

1 **Insecticide resistance and population structure of the invasive malaria vector, *Anopheles*
2 *stephensi*, from Fiq, Ethiopia**

3 Jeanne N. Samake^{1,2*}, Solomon Yared^{3*}, Mussie Abdosh Hassen⁴, Sarah Zohdy^{2,5}, Tamar E.
4 Carter^{1**}

5 1. Department of Biology, Baylor University, Waco, TX, USA
6 2. Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
7 3. Department of Biology, Jigjiga University, Jigjiga, Ethiopia
8 4. Somali Region Health Bureau, Jigjiga, Ethiopia
9 5. U.S. President's Malaria Initiative, Entomology Branch, U.S. Centers for Disease Control
10 and Prevention, Atlanta, GA, USA

11 *These authors contributed equally

12 **Corresponding author

13 Correspondence to tamar_carter@baylor.edu.

14

15 **Abstract**

16 *Anopheles stephensi* invasion in Ethiopia poses a risk of increased malaria disease burden in the
17 region. Thus, understanding the insecticide resistance profile and population structure of the
18 recently detected *An. stephensi* population in Fiq, Ethiopia, is critical to inform vector control to
19 stop the spread of this invasive malaria species in the country. Following entomological
20 surveillance for *An. stephensi* in Fiq, Somali region, Ethiopia, we confirmed the presence of *An.*
21 *stephensi* morphologically and molecularly in Fiq. Characterization of larval habitats and
22 insecticide susceptibility tests revealed that Fiq *An. stephensi* is most often found in artificial
23 containers and is resistant to most adult insecticides tested (organophosphates, carbamates,
24 pyrethroids) except for pirimiphos-methyl and PBO-pyrethroids. However, the immature larval
25 stage was susceptible to temephos. Further comparative genomic analyses with previous *An.*
26 *stephensi* populations from Ethiopia using 1,704 biallelic SNPs revealed genetic relatedness
27 between Fiq *An. stephensi* and east-central Ethiopia *An. stephensi* populations, particularly
28 Jigjiga *An. stephensi*. Our findings of the insecticide resistance profile, coupled with the likely

29 source population of Fiq *An. stephensi*, can inform vector control strategies against this malaria
30 vector in Fiq and Jigjiga to limit further spread out of these two locations to other parts of the
31 country and continent.

32

33 **Introduction**

34 Malaria is a major global health problem, with an estimated 247 million cases and 619,000
35 deaths reported in 2021¹. In Ethiopia, despite past successes in reducing the malaria burden
36 due to the use of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) in
37 malaria control and prevention strategies², it remains a public health concern with an estimated
38 2 million cases and over 8,000 deaths reported in 2021¹. The emergence of *An. stephensi*, a
39 malaria vector commonly found in South Asia and parts of the Arabian Peninsula, in the Horn of
40 Africa (HoA)³⁻⁵, also threatens any gains against malaria in Ethiopia⁶. Indeed, a recent *An.*
41 *stephensi*-mediated malaria outbreak was reported in Dire Dawa, an urban hub in eastern
42 Ethiopia⁷. Since the detection of *An. stephensi* in the HoA and subsequently, in Sudan (2019)⁸,
43 Nigeria (2020)⁹, Yemen (2021)^{10,11}, Kenya (2022)¹², and Ghana (2023)¹³, the World Health
44 Organization (WHO) has launched an initiative¹⁴ and released an updated vector alert in 2022¹⁵
45 to recommend increased surveillance and research to determine the range of the invasion in
46 order to stop the further spread of *An. stephensi* in Africa. In Ethiopia, *An. stephensi* was first
47 detected in Kebridehar, Somali region, in 2016⁴ and has subsequently been confirmed to be
48 broadly distributed in eastern Ethiopia¹⁶. However, it was first detected in Fiq, Somali region in
49 June 2021¹⁷. Malaria cases in the Somali region of Ethiopia are relatively low compared to other
50 regions of Ethiopia¹⁸. However, it remains understudied, and more research on malaria
51 parasites and their vectors is needed.

52 Studies of the breeding sites and the ecology of mosquitoes are very crucial to inform mosquito
53 control strategies such as mosquito larvicidal (temephos) and environmental control (larval
54 habitat removal). Also, the WHO recommends larval source management as one of the
55 immediate control strategies against *An. stephensi* in urban and peri-urban settings of invaded
56 regions¹⁵. When larval source management or reduction is not feasible, such as a household or
57 town water storage, larviciding may be considered. However, this vector control method can be

58 costly when treating large numbers of larval habitats¹⁹. Thus, an alternative cost-effective
59 approach is to target specific habitats that can produce large numbers of adult mosquitoes¹⁹.
60 Thus, determining the Fiq *An. stephensi* susceptibility to larvicide such as temephos can help
61 inform the decision making for this control method against the invasive malaria vector in Fiq
62 town.

63 Moreover, genomic analyses can further inform control strategies against the newly detected
64 Fiq *An. stephensi*. Specifically, assessing the genetic diversity and population structure of Fiq *An.*
65 *stephensi* population in comparison to an established one in the region can give insights into its
66 demographic history, dispersal patterns, and potential source populations.

67 Hence, we conducted an entomological survey after a year of the first detection of *An.*
68 *stephensi* in Fiq town, Somali region, Ethiopia to first characterize larval habitats for *An.*
69 *stephensi* and determine their insecticide susceptibility status, including susceptibility to the
70 larvicide, temephos. After identifying the morphology, we confirmed it molecularly and used
71 genomic approaches to analyze the demographic history and population structure of *An.*
72 *stephensi* in Fiq. We compared the population structure with the previously detected *An.*
73 *stephensi* populations in eastern Ethiopia to determine the extent of establishment in Fiq. We
74 further assessed their genetic connectivity to those populations to uncover their potential
75 source populations within the region.

76

77 **Material and Methods**

78 **Study setting**

79 Fiq is a small town located in the Somali region of Ethiopia. It is situated at an altitude of 1200 m
80 and 195 km west of Jigjiga, the capital city of the Somali Region. The town features sporadic
81 mountains and small house constructions. It is common to see water stored in pits for building
82 bricks for house construction.

83

84 **Sample collection**

85 Entomological survey was carried out in Fiq town during the rainy season from May to June
86 2022, by Jigjiga University. Adult mosquitoes were collected indoors and outdoors using
87 pyrethrum spray collections (PSC) and CDC light traps (CDC LT), respectively, and Prokopack
88 aspiration from animal shelters. Sampling of mosquito larvae was conducted from houses with
89 water storage containers, particularly, cisterns and plastic sheet water storage. During each
90 survey, a habitat was first visually inspected for the presence of mosquito larvae, and then
91 twenty samples were taken with a soup ladle (350 ml capacity) from each breeding habitat (see
92 Supplementary Fig. S1 online). The *Anopheles* larvae were separated from the Culicine larvae
93 based on their position to the water surface. Collected *Anopheles* larvae were reared to the
94 adult at a field laboratory for morphological species identification (see Supplementary Fig. S2
95 online).

96 **Mosquito identification**

97 Adult *Anopheles* were morphologically identified at the species level using the Afrotropical
98 mosquitoes key²⁰ (see Supplementary Fig. S2 online). Polymerase chain reaction (PCR) assays were
99 conducted on a subset of *An. stephensi* specimens identified by morphology. These assays targeted
100 portions of the mitochondrial cytochrome oxidase subunit I (*COI*) and the nuclear internal transcribed
101 spacer 2 (*ITS2*) loci for molecular identification, as previously reported⁴. For further confirmation
102 of species identification, we performed phylogenetic analysis with the generated *COI* sequences
103 and those of previously detected *An. stephensi* from Ethiopia retrieved from GenBank
104 (Accession# OK663483, OK663480, OK663484, OK663481, OK663479, OK663482)²¹. These
105 accession numbers represent unique *COI* haplotypes of *An. stephensi* previously identified
106 across eastern Ethiopia²¹. Phylogenetic relationships were inferred using a maximum likelihood
107 approach with RAxML GUI²² using the GTR model of nucleotide substitutions, gamma model for
108 rate of heterogeneity (GTRGAMMA option), and one thousand replicates in one run for
109 bootstrap analysis. *Anopheles maculatus* was designated as an outgroup. The tree with the
110 highest log likelihood was visualized and formatted in FigTree²³.

111 **WHO insecticide susceptibility tube tests**

112 Insecticide susceptibility tests were conducted on adult female *An. stephensi* reared from wild
113 larvae (see Supplementary Fig. S2 online) following standard procedures²⁴. One hundred
114 mosquitoes from each population were tested for each insecticide using the diagnostic
115 concentration, and 50 mosquitoes were used for controls. The insecticides used were 0.1%
116 bendiocarb, 0.25% pirimiphos-methyl, 0.05% alpha-cypermethrin, 0.05% deltamethrin, 0.75%
117 permethrin, and 0.15% cyfluthrin. Based on the WHO mortality criteria, resistance was
118 determined as follows: 98–100% mortality indicates susceptibility, 90– 97% mortality indicates
119 possible resistance (requires further investigation), and less than 90% mortality confirms
120 resistance¹⁹.

121 **Piperonyl butoxide synergist assays**

122 Piperonyl butoxide (PBO) synergist assays were conducted on *An. stephensi* against two
123 pyrethroids (deltamethrin and permethrin). The synergist assays were conducted by pre-
124 exposing mosquitoes to a 4% PBO paper for 60 min. Mosquitoes were then transferred to tubes
125 with the pyrethroid of interest for 60 min and the susceptibility was determined based on the
126 WHO mortality criteria²⁴ described above.

127 **Temephos susceptibility tests**

128 Larval susceptibility tests were performed to assess the sensitivity of *An. stephensi* larvae to
129 temephos, an organophosphate larvicide. According to WHO procedure²⁵, conventional
130 techniques were employed for the testing, and 312.5 mg/l, 62.5 mg/l, 12.5 mg/l, and 2.5 mg/l
131 concentrations were utilized to generate a final concentration of 1.25mg/l, 0.25mg/l, 0.05mg/l,
132 and 0.01mg/l when 1 ml of each concentration was added to 249 ml of normal water. To detect
133 resistance, an estimated diagnostic dosage of 0.25 mg/l was employed²⁶, and larvae mortality
134 data were interpreted following the same WHO mortality criteria used for adult mosquitoes¹⁹.
135 For each larvicide concentration, four duplicates of 25 larvae were employed, with two
136 replicates serving as controls. To get 100 larvae examined per dosage, four beakers were
137 utilized per dose. After 24hrs all larvae without movement on the water surface were
138 considered as dead.

139 **Target-site insecticide resistance loci analysis**

140 To analyze phenotypic and genotypic associations in observed pyrethroid-resistant *An.*
141 *stephensi*, we sequenced the pyrethroid target site in the voltage-gated sodium channel (*vgsc*)
142 gene and downstream intron to genotype any knockdown resistance mutation (*kdr*). Analyses
143 were conducted using previously published protocols^{27,28}. To genotype any *kdr* mutations,
144 sequences were queried to NCBI BLAST to confirm correct *kdr* locus, then aligned to reference
145 sequences from Samake et al.²⁷ using CodonCode Aligner version 8 (CodonCode Corp.,
146 Centerville, MA, USA). We then generated an updated Ethiopian *An. stephensi* *kdr* mutation
147 phylogenetic tree with *kdr* mutation sequences from Samake et al.²⁷ also including the only
148 non-African *An. stephensi* *kdr* mutation sequence available in Genbank (Accession#
149 JF304952)²⁸. Phylogenetic relationships were inferred using a maximum likelihood approach
150 with RAxML GUI¹⁸ using the GTR model of nucleotide substitutions, gamma model for rate of
151 heterogeneity (GTRGAMMA option), and one thousand replicates in one run for bootstrap
152 analysis. The tree with the highest log likelihood was visualized and formatted in FigTree²³.

153 **Nuclear population structure and genetic diversity**

154 To assess nuclear population structure and potential source populations, we first generated
155 double digest restriction-site associated DNA (ddRAD) sequences of Fiq *An. stephensi* in
156 addition to previously published raw ddRAD sequences of Ethiopian *An. stephensi*²⁹. Genomic
157 DNA was extracted from adult *An. stephensi* mosquitoes using Qiagen DNeasy Blood and Tissue
158 kit (Qiagen). DNA quality was assessed on a 1% agarose gel to ensure at least 10 kilobase DNA
159 fragments and quantified using Nanodrop One Spectrophotometer (Thermo Fisher Scientific
160 Inc.) to ensure a minimum concentration of 20 ng/μl. ddRAD-seq library preparation followed
161 protocols outlined in Lavretsky et al.³⁰ (also see Samake et al.²⁹). In short, each genomic DNA
162 was enzymatically fragmented using *Sbf*I and *Eco*RI restriction enzymes and ligated with
163 Illumina TruSeq compatible barcodes for demultiplexing purposes. Libraries were quantified
164 using Qubit dsDNA BR Assay Kit (ThermoFisher Scientific, MA, USA), pooled in equimolar
165 amounts, and sequenced using single-end chemistry sequencing on an Illumina HiSeq X at
166 Novogene (Novogene CO., Ltd., Sacramento, CA, USA; see detailed methods in Supplementary

167 Document S1 online). We then retrieved raw sequence reads of previously reported *An.*
168 *stephensi* populations from 10 different sites across eastern Ethiopia (n = 183, BioProject
169 PRJNA888109, Samake et al.²⁹) to generate a combined bi-allelic SNPs dataset. Raw Illumina
170 reads were demultiplexed, processed and SNP genotyped using the computational pipeline
171 described in Lavretsky et al.³¹ (also see Samake et al.²⁹). We used Trimmomatic³² to trim or
172 discard poor-quality sequences using a Phred score of ≥ 30 to ensure only high-quality
173 sequences were retained. We then used the Burrows-Wheeler Aligner³³ (bwa) to align the
174 remaining quality reads to the *An. stephensi* reference genome (Accession PRJNA661063;
175 Chakraborty et al.³⁴). Samples were sorted and indexed in Samtools and genotyped using the
176 'mpileup' function in BCFtools³⁵.

177 We then identified variation among samples with a principal component analysis (PCA) using
178 the --pca function in PLINK v.1.9³⁶ and visualized with the R package ggplot2³⁷. Next, individual
179 maximum-likelihood population assignment probabilities were attained across samples using
180 ADMIXTURE v.1.3³⁸. Each ADMIXTURE analysis was run with a 10-fold cross validation (CV) and
181 with a quasi-Newton algorithm to accelerate convergence³⁹. To limit possible stochastic effects,
182 each analysis was based on 1,000 bootstraps for each population K value of 1-10. The block
183 relaxation algorithm for point estimation was used for each analysis and terminated once the
184 log-likelihood of the point estimation increased by < 0.0001 . The optimum population value was
185 based on the average of CV-errors across the analyses per K value. ADMIXTURE assignment
186 probability outputs were visualized using the R package ggplot2³⁷. Additionally, nucleotide
187 diversity (π), counts of segregating SNPs (S), Tajima's D, and pairwise estimates of fixation index
188 (F_{st}) by site were calculated in the R package PopGenome⁴⁰.

189 **Genetic network**

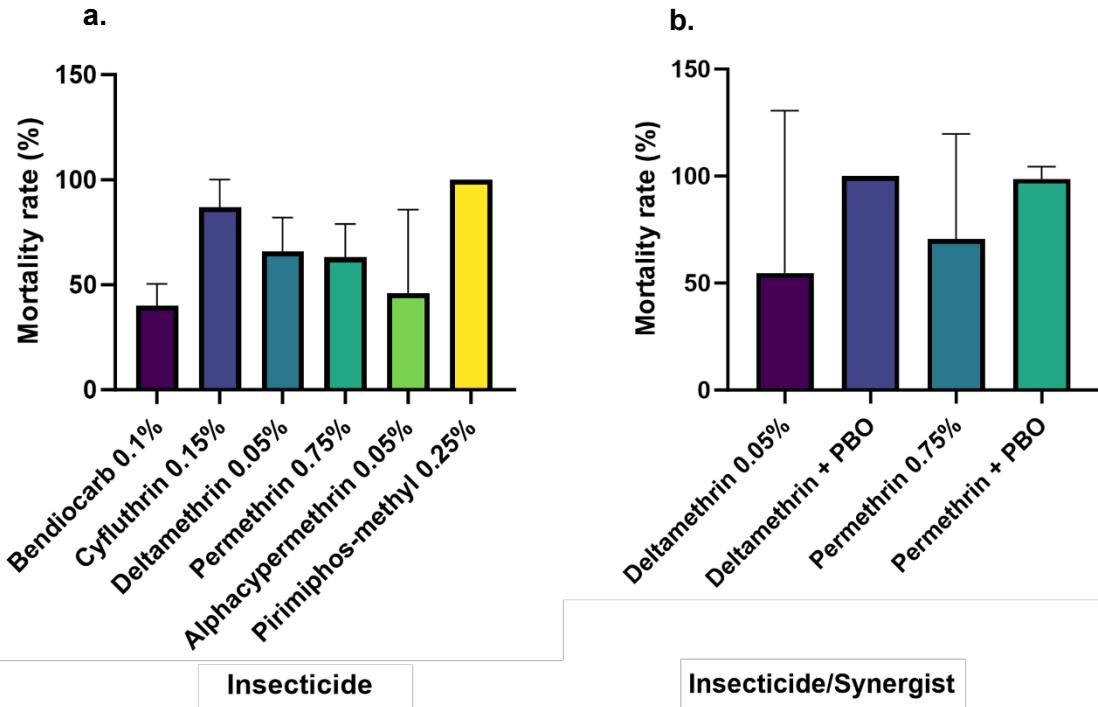
190 To further access potential source populations of the Fiq *An. stephensi* population, we
191 performed a network analysis with the combined biallelic SNPs dataset from Fiq sequences (n =
192 20) and Genbank retrieved *An. stephensi* sequences from 10 different sites across eastern
193 Ethiopia (n = 183, Samake et al.²⁹). We used EDENetworks⁴¹, which allows network analyses
194 based on genetic distance matrices without a prior assumption. The network consists of nodes

195 representing populations connected by edges/links weighted by their F_{st} based Reynolds'
196 genetic distances (D)⁴² which provide the strength of connectivity between pairs of
197 populations⁴¹. The thicker the edge/link, the stronger the genetic connectivity between the two
198 populations. Moreover, node size is proportional to the cumulative weighted edge linkages for
199 each population. Thus, the larger the node the higher the connectivity hub or sink. Statistical
200 confidence of the nodes was evaluated using 1,000 bootstrap replicates. Nodes that appear in
201 the top 5 and top 1 lists of betweenness centrality (BC) values (number of shortest genetic
202 paths passing through a node) can be considered as statistically significant⁴³.

203 **Results**

204 A total of 221 adult mosquitoes were collected using CDC LT, PSC, and Prokopack from animal
205 shelters. Of these, 219 adults *Culex* spp, and only two adult *An. stephensi* were collected using
206 Prokopack aspiration (see Supplementary Table S1 online). No other *Anopheles* mosquitoes
207 were collected using PSC and CDC LT.

208 ***Anopheles stephensi* larval habitats**


209 Thirty-one mosquito potential breeding sites were inspected. Twenty-six containers including
210 eight plastic ones, fifteen cisterns, and three barrels were positive for mosquito larvae (see
211 Supplementary Table S2 online). There were no mosquito larvae recovered from five
212 containers. A total of 4103 larvae of mosquito were collected from these different breeding
213 sites. Of these, 3713 *Anopheles* and 390 *Culex* were identified (see Supplementary Table S2
214 online). All of the *Anopheles* mosquitoes were reared to adults successfully and morphologically
215 identified as *An. stephensi*.

216 **Insecticide susceptibility and synergist assays**

217 According to the WHO bioassay procedure, 1200 non-fed female *An. stephensi* were tested
218 with various insecticide classes and PBO-pyrethroids. Based on the WHO mortality criteria, Fiq
219 *An. stephensi* revealed resistance to all insecticides tested, except for pirimiphos-methyl which
220 resulted in 100% mortality (Figure 1a; also see Supplementary Table S3 online). Pre-exposure to

221 PBO restored complete sensitivity to deltamethrin and permethrin in the synergist tests (Figure
222 1a; also see Supplementary Table S3 online).

223

233 **Figure 1.** Mortality rate of *An. stephensi* exposed to different insecticides in Fiq, Ethiopia. Bars
234 represent mean values (with 95% CIs) **a.** Diagnostic dose assays. **b.** Synergist assays.

235 **Temephos susceptibility**

236 The Temephos susceptibility test against Fiq *An. stephensi* larvae revealed that concentrations
237 of 1.25mg/l and 0.25mg/l killed 100% of the *An. stephensi* larvae after 24hrs (Table 1).
238 However, mortality rates for the rest of the concentrations such as 0.05mg/l and 0.01mg/l were
239 94% and 16%, respectively, below the WHO mortality criteria of greater than 98 percent for
240 susceptibility (Table 1).

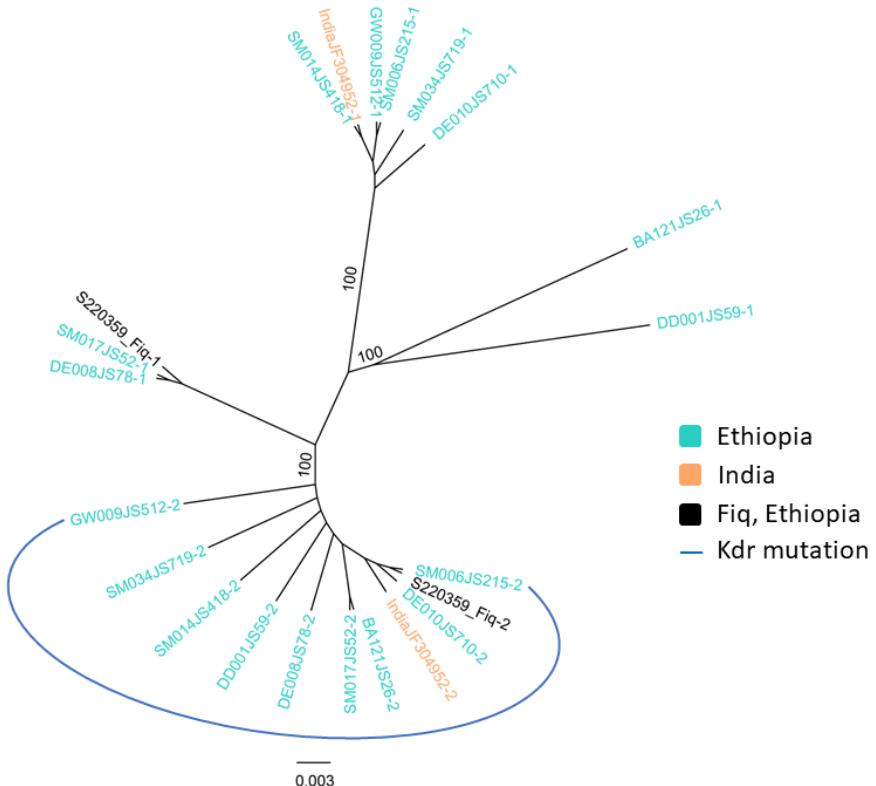
241 **Table 1.** Mortality rate of *An. stephensi* larvae against WHO standard concentrations of
242 Temephos

Concentration	Mortality rate (%)	Mortality rate (%)
---------------	--------------------	--------------------

	Final concentration	R1	R2	R3	R4	mean [95% CI]
312.5mg/l	1.25mg/l	100	100	100	100	100
62.5mg/l	0.25mg/l	100	100	100	100	100
12.5mg/l	0.05mg/l	100	96	80	100	94 [79, 109]
2.5mg/l	0.01mg/l	12	8	20	24	16 [4, 28]

NB: A total of 1000 adult *An. stephensi* identified and no other *Anopheles* species encountered to provide proof that the susceptibility test was done on *An. stephensi* larvae. R1-R4 are replicates.

243


244 **Molecular identification**

245 A subset of 154 morphologically identified *An. stephensi* collected from the various sites in Fiq
246 were preserved with silica gel and sent to Baylor University for molecular and genomics
247 analyses. Genomic DNA was extracted from 20 of those specimens for a comparative sample
248 size with previous *An. stephensi* SNPs dataset from eastern Ethiopia²⁹. The 20 samples were
249 successfully confirmed as *An. stephensi* based on the presence of the characteristic band in the
250 ITS2 endpoint assay (see Supplementary Fig. S3 online), and phylogenetic analysis of the
251 cytochrome oxidase subunit I (COI) mitochondrial marker further confirmed *An. stephensi*. All
252 the analyzed Fiq *An. stephensi* COI sequences clustered with the most prevalent Ethiopian *An.*
253 *stephensi* COI haplotype (Hap2)²¹ (see Supplementary Fig. S4 online).

254 ***Kdr* mutation population frequency**

255 Of the 20 *An. stephensi* samples analyzed for pyrethroid target site phenotypic-genotypic
256 association in observed resistant *An. stephensi*, one (5%) carried the *kdr* L1014F mutation with
257 a heterozygote allele (see Supplementary Table S5 online). The *Kdr* L1014S was not observed.
258 Phylogenetic analysis confirmed the Fiq *kdr* L1014F mutation, as the analyzed sequence
259 clustered with previously published *An. stephensi* *kdr* L1014F mutation sequences from
260 Ethiopia²⁷ and India²⁸ (bootstrap 100) (Figure 2).

261

263 **Figure 2.** Phylogenetic tree of *kdr* L1014F mutation in Fiq *An. stephensi* and available global *An.*
264 *stephensi* *kdr* mutation sequence. The evolutionary history was inferred by using the Maximum
265 Likelihood method based on the General Time Reversible model. The tree with final ML
266 optimization likelihood (-146.34) and bootstrap values >70 are shown.

267 Nuclear genetic diversity and population structure

268 For a comparative analysis between the Fiq studied population and the previously reported *An.*
269 *stephensi* populations in 10 different sites across eastern Ethiopia²⁹, genetic diversity and
270 population structure assessments were based on a combined SNPs dataset of 1,704
271 independent bi-allelic SNPs after filtering for linkage disequilibrium and non-biallelic SNPs. From
272 the combined Ethiopian *An. stephensi* bi-allelic SNPs analyzed, the lowest nucleotide diversity
273 was observed in Godey ($\pi = 0.1979$) in southeastern Ethiopia, and the highest nucleotide
274 diversity was observed in Awash Sebat Kilo ($\pi = 0.2300$) in northeastern Ethiopia (see
275 Supplementary Table S4 online). Fiq had the second lowest nucleotide diversity ($\pi = 0.1986$)
276 (see Supplementary Table S4 online). *Anopheles stephensi* populations from southeastern

277 Ethiopia and Fiq were also found to have the highest Tajima's D values, 1.36, 1.48, 1.19, and
278 1.29 for Degehabur, Kebridehar, Godey, and Fiq, respectively, indicating a lack of rare variants
279 relative to neutral expectations⁴⁴ (see Supplementary Table S4 online).

280 Assessing population structure using the combined *An. stephensi* independent bi-allelic SNPs
281 dataset and based on principal component analysis (PCA), we identified three semi-discrete
282 genetic clusters (Figures 3b and 3c). Plotting the first two principal components grouped *An.*
283 *stephensi* populations regionally with Fiq *An. stephensi* mostly clustering with east central
284 Ethiopia *An. stephensi* populations (Figure 3). The ADMIXTURE analysis based on an optimum
285 population K model 5 more specifically identified five main genetic similarities across *An.*
286 *stephensi* populations that include (1) Erer Gota, Dire Dawa, and Jigjiga, (2) Fiq, (3) Bati and
287 Semera, (4) Gewane and Awash Sebat Kilo, and (5) Degehabur, Kebridehar, and Godey (see
288 Supplementary Fig. S5 online). From these genetic clusters, Fiq *An. stephensi* displayed the
289 lowest admixture proportions as it is composed of a single ancestral lineage that is
290 predominantly observed in Jigjiga admixed *An. stephensi* population (see Supplementary Fig. S5
291 online). The F_{st} pairwise estimates also showed Fiq *An. stephensi* being less differentiated from
292 Jigjiga *An. stephensi* from east central Ethiopia populations ($F_{st} = 0.07$) and more differentiated
293 from Bati *An. stephensi* from northeastern Ethiopia populations ($F_{st} = 0.14$) (see Supplementary
294 Fig. S6 online).

295

296

297

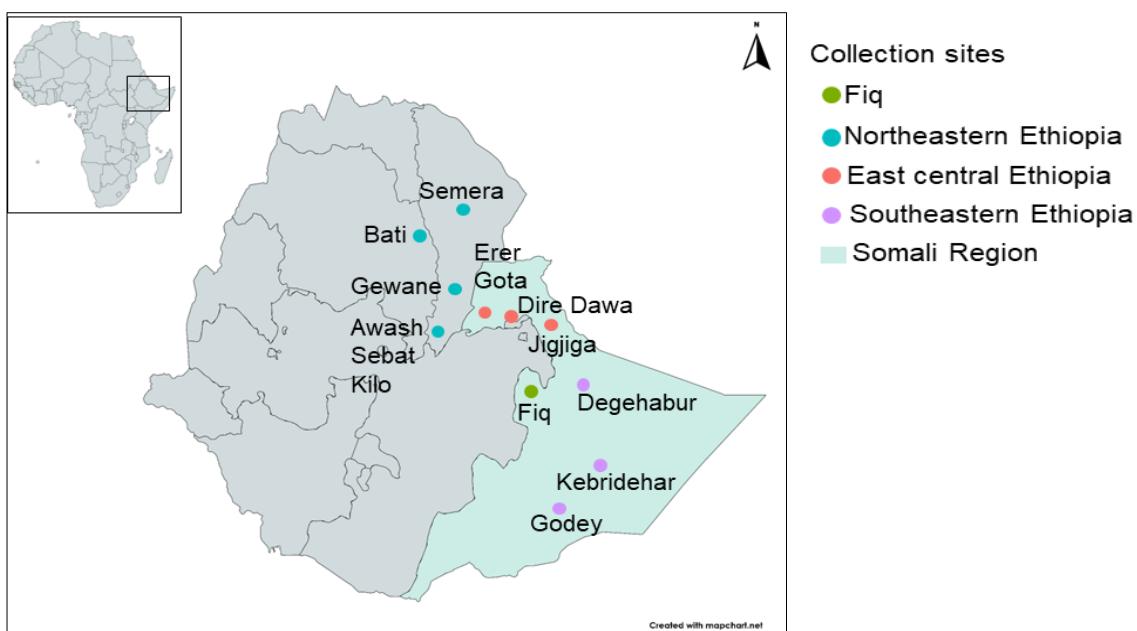
298

299

300

301

302


303

304

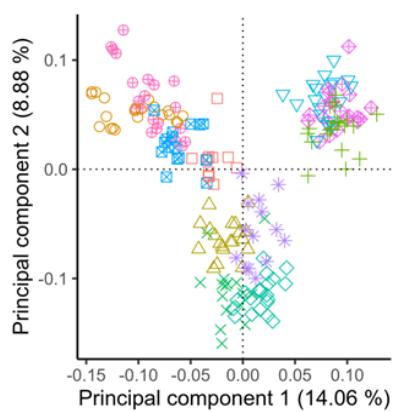
305

306

a.

310

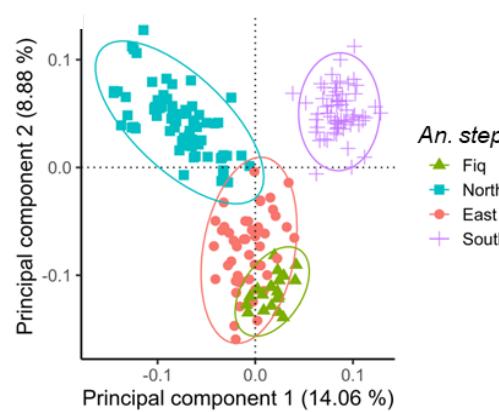
311


312

313

314

315


b.

An. stephensi Population

- AW18
- BA18
- DD18
- DE18
- ER18
- FI22
- GD18
- GW18
- JJ18
- KB18
- SM18

c.

An. stephensi Population

- Fiq
- Northeastern Ethiopia
- East central Ethiopia
- Southeastern Ethiopia

322 **Figure 3. a.** *Anopheles stephensi* sampling locations in eastern Ethiopia. Fiq data was generated
323 in this present study. Data from all other sites were previously generated (Samake et al.²⁹,
324 2023). Map was created with mapchart.net. **b.** Principal component analysis (PCA) of individual

325 *An. stephensi* population in eastern Ethiopia. The amounts of variation explained by each
326 principal component (PC 1 on the x-axis, PC 2 on the y-axis) are given in percentages. The
327 sample sites are Awash Sebat Kilo (AW18), Bati (BA18), Dire Dawa (DD18), Degehabur (DE18),
328 Erer Gota (ER18), Fiq (FI22), Godey, (GD18), Gewane (GW18), Jigjiga (JJ18), Kebriderar (KB18),
329 Semera (SM18). **c.** Scatterplot of subgroup variation based on principal component analysis
330 (PCA). The amounts of variation explained by each principal component (PC 1 on the x-axis, PC
331 2 on the y-axis) are given in percentages. *Anopheles stephensi* population subgroups are color-
332 coded as described in the legend.

333 **Genetic network**

334 Network reconstruction was based on the same combined 1,704 independent bi-allelic SNP
335 dataset. Out of the ten Ethiopian *An. stephensi* populations analyzed, Fiq *An. stephensi* was
336 found to be connected to two populations, Dire Dawa and Jigjiga, that were recovered as
337 statistically significant nodes based on the bootstrapping test (Figure 4, also see Supplementary
338 Fig. S7 online). However, the network revealed higher genetic connectivity between Fiq and
339 Jigjiga than Dire Dawa (Figure 4a). This finding suggests Jigjiga is the potential source population
340 for the studied Fiq *An. stephensi*.

341

342

343

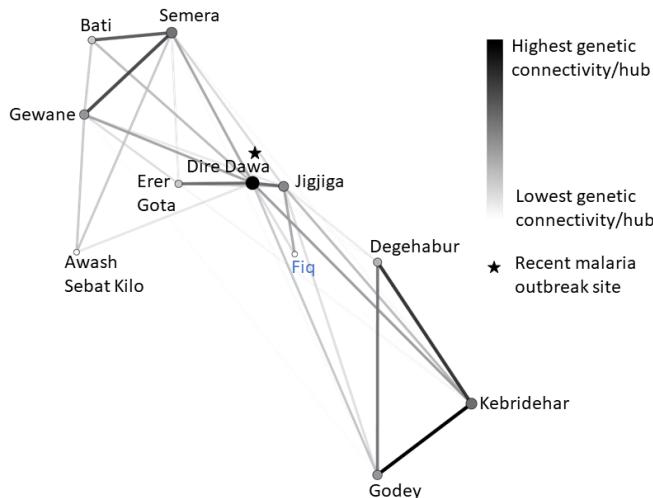
344

345

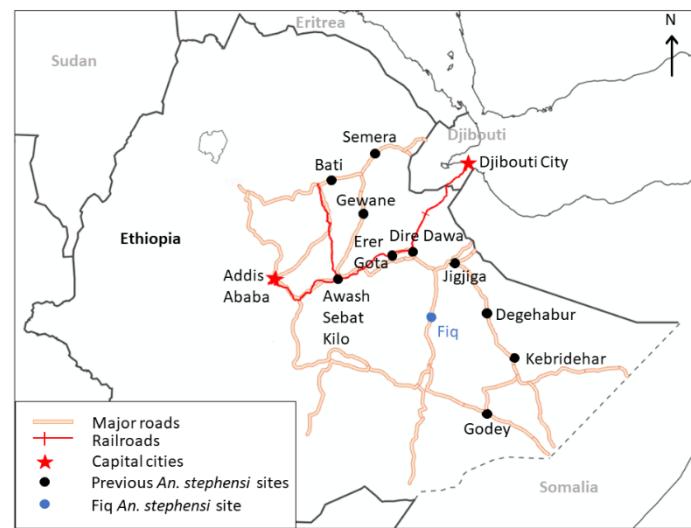
346

347

348


349

350


351

352

a.

b.

353

354

355

356

357

358

359

360

361

362 **Figure 4. a.** Genetic network of *An. stephensi* populations in eastern Ethiopia. Network nodes
363 represent populations/hubs and links represent weighted genetic distances/genetic
364 connectivities. The figure is produced by EDENetworks based on a genotype autosomal ddRAD-
365 seq loci matrix by applying a single realization of bootstrapping with 0.85 percentage of nodes
366 at each location and thresholded at 0.12. The colors and sizes of the links represent the
367 strength of genetic connectivity from lowest (white) to highest (black). The colors and sizes of
368 the nodes represent the cumulative weighted links from lowest (white) to highest (black). **b.**
369 Map showing Fiq road connections to other sites. The map was generated using ArcGIS Pro v
370 3.1 (Environmental Systems Research Institute (ESRI), Redlands, CA, USA).

371

372

373

374

375 **Discussion**

376 We report the presence of *An. stephensi* in abundance during a rainy season (May-June 2022)
377 in Fiq, Somali region, Ethiopia. From the more than three thousand and five hundred *Anopheles*
378 larvae collected, all were reared and morphologically identified as *An. stephensi*. Molecular
379 identification of a subset for further molecular analyses also confirms the studied samples as
380 *An. stephensi*. All *An. stephensi* larval habitats identified were artificial breeding sites such as
381 plastic sheet water storages, covered and uncovered cisterns, and barrels which are consistent
382 with other *An. stephensi* larval habitats reported in eastern Ethiopia⁴⁵. The fact that no other
383 *Anopheles* larvae were collected suggests that *An. stephensi* could persist during dry seasons¹⁵
384 in Fiq, characteristics typically distinct from *An. arabiensis*, the primary malaria vector in
385 Ethiopia^{46,47}. However, in Kenya, *An. stephensi* larvae were found in both artificial containers
386 and a riverbed setting⁴⁸, emphasizing the potential diversity of larval habitats of this invasive
387 *An. stephensi* that is worth noting for future entomological surveillance of this invasive malaria
388 vector in Ethiopia and Africa.

389 The newly detected Fiq *An. stephensi* were found to be resistant to bendiocarb (carbamate),
390 cyfluthrin, deltamethrin, permethrin, and alphacypermethrin (pyrethroids), but susceptible to
391 pirimiphos-methyl (organophosphate) according to the WHO criteria of 98% - 100% mortality
392 indicating susceptibility²⁴. However, restored susceptibility to deltamethrin and permethrin was
393 observed following the synergist bioassay with piperonyl butoxide (PBO), which is a detoxifying
394 enzyme inhibitor that bolsters the effects of pyrethroid insecticides, thus indicating a metabolic
395 insecticide resistance mechanism^{49,50}. This finding is consistent with previous reports of
396 insecticide resistance among the Ethiopian *An. stephensi* populations⁵¹ and suggests that PBO
397 plus pyrethroids may be more effective against adult *An. stephensi* in Fiq. Additionally, Fiq *An.*
398 *stephensi* larvae were found to be susceptible to the diagnostic dose of temephos (0.25 mg/l)
399 with a 100% mortality rate (Table 1), which is consistent with recent larvicide studies conducted
400 on three other *An. stephensi* populations in eastern Ethiopia^{52,53}. Thus, temephos may be an
401 effective larvicide to control *An. stephensi* larvae in Fiq.
402 Also, our molecular analysis of the pyrethroid target site knockdown gene revealed the
403 presence of the *kdr* mutation in a single pyrethroid-resistant Fiq sample (Figure 2). The

404 low *kdr* mutation frequency among the Fiq pyrethroid-resistant studied *An. stephensi* is
405 consistent with previous low *kdr* mutation frequency in the Ethiopian *An. stephensi* from
406 eastern Ethiopia²⁷. This finding confirms that *kdr* mutations may not be a primary mechanism of
407 pyrethroid resistance in the invasive *An. stephensi*²⁷. Thus, the metabolic resistance mechanism
408 again seems more relevant, as revealed by the positive synergist assays in pyrethroid-resistant
409 *An. stephensi* in this study (Fig.1), and previously reported in Balkew et al.⁵⁴. However, the
410 analysis of gene expression at metabolic resistance loci is needed to fully understand the
411 underlying molecular mechanisms of insecticide resistance development in the invasive *An.*
412 *stephensi*.

413 Furthermore, comparative population structure analyses of the newly detected *An. stephensi*
414 with other Ethiopian *An. stephensi* revealed high genetic similarities between Fiq *An. stephensi*
415 and east central *An. stephensi* (Fig. 3b and 3c) and the recentness of Fiq *An. stephensi*
416 compared to them. The recency of Fiq *An. stephensi* was further revealed by their low genetic
417 diversity and high Tajima's D compared to the east-central Ethiopia *An. stephensi* populations.
418 Thus, these findings suggest that Fiq *An. stephensi* population is from a recent founder event,
419 such as a bottleneck event from east central Ethiopia *An. stephensi* populations. Further
420 population pairwise F_{st} and genetic network analyses pinpoint Jigjiga as the potential source of
421 the founder event in Fiq. Specifically, Fiq *An. stephensi* were less genetically differentiated from
422 Jigjiga *An. stephensi* than the other analyzed Ethiopian *An. stephensi* and shared higher genetic
423 connectivity with Jigjiga than other sites (Figure 4a). Although Fiq is located 195 km away from
424 Jigjiga, the genetic connectivity observed could be explained by the fact that they are
425 connected by a major road (Figure 4b). The same major road also connects both Jigjiga and Fiq
426 to Dire Dawa, the site of a recent *An. stephensi*-mediated malaria outbreak⁷. Thus, our finding
427 highlights the potential role of roads, perhaps through human and/or good transportation, in
428 the expansion of *An. stephensi* into Fiq. The role that transports routes (marines, roads, etc.)
429 play in invasive species incursion into new geographic areas has been well documented⁵⁵⁻⁵⁸.
430 Thus, this potential mechanism of *An. stephensi* dispersal within the region warrants further
431 investigation.

432

433 **Conclusion**

434 The present study revealed the high prevalence of the invasive *An. stephensi* in Fiq, its larval
435 habitats, insecticide resistance status for both adult and immature stages, genetic diversity,
436 population structure, and potential source populations. Our results showed that Fiq *An.*
437 *stephensi* population is susceptible to pirimiphos-methyl, PBO-pyrethroids, and temephos.
438 Thus, these insecticides may be effectively used in control strategies against this invasive
439 malaria vector in Fiq. We also found that the Fiq *An. stephensi* population shares genetic
440 connectivity with two major *An. stephensi* hubs (i.e., Jigjiga and Dire Dawa) in eastern Ethiopia,
441 with a stronger connection to Jigjiga . Thus, heightened vector control in those areas could help
442 prevent further *An. stephensi* incursions into Fiq and beyond. Overall, this study provides a
443 comprehensive approach to investigate a recent *An. stephensi* expansion into a new
444 geographical area to determine the extent of establishment, assess effectiveness of
445 insecticides, and identify potential source populations to prevent further spread.

446 **Data Availability Statement**

447 DNA sequences: Bioproject PRJNA1042829 and Genbank accessions SAMN38322421 –
448 SAMN38322440.

449

450 **References**

- 451 1 WHO. *World malaria report 2022*, <<https://www.who.int/publications/i/item/9789240040496>>
452 (2022).
- 453 2 Kenea, O. *et al.* Impact of combining indoor residual spraying and long-lasting insecticidal nets
454 on *Anopheles arabiensis* in Ethiopia: results from a cluster randomized controlled trial. *Malar J*
455 **18**, 182 (2019). <https://doi.org/10.1186/s12936-019-2811-1>
- 456 3 Ali, S., Samake, J. N., Spear, J. & Carter, T. E. Morphological identification and genetic
457 characterization of *Anopheles stephensi* in Somaliland. *Parasites & Vectors* **15**, 247 (2022).
458 <https://doi.org/10.1186/s13071-022-05339-y>
- 459 4 Carter, T. E. *et al.* First detection of *Anopheles stephensi* Liston, 1901 (Diptera: culicidae) in
460 Ethiopia using molecular and morphological approaches. *Acta Trop* **188**, 180-186 (2018).
461 <https://doi.org/10.1016/j.actatropica.2018.09.001>
- 462 5 Faulde, M. K., Rueda, L. M. & Khaireh, B. A. First record of the Asian malaria vector *Anopheles*
463 *stephensi* and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. *Acta Trop*
464 **139**, 39-43 (2014). <https://doi.org/10.1016/j.actatropica.2014.06.016>

465 6 Hamlet, A. *et al.* The potential impact of *Anopheles stephensi* establishment on the transmission
466 of *Plasmodium falciparum* in Ethiopia and prospective control measures. *BMC Medicine* **20**, 135
467 (2022). <https://doi.org/10.1186/s12916-022-02324-1>

468 7 Emiru, T. *et al.* Evidence for a role of *Anopheles stephensi* in the spread of drug and diagnosis-
469 resistant malaria in Africa. *Nat Med* (2023). <https://doi.org/10.1038/s41591-023-02641-9>

470 8 Ahmed, A., Khogali, R., Elnour, M.-A. B., Nakao, R. & Salim, B. Emergence of the invasive malaria
471 vector *Anopheles stephensi* in Khartoum State, Central Sudan. *Parasites & Vectors* **14**, 511
472 (2021). <https://doi.org/10.1186/s13071-021-05026-4>

473 9 WHO. *Malaria Threat Map*,
<<https://apps.who.int/malaria/maps/threats/?theme=invasive&mapType=invasive>> (2023).

474 10 Assada, M. *et al.* Molecular confirmation of *Anopheles stephensi* in the Al Hudaydah
475 Governorate, Yemen, 2021-2022. *bioRxiv*, 2024.2002.2022.577782 (2024).
<https://doi.org/10.1101/2024.02.22.577782>

476 11 Allan, R. *et al.* Confirmation of the presence of *Anopheles stephensi* among internally displaced
477 people's camps and host communities in Aden city, Yemen. *Malaria Journal* **22**, 1-8 (2023).

478 12 Ochomo, E. O. *et al.* Detection of *Anopheles stephensi* Mosquitoes by Molecular Surveillance,
479 Kenya. *Emerging Infectious Diseases* **29**, 2498 (2023).

480 13 Afrane, Y. A. *et al.* First detection of *Anopheles stephensi* in Ghana using molecular surveillance.
481 *Biorxiv*, 2023.2012. 2001.569589 (2023).

482 14 WHO. WHO launches new initiative to stop the spread of invasive malaria vector in Africa,
483 <<https://www.who.int/news-room/feature-stories/detail/mosquito-on-the-move>> (2022).

484 15 WHO. Vector alert: *Anopheles stephensi* invasion and spread in Africa and Sri Lanka,
485 <<https://iris.who.int/bitstream/handle/10665/365710/9789240067714-eng.pdf?sequence=1>>
486 (2022).

487 16 Balkew, M. *et al.* Geographical distribution of *Anopheles stephensi* in eastern Ethiopia. *Parasites*
488 & *Vectors* **13** (2020). <https://doi.org/10.1186/s13071-020-3904-y>

489 17 PMI. PMI VectorLink Ethiopia Project final entomology report April 2021-March 2022,
490 <<https://d1u4sg1s9ptc4z.cloudfront.net/uploads/2023/02/Entomological-Monitoring-Report-Ethiopia-2022.pdf>> (2022).

491 18 Ethiopia Malaria Profile. 5 (U.S. President's Malaria Initiative, 2023).

492 19 WHO. (2009).

493 20 Coetzee, M. Key to the females of Afrotropical *Anopheles* mosquitoes (Diptera: Culicidae). *Malar J* **19**, 70 (2020). <https://doi.org/10.1186/s12936-020-3144-9>

494 21 Carter, T. E. *et al.* Genetic diversity of *Anopheles stephensi* in Ethiopia provides insight into
495 patterns of spread. *Parasit Vectors* **14**, 602 (2021). <https://doi.org/10.1186/s13071-021-05097-3>

496 22 Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RAxML GUI 2.0: A graphical interface and toolkit for
497 phylogenetic analyses using RAxML. *Methods in Ecology and Evolution* **12**, 373-377 (2021).
<https://doi.org/https://doi.org/10.1111/2041-210X.13512>

498 23 Rambaut, A. FigTree. Tree figure drawing tool. <http://tree.bio.ed.ac.uk/software/figtree/>
499 (2009).

500 24 WHO. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in
501 WHO tube tests, <<https://iris.who.int/bitstream/handle/10665/352316/9789240043831-eng.pdf?sequence=1>> (2022).

502 25 WHO. Guidelines for laboratory and field testing of mosquito larvicides,
503 <https://iris.who.int/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?sequence=1> (2005).

504 26 WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to
505 insecticides, <<https://iris.who.int/handle/10665/69615>> (1981).

513 27 Samake, J. N. *et al.* Detection and population genetic analysis of kdr L1014F variant in eastern
514 Ethiopian Anopheles stephensi. *Infection, Genetics and Evolution*, 105235 (2022).
<https://doi.org/https://doi.org/10.1016/j.meegid.2022.105235>

516 28 Singh, O. P., Dykes, C. L., Lather, M., Agrawal, O. P. & Adak, T. Knockdown resistance (kdr)-like
517 mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and
518 PCR assays for their detection. *Malar J* **10**, 59 (2011). <https://doi.org/10.1186/1475-2875-10-59>

519 29 Samake, J. N. *et al.* Population genomic analyses reveal population structure and major hubs of
520 invasive Anopheles stephensi in the Horn of Africa. *Molecular Ecology* **32**, 5695-5708 (2023).
<https://doi.org/https://doi.org/10.1111/mec.17136>

522 30 Lavretsky, P. *et al.* Speciation genomics and a role for the Z chromosome in the early stages of
523 divergence between Mexican ducks and mallards. *Mol Ecol* **24**, 5364-5378 (2015).
<https://doi.org/10.1111/mec.13402>

525 31 Lavretsky, P. *et al.* Assessing changes in genomic divergence following a century of human-
526 mediated secondary contact among wild and captive-bred ducks. *Molecular Ecology* **29**, 578-595
527 (2020). <https://doi.org/https://doi.org/10.1111/mec.15343>

528 32 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
529 data. *Bioinformatics* **30**, 2114-2120 (2014). <https://doi.org/10.1093/bioinformatics/btu170>

530 33 Li, H. & Durbin, R. Inference of human population history from individual whole-genome
531 sequences. *Nature* **475**, 493-496 (2011). <https://doi.org/10.1038/nature10231>

532 34 Chakraborty, M. *et al.* Author Correction: Hidden genomic features of an invasive malaria vector,
533 Anopheles stephensi, revealed by a chromosome-level genome assembly. *BMC Biology* **20**, 96
534 (2022). <https://doi.org/10.1186/s12915-022-01314-2>

535 35 Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and
536 population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987-2993
537 (2011). <https://doi.org/10.1093/bioinformatics/btr509>

538 36 Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage
539 analyses. *Am J Hum Genet* **81**, 559-575 (2007). <https://doi.org/10.1086/519795>

540 37 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York, 2016).

541 38 Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated
542 individuals. *Genome Res* **19**, 1655-1664 (2009). <https://doi.org/10.1101/gr.094052.109>

543 39 Zhou, H., Alexander, D. & Lange, K. A quasi-Newton acceleration for high-dimensional
544 optimization algorithms. *Stat Comput* **21**, 261-273 (2011). [https://doi.org/10.1007/s11222-009-9166-3](https://doi.org/10.1007/s11222-009-
545 9166-3)

546 40 Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss
547 army knife for population genomic analyses in R. *Mol Biol Evol* **31**, 1929-1936 (2014).
<https://doi.org/10.1093/molbev/msu136>

549 41 Kivelä, M., Arnaud-Haond, S. & Saramäki, J. EDENetworks: a user-friendly software to build and
550 analyse networks in biogeography, ecology and population genetics. *Mol Ecol Resour* **15**, 117-
551 122 (2015). <https://doi.org/10.1111/1755-0998.12290>

552 42 Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: basis for a
553 short-term genetic distance. *Genetics* **105**, 767-779 (1983).
<https://doi.org/10.1093/genetics/105.3.767>

555 43 Kivelä, M. *et al.* Multilayer networks. *Journal of Complex Networks* **2**, 203-271 (2014).
<https://doi.org/10.1093/comnet/cnu016>

557 44 Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
558 *Genetics* **123**, 585-595 (1989). <https://doi.org/10.1093/genetics/123.3.585>

559 45 Balkew, M. *et al.* Geographical distribution of Anopheles stephensi in eastern Ethiopia. *Parasit
560 Vectors* **13**, 35 (2020). <https://doi.org/10.1186/s13071-020-3904-y>

561 46 Kenea, O., Balkew, M. & Gebre-Michael, T. Environmental factors associated with larval habitats
562 of anopheline mosquitoes (Diptera: Culicidae) in irrigation and major drainage areas in the
563 middle course of the Rift Valley, central Ethiopia. *J Vector Borne Dis* **48**, 85-92 (2011).

564 47 Adugna, F., Wale, M. & Nibret, E. Review of Anopheles Mosquito Species, Abundance, and
565 Distribution in Ethiopia. *Journal of Tropical Medicine* **2021**, 1-7 (2021).
<https://doi.org/10.1155/2021/6726622>

566 48 Ochomo, E. O. *et al.* Molecular surveillance leads to the first detection of *Anopheles stephensi* in
567 Kenya (Research Square Platform LLC, 2023).

568 49 Chouaïbou, M., Zivanovic, G. B., Knox, T. B., Jamet, H. P. & Bonfoh, B. Synergist bioassays: A
569 simple method for initial metabolic resistance investigation of field *Anopheles gambiae* s.l.
570 populations. *Acta Trop* **130**, 108-111 (2014). <https://doi.org/10.1016/j.actatropica.2013.10.020>

571 50 Pasay, C. *et al.* The Effect of Insecticide Synergists on the Response of Scabies Mites to
572 Pyrethroid Acaricides. *PLoS Neglected Tropical Diseases* **3**, e354 (2009).
<https://doi.org/10.1371/journal.pntd.0000354>

573 51 Balkew, M. *et al.* An update on the distribution, bionomics, and insecticide susceptibility of
574 *Anopheles stephensi* in Ethiopia, 2018–2020. *Malaria Journal* **20** (2021).
<https://doi.org/10.1186/s12936-021-03801-3>

575 52 Muhammed, M. *et al.* Insecticidal effects of some selected plant extracts against *Anopheles*
576 *stephensi* (Culicidae: Diptera). *Malaria Journal* **21**, 295 (2022). <https://doi.org/10.1186/s12936-022-04320-5>

577 53 Teshome, A. *et al.* Laboratory-based efficacy evaluation of *Bacillus thuringiensis* var. *israelensis*
578 and temephos larvicides against larvae of *Anopheles stephensi* in ethiopia. *Malaria Journal* **22**
579 (2023). <https://doi.org/10.1186/s12936-023-04475-9>

580 54 Balkew, M. *et al.* An update on the distribution, bionomics, and insecticide susceptibility of
581 *Anopheles stephensi* in Ethiopia, 2018-2020. *Malar J* **20**, 263 (2021).
<https://doi.org/10.1186/s12936-021-03801-3>

582 55 Ahn, J., Sinka, M., Irish, S. & Zohdy, S. Modeling marine cargo traffic to identify countries in
583 Africa with greatest risk of invasion by *Anopheles stephensi*. *Scientific Reports* **13** (2023).
<https://doi.org/10.1038/s41598-023-27439-0>

584 56 Ammar, S. E. *et al.* Intercepted Mosquitoes at New Zealand's Ports of Entry, 2001 to 2018:
585 Current Status and Future Concerns. *Trop Med Infect Dis* **4** (2019).
<https://doi.org/10.3390/tropicalmed4030101>

586 57 Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of
587 globalization. *Journal of Applied Ecology* **46**, 10-18 (2009).
<https://doi.org/https://doi.org/10.1111/j.1365-2664.2008.01600.x>

588 58 Swan, T. *et al.* A literature review of dispersal pathways of *Aedes albopictus* across different
589 spatial scales: implications for vector surveillance. *Parasites & Vectors* **15**, 303 (2022).
<https://doi.org/10.1186/s13071-022-05413-5>

590

591

592

593

594

595

596

597

598

599

600 Acknowledgments

601 We are thankful to the field teams who collected and organized the mosquitoes. We thank Dr.
602 Philip Lavretsky (University of Texas at El Paso) for the Illumina barcodes. We also thank Ms.
603 Madison Follis, Ms. Amelia Wickham, and Ms. Nidhi Kotha (Baylor University) for their lab

604 support and Mr. Joshua Been (Baylor Library Data and Digital Scholarship) for his support with
605 the GIS road map.

606 **Author's contribution**

607 JNS, SY, and TEC conceptualized the study. SY, MA, TEC, and SZ organized field collections. SY
608 conducted the bioassays. JNS and TEC collected and analyzed the molecular and genomic data.
609 JNS, SY, SZ, and TEC contributed to the writing of the manuscript. All authors reviewed and
610 approved the final manuscript.

611 **Funding**

612 This research was funded by the Centers for Disease Control and Prevention. SZ was funded by
613 the U.S. President's Malaria Initiative. The findings and conclusions in this report are those of
614 the author(s) and do not necessarily represent the official position of the U.S. Centers for
615 Disease Control and Prevention.

616 **Disclaimer**

617 The authors alone are responsible for the views expressed in this article and they do not
618 necessarily represent the views, decisions, or policies of the institutions with which they are
619 affiliated.

620 **Competing interests**

621 The author(s) declare no competing interests.

622 **Supplementary Information**

623

624

625

626