

1 Compartmentalized sesquiterpenoid biosynthesis and
2 functionalization in the *Chlamydomonas reinhardtii* plastid

3 Sergio Gutiérrez, Sebastian Overmans, Gordon B. Wellman, Kyle J. Lauersen*

4 Bioengineering Program, Biological, Environmental Sciences and Engineering
5 Division (BESE), King Abdullah University of Science and Technology (KAUST),
6 Thuwal, Saudi Arabia.

7 *Corresponding author: kyle.lauersen@kaust.edu.sa

8 **Keywords:** Terpenoid biosynthesis; Metabolic engineering; *Chlamydomonas*
9 *reinhardtii*; Chloroplast; Cytochrome P450.

10 **Abstract**

11 Terpenoids play key roles in cellular metabolism, with some organisms having
12 evolved expanded terpenoid profiles for specialized functions such as signaling
13 and defense. Many terpenoids have applications in pharmaceuticals, fragrances,
14 and agriculture, but their harvest from natural sources can be challenging.
15 Heterologous production of specialty terpenoids in microbial hosts offers an
16 alternative, using terpene synthases and further enzymatic decoration to expand
17 chemical complexity and functionality. Here, we explored the heterologous
18 production of 10 different sesquiterpenoids (STPs, C₁₅) and their further
19 biofunctionalization mediated by cytochrome P450s (CYPs) in the green alga
20 *Chlamydomonas reinhardtii*. STP synthases were expressed from the nuclear
21 genome and localized to the algal plastid, coupled with co-expression of selected
22 CYPs. STP production in the plastid was supported by farnesyl pyrophosphate
23 synthase fusions to STP synthases, and CYPs were modified for soluble
24 localization in the plastid stroma by removing transmembrane domains. Various
25 target CYPs were screened for STP functionalization in the alga, and different
26 product ratios were generated based on trophic modes. Overall STP yields
27 ranged between 250-2500 µg L⁻¹ under screening conditions, with CYP-mediated
28 functionalization reaching up to 80% of accumulated heterologous STP products.
29 Living two-phase terpenoid extractions with different perfluorinated solvents
30 revealed variable performances based on sesquiterpenoid functionalization and
31 solvent type. This work demonstrates the feasibility of generating heterologous
32 functionalized terpenoid products *in alga* using soluble, plastid-localized CYPs
33 without reductase partners. However, overall improvements in photobioreactor
34 cultivation concepts will be required to facilitate the use of algal chassis for scaled
35 production.

36 Significance Statement

37 This study demonstrates the feasibility of producing and modifying heterologous
38 terpenoid products in the algal plastid using sesquiterpene synthases (STPS) and
39 soluble cytochrome P450s (CYPs). We show that algal cultivation conditions
40 influence the composition and ratios of functionalized terpenoid products, which
41 can be extracted through solvent-based 'milking' during growth. The reducing
42 equivalents that enable CYP activity in the plastid appear derived from
43 photosynthetic electrons without requiring the co-expression of a cytochrome
44 P450 reductase (CPR) partner, simplifying engineering strategies. As algae can
45 be cultivated with minimal inputs (trace elements, light, and CO₂) from sources
46 like wastewater, this approach offers the potential for sustainable production of
47 complex specialty terpenoid chemicals.

48 1. Introduction

49 Terpenoids are one of the most diverse classes of natural organic compounds,
50 playing crucial roles in biological processes across all domains of life ^{1, 2}. These
51 molecules function in photoprotection, photosynthesis, electron transport,
52 defense, and signaling ^{1, 3, 4}. Terpenoids have wide-ranging applications in
53 medicine, flavoring, and fragrances ^{4, 5}. However, their structural complexity
54 poses challenges for chemical synthesis ^{2, 6}. Consequently, terpenoid production
55 often relies on extraction from plant sources, resulting in low yields and impurities
56 ^{3, 6}. Harvesting terpenes from native organisms presents additional issues, as
57 natural sources cannot meet demand due to slow growth rates or cultivation
58 difficulties ^{2, 3}, and excessive harvesting can cause ecological disruption ⁴. To
59 address these issues, biotechnological approaches through metabolic
60 engineering of microbes have been explored as alternatives for terpenoid
61 production ⁶. While conventional strategies employ fermentative microorganisms,
62 photosynthetic microalgae offer unique advantages due to their native terpenoid
63 biosynthesis pathways and light-driven metabolism ⁶⁻⁸.

64 Terpenoid biosynthesis begins with the formation of five-carbon (C₅) isoprene
65 units: isopentenyl pyrophosphate (IPP, C₅) and its isomer dimethylallyl
66 pyrophosphate (DMAPP, C₅)². These units are generated through the mevalonate
67 (MVA) pathway or the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway ^{1, 2}.
68 Prenyltransferases catalyze the sequential addition of IPP and DMAPP to produce
69 linear precursors, including geranyl pyrophosphate (GPP, C₁₀), farnesyl
70 pyrophosphate (FPP, C₁₅), and geranylgeranyl pyrophosphate (GGPP, C₂₀) ².
71 Terpenoid synthases (TPS) convert these precursors into cyclic terpenoid
72 skeletons through complex reactions ⁶. This process yields various terpenoid
73 structures, such as monoterpenoids (C₁₀), sesquiterpenoids (C₁₅), diterpenoids

74 (C₂₀), triterpenoids (C₃₀), and tetraterpenoids (C₄₀) ⁹. The resulting skeletons often
75 undergo further modification through functionalization catalyzed by enzymes like
76 acetyltransferases, carboxylases, and cytochrome P450 (CYP) monooxygenases
77 ^{2, 8}. CYPs are found overexpressed in tissues where terpenoids accumulate,
78 allowing efficient substrate access and interaction with cofactors and redox
79 partners ¹⁰.

80 This study investigates heterologous complex terpenoid biosynthesis in
81 *Chlamydomonas reinhardtii* by localizing sesquiterpene production and
82 functionalization reactions in the algal plastid. We leverage advances in
83 transgene design for robust expression, native terpenoid precursor supply in the
84 photosynthetic cell, and the redox environment of its plastid to generate
85 heterologous terpenoids and chemically functionalize them. By integrating
86 terpenoid biosynthesis and CYP-mediated functionalization into the plastid, we
87 aimed to leverage its chemical reduction potential to mediate functional group
88 addition to heterologous STPs without the expression of partnering cytochrome
89 P450 reductases (CPRs). We focused on fragrant sesquiterpenoids (STP, C₁₅)
90 derived from agarwood and sandalwood, where minimal chemical modifications
91 to the terpenoid backbone can expand scent profiles. We evaluated the effects
92 of carbon sources on product formation and examined the behavior of produced
93 terpenoids when algal cultures interact with different extractants. By exploring
94 *C. reinhardtii* as a host for compartmentalized terpenoid production, this work
95 contributes to the development of light-driven methods for producing valuable
96 chemical compounds.

97 2. Results and Discussion

98 2.1. Sesquiterpenoid production from terpene synthases located
99 in the cytoplasm or chloroplast

100 *C. reinhardtii* has shown promise for photosynthetic production of non-native
101 terpenoids^{7, 11-16}. This microalga produces all terpenoid precursors for
102 photosynthesis and other cellular processes using only the MEP pathway in its
103 plastid⁶. Recent advances in transgene design have improved the expression of
104 nuclear-encoded transgenes, facilitating metabolic engineering efforts for non-
105 native terpene production and elucidating the metabolic flexibility of the
106 photosynthetic cell^{16, 17}. Although *C. reinhardtii* lacks endogenous
107 sesquiterpenoid (STP) synthases, it can be engineered to produce diverse STPs
108 by redirecting carbon flux from cytosolic farnesyl pyrophosphate (FPP)^{12, 14, 15, 17-}
109²⁰. In contrast, FPP levels in the plastid are natively low but can be increased to
110 produce heterologous STPs by overexpressing a native or non-native FPP
111 synthase localized to this subcellular compartment^{12, 15, 18, 20}.

112 We compared the yields of 10 sesquiterpene synthases (STPSs) expressed from
113 the algal nuclear genome and localized to either the cytoplasm or the plastid.
114 Plastid-targeted constructs were designed with C-terminal FPPS fusions, as
115 previous studies have shown that free FPP levels in the plastid are minimal and
116 FPPS fusion to STPSs does not enhance productivity in the cytoplasm^{14, 20}. The
117 cell line employed features a constitutive knockdown of the native squalene
118 synthase, which competes directly for cytoplasmic FPP with the introduced STPSs
119¹². This modification allowed us to compare yield variations under best-case
120 production scenarios between the cytoplasmic STPSs and plastid-localized
121 STPSs fused to FPPS. We evaluated three different construct designs (Fig. 1A-

122 C, SI Appendix, Table S1, File S1, and Fig. S1–S3): a cytoplasmic targeted STPS
123 alone and two different plastid-targeted FPPS fusions to STPSs, either the from
124 *Saccharomyces cerevisiae* (Erg20) or *Escherichia coli* (ispA). Many
125 sesquiterpenoids were successfully produced, including aristolochene,
126 valencene, selinene, santalene, bisabolol, τ -cadinol, α -cadinene, β -cadinene, γ -
127 cadinene, murolene, α -guaiene, β -guaiene, δ -guaiene, α -humulene,
128 alloaromadendrene, valerianol, and patchoulol (Fig. 1D, SI Appendix, Files S2–
129 S4) in both compartments, with yields ranging from \sim 250 to 2500 μ g L $^{-1}$ (Fig. 1E,
130 SI Appendix, Table S2, and Fig. S5). The yields of STPSs were comparable for
131 each sesquiterpene product from both cytoplasm (STPS alone) and plastid-
132 targeted (STPS-FPPS fusion) containing transformants (Fig. 1E, SI Appendix,
133 Table S2, and Fig. S5). Plastid-localized bisabolol and cadinol synthases
134 achieved higher levels of bisabolol and cadinol production than their cytoplasmic
135 counterparts. Bisabolol (construct C07) reached 84 μ g L $^{-1}$, while cadinol
136 (construct C08) produced 208 μ g L $^{-1}$ in (Fig. 1E, SI Appendix, Table S2, and Fig.
137 S5).

138 The choice of FPPS influenced production efficiency in an unpredictable manner
139 for each STPS. We found that ispA fusion constructs C02–C11 (Fig. 1E;
140 SI Appendix, Table S2, Fig. S3, and S5) yielded higher titers for aristolochene,
141 valencene, selinene, guaiene, and valerianol than their Erg20 counterparts (B02–
142 B11; Fig. 1E; SI Appendix, Table S2, Fig. S2, and S5). These results suggest
143 that selecting the appropriate FPPS can enhance the production of specific STPs;
144 however, iterative empirical testing for each target STPS-FPPS fusion is required
145 ^{21,22}. Next, we investigated whether the reducing environment of the plastid could
146 mediate the chemical functionalization of heterologous STP products by co-
147 expressing CYPs specific to these compounds.

148 2.2. Functionalization of heterologous sesquiterpenoids mediated
149 by co-expression of plastid-targeted P450s

150 In native hosts, terpenoids undergo chemical modifications that enhance their
151 complexity and biological activities ^{14, 23}. Metabolic engineering can recapitulate
152 these reactions by expressing the corresponding metabolic pathway in a foreign
153 host ^{2, 4, 9, 24, 25}. Cytochrome P450 monooxygenases (CYPs) commonly catalyze
154 reactions that add hydroxyl or other functional groups to terpenoids. CYPs receive
155 electrons from CPRs, typically on the cytoplasmic side of the endoplasmic
156 reticulum (ER) membrane ^{10, 19, 26}. CYPs and CPRs contain transmembrane (TM)
157 anchors and have been successfully expressed and shown to function in non-
158 native hosts such as yeasts and tobacco ^{10, 11, 27}. Recent studies have
159 demonstrated that when CYPs are expressed and localized in cyanobacteria or
160 plant plastids, photosynthesis-derived electrons can replace CPRs in driving CYP
161 reactions ²⁷⁻³¹.

162 As we produced reasonable amounts of STPs in the *C. reinhardtii* plastid by
163 introducing STPS-FPPS fusions (Fig. 1E, SI Appendix, Table S2, and Fig. S2–
164 S3), we aimed to use the redox potential of the plastid for their chemical
165 functionalization ^{10, 11, 19}. For each STP studied, we co-expressed and targeted
166 CYPs to the algal plastid that had predicted or were previously shown to be
167 responsible for mediating their functionalization (SI Appendix, Table S1, File S1,
168 Fig. S2, and S4). Transformants confirmed to express both STPS-FPPS fusion and
169 heterologous CYPs were cultivated with solvent overlays, and the products were
170 analyzed by GC-MS/FID. Changes in chromatogram peaks were observed for all
171 strains with co-expressed CYPs compared to those expressing STPSs alone (Fig.
172 2A, SI Appendix, Table S3, and Files S5–S6). These changes indicate the

173 presence of sesquiterpenoid derivatives, confirming the successful modification
174 of base STPs in the plastid through CYP co-expression. Functionalization efficacy
175 varied among CYPs, with some producing the expected product for a specific
176 STP, while others generated numerous side products or inefficiently synthesized
177 target compounds (Fig. 2A, 2B, SI Appendix, Tables S7–S8, and Files S5–S6).

178 As no CPR was co-expressed in these strains, the results indicate that electrons
179 present in the plastid can drive these targeted chemical modifications of
180 heterologous terpenoids ^{10, 11, 14, 19, 25, 27}. The exact electron donor is unknown, but
181 it could be ferredoxin or simply the reducing environment of the plastid itself in
182 illuminated conditions.

183 For each STPS-CYP combination, we identified one CYP which generated the
184 target functionalization as predicted or desired (Fig. 2B, 2C, SI Appendix, Tables
185 S4, and S7–S8). Functionalization efficiency, calculated as the total sum of new
186 peaks relative to the original STPS abundance, varied among each (Fig. 2C, SI
187 Appendix, Fig. S7, Tables S3, and S5). We observed the following conversions:

188 (1) Aristolochene to aristolochone by CYP02 (UniProt: W6QP06) at $45 \pm 21\%$
189 efficiency (mean \pm SD). (2) Valencene to nootkatone by CYP04 (UniProt: E1B2Z9)
190 at $58 \pm 18\%$ efficiency. (3) Santalene to bergamotol and santalol by CYP09
191 (UniProt: VR5EU4) at $55 \pm 13\%$ efficiency. (4) α -Cadinene, β -cadinene, γ -
192 cadinene, and muurolene to muurolol and α -cadinol by CYP10 (UniProt:
193 A0A0N9H930) at $51 \pm 8\%$ efficiency. (5) α -guaiene, β -guaiene, δ -guaiene, α -
194 humulene, and alloaromadendrene to α -guaiol, β -guaiol, globulol, rotundone, and
195 alloaromadendrene oxide by CYP12 (UniProt: E3W9C4) at $66 \pm 19\%$ efficiency.

196 Selecting appropriate CYPs to ensure product formation remains challenging,
197 and our screening suggests that empirical testing is necessary to determine the

198 correct combination (Fig. 3)^{10, 12, 19, 27}. Each CYP also led to the formation of off-
199 target products (Fig. 3A, SI Appendix, Tables S3–S4, and S7–S8). A heatmap
200 of the major identifiable products illustrates the chemical diversity obtained with
201 each CYP on tested STPs (Fig. 4, SI Appendix, Fig. S6, and Table S7–S8).
202 Functionalization efficiency consistently remained below 80% (Fig 2C, SI
203 Appendix, Table S4, and Fig. S7), indicating room for improvement, which may
204 be attained in the future through the formation of metabolons or artificial STPs-
205 CYP associations via enzyme engineering strategies^{10, 11, 24, 25, 28-31}.

206 **2.3. Carbon source effects on plastid sesquiterpenoid
207 biosynthesis and functionalization**

208 *Chlamydomonas* can grow on organic acetic acid, inorganic CO₂, or both as
209 carbon sources. The trophic mode of cultivation induces major rearrangements
210 in cell architecture, prompting us to investigate the effects of these changes on
211 the product profiles of our engineered strains³². Using the most effective STPs-
212 CYP pairs, we analyzed products from solvent milking of strains grown under
213 three illuminated conditions: CO₂ alone, acetate alone, or combined CO₂+acetate
214 (Fig. 5). Chromatograms revealed distinct STP and derivative profiles under these
215 cultivation modes (Fig. 5, SI Appendix, File S6). Relative abundance data
216 showed variations in sesquiterpenoid production and functionalization efficiency
217 depending on the carbon source (Fig. 5, SI Appendix, File S6).

218 Aristolochene synthase + CYP02 (Fig. 5A, SI Appendix, File S6) exhibited three
219 major peaks across all conditions. CO₂ alone and CO₂+acetate conditions yielded
220 higher relative abundances of the functionalized product than acetate alone.
221 Valencene synthase + CYP05 (Fig. 5B, SI Appendix, File S6) primarily produced
222 nootkatone, with two minor peaks under CO₂ and CO₂+acetate conditions.

223 Nootkatone abundance was highest with CO₂ alone, followed by CO₂+acetate,
224 and lowest with acetate alone.

225 Santalene synthase + CYP09 (Fig. 5C, SI Appendix, File S6) produced multiple
226 peaks, representing α/β-santol, bergamotol, and precursors. CO₂ alone yielded
227 the highest relative abundance of functionalized products, while acetate alone
228 showed the lowest. Cadinol synthase + CYP10 (Fig. 5D, SI Appendix, File S6)
229 showed multiple peaks across all conditions. Acetate and CO₂+acetate
230 conditions produced higher relative abundances of functionalized products
231 compared to CO₂ alone. The most diverse compound array was generated by
232 guaiene synthase + CYP12 (Fig. 5E, SI Appendix, File S6). CO₂ and
233 CO₂+acetate conditions displayed greater peak diversity than acetate alone, with
234 CO₂+acetate showing the highest relative abundance of functionalized products.

235 These results indicate that a mixed carbon source strategy enhances
236 sesquiterpenoid production and functionalization in *C. reinhardtii*. The
237 combination of CO₂+acetate generally resulted in higher relative abundances of
238 functionalized products in growth conditions tested, likely due to higher cell
239 densities (Fig 5, SI Appendix, File S6)^{8, 11, 25-27, 31}. The variable peak intensities and
240 product species observed here add complexity to the prediction of functionalized
241 STP product outputs from engineered algal cultivation. Whether product profiles
242 can be consistently tailored during scaled cultivations is still unknown.
243 *Chlamydomonas* is not routinely cultivated phototrophically at scale, and research
244 is ongoing to test methods of scaled extraction of engineered terpenoids through
245 solvent milking^{33, 34}. Future studies should address these limitations through
246 production scale-up and long-term cultivation experiments with variable light
247 regimes to assess production feasibility^{6, 14, 35}.

248 **2.4. Culture-solvent extraction efficiencies**

249 Extracting non-native sesquiterpenoids from *C. reinhardtii* requires the culture to
250 grow in contact with a biocompatible solvent ^{5, 21, 23, 26, 31, 33, 34, 36-38}. The choice of
251 extraction solvent has environmental and economic implications for bioprocess
252 designs ³⁹. While dodecane is a standard biocompatible solvent for lab-scale
253 terpenoid extraction and quantification, perfluorinated solvents offer advantages
254 in safety, stability, and reusability ^{12, 33, 34, 37, 38, 40, 41}. We recently reported a method
255 to use perfluorinated solvents to extract algal-produced terpenoids ¹². This
256 method allowed the subsequent transfer of terpenes from perfluorinated solvent
257 to ethanol through liquid-liquid separation, enabling recycling of the clean
258 perfluorinated solvent to algal culture and direct use of the ethanol-terpene
259 mixture for fragrance applications.

260 Here, we evaluated a larger pool of perfluorinated solvents for their capacity to
261 accumulate heterologous and chemically complex sesquiterpenoids produced
262 by *C. reinhardtii* compared to dodecane (Fig. 6, SI Appendix, Table S5).
263 Terpenoid accumulation was lower in all fluorinated solvents than in dodecane,
264 and extraction efficiencies varied across solvents and sesquiterpenoid
265 compounds (Fig. 6, SI Appendix, Table S5). This variability is likely due to
266 individual differences in solvent and sesquiterpenoid properties, as each solvent
267 is unique, and the sesquiterpenoids have structural differences ^{12, 21, 33, 34}. FC-40
268 and FC-770 demonstrated higher extraction capacities for bisabolol (32% and
269 31% compared to dodecane, respectively), while CFL7160 extracted
270 aristolochene (15%) and selinene (16%) more effectively (Fig. 6, SI Appendix,
271 Table S5) ^{12-14, 18, 33, 34}. We observed enhanced accumulation of -OH group-
272 containing STPs in all FCs tested (Fig. 6, SI Appendix, Table S5), with bisabolol,

273 cadinol, valerianol, and patchoulol accumulating at higher levels than
274 aristolochene, valencene, selinene, vetispiradiene, and santalene.

275 These results indicate that solvent choice will need to be tailored to individual
276 products if scaled processes for algal-produced terpenes are to be implemented.
277 Our screening was conducted in small volume well-plates, in which the contact
278 surface area of perfluorinated solvents is reduced by forming liquid beads under
279 the aqueous phase. In scaled cultivation, the surface area for solvent milking can
280 be improved, although chemical partitioning variability is likely to persist. Scaling
281 these extraction methods for industrial applications presents challenges for which
282 photobioreactors have not yet been optimized ^{12, 33, 36, 38}. To utilize engineered
283 algae for heterologous terpene production, novel reactor designs that enable
284 scalable culture-solvent interaction while maintaining optimal light-driven algae
285 growth will be necessary.

286 2.5. Conclusions

287 This study demonstrates the feasibility of producing a diversity of chemically
288 complex functionalized terpene products from the engineered algal cell. We show
289 that functionalization of heterologous terpenoids can be achieved using soluble
290 CYPs targeted to the plastid without the need for partner CPRs. While our
291 investigation focused on STPs, this strategy could be applied to higher-value
292 diterpene products as precursors for pharmaceutical production. The alga
293 system offers a potential platform for rapid investigation of CYP activity, given the
294 affordability of gene synthesis, quick generation of transformants within weeks,
295 and straightforward analysis of terpenoid products. However, challenges and
296 uncertainties remain in whether this can be scaled as a valuable production
297 chassis for complex terpenoid compounds.

298 3. Materials and Methods

299 3.1. Algae cultivation, plasmid design, transformation, and
300 screening

301 Experiments used a *C. reinhardtii* strain derived from UPN22, modified for
302 enhanced terpenoid biosynthesis through squalene synthase knockdown and β -
303 carotene ketolase overexpression ^{5, 6, 36, 38-41}. Cultures were maintained in TAPhi-
304 NO_3 medium under LED illumination ($150 \mu\text{mol m}^{-2} \text{ s}^{-1}$). We selected ten
305 sesquiterpene synthases (STPSs), including eight previously designed and two
306 additional synthases - selinene synthase (UniProt: O64404) and vetispiradiene
307 synthase (UniProt: A0A411G8M5)^{12, 15}. Genes were codon-optimized and
308 subjected to intron spreading to enable expression from the nuclear genome ¹².

309 We used three pOpt3-based STPS-containing construct designs: one for
310 cytoplasmic expression with paromomycin selection (APHVIII) and two for
311 chloroplast-targeted expression with hygromycin selection (APHVII)⁴²⁻⁴⁴.
312 Chloroplast-targeted STPS constructs employed the *PsaD* promoter and
313 chloroplast targeting peptide (CTP) with mKO_k fluorescent protein and either
314 *S. cerevisiae* (Erg20) or *E. coli* (ispA) farnesyl diphosphate synthase (FPPS). As
315 previously reported, these FPPSs included a C-terminal stop codon to maintain
316 activity ⁴⁵. Selected CYPs were optimized for nuclear genome expression and
317 targeted to the algal plastid. We removed the TM domain from all CYP coding
318 sequences to enable expression as soluble proteins in the plastid stroma. TM
319 domains were identified through the TMHMM - 2.0 server and comparing
320 AlphaFold models of each protein sequence to see low-structured N-terminal
321 regions ^{14, 18, 19}. CYP-*C. reinhardtii* optimized sequences were subcloned into
322 pOpt3-based expression constructs with the *PsaD* promoter and CTP, containing

323 the teal fluorescent protein (mTFP1) as a reporter and selection for zeocin
324 resistance (shBle). All constructs were synthesized *de novo* and subcloned by
325 Genscript (Piscataway, NJ, USA) (SI Appendix, Table S1, and File S1).

326 *C. reinhardtii* nuclear genome transformation used linearized plasmid DNA
327 (restriction enzymes: *Xba*I and *Kpn*I) via a glass-bead protocol, with 10 µg DNA
328 per transformation ⁴⁶. After an 8-hour recovery in liquid TAPhi-NO₃ medium ⁴⁷
329 under low light, cells were plated on a medium containing spectinomycin (200 µg
330 mL⁻¹) plus paromomycin (10 µg mL⁻¹), hygromycin B (15 µg mL⁻¹), or zeocin (15
331 µg mL⁻¹), individually or in combinations, matching the desired selection. Plates
332 were exposed to continuous light for 7 days before colony selection. A PIXL
333 colony-picking robot (Singer Instruments, UK) transferred up to 384 colonies per
334 transformation event onto TAPhi-NO₃ agar plates. After 3 days, a ROTOR robot
335 (Singer Instruments, UK) duplicated colonies onto new plates containing amido
336 black (150 µg mL⁻¹) for fluorescence screening ¹⁵. We selected transformants
337 exhibiting intense fluorescent-protein signals (SI Appendix, Fig. S1–S4) and
338 transferred them to 12-well microtiter plates containing 2 mL liquid TAPhi-NO₃
339 medium, cultured with agitation at 160 rpm for subsequent two-phase cultivation
340 and solvent analysis ^{12, 45}.

341 **3.2. Capture of algal-produced sesquiterpenoids and their
342 analysis by GC-FID/MS**

343 We quantified sesquiterpenoid production using a two-phase cultivation system
344 as described previously ^{12, 33}. Four transformants were selected based on
345 fluorescence and analyzed in triplicate. Cultures were grown in 6-well microtiter
346 plates containing 4.5 mL TAPhi-NO₃ medium and 500 µL dodecane overlay (10%
347 of total volume) for 7 days ^{12, 15}. To evaluate alternative perfluorocarbon (FCs) as

348 terpenoid extraction solvents ^{12, 15, 45}, we tested ten FCs alongside dodecane:
349 CFL7160, CXFL-68, CFL3000A, CXFL-3288, FC-770, FC-3284, FC-43, FC-72, FC-
350 40, and FC-3283 (Sigma-Aldrich, Germany; Acros Organics, Belgium; Hunan
351 Chemfish Pharmaceutical Co., Ltd, China) (**SI Appendix, Table S5**). For these
352 extractions, we used 1000 μ L of solvent (20% of total volume) with 4 mL cultures.
353 Dodecane formed an upper 'overlay' while FCs formed 'underlays'. We quantified
354 final culture volumes after cultivation to account for evaporation. After cultivation,
355 the phases were separated by centrifugation at $3500 \times g$ for 5 min. Both solvent
356 fractions (FCs and dodecane) were transferred to GC vials for analysis. Cell
357 density was measured by flow cytometry (**SI Appendix, File S7**) ³³.

358 We performed GC-MS/FID analysis as described ⁴⁵ and processed
359 chromatograms using MassHunter software (Agilent, Germany, version B.08.00).
360 Compounds were identified by comparing mass spectra to the NIST Mass
361 Spectral Library (National Institute of Standards and Technology, USA). For
362 quantification, we used calibration curves (1 – 500 μ M) of purified standards in
363 dodecane or FCs: δ -guaiene, patchoulol, α -santalene, valerenol, α -bisabolol,
364 valencene, and cedrene (Toronto Research Chemicals, Canada) (**SI Appendix,**
365 **Fig. S5**). A standard terpene mixture (MetaSci, Canada) containing 98 terpenes
366 at 1 mM in methanol ensured accurate identification and internal library calibration
367 (**Fig. 6, SI Appendix, Table S6**).

368 3.3. Data analysis

369 Each experimental condition included three biological replicates per
370 transformant, with experiments independently repeated to ensure reproducibility.
371 Controls comprised the parental non-transformed *C. reinhardtii* strain and vector-
372 only constructs with respective fluorescent reporters. We performed GC-MS/FID

373 measurements in triplicate, manually reviewing chromatograms for quality control.
374 Terpenoid extracts were analyzed using established methods ^{12, 33, 34}. We based
375 compound identification on retention index, match factor, and comparison to the
376 NIST library. We calculated mean production values and standard deviations for
377 quantitative analysis and performed descriptive statistics (**SI Appendix, Tables**
378 **S2–S5**). Statistical analyses used JMP v.16 (SAS Institute, NC) and R v.3.6.2 (R
379 Foundation for Statistical Computing, Austria). We visualized data using JMP v.16
380 and GraphPad Prism v.10.3 (GraphPad Software, USA). Diagrams and
381 illustrations were created using Affinity Designer v.2.5.3 (Serif Ltd., UK), chemical
382 structures were drawn with ChemDraw v.20.1 (PerkinElmer, MA, USA), and visual
383 elements were integrated using Affinity Publisher v.2.5.3 (Serif Ltd., WB, UK).

384 **4. Data availability**

385 All data supporting the findings of this study are included in the article and
386 **SI Appendix.** Source data and genetic files are available in DRYAD
387 (<https://doi.org/10.5061/dryad.zgmsbccmz>). For review purposes, source data
388 can be accessed via a temporary link (<https://rb.gy/lpdr3a>).

389 **5. Acknowledgments**

390 This work received support from King Abdullah University of Science and
391 Technology competitive research grant 4715 and baseline research funding to
392 KJL. SG and KJL would like to express their gratitude to Dr. Ahmed Alfahad of
393 King Abdulaziz City for Science and Technology (KACST), who found and
394 suggested several terpene synthases and cytochrome P450 enzymes used in this
395 work.

396 6. References

397 1. Brock, N. L.; Dickschat, J. S., Biosynthesis of Terpenoids. In *Natural*
398 *Products*, 2013; pp 2693-2732.

399 2. Bohlmann, J.; Keeling, C. I., Terpenoid biomaterials. *Plant J* **2008**, *54* (4),
400 656-69.

401 3. Tholl, D., Biosynthesis and biological functions of terpenoids in plants. *Adv*
402 *Biochem Eng Biotechnol* **2015**, *148*, 63-106.

403 4. Cheng, A. X.; Lou, Y. G.; Mao, Y. B.; Lu, S.; Wang, L. J.; Chen, X. Y.,
404 Plant terpenoids: Biosynthesis and ecological functions. *J Integr Plant Biol* **2007**,
405 *49* (2), 179-186.

406 5. Lecourt, M.; Antoniotti, S., Chemistry, Sustainability and Naturality of
407 Perfumery Biotech Ingredients. *ChemSusChem* **2020**, *13* (21), 5600-5610.

408 6. Lohr, M.; Schwender, J.; Polle, J. E., Isoprenoid biosynthesis in eukaryotic
409 phototrophs: a spotlight on algae. *Plant Sci* **2012**, *185-186*, 9-22.

410 7. Lauersen, K. J., Eukaryotic microalgae as hosts for light-driven
411 heterologous isoprenoid production. *Planta* **2019**, *249* (1), 155-180.

412 8. Arendt, P.; Pollier, J.; Callewaert, N.; Goossens, A., Synthetic biology for
413 production of natural and new-to-nature terpenoids in photosynthetic organisms.
414 *Plant J* **2016**, *87* (1), 16-37.

415 9. Tholl, D., Terpene synthases and the regulation, diversity and biological
416 roles of terpene metabolism. *Curr Opin Plant Biol* **2006**, *9* (3), 297-304.

417 10. Pateraki, I.; Heskes, A. M.; Hamberger, B., Cytochromes P450 for terpene
418 functionalisation and metabolic engineering. *Adv Biochem Eng Biotechnol* **2015**,
419 *148*, 107-39.

420 11. Zheng, S.; Guo, J.; Cheng, F.; Gao, Z.; Du, L.; Meng, C.; Li, S.; Zhang,
421 X., Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-
422 driven bioproduction. *Acta Pharm Sin B* **2022**, *12* (6), 2832-2844.

423 12. Gutiérrez, S.; Overmans, S.; Wellman, G. B.; Samaras, V. G.; Oviedo,
424 C.; Gede, M.; Szekely, G.; Lauersen, K. J., A synthetic biology and green
425 bioprocess approach to recreate agarwood sesquiterpenoid mixtures. *Green*
426 *Chemistry* **2024**, *26* (5), 2577-2591.

427 13. Yahya, R. Z.; Wellman, G. B.; Overmans, S.; Lauersen, K. J., Engineered
428 production of isoprene from the model green microalga *Chlamydomonas*
429 *reinhardtii*. *Metab Eng Commun* **2023**, *16*, e00221.

430 14. Wichmann, J.; Eggert, A.; Elbourne, L. D. H.; Paulsen, I. T.; Lauersen, K.
431 J.; Kruse, O., Farnesyl pyrophosphate compartmentalization in the green
432 microalga *Chlamydomonas reinhardtii* during heterologous (E)-alpha-bisabolene
433 production. *Microb Cell Fact* **2022**, *21* (1), 190.

434 15. Abdallah, M. N.; Wellman, G. B.; Overmans, S.; Lauersen, K. J.,
435 Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density
436 Phosphate-Buffered Media to Support Engineered *Chlamydomonas reinhardtii* Bio-
437 Production Concepts. *Front Microbiol* **2022**, *13*, 885840.

438 16. Perozeni, F.; Baier, T., Current Nuclear Engineering Strategies in the Green
439 Microalga *Chlamydomonas reinhardtii*. *Life (Basel)* **2023**, *13* (7).

440 17. Jacobebbinghaus, N.; Lauersen, K. J.; Kruse, O.; Baier, T., Bicistronic
441 expression of nuclear transgenes in *Chlamydomonas reinhardtii*. *The Plant
442 Journal* **2024**, *118* (5), 1400-1412.

443 18. Wichmann, J.; Baier, T.; Wentnagel, E.; Lauersen, K. J.; Kruse, O.,
444 Tailored carbon partitioning for phototrophic production of (E)-alpha-bisabolene
445 from the green microalga *Chlamydomonas reinhardtii*. *Metab Eng* **2018**, *45*, 211-
446 222.

447 19. Lauersen, K. J.; Wichmann, J.; Baier, T.; Kampranis, S. C.; Pateraki, I.;
448 Moller, B. L.; Kruse, O., Phototrophic production of heterologous diterpenoids and
449 a hydroxy-functionalized derivative from *Chlamydomonas reinhardtii*. *Metab Eng*
450 **2018**, *49*, 116-127.

451 20. Lauersen, K. J.; Baier, T.; Wichmann, J.; Wordenweber, R.; Mussgnug,
452 J. H.; Hubner, W.; Huser, T.; Kruse, O., Efficient phototrophic production of a
453 high-value sesquiterpenoid from the eukaryotic microalga *Chlamydomonas
454 reinhardtii*. *Metab Eng* **2016**, *38*, 331-343.

455 21. Schewe, H.; Mirata, M. A.; Schrader, J., Bioprocess engineering for
456 microbial synthesis and conversion of isoprenoids. *Adv Biochem Eng Biotechnol*
457 **2015**, *148*, 251-86.

458 22. Cheah, L. C.; Liu, L.; Stark, T.; Plan, M. R.; Peng, B.; Lu, Z.; Schenk,
459 G.; Sainsbury, F.; Vickers, C. E., Metabolic flux enhancement from the
460 translational fusion of terpene synthases is linked to terpene synthase
461 accumulation. *Metab Eng* **2023**, *77*, 143-151.

462 23. Inckemann, R.; Chotel, T.; Brinkmann, C. K.; Burgis, M.; Andreas, L.;
463 Baumann, J.; Sharma, P.; Klose, M.; Barrett, J.; Ries, F.; Paczia, N.; Glatter,
464 T.; Willmund, F.; Mackinder, L. C. M.; Erb, T. J., *Advancing chloroplast synthetic
465 biology through high-throughput plastome engineering of Chlamydomonas
466 reinhardtii*. 2024.

467 24. Diaz-Chavez, M. L.; Moniodis, J.; Madilao, L. L.; Jancsik, S.; Keeling, C.
468 I.; Barbour, E. L.; Ghisalberti, E. L.; Plummer, J. A.; Jones, C. G.; Bohlmann, J.,
469 Biosynthesis of Sandalwood Oil: *Santalum album* CYP76F cytochromes P450
470 produce santalols and bergamotol. *PLoS One* **2013**, *8* (9), e75053.

471 25. Villa-Ruano, N.; Pacheco-Hernández, Y.; Lozoya-Gloria, E.; Castro-
472 Juárez, C. J.; Mosso-Gonzalez, C.; Ramirez-Garcia, S. A., Cytochrome P450 from
473 Plants: Platforms for Valuable Phytopharmaceuticals. *Tropical Journal of
474 Pharmaceutical Research* **2015**, *14* (4), 731-742.

475 26. Hu, B.; Zhao, X.; Wang, E.; Zhou, J.; Li, J.; Chen, J.; Du, G., Efficient
476 heterologous expression of cytochrome P450 enzymes in microorganisms for the
477 biosynthesis of natural products. *Crit Rev Biotechnol* **2023**, *43* (2), 227-241.

478 27. Nowrouzi, B.; Rios-Solis, L., Redox metabolism for improving whole-cell
479 P450-catalysed terpenoid biosynthesis. *Crit Rev Biotechnol* **2022**, *42* (8), 1213-
480 1237.

481 28. Meng, X.; Liu, H.; Xu, W.; Zhang, W.; Wang, Z.; Liu, W., Metabolic
482 engineering *Saccharomyces cerevisiae* for de novo production of the
483 sesquiterpenoid (+)-nootkatone. *Microb Cell Fact* **2020**, *19* (1), 21.

484 29. Ouyang, X.; Cha, Y.; Li, W.; Zhu, C.; Zhu, M.; Li, S.; Zhuo, M.; Huang,
485 S.; Li, J., Stepwise engineering of *Saccharomyces cerevisiae* to produce (+)-
486 valencene and its related sesquiterpenes. *RSC Adv* **2019**, *9* (52), 30171-30181.

487 30. Gong, B.; Liang, X.; Li, Y.; Xiao, Q.; Yang, P.; Wu, Y., Expression and
488 Purification of Cytochrome P450 55B1 from *Chlamydomonas reinhardtii* and Its
489 Application in Nitric Oxide Biosensing. *Appl Biochem Biotechnol* **2018**, *184* (1),
490 102-112.

491 31. Gavira, C.; Hofer, R.; Lesot, A.; Lambert, F.; Zucca, J.; Werck-Reichhart,
492 D., Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by
493 *Saccharomyces cerevisiae*. *Metab Eng* **2013**, *18*, 25-35.

494 32. Findinier, J.; Joubert, L.-M.; Schmid, M. F.; Malkovskiy, A.; Chiu, W.;
495 Burlacot, A.; Grossman, A. R., Dramatic Changes in Mitochondrial Subcellular
496 Location and Morphology Accompany Activation of the CO₂ Concentrating
497 Mechanism. *bioRxiv* **2024**.

498 33. Overmans, S.; Lauersen, K. J., Biocompatible fluorocarbon liquid underlays
499 for in situ extraction of isoprenoids from microbial cultures. *RSC Adv* **2022**, *12* (26),
500 16632-16639.

501 34. Overmans, S.; Ignacz, G.; Beke, A. K.; Xu, J. J.; Saikaly, P. E.; Szekely,
502 G.; Lauersen, K. J., Continuous extraction and concentration of secreted
503 metabolites from engineered microbes using membrane technology. *Green
504 Chemistry* **2022**, *24* (14), 5479-5489.

505 35. Wobbe, L.; Bassi, R.; Kruse, O., Multi-level light capture control in plants
506 and green algae. *Trends in Plant Science* **2016**, *21* (1), 55-68.

507 36. de Freitas, B. B.; Overmans, S.; Medina, J. S.; Hong, P. Y.; Lauersen, K.
508 J., Biomass generation and heterologous isoprenoid milking from engineered
509 microalgae grown in anaerobic membrane bioreactor effluent. *Water Res* **2023**,
510 229, 119486.

511 37. Eppink, M. H. M.; Olivieri, G.; Reith, H.; van den Berg, C.; Barbosa, M.
512 J.; Wijffels, R. H., From Current Algae Products to Future Biorefinery Practices: A
513 Review. *Adv Biochem Eng Biotechnol* **2019**, *166*, 99-123.

514 38. Li, T.; Liu, X.; Xiang, H.; Zhu, H.; Lu, X.; Feng, B., Two-Phase
515 Fermentation Systems for Microbial Production of Plant-Derived Terpenes.
516 *Molecules* **2024**, *29* (5).

517 39. Lindstrom, A. B.; Strynar, M. J.; Libelo, E. L., Polyfluorinated compounds:
518 past, present, and future. *Environ Sci Technol* **2011**, *45* (19), 7954-61.

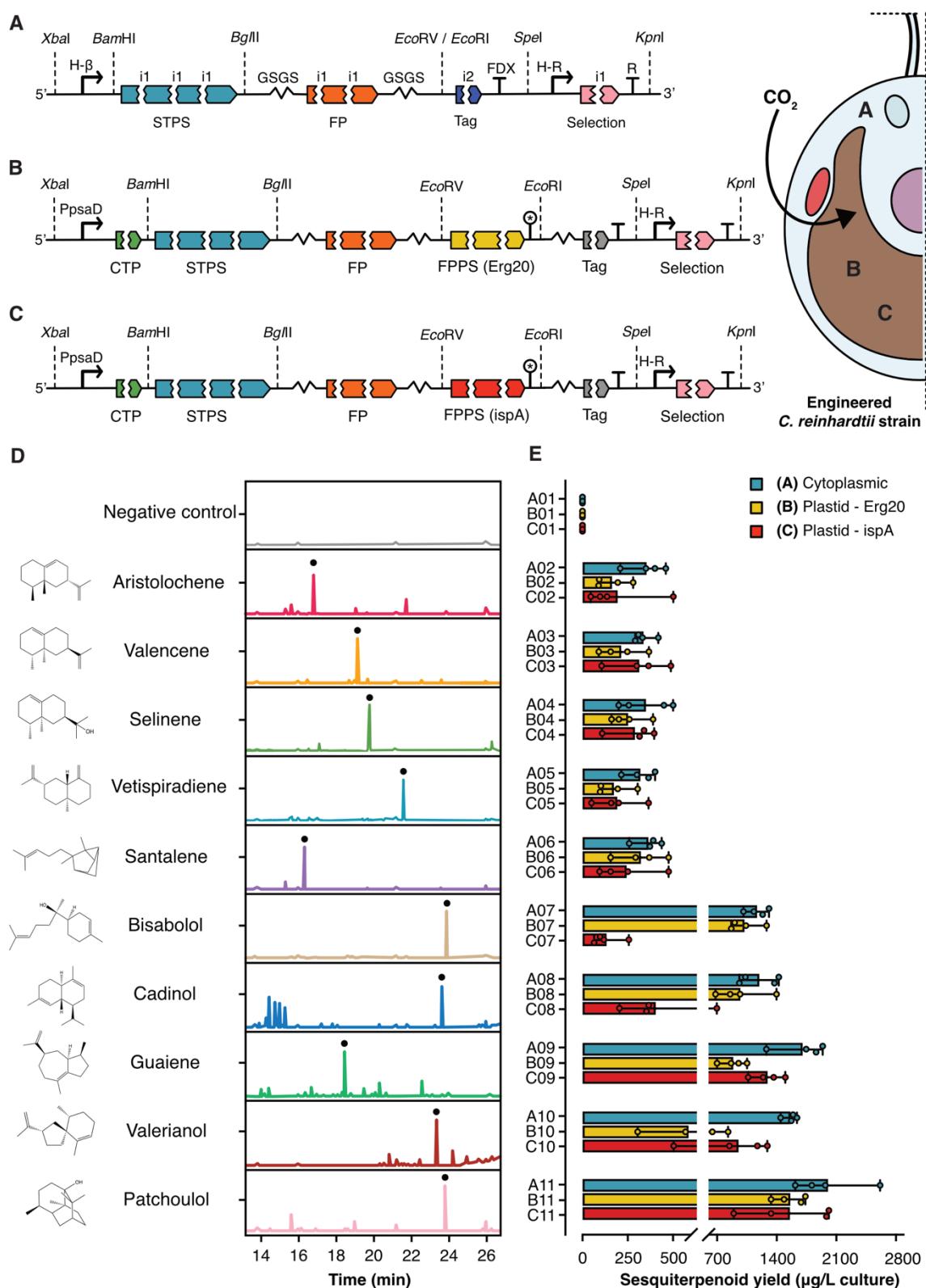
519 40. Carsanba, E.; Pintado, M.; Oliveira, C., Fermentation Strategies for
520 Production of Pharmaceutical Terpenoids in Engineered Yeast. *Pharmaceuticals
(Basel)* **2021**, *14* (4).

522 41. Burger, P.; Plainfosse, H.; Brochet, X.; Chemat, F.; Fernandez, X.,
523 Extraction of Natural Fragrance Ingredients: History Overview and Future Trends.
524 *Chem Biodivers* **2019**, *16* (10), e1900424.

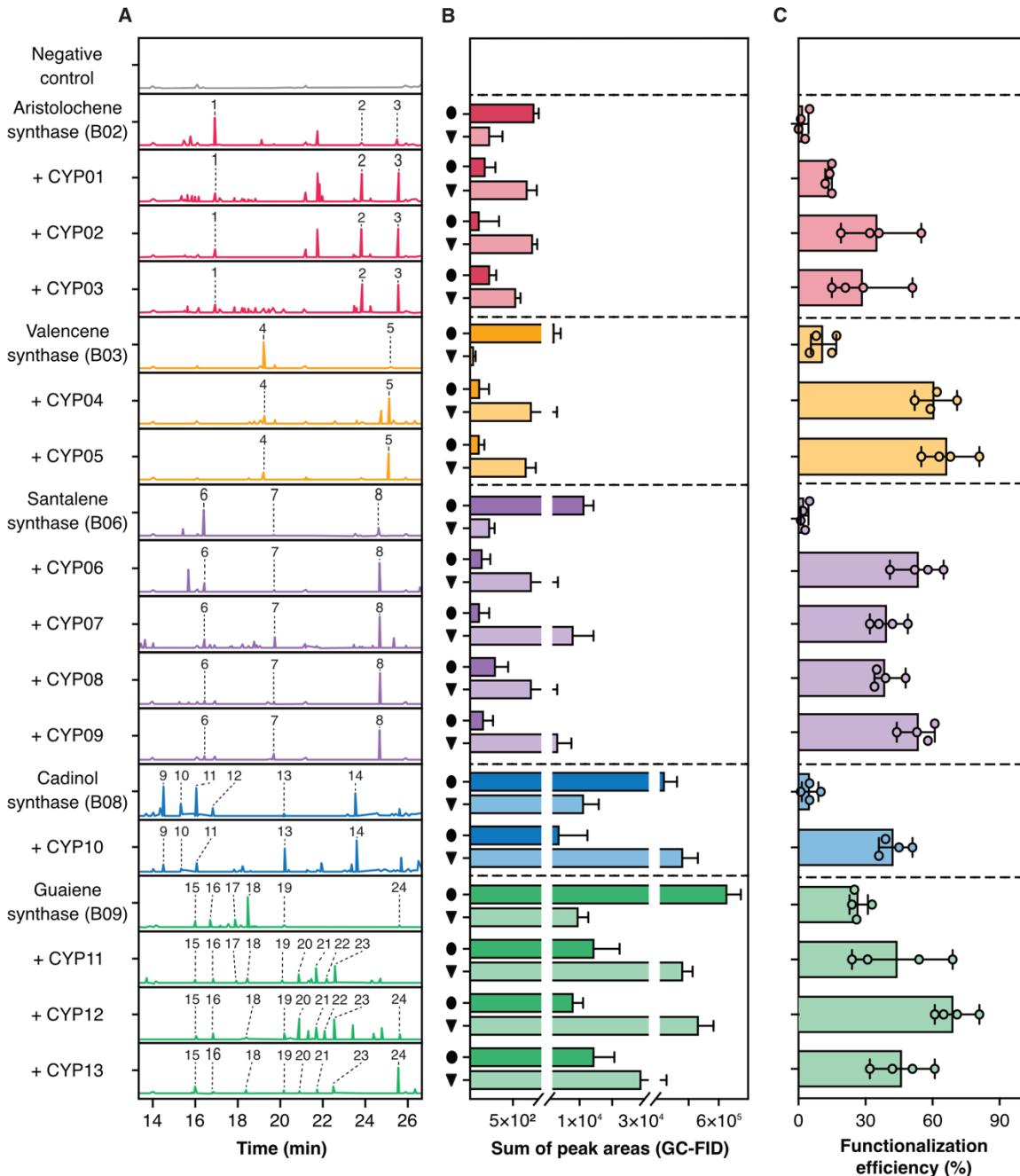
525 42. Baier, T.; Jacobebbinghaus, N.; Einhaus, A.; Lauersen, K. J.; Kruse, O.,
526 Introns mediate post-transcriptional enhancement of nuclear gene expression in
527 the green microalga *Chlamydomonas reinhardtii*. *PLoS Genet* **2020**, *16* (7),
528 e1008944.

529 43. Baier, T.; Wichmann, J.; Kruse, O.; Lauersen, K. J., Intron-containing algal
530 transgenes mediate efficient recombinant gene expression in the green microalga
531 *Chlamydomonas reinhardtii*. *Nucleic Acids Res* **2018**, *46* (13), 6909-6919.

532 44. Jaeger, D.; Baier, T.; Lauersen, K. J., Intronserter, an advanced online tool
533 for design of intron containing transgenes. *Algal Research-Biomass Biofuels and*
534 *Bioproducts* **2019**, *42*.

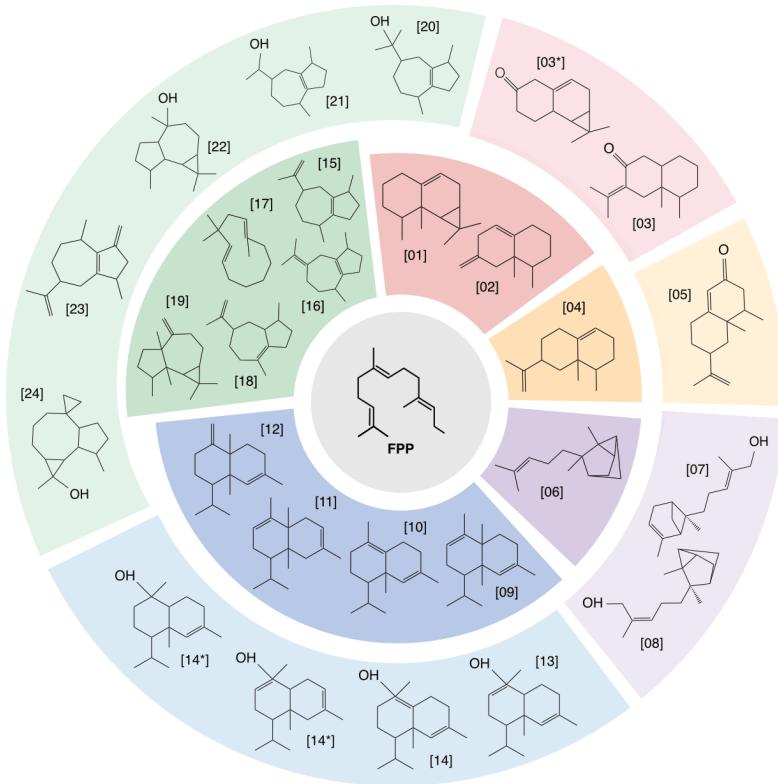

535 45. Gutierrez, S.; Wellman, G. B.; Lauersen, K. J., Teaching an old 'doc' new
536 tricks for algal biotechnology: Strategic filter use enables multi-scale fluorescent
537 protein signal detection. *Front Bioeng Biotechnol* **2022**, *10*, 979607.

538 46. Hallgren, J.; Tsirigos, K. D.; Pedersen, M. D.; Almagro Armenteros, J. J.;
539 Marcatili, P.; Nielsen, H.; Krogh, A.; Winther, O., DeepTMHMM predicts alpha
540 and beta transmembrane proteins using deep neural networks. *BioRxiv* **2022**,
541 2022.04. 08.487609.

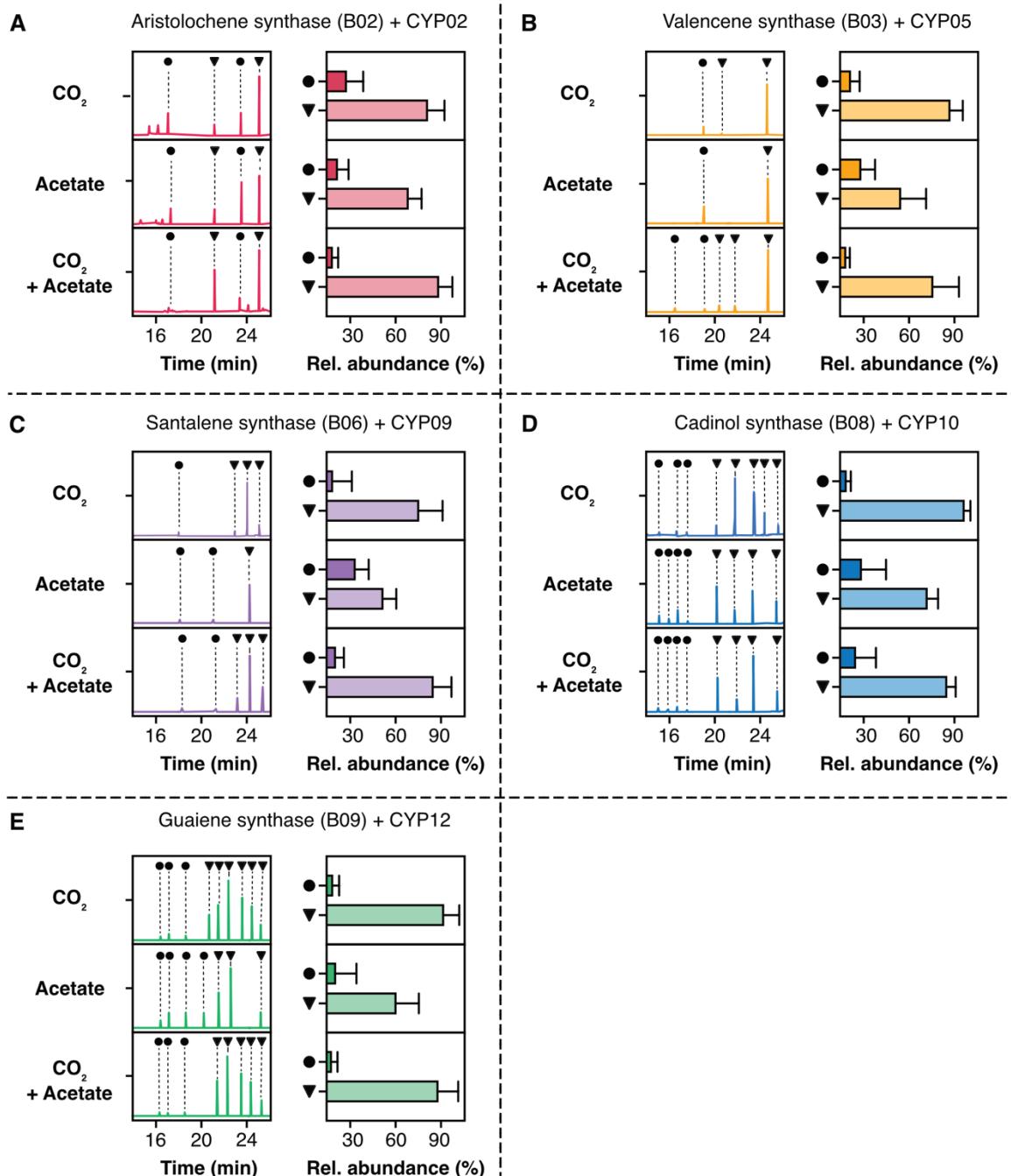

542 47. Kindle, K. L.; Schnell, R. A.; Fernandez, E.; Lefebvre, P. A., Stable nuclear
543 transformation of *Chlamydomonas* using the *Chlamydomonas* gene for nitrate
544 reductase. *J Cell Biol* **1989**, *109* (6 Pt 1), 2589-601.

545

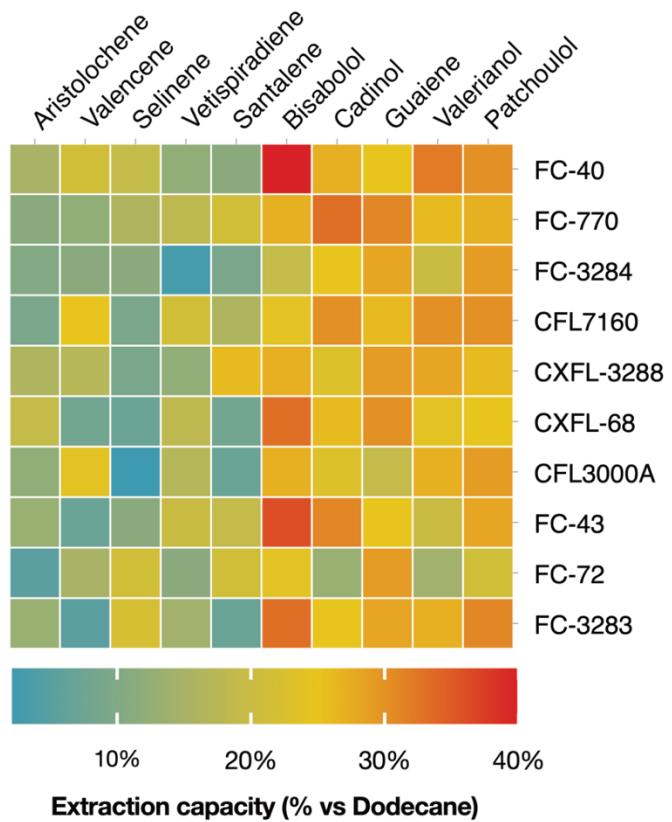
546 7. Figures and Tables


548 Fig. 1. Genetic constructs and sesquiterpenoid production in engineered
549 *C. reinhardtii* strains. (A-C) Schematic representation of genetic constructs for
550 sesquiterpenoid production in *C. reinhardtii*. Constructs include sesquiterpene
551 synthases (STPS) fused to fluorescent protein reporters (FP) and farnesyl
552 pyrophosphate synthases (FPPS) targeted to: (A) cytoplasm, (B) plastid with
553 *Erg20* FPPS (*S. cerevisiae*), and (C) plastid with *ispA* FPPS (*E. coli*). Promoters:
554 H- β (heat-shock protein/beta-tubulin), pPsaD (photosystem I subunit II promoter),
555 H (heat-shock protein 70S promoter), R (RuBisCO small subunit 2 promoter). CTP:
556 chloroplast transit peptide (PsaD). RBCS intron 1 (i1) and intron 2 (i2) are spread
557 throughout the coding sequences of optimized genes. FDX: ferredoxin 1
558 terminator. Inset: Engineered *C. reinhardtii* strain with chloroplast (brown),
559 indicating modified carotenoid synthesis; letters indicate intended localization of
560 recombinant enzyme products. (D) Chromatograms of sesquiterpenoid products
561 from each STPS expression, compared to a parental strain negative control
562 extract. Black dots indicate intended sesquiterpenoid products. (E)
563 Sesquiterpenoid yields ($\mu\text{g/L}$ culture) for each construct. Data for genetic
564 constructs and GC-MS/FID can be found in **SI Appendix Tables S1–S3 and Files**
565 **S1–S4**.

567 **Fig. 2. Plastid-targeted sesquiterpenoid biosynthesis and functionalization by**
568 **cytochrome P450 enzymes in *C. reinhardtii*.** Sesquiterpene synthases (STPS)
569 and cytochrome P450 enzymes (CYPs) were targeted to the algal chloroplast.
570 Each STPS construct included C-terminal ScErg20 FPPS, while CYPs were co-
571 expressed through plastid targeting and without transmembrane domains. **(A)**
572 GC-MS chromatograms of dodecane extracts from *C. reinhardtii* strains
573 expressing plastid localized STPS and CYP combinations, numbers indicate
574 specific compounds identified by MS. **(B)** Quantitative analysis of
575 sesquiterpenoid production based on GC-FID data. Circles: sum of peak areas
576 for sesquiterpenoids; triangles: sum of peak areas for modified sesquiterpenoids.
577 Data represent mean \pm SD (n=12, 4 transformants \times 3 biological replicates). **(C)**
578 Functionalization efficiency (%) of each CYP, calculated as the fraction of
579 functionalized sesquiterpenoids from total sesquiterpenoids. Circles represent
580 individual transformants. Compounds: [1] Aristolene, [2] Aristolochene, [3]
581 Aristolochone, [4] Valencene, [5] Nootkatone, [6] α -Santalene, [7] Bergamotol, [8]
582 Santalol, [9] α -Cadinene, [10] δ -Cadinene, [11] β -Cadinene, [12] Muurolene, [13]
583 Muurolol, [14] τ -Cadinol, [15] α -Guaiene, [16] β -Guaiene, [17] α -Humulene, [18]
584 δ -Guaiene, [19] Alloaromadendrene, [20] α -Guaiol, [21] β -Guaiol, [22] Globulol,
585 [23] Rotundone, [24] Alloaromadendrene oxide. GC-MS/FID data in **SI Appendix**
586 **File S5, Tables S3, and Fig. S6–S7.**



588 Fig. 3. Relative abundance of sesquiterpenoids produced in *C. reinhardtii* with
589 different cytochrome P450s (CYPs). Heat map showing the relative abundance
590 of sesquiterpenoid compounds based on GC-FID response. Columns represent
591 sesquiterpene synthase and CYP combinations. Color intensity indicates relative
592 abundance: red (high) to blue (low). Sesquiterpenoid compounds identified by
593 MS are listed on the right with corresponding numbers. GC-MS/FID data in **SI**
594 Appendix File S5, Table S3, and Fig. S6.



595

596 **Fig. 4. Sesquiterpenoid compounds produced from farnesyl pyrophosphate**
597 **(FPP) from the *C. reinhardtii* plastid.** Illustration of sesquiterpenoid chemical
598 structures identified in this work. Colored sections depict distinct sesquiterpenoid
599 classes produced through the action of specific sesquiterpene synthases and
600 cytochrome P450 enzymes. Compounds are labeled with unique identifiers
601 corresponding to their structures: Aristolene [01], Aristolochene [02],
602 Aristolochone [03], Valencene [04], Nootkatone [05], α -Santalene [06],
603 Bergamotol [07], Santalol [08], α -Cadinene [09], δ -Cadinene [10], β -Cadinene
604 [11], Muurolene [12], Muurolol [13], τ -Cadinol [14], α -Guaiene [15], β -Guaiene
605 [16], α -Humulene [17], δ -Guaiene [18], Alloaromadendrene [19], α -Guaiol [20],
606 β -Guaiol [21], Globulol [22], Rotundone [23], and Alloaromadendrene oxide [24].
607 GC-MS/FID data in **SI Appendix File S5, Tables S7–S8.**

609 Fig 5. Carbon source effects on plastid-targeted sesquiterpenoid biosynthesis
610 and functionalization in *C. reinhardtii*. GC-MS/FID analysis of dodecane overlay
611 samples for sesquiterpenoid species accumulated by *C. reinhardtii* expressing
612 different STPSs (B02, B03, B06, B08, B09) and corresponding cytochrome P450s
613 (CYP02, CYP05, CYP09, CYP10, CYP12) when cultivated with three carbon
614 source conditions: CO₂, acetate, or CO₂+acetate. Black dots represent
615 sesquiterpenoid compounds; black triangles indicate functionalized derivatives.
616 Relative abundance plots quantify production levels under each condition. (A)
617 Aristolochene synthase (B02) + CYP02; (B) Valencene synthase (B03) + CYP05;
618 (C) Santalene synthase (B06) + CYP09; (D) Cadinol synthase (B08) + CYP10; (E)
619 Guaiene synthase (B09) + CYP12. For each panel, chromatograms (left) show
620 product retention times; bar graphs (right) depict relative abundance. GC-MS/FID
621 data in SI Appendix File S6, Tables S6–S8.

622
623 Fig 6. Sesquiterpenoid milking efficiencies using different perfluorinated
624 solvents on engineered *C. reinhardtii*. Heat map comparing extraction
625 capacities of fluorinated solvents relative to dodecane for various sesquiterpenoid
626 compounds. Solvents tested: FC-40, FC-770, FC-3284 (perfluoro-n-
627 dibutylmethylamine), CFL7160 (perfluoro noeny trifluoroethyl ether), CXFL-3288
628 (perfluorotripropylamine), CXFL-68 (perfluorotributylamine), CFL3000A
629 (hexafluoropropene trimer), FC-43, FC-72 (perfluoro-n-dibutylmethylamine), and
630 FC-3283 (perfluorotripropylamine). Color intensity indicates extraction capacity
631 (blue: 0%, red: 40%). GC-MS/FID data in **SI Appendix Table S5**.