

1 Asymmetry of acto-myosin cortices as active fluids shape cells in organoids

2 Tristan Guyomar,^{1, 2, 3, 4} Linjie Lu,^{1, 2, 3, 4} Tetsuya Hiraiwa,^{5, 6, 7, *} and Daniel Riveline^{1, 2, 3, 4, †}

3 ¹*Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France*

4 ²*Université de Strasbourg, Illkirch, France*

5 ³*Centre National de la Recherche Scientifique, UMR7104, Illkirch, France*

6 ⁴*Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France*

7 ⁵*Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan*

8 ⁶*Mechanobiology Institute, Singapore, National University of Singapore, Singapore*

9 ⁷*Institute of Physics, Academia Sinica, Taipei, Taiwan*

10 (Dated: August 14, 2024)

Cell cortex is a thin sheet of actin cytoskeleton spanning cell boundaries with rich out-of-equilibrium dynamics. A theoretical description of the cortex as an active fluid enables to capture cell shapes dynamics in 3D tissues. However models integrated with calibration of parameters and quantitative experiments are lacking so far. Here we report that cells in organoids and in cysts have conserved apico-basal-lateral asymmetric compositions in actin and in myosin, and we quantify their densities and mechanical properties. This allows to calibrate a new model coupling active fluids with a phase field which reproduces the main features of cell shapes. To test our approach, we successfully predict changes in cell shapes by modulating actin polymerisation in experiments and in simulations. Our study shows how active fluid theory integrated with experiments can determine cell shapes in 3D tissues.

11 Cells and tissues are shaped by the acto-myosin cy-
12 toskeleton [1]. This ~ 200 nm thin layer represents a gel
13 spanning each cell border. Its dynamics offers rich out-
14 of-equilibrium spatio-temporal patterns during local pro-
15 trusion [2–5], motility [6–9], or division [10, 11]. Its self-
16 organisation properties have shown their relevance in a
17 variety of conditions *in vitro* [12, 13] and *in vivo* [14–16].
18 This level of achievement results from a progress in the
19 experimental physics of actin and acto-myosin *in vitro* as-
20 sociated with the development of active fluid physics [17].
21 Actin gels were shown to promote bead motion through
22 polymerisation *in vitro* [18–20] and acto-myosin gels were
23 reported to undergo contraction [21]. These phenomena
24 were compared to the theory of active gel revisiting the
25 Navier-Stokes equation by adding a new term taking into
26 account the stress generation internally driven by the
27 acto-myosin cortex [17, 21–24]. Progress over the past
28 decades has enabled theoretical predictions and their rel-
29 evance mainly in single cell often in 2D [10, 25, 26].

30 However, at this stage, tests of this cytoskeleton/active
31 gel approach are needed in more physiological situations.
32 Cells grow in 3D in *in vivo* environments. Also cell cortex
33 requires specific measurements to evaluate its physical
34 properties in order to associate theoretical parameters
35 with actual fluid characteristics in experiments. These
36 limitations to extrapolate results obtained so far call for
37 new approaches combining control of 3D tissue growth
38 with quantitative experiments allowing to calibrate ac-
39 tive fluid based simulations.

40 In this context, epithelial cysts represent interesting
41 systems. They are composed of cell monolayers surround-
42 ing a fluid filled cavity called the *lumen* [27]. Cysts are
43 also reported as the basic structure at the origin of or-
44 gans [27], ranging from the formation of embryos [28] to
45 the generation of pancreatic ducts for example [29]. With

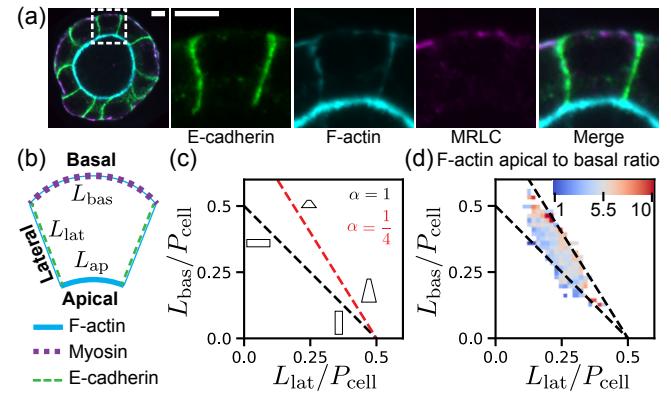


FIG. 1. Correlation between acto-myosin cortical density and cell shape in MDCK cysts. (a) Snapshots of MDCK cysts (2D cut and zoom in) fixed and stained for E-cadherin (green), F-actin (cyan), myosin (magenta). Scale bars, 5 μm . (b) Typical mean cell description used to quantify the relevant geometrical quantities to describe the cell cortex and the cell shape. (c) Schematic description of the cell shape diagram. Oblique lines correspond to different apical to basal length ratios α as described in the main text. Moving along the line changes the aspect ratio of cells w.r.t. the lateral length. (d) F-actin apical to basal intensity ratio correlation with cell shape. P_{cell} , cell perimeter. For all measurements, $N = 3$ experiments, $n = 791$ cells quantified in 5-day-old MDCK cysts.

46 their *in vitro* controls and their relevance for organogen-
47 esis with properties shared with organoids (see End Mat-
48 ter), cysts appear as ideal systems to address this inter-
49 play between the physics of acto-myosin cortex and its
50 theoretical description with active fluid formalism.

51 In this Letter, we investigated quantitatively the mor-
52 phological and mechano-chemical features of cells in a 3D

53 epithelial cyst. We focus on Madin-Darby Canine Kidney
 54 (MDCK) epithelial cysts, which allowed us to perform
 55 experimental characterizations by quantifying the com-
 56 position and structures of the gel density and measure
 57 its mechanical characteristics (see Materials and Meth-
 58 ods in End Matter). We designed in parallel a theory
 59 for the active fluid and performed numerical simulations
 60 for the cortex coupled to a phase field. We predict how
 61 the cortex dynamics determine cell shapes in epithelial
 62 cysts. We tested these predictions successfully by chang-
 63 ing specifically actin dynamics and obtained predicted
 64 shapes.

65 We first characterised the cell shape with these cysts
 66 by acquiring typical images of actin and myosin signals
 67 in live and in fixed samples (Fig. 1(a) , SM [36] and Fig.
 68 S3(a)). Cysts were invariant by rotation and we could
 69 derive a typical cell shape with its actin and its myosin
 70 distributions at the cortex in the middle cross-section of
 71 each cyst (Fig. 1(a,b), Fig. S3 and Video 1). Strik-
 72 ingly, actin and myosin were asymmetrically distributed
 73 around each cell. Actin was thick and enriched in the
 74 apical side whereas the myosin layer was thinner and
 75 mainly localised at the basal sides (Fig. 1(a) and Fig.
 76 S3(e)). The lateral sides were essentially even in actin
 77 distributions. We measured that the F-actin intensity
 78 was about 5 times higher in the apical cortex than in the
 79 basal one and about 7 times higher in the apical cortex
 80 than in the lateral one (SM [36], Fig. S3(c), and Ta-
 81 ble I). We found that the myosin intensity was about 3
 82 times higher in the basal cortex than in the apical one
 83 and about 4 times higher in the basal cortex than in the
 84 lateral one (Fig. S3(d)). Such anisotropies were con-
 85 served in time for MDCK spheroids (Fig. S3(a)) and in
 86 several organoids, *i.e.*, in mES epiblast organoids and in
 87 pancreas spheres derived from mouse pancreatic progen-
 88 itor cells [37] (Fig. S1(a) and SM [36]).

89 Next we quantified and tested potential correlations
 90 between cell shapes and the actin and myosin concentra-
 91 tion at the cortical layers. We represented the cell shape
 92 in a diagram that can capture most of its morphological
 93 attributes. We define L_{ap} , L_{bas} , L_{lat} as respectively the
 94 apical, basal and lateral lengths and the total cell perime-
 95 ter P that we measured on fixed samples (Fig. 1(b) and
 96 SM [36]). By construction, $P = L_{\text{ap}} + L_{\text{bas}} + 2L_{\text{lat}}$. By
 97 defining the apical length as a fraction of the basal length:
 98 $L_{\text{ap}} = \alpha L_{\text{bas}}$, one can represent $\frac{L_{\text{bas}}}{P} = \frac{1}{1+\alpha} (1 - 2\frac{L_{\text{lat}}}{P})$
 99 (Fig. 1(c)). We used this cell shape representation to
 100 look for correlations between cell shape and intensity ra-
 101 tios of actin and myosin, curvatures and lumen occu-
 102 pancy (defined as the ratio of lumen to cyst volumes)
 103 (Fig. 1(d), SM [36] and Fig. S1(b) and S4). We noted a
 104 strong correlation between F-actin apical to basal ratio
 105 and trapezoidal shaped cells (Fig. 1(d)), consistent with
 106 the hypothesis that the cortical gel is involved.

107 Localisation alone was not yet informative about the
 108 mechano-chemical parameters of these active gels. To

109 interrogate their characteristics, we used the Fluores-
 110 cence Recovery After Photobleaching (FRAP) and laser
 111 ablation of apical, basal and lateral sides with MDCK
 112 cysts cultured from MDCK cell lines stably expressing
 113 fluorescent Green Fluorescent Protein (GFP) fused pro-
 114 teins, actin-GFP or myosin regulatory light chain-GFP
 115 (MRLC-GFP), see SM [36]). Results are given in Fig. 2,
 116 Fig. S5 and in Videos 2-5. FRAP experiments revealed
 117 that the mobile fraction of the apical cortex was lower
 118 than the basal and lateral ones. The characteristic time
 119 of diffusion (orders of seconds, similar to reported values
 120 [38, 39]) of G-actin monomers was small compared with
 121 the characteristic time associated to transport and as-
 122 sembly of F-actin filaments and network (orders of tens
 123 of seconds) (Fig. 2(c,d)). Interestingly, the time of trans-
 124 port was different by a factor of 4 between apical and
 125 basal sides, which substantiates again the asymmetry be-
 126 tween sides. Finally, we determined that both sides were
 127 contractile based on laser ablation experiments and ini-
 128 tial recoil velocity, $v_{\text{recoil}}^{\text{ini}}$, measurements (Fig. 2(e,f)).
 129 These experiments allowed to extract mechano-chemical
 130 parameters summarized in Table I.

TABLE I. Comparison of the apical-basal-lateral measure-
 ments with intensity ratios, FRAP and laser ablation experi-
 ments. Ratios of ρ corresponds to ratios of intensities. Mea-
 surements are shown as: mean \pm standard error of the mean.

Quantities	Apical	Basal	Lateral
$\rho_{\text{apical}}^{\text{F-actin}} / \rho_i^{\text{F-actin}}$	1	5.1 ± 0.1	7.1 ± 0.1
$\rho_{\text{basal}}^{\text{MRLC}} / \rho_i^{\text{MRLC}}$	3.2 ± 0.1	1	4.3 ± 0.1
$\tau_{\text{recovery}} (\text{s})$	122 ± 9.2	29.4 ± 4.1	27.3 ± 3.3
$v_{\text{recoil}}^{\text{ini}} (\mu\text{m.s}^{-1})$	5.6 ± 0.2	8.4 ± 0.3	8.2 ± 0.6

131 Next, we theoretically tested our hypothesis that the
 132 asymmetry in cortex distribution is a key factor to deter-
 133 mine cell shape in a cyst, through numerical simulations
 134 based on multicellular phase-field (PF) model [37, 40, 41]
 135 coupled to active gel equations [42, 43] (see End Matter).

136 The geometry of cells is described by PF variables
 137 $\phi(\mathbf{r}, t)$, defined for each cell, and cortical gel is confined
 138 in the interface of cellular PF by the coupling free energy:

$$F_{\text{coupling}}[\phi, \rho] = - \int_{\Omega} f_{\text{coup}} \rho |\nabla \phi(\mathbf{r})| \delta \left(\phi(\mathbf{r}) - \frac{1}{2} \right) d\mathbf{r} \quad (1)$$

139 with f_{coup} controls the strength of coupling and Ω the
 140 simulation domain area. This free energy term adds a
 141 new term to the cellular-PF dynamics (see Eq. (S28) of
 142 SM [36]). This coupling term induces a global contrac-
 143 tility which counteracts the volume control and adhesion
 144 energies already set in the cell shape dynamics. $\rho(\mathbf{r}, t)$
 145 obeys the conservation equation with the source of cor-
 146 tical gel at the cellular-PF interface:

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = -A_{\text{deg}} \rho + A_{\text{gen}} |\nabla \phi| \delta(\phi - 1/2), \quad (2)$$

147 where the first and second terms on the right-hand side
 148 are the degeneration and source at the cell interface, re-

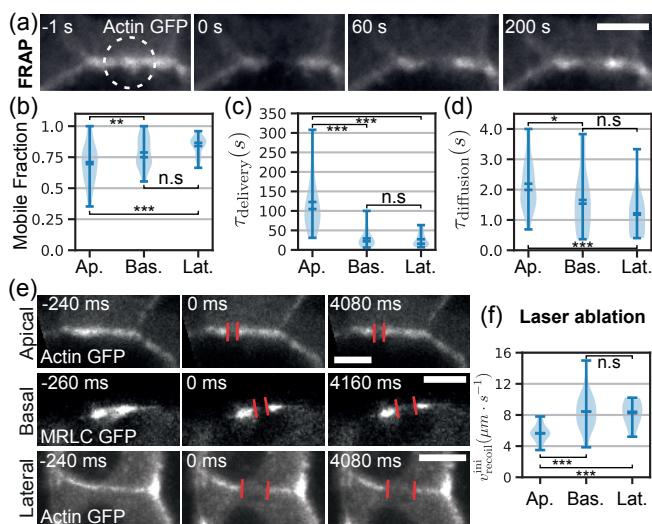


FIG. 2. Quantification of mechano-chemical properties of the acto-myosin gels at different locations of the cell cortex in day 5 MDCK cysts. (a) Snapshots of FRAP experiments performed on the apical cortex of MDCK cysts labelled for actin-GFP (grey) (Video 2). Measurements of (b) mobile fraction, (c) τ_{delivery} and (d) $\tau_{\text{diffusion}}$ at apical, basal and lateral cortices. $N = 3$ experiments, $n = 60$ cells (apical), $n = 30$ cells (basal and lateral). (e) Snapshots of laser ablation of the cortex performed on the apical, basal and lateral cortex of MDCK cysts labelled for actin-GFP (grey) - apical and lateral) or MRLC-GFP (grey - basal) (Videos 3-5). (f) Initial recoil velocity for apical, basal and lateral sides measured from the initial distance created after laser ablation. $N = 4$ experiments, $n = 43$ cells (apical), $n = 45$ cells (basal), $N = 3$ experiments, $n = 8$ cells (lateral). Statistical tests: *: $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$, n.s: $p > 0.05$. Scale bars: 5 μm .

spectively. A_{deg} and A_{gen} represent the turnover rate and production speed, respectively. $v_{\alpha}(r, t)$ is the gel velocity field and given by the force balance: $\partial_{\beta}\sigma_{\alpha\beta} = \gamma v_{\alpha}$, where $\sigma_{\alpha\beta}$ is the total stress tensor, γ is a friction coefficient and $\alpha, \beta = x, y$. We write the stress tensor as $\sigma_{\alpha\beta} = \sigma_{\text{viscous}} + \sigma_{\text{active}} = 2\eta v_{\alpha\beta} - \Pi_{\alpha\beta}(\rho)$ with the velocity gradient tensor $v_{\alpha\beta} = (\partial_{\alpha}v_{\beta} + \partial_{\beta}v_{\alpha})/2$ and choose to follow Ref.[42] to express Π in terms of the gel density ρ with $\Pi_{\alpha\beta}(\rho) = -a_{\alpha\beta}\rho^3 + b_{\alpha\beta}\rho^4$. For $a > 0$, the active gel is contractile whereas, for $a < 0$, the active gel is extensile [44].

We performed the numerical simulations based on the equations presented above (SM [36]). Taking advantage of the phase field formulation of the model, we defined apical, lateral and basal cortices and imposed different parameters to each of them (SM [36] for the complete set of parameters values). We modeled a 2D cut of a cyst composed of 6 cells, and we depicted the main results in Fig. 3 and in Video 6. We first tested how a change in uniform surface tension would impact the cell and cyst shapes by adding no additional active stresses but setting various uniform turnover dynamics in the cell

cortices (Fig. 3(a)) and SM [36]). As the turnover rate increases, so does the active gel density ρ and the cells became rounder. Using similar diagrams as introduced in Fig. 1(c), we quantified these shape changes (Fig. 3(b)) and we observed that for a given set of parameters (lumen pressure, cell-cell adhesion, ECM elasticity, total cell number) the morphology of cells evolved mainly on a straight line in the cell shape diagram as A_{gen} varies.

Next, we implemented asymmetric turnover rates between apical, lateral and basal cortices (Fig. S8 and SM [36]). Interestingly, asymmetries in the turnover rate distributions yielded a variety of cyst morphologies (Fig. S8(a)), richer than the symmetric case (Fig. 3(a)). This was further illustrated in the cell shape diagram (Supp. Fig. S8(b)) where asymmetric turnover rates led to departure from the previously highlighted trajectories (Fig. 3(a)). We then changed the physical origin of stress generation, by testing how the asymmetry of the nature of active stresses would impact cell shapes in cysts. We kept symmetric turnover rates and we tuned the extensile/contractile nature of apical and basal cortices (Fig. 3(c)). Strikingly, whereas the active gel density remained constant, the asymmetric nature of stresses alone led to large changes in shapes. For example, in the case of apical contractile and basal extensile (Fig. 3(c,d), green point), the extensility of the basal active gel yielded less active stress and more tangentially elongated cells. Finally, we could reproduce MDCK cell phenotypes (Fig. 3(e) and Fig. 1(a) top) when setting asymmetric turnover rates and asymmetric active stresses (SM [36]) following the measurements presented in Fig. 1, Fig. 2 and recapitulated in Table I.

To test predictions associated to changes in the dynamics of the gel parameters (SM [36]), we altered specifically the polymerisation of actin. Upon incubation with the depolymerising agent latrunculin A (LatA) (M&M), we recorded changes in cell shape and the associated modifications in the actin cortical composition (Fig. 4(a), Fig. S6 and Video 7). We also performed the opposite experiment by incubating cysts with the actin polymerisation enhancer C8BPA [35] (Fig. 4(d) and Video 9). Quantifications are shown in Fig. 4(a-d) and in SM [36]. Strikingly, we could obtain shapes predicted by the associated changes in actin polymerisation in the simulation (variation of A_{gen} in Fig. 4 (e,f) and Video 10).

We have shown that asymmetry of the cortex is sufficient to describe cell shapes in cysts and in organoids. We used the physics of active fluids and quantification of the cortex to predict experimental and simulated cell shapes in cysts. This framework could serve as a generic approach to design 3D tissues with molecular strategies and mesoscopic consequences on cell and cyst shapes.

We report that actin is primarily present in the apical side whereas acto-myosin is assembled at the basal side. One could have thought that actin gel would be extensile and acto-myosin gel contractile, like in former

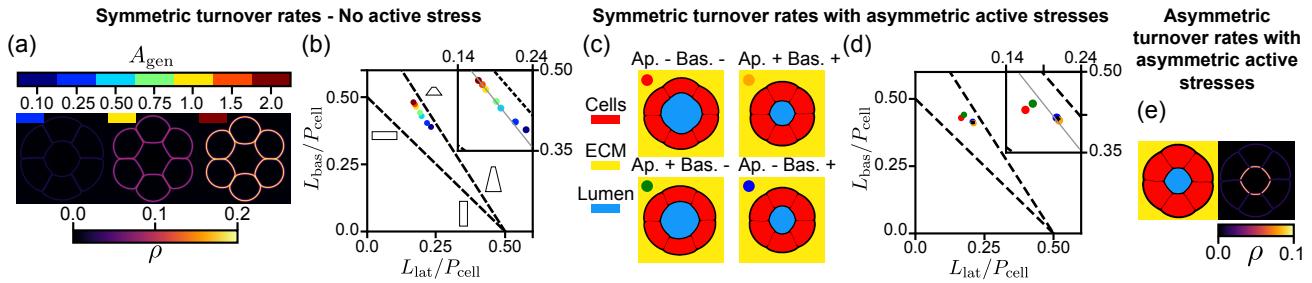


FIG. 3. Asymmetry in active fluid cortices generates relevant cell shapes in numerical simulations. (a) Snapshots of simulated 2D cuts of cysts with symmetric apical, basal and lateral turnover rates at steady state for different turnover rate magnitudes, active gel density ρ is represented (Video 6). (b) Cell shape evolution when A_{gen} is modified globally. (c) Snapshots of simulated 2D cuts of cysts with symmetric turnover rates but asymmetric additional extensile/contractile active stresses. Cells (red), lumen (blue) and an elastic ECM (yellow) are represented. All simulations started from the same initial condition and were stopped after 300000 steps. (d) Cell shape changes associated with asymmetry in active stresses. Same symbols in (c) and (d). (e) In the case of asymmetric turnover rates, parameters were chosen to match the experimental data presented in Table I.

227 studies [18, 45, 46]. This asymmetry in composition does
 228 not translate into extensile and contractile gels respec-
 229 tively. Rather they are both contractile and this suggests
 230 that another mechanical asymmetry is at play. This also
 231 illustrates that the molecular knowledge of the gel com-
 232 position is not sufficient to explain the mechanics and
 233 shape of the cortex.

234 Our description integrates generic cellular properties
 235 and should be broadly applicable in other organoids and
 236 in 3D tissues. It will be interesting to interrogate the
 237 cortical properties in each case to identify conservations
 238 and differences between systems.

239

END MATTER

240 **Cysts in organoids** - Cysts also emerge in *organoids*
 241 which are three-dimensional organ-models formed *in*
 242 *vitro* from stem cells when cultured in the relevant en-
 243 vironments [30]. Interestingly, differentiated epithelial
 244 cells can also mimic cell shape dynamics observed in
 245 organoids. Indeed, they often share common cortical
 246 proteins as well as adhesion complexes across systems.
 247 These shared points allow to probe and establish phe-
 248 nomena with reliable extrapolation to organs found *in*
 249 *vivo*. Altogether the integrated comparisons and char-
 250 acterisation of epithelial cysts and organoids with active
 251 gels simulations appear as a powerful route to implement
 252 and test active fluid descriptions for cell shapes determi-
 253 nation in 3D tissues. Quantitative measurement of each
 254 cell shape and mechano-chemical characterization of cells
 255 in a cyst are lacking so far.

256 **Materials and Methods** - Briefly, mouse embry-
 257 onic stem cells (mES) epiblasts and pancreas spheres
 258 were prepared according to protocols of Refs. [31] and
 259 [32], respectively. MDCK II cell lines - wild type and ex-
 260 pressing fluorescent markers - were cultured using Mini-
 261 mum Essential Media (MEM) supplemented with 5% Fe-

262 tal Bovine Serum (FBS). We obtained MDCK cysts ly-
 263 ing within the same focal plane using a protocol adapted
 264 from Refs. [33, 34]. Coverslips were activated by O_2
 265 plasma and coated with a 100% Matrigel solution (Corn-
 266 ing BV: 356231). Single cells were deposited at a density
 267 of 15,000 cells/cm² covered next by another layer of 10 μ l
 268 100% Matrigel. To investigate the role of actin polymeri-
 269 sation, we used 200 nM of inhibitor latrunculin A (Sigma
 270 Aldrich #L5163) and 100 μ M of C8N6 BPA polyamine
 271 (C8BPA) activator of actin polymerisation [35]. Images
 272 were acquired with a Leica DMi8 confocal microscope
 273 equipped with a Yokogawa CSU W1 spinning disk and
 274 with an OrcaFlash 4.0 camera for the Fluorescence Re-
 275 covery After Photobleaching (FRAP). Laser ablations of
 276 the acto-myosin cortex were performed using the FRAP
 277 module from a Leica SP-5 inverted microscope (see SM
 278 [36] for more details in immunofluorescence and in anal-
 279 ysis).

280 **Phase Field (PF) modeling** - We simplified cysts
 281 into three components: cells, lumen and ECM. Their
 282 geometries are described by using PF variables $\phi_i(\mathbf{r}, t)$
 283 ($i = 1, \dots, m$; one for each cell), $\ell(\mathbf{r}, t)$ and $e(\mathbf{r}, t)$, re-
 284 spectively. The regions where each PF variable takes 1
 285 and 0 represent the inside and outside of the correspond-
 286 ing phase, respectively. We defined for each cell a cortical
 287 gel confined in the vicinity of the cellular interface, set by
 288 $\phi_i(\mathbf{r}) = 1/2$, which is modeled as an active gel of density
 289 field $\rho_i(\mathbf{r}, t)$ obeying the 2D extension of the 1D model
 290 developed in Refs. [42, 43]. Dynamics of the field vari-
 291 ables is given in SM [36]. Each PF variable obeys mainly
 292 the standard multicellular PF model [37, 40, 41], under
 293 the assumptions: (i) all cells have identical optimum cell
 294 size, cell-cell adhesion, cell-ECM adhesion and excluded
 295 volume; (ii) dynamics of lumen volume are driven by os-
 296 motic pressure differences; and (iii) the ECM is described
 297 as an elastic material.

298 **Detailed comparisons for changes in actin dy-
 299 namics** - To test predictions associated to changes in

FIG. 4. Specific modifications of actin polymerisation lead to shapes predicted by the active fluid numerical simulations. (a) Inhibition of actin polymerisation by incubating MDCK cysts with LatA. Snapshots of an individual cell before and after treatment (Video 7). (b) Cell shape diagram showing the effect of LatA on cells: cells tend to become flatter and elongate longitudinally. Black arrow represents the motion of the center of mass of the experimental cloud points before and after LatA treatment. $N = 3$ experiments - $n = 97$ cells. (c) Enhancement of actin polymerisation by incubating MDCK cysts with C8BPA. Snapshots of an individual cell before and after treatment (Video 9). (d) Cell shape diagram showing the effect of C8BPA on cells: cells tend to become more radially elongated. Black arrow represents the motion of the center of mass of the experimental cloud points before and after C8BPA treatment. $N = 3$ experiments - $n = 117$ cells. Insets of (b) and (d): distribution of θ_{traj} , the angle of each trajectory vector in the cell shape diagram corresponding to Lat A or C8BPA treatment respectively. (e) Snapshots of simulated cysts with asymmetric turnover rates but with various baseline polymerisation rates A_{gen} (Video 10). (f) Cell shape diagram showing the effect of enhancing or diminishing active gel polymerisation in simulated cells. Insets of (b) and (d) show that distributions go in opposite directions consistently with insets of (f). Scale bars: $10 \mu\text{m}$.

the dynamics of the gel parameters (SM [36]), we altered specifically the polymerisation of actin. Upon incubation with the depolymerising agent latrunculin A (LatA) (M&M), we recorded changes in cell shape and the associated modifications in the actin cortical composition. After treatment, cells became flatter, apical

cortices bent away from the lumen and the apical actin gel depolymerised (Fig. 4(a), Fig. S6 and Video 7). After washout, actin cortices were rebuilt and cell shape came back to their configuration prior drug treatment in about 10 hours (Fig. S7 and Video 8). We also performed the opposite experiment by incubating cysts with the actin polymerisation enhancer C8BPA [35]. Actin gels polymerised following the drug incubation and cells became more cuboidal with a tendency of the apical cortex to adopt a positive curvature w.r.t. the cell center of mass (Fig. 4(d) and Video 9). Quantifications are shown in Fig. 4(a-d) and in SM [36]. Strikingly, we could obtain shapes predicted by the associated changes in actin polymerisation in the simulation (variation of A_{gen} in Fig. 4 (e,f) and Video 10). This successful comparison shows that our cortex model can capture the cell shapes and changes its shapes with specific changes in mechano-chemical parameters.

324 Mesoscopic approach and cytoskeleton organisation - This mesoscopic approach goes also with structural simplifications which may contribute to setting the contractile nature of these cortices. For example, the apical side is composed of villi with folded structures and anchors to the membrane [1]. Orientations of actin filaments are reported to be specific at this level [1]. Our results show that our mesoscopic approach is still successful to explain cell shapes beyond molecular compositions and architecture.

ACKNOWLEDGEMENTS

We acknowledge Kana Fuji and Sakurako Tanida for supporting us to implement numerical simulations. We thank the Riveline group for help and discussions and Ewan Grandgirard and the Imaging Platform of IGBMC. We also thank Anne Grapin-Botton, Masaki Sano and Alf Honigmann and their respective teams for advices and discussions. We thank Makiko Nonomura, Jacques Prost and Karsten Kruse for fruitful discussions. L.L. and T.G. are supported by HFSP and by the University of Strasbourg, and by la Fondation pour la Recherche Médicale (T.G.). T.H. is supported by Seed Fund of Mechanobiology Institute. D.R. acknowledges the Interdisciplinary Thematic Institute IMCBio, part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm, which was supported by IdEx Unistra (ANR-10-IDEX-0002), and by SFRI-STRAT'US project (ANR-20-SFRI-0012) and EUR IMCBio (ANR-17-EURE-0023) under the framework of the French Investments for the Future Program. D.R. acknowledges the Research Grant from Human Frontier Science Program (Ref.-No: RGP0050/2018).

356 * thiraiwa@gate.sinica.edu.tw
357 † riveline@unistra.fr

358 [1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts,
359 and P. Walter, *Molecular biology of the cell*, 6th ed. (Gar-
360 land Science, New York, NY, 2015).

361 [2] A. J. Ridley and A. Hall, *Cell* **70**, 389 (1992).

362 [3] T. P. Stossel, *Science* **260**, 1086 (1993).

363 [4] T. M. Svitkina and G. G. Borisy, *The Journal of Cell
364 Biology* **145**, 1009 (1999).

365 [5] T. Svitkina, *Cold Spring Harbor Perspectives in Biology*
366 **10**, a018267 (2018).

367 [6] A. B. Verkhovsky, T. M. Svitkina, and G. G. Borisy,
368 *Current Biology* **9**, 11 (1999).

369 [7] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and
370 J. Plastino, *Physiological Reviews* **94**, 235 (2014).

371 [8] D. Caballero, R. Voituriez, and D. Riveline, *Biophysical
372 Journal* **107**, 34 (2014).

373 [9] S. L. Vecchio, R. Thiagarajan, D. Caballero, V. Vigon,
374 L. Navoret, R. Voituriez, and D. Riveline, *Cell Systems*
375 **10**, 535 (2020).

376 [10] H. Turlier, B. Audoly, J. Prost, and J.-F. Joanny, *Bio-
377 physical Journal* **106**, 114 (2014).

378 [11] V. Wollrab, R. Thiagarajan, A. Wald, K. Kruse,
379 and D. Riveline, *Nature Communications* **7** (2016),
380 10.1038/ncomms11860.

381 [12] E. Paluch, J. van der Gucht, J.-F. Joanny, and C. Sykes,
382 *Biophysical Journal* **91**, 3113 (2006).

383 [13] A.-C. Reymann, J.-L. Martiel, T. Cambier, L. Blanchoin,
384 R. Boujemaa-Paterski, and M. Théry, *Nature Materials*
385 **9**, 827 (2010).

386 [14] H. Blaser, M. Reichman-Fried, I. Castanon, K. Dum-
387 strei, F. Marlow, K. Kawakami, L. Solnica-Krezel, C.-
388 P. Heisenberg, and E. Raz, *Developmental Cell* **11**, 613
389 (2006).

390 [15] A. C. Martin, M. Kaschube, and E. F. Wieschaus, *Na-
391 ture* **457**, 495 (2008).

392 [16] C. Bertet, L. Sulak, and T. Lecuit, *Nature* **429**, 667
393 (2004).

394 [17] J. Prost, F. Jülicher, and J.-F. Joanny, *Nature Physics*
395 **11**, 111 (2015).

396 [18] T. P. Loisel, R. Boujemaa, D. Pantaloni, and M.-F. Car-
397 lier, *Nature* **401**, 613 (1999).

398 [19] V. Noireaux, R. Golsteyn, E. Friederich, J. Prost,
399 C. Antony, D. Louvard, and C. Sykes, *Biophysical Jour-
400 nal* **78**, 1643 (2000).

401 [20] S. Wiesner, E. Helfer, D. Didry, G. Ducouret, F. Lafuma,
402 M.-F. Carlier, and D. Pantaloni, *The Journal of Cell
403 Biology* **160**, 387 (2003).

404 [21] K. Kruse and F. Jülicher, *Physical Review Letters* **85**,
405 1778 (2000).

406 [22] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Seki-
407 moto, *Physical Review Letters* **92**, 078101 (2004).

408 [23] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Seki-
409 moto, *The European Physical Journal E* **16**, 5 (2005).

410 [24] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
411 Liverpool, J. Prost, M. Rao, and R. A. Simha, *Reviews
412 of Modern Physics* **85**, 1143 (2013).

413 [25] F. Julicher, K. Kruse, J. Prost, and J.-F. Joanny, *Physics
414 Reports* **449**, 3 (2007).

415 [26] M. Mayer, M. Depken, J. S. Bois, F. Jülicher, and S. W.
416 Grill, *Nature* **467**, 617 (2010).

417 [27] S. Sigurbjörnsdóttir, R. Mathew, and M. Leptin, *Nature
418 Reviews Molecular Cell Biology* **15**, 665 (2014).

419 [28] S. E. Harrison, B. Sozen, N. Christodoulou, C. Kypri-
420 anou, and M. Zernicka-Goetz, *Science* **356** (2017),
421 10.1126/science.aal1810.

422 [29] P. A. Seymour and M. Sander, *Diabetes* **60**, 364 (2011).

423 [30] K. Kretzschmar and H. Clevers, *Developmental Cell* **38**,
424 590 (2016).

425 [31] C. Martin-Lemaitre, Y. Alcheikh, R. Nau-
426 mann, and A. Honigmann, *biorXiv* (2020),
427 10.1101/2020.03.13.990135.

428 [32] C. Greggio, F. D. Franceschi, M. Figueiredo-Larsen,
429 S. Gobaa, A. Ranga, H. Semb, M. Lutolf, and A. Grapin-
430 Botton, *Development* **140**, 4452 (2013).

431 [33] A. Chin, K. Worley, P. Ray, G. Kaur, J. Fan, and
432 L. Wan, *Proceedings of the National Academy of Sci-
433 ences* **115**, 12188 (2018).

434 [34] L. Lu, T. Guyomar, Q. Vagne, R. Berthoz, A. Torres-
435 Sánchez, M. Lieb, C. Martin-Lemaitre, K. van Unen,
436 A. Honigmann, O. Pertz, G. Salbreux, and D. Riveline,
437 *Nature Physics* (2024), 10.1038/s41567-024-02460-w.

438 [35] I. Nedeva, G. Koripelly, D. Caballero, L. Chièze,
439 B. Guichard, B. Romain, E. Pencreach, J.-M. Lehn, M.-
440 F. Carlier, and D. Riveline, *Nature Communications* **4**
441 (2013).

442 [36] Supplementary material is available atcom, for exper-
443 imental details, data, experimental videos and a Github
444 repository containing the computer code used in this pa-
445 per..

446 [37] L. Lu, K. Fuji, T. Guyomar, M. Lieb, S. Tanida,
447 M. Nonomura, T. Hiraiwa, Y. Alcheikh, S. Yennek,
448 H. Petzold, C. Martin-Lemaitre, A. Grapin-Botton,
449 A. Honigmann, M. Sano, and D. Riveline, *biorXiv*
450 (2024), 10.1101/2024.02.20.581158.

451 [38] J. McGrath, Y. Tardy, C. Dewey, J. Meister, and
452 J. Hartwig, *Biophysical Journal* **75**, 2070 (1998).

453 [39] K. Luby-Phelps, “Cytoarchitecture and physical prop-
454 erties of cytoplasm: Volume, viscosity, diffusion, intracel-
455 lular surface area,” in *Microcompartmentation and Phase
456 Separation in Cytoplasm* (Elsevier, 1999) pp. 189–221.

457 [40] M. Nonomura, *PLoS ONE* **7**, e33501 (2012).

458 [41] M. Akiyama, M. Nonomura, A. Tero, and R. Kobayashi,
459 *Physical Biology* **16**, 016005 (2018).

460 [42] J.-F. Joanny, K. Kruse, J. Prost, and S. Ramaswamy,
461 *The European Physical Journal E* **36** (2013).

462 [43] N. Levernier and K. Kruse, *New Journal of Physics* **22**,
463 013003 (2020).

464 [44] The choice of the functional Π is not essential as long as
465 it has a non monotonous dependency in the active gel
466 density if the activity of motors is high enough and re-
467 flects that the passive osmotic pressure always dominates
468 at large densities.

469 [45] H. Boukellal, O. Campás, J.-F. Joanny, J. Prost, and
470 C. Sykes, *Physical Review E* **69**, 061906 (2004).

471 [46] P. M. Bendix, G. H. Koenderink, D. Cuvelier, Z. Dogic,
472 B. N. Koeleman, W. M. Briher, C. M. Field, L. Ma-
473 hadevan, and D. A. Weitz, *Biophysical Journal* **94**, 3126
474 (2008).

475 [47] T. Watanabe, H. Hosoya, and S. Yonemura, *Molecular
476 Biology of the Cell* **18**, 605 (2007).

477 [48] C. Klingner, A. V. Cherian, J. Fels, P. M. Diesinger,
478 R. Aufschnaiter, N. Maghelli, T. Keil, G. Beck, I. M.
479 Tolić-Nørrelykke, M. Bathe, and R. Wedlich-Soldner,
480 *Journal of Cell Biology* **207**, 107 (2014).

481 [49] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, 493 (2002).
482 M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, 494 [54] F. Waharte, C. M. Brown, S. Coscoy, E. Coudrier, and
483 S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, 495 F. Amblard, *Biophysical Journal* **88**, 1467 (2005).
484 V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Car- 496 [55] E. Olsson and G. Kreiss, *Journal of Computational
485 dona*, *Nature Methods* **9**, 676 (2012). 497 Physics **210**, 225 (2005).
486 [50] I. D. Coope, *J. Optim. Theory Appl.* **76**, 381–388 (1993). 498 [56] A. Badillo, *Physical Review E* **86**, 041603 (2012).
487 [51] J. Firmino, J.-Y. Tinevez, and E. Knust, *PLoS ONE* **8**, 499 [57] D. Indiana, A. Zakharov, Y. Lim, A. R. Dunn,
488 e58839 (2013). 500 N. Bhutani, V. B. Shenoy, and O. Chaudhuri, *biorXiv*
489 [52] S. Dasgupta, K. Gupta, Y. Zhang, V. Viasnoff, and 501 (2023), 10.1101/2023.04.20.537711.
490 J. Prost, *Proceedings of the National Academy of Sci- 502 [58] *PGI Reference Manual* [https://docs.nvidia.com/](https://docs.nvidia.com/hpc-sdk/pgi-compilers/20.4/pdf/pgi20ref-x86.pdf)
491 ences* **115** (2018). 503 *hpc-sdk/pgi-compilers/20.4/pdf/pgi20ref-x86.pdf* (The Portland Group Inc., 2020).
492 [53] M. Tyska and M. Mooseker, *Biophysical Journal* **82**, 1869 504