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Abstract

Existing genetic classification systems for porcine reproductive and respiratory syndrome
virus 2 (PRRSV-2), such as restriction fragment length polymorphisms (RFLPs) and sub-
lineages, are unreliable indicators of genetic relatedness or lack sufficient resolution for
epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale
classification system for PRRSV-2 genetic variants in the U.S. Based on >25,000 U.S. open-
reading-frame 5 (ORF5) sequences, sub-lineages were divided into genetic variants using a
clustering algorithm. Through classifying new sequences every three months and systematically
identifying new variants across eight years, we demonstrated that prospective implementation of
the variant classification system produced robust, reproducible results across time and can
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dynamically accommodate new genetic diversity arising from virus evolution. From 2015 and
2023, 118 variants were identified, with ~48 active variants per year, of which 26 were common
(detected >50 times). Mean within-variant genetic distance was 2.4% (max: 4.8%). The mean
distance to the closest related variant was 4.9%. A routinely updated webtool
(https://stemma.shinyapps.io/PRRSLoom-variants/) was developed and is publicly available for
end-users to assign newly generated sequences to a variant ID. This classification system relies
on U.S. sequences from 2015 onwards; further efforts are required to extend this system to older
or international sequences. Finally, we demonstrate how variant classification can better
discriminate between previous and new strains on a farm, determine possible sources of new
introductions into a farm/system, and track emerging variants regionally. Adoption of this
classification system will enhance PRRSV-2 epidemiological monitoring, research, and
communication, and improve industry responses to emerging genetic variants.

Importance

The development and implementation of a fine-scale classification system for PRRSV-2 genetic
variants represents a significant advancement for monitoring PRRSV-2 occurrence in the swine
industry. Based on systematically-applied criteria for variant identification using national-scale
sequence data, this system addresses the shortcomings of existing classification methods by
offering higher resolution and adaptability to capture emerging variants. This system provides a
stable and reproducible method for classifying PRRSV-2 variants, facilitated by a freely
available and regularly updated webtool for use by veterinarians and diagnostic labs. Although
currently based on U.S. PRRSV-2 ORFS5 sequences, this system can be expanded to include
sequences from other countries, paving the way for a standardized global classification system.
By enabling accurate and improved discrimination of PRRSV-2 genetic variants, this
classification system significantly enhances the ability to monitor, research, and respond to
PRRSV-2 outbreaks, ultimately supporting better management and control strategies in the swine
industry.

Introduction

In the U.S., Porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2)
circulates within 30-50% of swine breeding farms in any given year (1, 2), causing both
reproductive and respiratory impacts that result in >$600 million USD of productivity losses
annually (3). These economic losses make PRRSV the most important virus affecting swine in
the U.S. Classified as the species Betaarterivirus americense (the former species Betaaterivirus
suid 2) in the family Arteriviridae and order Nidovirales, PRRSV-2 is a rapidly evolving RNA
virus characterized by enormous genetic and antigenic variability in the U.S. and globally (4-6).
Control of this virus is hindered by routine emergence of novel, sometimes more virulent genetic
variants (7-9), which result in recurrent epidemic waves of viral spread in the industry (5, 10).

PRRSV-2 is also one of the most sequenced viruses in the world (11), largely because
sequencing is used by animal health professionals as a tool for routine monitoring of virus
circulation within and between farms. While phylogenetic analysis is still the gold standard for
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85 interpretation of sequence data, practitioners and field epidemiologists often find it faster and

86  more convenient to have a name in which they can refer to a given genetic variant as part of

87  everyday communication and outbreak investigations. Currently, the naming method used by the

88 industry to discriminate between sequences is restriction fragment length polymorphism (RFLP)-

89  typing (12), sometimes in combination with an additional label corresponding to phylogenetic

90 lineage (4, 5). However, lineages and sub-lineages are large and diverse, and hence are too

91  coarse for on-farm disease monitoring, and using RFLP-types to refer to PRRSV-2 viruses often

92  leads to misleading conclusions (e.g., viruses assigned to the same RFLP-type often are not

93  genetically similar, and vice versa)(13-15). For example, RFLP 1-4-4, which is one of the most

94  abundantly reported in the U.S. today, occurs in seven different lineages (16).

95 In previous work, VanderWaal et al. (15) evaluated and compared 140 approaches for

96 fine-scale classification of ORF5 sequences. Three methods were found to be robust and

97  reproducible, and thus could form the foundation for fine-scale classification of PRRSV-2 below

98 the sub-lineage level. However, previous work did not explore the performance of PRRSV-2

99  variant classification on a rolling basis, and it is necessary to validate the performance and
100  associated procedures for fine-scale classification that accommodates expanding genetic
101  diversity on a prospective basis.
102 Taking insights and needs of practitioners and diagnosticians alongside a rigorous
103  comparison of alternative approaches for classifying PRRSV-2 (15), the purpose of this paper is
104  to introduce a new fine-scale genetic classification system for PRRSV-2 that is tailored to meet
105 the needs of animal health professionals. Specifically, we outline criteria used for defining
106  PRRSV-2 genetic variants, establish and test procedures for prospective implementation of the
107  system, and assess the adaptability of the classification system to accommodate expanding genetic
108  diversity at national scales. We also introduce a machine-learning webtool that can be used to
109 identify the variant to which newly generated sequences belong and introduce naming conventions
110  for PRRSV-2 variants. Finally, we report the results of a survey conducted with field practitioners
111 on their motivations for submitting samples for sequencing and demonstrate how variant
112  classification can enhance the utility of sequence data for the purposes of epidemiological
113  monitoring and surveillance.

114

115  Results

116

117  Variant classification

118 Utilizing sequences from the U.S. from 2015-2023, 25,403 PRRSV-2 ORFS5 sequences

119  were analyzed on a rolling quarterly basis to simulate prospective application of the variant

120 classification system; each quarter, groups of closely related sequences were identified in

121 phylogenetic trees using a clustering algorithm and defined as a variant if the group a) had five
122  or more sequences, b) showed robust support of their shared ancestry in the ORF5 phylogeny
123  (bootstrap value >85), and c) was >2% different than the nearest named variant. Any sequences
124  belonging to clades that did not meet these requirements were labeled as “unclassified.” In total,
125  the fine-scale classification system identified 118 genetic variants, 37 of which were common
126  (detected >50 times) and 19 were rare (detected <10 times). 89.7% of sequences belonged to
127  common variants, while 1.3% of sequences belonged to rare variants. The median number of
128  sequences per variant was 25.5, with an interquartile range (IQR) of 11.25 — 68.75 sequences.
129  The average within-variant genetic distance was 2.4% (IQR: 1.6 - 3.2%, max: 4.8%). The mean
130 distance to the closest related variant was 4.9% (IQR: 2.5 — 5.6%). Median bootstrap support for
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variants was 100 (IQR: 91.7 — 100). The distribution of variants on a phylogenetic tree is shown
in Figure 1. Variant nomenclature incorporated the sub-lineage to which the variant belonged,
followed by an integer (i.e., 1A.3 and 1H.3 are the third variants identified within sub-lineage 1A
and 1H, respectively). For contemporary sequences (2015 onwards), several variants were a one-
to-one correspondence with vaccine-like sequences, namely variant 5A.1 (Ingelvac PRRS MLV
- Boehringer Ingelheim Animal Health, Duluth, GA), 8A.1 (Ingelvac PRRS ATP - Boehringer
Ingelheim Animal Health, Duluth, GA), 8C.1 (Fostera PRRS - Zoetis, Parsipanny, NH), 1D.2
(Prevacent PRRS, Elanco, Greenfield, Indiana), 7.1 (PrimePac PRRS, Merck, Rahway, NJ), and
1F.1 (PRRSGard, Pharmgate Animal Health, Wilmington, NC).

Figure 1. 36-month phylogenetic tree at last timepoint (December, 2023). Tip colors indicate
variant. Color bars indicate sub-lineage.
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5A

Across 21 quarterly datasets (each containing 36-months of data, 2015-2023), genetic
diversity within a variant did not show an increasing trend through time (Supplementary Figure
1a). Clade purity was calculated for each variant as the proportion of sequences in a phylogenetic
clade that were assigned to the same variant ID. Clade purity was consistently high across
quarters, with a median of 100% (IQR: 99% — 100%, mean: 89.9%, Supplementary Figure 1b),
indicating that variants formed compact groups and were not inter-mixed across the phylogenetic
tree. Initially, ~36% of sequences could not be reliably grouped into a well-supported variant
clades and were considered “unclassified,” but this value reduced and stabilized to ~11% in 2020
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153  and 2021, and ~7% in 2022 and 2023. Lineage 1A accounted for 94.6% of unclassified

154  sequences. Lineage 1A has a lower genetic diversity than other sub-lineages due to its more
155  recent emergence approximately 10 years ago (5), and classification for this sub-lineage

156  improved as clades became more diverged through time.

157 The median number of active variants per year was 48 (Figure 3). This compares to 65
158  and 112, respectively RFLP-types and Lineage+RFLP, which are currently employed for fine-
159  scale PRRSYV classification. The median number of “common” active variants was 26, 25, and
160 39 for variants, RFLP-types, and Lineage+RFLPs, respectively. Thus, the new classification
161  system does not result in a greater number of IDs than the industry currently is accustomed to
162  with RFLP-types.

163 There was a median of 19 new variants per year, but only 4 new common variants (those
164  that would eventually be detected >50 times), demonstrating that variant classification is able to
165  scale-up to accommodate newly emerging PRRSV diversity (Figure 2). In contrast, there were
166  no new common RFLP-types across the study period. Most newly-identified variants were

167  created from sequences that were previously “unclassified”, and not from splits of existing

168  variants. In total, 0.9% of sequences were re-named (i.e., a result of splitting a variant) at some
169  point during the 21 quarters assessed here.

170
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172 Figure 2. Number of variants per year. Yearly number of active (blue) and new (red) variants for
173  each classification method, with those that reach at least 50 sequences considered “common.”
174  Solid lines show the number per year. Dashed lines show the median number across years.

175

176 Using a subset of data, we also constructed time-scaled phylogenetic trees to

177  contextualize variant emergence and divergence on a timeframe that is interpretable for

178  epidemiological investigations of within- and between-farm transmission. We found that

179  sequences belonging to the same variant typically descended from a common ancestor that

180  existed ~2.3 years prior (median: 2.3 years, IQR: 1.5 — 3.5 years), which can be interpreted as
181  that all sequences belonging to a single variant were part of the same chains of transmission

182  originating ~2 to 3 years prior. This gives a timeframe for which to search for epidemiological
183  connections amongst cases. Divergence time from the closest relatives was 3.9 years (median:
184 2.9 years; IQR: 3.1 — 4.6 years). Clade purity in time-scaled trees was high, with a median of 1.0
185  and interquartile range from 90 — 100%.

186

187  Tools for assigning variant IDs to new sequences
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188 Across the 21 quarters, the quarterly-updated assignment algorithm had accuracies

189  ranging between 97.1 - 99.9%, groupwise accuracies between 95.1-99.8%, mean precision

190 (positive predictive value) between 96.6-99.9%, and mean recall between 95.1-99.8%. The

191  percentage of sequences that were undetermined (i.e., probability of assignment was <0.25)

192  ranged from 0.2% - 8.1%, with a median of 4.4%. The most up-to-date model is accessible via a
193  RShiny webtool (https://stemma.shinyapps.io/PRRSLoom-variants/) and the trained model is
194  available on Github in both R and Python

195  (https:/github.com/kvanderwaal/prrsv2_classification). Whether using the webtool or the

196  R/Python code, the user uploads ORF5 sequence/s in fasta format, which are then realigned to
197  the PRRSV-2 prototype sequence VR2332 (Genbank accession EF536003). Sequences are not
198  saved or retained by the webtool in any way. The tool then estimates the probability that the
199  sequence belongs to each defined variant. For each sequence, outputs include the assignment
200 probability for the variant ID with the highest (top) and second highest probability. A final

201  assignment is also given, with sequences that could not be assigned to any variant with >0.25
202  probability listed as “undetermined.” It is also possible that the variant with the highest

203  probability is not substantially greater than the second highest, which may indicate potential
204  misclassification. If the highest probability is more than double the second highest probability,
205 then the assigned variant ID can be interpreted with greater confidence. While this paper reports
206  results up to December 2023, the PRRSLoom-variant shiny application and the pre-trained

207  model has been updated to reflect recent variant classifications, and this will be maintained on a
208  quarterly basis.

209
210  Survey on use of PRRSV-2 sequence data by animal health professionals
211 In a survey administered by the American Association of Swine Veterinarians, swine

212  practitioners (n = 92) were asked to rank the primary motivations for which they submitted samples
213  for sequencing. The motivations that were consistently highly ranked included 1) Anticipate and
214 track the spread of novel and emerging variants, 2) Discriminate between previous and new wild-
215 type strains on the same farm, and 3) Determine possible source of introduction (Figure 3).

216

217  Figure 3. Results of survey where animal health professionals were asked to rank their top four
218  reasons for submitting samples for sequencing from a list of 10 options. Bars represent the

219  number of respondents that selected each answer, with color shading representing rank (with 1
220  being high).

221
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1) Anticipate and track the spread of novel and emerging variants: To better visualize
how the new classification system tracks the spread of emerging variants, we selected variants
that had <25 sequences at the time of naming and >200 sequences by the end of the study period.
Five variants met these criteria (Figure 4). We also considered the 1H.18 variant, due to interest
in this variant at the time of writing (17). There was a median of 10.5 different RFLP-types per
variant. Of the common RFLP-types (n>50), none were exclusive to any of the emerging
variants. Indeed, these common RFLPs were all found in >3 of the six emerging variants, and
across a median of 33 variants overall. These insights show the benefits of using variant
classification as opposed to RFLP-typing for identifying and tracking emerging strains of the
virus.

Figure 4. Cumulative number of sequences per emerging variant over time (top). Phylogenetic
trees (bottom) from September of each year, with emerging variants colored and all other
sequences shown in gray.
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240 To 2) Discriminate between previous and new wild-type strains on the same farm, and 3)

241 Determine possible source of introduction, we partnered with production system veterinarians
242  and applied the new variant classifications to sequences collected from their farms. System 1
243  shared 28 PRRSV-2 ORFS5 sequences from 12 farms, with a particular interest in 13 sequences
244  from Farm 5, which was a sow farm (Figure 5). This farm experienced four PRRSV circulation
245  events: variant 1B.8 in 2015-2016, 1C.3 in 2016-2018, 1A.13 in 2019, and 1C.5 in 2020-2024.
246  Of note, RFLP-types or lineages were not able to discriminate between new introductions on
247  Farm 5. Either a new introduction did not receive a unique label (as in 2020, where sub-lineages
248  failed to discern a new 1C virus, despite having <91% nucleotide identity with the previous 1C
249  virus on the farm), or multiple sequences that were part of these same circulation event received
250  different labels (three different RFLP-types amongst the five 1C.3 sequences, despite having
251 >98% nucleotide identity). This limitation of RFLP-types is more thoroughly quantified in

252  VanderWaal et al. (15), wherein 43% of on-farm circulation event attributable to a single variant
253  had multiple associated RFLP-types.

254

255  Figure 5: Phylogenetic tree of ORF5 sequences for System 1 reconstructed by Bayesian
256 inference (mrBayes v3.2 (18)), rooted on the only sequence not belonging to lineage 1 (sub-
257  lineage 8A), with tip color indicating a) RFLP-type, and b) variant. c) ORF5 nucleotide identity,
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261 System 2, which is a large production system operating in five states, shared 1,095 ORF5

262  sequences from 2014 to 2022. In the phylogenetic tree in Figure 6, the majority of the sequences
263  belonged to sub-lineages 1C, 1H, and 1E. Lineages and sub-lineage do not provide sufficient
264  resolution to distinguish new and already circulating wild-type viruses on farms, and also fail to
265 provide a distinguishing label for one clade that contains recombinant viruses. The vast majority
266  of sequences belong to two RFLP-types (1-8-4 and 1-4-4), which do not cluster together

267  genetically. Furthermore, the RFLP 1-4-4 sequences are not related to the recently emerged

268  outbreak variant bearing the same RFLP-type (the so-called novel L1C-1-4-4 variant, which is
269  referred to as 1C.5 in the new variant system (7)). In contrast, the variant classifications are

270  aligned with clades that are visually well-differentiated and also provide a unique variant ID for
271  the recombinant clade. Thus, the improved labeling of closely related sequences in the variant
272  system enhances a practitioner’s ability to track spread between farms, detect the introduction of
273  new variants into a farm or flow, and narrow the possible sources of introduction.

274

275  Figure 6. Maximum-likelihood tree of PRRSV-2 ORF5 sequences for System 2, colored by a)
276  lineage, b) variant, and c) RFLP-type. The red bar indicates a clade that includes numerous

277  recombinant sequences.
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Discussion

While the shortcomings of existing PRRSV-2 ORF5-based classification systems have
been apparent as early as 2011 (19), recent advances in computational power and the creation of
national-scale sequence databases have created the opportunity to finally address these issues.
Here, we outline a fine-scale classification system (below sub-lineage level) for PRRSV-2 in the
U.S. that is expandable to new genetic diversity that emerges as consequence of virus evolution.
We lay out procedures for quarterly updating of the classification system and for assignment of
newly generated sequences via a centrally-maintained machine learning model, which facilitates
a unified naming scheme across the U.S. The level of granularity represented by genetic variants
was tailored to meet the needs of animal health professionals, who primarily reported using
sequence data for epidemiological monitoring. In this paper and in VanderWaal et al. 2024 (15),
we demonstrate that as compared to RFLP-typing, variant classifications more reliably group
viruses based on relatedness in the ORF5 gene, and provide better discrimination between
unrelated viruses. This facilitates on-farm monitoring, detection of new introductions to a farm or
production system, and tracking of regional between-farm spread.

Our fine-scale classification system is an extension of the lineage and sub-lineage
classification first proposed in 2010 (20) and refined in the past five years (4, 5, 10). Lineages
represent the broadest classification, with genetic distances typically <11% within a lineage
based on ORF5. Sub-lineages typically have genetic distances <8.5% within the sub-lineage, and
are made up of numerous genetic variants. Sequences belonging the same variant typically have
an average genetic distance of 2 to 3% but can sometimes be as much as almost 5% different.
Our intent is not to replace lineages, as we do believe that these larger classifications are useful
for explorations of phenotype as well as tracking the macro-evolutionary dynamics of PRRSV-2.
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304  Therefore, we incorporate lineage into the IDs utilized in the variant classification system to

305 provide a general zip-code of the variant within the larger genetic diversity of PRRSV-2.

306 A major advantage of a unified variant classification system within the U.S. is to

307 facilitate communication amongst animal health professionals, diagnostic laboratories, and

308  researchers. In the past, tracking of emerging variants was typically accomplished either by using
309 RFLP-types or by calculating the genetic distance to “anchor” sequences established for a

310  particular strain. RFLP-typing, with its associated limitations and inaccuracies, can generate

311  confusion in the field about which farms are part of an outbreak, both missing farms that should
312  beincluded (i.e., a closely related virus with a different RFLP-type) as well as sparking false-
313  alarms (i.e., a distantly related virus with the same RFLP-type), as happened in the early days of
314  the emergence of the 1C.5 variant (7). Calculating the genetic distance between sequences is a
315  viable alternative for determining relatedness, but requires someone to set anchor sequences for a
316  particular outbreak (which is usually only done for variants of heightened concern), and

317  importantly, requires a several step process of sharing sequences (which are often considered
318  confidential), aligning them and calculating distances in bioinformatic software. These steps are
319  not required if the variant ID of the respective sequences is already assigned by diagnostic labs
320  as part of their reports to clients.

321 However, an important caveat is that variant classification is not based on immunological
322  or virulence variability (i.e., the phenotype) of the virus, and most variants will not have been
323  fully characterized from a phenotypic standpoint even when a whole genome is available. Thus,
324  variant classification is not designed to provide information on the clinical manifestations of the
325  virus in a herd, which is influenced by a myriad of factors external to the virus itself (e.g., co-
326 infections, host genetics, immunological history, etc.)(21-24). Variant classification also does not
327  directly translate to immunological cross-protection. Although viruses labeled as the same

328  variant are more genetically homologous on ORFS, cross-protection is not simply a function of
329  genetic distance between viruses (25, 26). Furthermore, whole genome data is required for

330 phenotypic investigations. That being said, variant classification may be too fine-scale to expect
331  major phenotypic differences amongst closely related variants. However, if we made variants
332  less granular, we would lose their utility for epidemiological investigations, such as determining
333  possible sources of introduction and tracking regional spread.

334 Variant classification also facilitates the generation, organization and findability of

335 additional information or research related to a particular variant, such as regional incidence

336 trends, whether the group includes recombinant viruses, production impacts, etc. This, combined
337  with the ease of cross-communication across diagnostic labs, researchers, and the field, could lay
338 the foundation for additional research on PRRSV epidemiology, virology, and immunology.

339 Limitations to the proposed variant classification include the coverage of our sequence
340  dataset. This system was based on U.S. PRRSV-2 sequences from 2015-present. Given that our
341  dataset covers >55% of U.S. swine production, we believe that our data is reasonably

342  representative of PRRSV-2 diversity circulating in the major pork producing regions in the

343  country since 2015. Thus, we urge potential users of the webtool to be cognizant of the year of
344  sequence collection and origin (country) of any sequences they may upload. While earlier

345  sequences can be input into the webtool, they are likely to be predicted as “unclassified” given
346  that diversity present in previous decades was not represented in our dataset. Similarly, it is not
347  meant to encompass genetic diversity from other countries. Our analysis of time-scaled trees
348  suggests that sequences belonging to the same variant typically evolved from a common ancestor
349  thatexisted 1.5 to 3.5 years prior. This short timescale and the rapid evolutionary rate of the
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350  virus (5) supports the idea that variants circulating in the U.S. are likely distinct from variants in
351  other countries, except perhaps in cases where there is very frequent transboundary movement
352  (such as Canada). The system could be expanded to PRRSV-2 in other countries by

353 incorporating their data into our quarterly updates to identify and name new variants. In the
354  absence of sharing of larger databases, five representative sequences from a particular clade
355  (either in the U.S. or elsewhere) that is currently unclassified and for which a variant ID is

356  desired can be submitted to our system. Alternatively to using our platform, we suggest that
357  other countries could adopt our criteria for defining a variant so that this term can be used more
358  consistently across continents.

359 While having an improved naming scheme for PRRSV-2 genetic variants will not solve
360 PRRS in the U.S,, a classification system for field-based epidemiological monitoring is needed
361 and has been requested by practitioners for many years. In this paper, we outlined the definition
362  of genetic variants, the procedures for systemic identification of variants in a nationwide

363  sequence dataset, and a validated workflow for routinely updating variant classification on a
364  quarterly basis. The latter will ensure that the nomenclature system can dynamically adapt to
365  evolving PRRSV-2 diversity across time and space. Variant classification will facilitate

366 communication about outbreaks, tracking of emerging and endemic variants across time and
367  space, as well as provide a framework to more rigorously analyze the genetic basis of variability
368 in phenotype or production impacts. Finally, this work was conducted with iterative feedback
369 from a working group of veterinarians, researchers, and diagnosticians. This close engagement
370  with stakeholders and end-users has been crucial for the operationalization and adoption of the
371  variant classification, ensuring that it is tailored to the needs of animal health professionals

372  utilizing sequence data for decisions on disease management in the field.

373

374  Methods

375

376  Data source and pre-processing

377 Sequence data were obtained from the Morrison Swine Health Monitoring Project

378 (MSHMP), which is a voluntary initiative operated by University of Minnesota that monitors
379  PRRS occurrence in the U.S. MSHMP was initiated in 2011, and currently collects sequence
380  data for farms belonging to 37 production systems, accounting for >55% of the U.S. pig

381  population (2). Participating production systems share PRRSV ORF5 sequences that are

382  generated as part of routine monitoring and outbreak investigations in breeding, gilt developing
383  units, growing and finishing herds (27). Sequences are generally obtained either directly from
384  each MSHMP participant or from the main veterinary diagnostic laboratory where participants
385  submit their diagnostic samples. Meta-data for each sequence include farm name, date and farm
386  type of origin (e.g., breeding or growing herd).

387 16,260 sequences were available from October 1, 2015 to June 30, 2021. These

388  sequences were used to establish the rolling procedures for updating the classification system
389  across time. An additional 9,143 sequences were available from July 1, 2021 to December 31,
390 2023. Based on VanderWaal et al., sequence datasets that lack duplicated (100% nucleotide

391  identity) sequences produced the most consistent variant classifications (15). Therefore,

392  sequences with 100% identity were de-duplicated before phylogenetic tree building. Duplicated
393  sequences were retained for calculations of the frequency and mean genetic distances of variants.
394  Sequences with >4 ambiguous nucleotides (0.5% of ORF5) or with gaps greater than 24

395  positions were removed from the dataset (4). To assess how the system would function if utilized
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396  prospectively, we initiated the classification system in 2018 with 36 months of data (2015-18),
397  then added new data every three months up until December 2023. Thus, each quarter of data

398 included the previous 36 months of sequence data, with a median of 8,620 sequences per set.
399

400  Tree building

401 For each 36-month dataset, sequences were aligned to a consensus reference sequence
402  based on all previous data with --6merpair, --keeplength, and --addfragments options of the

403  MAFFT algorithm (28, 29). All tree-building unless otherwise specified utilized the maximum
404  likelihood method performed using IQ-TREE2 with 1,000 ultrafast bootstraps (30). As described
405 in VanderWaal et al. (15), strict majority-rule consensus trees were constructed (clades with

406  bootstrap support <50 were collapsed), with the general time reversible substitution model with
407  empirical base frequencies and gamma plus invariant site heterogeneity (GTR+F+I+G4). The
408  ggtree package in R was used for all tree visualizations, with trees re-rooted on Lineage 5, which
409  contains the PRRSV-2 prototype virus (VR2332, GenBank accession number EF536003)(20,

410  31).

411

412  Variant classification: Initialization

413 Initial timestep: Utilizing the first 36-month tree (9783 sequences October 1, 2015 —

414  September 30, 2018), a tree-based clustering approach was applied to the phylogeny using the
415  average-clade method in TreeCluster package available in Python (32); clusters of genetically
416  related sequences in the trees were referred to as “variants.” Briefly, this method identifies

417  monophyletic clades where the average pairwise patristic distance between sequences within the
418  clade is <7%. This threshold was selected based on a rigorous comparison of thresholds

419  performed by VanderWaal et al. (15). In that analysis, the observed average pairwise distance
420  between sequences belonging to the same variant was 2.3% (15).

421 Additional steps were applied based on preliminary results showing that some variants
422  defined on the first 36-month tree did not consistently group together in subsequent trees. First,
423  post-processing of TreeCluster outputs was performed to merge clusters with low-support

424  (Supplementary text). Second, additional criteria for defining a variant were that the group must
425  have a) five of more sequences, b) robust support of their shared ancestry in the ORF5

426  phylogeny (bootstrap value >85 in the tree), and c) that the genetic distance to the nearest named
427  variant must be >2%. Any sequences belonging to clades that did not meet these requirements
428  were labeled as “unclassified.” Nomenclature for variants was the sub-lineage to which the

429  variant belonged, followed by an integer (i.e., 1A.3 and 1H.3 are the third variants identified
430  within sub-lineage 1A and 1H, respectively). To align with the five sub-groups within sub-

431  lineage 1C delineated by (4), we identified the variants that corresponded to those groups and
432  utilize the same IDs and continue numbering onward from 1C.6.

433
434  Variant classification: Updating
435 With each new quarter, new sequences from the most recent 3 months (median: 663

436  sequences) are assigned to variants using the assignment algorithm trained at the end of the
437  previous quarter (see next section). A new 36-month tree is constructed, and variant IDs annotated
438  to the tree. The tree is systematically examined for new variants using TreeCluster as well as for
439  splits in existing variants (see Supplementary text for details). Splits were systematically
440  considered for variants where the 95" percentile of pairwise genetic distances was >5% (based on
441  sequences from the previous 12 months to better capture recent genetic divergence). A new variant
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442  was only created if a clade met the following conditions: 1) consisted of five or more sequences,
443  2) had robust support of their shared ancestry in the ORF5 phylogeny (bootstrap value >85 in the
444  tree), and 3) that the genetic distance to the nearest named variant was >2%. If the creation of the
445  new variant was due to a split in an existing variant, a new variant was only created if the minimum
446  and median genetic distance between the new and original variant was >3 and >5%, respectively.
447  These high thresholds were set to minimize the number of sequences being re-named as a result of
448  variant splitting, as per the request of diagnostic laboratories. New variants receive names in the
449  same manner as described above (i.e., if 1A.3 if split, one daughter group retains the name 1A.3,
450 the other receives the next integer in the series, for example, 1A.8).

451
452  Algorithm for assignment of new sequences
453 For prospective application of any classification system, it is desirable to be able to

454 assign new sequences to variants without performing computationally heavy analysis. We thus
455  trained a random forest machine learning algorithm to assign new sequences to the appropriate
456  variant ID (15, 33). Up to 120 sequences per variant (approximately 10 per quarter) were

457  randomly selected from the initial time step to build a training dataset, which was then appended
458  quarterly with new sequence data. Using the training dataset for each quarter, a random forest
459  algorithm was fitted using the caret package in R using ten-fold cross-validation and auto-tuning
460  of the mtry hyper-parameter (34). In parallel, we also trained a random forest in Python for

461  Python end-users (Supplementary text). Model performance on the training set was assessed

462  using ten-fold cross-validation (i.e., performance evaluated on 10% of observations that were left
463  out of 10 iterative random forest runs). We report the overall accuracy (percent of sequences

464  correctly classified by the algorithm) for the training dataset. We also calculated the mean

465  groupwise precision (a.k.a. positive predictive value), recall (a.k.a. sensitivity), and accuracy
466  (i.e., percent of sequences correctly classified per variant was first calculated, and then a mean of
467  these groupwise accuracies was reported).

468 Outputs from the trained algorithms include the probabilities of the first, second, and

469  third most likely variant ID for a given sequence, with the highest probability ID being assigned
470  to the sequence for downstream analyses of predictive performance. In some cases, the highest
471  probability ID was quite low, indicating that the model had poor confidence in the assignment.
472  Therefore, sequences with assignment probabilities of <0.25 were considered “undetermined,”
473  and not considered in calculations of model accuracy. The proportion undetermined was tracked
474  and reported. More stringent thresholds do not markedly improve model accuracy, but resulted in
475  ahigher percentage of undetermined sequences (15). The training dataset and algorithm are

476  updated each quarter to include sequences (up to 120) from new variants as well as additional
477  recent sequences from existing variants (up to 60). Older sequences and variants are not removed
478  from the assignment algorithm, in order for the model to retain the ability to predict on older

479  sequences from 2015-present. Only sequences with assignment probabilities of >0.4 were

480 included in the training dataset.

481 An RShiny web-tool was developed and is updated quarterly

482  (https://stemma.shinyapps.io/PRRSLoom-variants/ ) so that end-users can assign new sequences
483  to variants. The updated algorithms are also available as R and Python scripts so that they can be
484  used in command line or ported to external applications maintained by diagnostic laboratories or
485  other groups (https:/github.com/kvanderwaal/prrsv2 classification ). This ensures that all

486  potential end-users will obtain the same variant classifications, regardless of the platform.

487
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488  Genetic characterization and phylogenetic properties of variants

489 At the final timepoint, genetic characterization of variants produced by each approach
490  included a) the number of variants identified, b) the number of “common” variants (n >50

491  sequences belonging to the variant), ¢) median size (sequences per variant) and interquartile
492  range, d) percent of sequences belonging to common variants, e) percent of sequences belonging
493  to rare variants (n <10 sequences), f) median bootstrap value and interquartile range of the

494  ancestral node, and g) mean genetic distance (raw p-distance) within a variant. Finally, we

495  calculated the h) genetic distance to the most closely related cluster for each variant.

496 Across all timepoints, we also evaluated the mean genetic distance through time to better
497  understand how the mean within-variant distance may expand as a result of ongoing evolution,
498 as well as clade purity over time to assess the tendency of sequences belonging to the same

499  variant to remain grouped together in the tree over time. Clade purity was calculated as the

500 proportion of sequences in a phylogenetic clade that were assigned to the same variant ID (See
501  supplementary text for details).

502 We also calculated the number of new variants detected per year and number of active
503 variants per year. The number of new variants per year was based on the calendar year of the
504 earliest sequence belonging to a variant, and active variants per year included all variants whose
505 earliest and latest detected sequences occurred before, during, or after the considered calendar
506  year. For comparison purposes, these values were compared to RFLP-types and Lineage+RFLP
507  types.

508 Using a subset of data, we also constructed time-scaled phylogenetic trees

509 (Supplementary methods) to contextualize the timeline of variant emergence and divergence on a
510 timeframe that is interpretable for epidemiological investigations of within- and between-farm
511  transmission. Briefly, for each variant in the time-scaled trees, we extracted the time to the most
512  recent common ancestor, which was used to calculate clade age, divergence time from the most
513  closely related variant, and clade purity.

514
515  Working group and practitioner survey
516 A working group was established in March, 2021 that included representatives from major

517  swine-oriented diagnostic labs (University of Minnesota, lowa State University, South Dakota
518  State University, Ohio Animal Disease Diagnostic Lab), swine disease monitoring programs that
519  serve as national repositories of PRRSV sequences (Morrison Swine Health Monitoring Program
520 (27), Swine Disease Reporting System (35, 36), and USDA-Agricultural Research Service’s Swine
521  Pathogen Database (37)), and swine veterinarians and production systems. This group was
522  involved iteratively in the development of the new classification system (Supplementary Figure
523  S2).

524 The working group developed and administered a survey to swine health professionals in
525  the U.S. to better understand how they use genetic sequence data. In this survey, practitioners were
526  asked to rank the top four reasons for which they submitted samples for sequencing (out of 10
527 options related to within-farm monitoring, between-farm or regional spread, or
528 immunological/phenotype considerations). This survey was distributed in April 2022 by the
529  American Association of Swine Veterinarians. Based on the results of this survey and with input
530 from the working group, the final classification system was tailored to meet the needs of
531  practitioners by explicitly addressing the primary motivations for sequencing.

532

533
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