma, P. J. Tummino, C. L. Creasy, EZH2 inhibition as a
26 therapeutic strategy for lymphoma with EZH2-activating mutations. *Nature* **492**,
27 108-112 (2012).

28 36. D. D. Scripture-Adams, K. N. Chesmore, F. Barthélémy, R. T. Wang, S. Nieves-
29 Rodriguez, D. W. Wang, E. I. Mokhonova, E. D. Douine, J. Wan, I. Little, L. N.
30 Rabichow, S. F. Nelson, M. C. Miceli, Single nuclei transcriptomics of muscle
31 reveals intra-muscular cell dynamics linked to dystrophin loss and rescue.
32 *Communications Biology* **5**, 989 (2022).

33 37. K. K. Saleh, H. Xi, C. Switzler, E. Skuratovsky, M. A. Romero, P. Chien, D. Gibbs,
34 L. Gane, M. R. Hicks, M. J. Spencer, A. D. Pyle, Single cell sequencing maps
35 skeletal muscle cellular diversity as disease severity increases in dystrophic
36 mouse models. *iScience* **25**, 105415 (2022).

37 38. I. Marchesi, F. P. Fiorentino, F. Rizzolio, A. Giordano, L. Bagella, The ablation of
38 EZH2 uncovers its crucial role in rhabdomyosarcoma formation. *Cell Cycle* **11**,
39 3828-3836 (2012).

50 39. E. Landfeldt, R. Thompson, T. Sejersen, H. J. McMillan, J. Kirschner, H.
51 Lochmüller, Life expectancy at birth in Duchenne muscular dystrophy: a
52 systematic review and meta-analysis. *European Journal of Epidemiology* **35**, 643-
53 653 (2020).

54 40. B. Jonathan, H. Micki, G. Michela, C. Michael, A. Keith, Life Expectancy in
55 Duchenne Muscular Dystrophy. *Neurology* **97**, e2304 (2021).

56 41. H. Wilton-Clark, T. Yokota, Recent Trends in Antisense Therapies for Duchenne
57 Muscular Dystrophy. *Pharmaceutics* **15**, (2023).

58 42. M. Matsuo, Antisense Oligonucleotide-Mediated Exon-skipping Therapies:
59 Precision Medicine Spreading from Duchenne Muscular Dystrophy. *Jma j* **4**, 232-
60 240 (2021).

61 43. F. Chemello, Z. Wang, H. Li, J. R. McAnally, N. Liu, R. Bassel-Duby, E. N. Olson,
62 Degenerative and regenerative pathways underlying Duchenne muscular
63 dystrophy revealed by single-nucleus RNA sequencing. *Proc Natl Acad Sci U S A*
64 **117**, 29691-29701 (2020).

65 44. J. Juan-Mateu, L. Gonzalez-Quereda, M. J. Rodriguez, M. Baena, E. Verdura, A.
66 Nascimento, C. Ortez, M. Baiget, P. Gallano, DMD Mutations in 576
67 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.
68 *PLoS One* **10**, e0135189 (2015).

69 45. Z. Y. Rao, M. Y. Cai, G. F. Yang, L. R. He, S. J. Mai, W. F. Hua, Y. J. Liao, H. X.
70 Deng, Y. C. Chen, X. Y. Guan, Y. X. Zeng, H. F. Kung, D. Xie, EZH2 supports
71 ovarian carcinoma cell invasion and/or metastasis via regulation of TGF-beta1
72 and is a predictor of outcome in ovarian carcinoma patients. *Carcinogenesis* **31**,
73 1576-1583 (2010).

74 46. F. Crea, E. M. Hurt, L. A. Mathews, S. M. Cabarcas, L. Sun, V. E. Marquez, R.
75 Danesi, W. L. Farrar, Pharmacologic disruption of Polycomb Repressive Complex
76 2 inhibits tumorigenicity and tumor progression in prostate cancer. *Mol Cancer* **10**,
77 40 (2011).

78 47. M. Smits, J. Nilsson, S. E. Mir, P. M. van der Stoop, E. Hulleman, J. M. Niers, P.
79 C. de Witt Hamer, V. E. Marquez, J. Cloos, A. M. Krichevsky, D. P. Noske, B. A.
80 Tannous, T. Würdinger, miR-101 is down-regulated in glioblastoma resulting in
81 EZH2-induced proliferation, migration, and angiogenesis. *Oncotarget* **1**, 710-720
82 (2010).

83 48. X. Zhang, Y. Wang, J. Yuan, N. Li, S. Pei, J. Xu, X. Luo, C. Mao, J. Liu, T. Yu, S.
84 Gan, Q. Zheng, Y. Liang, W. Guo, J. Qiu, G. Constantin, J. Jin, J. Qin, Y. Xiao,
85 Macrophage/microglial Ezh2 facilitates autoimmune inflammation through
86 inhibition of Socs3. *J Exp Med* **215**, 1365-1382 (2018).

87 49. K. Mojumdar, F. Liang, C. Giordano, C. Lemaire, G. Danialou, T. Okazaki, J.
88 Bourdon, M. Rafei, J. Galipeau, M. Divangahi, B. J. Petrof, Inflammatory
89 monocytes promote progression of Duchenne muscular dystrophy and can be
90 therapeutically targeted via CCR2. *EMBO Mol Med* **6**, 1476-1492 (2014).

91 50. S. Woodhouse, D. Pugazhendhi, P. Brien, J. M. Pell, Ezh2 maintains a key phase
92 of muscle satellite cell expansion but does not regulate terminal differentiation. *J*
93 *Cell Sci* **126**, 565-579 (2013).

94 51. A. H. Juan, A. Derfoul, X. Feng, J. G. Ryall, S. Dell'Orso, A. Pasut, H. Zare, J. M.
95 Simone, M. A. Rudnicki, V. Sartorelli, Polycomb EZH2 controls self-renewal and
96 safeguards the transcriptional identity of skeletal muscle stem cells. *Genes Dev*
97 **25**, 789-794 (2011).

52. Z. Al Tanoury, J. Rao, O. Tassy, B. Gobert, S. Gapon, J. M. Garnier, E. Wagner, A. Hick, A. Hall, E. Gussoni, O. Pourquié, Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. *Development* **147**, (2020).

53. J. P. Auger, M. Zimmermann, M. Faas, U. Stifel, D. Chambers, B. Krishnacoumar, R. V. Taudte, C. Grund, G. Erdmann, C. Scholtysek, S. Uderhardt, O. Ben Brahim, M. Pascual Mate, C. Stoll, M. Bottcher, K. Palumbo-Zerr, M. S. J. Mangan, M. Dzamukova, M. Kieler, M. Hofmann, S. Bluml, G. Schabbauer, D. Mougiakakos, U. Sonnewald, F. Hartmann, D. Simon, A. Kleyer, A. Gruneboom, S. Finotto, E. Latz, J. Hofmann, G. Schett, J. Tuckermann, G. Kronke, Metabolic rewiring promotes anti-inflammatory effects of glucocorticoids. *Nature*, (2024).

54. R. K. Gilbert, W. A. Hawk, The incidence of necrosis of muscle fibers in Duchenne type muscular dystrophy. *Am J Pathol* **43**, 107-122 (1963).

55. M. Sandri, C. Minetti, M. Pedemonte, U. Carraro, Apoptotic myonuclei in human Duchenne muscular dystrophy. *Lab Invest* **78**, 1005-1016 (1998).

56. S. E. Hong, J. Kneissl, A. Cho, M. J. Kim, S. Park, J. Lee, S. Woo, S. Kim, J. S. Kim, S. Y. Kim, S. Jung, J. Kim, J. Y. Shin, J. H. Chae, M. Choi, Transcriptome-based variant calling and aberrant mRNA discovery enhance diagnostic efficiency for neuromuscular diseases. *J Med Genet* **59**, 1075-1081 (2022).

57. Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, 3rd, S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain, A. Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish, R. Gottardo, P. Smibert, R. Satija, Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529 (2021).

12 58. J. D. Welch, V. Kozareva, A. Ferreira, C. Vanderburg, C. Martin, E. Z. Macosko,
13 Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell
14 Identity. *Cell* **177**, 1873-1887 e1817 (2019).

15 59. S. Aibar, C. B. González-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G.
16 Hulselmans, F. Rambow, J.-C. Marine, P. Geurts, J. Aerts, J. van den Oord, Z. K.
17 Atak, J. Wouters, S. Aerts, SCENIC: single-cell regulatory network inference and
18 clustering. *Nature Methods* **14**, 1083-1086 (2017).

19 60. S. Jin, C. F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C. H. Kuan, P.
20 Myung, M. V. Plikus, Q. Nie, Inference and analysis of cell-cell communication
21 using CellChat. *Nat Commun* **12**, 1088 (2021).

22 61. K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, S.
23 Dudoit, Slingshot: cell lineage and pseudotime inference for single-cell
24 transcriptomics. *BMC Genomics* **19**, 477 (2018).

25 62. K. Van den Berge, H. Roux de Bezieux, K. Street, W. Saelens, R. Cannoodt, Y.
26 Saeys, S. Dudoit, L. Clement, Trajectory-based differential expression analysis for
27 single-cell sequencing data. *Nat Commun* **11**, 1201 (2020).

28 63. N. Borcherding, A. Vishwakarma, A. P. Voigt, A. Bellizzi, J. Kaplan, K. Nepple, A.
29 K. Salem, R. W. Jenkins, Y. Zakharia, W. Zhang, Mapping the immune
30 environment in clear cell renal carcinoma by single-cell genomics.
31 *Communications Biology* **4**, 122 (2021).

32 64. D. W. McKellar, L. D. Walter, L. T. Song, M. Mantri, M. F. Z. Wang, I. De
33 Vlaminck, B. D. Cosgrove, Large-scale integration of single-cell transcriptomic
34 data captures transitional progenitor states in mouse skeletal muscle
35 regeneration. *Commun Biol* **4**, 1280 (2021).

16 65. H. J. Kok, E. R. Barton, Actions and interactions of IGF-I and MMPs during
17 muscle regeneration. *Semin Cell Dev Biol* **119**, 11-22 (2021).

18 66. U. Lee, P. Stuelsatz, S. Karaz, D. W. McKellar, J. Russeil, M. Deak, I. De
19 Vlaminck, C. Lepper, B. Deplancke, B. D. Cosgrove, J. N. Feige, A Tead1-Apelin
20 axis directs paracrine communication from myogenic to endothelial cells in
21 skeletal muscle. *iScience* **25**, 104589 (2022).

22 67. A. M. Norris, A. B. Appu, C. D. Johnson, L. Y. Zhou, D. W. McKellar, M.-A.
23 Renault, D. Hammers, B. D. Cosgrove, D. Kopinke, Hedgehog signaling via its
24 ligand DHH acts as cell fate determinant during skeletal muscle regeneration.
25 *Nature Communications* **14**, 3766 (2023).

26 68. I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A.
27 Rotem, C. Rodman, C. Lian, G. Murphy, M. Fallahi-Sichani, K. Dutton-Regester,
28 J.-R. Lin, O. Cohen, P. Shah, D. Lu, A. S. Genshaft, T. K. Hughes, C. G. K.
29 Ziegler, S. W. Kazer, A. Gaillard, K. E. Kolb, A.-C. Villani, C. M. Johannessen, A.
30 Y. Andreev, E. M. Van Allen, M. Bertagnolli, P. K. Sorger, R. J. Sullivan, K. T.
31 Flaherty, D. T. Frederick, J. Jané-Valbuena, C. H. Yoon, O. Rozenblatt-Rosen, A.
32 K. Shalek, A. Regev, L. A. Garraway, Dissecting the multicellular ecosystem of
33 metastatic melanoma by single-cell RNA-seq. *Science* **352**, 189-196 (2016).

34 69. V. Kleshchevnikov, A. Shmatko, E. Dann, A. Aivazidis, H. W. King, T. Li, R.
35 Elmentaitaite, A. Lomakin, V. Kedlian, A. Gayoso, M. S. Jain, J. S. Park, L. Ramona,
36 E. Tuck, A. Arutyunyan, R. Vento-Tormo, M. Gerstung, L. James, O. Stegle, O. A.
37 Bayraktar, Cell2location maps fine-grained cell types in spatial transcriptomics.
38 *Nat Biotechnol* **40**, 661-671 (2022).

59 70. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler,
60 D. Haussler, The human genome browser at UCSC. *Genome Res* **12**, 996-1006
61 (2002).

62 71. G. Yu, L.-G. Wang, Q.-Y. He, ChIPseeker: an R/Bioconductor package for ChIP
63 peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382-2383
64 (2015).

65 72. Q. Wang, M. Li, T. Wu, L. Zhan, L. Li, M. Chen, W. Xie, Z. Xie, E. Hu, S. Xu, G.
66 Yu, Exploring Epigenomic Datasets by ChIPseeker. *Curr Protoc* **2**, e585 (2022).

67 73. S. Karakashev, T. Fukumoto, B. Zhao, J. Lin, S. Wu, N. Fatkhutdinov, P. H. Park,
68 G. Semenova, S. Jean, M. G. Cadungog, M. E. Borowsky, A. V. Kossenkov, Q.
69 Liu, R. Zhang, EZH2 Inhibition Sensitizes CARM1-High, Homologous
70 Recombination Proficient Ovarian Cancers to PARP Inhibition. *Cancer Cell* **37**,
71 157-167 e156 (2020).

72 74. R. T. Kurmasheva, M. Sammons, E. Favours, J. Wu, D. Kurmashev, K.
73 Cosmopoulos, H. Keilhack, C. R. Klaus, P. J. Houghton, M. A. Smith, Initial testing
74 (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the Pediatric
75 Preclinical Testing Program. *Pediatr Blood Cancer* **64**, (2017).

76 75. X. Huang, J. Yan, M. Zhang, Y. Wang, Y. Chen, X. Fu, R. Wei, X. L. Zheng, Z.
77 Liu, X. Zhang, H. Yang, B. Hao, Y. Y. Shen, Y. Su, X. Cong, M. Huang, M. Tan, J.
78 Ding, M. Geng, Targeting Epigenetic Crosstalk as a Therapeutic Strategy for
79 EZH2-Aberrant Solid Tumors. *Cell* **175**, 186-199.e119 (2018).

80
81

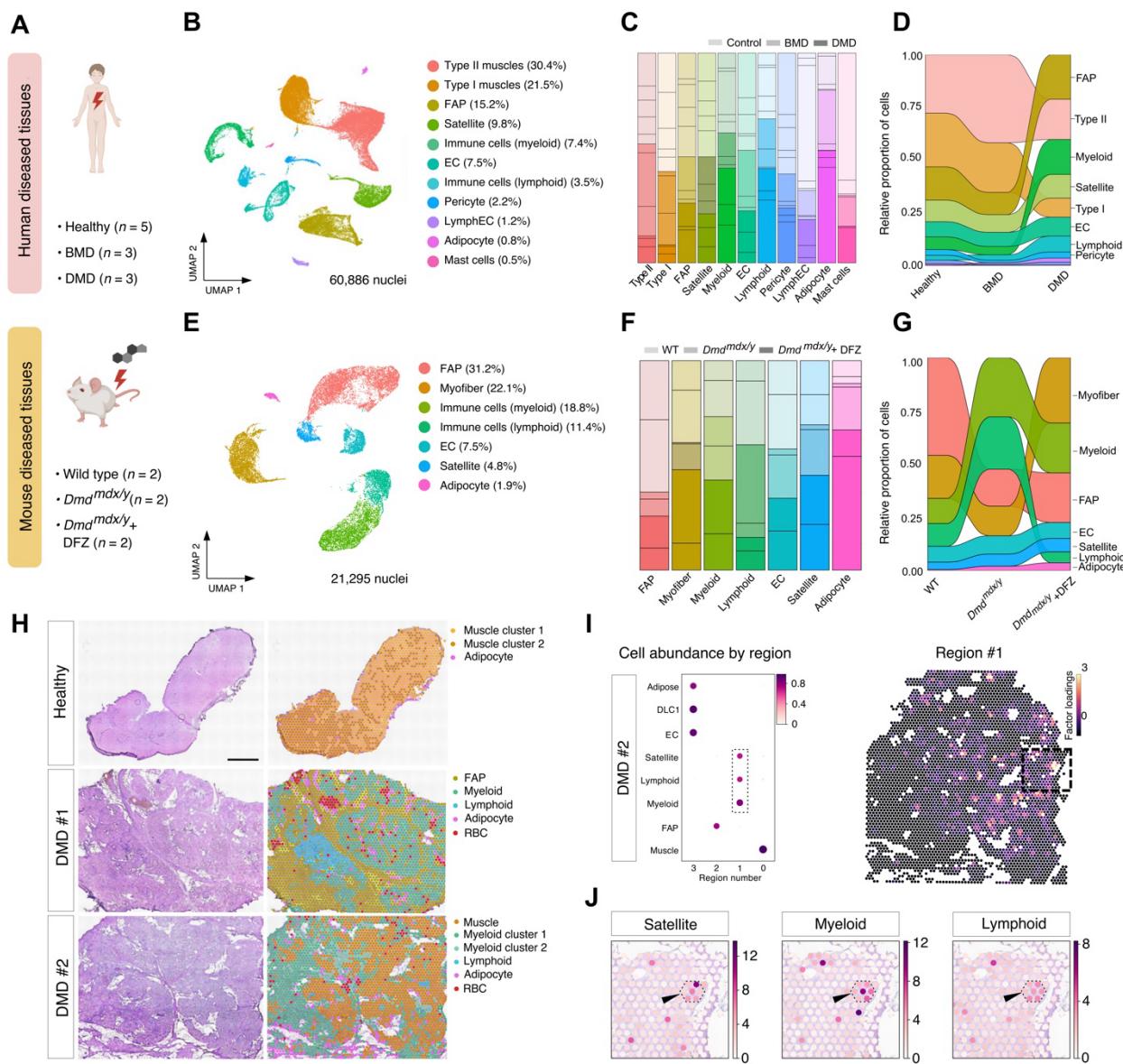
12 **Acknowledgments**

13 We express our gratitude to all of the muscle donors and their families for their
14 participation. We thank Young-Yun Kong and Jong-Seol Kang for assistance with
15 muscle dissection and Mathieu Petitjean, Li Chen, and Adi Lightstone at
16 FibroNest for assistance with quantitative AI digital pathology image analysis.

17
18 **Funding:** This work was supported in part by grants from the Korean Research
19 Foundation (RS-2023-00223069 to MC, J-HC, C-HL, and IJ) and by the SNUH
20 Lee Kun-Hee Child Cancer & Rare Disease Project, Republic of Korea (22B-001-
21 0500 to J-HC, and MC).

22
23 **Author contributions:** Conceptualization: MC, J-HC. Methodology: EYJ, YK, HK,
24 SYJ, SP, RGK, J-KW, AC, IJ, C-HL, JP. Investigation: EYJ, YK, HK, AC, C-HL,
25 JP. Visualization: EYJ, MC. Funding acquisition: MC, J-HC, C-HL, IJ. Project
26 administration: EYJ, SP. Supervision: MC, J-HC, JP, C-HL, IJ, AC. Sample
27 acquisition: DK, AC, H-YK, J-HC. Writing – original draft: EYJ, MC. Writing –
28 review & editing: EYJ, YK, HK, SYJ, SP, RGK, DK, J-KW, AC, IJ, C-HL, JP, H-YK,
29 J-HC, MC.

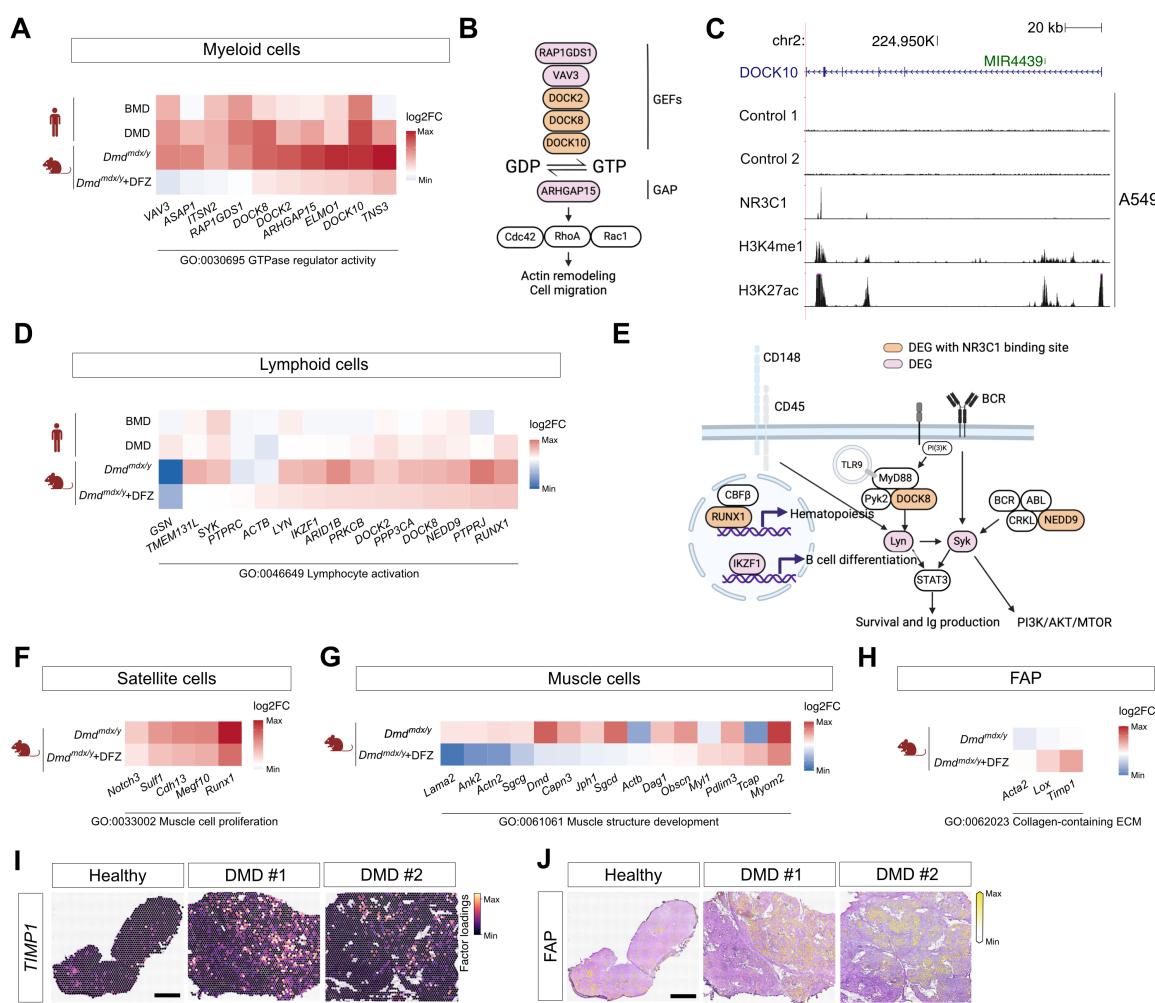
30
31 **Competing interests:** Authors declare that they have no competing interests.


32
33 **Data and materials availability:** All data are available in the main text or the
34 supplementary materials. All 10x snRNA-seq, 10x Genomics Visium, and Vizgen
35 MERFISH spatial transcriptomics data used in the study are available at the

.6 Korea BioData Station with accession numbers [temp-grp-2-1711599940117](#),
.7 [temp-grp-2-1711600165042](#), and [temp-grp-2-1711600348912](#), respectively, with
.8 minimal restriction posed by the depository.

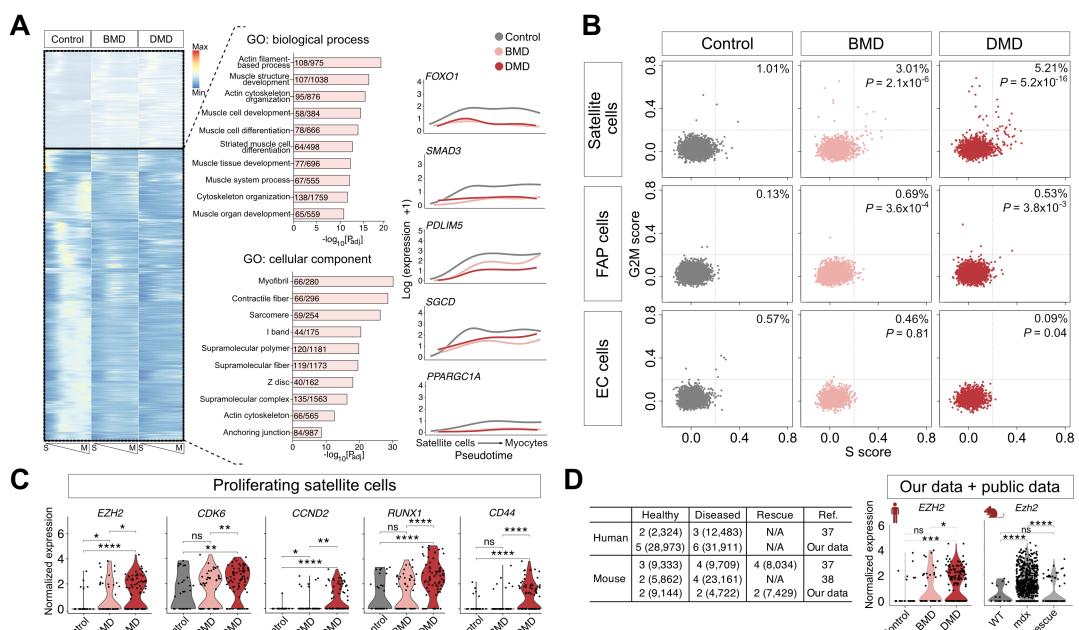
.9

.0

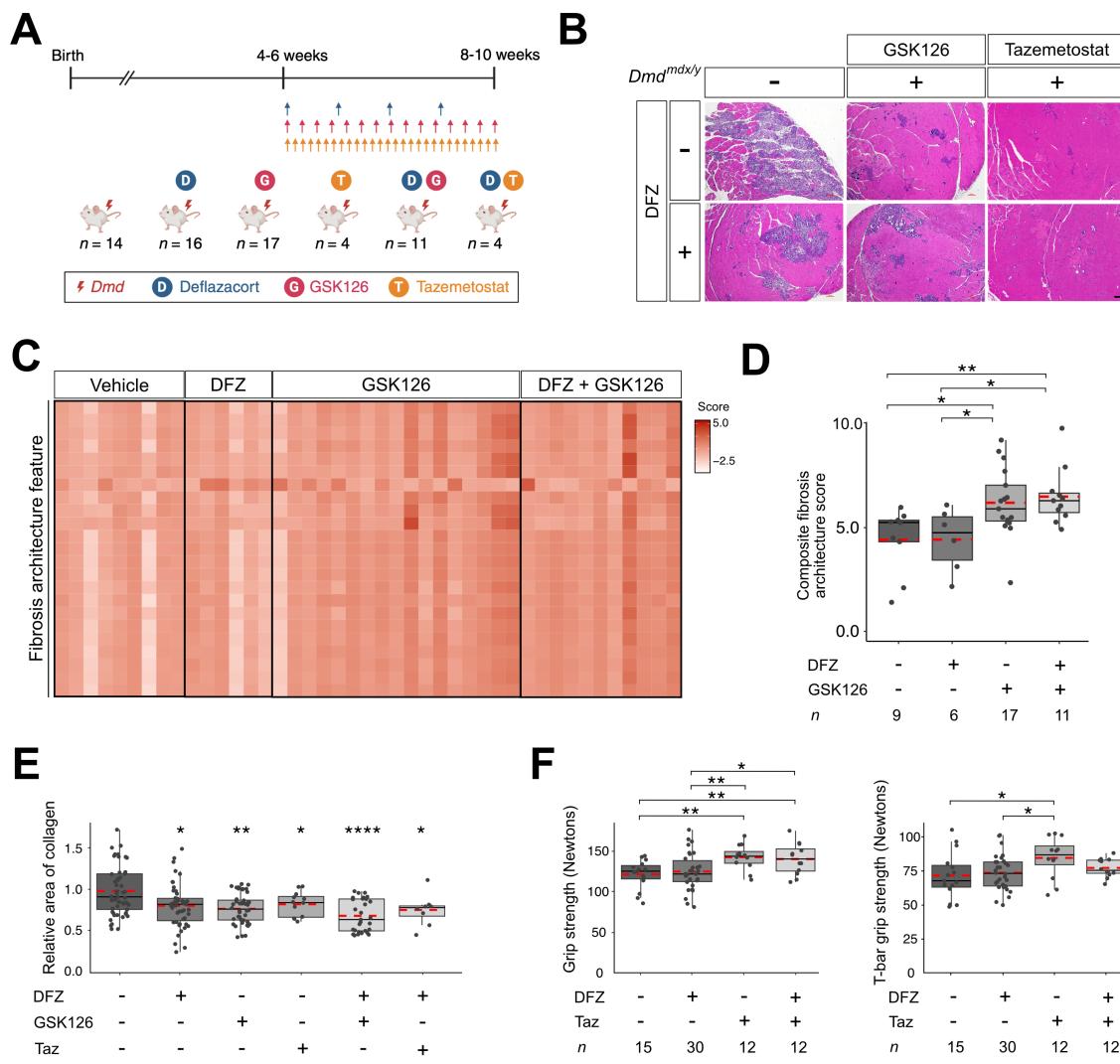

!1 Figures and Tables

!2
!3 **Fig. 1. Profiles of human and mouse DMD muscle tissues. (A)** Human and
!4 mouse tissues used in the study. DFZ denotes deflazacort. **(B, E)** UMAP
!5 visualization of 60,886 nuclei from human **(B)** and 21,295 nuclei from mouse **(E)**
!6 tissues. FAP, fibro-adipogenic progenitors; EC, endothelial cells; LymphEC,
!7 lymphatic endothelial cells. **(C, F)** Cell type proportions in human **(C)** and mouse
!8 **(F)** samples. **(D, G)** Changes in cell type proportion by disease state in human **(D)**
!9 and mouse **(G)** samples. **(H)** Cell type mapping on Visium slides of human DMD

30 and healthy muscle sections. Scale bar = 1 mm. **(I)** Dot plot illustrating co-
31 occurrence of spatially-resolved cell types in regions defined by cell2location (69).
32 The dotted rectangle emphasizes the co-occurrence of satellite cells and immune
33 cells in region #1 (left). Spatial heatmap showing the location of region #1 (right).
34 **(J)** Magnified view of the dotted rectangle in **(I)** (right), emphasizing colocalized
35 expression of satellite, myeloid, and lymphoid markers in the DMD #2 sample.
36


17

18


Fig. 2. Altered gene expression in human and mouse tissues with *DMD* mutation and deflazacort treatment. (A, D, F, G, H) Heatmaps of DEGs in each cell type by species and disease status. **A**: myeloid cells, **D**: lymphoid cells, **F**: satellite cells, **G**: muscle cells, and **H**: FAP cells. **(B, E)** Schematic representation of the roles of DEGs in corresponding heatmaps. **B**: actin remodeling and cell migration genes in myeloid cells and **E**: B cell differentiation, survival and Ig production genes in lymphoid cells. **(C)** Diagram of the exemplary NR3C1 ChIP-seq peak locus on *DOCK10*, a DEG found in the myeloid cells. **(I)** *TIMP1* expression in FAP clusters. **(J)** Visualization of FAP clusters by cell2location mapping on Visium slides of human patient muscle sections. Scale bars = 1 mm.

19

Fig. 3. Proliferating satellite cells in DMD patients lead to increased signal transduction in a pathway involving *EZH2* and cell cycle progressors. (A)

Heatmap of genes whose expressions vary over pseudo-temporal ordering from satellite cells (S) to myocytes (M) (left). GO terms enriched among these genes (middle). Numbers in bar graphs indicate numbers of input genes/genes in annotation. Plots of log-transformed counts and the fitted values of control, BMD, and DMD patient cells (right). **(B)** Scatterplots of cell cycle scores in satellite, FAP, and EC cells by disease status. Cells were considered positive for cell proliferation if they harbor positive scores for either G2M or S. **(C)** Violin plots depicting DEGs in proliferating satellite cells. **(D)** Table displaying the number of samples and corresponding cell counts (in parentheses) included in our and previous studies (left). Violin plots of both human *EZH2* and mouse *Ezh2* expression in our and public data. ns denotes P -value > 0.05 , $* \leq 0.05$, $** \leq 0.01$, $*** \leq 0.001$, $**** \leq 0.0001$.

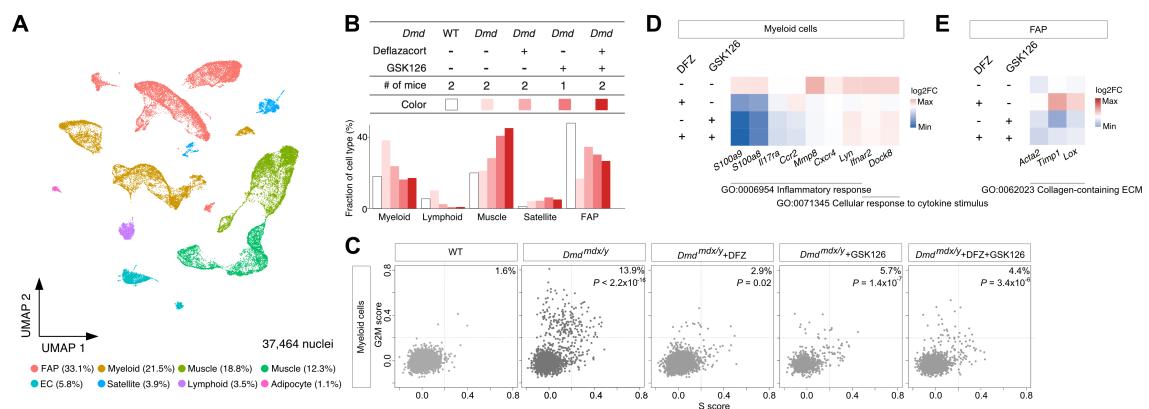


Fig. 4. Treatment with EZH2 inhibitors improved muscle phenotype in *mdx* mice. (A) Schematic representation of the experimental setup involving mouse drug administration. **(B)** H&E staining of muscle tissues from the 8- to 10-week-old mice after injection of deflazacort and/or GSK126 and/or Tazemetostat (Taz).

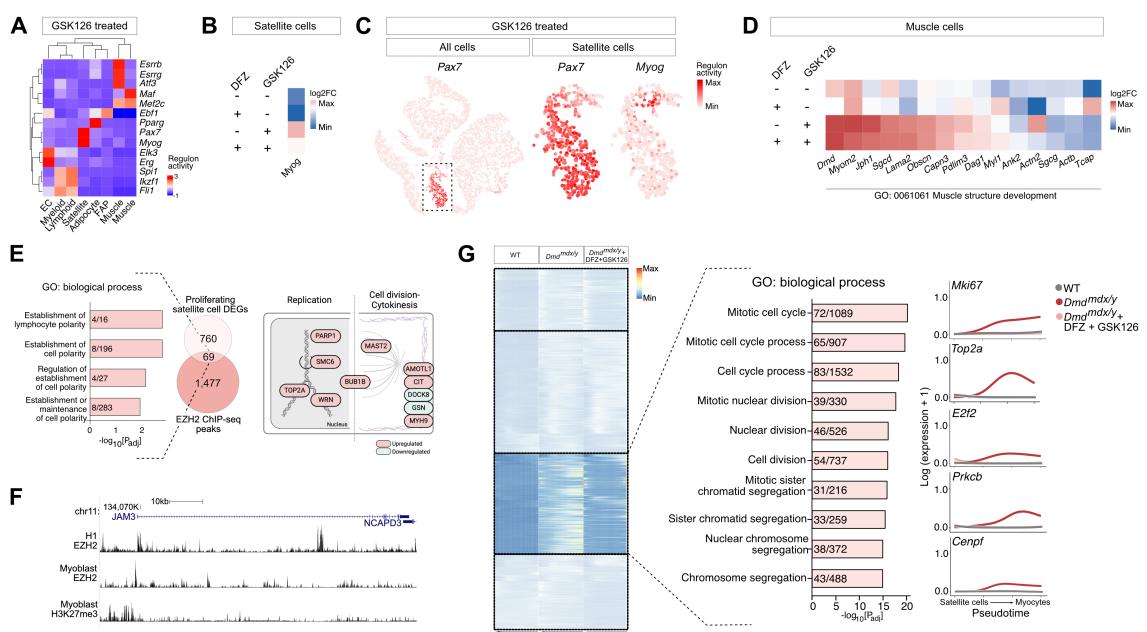
Scale bar = 100 μ m. **(C)** Heatmap showing quantification of Masson Trichrome images for fibrosis architecture features from mice with or without GSK126 treatment. Feature names (row) are listed separately in Data S2. **(D)** Composite fibrosis scores calculated on the basis of **(C)**. The number indicates the number of

77 mice used. (E) Boxplot showing quantification of area of collagen relative to
78 untreated *mdx* in mice with or without drug treatment based on Masson's
79 trichrome stained images. The number indicates the number of slides used. (F)
80 Boxplots showing grip strength (left) and T-bar grip strength (right) of 8- to 10-
81 week-old mice after injection of deflazacort and/or Tazemetostat. Red dotted lines
82 indicate the mean. The number represents the triplication of the initial count of
83 mice used.

84

Fig. 5. EZH2 inhibitor maintains the immune suppressing effect and

overrides the increased fibrosis induced by deflazacort. (A) UMAP


visualization of 37,464 nuclei from muscle tissues of wild-type or *mdx* mice with

drug treatments. (B) Cell type proportion by treatment status. (C) Scatterplots of

cell cycle scores in myeloid cells by treatment status. (D) Heatmap of the DEGs in

myeloid cells by treatment status. (E) Heatmap of the DEGs in FAP cells shown in

Fig. 2H by treatment status.

Fig. 6. EZH2 inhibitor overrides the muscle weakness effect exerted by deflazacort through stimulating muscle differentiation. (A) Heatmap of differentially enriched regulators for each cell type in GSK126-injected mice. **(B)** Heatmap of *Myog* expression in satellite cells by treatment status. **(C)** t-SNE visualization of *Pax7* and *Myog* transcription factor activities in cells of GSK126-injected mice. **(D)** Heatmap of the muscle cell DEGs shown in Fig. 2G by treatment status. **(E)** Number of genes differentially expressed in the proliferating satellite cells and bound by EZH2 (left). Schematic representation of the roles of overlapping genes that are engaged in cell polarity group (right). **(F)** Diagram of the exemplary EZH2 ChIP-seq peak locus on *JAM3*, a DEG found in the proliferating satellite cells and bound by EZH2. **(G)** Heatmap of genes whose expression varies over pseudo-temporal ordering from satellite cells to the differentiated myocyte state (left). Numbers in bar graphs indicate input

1 genes/genes in annotation. Plots of log-transformed counts and the fitted values
2 of wild type, *mdx* mice, and *mdx* mice with deflazacort and GSK126 injection
3 (right).
4

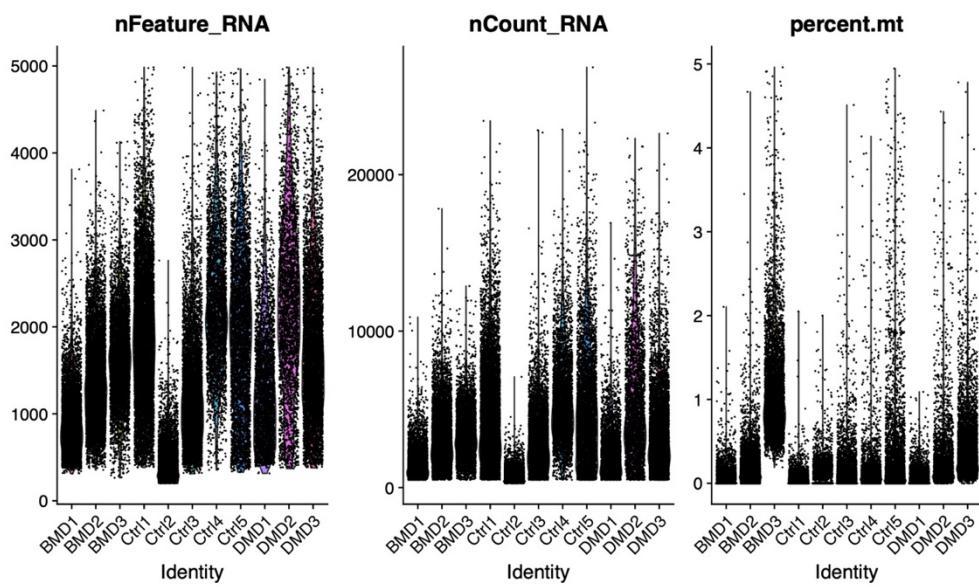
Supplementary Materials for

Inhibiting EZH2 complements steroid effects in Duchenne muscular dystrophy

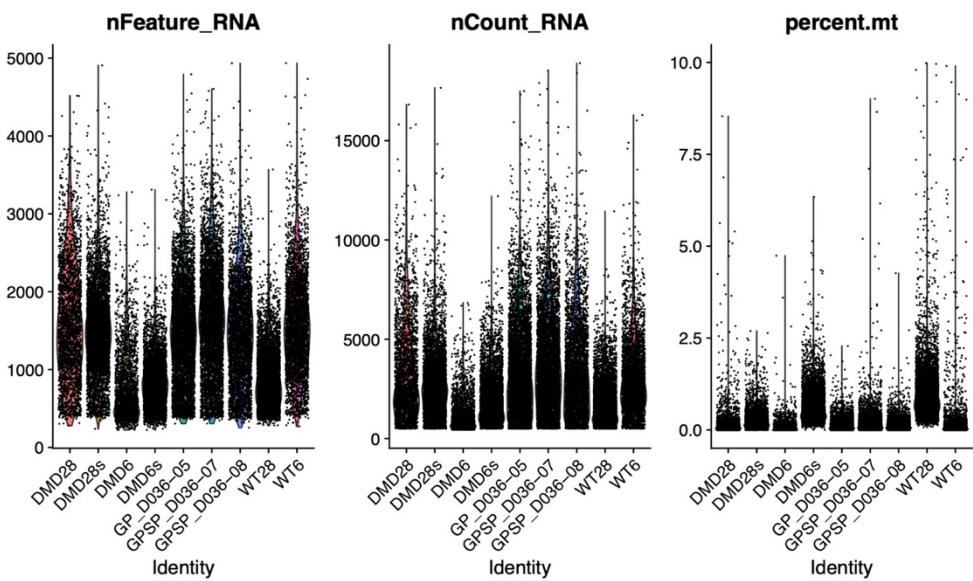
Eun Young Jeon *et al.*

*Corresponding author. Email: murimchoi@snu.ac.kr and chaeped1@snu.ac.kr

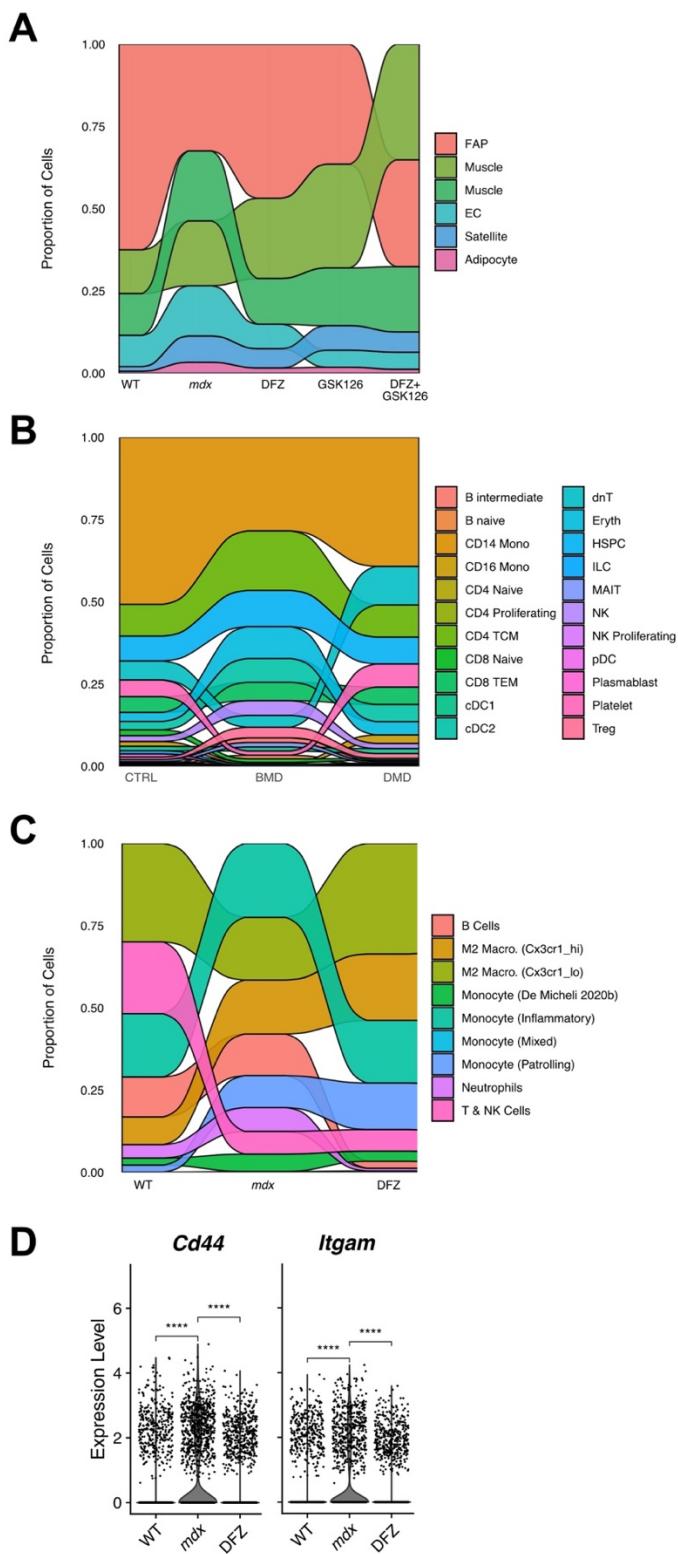
This PDF file includes:


Figs. S1 to S12

Tables S1 to S2


Other Supplementary Materials for this manuscript include the following:

Data S1 to S2


A

B

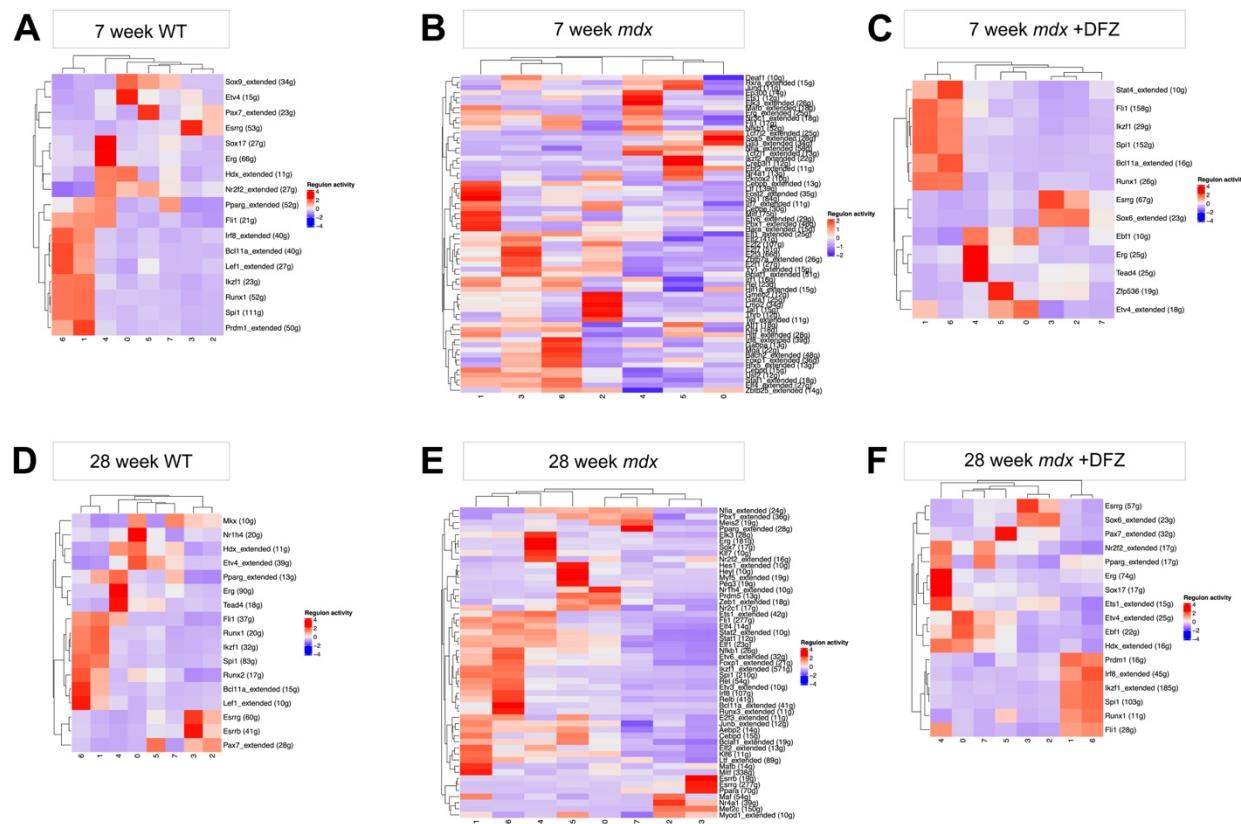


Fig. S1. Single nucleus RNA-seq run quality for (A) human and (B) mouse samples.

Fig. S2. Sub-clustering and differentially expressed genes.

(A) Mouse data without immune related cells. **(B)** Human data with immune related cells only. **(C)** Mouse data with immune related cells only. **(D)** Differentially expressed genes in the Monocyte (Inflammatory) cluster in **(C)**. *** ≤ 0.001 .

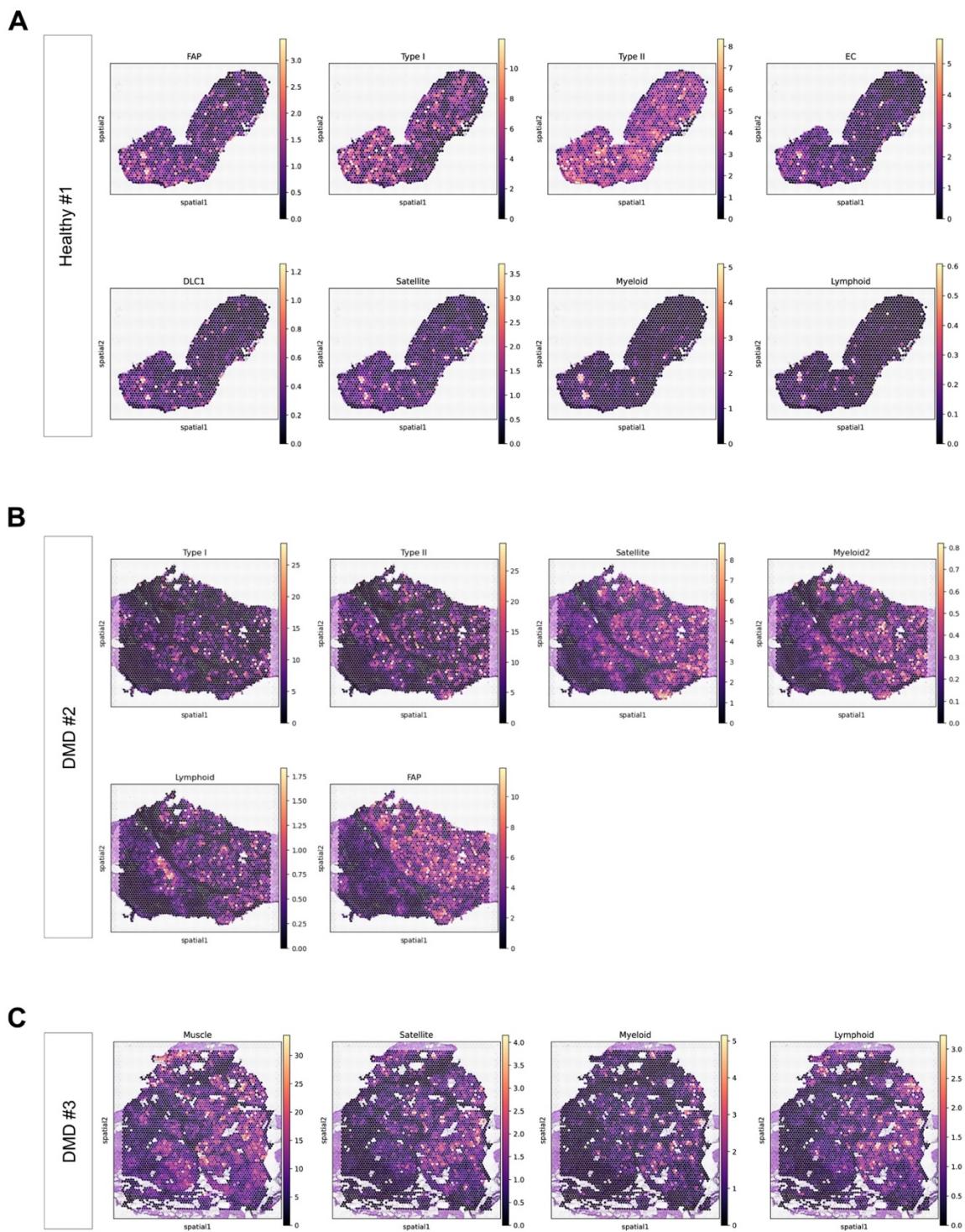
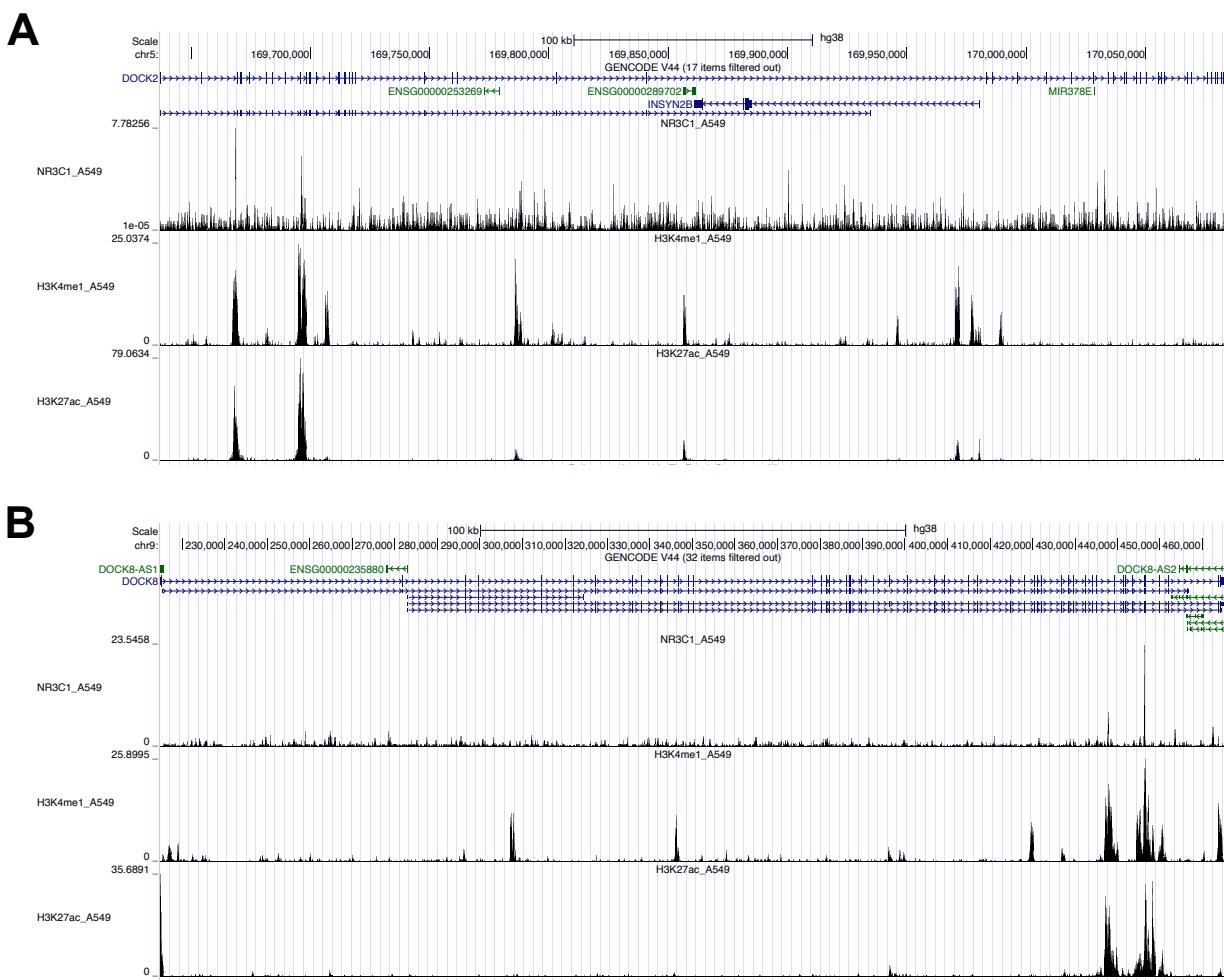


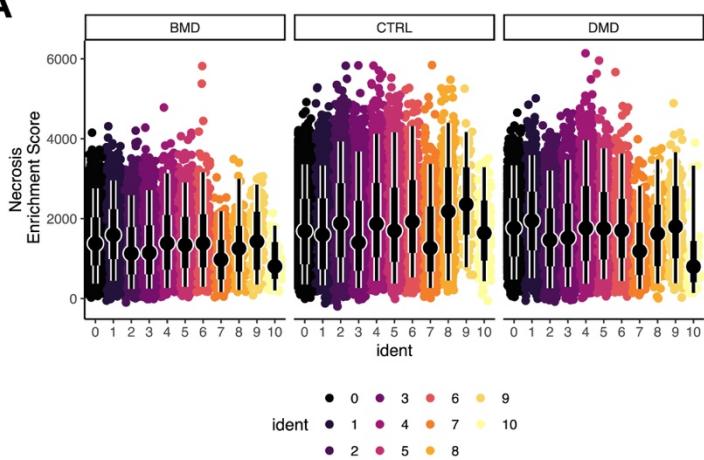
Fig. S3. Heatmap of differentially enriched regulators for each cell type.

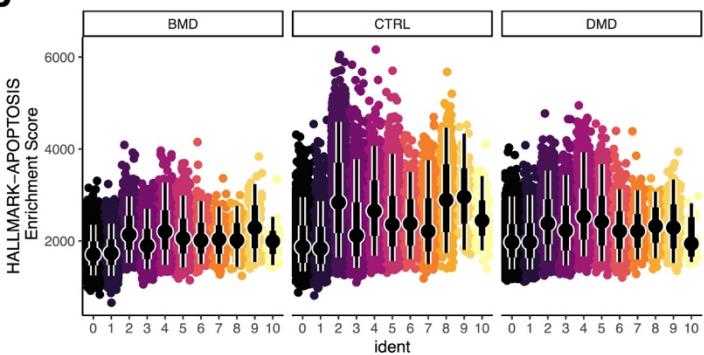
(A) Wild type at 7 weeks. **(B)** *mdx* at 7 weeks. **(C)** *mdx* with deflazacort at 7 weeks. **(D)**


Wild type at 28 weeks. **(E)** *mdx* at 28 weeks. **(F)** *mdx* with deflazacort at 28 weeks.

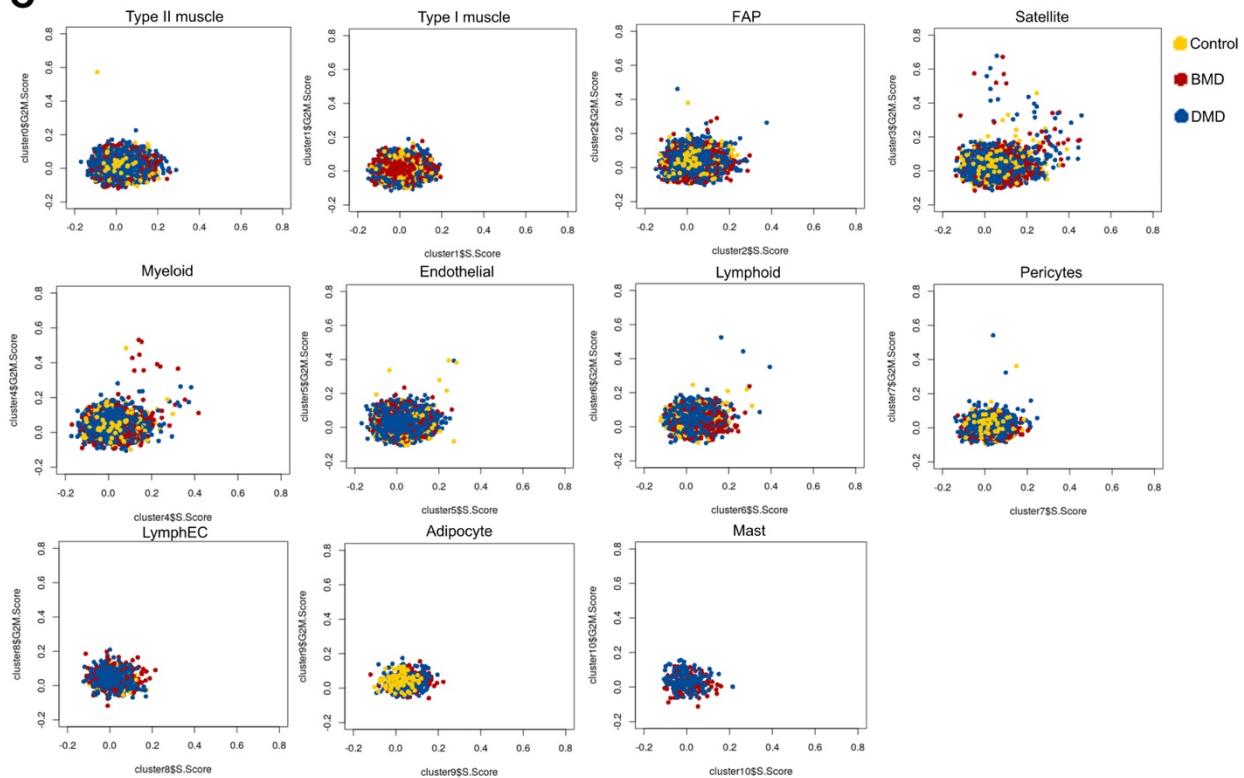
Numeric labels denote different cell types: 0 - Type II muscle, 1 - Type I muscle, 2 - Fibro-adipogenic progenitors (FAP), 3 - Satellite cells, 4 - Myeloid cells, 5 - Endothelial cells (EC), 6 - Lymphoid cells, 7 - Pericytes, 8 - Lymphatic endothelial cells (lymphEC), 9 - Adipocytes, 10 - Mast cells.

Fig. S4. Visium profiles of by cell type by samples.

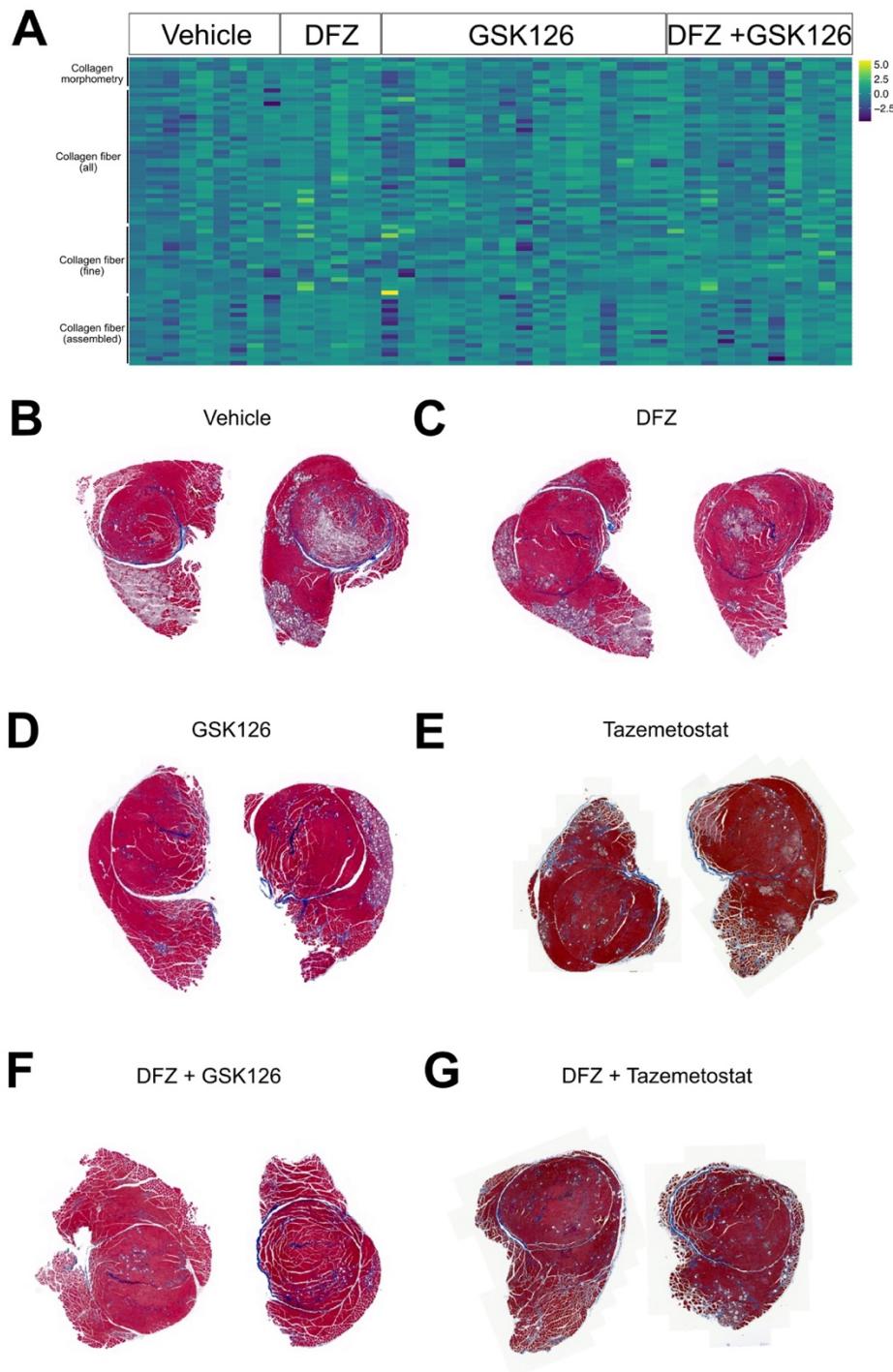

(A) A healthy sample. **(B-C)** DMD patient samples.


Fig. S5. ChIP-seq signals on deflazacort target genes.

(A) NR3C1 ChIP-seq peak locus on *DOCK2*. **(B)** NR3C1 ChIP-seq peak locus on *DOCK8*.


A

B



C

Fig. S6. Cell death analysis.

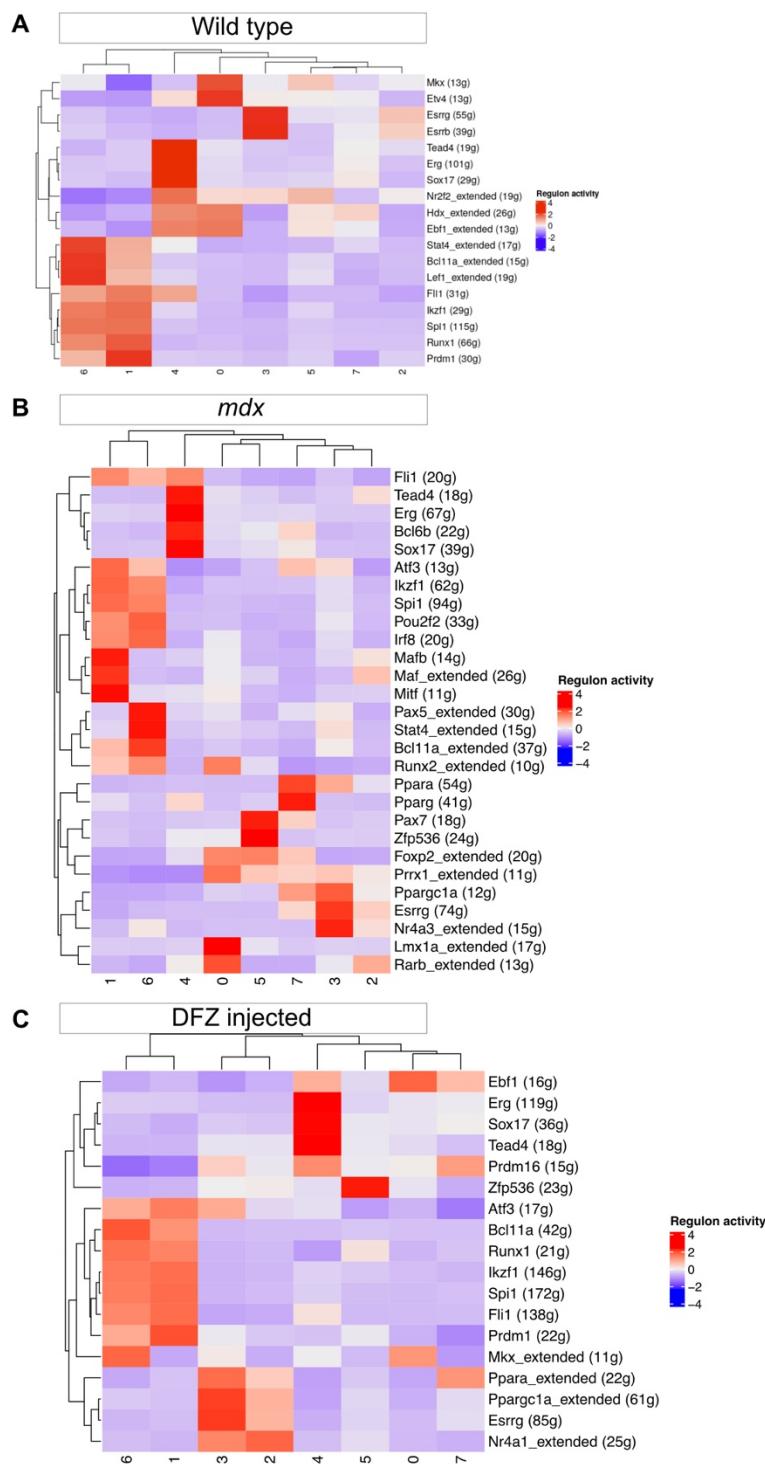

(A) Plot of necrosis (GSEA systematic name M41803) enrichment score. **(B)** Plot of apoptosis (GSEA systematic name M5902) enrichment score. **(C)** Scatterplot of cell cycle scores in all cell types. Numeric labels denote different cell types: 0 - Type II muscle, 1 - Type I muscle, 2 - Fibro-adipogenic progenitors (FAP), 3 - Satellite cells, 4 - Myeloid cells, 5 - Endothelial cells (EC), 6 - Lymphoid cells, 7 - Pericytes, 8 - Lymphatic endothelial cells (lymphEC), 9 - Adipocytes, 10 - Mast cells.

Fig. S7. Image analysis of Masson's trichrome staining.

(A) Heatmap illustrating the quantification of images for collagen morphometry, collagen fiber, fine collagen fiber, and assembled fiber. (B-G) Representative images of

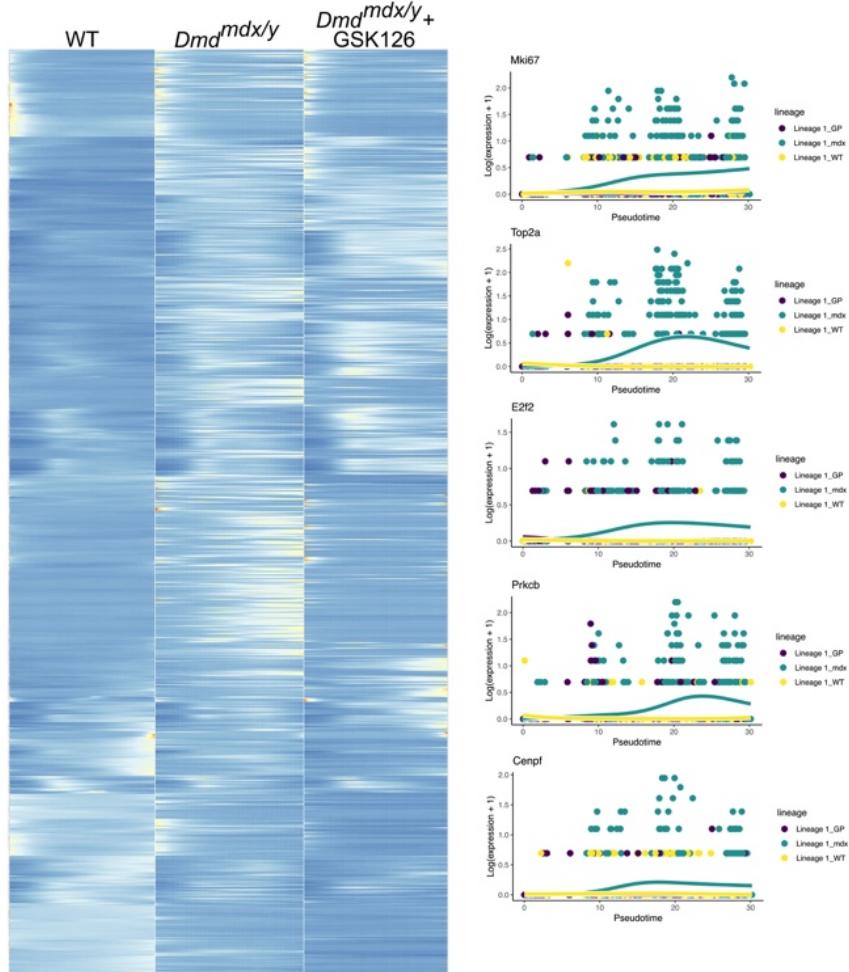
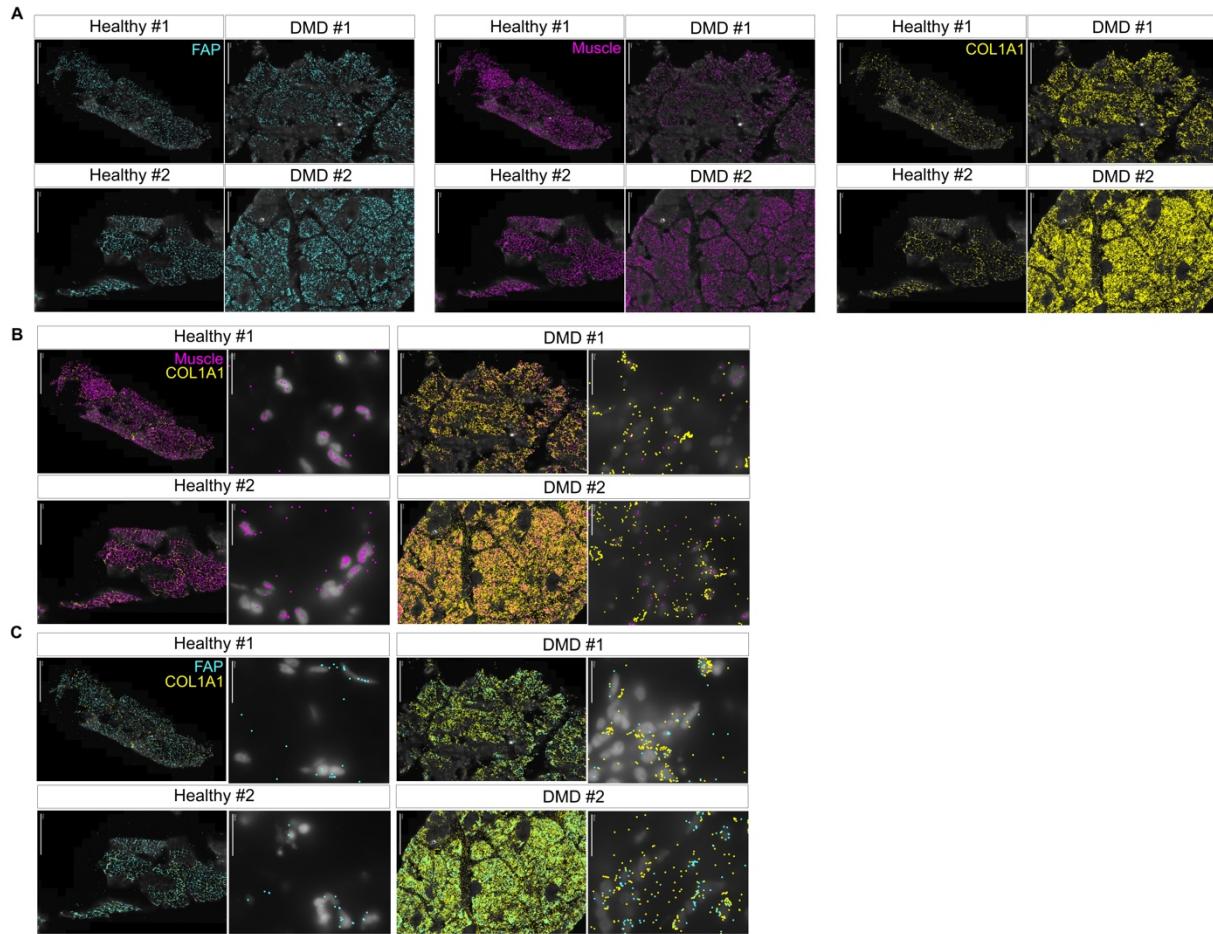
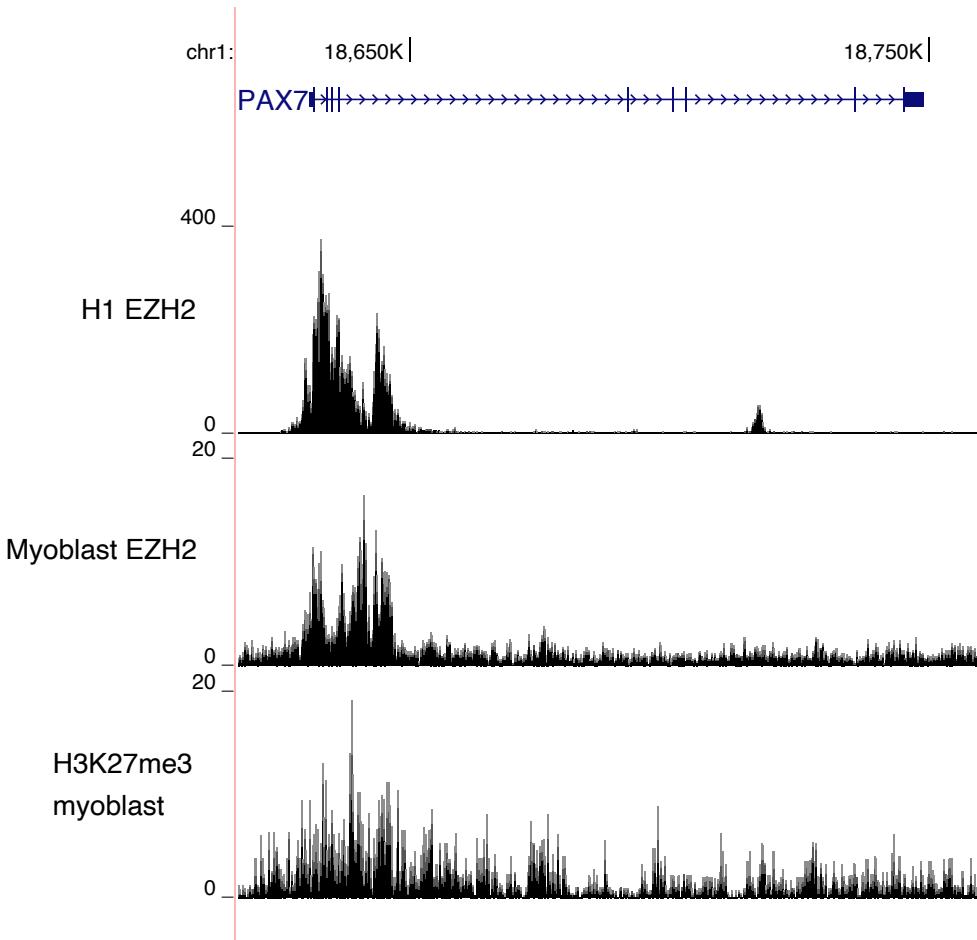

Masson's trichrome staining for the vehicle group (**B**), the deflazacort-injected group (**C**), the GSK126-injected group (**D**), the Tazemetostat-injected group (**E**), the deflazacort and GSK126-injected group (**F**), and the deflazacort and Tazemetostat-injected group (**G**).

Fig. S8. Analysis of ligand-receptor interactions.


(A) Heatmap of significant ligand-receptor pairs in WT. **(B)** Heatmap of significant ligand-receptor pairs in *mdx* mice. **(C)** Heatmap of significant ligand-receptor pairs in *mdx* with deflazacort injection. Numeric labels denote different cell types: 0 - Type II muscle, 1 - Type I muscle, 2 - Fibro-adipogenic progenitors (FAP), 3 - Satellite cells, 4 - Myeloid cells, 5 - Endothelial cells (EC), 6 - Lymphoid cells, 7 - Pericytes, 8 - Lymphatic endothelial cells (lymphEC), 9 - Adipocytes, 10 - Mast cells.

A


Fig. S9. Heatmap of pseudotemporal ordering of satellite and muscle cells along a path towards a differentiated state.

(A) Heatmap and plot of log-transformed counts and the fitted values of wild type (WT), $D2-mdx$, $D2-mdx$ with GSK126 (GP) injection.

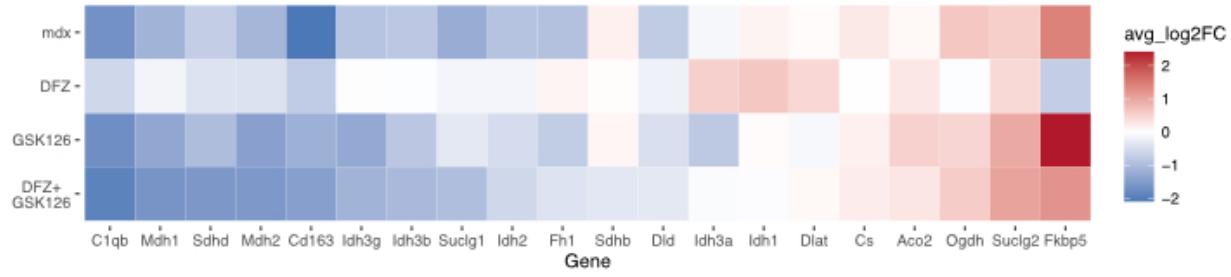


Fig. S10. Spatial map of human muscle tissues using MERFISH.

(A) Spatial expression of FAP (*CCDC102B*, *COL4A1*, *COL4A2*, *LAMA4*, *NRXN1*) markers, muscle markers (*ANKRD1*, *ERBIN*, *PFKFB3*, *PLIN5*, *TTN*, *WNK2*, *XIRP2*), and fibrosis marker *COL1A1*. **(B)** Co-expression map of muscle markers and fibrosis marker. **(C)** Co-expression map of FAP and fibrosis marker.

Fig. S11. EZH2 ChIP-seq peak locus on *PAX7*.

Fig. S12. Heatmap of gene expression patterns related to TCA cycle in myeloid cells by the addition of deflazacort and EZH2 inhibitor.

Table S1. Information of study participants.

Sample	Se	Ag	Mutation	Steroid		Used for Visium/ MERFISH
				treatment	Biopsy	
Sample	x	e	Mutation	t	area	analysis
Healthy						
1	M	16	-	No	Quad	Yes/Yes
Healthy						
2	M	3	-	No	Quad	No/Yes
Healthy						
3	M	3	-	No	Abdomen	No/No
Healthy						
4	F	5	-	No	Abdomen	No/No
Healthy						
5	M	10	-	No	Abdomen	No/No
BMD1	M	13	p.Ser1273X	No	Quad	No/No
p.Glu2147_Gln2171d						
BMD2	M	4	el	No	Quad	No/No
BMD3	M	7	exon 30-42 deletion	No	Quad	No/No
DMD1	M	17	p.Arg195X	No	Quad	No/No
DMD2	M	5	p.Gln423*	No	Quad	Yes/Yes
DMD3	M	5	p.His3299Glnfs*15	No	Quad	Yes/Yes

Table S2. Genes denoting each cell type.

Organism	Cell type	Marker gene used
Human	Type II muscles	MYH1, MYH2
Human	Type I muscles	MYH7
Human	FAP	PDGFRA
Human	Satellite	PAX7
	Immune cells	PTPRC, CD14, CD163, C1QA,
Human	(myeloid)	S100A8
Human	EC	PECAM1
	Immune cells	
Human	(lymphoid)	IL7R, PTPRC, NKG7, PRF1
Human	Pericyte	PDGFRB
Human	LymphEC	TFF3
Human	Adipocyte	PLIN1, ADIPOQ
Human	Mast cells	TPSB2
Mouse	FAP	Pdgfra
Mouse	Myofiber	Myh1, Myh2, Myh7
	Immune cells	
Mouse	(myeloid)	Ptprc, Cd14, F13a1, Clec10a
	Immune cells	
Mouse	(lymphoid)	Ptprc, Cd79a
Mouse	EC	Pecam1

Mouse	Satellite	Pax7
Mouse	Adipocyte	Adipoq

Data S1. Differentially expressed genes in human and mouse (separate file).

Data S2. FibroNest analysis terms (separate file).