

1
2 **PRRSV-2 variant classification: a dynamic nomenclature for enhanced monitoring and**
3 **surveillance**

4
5
6 Kimberly VanderWaal^{1#}, Nakarin Pamornchainavakul¹, Mariana Kikuti¹, Jianqiang Zhang²,
7 Michael Zeller², Giovani Trevisan², Stephanie Rossow³, Mark Schwartz¹, Daniel C.L. Linhares²,
8 Derald J. Holtkamp², João Paulo Herrera da Silva¹, Cesar A. Corzo¹, Julia P. Baker¹, Tavis K.
9 Anderson⁴, Dennis N. Makau^{1,5}, Igor A.D. Paploski¹

10 ¹ Department of Veterinary Population Medicine, College of Veterinary Medicine, University of
11 Minnesota, St. Paul, MN, USA

12 ² Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa
13 State University, Ames, Iowa, USA

14 ³ Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St.
15 Paul, MN, USA

16 ⁴ Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA

17 ⁵ Current address: Biomedical and Diagnostic Sciences Department, College of Veterinary
18 Medicine, University of Tennessee, Knoxville, TN, USA

19
20
21 **Running head: PRRSV-2 variant classification**

22 **# Correspondence:**

23 Kimberly VanderWaal

24 kvw@umn.edu

25 Author order of the first three and last two authors were based on effort. The remaining authors
26 were listed in reverse alphabetical order.

27
28

29 **Keywords: PRRS, molecular epidemiology, evolution, machine learning, nomenclature,**
30 **lineages, clades, clustering, genetic variants**

31
32 **Abstract**

33 Existing genetic classification systems for porcine reproductive and respiratory syndrome
34 virus 2 (PRRSV-2), such as restriction fragment length polymorphisms (RFLPs) and sub-
35 lineages, are unreliable indicators of genetic relatedness or lack sufficient resolution for
36 epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale
37 classification system for PRRSV-2 genetic variants in the U.S. Based on >25,000 U.S. open-
38 reading-frame 5 (ORF5) sequences, sub-lineages were divided into genetic variants using a
39 clustering algorithm. Through classifying new sequences every three months and systematically
40 identifying new variants across eight years, we demonstrated that prospective implementation of
41 the variant classification system produced robust, reproducible results across time and can

42 dynamically accommodate new genetic diversity arising from virus evolution. From 2015 and
43 2023, 118 variants were identified, with ~48 active variants per year, of which 26 were common
44 (detected >50 times). Mean within-variant genetic distance was 2.4% (max: 4.8%). The mean
45 distance to the closest related variant was 4.9%. A routinely updated webtool
46 (<https://stemma.shinyapps.io/PRRSLOom-variants/>) was developed and is publicly available for
47 end-users to assign newly generated sequences to a variant ID. This classification system relies
48 on U.S. sequences from 2015 onwards; further efforts are required to extend this system to older
49 or international sequences. Finally, we demonstrate how variant classification can better
50 discriminate between previous and new strains on a farm, determine possible sources of new
51 introductions into a farm/system, and track emerging variants regionally. Adoption of this
52 classification system will enhance PRRSV-2 epidemiological monitoring, research, and
53 communication, and improve industry responses to emerging genetic variants.

54

55 **Importance**

56 The development and implementation of a fine-scale classification system for PRRSV-2 genetic
57 variants represents a significant advancement for monitoring PRRSV-2 occurrence in the swine
58 industry. Based on systematically-applied criteria for variant identification using national-scale
59 sequence data, this system addresses the shortcomings of existing classification methods by
60 offering higher resolution and adaptability to capture emerging variants. This system provides a
61 stable and reproducible method for classifying PRRSV-2 variants, facilitated by a freely
62 available and regularly updated webtool for use by veterinarians and diagnostic labs. Although
63 currently based on U.S. PRRSV-2 ORF5 sequences, this system can be expanded to include
64 sequences from other countries, paving the way for a standardized global classification system.
65 By enabling accurate and improved discrimination of PRRSV-2 genetic variants, this
66 classification system significantly enhances the ability to monitor, research, and respond to
67 PRRSV-2 outbreaks, ultimately supporting better management and control strategies in the swine
68 industry.

69

70

71 **Introduction**

72
73 In the U.S., Porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2)
74 circulates within 30-50% of swine breeding farms in any given year (1, 2), causing both
75 reproductive and respiratory impacts that result in >\$600 million USD of productivity losses
76 annually (3). These economic losses make PRRSV the most important virus affecting swine in
77 the U.S. Classified as the species *Betaarterivirus americicense* (the former species *Betaarterivirus*
78 *suid* 2) in the family *Arteriviridae* and order *Nidovirales*, PRRSV-2 is a rapidly evolving RNA
79 virus characterized by enormous genetic and antigenic variability in the U.S. and globally (4-6).
80 Control of this virus is hindered by routine emergence of novel, sometimes more virulent genetic
81 variants (7-9), which result in recurrent epidemic waves of viral spread in the industry (5, 10).

82 PRRSV-2 is also one of the most sequenced viruses in the world (11), largely because
83 sequencing is used by animal health professionals as a tool for routine monitoring of virus
84 circulation within and between farms. While phylogenetic analysis is still the gold standard for

85 interpretation of sequence data, practitioners and field epidemiologists often find it faster and
86 more convenient to have a name in which they can refer to a given genetic variant as part of
87 everyday communication and outbreak investigations. Currently, the naming method used by the
88 industry to discriminate between sequences is restriction fragment length polymorphism (RFLP)-
89 typing (12), sometimes in combination with an additional label corresponding to phylogenetic
90 lineage (4, 5). However, lineages and sub-lineages are large and diverse, and hence are too
91 coarse for on-farm disease monitoring, and using RFLP-types to refer to PRRSV-2 viruses often
92 leads to misleading conclusions (e.g., viruses assigned to the same RFLP-type often are not
93 genetically similar, and vice versa)(13-15). For example, RFLP 1-4-4, which is one of the most
94 abundantly reported in the U.S. today, occurs in seven different lineages (16).

95 In previous work, VanderWaal *et al.* (15) evaluated and compared 140 approaches for
96 fine-scale classification of ORF5 sequences. Three methods were found to be robust and
97 reproducible, and thus could form the foundation for fine-scale classification of PRRSV-2 below
98 the sub-lineage level. However, previous work did not explore the performance of PRRSV-2
99 variant classification on a rolling basis, and it is necessary to validate the performance and
100 associated procedures for fine-scale classification that accommodates expanding genetic
101 diversity on a prospective basis.

102 Taking insights and needs of practitioners and diagnosticians alongside a rigorous
103 comparison of alternative approaches for classifying PRRSV-2 (15), the purpose of this paper is
104 to introduce a new fine-scale genetic classification system for PRRSV-2 that is tailored to meet
105 the needs of animal health professionals. Specifically, we outline criteria used for defining
106 PRRSV-2 genetic variants, establish and test procedures for prospective implementation of the
107 system, and assess the adaptability of the classification system to accommodate expanding genetic
108 diversity at national scales. We also introduce a machine-learning webtool that can be used to
109 identify the variant to which newly generated sequences belong and introduce naming conventions
110 for PRRSV-2 variants. Finally, we report the results of a survey conducted with field practitioners
111 on their motivations for submitting samples for sequencing and demonstrate how variant
112 classification can enhance the utility of sequence data for the purposes of epidemiological
113 monitoring and surveillance.

114

115 **Results**

116

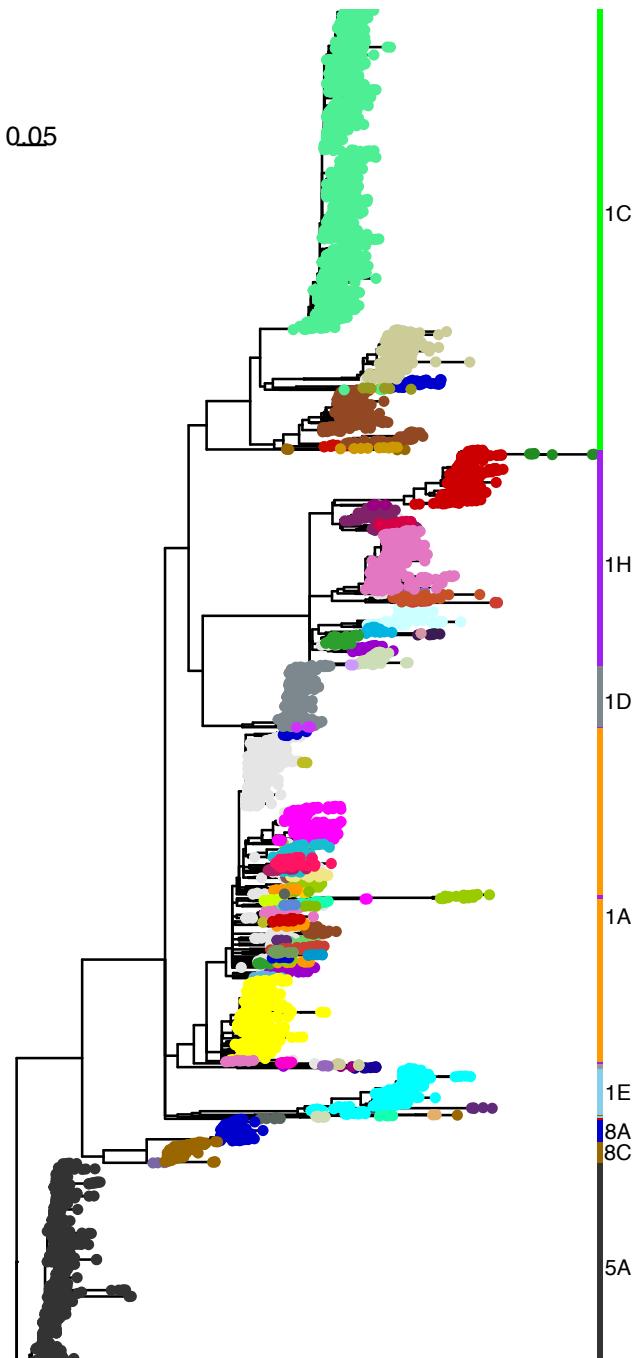
117 **Variant classification**

118 Utilizing sequences from the U.S. from 2015-2023, 25,403 PRRSV-2 ORF5 sequences
119 were analyzed on a rolling quarterly basis to simulate prospective application of the variant
120 classification system; each quarter, groups of closely related sequences were identified in
121 phylogenetic trees using a clustering algorithm and defined as a variant if the group a) had five
122 or more sequences, b) showed robust support of their shared ancestry in the ORF5 phylogeny
123 (bootstrap value >85), and c) was >2% different than the nearest named variant. Any sequences
124 belonging to clades that did not meet these requirements were labeled as “unclassified.” In total,
125 the fine-scale classification system identified 118 genetic variants, 37 of which were common
126 (detected >50 times) and 19 were rare (detected <10 times). 89.7% of sequences belonged to
127 common variants, while 1.3% of sequences belonged to rare variants. The median number of
128 sequences per variant was 25.5, with an interquartile range (IQR) of 11.25 – 68.75 sequences.
129 The average within-variant genetic distance was 2.4% (IQR: 1.6 - 3.2%, max: 4.8%). The mean
130 distance to the closest related variant was 4.9% (IQR: 2.5 – 5.6%). Median bootstrap support for

131 variants was 100 (IQR: 91.7 – 100). The distribution of variants on a phylogenetic tree is shown
132 in Figure 1. Variant nomenclature incorporated the sub-lineage to which the variant belonged,
133 followed by an integer (i.e., 1A.3 and 1H.3 are the third variants identified within sub-lineage 1A
134 and 1H, respectively). For contemporary sequences (2015 onwards), several variants were a one-
135 to-one correspondence with vaccine-like sequences, namely variant 5A.1 (Ingelvac PRRS MLV
136 - Boehringer Ingelheim Animal Health, Duluth, GA), 8A.1 (Ingelvac PRRS ATP - Boehringer
137 Ingelheim Animal Health, Duluth, GA), 8C.1 (Fostera PRRS - Zoetis, Parsippany, NH), 1D.2
138 (Prevaient PRRS, Elanco, Greenfield, Indiana), 7.1 (PrimePac PRRS, Merck, Rahway, NJ), and
139 1F.1 (PRRSGard, Pharmgate Animal Health, Wilmington, NC).

140

141 **Figure 1.** 36-month phylogenetic tree at last timepoint (December, 2023). Tip colors indicate
142 variant. Color bars indicate sub-lineage.



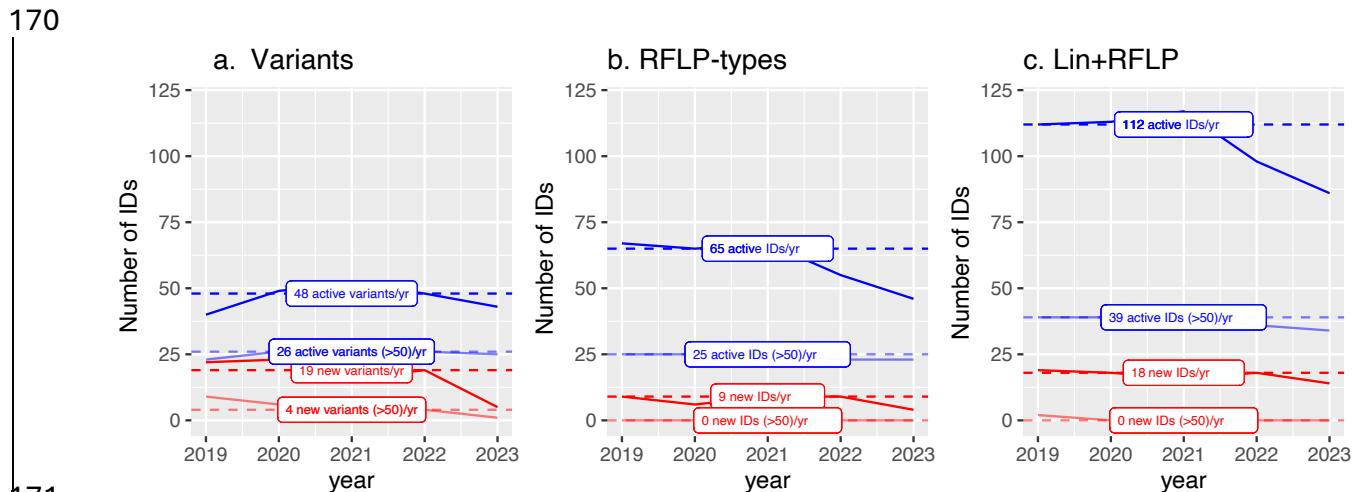
143
144

145 Across 21 quarterly datasets (each containing 36-months of data, 2015-2023), genetic
146 diversity within a variant did not show an increasing trend through time (Supplementary Figure
147 1a). Clade purity was calculated for each variant as the proportion of sequences in a phylogenetic
148 clade that were assigned to the same variant ID. Clade purity was consistently high across
149 quarters, with a median of 100% (IQR: 99% – 100%, mean: 89.9%, Supplementary Figure 1b),
150 indicating that variants formed compact groups and were not inter-mixed across the phylogenetic
151 tree. Initially, ~36% of sequences could not be reliably grouped into a well-supported variant
152 clades and were considered “unclassified,” but this value reduced and stabilized to ~11% in 2020

153 and 2021, and ~7% in 2022 and 2023. Lineage 1A accounted for 94.6% of unclassified
154 sequences. Lineage 1A has a lower genetic diversity than other sub-lineages due to its more
155 recent emergence approximately 10 years ago (5), and classification for this sub-lineage
156 improved as clades became more diverged through time.

157 The median number of active variants per year was 48 (Figure 3). This compares to 65
158 and 112, respectively RFLP-types and Lineage+RFLP, which are currently employed for fine-
159 scale PRRSV classification. The median number of “common” active variants was 26, 25, and
160 39 for variants, RFLP-types, and Lineage+RFLPs, respectively. Thus, the new classification
161 system does not result in a greater number of IDs than the industry currently is accustomed to
162 with RFLP-types.

163 There was a median of 19 new variants per year, but only 4 new common variants (those
164 that would eventually be detected >50 times), demonstrating that variant classification is able to
165 scale-up to accommodate newly emerging PRRSV diversity (Figure 2). In contrast, there were
166 no new common RFLP-types across the study period. Most newly-identified variants were
167 created from sequences that were previously “unclassified”, and not from splits of existing
168 variants. In total, 0.9% of sequences were re-named (i.e., a result of splitting a variant) at some
169 point during the 21 quarters assessed here.



171
172 Figure 2. Number of variants per year. Yearly number of active (blue) and new (red) variants for
173 each classification method, with those that reach at least 50 sequences considered “common.”
174 Solid lines show the number per year. Dashed lines show the median number across years.

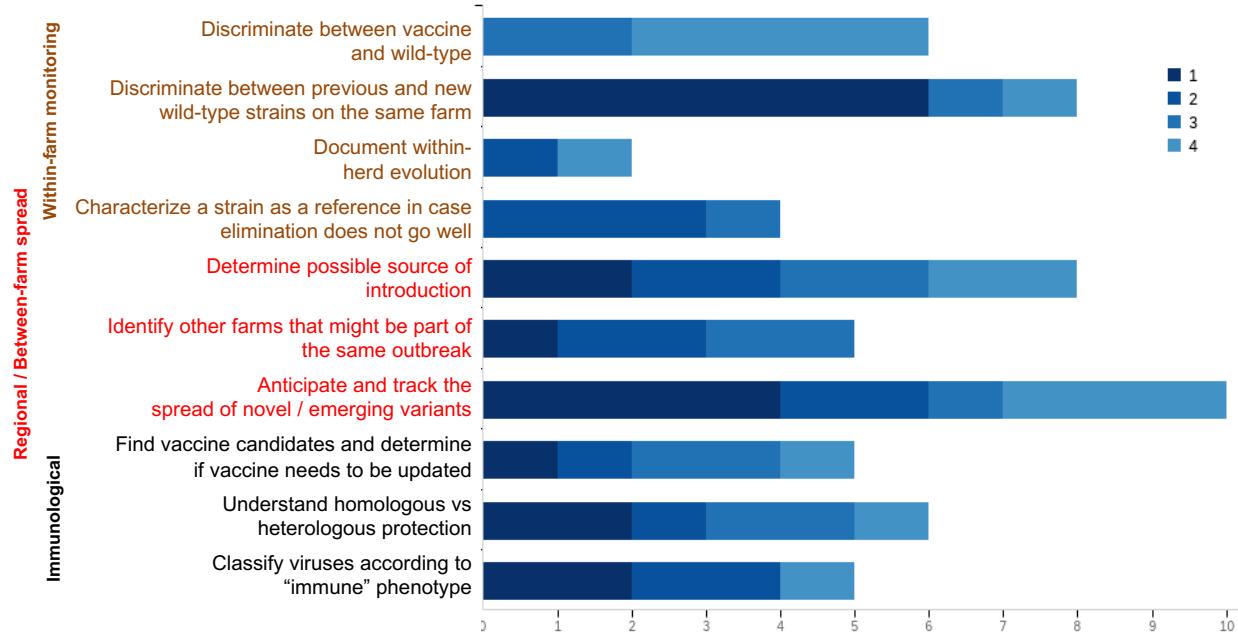
175
176 Using a subset of data, we also constructed time-scaled phylogenetic trees to
177 contextualize variant emergence and divergence on a timeframe that is interpretable for
178 epidemiological investigations of within- and between-farm transmission. We found that
179 sequences belonging to the same variant typically descended from a common ancestor that
180 existed ~2.3 years prior (median: 2.3 years, IQR: 1.5 – 3.5 years), which can be interpreted as
181 that all sequences belonging to a single variant were part of the same chains of transmission
182 originating ~2 to 3 years prior. This gives a timeframe for which to search for epidemiological
183 connections amongst cases. Divergence time from the closest relatives was 3.9 years (median:
184 2.9 years; IQR: 3.1 – 4.6 years). Clade purity in time-scaled trees was high, with a median of 1.0
185 and interquartile range from 90 – 100%.

186
187 **Tools for assigning variant IDs to new sequences**

188 Across the 21 quarters, the quarterly-updated assignment algorithm had accuracies
189 ranging between 97.1 - 99.9%, groupwise accuracies between 95.1-99.8%, mean precision
190 (positive predictive value) between 96.6-99.9%, and mean recall between 95.1-99.8%. The
191 percentage of sequences that were undetermined (i.e., probability of assignment was <0.25)
192 ranged from 0.2% - 8.1%, with a median of 4.4%. The most up-to-date model is accessible via a
193 RShiny webtool (<https://stemma.shinyapps.io/PRRSLOOM-variants/>) and the trained model is
194 available on Github in both R and Python
195 (https://github.com/kvanderwaal/prrsv2_classification). Whether using the webtool or the
196 R/Python code, the user uploads ORF5 sequence/s in fasta format, which are then realigned to
197 the PRRSV-2 prototype sequence VR2332 (Genbank accession EF536003). Sequences are not
198 saved or retained by the webtool in any way. The tool then estimates the probability that the
199 sequence belongs to each defined variant. For each sequence, outputs include the assignment
200 probability for the variant ID with the highest (top) and second highest probability. A final
201 assignment is also given, with sequences that could not be assigned to any variant with >0.25
202 probability listed as “undetermined.” It is also possible that the variant with the highest
203 probability is not substantially greater than the second highest, which may indicate potential
204 misclassification. If the highest probability is more than double the second highest probability,
205 then the assigned variant ID can be interpreted with greater confidence. While this paper reports
206 results up to December 2023, the PRRSLOOM-variant shiny application and the pre-trained
207 model has been updated to reflect recent variant classifications, and this will be maintained on a
208 quarterly basis.

209
210 ***Survey on use of PRRSV-2 sequence data by animal health professionals***
211 In a survey administered by the American Association of Swine Veterinarians, swine
212 practitioners (n = 92) were asked to rank the primary motivations for which they submitted samples
213 for sequencing. The motivations that were consistently highly ranked included 1) *Anticipate and*
214 *track the spread of novel and emerging variants*, 2) *Discriminate between previous and new wild-*
215 *type strains on the same farm*, and 3) *Determine possible source of introduction* (Figure 3).

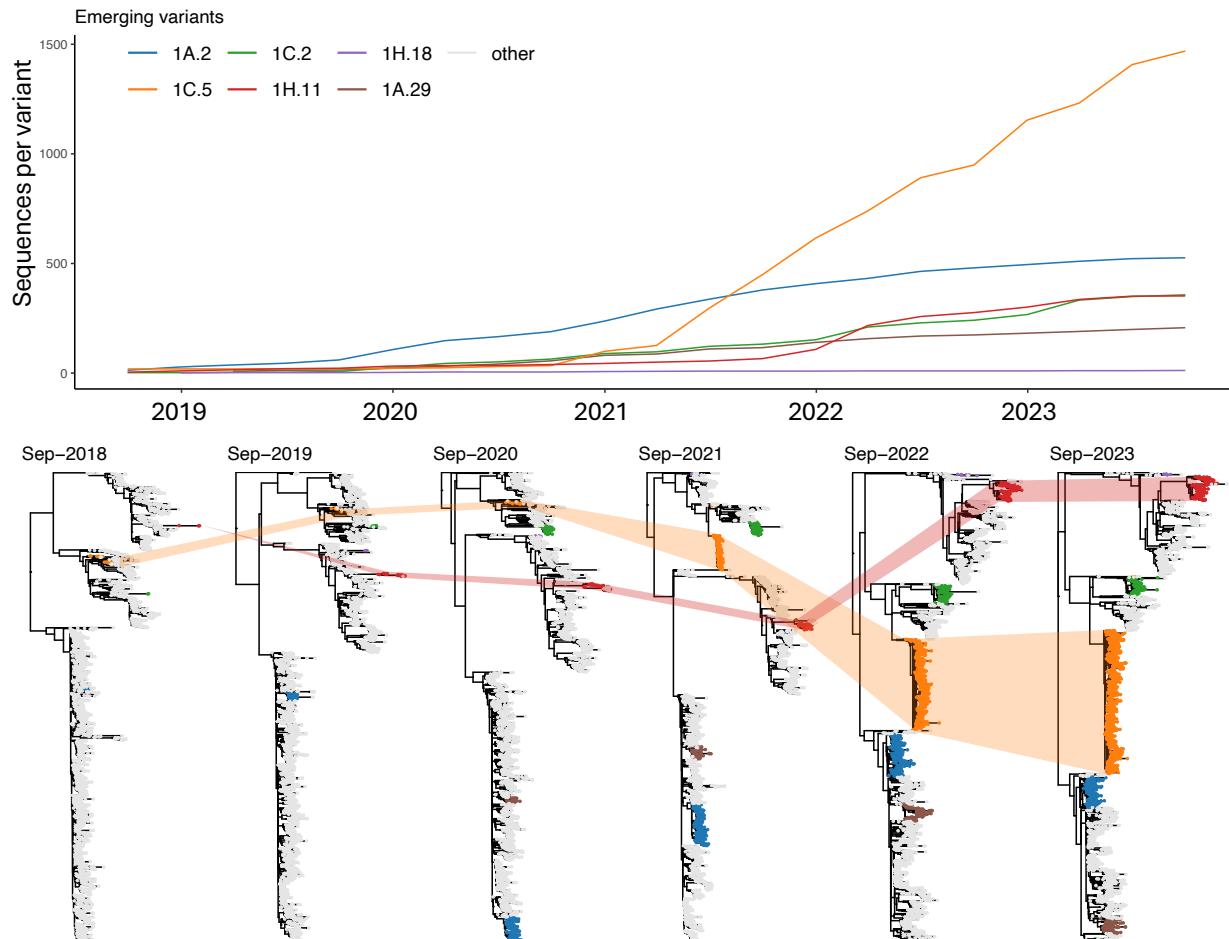
216
217 Figure 3. Results of survey where animal health professionals were asked to rank their top four
218 reasons for submitting samples for sequencing from a list of 10 options. Bars represent the
219 number of respondents that selected each answer, with color shading representing rank (with 1
220 being high).
221



222
223

224 1) *Anticipate and track the spread of novel and emerging variants*: To better visualize
225 how the new classification system tracks the spread of emerging variants, we selected variants
226 that had <25 sequences at the time of naming and >200 sequences by the end of the study period.
227 Five variants met these criteria (Figure 4). We also considered the 1H.18 variant, due to interest
228 in this variant at the time of writing (17). There was a median of 10.5 different RFLP-types per
229 variant. Of the common RFLP-types (n>50), none were exclusive to any of the emerging
230 variants. Indeed, these common RFLPs were all found in ≥ 3 of the six emerging variants, and
231 across a median of 33 variants overall. These insights show the benefits of using variant
232 classification as opposed to RFLP-typing for identifying and tracking emerging strains of the
233 virus.

234
235 Figure 4. Cumulative number of sequences per emerging variant over time (top). Phylogenetic
236 trees (bottom) from September of each year, with emerging variants colored and all other
237 sequences shown in gray.
238

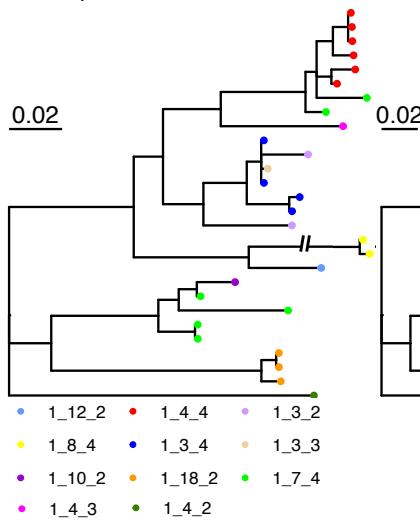


239
240 To 2) *Discriminate between previous and new wild-type strains on the same farm*, and 3)
241 *Determine possible source of introduction*, we partnered with production system veterinarians
242 and applied the new variant classifications to sequences collected from their farms. System 1
243 shared 28 PRRSV-2 ORF5 sequences from 12 farms, with a particular interest in 13 sequences
244 from Farm 5, which was a sow farm (Figure 5). This farm experienced four PRRSV circulation
245 events: variant 1B.8 in 2015-2016, 1C.3 in 2016-2018, 1A.13 in 2019, and 1C.5 in 2020-2024.
246 Of note, RFLP-types or lineages were not able to discriminate between new introductions on
247 Farm 5. Either a new introduction did not receive a unique label (as in 2020, where sub-lineages
248 failed to discern a new 1C virus, despite having <91% nucleotide identity with the previous 1C
249 virus on the farm), or multiple sequences that were part of these same circulation event received
250 different labels (three different RFLP-types amongst the five 1C.3 sequences, despite having
251 >98% nucleotide identity). This limitation of RFLP-types is more thoroughly quantified in
252 VanderWaal *et al.* (15), wherein 43% of on-farm circulation event attributable to a single variant
253 had multiple associated RFLP-types.
254

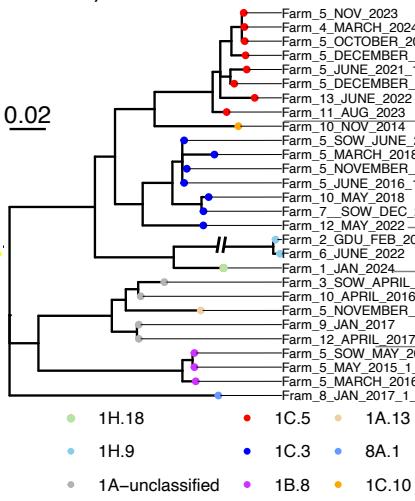
255 Figure 5: Phylogenetic tree of ORF5 sequences for System 1 reconstructed by Bayesian
256 inference (mrBayes v3.2 (18)), rooted on the only sequence not belonging to lineage 1 (sub-
257 lineage 8A), with tip color indicating a) RFLP-type, and b) variant. c) ORF5 nucleotide identity,

258 with redder colors representing higher identity.

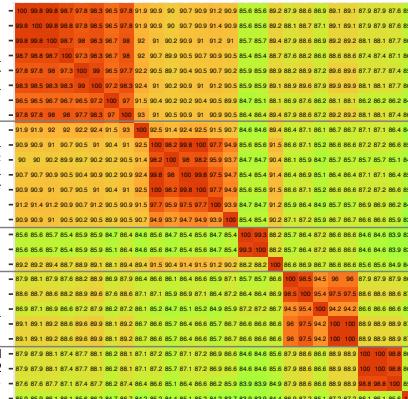
a) RFLP



b) Variant



c) Nucleotide identity (ORF5)



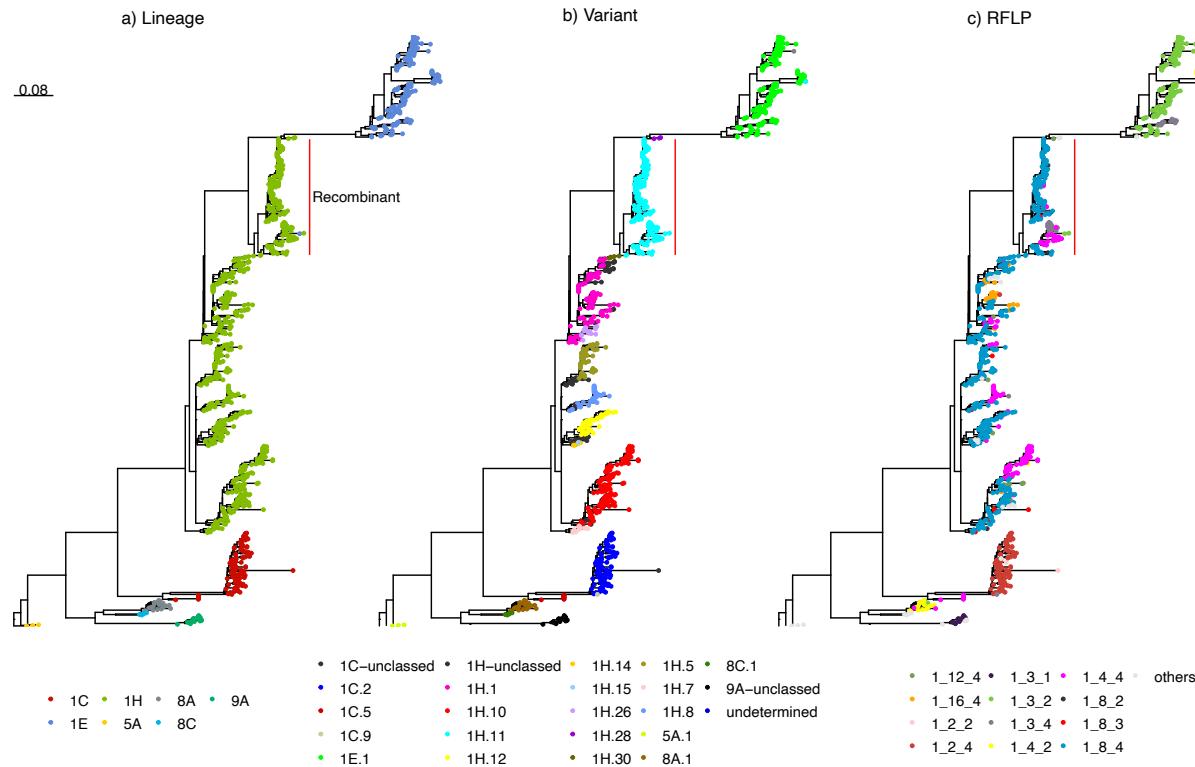
259

260

261 System 2, which is a large production system operating in five states, shared 1,095 ORF5
 262 sequences from 2014 to 2022. In the phylogenetic tree in Figure 6, the majority of the sequences
 263 belonged to sub-lineages 1C, 1H, and 1E. Lineages and sub-lineage do not provide sufficient
 264 resolution to distinguish new and already circulating wild-type viruses on farms, and also fail to
 265 provide a distinguishing label for one clade that contains recombinant viruses. The vast majority
 266 of sequences belong to two RFLP-types (1-8-4 and 1-4-4), which do not cluster together
 267 genetically. Furthermore, the RFLP 1-4-4 sequences are not related to the recently emerged
 268 outbreak variant bearing the same RFLP-type (the so-called novel L1C-1-4-4 variant, which is
 269 referred to as 1C.5 in the new variant system (7)). In contrast, the variant classifications are
 270 aligned with clades that are visually well-differentiated and also provide a unique variant ID for
 271 the recombinant clade. Thus, the improved labeling of closely related sequences in the variant
 272 system enhances a practitioner's ability to track spread between farms, detect the introduction of
 273 new variants into a farm or flow, and narrow the possible sources of introduction.

274

275 Figure 6. Maximum-likelihood tree of PRRSV-2 ORF5 sequences for System 2, colored by a)
 276 lineage, b) variant, and c) RFLP-type. The red bar indicates a clade that includes numerous
 277 recombinant sequences.



278

279

280

281 Discussion

282 While the shortcomings of existing PRRSV-2 ORF5-based classification systems have
283 been apparent as early as 2011 (19), recent advances in computational power and the creation of
284 national-scale sequence databases have created the opportunity to finally address these issues.
285 Here, we outline a fine-scale classification system (below sub-lineage level) for PRRSV-2 in the
286 U.S. that is expandable to new genetic diversity that emerges as consequence of virus evolution.
287 We lay out procedures for quarterly updating of the classification system and for assignment of
288 newly generated sequences via a centrally-maintained machine learning model, which facilitates
289 a unified naming scheme across the U.S. The level of granularity represented by genetic variants
290 was tailored to meet the needs of animal health professionals, who primarily reported using
291 sequence data for epidemiological monitoring. In this paper and in VanderWaal *et al.* 2024 (15),
292 we demonstrate that as compared to RFLP-typing, variant classifications more reliably group
293 viruses based on relatedness in the ORF5 gene, and provide better discrimination between
294 unrelated viruses. This facilitates on-farm monitoring, detection of new introductions to a farm or
295 production system, and tracking of regional between-farm spread.

296 Our fine-scale classification system is an extension of the lineage and sub-lineage
297 classification first proposed in 2010 (20) and refined in the past five years (4, 5, 10). Lineages
298 represent the broadest classification, with genetic distances typically <11% within a lineage
299 based on ORF5. Sub-lineages typically have genetic distances <8.5% within the sub-lineage, and
300 are made up of numerous genetic variants. Sequences belonging to the same variant typically have
301 an average genetic distance of 2 to 3% but can sometimes be as much as almost 5% different.
302 Our intent is not to replace lineages, as we do believe that these larger classifications are useful
303 for explorations of phenotype as well as tracking the macro-evolutionary dynamics of PRRSV-2.

304 Therefore, we incorporate lineage into the IDs utilized in the variant classification system to
305 provide a general zip-code of the variant within the larger genetic diversity of PRRSV-2.

306 A major advantage of a unified variant classification system within the U.S. is to
307 facilitate communication amongst animal health professionals, diagnostic laboratories, and
308 researchers. In the past, tracking of emerging variants was typically accomplished either by using
309 RFLP-types or by calculating the genetic distance to “anchor” sequences established for a
310 particular strain. RFLP-typing, with its associated limitations and inaccuracies, can generate
311 confusion in the field about which farms are part of an outbreak, both missing farms that should
312 be included (i.e., a closely related virus with a different RFLP-type) as well as sparking false-
313 alarms (i.e., a distantly related virus with the same RFLP-type), as happened in the early days of
314 the emergence of the 1C.5 variant (7). Calculating the genetic distance between sequences is a
315 viable alternative for determining relatedness, but requires someone to set anchor sequences for a
316 particular outbreak (which is usually only done for variants of heightened concern), and
317 importantly, requires a several step process of sharing sequences (which are often considered
318 confidential), aligning them and calculating distances in bioinformatic software. These steps are
319 not required if the variant ID of the respective sequences is already assigned by diagnostic labs
320 as part of their reports to clients.

321 However, an important caveat is that variant classification is not based on immunological
322 or virulence variability (i.e., the phenotype) of the virus, and most variants will not have been
323 fully characterized from a phenotypic standpoint even when a whole genome is available. Thus,
324 variant classification is not designed to provide information on the clinical manifestations of the
325 virus in a herd, which is influenced by a myriad of factors external to the virus itself (e.g., co-
326 infections, host genetics, immunological history, etc.)(21-24). Variant classification also does not
327 directly translate to immunological cross-protection. Although viruses labeled as the same
328 variant are more genetically homologous on ORF5, cross-protection is not simply a function of
329 genetic distance between viruses (25, 26). Furthermore, whole genome data is required for
330 phenotypic investigations. That being said, variant classification may be too fine-scale to expect
331 major phenotypic differences amongst closely related variants. However, if we made variants
332 less granular, we would lose their utility for epidemiological investigations, such as determining
333 possible sources of introduction and tracking regional spread.

334 Variant classification also facilitates the generation, organization and findability of
335 additional information or research related to a particular variant, such as regional incidence
336 trends, whether the group includes recombinant viruses, production impacts, etc. This, combined
337 with the ease of cross-communication across diagnostic labs, researchers, and the field, could lay
338 the foundation for additional research on PRRSV epidemiology, virology, and immunology.

339 Limitations to the proposed variant classification include the coverage of our sequence
340 dataset. This system was based on U.S. PRRSV-2 sequences from 2015-present. Given that our
341 dataset covers >55% of U.S. swine production, we believe that our data is reasonably
342 representative of PRRSV-2 diversity circulating in the major pork producing regions in the
343 country since 2015. Thus, we urge potential users of the webtool to be cognizant of the year of
344 sequence collection and origin (country) of any sequences they may upload. While earlier
345 sequences can be input into the webtool, they are likely to be predicted as “unclassified” given
346 that diversity present in previous decades was not represented in our dataset. Similarly, it is not
347 meant to encompass genetic diversity from other countries. Our analysis of time-scaled trees
348 suggests that sequences belonging to the same variant typically evolved from a common ancestor
349 that existed 1.5 to 3.5 years prior. This short timescale and the rapid evolutionary rate of the

350 virus (5) supports the idea that variants circulating in the U.S. are likely distinct from variants in
351 other countries, except perhaps in cases where there is very frequent transboundary movement
352 (such as Canada). The system could be expanded to PRRSV-2 in other countries by
353 incorporating their data into our quarterly updates to identify and name new variants. In the
354 absence of sharing of larger databases, five representative sequences from a particular clade
355 (either in the U.S. or elsewhere) that is currently unclassified and for which a variant ID is
356 desired can be submitted to our system. Alternatively to using our platform, we suggest that
357 other countries could adopt our criteria for defining a variant so that this term can be used more
358 consistently across continents.

359 While having an improved naming scheme for PRRSV-2 genetic variants will not solve
360 PRRS in the U.S., a classification system for field-based epidemiological monitoring is needed
361 and has been requested by practitioners for many years. In this paper, we outlined the definition
362 of genetic variants, the procedures for systemic identification of variants in a nationwide
363 sequence dataset, and a validated workflow for routinely updating variant classification on a
364 quarterly basis. The latter will ensure that the nomenclature system can dynamically adapt to
365 evolving PRRSV-2 diversity across time and space. Variant classification will facilitate
366 communication about outbreaks, tracking of emerging and endemic variants across time and
367 space, as well as provide a framework to more rigorously analyze the genetic basis of variability
368 in phenotype or production impacts. Finally, this work was conducted with iterative feedback
369 from a working group of veterinarians, researchers, and diagnosticians. This close engagement
370 with stakeholders and end-users has been crucial for the operationalization and adoption of the
371 variant classification, ensuring that it is tailored to the needs of animal health professionals
372 utilizing sequence data for decisions on disease management in the field.

373
374 **Methods**
375

376 ***Data source and pre-processing***

377 Sequence data were obtained from the Morrison Swine Health Monitoring Project
378 (MSHMP), which is a voluntary initiative operated by University of Minnesota that monitors
379 PRRS occurrence in the U.S. MSHMP was initiated in 2011, and currently collects sequence
380 data for farms belonging to 37 production systems, accounting for >55% of the U.S. pig
381 population (2). Participating production systems share PRRSV ORF5 sequences that are
382 generated as part of routine monitoring and outbreak investigations in breeding, gilt developing
383 units, growing and finishing herds (27). Sequences are generally obtained either directly from
384 each MSHMP participant or from the main veterinary diagnostic laboratory where participants
385 submit their diagnostic samples. Meta-data for each sequence include farm name, date and farm
386 type of origin (e.g., breeding or growing herd).

387 16,260 sequences were available from October 1, 2015 to June 30, 2021. These
388 sequences were used to establish the rolling procedures for updating the classification system
389 across time. An additional 9,143 sequences were available from July 1, 2021 to December 31,
390 2023. Based on VanderWaal *et al.*, sequence datasets that lack duplicated (100% nucleotide
391 identity) sequences produced the most consistent variant classifications (15). Therefore,
392 sequences with 100% identity were de-duplicated before phylogenetic tree building. Duplicated
393 sequences were retained for calculations of the frequency and mean genetic distances of variants.
394 Sequences with ≥ 4 ambiguous nucleotides (0.5% of ORF5) or with gaps greater than 24
395 positions were removed from the dataset (4). To assess how the system would function if utilized

396 prospectively, we initiated the classification system in 2018 with 36 months of data (2015-18),
397 then added new data every three months up until December 2023. Thus, each quarter of data
398 included the previous 36 months of sequence data, with a median of 8,620 sequences per set.
399

400 **Tree building**

401 For each 36-month dataset, sequences were aligned to a consensus reference sequence
402 based on all previous data with --6merpair, --keeplength, and --addfragments options of the
403 MAFFT algorithm (28, 29). All tree-building unless otherwise specified utilized the maximum
404 likelihood method performed using IQ-TREE2 with 1,000 ultrafast bootstraps (30). As described
405 in VanderWaal *et al.* (15), strict majority-rule consensus trees were constructed (clades with
406 bootstrap support <50 were collapsed), with the general time reversible substitution model with
407 empirical base frequencies and gamma plus invariant site heterogeneity (GTR+F+I+G4). The
408 *ggtree* package in R was used for all tree visualizations, with trees re-rooted on Lineage 5, which
409 contains the PRRSV-2 prototype virus (VR2332, GenBank accession number EF536003)(20,
410 31).

411

412 **Variant classification: Initialization**

413 *Initial timestep*: Utilizing the first 36-month tree (9783 sequences October 1, 2015 –
414 September 30, 2018), a tree-based clustering approach was applied to the phylogeny using the
415 average-clade method in *TreeCluster* package available in Python (32); clusters of genetically
416 related sequences in the trees were referred to as “variants.” Briefly, this method identifies
417 monophyletic clades where the average pairwise patristic distance between sequences within the
418 clade is <7%. This threshold was selected based on a rigorous comparison of thresholds
419 performed by VanderWaal *et al.* (15). In that analysis, the observed average pairwise distance
420 between sequences belonging to the same variant was 2.3% (15).

421 Additional steps were applied based on preliminary results showing that some variants
422 defined on the first 36-month tree did not consistently group together in subsequent trees. First,
423 post-processing of *TreeCluster* outputs was performed to merge clusters with low-support
424 (Supplementary text). Second, additional criteria for defining a variant were that the group must
425 have a) five or more sequences, b) robust support of their shared ancestry in the ORF5
426 phylogeny (bootstrap value >85 in the tree), and c) that the genetic distance to the nearest named
427 variant must be >2%. Any sequences belonging to clades that did not meet these requirements
428 were labeled as “unclassified.” Nomenclature for variants was the sub-lineage to which the
429 variant belonged, followed by an integer (i.e., 1A.3 and 1H.3 are the third variants identified
430 within sub-lineage 1A and 1H, respectively). To align with the five sub-groups within sub-
431 lineage 1C delineated by (4), we identified the variants that corresponded to those groups and
432 utilize the same IDs and continue numbering onward from 1C.6.

433

434 **Variant classification: Updating**

435 With each new quarter, new sequences from the most recent 3 months (median: 663
436 sequences) are assigned to variants using the assignment algorithm trained at the end of the
437 previous quarter (see next section). A new 36-month tree is constructed, and variant IDs annotated
438 to the tree. The tree is systematically examined for new variants using *TreeCluster* as well as for
439 splits in existing variants (see Supplementary text for details). Splits were systematically
440 considered for variants where the 95th percentile of pairwise genetic distances was $\geq 5\%$ (based on
441 sequences from the previous 12 months to better capture recent genetic divergence). A new variant

442 was only created if a clade met the following conditions: 1) consisted of five or more sequences,
443 2) had robust support of their shared ancestry in the ORF5 phylogeny (bootstrap value >85 in the
444 tree), and 3) that the genetic distance to the nearest named variant was >2%. If the creation of the
445 new variant was due to a split in an existing variant, a new variant was only created if the minimum
446 and median genetic distance between the new and original variant was >3 and >5%, respectively.
447 These high thresholds were set to minimize the number of sequences being re-named as a result of
448 variant splitting, as per the request of diagnostic laboratories. New variants receive names in the
449 same manner as described above (i.e., if 1A.3 if split, one daughter group retains the name 1A.3,
450 the other receives the next integer in the series, for example, 1A.8).

451

452 **Algorithm for assignment of new sequences**

453 For prospective application of any classification system, it is desirable to be able to
454 assign new sequences to variants without performing computationally heavy analysis. We thus
455 trained a random forest machine learning algorithm to assign new sequences to the appropriate
456 variant ID (15, 33). Up to 120 sequences per variant (approximately 10 per quarter) were
457 randomly selected from the initial time step to build a training dataset, which was then appended
458 quarterly with new sequence data. Using the training dataset for each quarter, a random forest
459 algorithm was fitted using the *caret* package in R using ten-fold cross-validation and auto-tuning
460 of the *mtry* hyper-parameter (34). In parallel, we also trained a random forest in Python for
461 Python end-users (Supplementary text). Model performance on the training set was assessed
462 using ten-fold cross-validation (i.e., performance evaluated on 10% of observations that were left
463 out of 10 iterative random forest runs). We report the overall accuracy (percent of sequences
464 correctly classified by the algorithm) for the training dataset. We also calculated the mean
465 groupwise precision (a.k.a. positive predictive value), recall (a.k.a. sensitivity), and accuracy
466 (i.e., percent of sequences correctly classified per variant was first calculated, and then a mean of
467 these groupwise accuracies was reported).

468 Outputs from the trained algorithms include the probabilities of the first, second, and
469 third most likely variant ID for a given sequence, with the highest probability ID being assigned
470 to the sequence for downstream analyses of predictive performance. In some cases, the highest
471 probability ID was quite low, indicating that the model had poor confidence in the assignment.
472 Therefore, sequences with assignment probabilities of <0.25 were considered “undetermined,”
473 and not considered in calculations of model accuracy. The proportion undetermined was tracked
474 and reported. More stringent thresholds do not markedly improve model accuracy, but resulted in
475 a higher percentage of undetermined sequences (15). The training dataset and algorithm are
476 updated each quarter to include sequences (up to 120) from new variants as well as additional
477 recent sequences from existing variants (up to 60). Older sequences and variants are not removed
478 from the assignment algorithm, in order for the model to retain the ability to predict on older
479 sequences from 2015-present. Only sequences with assignment probabilities of >0.4 were
480 included in the training dataset.

481 An RShiny web-tool was developed and is updated quarterly
482 (<https://stemma.shinyapps.io/PRRSLoom-variants/>) so that end-users can assign new sequences
483 to variants. The updated algorithms are also available as R and Python scripts so that they can be
484 used in command line or ported to external applications maintained by diagnostic laboratories or
485 other groups (https://github.com/kvanderwaal/prrsv2_classification). This ensures that all
486 potential end-users will obtain the same variant classifications, regardless of the platform.
487

488 ***Genetic characterization and phylogenetic properties of variants***

489 At the final timepoint, genetic characterization of variants produced by each approach
490 included a) the number of variants identified, b) the number of “common” variants ($n > 50$
491 sequences belonging to the variant), c) median size (sequences per variant) and interquartile
492 range, d) percent of sequences belonging to common variants, e) percent of sequences belonging
493 to rare variants ($n < 10$ sequences), f) median bootstrap value and interquartile range of the
494 ancestral node, and g) mean genetic distance (raw p-distance) within a variant. Finally, we
495 calculated the h) genetic distance to the most closely related cluster for each variant.

496 Across all timepoints, we also evaluated the mean genetic distance through time to better
497 understand how the mean within-variant distance may expand as a result of ongoing evolution,
498 as well as clade purity over time to assess the tendency of sequences belonging to the same
499 variant to remain grouped together in the tree over time. Clade purity was calculated as the
500 proportion of sequences in a phylogenetic clade that were assigned to the same variant ID (See
501 supplementary text for details).

502 We also calculated the number of new variants detected per year and number of active
503 variants per year. The number of new variants per year was based on the calendar year of the
504 earliest sequence belonging to a variant, and active variants per year included all variants whose
505 earliest and latest detected sequences occurred before, during, or after the considered calendar
506 year. For comparison purposes, these values were compared to RFLP-types and Lineage+RFLP
507 types.

508 Using a subset of data, we also constructed time-scaled phylogenetic trees
509 (Supplementary methods) to contextualize the timeline of variant emergence and divergence on a
510 timeframe that is interpretable for epidemiological investigations of within- and between-farm
511 transmission. Briefly, for each variant in the time-scaled trees, we extracted the time to the most
512 recent common ancestor, which was used to calculate clade age, divergence time from the most
513 closely related variant, and clade purity.

514

515 ***Working group and practitioner survey***

516 A working group was established in March, 2021 that included representatives from major
517 swine-oriented diagnostic labs (University of Minnesota, Iowa State University, South Dakota
518 State University, Ohio Animal Disease Diagnostic Lab), swine disease monitoring programs that
519 serve as national repositories of PRRSV sequences (Morrison Swine Health Monitoring Program
520 (27), Swine Disease Reporting System (35, 36), and USDA-Agricultural Research Service’s Swine
521 Pathogen Database (37)), and swine veterinarians and production systems. This group was
522 involved iteratively in the development of the new classification system (Supplementary Figure
523 S2).

524 The working group developed and administered a survey to swine health professionals in
525 the U.S. to better understand how they use genetic sequence data. In this survey, practitioners were
526 asked to rank the top four reasons for which they submitted samples for sequencing (out of 10
527 options related to within-farm monitoring, between-farm or regional spread, or
528 immunological/phenotype considerations). This survey was distributed in April 2022 by the
529 American Association of Swine Veterinarians. Based on the results of this survey and with input
530 from the working group, the final classification system was tailored to meet the needs of
531 practitioners by explicitly addressing the primary motivations for sequencing.

532

533

534 **Acknowledgments**

535 This study was funded by the joint NIFA-NSF-NIH Ecology and Evolution of Infectious Disease
536 award 2019-67015- 29918, the Intramural Research Program of the U.S. Department of
537 Agriculture, National Institute of Food and Agriculture, Data Science for Food and Agricultural
538 Systems Program, grant number 2023-67021-40018, a grant from the American Association of
539 Swine Veterinarians, and the U.S. Department of Agriculture, Agricultural Research Service
540 project 5030-32000-231-000-D. MSHMP was funded by the Swine health Information Center
541 (SHIC, www.swinehealth.org, Project # 23-079).

542

543 The authors would like to thank members of the AASV PRRSV nomenclature working group,
544 including Andreia Arruda, Srijita Chandra, Eric Nelson, Tom Petznick, Melanie Prarat, Mark
545 Schwartz, Donna Drebes, Mark Wagner, Jessica Seate, Gustavo Silva, Joel Sparks, and Paul
546 Yeske. The authors would like to thank the Morrison Swine Health Monitoring Project
547 (MSHMP) participants and the Veterinary Diagnostic Laboratory, University of Minnesota, for
548 sharing its PRRSV-2 genetic sequences. Mention of trade names or commercial products in this
549 article is solely for the purpose of providing specific information and does not imply
550 recommendation or endorsement by the U.S. Department of Agriculture (USDA). The funders
551 had no role in study design, data collection and interpretation, or the decision to submit the work
552 for publication. The findings and conclusions in this publication are those of the authors and
553 should not be construed to represent any official USDA or U.S. Government determination or
554 policy. USDA is an equal opportunity provider and employer.

555

556 Author order of the first three and last two authors were based on effort. The remaining authors
557 were listed in reverse alphabetical order. KV designed the research, performed the analysis, and
558 wrote the paper. NP, MK, and IP performed some analyses, contributed to interpretation, and
559 edited the paper. NP and DN developed analytical pipelines and the RShiny app. DL, GT, JZ,
560 TA, MZ, CC and DH contributed to research design, results interpretation, and manuscript
561 editing.

562

563

564 **References**

565

566

567 1. Perez AM, Linhares DCL, Arrude AG, VanderWaal K, Machado G, Vilalta C, Sanhueza
568 JM, Torrison J, Torremorell M, Corzo CA. 2019. Individual or Common Good? Voluntary Data
569 Sharing to Inform Disease Surveillance Systems in Food Animals. *Frontiers in Veterinary
570 Science* 6.

571 2. MSHMP. 2024. PRRS cumulative incidence (last updated April 2024).

572 <https://mshmp.umn.edu/reports#Charts>. Morrison Swine Health Monitoring Project April,
573 2024.

574 3. Holtkamp DJ, Kliebenstein JB, Zimmerman JJ, Neumann E, Rotto H, oder TK, Wang C,
575 Yeske P, Mowrer CL, Haley C. 2012. Economic Impact of Porcine Reproductive and
576 Respiratory Syndrome Virus on U.S. Pork Producers. *Iowa State University Animal Industry
577 Report* 9.

578 4. Yim-im W, Anderson TK, Paploski IAD, Vanderwaal K, Gauger P, Krueger K, Shi M,
579 Main R, Zhang JQ, Chao DY. 2023. Refining PRRSV-2 genetic classification based on global
580 ORF5 sequences and investigation of their geographic distributions and temporal changes.
581 *Microbiology Spectrum* 11:e02916-23.

582 5. Paploski IAD, Pamornchainavakul N, Makau DN, Rovira A, Corzo CA, Schroeder DC,
583 Cheeran MCJ, Doeschl-Wilson A, Kao RR, Lycett S, VanderWaal K. 2021. Phylogenetic
584 Structure and Sequential Dominance of Sub-Lineages of PRRSV Type-2 Lineage 1 in the
585 United States. *Vaccines* 9:608.

586 6. Meng XJ. 2000. Heterogeneity of porcine reproductive and respiratory syndrome
587 virus: implications for current vaccine efficacy and future vaccine development. *Vet
588 Microbiol* 74:309-29.

589 7. Kikuti M, Paploski IAD, Pamornchainavakul N, Picasso-Risso C, Schwartz M, Yeske P,
590 Leuwerke B, Bruner L, Murray D, Roggow BD, Thomas P, Feldmann L, Allerson M, Hensch M,
591 Bauman T, Sexton B, Rovira A, VanderWaal K, Corzo CA. 2021. Emergence of a New Lineage
592 1C Variant of Porcine Reproductive and Respiratory Syndrome Virus 2 in the United States.
593 *Frontiers in Veterinary Science* 8.

594 8. van Geelen Albert GM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA, Miller
595 LC, Kulshreshtha V, Buckley AC, Brockmeier SL, Zhang J, Gauger PC, Harmon KM, Faaberg
596 KS. 2018. Porcine reproductive and respiratory disease virus: Evolution and recombination
597 yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. *Virology* 513:168-179.

598 9. Rawal G, Almeida MN, Gauger PC, Zimmerman JJ, Ye F, Rademacher CJ, Armenta
599 Leyva B, Munguia-Ramirez B, Tarasiuk G, Schumacher LL, Aljets EK, Thomas JT, Zhu JH,
600 Trexel JB, Zhang J. 2023. In Vivo and In Vitro Characterization of the Recently Emergent
601 PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates.
602 *Viruses* 15.

603 10. Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, Schroeder
604 DC, VanderWaal K. 2019. Temporal Dynamics of Co-circulating Lineages of Porcine
605 Reproductive and Respiratory Syndrome Virus. *Frontiers in Microbiology* 10.

606 11. VanderWaal K. 2024. Surprising but true: PRRSV one of the most sequenced viruses
607 in the world, *on National Hog Farmer*. <https://www.nationalhogfarmer.com/livestock-management/surprising-but-true-prrsv-one-of-the-most-sequenced-viruses-in-the-world>.
608 Accessed

610 12. Wesley RD, Mengeling WL, Lager KM, Clouser DF, Landgraf JG, Frey ML. 1998.
611 Differentiation of a porcine reproductive and respiratory syndrome virus vaccine strain from
612 North American field strains by restriction fragment length polymorphism analysis of ORF
613 5. *J Vet Diagn Invest* 10:140-4.

614 13. Murtaugh MP, Stadejek T, Abrahante JE, Lam TT, Leung FC. 2010. The ever-expanding
615 diversity of porcine reproductive and respiratory syndrome virus. *Virus Res* 154:18-30.

616 14. Cha SH, Chang CC, Yoon KJ. 2004. Instability of the restriction fragment length
617 polymorphism pattern of open reading frame 5 of porcine reproductive and respiratory
618 syndrome virus during sequential pig-to-pig passages. *J Clin Microbiol* 42:4462-4467.

619 15. VanderWaal K, Pamornchainavakul N, Kikuti M, Linhares D, Trevisan G, Zhang J,
620 Anderson TK, Zeller M, Rossow S, Holtkamp DJ, Makau DN, Corzo CA, Paploski IAD. 2024.
621 Phylogenetic-based methods for fine-scale classification of PRRSV-2 ORF5 sequences: a

622 comparison of their robustness and reproducibility. bioRxiv
623 doi:10.1101/2024.05.13.593920:2024.05.13.593920.

624 16. SDRS. 2024. PRRSV genotyping dashboard: RFLP and Lineages (accessed April
625 2024). <https://fieldepi.org/domestic-swine-disease-monitoring-program/>. Swine Disease
626 Reporting System May, 2024.

627 17. Kikuti M, Paploski IAD, Pamornchainavakul N, Mellini M, Yue X, Vadnais S, Baker J,
628 Herrera da Silva J, Wagner M, Kurt J, Schwartz M, Rossow S, Corzo C, VanderWaal K. 2024.
629 Monitoring the detection of PRRSV variant 1H.18 (last updated May 10, 2024).
630 <https://mshmp.umn.edu/sites/mnshmp.umn.edu/files/2024-05/SHMP%202023I24.43%20%5BMonitoring%20PRRS%20Variant%5D2.pdf>. Morrison
631 Swine Health Monitoring Project Science Page May 2024.

632 18. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
633 Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference
634 and Model Choice Across a Large Model Space. *Systematic Biology* 61:539-542.

635 19. Murtaugh M. Use and interpretation of sequencing in PRRSV control programs, p. *In*
636 (ed),

637 20. Shi M, Lam TT, Hon CC, Murtaugh MP, Davies PR, Hui RK, Li J, Wong LT, Yip CW, Jiang
638 JW, Leung FC. 2010. Phylogeny-based evolutionary, demographical, and geographical
639 dissection of North American type 2 porcine reproductive and respiratory syndrome
640 viruses. *J Virol* 84:8700-11.

641 21. Niederwerder MC, Jaing CJ, Thissen JB, Cino-Ozuna AG, McLoughlin KS, Rowland
642 RRR. 2016. Microbiome associations in pigs with the best and worst clinical outcomes
643 following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV)
644 and porcine circovirus type 2 (PCV2). *Vet Microbiol* 188:1-11.

645 22. Lough G, Rashidi H, Kyriazakis I, Dekkers JCM, Hess A, Hess M, Deeb N, Kause A,
646 Lunney JK, Rowland RRR, Mulder HA, Doeschl-Wilson A. 2017. Use of multi-trait and
647 random regression models to identify genetic variation in tolerance to porcine reproductive
648 and respiratory syndrome virus. *Genet Sel Evol* 49:37.

649 23. Stoian AMM, Rowland RRR. 2019. Challenges for Porcine Reproductive and
650 Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions
651 with CD163 and Targets of Virus Neutralization. *Vet Sci* 6.

652 24. Popescu LN, Trible BR, Chen N, Rowland RRR. 2017. GP5 of porcine reproductive
653 and respiratory syndrome virus (PRRSV) as a target for homologous and broadly
654 neutralizing antibodies. *Vet Microbiol* 209:90-96.

655 25. Makau D, N., Prieto C, Martínez-Lobo Francisco J, Paploski IAD, VanderWaal K. 2022.
656 Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of
657 Machine Learning. *Microbiology Spectrum* 0:e04085-22.

658 26. Kim WI, Kim JJ, Cha SH, Wu WH, Cooper V, Evans R, Choi EJ, Yoon KJ. 2013.
659 Significance of genetic variation of PRRSV ORF5 in virus neutralization and molecular
660 determinants corresponding to cross neutralization among PRRS viruses. *Vet Microbiol*
661 162:10-22.

662 27. Kikuti M, Sanhueza J, Vilalta C, Paploski IAD, VanderWaal K, Corzo CA. 2021. Porcine
663 reproductive and respiratory syndrome virus 2 (PRRSV-2) genetic diversity and occurrence

665 of wild type and vaccine-like strains in the United States swine industry. *PLoS one*
666 16:e0259531.

667 28. Young C, Meng S, Moshiri N. 2022. An Evaluation of Phylogenetic Workflows in Viral
668 Molecular Epidemiology. *Viruses*. 14(4):doi:10.3390/v14040774.

669 29. Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version
670 7: Improvements in Performance and Usability. *Molecular Biology and Evolution* 30:772-
671 780.

672 30. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
673 Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference
674 in the Genomic Era. *Mol Biol Evol* 37:1530-1534.

675 31. Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. 2017. GGTREE: an R package for
676 visualization and annotation of phylogenetic trees with their covariates and other
677 associated data. *Methods in Ecology and Evolution* 8:28-36.

678 32. Balaban M, Moshiri N, Mai U, Jia X, Mirarab S. 2019. TreeCluster: Clustering
679 biological sequences using phylogenetic trees. *PLOS ONE* 14:e0221068.

680 33. O'Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, Colquhoun R, Ruis
681 C, Abu-Dahab K, Taylor B, Yeats C, du Plessis L, Maloney D, Medd N, Attwood SW,
682 Aanensen DM, Holmes EC, Pybus OG, Rambaut A. 2021. Assignment of epidemiological
683 lineages in an emerging pandemic using the pangolin tool. *Virus Evolution* 7:veab064.

684 34. Kuhn M. 2008. Building Predictive Models in R Using the caret Package. *Journal of*
685 *Statistical Software* 28:1 - 26.

686 35. Trevisan G, Linhares LCM, Crim B, Dubey P, Schwartz KJ, Burrough ER, Main RG,
687 Sundberg P, Thurn M, Lages PTF, Corzo CA, Torrison J, Henningson J, Herrman E, Hanzlicek
688 GA, Raghavan R, Marthaler D, Greseth J, Clement T, Christopher-Hennings J, Linhares DCL.
689 2019. Macroepidemiological aspects of porcine reproductive and respiratory syndrome
690 virus detection by major United States veterinary diagnostic laboratories over time, age
691 group, and specimen. *Plos One* 14.

692 36. Trevisan G, Sharma A, Gauger P, Harmon KM, Zhang JQ, Main R, Zeller M, Linhares
693 LCM, Linhares DCL. 2021. PRRSV2 genetic diversity defined by RFLP patterns in the United
694 States from 2007 to 2019. *Journal of Veterinary Diagnostic Investigation* 33:920-931.

695 37. Anderson TK, Inderski B, Diel DG, Hause BM, Porter EG, Clement T, Nelson EA, Bai J,
696 Christopher-Hennings J, Gauger PC, Zhang J, Harmon KM, Main R, Lager KM, Faaberg KS.
697 2021. The United States Swine Pathogen Database: integrating veterinary diagnostic
698 laboratory sequence data to monitor emerging pathogens of swine. *Database*
699 2021:baab078.

700 38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
701 Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
702 Perrot M, Duchesnay E. 2011. Scikit-learn: Machine Learning in Python. *Journal of Machine*
703 *Learning Research* 12:2825-2830.

704