

1 **Genomic Characterization of a Dog-Mediated Rabies Outbreak in El**

2 **Pedregal, Arequipa, Peru**

3 Renzo Salazar¹*, Kirstyn Brunker^{2,3,4}†, Elvis W. Díaz¹, Edith Zegarra⁵, Ynes Monroy⁵,
4 Gorky N. Baldarrago⁶, Katty Borrini-Mayori¹, Micaela De la Puente-León¹, Sandeep
5 Kasaragod^{2,4}, Michael Z. Levy^{1,7}, Katie Hampson^{2,3}, Ricardo Castillo-Neyra^{1,7}

6

7 1 Zoonotic Disease Research Lab, One Health Unit, School of Public Health and
8 Administration, Universidad Peruana Cayetano Heredia, Lima, Perú

9 2 Institute of Biodiversity, Animal Health and Comparative Medicine, University of
10 Glasgow, Glasgow, United Kingdom

11 3 The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow,
12 Glasgow, United Kingdom

13 4 MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom

14 5 Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa,
15 Arequipa, Perú

16 6 Red de Salud Arequipa Caylloma, Ministerio de Salud, Arequipa, Perú

17 7 Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine
18 at University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

19

20 *Corresponding author; email: cricardo@upenn.edu (RC)

21

22 ¶ These authors contributed equally to this work.

23 Author contributions

24

25 **Abstract**

26 **Background**

27 Rabies, a re-emerging zoonosis with the highest known human case fatality rate, has
28 been largely absent from Peru, except for endemic circulation in the Puno region on the
29 Bolivian border and re-emergence in Arequipa City in 2015, where it has persisted. In
30 2021, an outbreak occurred in the rapidly expanding city of El Pedregal near Arequipa,
31 followed by more cases in 2022 after nearly a year of epidemiological silence. While
32 currently under control, questions persist regarding the origin of the El Pedregal
33 outbreak and implications for maintaining rabies control in Peru.

34 **Methods**

35 We sequenced 25 dog rabies virus (RABV) genomes from the El Pedregal outbreak
36 (n=11) and Arequipa City (n=14) from 2021-2023 using Nanopore sequencing in Peru.
37 Historical genomes from Puno (n=4, 2010-2012) and Arequipa (n=5, 2015-2019), were
38 sequenced using an Illumina approach in the UK. In total, 34 RABV genomes were
39 analyzed, including archived and newly obtained samples. The genomes were analyzed
40 phylogenetically to understand the outbreak's context and origins.

41 **Results**

42 Phylogenomic analysis identified two genetic clusters in El Pedregal: 2021 cases
43 stemmed from a single introduction unrelated to Arequipa cases, while the 2022
44 sequence suggested a new introduction from Arequipa rather than persistence. In
45 relation to canine RABV diversity in Latin America, all new sequences belonged to a new
46 minor clade, Cosmopolitan Am5, sharing relatives from Bolivia, Argentina, and Brazil.

47 Conclusion

48 Genomic insights into the El Pedregal outbreak revealed multiple introductions over a
49 2-year window. Eco-epidemiological conditions, including migratory worker patterns,
50 suggest human-mediated movement drove introductions. Despite outbreak
51 containment, El Pedregal remains at risk of dog-mediated rabies due to ongoing
52 circulation in Arequipa, Puno, and Bolivia. Human-mediated movement of dogs presents
53 a major risk for rabies re-emergence in Peru, jeopardizing regional dog-mediated rabies
54 control. Additional sequence data is needed for comprehensive phylogenetic analyses.

55 Introduction

56 Rabies, a globally prevalent zoonotic disease, has one of the highest fatality rates among
57 both humans and animals, with infections primarily resulting from rabid dog bites (1).
58 The economic burden attributed to rabies surpasses 8 billion USD, with premature death
59 representing a major component (2). In a concerted effort to eliminate human deaths
60 caused by dog-mediated rabies by 2030, a worldwide strategic plan—‘Zero by 30’—was
61 established in 2015 (3). To achieve this global goal, it is crucial to have efficient and well-
62 coordinated local surveillance in place (4). Genomic surveillance, a key tool in molecular
63 epidemiology, provides unique insights into virus dynamics (5,6), spread (7), and control

64 advances (8–10). In the context of dog-mediated rabies, genomic surveillance can
65 complement epidemiological efforts, offering valuable information to comprehend and
66 redirect control strategies during outbreaks (11).

67 In Peru, dog-mediated human rabies has been mostly controlled (12,13), but there has
68 been continuous rabies virus (RABV) transmission in the dog population of Arequipa City
69 since its detection in 2015 (14,15). In 2021, rabid dogs were detected in El Pedregal, a
70 rapidly growing city in the neighboring province of Caylloma, 2 hours from Arequipa City
71 (16). El Pedregal was built around an irrigation project in the desert; 40 years ago the
72 area was uninhabited, but it has experienced explosive growth and development (17).

73 Given its strategic location and economic opportunities, El Pedregal has become a hub
74 for agricultural employment, with considerable in-migration and commuting from
75 neighboring cities and towns (17,18). The dog rabies outbreak in El Pedregal prompted
76 the local government to implement focused control strategies and strengthen mass dog
77 vaccination campaigns (19). The outbreak has been controlled, but many
78 epidemiological questions remain unanswered. For instance, the outbreak source and
79 the frequency of introductions are yet unknown, the diversity and distribution of
80 circulating virus lineages have not been characterized, and it is unclear to what extent
81 local transmission may be undetected, all questions that can be answered by genomic
82 surveillance (11,20).

83 Identifying the source of emerging rabies outbreaks is vital for understanding where dog
84 vaccination needs to be strengthened (21) and understanding the potential for dog-
85 mediated RABV re-emergence. While many countries worldwide contend with endemic
86 dog-mediated rabies virus, the case of El Pedregal presents an instance of re-emergence

87 in a previously rabies-free area (and almost dog-mediated rabies-free continent). This
88 case offers valuable insights into the effectiveness of RABV genomic surveillance and its
89 pivotal role in the latter stages of control efforts. It serves as a warning for potential
90 challenges that may arise in other regions globally, as well as specifically informing the
91 current epidemiological situation in Peru and Latin America, highlighting the evolving
92 epidemiological dynamics of the rabies virus as we strive towards and aim to sustain
93 elimination. Therefore, this study aims to elucidate the origin of the outbreak in El
94 Pedregal using epidemiological and genomic data and to characterize the spread of
95 RABV within this unusual epidemiological context.

96 **Methods**

97 **Study area**

98 This study was conducted in El Pedregal (Fig 1), Majes District, Caylloma Province,
99 Arequipa Department, Peru. Located in the subtropical Coastal desert, approximately
100 1440 meters above sea level and southwest of Arequipa city (22,23). El Pedregal is home
101 to an estimated population of 70,780 inhabitants (24). The population is mainly
102 composed of migrant populations (17); up to 90% come from nearby cities and regions
103 such as Arequipa, Puno, and Cusco, as well as neighboring towns (17).

104

105 **Fig 1. Geographic context of the study area in Peru and zoomed-in map of El Pedregal**
106 **showing the location of rabies cases during the 2021-2022 outbreak. A) Map of Latin**
107 **America highlighting Peru, with annotations of locations relevant to the outbreak study.**
108 **B) Detailed map of El Pedregal, showing the locations of rabies cases in rural and urban**
109 **areas for 2021 and 2022. Cases are numbered according to the epidemiological timeline.**

110

111 **The outbreak**

112 On February 9, 2021, the first case of dog rabies was reported in El Pedregal (Fig 1, Table
113 1). The rabid dog was identified when it displayed signs of extreme aggression, entering
114 two homes and biting three people. As a containment measure, the dog was taken to a
115 veterinarian, where rabies was suspected. The dog died on February 10, and the case
116 was laboratory-confirmed on February 11. Following this case, outbreak control
117 activities were conducted by the local health center staff from February 12 to February
118 15. The surrounding area revealed multiple organic waste dumps and the remains of
119 dead animals, coupled with reports of numerous stray and deceased dogs from
120 neighbors. Fifteen days later, a second case was reported 890 meters away (Fig 1). This
121 second dog bit two random people on the street and the owner reported their dog to

122 the health center. The area where the second case was found was already being
123 monitored and vaccinated due to the activities related to the first positive case. The
124 health inspector observed signs similar to the initial positive case, prompting the owner
125 to choose to euthanize the dog due to suspected rabies, which was confirmed later.

126 Five days later, during outbreak control activities in the same area, the public health
127 veterinarian from El Pedregal confirmed a third case; seven more cases were detected
128 in the following weeks. Out of these 10 cases, eight were detected within a 1.95 km²
129 area, with the distance between cases ranging from 100 to 1,000 meters. In contrast,
130 cases 8 and 9 were found approximately 3,300 m from the nearest case (Fig 1).

131 Interestingly, six of the ten confirmed cases sought care in private veterinary clinics,
132 where they received treatment for diseases other than rabies before notifying the public
133 health center. Notably, the area where all the rabies cases were confirmed presented
134 challenges for conducting outbreak control activities during regular working hours (i.e.,
135 8 a.m. to 5 p.m.) due to the absence of owners engaged in agricultural work outside the
136 city, returning home at night. To address this problem, health personnel conducted
137 contact tracing and dog vaccinations during nocturnal hours. Two or three vaccination
138 teams (each team comprising 1 vaccinator and 1 annotator) vaccinated up to 30 dogs
139 daily, with the assistance of public health nurses for contact tracing and an ambulance
140 for mobilization.

141 On September 7, 2022, 13 months following the cessation of reported cases, a new
142 rabies incident surfaced in El Pedregal. A five-year-old dog was observed biting a
143 cardboard box and subsequently bit a hen and a 10-year-old girl. Prompt intervention
144 ensued as the family sought the assistance of a trusted veterinarian who aided in

145 washing the girl's wound. Following the veterinarian's recommendation, the dog was
146 taken to the public health center for evaluation. The bite was classified as mild, and
147 rabies vaccination and antirabies serum were started. Concurrently, the public health
148 zoonosis office at El Pedregal was notified, and at 9:30 am the dog was sent to a
149 veterinary clinic for observation and died two hours later. A brain sample was extracted
150 and dispatched to the referral laboratory in Arequipa City. On September 8, 2022, 33
151 dogs were vaccinated as part of the presumptive outbreak control measures. The case
152 was not confirmed (by direct Fluorescent Antibody Test (DFAT), see 'Routine
153 Surveillance in Arequipa') until September 13, with subsequent control activities
154 prevented by logistical hurdles and owners' absence during conventional working hours.

155 The final instance of rabies in El Pedregal was reported on October 17, 2022, when the
156 owner of the affected dog reported it to the public health center. A private veterinarian,
157 who had been administering the dog treatment for canine distemper since October 15,
158 advised the owner to report the dog after observing neurological signs such as agitation,
159 paralysis, and lethargy. Despite awareness of the mass dog vaccination campaign
160 conducted in July 2022, the owner cited work commitments as hindering the pet's
161 vaccination, with the dog last receiving rabies vaccination in 2020. Suspecting rabies, the
162 public health center veterinarian euthanized the dog on October 17, took a brain
163 sample, and sent it to the laboratory on the same day, receiving DFAT confirmation of
164 the case on October 18. The distance between these two cases from 2022 was 9,500 m
165 Subsequent outbreak control measures were implemented on October 19, including
166 vaccination of 24 dogs within the affected vicinity.

167 **Virus samples**

168 A total of 34 virus samples from DFAT-confirmed rabid dogs in Peru (Arequipa, El
169 Pedregal, Puno) were analyzed in this study. These samples, including 11 outbreak cases
170 from El Pedregal, were obtained from different periods/sources and were sequenced in
171 three distinct subsets. The following describes the samples in the order they were
172 processed:

173 **1. Archived RNA from Puno (n=4, 2010-2012):**

174 Before conducting sequencing in Peru, archived RNA from three dog-associated rabies
175 cases (in livestock) sampled in 2011 and 2012 in Puno, a neighboring rabies-endemic
176 region, were sequenced to obtain whole genome sequences (WGS) using an Illumina
177 metagenomic approach at the Medical Research Council–University of Glasgow Centre
178 for Virus Research (UoG-CVR), Glasgow, UK. These samples were collected from cattle
179 with clinical signs of rabies as part of the routine surveillance activities of the National
180 Service for Agrarian Health of Peru (SENASA). RNA extractions had previously been
181 partially sequenced as part of a vampire bat rabies surveillance project (GenBank
182 accession nos: KU938752 & KU938829) (25). The genomes produced here were utilized
183 to design primers for dog variant RABV in Peru and in later phylogenetic analyses. An
184 additional archived RNA sample from Puno in 2010 obtained from the same source was
185 also sequenced at a later date, as part of batch 2 described below.

186 **2. Routine Surveillance in Arequipa (n=5, 2015-2019):**

187 Five samples collected from routine rabies surveillance in Arequipa between 2015 and
188 2019 were included in the analysis. For diagnosis, whole brains were extracted and sent
189 at room temperature to the Regional Reference Laboratory of Arequipa in a glycerin-

190 saline solution transport medium. The presence of rabies virus antigen was evaluated
191 using DFAT and confirmed by the mouse inoculation test and RT-PCR at the National
192 Health Institute, following national regulations for rabies diagnosis (26). These samples
193 were sequenced using an Illumina metagenomic approach at the UoG-CVR, UK.

194 **3. *Outbreak Surveillance in El Pedregal (n=11, 2021-2022) and Ongoing Routine***

195 ***Surveillance in Arequipa (n=14, 2021-2023):***

196 Samples from 11 rabies cases from the El Pedregal outbreak were obtained through local
197 surveillance in this region (between February 2021 – September 2022, Fig 1). These
198 samples underwent the same diagnostic procedures as described above and were
199 sequenced using nanopore sequencing in the Zoonotic Disease Research Laboratory in
200 Arequipa, Peru. In addition, 14 samples from Arequipa City, collected during the period
201 2021-2023, were sequenced using the same method.

202 **Multiplex primer scheme**

203 Whole genomes from the three Puno RABV cases from 2011-12 (sample set 1) were used
204 as references to design a multiplex primer scheme in Primal Scheme (27). Settings were
205 applied to generate 400bp products with a 50bp overlap spanning the entirety of the
206 genome.

207 **Nanopore sequencing**

208 An established sample-to-sequence protocol was used to extract RNA from brain tissue
209 and generate DNA libraries for nanopore sequencing (28). In brief, RNA was extracted
210 and purified from homogenized brain tissue using a Zymo Quick RNA Miniprep kit with
211 on-column DNase digestion (Zymo Research, USA). A 2-step RT-PCR was performed with
212 RNA reverse transcribed using Lunascript RT Supermix (New England Biolabs, UK) and a

213 multiplex PCR reaction using Q5 High Fidelity Hot-Start DNA Polymerase (New England
214 Biolabs, UK) and the Peru RABV specific multiplex primer set. Library preparation was
215 performed using a Nanopore ligation sequencing kit, SQK-LSK109, with native barcoding
216 kit, EXP-NBD104/NBD114 (Oxford Nanopore Technologies, UK). Negative controls were
217 included in each run to monitor cross-contamination. The final library was loaded onto
218 an R9.4.1 flow cell and sequenced on a MinION device with live basecalling. Reads were
219 processed using the bioinformatics pipeline described in Bautista, et al, 2023 (28) to
220 produce consensus sequences. Any amplicon-specific contamination was masked in the
221 final consensus sequence.

222 **Whole genome phylogenetic analysis**

223 The 34 WGS generated in this study were aligned with an outgroup sequence, the RABV-
224 GLUE reference sequence for the Cosmopolitan Africa 4 clade (GenBank accession:
225 KF154998), using MAFFT v7.520 (29) with default settings. Phylogenetic tree
226 reconstruction was performed using FastTree v2.1.11 (30) with a gtr+gamma
227 substitution model and local support values obtained using FastTree's default
228 Shimodaira-Hasegawa test method. The tree was rooted by the outgroup, annotated,
229 and visualized in R (31) v4.3.2 with the ggtree package (32). Maps were plotted in R using
230 packages rnaturalearth and sf.

231 **Contextual phylogenetic analysis**

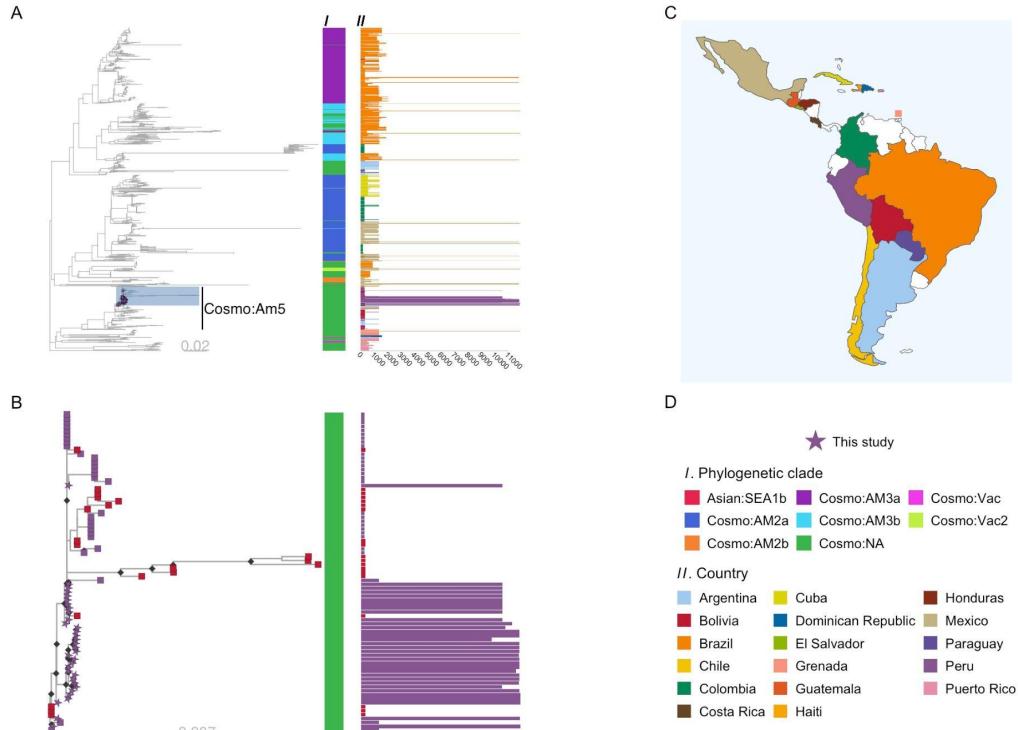
232 RABV-GLUE (6), a bioinformatics resource for RABV sequence data, was utilized to obtain
233 an alignment and associated metadata of all publicly available canine (excluding bat
234 variant clades) RABV sequences from Latin America (n=1384). Details of these sequences
235 are available in the GitHub repository. The 34 whole genome sequences (WGS)

236 generated in this study were added to this alignment using the 'add to existing
237 alignment' function in MAFFT v7.520 (29), ensuring the alignment length was preserved
238 (33). A phylogenetic tree was produced as described above, using FastTree with
239 annotation/visualization in R, rooted by the same outgroup described above.

240 **Data and scripts**

241 Sequences of RABV are available at the NCBI GenBank repository (see accession
242 numbers below and Table S1). Peru shapefiles were sourced from the Peruvian
243 National Institute of Statistics and Informatics (<https://ide.inei.gob.pe/#capas>). All
244 other data and scripts are available in the associated GitHub repository:
245 https://github.com/RabiesLabPeru/Pedregal_genomics_outbreak_2021_2022.

246 **Results**


247 We performed a phylogenetic characterization of a dog-mediated rabies outbreak in El
248 Pedregal, analyzing 34 whole genome sequences (WGS) generated in this study—11
249 from El Pedregal and 23 from surrounding areas. Additionally, we included a contextual
250 analysis with publicly available dog variant RABV sequences (>200bp) from the rest of
251 Latin America. This study represents the first whole-genome analysis of dog-mediated
252 RABV in Peru, and indeed in Latin America, with our sequences being the first dog variant
253 rabies virus whole genomes from Peru to be published as available data in the GenBank
254 repository (accession numbers PP965343-PP965374; existing records KU938752 &
255 KU938829 updated to WGS). Comprehensive details, including sequencing platforms,
256 library method, depths of coverage, and epidemiological data such as location, for all
257 new sequences are provided in Table S1.

258 **Regional context of study sequences in Latin America**

259 The current nomenclature for RABV phylogenetic classification is major clade, minor
260 clade, and then lineage, representing increasingly finer genetic resolution (see (6) for
261 detail). On a global scale, Peru RABV sequences, including those from Pedregal and
262 Arequipa city, belong to the Cosmopolitan (Cosmo) major clade. A contextual analysis,
263 including all available RABV sequences (of any length and from any genome region) from
264 Latin America and excluding bat-variant or bat-derived (RAC-SK) sequences, was used to
265 explore the relationship between RABVs from Peru and neighboring countries in detail.
266 Within the Cosmo clade, Peruvian sequences cluster within a large section of the tree
267 that lacks minor clade definition (annotated Cosmo:NA, Fig 2) but clearly stands apart
268 from other known minor clades observed in neighboring countries, delineating at least
269 one new minor clade that we have designated “Cosmopolitan America 5” (Cosmo:Am5,
270 see annotation in Fig2A). Cosmo:Am5 also includes partial genome sequences (<1354bp)
271 from Peru (35 sequences from the period 1985-2012) not from this study, and from
272 Argentina (n=36), Bolivia (n=79) and Brazil (n=5) (Fig 2). The majority (78%) of these
273 partial sequences are very short fragments (~300bp), with only 26 providing full gene
274 (nucleoprotein) level coverage. Note this excludes a portion of Cosmo:NA sequences
275 from a related part of the tree, below the annotated Cosmo:Am5, that are genetically
276 and geographically distinct (predominantly from island nations).
277 Within the Cosmo:Am5 group there are further phylogenetic delineations between
278 sequences that indicate the presence of multiple lineages, with possible geographic
279 associations. The subtree of the most recent common ancestor (MRCA) of the Peruvian

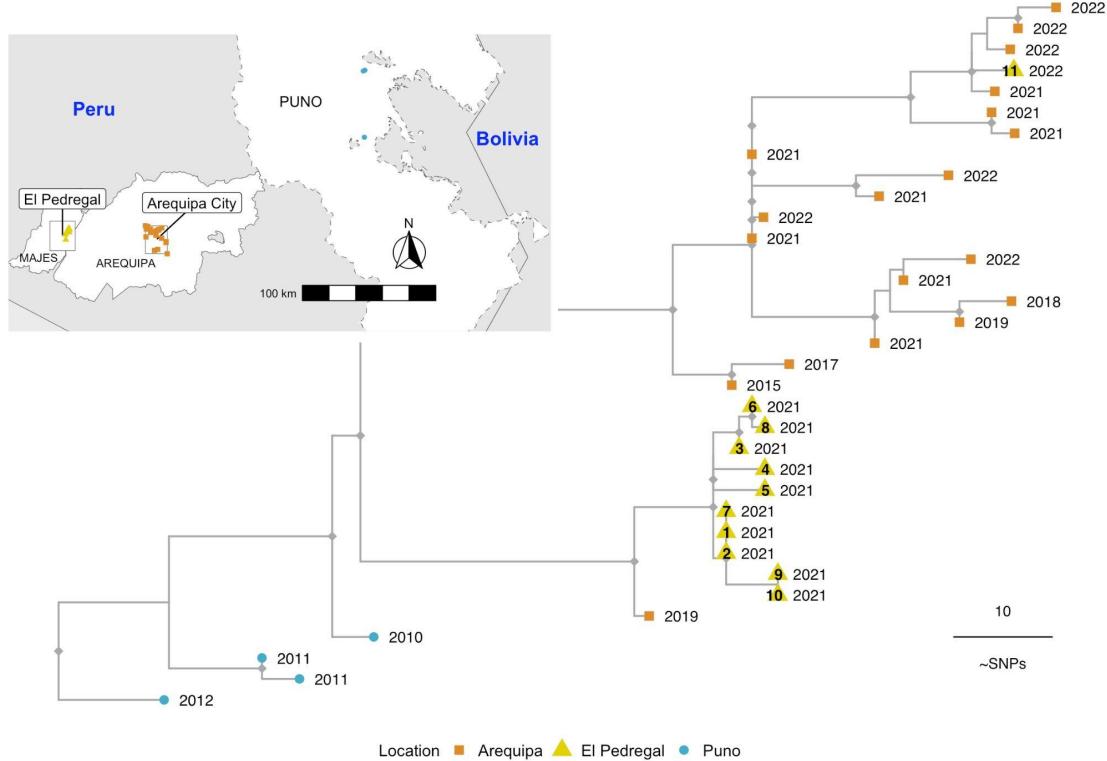
280 genomes from this study is expanded in Fig.2B and also contains descendants from
281 Bolivia.

282

283

284 **Fig 2. Phylogenetic trees of rabies virus (RABV) sequences from Latin America & the**
285 **Caribbean (LAC) and newly sequenced genomes from Peru. Scaled in substitutions per**
286 **site.**

287 (A) Phylogenetic tree of 1418 RABV sequences from LAC available in NCBI, which include
288 sequences of any length and from any genome region, as well as 34 newly sequenced
289 genomes from El Pedregal, Arequipa, and Puno in Peru. The tree is rooted by an
290 outgroup sequence (GenBank accession: KF154998), not shown. The sequences from
291 this study are highlighted and new minor clade Cosmo:Am5 is annotated. Color bar I
292 indicates the phylogenetic clade of each sequence and the adjunct bar plot II shows

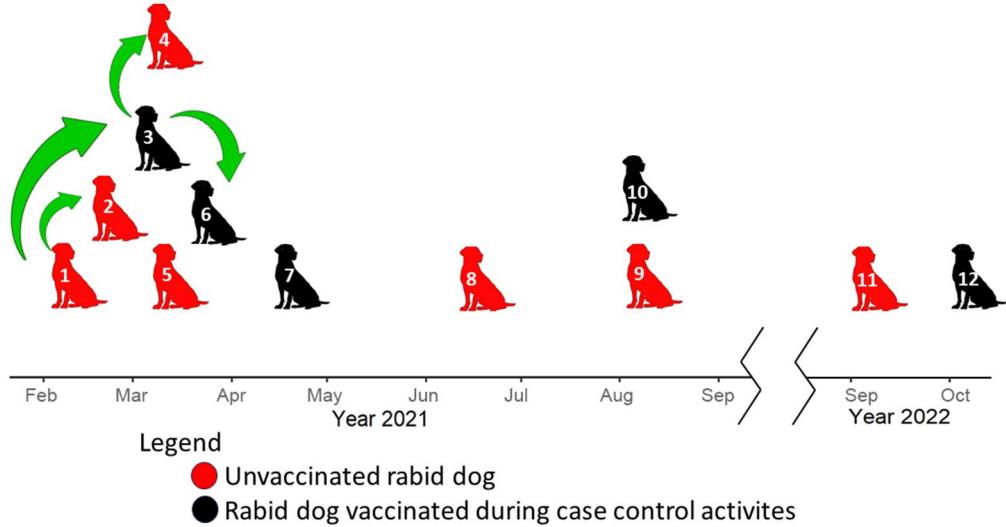

293 sequence length (base pairs), colored by country of origin; (B) Subtree of the highlighted
294 portion of tree A, showing all descendants of the most recent common ancestor of the
295 Peruvian genomes sequenced in this study and related sequences. Tips are colored
296 according to country of origin, with genomes from this study shown as stars. Color bar I
297 and bar plot II follow the same scheme as in panel A; (C) Map of LAC with the countries
298 of origin for the sequences indicated; (D) Colour schemes and annotation details.

299 **El Pedregal phylogenetic outbreak analysis**

300 The Peruvian WGS generated in this study were used to reconstruct a maximum-
301 likelihood phylogeny. There was insufficient temporal signal in the data to enable a
302 molecular clock-based analysis. The samples from Arequipa and Pedregal formed two
303 distinct phylogenetic clusters (Fig 3), each predominantly containing sequences
304 exclusively from their respective area. Ten of the eleven Pedregal sequences collected
305 in 2021 formed one cluster sharing a common ancestor with one Arequipa sequence
306 from 2019, which sits on an orphan branch ancestral to the Pedregal-only cases. The
307 remaining Pedregal sample, representing the 2022 outbreak, clustered amongst all
308 other samples from Arequipa (19 sequences spanning 2018 to 2023).

309 These results suggest that the El Pedregal 2021 outbreak resulted from a single
310 introduction and brief establishment of local RABV transmission rather than repeated
311 introductions. Given the limited data available, the source of this introduction remains
312 unclear. However, its distinction from Arequipa City cases (except for one isolated case
313 in Arequipa; Fig 3) suggests that it did not come directly from Arequipa but rather that
314 both areas share a common source of introduction, which, considering the ancestral
315 evolutionary history (Fig 3) alongside the epidemiological and demographic context, is

316 likely to be Puno region. In contrast, the El Pedregal 2022 outbreak was caused by a new
317 introduction clearly originating from Arequipa City.


319 **Fig 3. Phylogenetic tree of rabies virus (RABV) whole genome sequences from El
320 Pedregal and surrounding areas.** Tips are colored by geographic source, corresponding
321 to the inset map, and labeled with the year of each RABV case. Sequences from El
322 Pedregal (yellow triangles) are labeled with their case identifiers, reflecting the
323 epidemiological timeline of cases and corresponding to Figures 1 and 4 as well as Table
324 1. The tree is rooted with an outgroup sequence (GenBank accession: KF154998, not
325 shown) and the scale represents the number of mutations (SNPs: single nucleotide
326 polymorphisms).

327

328 **Epidemiological analysis**

329 We used the epidemiological data collected during outbreak control activities to
330 reconstruct the timeline of cases in El Pedregal (Fig 4). We inferred a likely transmission
331 chain between case number one with cases two and three (owners were relatives who
332 visited each other with their dogs and lived close to each other); and case number three
333 with cases four and six (owners were acquaintances who visited each other with their
334 dogs). In 2021, seven out of ten cases occurred within the first three months after the
335 index case. It is important to mention that the year before this outbreak the mass
336 vaccination campaign in El Pedregal was canceled due to the pandemic. Thus, all rabid
337 dogs were not vaccinated in the previous year. Interestingly, five of them were
338 vaccinated during the outbreak control activities (Fig 1) but still developed rabies.
339 Among these dogs, the time from vaccination to showing rabies signs was 14, 13, 56,
340 148, and 1 days. Additionally, the reconstructed timeline shows an epidemiological
341 silence of one year from the last rabid dog reported in 2021 until the next case in 2022
342 which was the result of a second introduction to El Pedregal based on the genetic
343 analysis.

344

345

346 **Fig 4. Timeline of dog rabies outbreaks in El Pedregal.** The figure highlights the
347 relationship between the cases according to epidemiological data and the reported
348 vaccination status of the rabid dogs.

349 The epidemiological data (Table 1), reveals that most rabid dogs were owned (11/12)
350 and had regular access to the outdoors (at least some hours a week outdoors without
351 restriction) (9/12). Three out of 6 owners were from Puno, and only one was from El
352 Pedregal; we could not obtain this information from the other owners. Dogs' ages
353 ranged from five months to five years, and three dogs were obtained or adopted from
354 the streets during the outbreak. Additionally, people who were bitten sought treatment
355 for their wounds at the health center between 4 to 7 days after the bite.

356 **Table 1. Epidemiological data collected during dog rabies control activities in El
357 Pedregal.**

Case	Month of death	Owned	Owner's origin	Sex	Age (years)	Accessibility to the street	Last year's vaccination	Obtention way	Time since acquisition (years)	# of people bitten
1	Feb, 2021	Yes	Puno	F	2.2	Always w/owner	2019	Adopted*	NA	2
2	Feb, 2021	Yes	Puno	F	0.6	Half-time	NA	Adopted*	0.2	2
3	Mar, 2021	Yes	Huambo, Arequipa	M	1.5	Half-time	2021	Adopted*	NA	0
4	Mar, 2021	Yes	NA	M	2.5	Never	2021	Adopted*	2.5	0
5	Mar, 2021	Yes	Cuzco	M	2.1	Always	NA	Adopted*	0.2	0
6	Mar, 2021	Yes	Pedregal, Arequipa	M	5	Half-time	2021	Adopted*	5	0
7	Apr, 2021	Yes	NA	M	5	Always	2021	Bought in market	5	0
8	Jun, 2021	Yes	NA	M	5	Sometimes	NA	Arequipa city	5	0
9	Aug, 2021	No	NA	F	4	Always	NA	Unknown	NA	0
10	Aug, 2021	Yes	NA	M	0.4	Half-time	2021	Bought in countryside	0.4	0
11	Sep, 2022	Yes	NA	M	5	Always w/owner	2019	Adopted*	5	1
12^	Oct, 2022	Yes	Pedregal, Arequipa	M	5	Sometimes	2022	Adopted*	4.5	0

358

359 ^Not sequenced; *People adopt dogs mainly from the streets and from

360 friends/neighbors.

361

362 Discussion

363 In this study, we investigate a dog rabies outbreak in El Pedregal, Arequipa using detailed
364 epidemiological and genomic data.

365 Our findings reveal that the canine RABV circulating in southern Peru belongs to a novel
366 minor clade within the Cosmopolitan major clade, which we have designated
367 “Cosmopolitan Am5,” in accordance with existing RABV phylogenetic nomenclature
368 (34,35). This minor clade is distinct from other canine RABV minor clades previously
369 described in LAC, including those in neighboring countries. However, our analysis
370 indicates that this clade has been present on the continent since at least 1985, with the
371 first sequence detection in a domestic dog from Lima, Peru (NCBI accession: KF831564).

372 Notably, most of the sequences from this new minor clade, and, LAC sequences in
373 general, are only partial gene or gene level coverage sequences except for the new
374 genomes produced in this study. This limitation makes comparative phylogenetic
375 analyses challenging and restricts the ability to fully utilize genomic data to analyze
376 canine RABV diversity, its circulation and spread, and to pinpoint external sources of
377 introduction. This lack of sequence data and lack of investment in WGS is likely due to
378 the significant progress in dog rabies elimination in LAC over the last 40 years (36), which
379 coincided with the rise of genome sequencing accessibility and its use as a key
380 surveillance tool (11,37). Despite these challenges, our analyses demonstrate the value
381 and potential of genomics-informed surveillance to inform dog rabies outbreak
382 response in LAC. Even with a small WGS dataset from our study area, we were able to
383 perform a contextual analysis to identify potential connections with other LAC countries
384 and a fine-scale local analysis that ruled out Arequipa (the most obvious hypothesis) as
385 the source of the initial outbreak in El Pedregal. Furthermore, this sets a foundation for
386 future genomic surveillance work to help understand and eliminate the remaining
387 pockets of endemic dog rabies in LAC.

388 Our epidemiological data from the 2021 dog RABV outbreak in El Pedregal suggest that
389 two secondary cases can be linked to the index case; one of these secondary cases also
390 produced two new cases of its own. Our WGS phylogenetic analysis supports a local
391 transmission dynamic, showing that all cases sequenced during this period (n=10)
392 clustered together, sharing a common ancestor, and were genetically distinct from the
393 dog RABV circulating in Arequipa City. This supports the hypothesis that a single
394 introduction, followed by local transmission in El Pedregal, was responsible for the 2021
395 outbreak. The Andean desert around El Pedregal does not harbor any species likely to

396 act as reservoirs of rabies in the area, making human-mediated translocation of infected
397 dogs the most probable mechanism of rabies introductions to El Pedregal.

398 While our analysis was unable to pinpoint the exact source of introduction for the 2021
399 outbreak, it was clear from the available data that it did not come directly from Arequipa
400 City, despite a large ongoing dog rabies outbreak in the city for the last eight years and
401 its proximity and continued population interchange with El Pedregal (17,38). However,
402 a second outbreak in 2022 in El Pedregal did appear to result from an introduction from
403 Arequipa City, rather than the persistence of the first outbreak. Hence, even with limited
404 sequence data El Pedregal demonstrates evidence of at least two introductions within
405 two years, underscoring that introduction and re-emergence is a persistent threat in the
406 region, despite its geographic isolation surrounded by desert. Arequipa City and the
407 Puno region are both potential sources of introduction as neighboring and endemic
408 areas that report active cases of dog rabies (12,39). Furthermore, the emergence of
409 RABV in Arequipa has previously been linked back to an introduction from Puno (40).

410 Our analysis is limited by the small number of rabies cases and sequences available from
411 this outbreak. There were also relatively few historical RABV sequences from Latin
412 America (11), and they were mainly restricted to very short sequences (e.g. partial gene
413 ~200-300bp), limiting the degree to which we could infer outbreak origins. For future
414 studies, we suggest obtaining genomes from a larger number of samples from Arequipa
415 City and the Puno region over the same period to provide more conclusive evidence of
416 the source of RABV emergence in El Pedregal and facilitate more comprehensive
417 phylodynamic analyses that could elucidate transmission drivers and diffusion
418 pathways.

419 Across diverse global regions where dog RABV has been studied, incursions of dog RABV
420 appear to be common, with genomic surveillance revealing higher rates than expected
421 (9,21). Human-mediated movement of dogs has emerged as a significant driver (41,42)
422 of these occurrences. While many introductions fail to establish due to stochastic factors
423 in rabies transmission (43), areas with increased human movement are likely to face
424 heightened risks. This is evident in El Pedregal, which has a history of migratory
425 settlement and where a portion of the population commutes daily, weekly, or seasonally
426 from nearby cities to Pedregal for work (17). Moreover, poor housing conditions in the
427 peri-urban areas of El Pedregal prevent dog owners from keeping dogs inside homes,
428 making these dogs less accessible and harder to vaccinate, and increasing the
429 vulnerability of El Pedregal to new introductions, similar to the ongoing rabies outbreak
430 in Arequipa City (15,17). In Arequipa City, such conditions were identified as the main
431 factors that allowed the introduction and persistence of the RABV, together with
432 landscape features, such as dry water channels that allowed unrestricted and fast
433 movement of dogs across large parts of the city, facilitating the rapid spread of the RABV
434 (15,44).

435 Mass dog vaccination will be crucial to preventing introductions and their onward
436 spread. The year before the 2021 outbreak in El Pedregal, mass dog vaccinations were
437 canceled due to the COVID-19 pandemic, providing a window of opportunity for the
438 virus to take hold. Although the outbreak prompted a rapid local response, including
439 dog vaccinations, five of the vaccinated dogs still contracted and died from rabies, even
440 after months of being vaccinated. For most cases, it remains unclear whether the
441 vaccine was administered too late or if it was ineffective. Assessing the efficacy of these
442 ring vaccination activities is crucial. Currently, in Arequipa, when owners of exposed

443 dogs do not permit euthanasia, these dogs are vaccinated in an attempt to prevent new
444 cases. Furthermore, the last reported rabies case in El Pedregal (October 17, 2022) did
445 not receive vaccination during the 2022 outbreak response but had been vaccinated in
446 2020, according to its owner. While annual boosters are recommended, these
447 observations raise questions about the vaccine efficacy or the administration process
448 (e.g. poorly trained vaccinators might inoculate in the wrong area/tissue).

449 Genomic information has the potential to shed light on complex epidemiological
450 scenarios. This study provides a snapshot of RABV introduction in a rapidly urbanizing
451 rural area, a common scenario in Latin American cities. Our results indicate multiple
452 introductions into El Pedregal in 2021 and 2022, most likely mediated by human
453 translocation of dogs. This study highlights the potential of genomics analysis to
454 understand rabies outbreaks, enhance surveillance systems, and inform rabies control
455 efforts.

456 **Acknowledgments**

457 We gratefully acknowledge the Gerencia Regional de Salud de Arequipa and Red de
458 Salud Arequipa Caylloma who conducted the focus control activities and shared their
459 expertise with our team. We are grateful to the National Service of Agrarian Health
460 (SENASA) of Peru for providing data on rabies incidence in livestock and for allowing
461 access to rabies positive samples for whole genome sequencing and thanks to Daniel
462 Streicker and Alice Broos for providing extracted RNA from archived samples. We thank
463 Antuannete Vela for her technical support with case reconstruction information and
464 Guillermo Porras and Paul Tevez for supporting the focus control activities.

465 **Funding Statement**

466 Research reported in this publication was supported by the National Institute of Allergy
467 and Infectious Diseases of the National Institutes of Health under award numbers
468 K01AI139284 and R01AI168291. KB is supported by a Medical Research Council New
469 Investigator Research Grant (MR/X002047/1) and a University of Glasgow Lord
470 Kelvin/Adam Smith Fellowship. The content is solely the responsibility of the authors
471 and does not necessarily represent the official views of the National Institutes of Health.

472

473 **References**

- 474 1. Fahrion AS, Mikhailov A, Giacinti J, Harries J. Human rabies transmitted by dogs:
475 current status of global data, 2015. *Weekly Epidemiological Record*. 2016;(2).
- 476 2. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating
477 the Global Burden of Endemic Canine Rabies. Carvalho MS, editor. *PLoS Negl
478 Trop Dis*. 2015 Apr 16;9(4):e0003709.
- 479 3. World Health Organization, Food and Agriculture Organization of the United
480 Nations, World Organisation for Animal Health, Global Alliance for Rabies Control.
481 United Against Rabies Collaboration. First annual progress report: Global Strategic
482 Plan to End Human Deaths from Dog-mediated Rabies by 2030. Geneva; 2019.
- 483 4. Brunner K, Lemey P, Marston DA, Fooks AR, Lugelo A, Ngeleja C, et al.
484 Landscape attributes governing local transmission of an endemic zoonosis: Rabies
485 virus in domestic dogs. *Mol Ecol*. 2018 Feb;27(3):773–88.
- 486 5. Marston DA, Horton DL, Nunez J, Ellis RJ, Orton RJ, Johnson N, et al. Genetic
487 analysis of a rabies virus host shift event reveals within-host viral dynamics in a
488 new host. *Virus Evolution [Internet]*. 2017 Jul 1 [cited 2024 Jun 18];3(2). Available
489 from: <https://academic.oup.com/ve/article/doi/10.1093/ve/vex038/4737086>
- 490 6. Campbell K, Gifford RJ, Singer J, Hill V, O'Toole A, Rambaut A, et al. Making
491 genomic surveillance deliver: A lineage classification and nomenclature system to
492 inform rabies elimination. Lauring AS, editor. *PLoS Pathog*. 2022 May
493 2;18(5):e1010023.
- 494 7. Dellicour S, Troupin C, Jahanbakhsh F, Salama A, Massoudi S, Moghaddam MK,
495 et al. Using phylogeographic approaches to analyse the dispersal history, velocity
496 and direction of viral lineages — Application to rabies virus spread in Iran.
497 *Molecular Ecology*. 2019 Sep;28(18):4335–50.
- 498 8. Gibson AD, Yale G, Corfmat J, Appupillai M, Gigante CM, Lopes M, et al.
499 Elimination of human rabies in Goa, India through an integrated One Health
500 approach. *Nat Commun*. 2022 May 19;13(1):2788.
- 501 9. Lushasi K, Brunner K, Rajeev M, Ferguson EA, Jaswant G, Baker LL, et al.
502 Integrating contact tracing and whole-genome sequencing to track the elimination
503 of dog-mediated rabies: An observational and genomic study. *eLife*. 2023 May
504 25;12:e85262.
- 505 10. Brunner K, Nadin-Davis S, Biek R. Genomic sequencing, evolution and molecular
506 epidemiology of rabies virus. *Rev Sci Tech Off Int Epizoot*. 2018 Aug 1;37(2):401–
507 8.
- 508 11. Jaswant G, Bautista CT, Ogoti B, Changalucha J, Oyugi JO, Campbell K, et al.

509 Viral sequencing to inform the global elimination of dog-mediated rabies - a
510 systematic review. *One Health Implement Res.* 2024 May 31;4(2):15–37.

511 12. Organización Panamericana de la Salud. Eliminacion de la rabia humana
512 transmitida por peros en America Latin: Análisis de la situación. Washington, D.C.:
513 Organizacion Panamericana de la Salud; 2005.

514 13. Vigilato MAN, Clavijo A, Knobl T, Silva HMT, Cosivi O, Schneider MC, et al.
515 Progress towards eliminating canine rabies: policies and perspectives from Latin
516 America and the Caribbean. *Phil Trans R Soc B.* 2013 Aug 5;368(1623):20120143.

517 14. Dirección General de Epidemiología. Alerta Epidemiológica: Alerta ante la
518 identificación de casos de rabia canina en Arequipa y riesgo de rabia urbana
519 humana. Lima, Perú: Ministerio de Salud del Perú (MINSA); 2015 Feb. (Alerta
520 Epidemiológica). Report No.: Report No.: AE-DEVE N. 003-2015.

521 15. Castillo-Neyra R, Brown J, Borrini K, Arevalo C, Levy MZ, Buttenheim A, et al.
522 Barriers to dog rabies vaccination during an urban rabies outbreak: Qualitative
523 findings from Arequipa, Peru. Recuenco S, editor. *PLoS Negl Trop Dis.* 2017 Mar
524 17;11(3):e0005460.

525 16. Raynor B, Díaz EW, Shinnick J, Zegarra E, Monroy Y, Mena C, et al. The impact of
526 the COVID-19 pandemic on rabies reemergence in Latin America: The case of
527 Arequipa, Peru. Blanton J, editor. *PLoS Negl Trop Dis.* 2021 May
528 21;15(5):e0009414.

529 17. Gonçalves R, Hacker KP, Condori C, Xie S, Borrini-Mayori K, Mollesaca Riveros L,
530 et al. Irrigation, migration and infestation: a case study of Chagas Disease Vectors
531 and bed bugs in El Pedregal, Peru. *Mem Inst Oswaldo Cruz.* 2024;119:e240002.

532 18. Erwin A, Ma Z, Popovici R, Salas O'Brien EP, Zanotti L, Silva CA, et al. Linking
533 migration to community resilience in the receiving basin of a large-scale water
534 transfer project. *Land Use Policy.* 2022 Mar;114:105900.

535 19. Municipalidad Distrital de Majes. Campaña gratuita de vacunación antirrábica
536 canina (Comunicado N° 061-2023/UIIYRP/MDM) [Internet]. 2023 [cited 2023 Jul 4].
537 Available from: <https://www.gob.pe/institucion/munimajes/noticias/788762-campana-gratuita-de-vacunacion-antirrabica-canina>

538 20. Brunker K, Jaswant G, Thumby SM, Lushasi K, Lugelo A, Czupryna AM, et al.
539 Rapid in-country sequencing of whole virus genomes to inform rabies elimination
540 programmes [version 2; peer review: 3 approved]. Wellcome Open Research.
541 2020;

542 21. Bourhy H, Nakouné E, Hall M, Nouvellet P, Lepelletier A, Talbi C, et al. Revealing
543 the Micro-scale Signature of Endemic Zoonotic Disease Transmission in an African
544 Urban Setting. Parrish C, editor. *PLoS Pathog.* 2016 Apr 8;12(4):e1005525.

545 22. Zuniga L. Transformation of the hyperarid desert soils in a Arequipa Peru during
546 four decades of irrigation agriculture. [West Lafayette, Indiana]: Purdue University
547 Graduate School; 2020.

548 23. Zapana Churata LE. Respuestas a la crisis hídrica en zonas agrícolas y urbanas:
549 Caso de estudio "Proyecto de Irrigación Majes Siguas I" Arequipa – Perú. Agua
550 Territorio. 2018 Nov 13;(12):145–56.

551 24. Instituto Nacional de Estadística e Informática. Peru: Estimaciones y proyecciones
552 de población por departamento, Provincia y Distrito 2018-2020 [Internet]. Lima,
553 Perú; 2020 Enero [cited 2023 Jul 11]. (Boletín especial). Report No.: N0. 26.
554 Available from:
555 https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1715/libro.pdf

556 25. Streicker DG, Winternitz JC, Satterfield DA, Condori-Condori RE, Broos A, Tello C,
557 et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions
558 of vampire bat rabies. *Proc Natl Acad Sci USA.* 2016 Sep 27;113(39):10926–31.

559 26. Instituto Nacional de Salud. Manual de procedimientos para el diagnóstico de la
560 rabia. Lima: Ministerio de Salud; 2002. 46 p.

561 27. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time,

562 25

564 portable genome sequencing for Ebola surveillance. *Nature*. 2016
565 Feb;530(7589):228–32.

566 28. Bautista C, Jaswant G, French H, Campbell K, Durrant R, Gifford R, et al. Whole
567 Genome Sequencing for Rapid Characterization of Rabies Virus Using Nanopore
568 Technology. 2023; Available from: <https://review.jove.com/t/65414/whole-genome-sequencing-for-rapid-characterization-rabies-virus-using?status=a67420k>

569 29. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
570 Improvements in Performance and Usability. *Molecular Biology and Evolution*.
571 2013 Apr 1;30(4):772–80.

572 30. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood
573 Trees for Large Alignments. Poon AFY, editor. *PLoS ONE*. 2010 Mar
574 10;5(3):e9490.

575 31. R Core Team. R: A language and environment for statistical computing [Internet].
576 Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: URL
577 <https://www.R-project.org/>

578 32. Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, et al. *Ggtree* : A serialized data object
579 for visualization of a phylogenetic tree and annotation data. *iMeta*. 2022
580 Dec;1(4):e56.

581 33. Katoh K, Frith MC. Adding unaligned sequences into an existing alignment using
582 MAFFT and LAST. *Bioinformatics*. 2012 Dec 1;28(23):3144–6.

583 34. Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, et al. Large-
584 Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies
585 Virus in Multiple Carnivore Hosts. *PLoS Pathog*. 2016 Dec;12(12):e1006041.

586 35. Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, et al.
587 Molecular inferences suggest multiple host shifts of rabies viruses from bats to
588 mesocarnivores in Arizona during 2001–2009. *PLoS Pathog*. 2012;8(6):e1002786.

589 36. Vigilato MAN, Belotto AJ, Tamayo Silva H, Rocha F, Molina-Flores B, Pompei JCA,
590 et al. Towards the Elimination of Canine Rabies in the Americas: Governance of a
591 Regional Program. In: Rupprecht CE, editor. *History of Rabies in the Americas:
592 From the Pre-Columbian to the Present, Volume I: Insights to Specific Cross-
593 Cutting Aspects of the Disease in the Americas* [Internet]. Cham: Springer
594 International Publishing; 2023. p. 293–305. Available from:
595 https://doi.org/10.1007/978-3-031-25052-1_13

596 37. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen
597 surveillance system. *Nature Reviews Genetics*. 2018 Jan 1;19(1):9–20.

598 38. Castillo-Neyra R, Toledo AM, Arevalo-Nieto C, MacDonald H, De La Puente-León
599 M, Naquira-Velarde C, et al. Socio-spatial heterogeneity in participation in mass
600 dog rabies vaccination campaigns, Arequipa, Peru. Blanton J, editor. *PLoS Negl
601 Trop Dis*. 2019 Aug 1;13(8):e0007600.

602 39. Centro Nacional de Epidemiología, Prevención y Control de Enfermedades. Boletín
603 Epidemiológico Semana Epidemiológica 51 (del 18 al 24 de diciembre 2022).
604 Lima, Perú: Ministerio de Salud del Perú (MINSA); 2022. (Boletín Epidemiológico).
605 Report No.: Volumen 31-SE 51-2022.

606 40. Mantari Torpoco CR, Berrocal Huallpa AM, Espinoza-Culupú AO, López-Ingunza
607 RL. Caracterización molecular de la nucleoproteína del virus de la rabia en canes
608 procedentes de Arequipa, Perú. *Rev Peru Med Exp Salud Publica*. 2019 Mar
609 21;36(1):46.

610 41. Townsend SE, Sumantra IP, Pudjiatmoko, Bagus GN, Brum E, Cleaveland S, et al.
611 Designing programs for eliminating canine rabies from islands: Bali, Indonesia as a
612 case study. *PLoS Negl Trop Dis*. 2013;7(8):e2372.

613 42. Brunker K, Marston DA, Horton DL, Cleaveland S, Fooks AR, Kazwala R, et al.
614 Elucidating the phylodynamics of endemic rabies virus in eastern Africa using
615 whole-genome sequencing. *Virus Evol*. 2015;1(1):vev011.

616 43. Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C, et al.
617 Transmission dynamics and prospects for the elimination of canine rabies. *PLoS
618*

619 Biol. 2009 Mar 10;7(3):e53.
620 44. Castillo-Neyra R, Zegarra E, Monroy Y, Bernedo R, Cornejo-Rosello I, Paz-Soldan
621 V, et al. Spatial Association of Canine Rabies Outbreak and Ecological Urban
622 Corridors, Arequipa, Peru. TropicalMed. 2017 Aug 13;2(3):38.
623

624

625

626

627

628

629

630

631

632

634

633

636

637

638

639

640 Supplementary files

641 **S1 Table.** Sequencing and epidemiology details of newly sequenced rabies virus

642 sequences used in this study.

NCBI accession	Isolate ID	Case ID	NGS platform	Library type	Virus sample set	NGS run	Mapped reads	Mean (stdev) coverage	Sequence length*	Sample Collection Date	Outbreak place	Region	Province	District
PP965373	1101786	-	Illumina	Metagenomic	1	illumina-1	173909	2987 (741)	11869	26-Mar-11	Puno	Puno	Azangaro	Caminaca
KU938752*	1101787	-	Illumina	Metagenomic	1	illumina-1	731825	6536 (1471)	11874	3-Mar-11	Puno	Puno	Azangaro	Caminaca
KU938829*	1203037	-	Illumina	Metagenomic	1	illumina-1	12966	237 (169)	11842	8-May-12	Puno	Puno	Puno	Altuncolla
PP965367	107_2018	-	Illumina	Metagenomic	2	illumina-2	1955	47 (52)	10500	25-Mar-18	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965364	107_2021	6	Nanopore	Amplicon	3	nano-1	360339	13521 (7447)	10563	20-Mar-21	El Pedregal	Arequipa	Caylloma	Majes
PP965360	121_2019	-	Illumina	Metagenomic	2	illumina-2	1236	30 (12)	11791	22-Apr-19	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965366	126_2021	-	Nanopore	Amplicon	3	nano-2	41076	1826 (726)	11816	31-Mar-21	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965361	145_2022	-	Nanopore	Amplicon	3	nano-2	69588	2757 (1405)	11827	9-Jun-22	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965351	147_2021	7	Nanopore	Amplicon	3	nano-1	372481	14426 (6599)	10565	19-Apr-21	El Pedregal	Arequipa	Caylloma	Majes
PP965365	147_2022	-	Nanopore	Amplicon	3	nano-2	35162	1666 (1144)	10752	10-Jun-22	Arequipa	Arequipa	Arequipa	Yura
PP965369	158_2022	-	Nanopore	Amplicon	3	nano-2	26045	1500 (545)	11825	21-Jun-22	Arequipa	Arequipa	Arequipa	Jacobo Hunter
PP965371	172_2022	-	Nanopore	Amplicon	3	nano-2	83048	3167 (1618)	11812	8-Jul-22	Arequipa	Arequipa	Arequipa	Cayma
PP965368	173_2022	-	Nanopore	Amplicon	3	nano-2	60646	2606 (1257)	11819	12-Jul-22	Arequipa	Arequipa	Arequipa	Jacobo Hunter
PP965362	182_2019	-	Illumina	Metagenomic	2	illumina-2	1044	25 (16)	11273	16-Jun-19	Arequipa	Arequipa	Arequipa	Alto Selva Alegre
PP965344	202_2021	8	Nanopore	Amplicon	3	nano-1	112087	7031 (1900)	10563	14-Jun-21	El Pedregal	Arequipa	Caylloma	Majes
PP965347	219_2022	-	Nanopore	Amplicon	3	nano-2	36608	2472 (878)	11822	31-Aug-22	Arequipa	Arequipa	Arequipa	Characato
PP965374	231_2021	-	Nanopore	Amplicon	3	nano-2	28192	1405 (515)	11801	15-Jul-21	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965349	236_2022	12	Nanopore	Amplicon	3	nano-1	758917	25058 (17387)	9755	7-Sep-22	El Pedregal	Arequipa	Caylloma	Majes
PP965363	250_2021	9	Nanopore	Amplicon	3	nano-1	350173	14068 (5935)	10565	10-Aug-21	El Pedregal	Arequipa	Caylloma	Majes
PP965354	251_2021	10	Nanopore	Amplicon	3	nano-1	115094	7740 (2039)	10565	10-Aug-21	El Pedregal	Arequipa	Caylloma	Majes
PP965359	30_2021	-	Nanopore	Amplicon	3	nano-2	50742	2183 (936)	11821	5-Feb-21	Arequipa	Arequipa	Arequipa	Yura
PP965357	31_2021	-	Nanopore	Amplicon	3	nano-2	71634	2593 (1262)	11820	8-Feb-21	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965349	34_2021	1	Nanopore	Amplicon	3	nano-1	148926	7481 (2403)	10565	10-Feb-21	El Pedregal	Arequipa	Caylloma	Majes
PP965355	3553_2010	-	Illumina	Metagenomic	1	illumina-2	3848	95 (52)	11904	2010	Puno	Puno	Azangaro	
PP965352	375_2017	-	Illumina	Metagenomic	2	illumina-2	3545	88 (82)	11893	23-Nov-17	Arequipa	Arequipa	Arequipa	Mariano Melgar
PP965353	40_2021	-	Nanopore	Amplicon	3	nano-2	9237	393 (169)	11826	15-Feb-21	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965343	52_2021	2	Nanopore	Amplicon	3	nano-1	47951	3833 (1027)	10565	24-Feb-21	El Pedregal	Arequipa	Caylloma	Majes
PP965358	56_2021	-	Nanopore	Amplicon	3	nano-2	70889	2336 (1445)	11580	27-Feb-21	Arequipa	Arequipa	Arequipa	Yura
PP965348	560_2015	-	Illumina	Metagenomic	2	illumina-2	2106	52 (30)	11884	7-Sep-15	Arequipa	Arequipa	Arequipa	Mariano Melgar
PP965346	61_2021	-	Nanopore	Amplicon	3	nano-2	70413	2947 (1222)	11826	1-Mar-21	Arequipa	Arequipa	Arequipa	Cerro Colorado
PP965356	68_2021	3	Nanopore	Amplicon	3	nano-1	245893	10765 (4169)	10563	3-Mar-21	El Pedregal	Arequipa	Caylloma	Majes
PP965350	71_2021	4	Nanopore	Amplicon	3	nano-1	328914	13188 (5130)	10564	6-Mar-21	El Pedregal	Arequipa	Caylloma	Majes
PP965370	73_2021	5	Nanopore	Amplicon	3	nano-1	42452	3467 (812)	10564	6-Mar-21	El Pedregal	Arequipa	Caylloma	Majes
PP965372	90_2021	-	Nanopore	Amplicon	3	nano-2	45757	1838 (825)	11826	13-Mar-21	Arequipa	Arequipa	Arequipa	Yura

643

644 *Genbank records updated

645

646

A

B

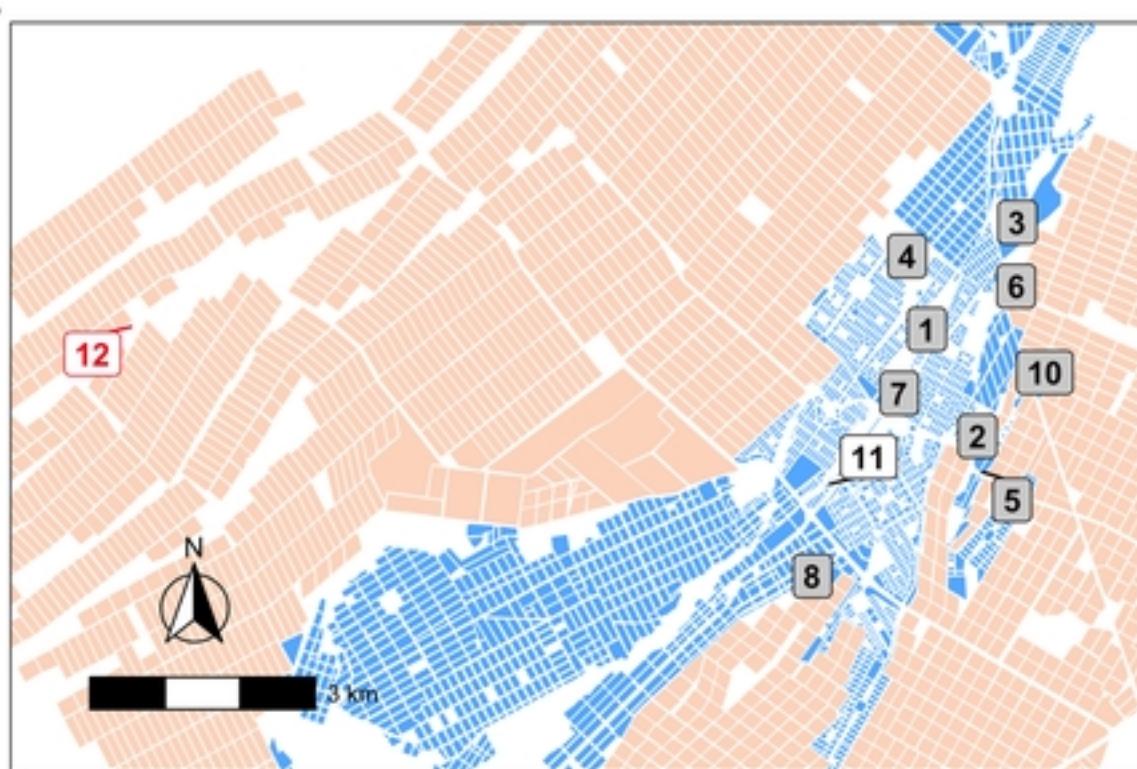
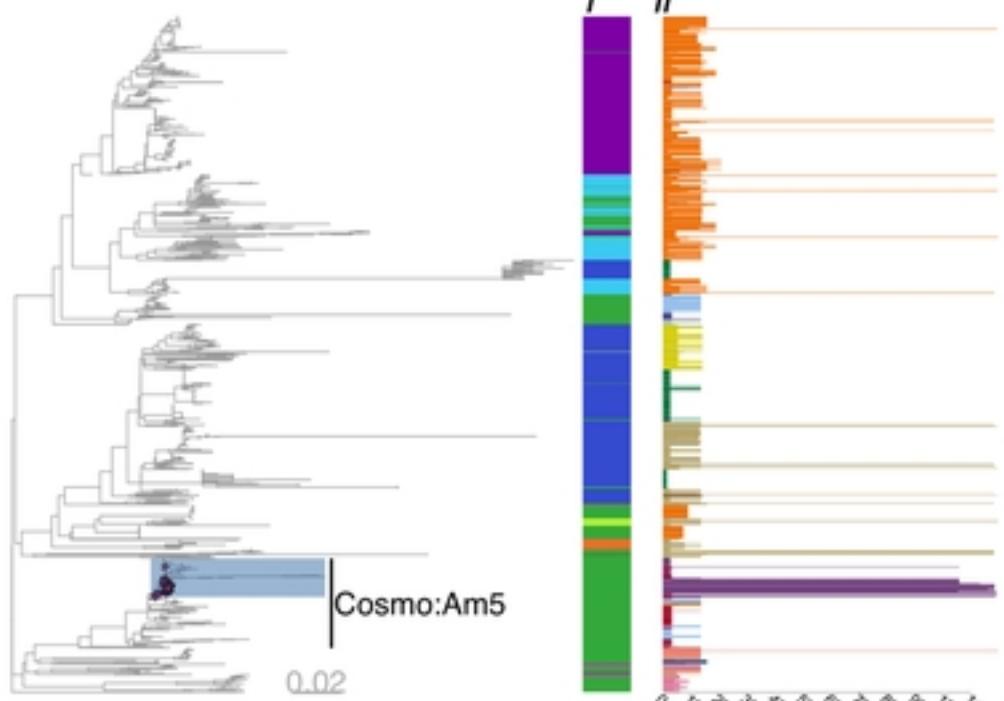
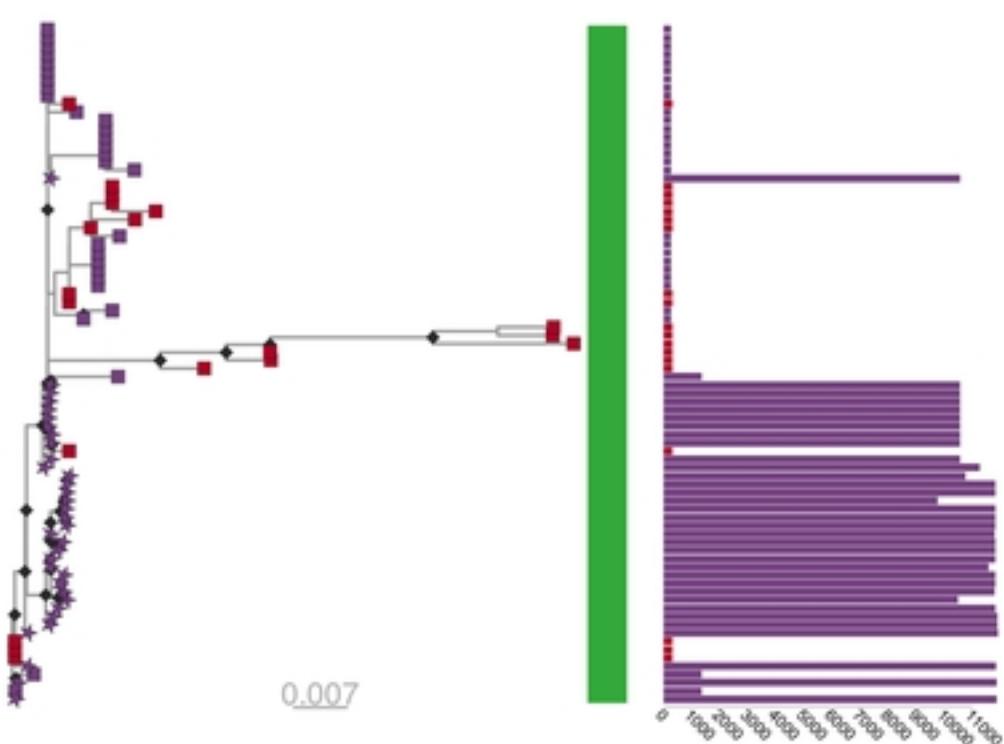



Figure1


A

C

B

D

★ This study

I. Phylogenetic clade

Asian:SEA1b	Cosmo:AM3a	Cosmo:Vac
Cosmo:AM2a	Cosmo:AM3b	Cosmo:Vac2
Cosmo:AM2b	Cosmo:NA	

II. Country

Argentina	Cuba	Honduras
Bolivia	Dominican Republic	Mexico
Brazil	El Salvador	Paraguay
Chile	Grenada	Peru
Colombia	Guatemala	Puerto Rico
Costa Rica	Haiti	

Figure2

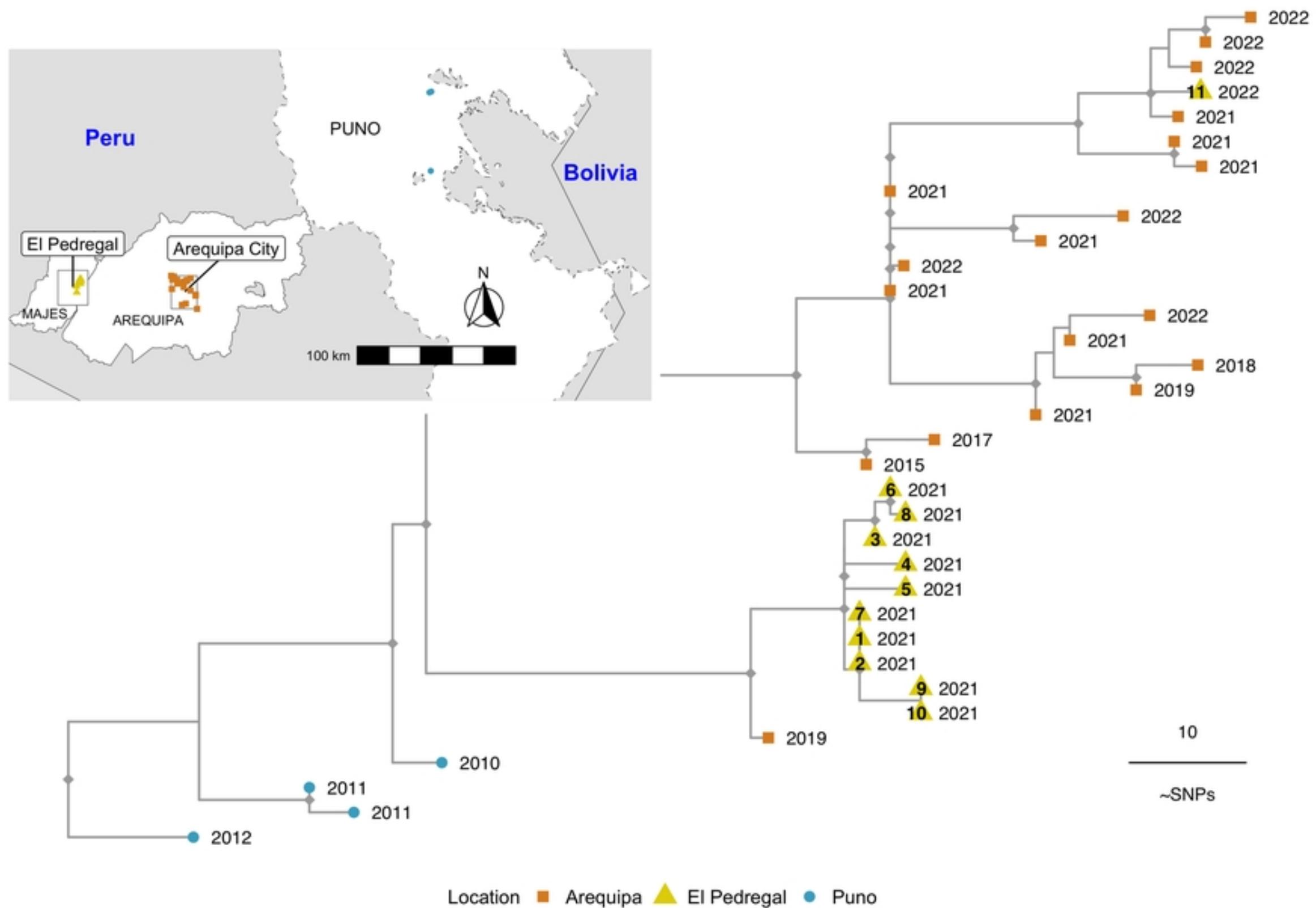


Figure3

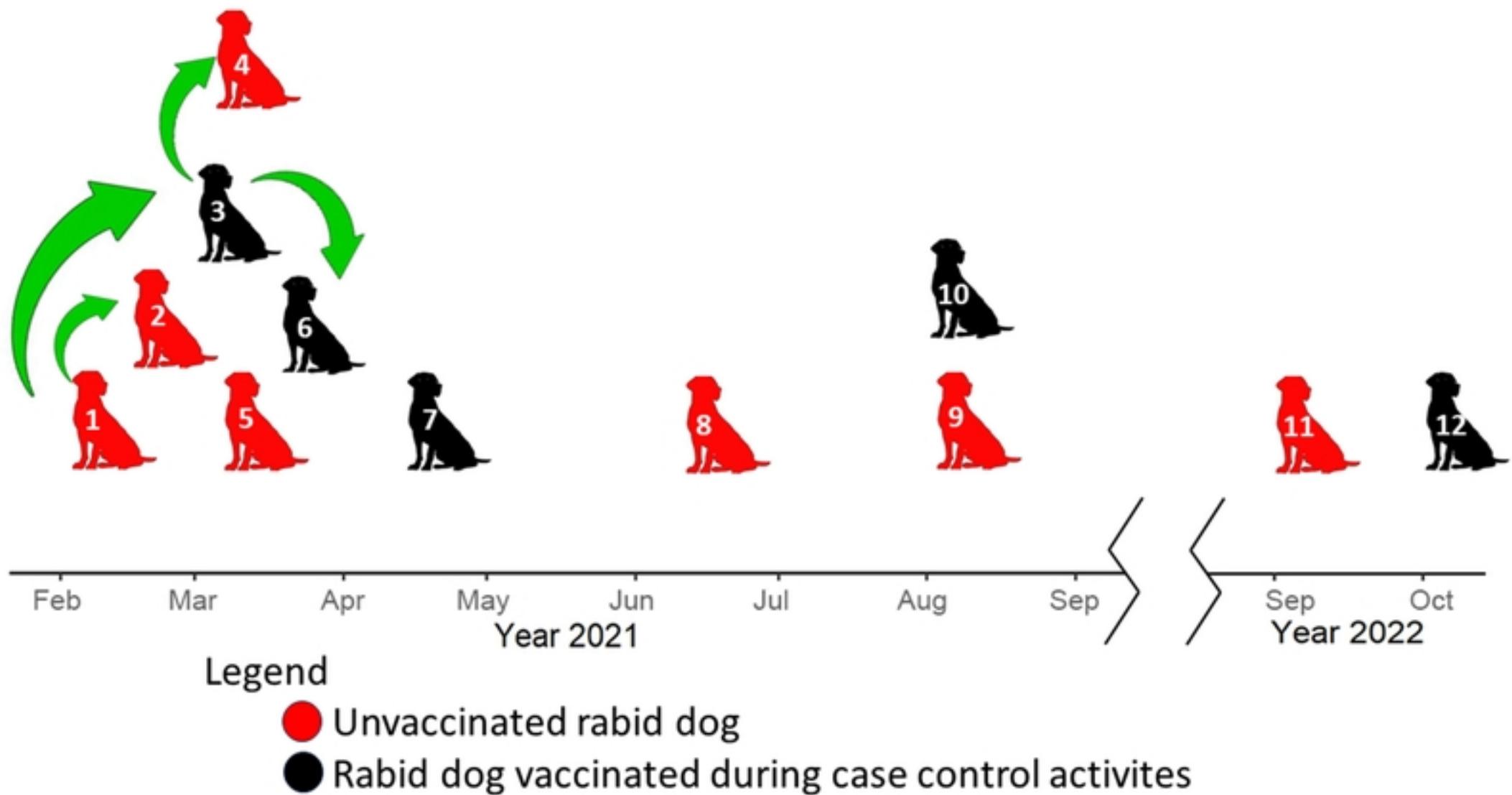


Figure4