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Predicting the functions of proteins can greatly accelerate bio-
logical discovery and applications, where deep learning meth-
ods have recently shown great potential. However, these meth-
ods predominantly predict protein functions as discrete cate-
gories, which fails to capture the nuanced and complex nature
of protein functions. Furthermore, existing methods require
the development of separate models for each prediction task, a
process that can be both resource-heavy and time-consuming.
Here, we present ProteinChat, a versatile, multi-modal large
language model that takes a protein’s amino acid sequence as
input and generates comprehensive narratives describing its
function. ProteinChat is trained using over 1,500,000 (protein,
prompt, answer) triplets curated from the Swiss-Prot dataset,
covering diverse functions. This novel model can universally
predict a wide range of protein functions, all within a single,
unified framework. Furthermore, ProteinChat supports inter-
active dialogues with human users, allowing for iterative re-
finement of predictions and deeper exploration of protein func-
tions. Our experimental results, evaluated through both human
expert assessment and automated metrics, demonstrate that
ProteinChat outperforms general-purpose LLMs like GPT-4,
one of the flagship LLMs, by over ten-fold. In addition, Pro-
teinChat exceeds or matches the performance of task-specific
prediction models.
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Introduction
Proteins, composed of amino acid sequences that determine
their unique structures and functions, are fundamental
molecules essential for life-sustaining processes. Under-
standing protein functions and properties (collectively
referred to as functions in this manuscript for simplicity) is
crucial for advancing biological knowledge and driving in-
novations in drug discovery, disease treatment, and synthetic
biology (1–5). Predicting protein functions is a complex
and challenging task due to the inherent diversity and
intricate nature of proteins (6–10). Recent advancements
in deep learning have demonstrated significant potential in
improving the accuracy and efficiency of protein function
prediction (11–18). By leveraging extensive datasets of
protein sequences, structures, and annotated functions,
deep learning models can discern intricate patterns and
relationships that often elude traditional computational

methods. The success of tools like CLEAN (17), which
predicts enzyme functions with superior accuracy compared
to traditional methods like BLASTp (19), exemplifies the
transformative impact of deep learning in the field.

However, existing deep learning-based methods for
protein function prediction face significant limitations that
prevent them from fully capturing the diverse range of
protein functions. These methods typically predict protein
functions as discrete categories (7, 12, 13, 16–18). This
oversimplification fails to reflect the complex and nuanced
nature of proteins which often perform multiple functions,
engage in various interactions, and participate in intricate
biological pathways. Additionally, existing methods ne-
cessitate the development of specialized models for each
prediction task, resulting in a fragmented approach that
lacks efficiency and scalability (8, 13, 15–18). The absence
of a unified model capable of concurrently handling various
prediction tasks limits a holistic understanding of protein
functions. This fragmentation also increases the complexity
and resource requirements for research and development, as
developing, training, and maintaining multiple specialized
models is significantly more challenging than managing a
single, versatile model.

Large language models (LLMs) (20–22) hold signifi-
cant potential for addressing the limitations of current deep
learning-based protein function prediction methods. These
LLM models excel in generating high-quality text, making
them well-suited for describing complex protein functions
through comprehensive narratives. Furthermore, a single,
pretrained LLM can perform a wide array of prediction tasks
using task-specific user instructions or questions described
in natural language (referred to as prompts) (23, 24), elim-
inating the necessity of training separate models for each
task. Furthermore, LLMs facilitate interactive dialogues
with human users (25, 26), enabling iterative refinement of
generated textual predictions.

We developed ProteinChat, a multi-modal LLM that
integrates two modalities - protein sequences and text.
It takes an amino acid sequence and a prompt as inputs,
and generates a detailed textual prediction of the protein’s
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function. Unlike traditional methods that predict protein
functions as discrete categories, ProteinChat generates
coherent and comprehensive texts to predict the multi-
faceted functions of proteins, capturing the detailed roles,
interactions, and biological context of proteins in a manner
akin to human expert descriptions. Moreover, ProteinChat
enables the use of diverse prompts for various prediction
tasks that cover a wide range of protein functions and
properties within this single tool, thereby streamlining
the whole protein function exploration process without
requiring new model training or extensive maintenance.
Significantly outperforming current methods including
GPT-4 (24), ProteinChat can make accurate predictions
across a broad spectrum of protein functions, which were
evaluated using multiple metrics including assessments by
human experts.

Results
ProteinChat overview. ProteinChat accepts two types
of inputs simultaneously: the amino acid sequence of a
protein and a prompt tailored for easy, human-like dia-
logues with ProteinChat. For example, when given the
prompt “describe the functions of this protein”, Protein-
Chat generates a detailed free-form text describing the
protein’s various functions (Fig. 1a). Besides free-form
prediction, ProteinChat can also predict specific function
categories. For example when prompted with “What
type of enzyme is this? Choose from [a list of categories]”,
ProteinChat chooses a specific answer from the list (Fig. 1a).

ProteinChat consists of three key modules: a protein
encoder, an LLM, and an adaptor that bridges the two
(Fig. 1b). The protein encoder processes the amino acid
sequence of the input protein, generating a representation
vector for each amino acid, which captures the molecular
characteristics of that amino acid. The adaptor aligns these
representations with the LLM by transforming them into a
format that is compatible with the LLM’s input. Once this
alignment is achieved, the LLM integrates the amino acid
sequence with the prompt, and then utilizes this combined
input to generate a textual prediction of the protein’s
function. We utilized xTrimoPGLM (27), a state-of-the-art
protein language model, as the protein encoder, and Vicuna-
13B (25), fine-tuned from Llama-2 (21), as the LLM of
ProteinChat.

To train the ProteinChat model, we assembled a com-
prehensive dataset comprising (protein, prompt, answer)
tripletts sourced from the Swiss-Prot database (28),
the expertly curated section of UniProt Knowledgebase
(UniProtKB) (29). The dataset contains approximately
1.5 million triplets from 523,994 proteins. In each triplet,
the protein and prompt serve as inputs to the ProteinChat
model, while the answer represents the desired output of
ProteinChat. The answer can be either a detailed free-form
text describing protein functions or a UniProtKB keyword

representing a specific function category. This dataset com-
prehensively encompasses a diverse taxonomy of proteins
and their various functions (Fig. 1c).

For the pretrained LLM (Vicuna-13B), we applied Low-
Rank Adaptation (LoRA) (30) for fine-tuning. Specifically,
a low-rank update matrix was added to each pretrained
weight matrix. During fine-tuning, only the low-rank
matrix was updated, while the original pretrained weight
matrices remain fixed. For the pretrained protein encoder
(xTrimoPGLM), full fine-tuning was utilized: all the
pretrained weights were updated. The adaptor was trained
from scratch. The trainable weights were optimized by min-
imizing the negative log-likelihood loss between the input
data (proteins and prompts) and the corresponding output
answers. Further details on the training of ProteinChat are
provided in Methods.

ProteinChat’s free-form predictions vastly outperform
GPT-4. Using the prompt “please describe the function of
this protein”, ProteinChat generated free-form text predic-
tions for the functions of 200 randomly selected proteins
from Swiss-Prot. These proteins were not included in the
training data. The random selection process resulted in a
diverse set of proteins with a wide range of functions. The
generated textual predictions offer more specific details
about protein functions compared to discrete categories
like Enzyme Commission (EC) numbers (17) and Gene
Ontology terms (31, 32). As mentioned before, Swiss-Prot
includes a textual description of each protein’s function,
which was used as ground truth in our evaluation. For
a comparative analysis between ProteinChat and GPT-4
(a flagship LLM), we utilized GPT-4 to predict protein
functions using two types of inputs: amino acid sequences
as strings and protein names. The prompts used for GPT-4
are provided in Methods. We performed a human assess-
ment of the predictions generated by both ProteinChat and
GPT-4, where experts specializing in proteins compared
the predictions with the corresponding ground truth. They
assigned scores of 2, 1, 0, or Ambiguous to each prediction.
A score of 2 is given when the prediction completely
matches, partially matches, adds accurate details to, or
provides a credible alternative to the ground truth. A score
of 1 is assigned when the prediction is partially correct
but contains inaccuracies compared to the ground truth.
A score of 0 is assigned when a prediction is completely
inaccurate or irrelevant to the ground truth. The Ambiguous
score is used when it lacks sufficient information to make
a comparison between the prediction and the ground truth.
A detailed description of the assessment rubric can be
found in Extended Data Table 2. Fig. 2c provides examples
illustrating how these scores were assigned.

ProteinChat achieved an average human assessment
score of 1.48, significantly outperforming GPT-4, which had
a score of 0.14, by more than ten times. The distribution of
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Fig. 1 | ProteinChat is a multi-modal LLM capable of predicting protein functions represented either in free-form text or as specific categories. a, ProteinChat
enables versatile prediction of protein functions, allowing users to submit various requests in flexible natural language (known as prompts). By using task-specific prompts,
ProteinChat can perform a variety of prediction tasks within a single framework without changing model parameters. ProteinChat facilitates interactive dialogues with users
by retaining the conversation history, including prompts and corresponding predictions, allowing for in-depth analysis of a specific protein over multiple interactions. b, Model
architecture of ProteinChat. It takes the amino acid sequence of a protein and a prompt as inputs, then generates a prediction in natural language. ProteinChat consists
of a protein encoder that learns representation vectors for amino acids (AAs), an adaptor that transforms these representations into a format compatible with LLMs, and an
LLM that generates the prediction based on the AAs’ representations and the prompt. c, An extensive dataset, comprising proteins from various taxonomic groups, was
constructed to train ProteinChat. In the left pie chart, the inner ring represents superkingdoms, while the outer ring represents kingdoms. ProteinChat was trained to make
two types of predictions: one generates free-form textual descriptions, and the other predicts specific function categories. The pie chart on the right displays the relative
proportions of the training data devoted to these two types.
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Fig. 2 | ProteinChat accurately predicts protein functions expressed in textual descriptions and outperforms GPT-4. a, ProteinChat significantly outperforms GPT-4
in human expert assessments, by more than ten-fold. Experts assessed predictions on a 0-2 scale: 2 for completely correct, 1 for partially correct, and 0 for incorrect.
The average scores are on the left, with the distribution of scores on the right. Like ProteinChat, GPT-4 uses amino acid sequences of proteins as input. b, In automated
evaluation metrics including SimCSE, BLEU-1, and BLEU-2, ProteinChat demonstrates significantly superior performance compared to GPT-4 which uses amino acid
sequences or protein names as inputs. c, Examples of predictions generated by ProteinChat and GPT-4 demonstrate that ProteinChat’s predictions are more accurate and
informative than those of GPT-4.

scores further highlights the substantial difference between
the two models. For ProteinChat, the percentage of proteins
that received scores of 2, 1, 0, and Ambiguous were 63%,
22%, 13%, and 2%, respectively. In comparison, GPT-4’s
corresponding percentages were 4.5%, 4.5%, 91%, and 0%.

In addition to human assessment, we employed two widely
used automated metrics, SimCSE (33) and BLEU (34),
to assess the similarity between predicted and ground
truth functions for both ProteinChat and GPT-4. SimCSE

assesses semantic similarity by comparing the contextual
embeddings of texts, generating scores ranging from -1 to 1,
with higher values indicating stronger semantic similarity.
BLEU, which scores between 0 and 1 with higher values
indicating better performance, assesses lexical similarity
by comparing n-grams. ProteinChat achieved average
SimCSE, BLEU-1, and BLEU-2 scores of 0.85, 0.55, and
0.51 respectively, substantially outperforming GPT-4, which
scored 0.42, 0.07, and 0.01 with protein sequences as
input, and 0.74, 0.18, and 0.08 with protein names as input
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(Fig. 2b).

Fig. 2c and Extended Data Fig. 5 present the predic-
tions made by ProteinChat and GPT-4 for some randomly
selected proteins, with human expert assessments. These
proteins have widely distinct functions and properties. Pro-
teinChat’s predictions consistently surpass those of GPT-4
for these proteins. Specifically, the predictions made by
GPT-4 were significantly non-specific, uninformative, and
inaccurate. For example, it responded with statements like,
“without access to databases or additional information, I
cannot provide a detailed description of the specific function
or structure of the protein”. In contrast, the predictions made
by ProteinChat accurately describe protein functions with
rich detail and specificity, closely aligning with the ground
truth. For example, ProteinChat’s prediction for protein
P37339 received a human assessment score of 2 (“totally
correct”). ProteinChat accurately identified the protein’s
catalytic functions and specified that its catalytic activity
involves the dehydrogenation of L-2-hydroxyglutarate,
which aligns very well with the ground truth. In contrast, the
response from GPT-4 is uninformative. ProteinChat’s pre-
diction for protein Q8LGZ9 received a score of 1 (“partially
correct”): it accurately predicted that the protein catalyzes
the 2-beta-hydroxylation of gibberellins (GAs); however,
it incorrectly predicted that the protein also catalyzes the
2-beta-hydroxylation of abscisic acid (ABA). Despite this
error, the prediction is still significantly more informative
than that of GPT-4, which provided no useful insights.
Notably, among ProteinChat’s predictions scored as 1, 86%
accurately identified the core function but lacked precision
on specific details. For example, ProteinChat correctly
identified the function or reaction but misattributed the
substrate or location, or pinpointed the biological process
but failed to specify the involved protein.

Furthermore, the predictions in Fig. 2c illustrate that,
unlike previous methods that predict protein functions as
discrete categories, ProteinChat generates cohesive and thor-
ough natural language narratives about the diverse functions
of proteins. Previous methods often fall short in capturing
the complexity and nuance of protein functions, as they
reduce these functions to simplistic categories. ProteinChat,
however, generates rich, detailed descriptions that mirror
the comprehensive analyses provided by human experts.
This capability allows for a more holistic understanding of
proteins, encompassing their intricate roles, interactions,
and biological significance. By utilizing large language
models, ProteinChat describes the multifaceted nature of
proteins in a way that is both accessible and scientifically
rigorous. This method enhances our understanding of
individual proteins and facilitates insights into the broader
biological systems they operate within. The results from
human expert assessments, automated evaluations, and
qualitative examples all clearly demonstrate that Pro-
teinChat significantly outperforms GPT-4. This superior

performance is primarily due to ProteinChat’s enhanced
ability in interpreting a fundamental language of biology,
i.e., protein sequences (translated from DNA sequences). As
a multi-modal LLM, ProteinChat is specifically designed to
understand the amino acid sequences of proteins through a
specialized Protein Language Model (PLM) and articulates
its understanding via a comprehensive LLM. The PLM is
specifically trained on vast datasets of protein sequences,
allowing it to capture intricate biochemical relationships
and patterns that are essential for accurate protein function
prediction. This specialized training enables ProteinChat
to offer precise annotations, identify functional domains,
and predict potential interactions with high accuracy.
Additionally, ProteinChat’s ability to integrate and syn-
thesize data from various sources, including structural
databases and functional annotations, further enhances its
predictive capabilities. In contrast, GPT-4 treats amino acid
sequences merely as strings of letters, relying on a general
textual language model for interpretation, which results
in a markedly inferior ability in comprehending proteins.
Despite its impressive linguistic prowess, GPT-4 lacks the
domain-specific training and the multi-modal capabilities
that ProteinChat possesses. GPT-4’s general text-based
approach to interpreting amino acid sequences means it
can miss subtle but crucial biochemical nuances, leading
to less reliable predictions. Although GPT-4’s predictions
based on protein names were more informative, they are
still less specific than those of ProteinChat. It is worth
noting that protein names often reveal real protein functions,
giving GPT-4 an unfair advantage compared to ProteinChat.
In theory, GPT-4 (using protein name) can only work for
well-known proteins with extensive, well-documented
literature, which was presumably used to train GPT-4. It
cannot respond well to novel or undocumented proteins, as
there was no prior literature to feed its training. These novel
proteins are the bedrock of future scientific discoveries, thus
marking a significant limitation of general-purpose LLMs in
driving innovation in proteomics. In contrast, ProteinChat
is built upon amino acid sequences, a more fundamental
feature of proteins, enabling it to understand novel proteins
and predict their functions accurately. We also utilized other
metrics to evaluate ProteinChat, including assessments by
GPT-4 (Extended Data Fig. 2a) and biological term accuracy
(Extended Data Fig. 2b), where ProteinChat demonstrated
superior performance. Visualizations (Extended Data Fig. 3)
demonstrate that ProteinChat effectively groups functionally
similar proteins together in its protein representation space,
facilitating the accurate prediction of protein functions.

ProteinChat excels in predicting discrete function cat-
egories with high accuracy. In some databases, certain
protein functions are organized into discrete categories. For
example, in UniProtKB, the catalytic functions of enzymes
are categorized as hydrolases, oxidoreductases, lyases, and
others. While ProteinChat is designed as a general-purpose
tool for generating detailed and nuanced descriptions of a
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Fig. 3 | ProteinChat demonstrates exceptional accuracy in specific-category predictions, significantly outperforming GPT-4 and specialized classifiers. a, In five
specific prediction tasks curated from UniProt, including catalytic function prediction, ligand binding prediction, coenzyme-enzyme interaction prediction, biological process
prediction, and cellular component prediction, where protein functions are represented as discrete categories, ProteinChat achieves significantly better accuracy, macro F1,
and weighted F1 scores compared to GPT-4 and specialized classifiers. b, In predicting protein functions represented using Gene Ontology (GO) categories, ProteinChat
significantly outperforms two state-of-the-art GO classifiers - DeepGOPlus and NetGO 3.0.

protein’s functions, it can also be customized for specific
protein function prediction tasks where functions are cate-
gorized discretely. This can be achieved by appropriately
adjusting the prompts. We applied ProteinChat to five
specific protein function/property prediction tasks curated
from UniProtKB, including catalytic function prediction,
ligand binding function prediction, coenzyme-enzyme inter-
action prediction, biological process prediction, and cellular
component compartmentalization prediction. These tasks
encompass a broad spectrum of protein functions/properties
(Methods). It is important to note that these prediction tasks
are not mutually exclusive and can overlap. For instance,
a particular catalytic function might involve specific ligand
binding, or a catalytic function could be a part of a broader
biological process.

To accomplish these tasks, we designed task-specific
prompts (Methods) for ProteinChat, following a similar
style. For enzyme catalytic function prediction, the prompt
is “What type of enzyme is this? Choose from [a list of
categories]”. For biological process prediction, the prompt

was: “What biological process is this protein involved in?
Choose from [a list of categories]”. ProteinChat then selects
a specific answer from the given list of categories. The
discrete nature of these categories allowed us to objectively
evaluate ProteinChat’s performance in comparison to other
methods. We employed accuracy, macro F1 score, and
weighted F1 score as evaluation metrics, with F1 scores
specifically accounting for both false positives and false
negatives. We also developed specialized classifier models,
each designed to perform a specific prediction task, to
evaluate how well ProteinChat, as a more general-purpose
model, compares to these task-specific models.

Across all five prediction tasks, ProteinChat demon-
strated near-optimal performance (Fig. 3a). It achieved
accuracy, macro F1, and weighted F1 scores within the
range of 0.95 to 0.99. In contrast, GPT-4’s performance
was significantly lower when provided with either a protein
name or an amino acid sequence as input. Additionally,
ProteinChat either outperformed or matched the results
of specialized classifiers, which is particularly remarkable
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Give the following protein: <protein>(embedding)IFFFV-
FAC......</protein>. Please answer my questions. Tell 
me about this protein.

Has antibacterial activity.

What specific antibacterial activity?

Has antibacterial activity against several Gram-positive 
and Gram-negative bacteria.

Give the following protein: <protein>(embedding)MESV-
EMNN......</protein>. Please answer my questions. 
Briefly summarize the functionality of this protein.

This protein is involved in pre-mRNA splicing and plays 
a role in alternative splicing.

Which metal is this protein capable of binding?

This protein is capable of binding zinc ions.

Give the following protein: <protein>(embedding)MART-
KQT......</protein>. Please answer my questions. Please 
provide a detailed description of the protein.

This protein, known as the histone protein, is a core 
component of nucleosomes and plays a central role in 
regulating DNA accessibility and various cellular 
processes.

Can you elaborate on the specific type of histone protein 
described, its unique properties, and its function in the 
regulation of DNA accessibility within cells?

The histone protein is a nucleosome-forming protein 
that plays a central role in regulating DNA accessibility 
and various cellular processes. As the core component 
of nucleosomes, the histone protein is involved in 
transcription regulation, DNA replication, DNA repair, 
and chromosomal stability, among other cellular 
processes. Histone proteins are subject to post-transla-
tional modifications, such as acetylation, methylation, 
phosphorylation, and ubiquitination, which regulate 
nucleosome structure and DNA accessibility. Additional-
ly, histone variants and non-histone proteins are 
incorporated into nucleosomes, further modulating 
nucleosome structure and function.

Protein Q9U281 (Histone H3.3 type 2) Protein Q9XZG9 (Cecropin-A)

Protein Q9LU44 (Splicing factor-like protein 1)

Fig. 4 | Interactive dialogues between ProteinChat and human users about proteins Q9U281, Q9XZG9, and Q9LU44.

given that ProteinChat employs a single model to handle all
these prediction tasks, whereas the specialized classifiers
are individually trained for each different task. Developing a
specialized model for each prediction task involves extensive
training data collection, model training, and hyperparameter
tuning, which is time-consuming, resource-intensive, and
requires significant domain expertise to ensure accuracy
and reliability. Additionally, specialized models cannot
easily adapt to new or related tasks without undergoing the
entire development process again. In contrast, ProteinChat
leverages a single model to perform a variety of protein
function prediction tasks by simply modifying the prompts,
thereby eliminating the need for developing separate models
for each task. This enhances efficiency, flexibility, and
scalability.

Next, we utilized ProteinChat to predict protein func-
tions/properties represented by discrete Gene Ontology
(GO) (31) categories and compared its performance against
leading GO classifiers, including DeepGOPlus (35) and
NetGO 3.0 (36). Gene Ontology (GO) is a database that
provides a hierarchical structure of categories widely used
for annotating protein functions/properties. ProteinChat
significantly outperforms DeepGOPlus and NetGO 3.0 in
predicting catalytic functions, biological processes, and
cellular components (Fig. 3b). For example, ProteinChat
achieves a macro F1 score of 0.98 in predicting biological
processes, significantly outperforming DeepGOPlus and
NetGO, which have scores of 0.57 and 0.64, respectively.
ProteinChat outperforms both DeepGOPlus and NetGO

due to its ability in retaining and processing the entire
sequence of amino acid representations using a protein
language model. This ability allows ProteinChat to capture
intricate relationships, positional context, and long-range
dependencies within the sequence, which are essential for
accurate protein function/properties prediction. In contrast,
NetGO 3.0 averages the representations into a single vector,
losing important sequence information and contextual
relationships. DeepGOPlus utilizes convolutional neural
networks (CNNs) to learn representations for amino acids,
which falls short in capturing long-range dependency be-
tween amino acids when compared to the Transformer (37)
based protein encoder employed in ProteinChat.

ProteinChat enables interactive and iterative predic-
tions of protein functions. ProteinChat facilitates interac-
tive dialogues between users and the system. After obtain-
ing the initial predictions from ProteinChat, users can input
more detailed and specific prompts to further refine and ex-
pand these predictions. Fig. 4 presents three example dia-
logues between ProteinChat and human users, correspond-
ing to proteins Q9U281, Q9XZG9, and Q9LU44 in UniPro-
tKB. The dialogue on the left pertains to Q9U281, where the
user inquires about the general function of this protein. Pro-
teinChat identifies it as a histone protein involved in mod-
ulating DNA accessibility. Subsequently, the user inquires
about the specific functions of this histone protein, and Pro-
teinChat provides detailed predictions, highlighting the pro-
tein’s roles in transcription regulation and post-translational
modifications. The top right dialogue pertains to Q9XZG9,
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where ProteinChat initially predicts that the protein has an-
tibacterial function. Based on the user’s further prompt, Pro-
teinChat then accurately predicts the protein can inhibit the
growth of both Gram-positive and Gram-negative bacteria.
The bottom right example focuses on Q9LU44. When in-
quired about general functions, ProteinChat predicts that the
protein is involved in pre-mRNA splicing. Upon further in-
quiry into specific molecular functions, such as metal bind-
ing, ProteinChat predicts that the protein binds zinc ions.
This dynamic interaction between ProteinChat and users fa-
cilitates continuous, in-depth analysis of the same protein,
in contrast to previous methods that offer only single-shot
predictions. Users can delve deeper into the specifics of pro-
tein functions, exploring intricate details and nuances that
single-shot predictions might miss. This ensures that the pre-
dictions are not only more accurate but also more compre-
hensive, uncovering complex protein behaviors and mecha-
nisms.

Discussion
ProteinChat illustrates two important concepts. Firstly, the
fundamental language of biology - amino acid sequences -
encodes highly rich information about underlying biolog-
ical processes. This information is both computable and
predictive, suggesting that this language can be harnessed
to develop powerful predictive models in other areas
of biology, as demonstrated by ProteinChat. Secondly,
achieving a balance is crucial when designing deep learning
models for biological applications. While highly specialized
models like DeepGo or NetGo are effective in specific tasks,
they may overlook the complex, multi-tasking nature of
proteins that are involved in multiple biological pathways.
On the other hand, overly generalized models, such as
GPT-4, might lack the precision needed for accurate,
domain-specific predictions. ProteinChat strikes a balance
between these extremes, offering broad generalization
across proteomics while maintaining high accuracy and
specificity, as demonstrated in Fig. 2 and 3.

ProteinChat is designed to minimize the need for con-
tinuous user training while allowing for periodic updates
and enhancements by us, the developers. For example, we
plan to integrate more advanced versions of Llama (e.g.,
Llama-3 (38)) as the textual LLM component of Protein-
Chat, improving the quality of human-like interactions.
Additionally, incorporating newer versions of xTrimoPGLM
will further enhance ProteinChat’s accuracy and specificity.
These planned improvements will ensure that ProteinChat
remains both competitive and up-to-date. Furthermore,
ProteinChat’s versatility enables seamless integration with
other deep-learning models, such as those based on struc-
ture prediction like AlphaFold (39), allowing it to predict
the functions of proteins in the context of their 3D structures.

Some predictions made by ProteinChat, currently la-
beled as incorrect by human experts, may actually uncover

previously unidentified properties and functions of these
proteins. As a result, the scores we assigned to ProteinChat
could potentially be even higher. More importantly, predic-
tions deemed incorrect might actually offer new insights or
hypotheses that warrant further experimental validation. For
many proteins, only a portion of their amino acid sequences
have been fully understood, with the remainder still elusive
and sometimes labeled as “junk” - sequences that seem-
ingly do not contribute significantly to the protein’s main
function (40). ProteinChat has the potential to shed light
on these currently uninterpretable sequences. Additionally,
large portions of proteins can consist of disordered segments
- sequences that do not fold into a stable structure (41).
Historically, these segments have often been truncated in
structural and biophysical studies, leading to incomplete
characterizations. However, recent research indicates
that these disordered segments are crucial for the phase
separation of proteins into specific cellular compartments,
where they carry out their functions (42). ProteinChat,
which can analyze the entire protein sequence, could be
particularly effective in interpreting these disordered seg-
ments and predicting their phase-separating characteristics.
This capability may already be reflected in ProteinChat’s
predictions related to cellular compartmentalization.

In conclusion, we present ProteinChat, a versatile tool
for predicting protein functions represented in text using a
multi-modal large language model. ProteinChat provides
nuanced and in-depth predictions, surpassing both general-
purpose LLMs and task-specific classifiers. Its ability in
handling various prediction tasks within a single framework
and facilitating interactive predictions allows for flexible,
comprehensive, and in-depth analysis of protein functions.
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Doğan. Learning functional properties of proteins with language models. Nature Machine
Intelligence, 4(3):227–245, 2022.

15. Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M
Castro, Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, et al. Scaffolding
protein functional sites using deep learning. Science, 377(6604):387–394, 2022.

16. Xiaogen Zhou, Wei Zheng, Yang Li, Robin Pearce, Chengxin Zhang, Eric W Bell, Guijun
Zhang, and Yang Zhang. I-tasser-mtd: a deep-learning-based platform for multi-domain
protein structure and function prediction. Nature Protocols, 17(10):2326–2353, 2022.

17. Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao.
Enzyme function prediction using contrastive learning. Science, 379(6639):1358–1363,
2023.

18. Maxat Kulmanov, Francisco J Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T
Arold, and Robert Hoehndorf. Protein function prediction as approximate semantic entail-
ment. Nature Machine Intelligence, 6(2):220–228, 2024.

19. Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

20. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:
1877–1901, 2020.

21. Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

22. Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4:
Enhancing vision-language understanding with advanced large language models. In Inter-
national Conference on Learning Representations, 2024.

23. Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

24. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

25. Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March
2023.

26. Peter Lee, Sebastien Bubeck, and Joseph Petro. Benefits, limits, and risks of gpt-4 as an
ai chatbot for medicine. New England Journal of Medicine, 388(13):1233–1239, 2023.

27. Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan,
Boyan Wang, Xin Zeng, et al. xtrimopglm: unified 100b-scale pre-trained transformer for
deciphering the language of protein. arXiv preprint arXiv:2401.06199, 2024.

28. UniProtKB. Swiss-prot dataset. https://www.uniprot.org/uniprotkb?query=
reviewed:true, 2024.

29. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic
Acids Research, 51(D1):D523–D531, 11 2022. doi: 10.1093/nar/gkac1052.

30. Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

31. Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler,
J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al.
Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25–29, 2000.

32. Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
Nucleic acids research, 47(D1):D330–D338, 2019.

33. T Gao, X Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence em-
beddings. In EMNLP 2021-2021 Conference on Empirical Methods in Natural Language
Processing, Proceedings, 2021.

34. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318, 2002.

35. Maxat Kulmanov and Robert Hoehndorf. Deepgoplus: improved protein function prediction
from sequence. Bioinformatics, 36(2):422–429, 2020.

36. Shaojun Wang, Ronghui You, Yunjia Liu, Yi Xiong, and Shanfeng Zhu. Netgo 3.0: protein
language model improves large-scale functional annotations. Genomics, Proteomics &
Bioinformatics, 21(2):349–358, 2023.

37. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

38. Meta. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024.

39. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

40. Simon C Lovell. Are non-functional, unfolded proteins (‘junk proteins’) common in the

genome? FEBS letters, 554(3):237–239, 2003.
41. Robin Van Der Lee, Marija Buljan, Benjamin Lang, Robert J Weatheritt, Gary W Daughdrill,

A Keith Dunker, Monika Fuxreiter, Julian Gough, Joerg Gsponer, David T Jones, et al.
Classification of intrinsically disordered regions and proteins. Chemical reviews, 114(13):
6589–6631, 2014.

42. Anthony A Hyman, Christoph A Weber, and Frank Jülicher. Liquid-liquid phase separation
in biology. Annual review of cell and developmental biology, 30(1):39–58, 2014.

Methods
Dataset preprocessing. We collected the amino acid se-
quences of proteins and their functions from Swiss-Prot (28),
the reviewed subset of proteins in UniProtKB (29). The
“Function” section in UniProtKB provides a textual descrip-
tion of a protein’s functions. Additionally, the “Keywords”
section offers a controlled vocabulary with a hierarchical
structure that describes various aspects of protein functions,
including activities, locations, interactions, and more. The
Swiss-Prot database within UniProtKB, which was manu-
ally curated by experts, serves as a high-quality reference
for protein functions. The data used in this study was based
on the UniProt 2023_02 version, released on May 2nd,
20231. We downloaded the metadata in JSON format and
extracted the protein functions by filtering entries where
commentType is set to “Function”. We excluded all func-
tions that contain the molecule field, indicating that the
function pertains to a subsequence of amino acids after clip-
ping rather than the entire protein sequence. This exclusion
is necessary because the protein can serve as a precursor to
various chains or peptides. UniProtKB specifies the role of
each peptide separately under distinct molecule2 entries.
As a result, functions for 2,071 proteins were excluded,
reducing the total to 523,994 proteins. In our text-based
protein function prediction study, we randomly selected 200
proteins to form the test set. For each specific prediction
task, 100 proteins were randomly chosen as the test set. The
remaining proteins were divided into a training set and a
validation set in a 9:1 ratio.

From the training proteins and their associated textual
descriptions of functions, we curated the training dataset
for ProteinChat (Extended Data Fig. 1). For each training
protein p, we created a training example represented as a
triplet (protein’s amino acid sequence, prompt, answer).
The amino acid sequence and the prompt serve as the
inputs to ProteinChat, while the answer is the expected
output. Specifically, the amino acid sequence of p serves
as the first element in the triplet, the prompt “Describe the
function of this protein” forms the second element, and the
textual description of p’s function acts as the third element.
To enhance ProteinChat’s robustness against linguistic
variations, we also employed other semantically equivalent
prompts during the training process (22). Additionally,
we generated training triplets based on UniProtKB key-
words, which are organized into a hierarchy. There are 10
first-level keywords, and we selected 4 that are relevant to

1https://www.uniprot.org/release-notes/2023-05-03-release
2https://www.uniprot.org/help/function
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Extended Data Fig. 1 | An illustration of the process used to curate (protein sequence, prompt, answer) triplets from the Swiss-Prot database. The percentages represent
the percentages of protein entries in Swiss-Prot, whose keywords cover the listed categories.
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Extended Data Table 1. Prompts linked to keywords and the number of curated triplets for each keyword.

Catalytic function
Prompt: What type of enzyme is this? Choose one from the following options:

hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase.

Function category Number of triplets UniProtKB keyword GO term
Transferase 98540 KW-0808 GO:0016740
Hydrolase 65580 KW-0378 GO:0016787
Oxidoreductase 36864 KW-0560 GO:0016491
Ligase 29379 KW-0436 GO:0016874
Lyase 26546 KW-0456 GO:0016829
Isomerase 16283 KW-0413 GO:0016853
Translocase 14708 KW-1278 -

Ligand binding
Prompt: What ligand can this protein bind to? Choose one from the following options:
magnesium, nucleotide-binding, zinc, iron, S-adenosyl-L-methionine, and manganese.

Function category Number of triplets UniProtKB keyword GO term
Nucleotide-binding 101082 KW-0547 GO:0000166
Magnesium 46675 KW-0460 -
Zinc 41464 KW-0862 -
Iron 29555 KW-0408 -
S-adenosyl-L-methionine 17332 KW-0949 -
Manganese 12067 KW-0464 -

Coenzyme-enzyme interaction
Prompt: What coenzyme does this enzyme interact with? Choose one from the following options:

nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP).

Function category Number of triplets UniProtKB keyword GO term
Nicotinamide adenine dinucleotide (NAD) 21502 KW-0520 -
Nicotinamide adenine dinucleotide phosphate (NADP) 15102 KW-0521 -

Biological process
Prompt: What biological process is this protein involved in? Choose one from the following options: molecule transport, DNA to mRNA transcription,

amino acid biosynthesis, protein biosynthesis from mRNA molecules, lipid metabolism, tRNA processing, DNA damage response, and cell cycle regulation.

Function category Number of triplets UniProtKB keyword GO term
Molecule transport 58648 KW-0813 -
DNA to mRNA transcription 32127 KW-0804 -
Amino acid biosynthesis 26272 KW-0028 GO:0008652
Protein biosynthesis from mRNA molecules 26063 KW-0648 GO:0006412
Lipid metabolism 16282 KW-0443 GO:0006629
tRNA processing 15380 KW-0819 GO:0008033
DNA damage response 14565 KW-0227 GO:0006974
Cell cycle regulation 14474 KW-0131 GO:0007049

Cellular component
Prompt: What is the cellular localization of this protein? Choose one from the following options:

cytoplasm, membrane, nucleus, secreted, mitochondrion, and plastid.

Function category Number of triplets UniProtKB keyword GO term
Cytoplasm 165882 KW-0963 GO:0005737
Membrane 116756 KW-0472 GO:0016020
Nucleus 41431 KW-0539 GO:0005634
Secreted 32360 KW-0964 GO:0005576
Mitochondrion 17206 KW-0496 GO:0005739
Plastid 15990 KW-0934 GO:0009536

protein functions, including molecular functions, binding
properties, biological processes, and cellular localization.
Furthermore, we chose 31 second-level keywords associated
with over 10,000 proteins. These keywords cover 93% of all
proteins in Swiss-Prot. Extended Data Table 1 was used to
curate training triplets from keywords. For a given protein
p associated with a keyword k, the corresponding prompt
t for k was identified from this table. For example, if the
keyword is KW-0808 (“Transferase”), the corresponding

prompt is “What type of enzyme is this? Choose one from
the following options: hydrolase, oxidoreductase, lyase,
transferase, ligase, isomerase, and translocase.” This forms
the triplet (p,t,k). On average, 2.7 triplets were curated
per protein. Extended Data Table 1 presents the number of
triplets curated from each keyword. triplets curated from
keywords related to molecular function, biological process,
and cellular localization cover 67.1%, 35.5%, and 60.8%
of all proteins, respectively. The final training dataset for
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ProteinChat was formed by combining triplets curated from
textual descriptions of functions and keywords. Similarly,
a validation set of triplets was curated from the validation
proteins.

ProteinChat model. ProteinChat employs xTrimoPGLM-
1B (27) as the protein sequence encoder and Vicuna-
13B (25) as the large language model. The xTrimoPGLM-
1B model comprises 24 Transformer (37) layers, 32
attention heads, and an embedding dimension of 2048. It
was pretrained on the Uniref90 (43) and ColabFoldDB (44)
datasets using two strategies: masked language modeling
(MLM) (45) and general language modeling (GLM) (46).
The MLM strategy enhances xTrimoPGLM-1B’s under-
standing of protein sequences, while the GLM strategy
improves its generative capabilities. Vicuna-13B, fine-tuned
from Llama2-13B (21), retains the same architecture as
Llama2-13B including 40 Transformer layers, 40 attention
heads, and an embedding dimension of 5120. Vicuna-
13B was trained by fine-tuning Llama2-13B on a dataset
of 70K user-shared dialogues collected from ShareGPT.com.

For an input protein xp, we utilize the pretrained
xTrimoPGLM-1B encoder g to generate a protein em-
bedding g(xp) of size l × 2048, with l to be the length of
the amino acid sequence. A linear layer (i.e., adaptor) W
is applied to map these protein embeddings to the LLM
input embedding space, resulting in a new embedding
hp = g(xp) × W of size l × 5120. This embedding can
be directly input into the LLM to represent the protein. To
combine the protein embedding with the textual prompt, we
design the LLM Input and Response fields following the
conversational format of Vicuna (25):

• (LLM Input) Human: <Protein> ProteinHere
</Protein>Prompt Assistant:

• (LLM Response) Answer

As previously mentioned, each training example consists
of a (protein, prompt, answer) triplet. We replace the
placeholders Prompt and Answer with the corresponding
elements from the triplet. All text in the LLM input, except
for ProteinHere, is referred to as the auxiliary prompt,
including the special characters <, >, and /. We denote
the tokenized auxiliary prompt as xaux. Next, we use the
LLM to embed xaux, resulting in the auxiliary prompt em-
bedding haux. After obtaining this embedding, we replace
ProteinHere with the protein embedding hp generated
by the adaptor and feed the entire prompt into the LLM.

The model is trained using a language modeling task,
where it learns to generate successive tokens by considering
the preceding context. During the training process, the main
objective is to optimize the log-likelihood of these tokens.
In ProteinChat, only the Answer part is used to compute
the loss. By explicitly adding an ending symbol to the
answer, the model is also trained to predict where to stop.

Specifically, for a target answer xa of length l, we compute
the probability of generating xa by:

p(xa | xp,xaux) =
l∏

i=0
pθ

(
x(i)

a | xp,xaux,x<(i)
a

)
, (1)

where xp is the protein sequence and xaux is the auxiliary
prompt in tokens. xa is the answer to be trained on. We use
x(i)

a and x<(i)
a to denote the i-th token and all tokens before

the i-th one. θ denotes the trainable model parameters.

Training details of ProteinChat. We used the Adam (47)
optimizer with β1 = 0.9, β2 = 0.999, and a weight decay
of 0.05. We applied a cosine learning rate decay with a peak
learning rate of 1e-5 and a linear warm-up of 2000 steps. The
minimum learning rate was 1e-6. Due to the high memory
consumption required for fine-tuning the encoder and LLM,
we utilized a mini-batch size of one per GPU and limited
the protein length to a maximum of 600 residues. Notably,
87.1% of the proteins had sequence lengths within this limit.
For protein sequences longer than this limit, we truncated
the excess length. We used 8 NVIDIA A100 GPUs, with 4
accumulation steps, resulting in an effective batch size of 32.
We trained the model for 210K steps. In LoRA, we set the
rank to 8, LoRA alpha to 16, and dropout rate to 0.05.

Evaluation metrics. We employed SimCSE (33) to as-
sess the semantic similarity between the ground truth pro-
tein function and the predicted function. SimCSE lever-
ages a contrastive learning framework (48) and utilizes the
RoBERTa-base (49) model (denoted by fθ) to generate sen-
tence embeddings. The semantic similarity is quantified by
calculating the cosine similarity of these embeddings, with
scores ranging from -1 to 1, where higher values signify
greater semantic alignment. Specifically, let s and s′ rep-
resent the ground truth protein function and the predicted
function, respectively. The SimCSE score is computed as:

cossim(fθ(s),fθ(s′)),

where fθ(s) and fθ(s′) are the embeddings of s and s′

extracted by the RoBERTa-base model fθ. cossim(·, ·)
denotes the cosine similarity operation.

BLEU (34) is computed using a set of modified n-gram
precisions. Specifically,

BLEU = BP · exp
(

N∑
n=1

wn logpn

)
, (2)

where pn is the modified precision for n-gram, wn > 0 and∑N
n=1 wn = 1. The brevity penalty (BP) is applied to penal-

ize short generated text. Let c be the length of the generated
text and r be the length of the ground truth. BP is computed
as follows:

BP =
{

1 if c > r
exp(1− r

c ) if c ≤ r

}
(3)
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The weighted F1 score is computed by averaging the F1
scores of all categories, taking into account the number
of true instances (support) for each category. The macro
F1 score is calculated by averaging the F1 scores of all
categories without considering their support. The macro
F1 score is computed by taking the arithmetic mean (aka
unweighted mean) of all the per-category F1 scores, and the
weighted F1 score is calculated by taking the mean of all
per-category F1 scores while considering each category’s
support.

In specific prediction tasks (i.e., classification tasks), both
ProteinChat and GPT-4 occasionally produced responses
containing multiple answers. For example, a response for
biological process prediction might include both molecule
transport and amino-acid biosynthesis. Such responses were
deemed incorrect, even if they contained the correct answer.
We only considered a response correct when it exclusively
presented the single correct answer. Additionally, during the
evaluation, all texts were standardized to lowercase to avoid
the influence of letter casing.

Experimental details for the GPT-4 baseline. To solicit
function predictions from GPT-4 using protein names,
we used the following prompt: “You are a biologist
specialized in protein functions. Given the name of a
protein: [protein name], please describe the function
of this protein.” When using the amino acid sequence
of a protein to solicit function predictions from GPT-4,
we used the following prompt: “Given the sequence
of a protein: [a string of amino acid letters such as
MARYFRRRKFCRFTAEGVQEIDYKDIATLKNYITES-
GKIVPSRITGTRAKYQRQLARAIKRARYLSLLPYTDRHQ],
please describe the function of this protein.”

Experimental details for specific prediction tasks.
Predicting enzyme catalytic functions involves determining
which of the seven categories of chemical reactions a given
enzyme can catalyze. These categories include hydrolase,
oxidoreductase, lyase, transferase, ligase, isomerase, and
translocase. The prompt for this prediction task was
“What type of enzyme is this? Choose from [the list of
categories above]”. Similarly, predicting ligand binding
entails identifying the specific ligand a protein can bind to,
while predicting coenzyme-enzyme interactions focuses on
determining which coenzyme interacts with a given enzyme.
The prompts for these tasks are outlined in Extended Data
Table 1. In the biological process prediction task, the goal
is to predict the biological processes in which a protein
is involved, including molecule transport, DNA to mRNA
transcription, amino acid biosynthesis, protein biosynthesis
from mRNA molecules, lipid metabolism, tRNA processing,
DNA damage response, and cell cycle regulation. Cellular
component prediction involves determining the cellular
localization of proteins (32). While cellular localization

does not directly define protein functions, it is often intrin-
sically linked to the roles proteins play within the cell. For
example, proteins involved in energy production, such as
those in the electron transport chain, are typically located
within the mitochondria. We evaluated ProteinChat’s
ability in identifying proteins’ cellular localization from
six categories: cytoplasm, membrane, nucleus, secreted,
mitochondrion, and plastid, using the following prompt:
“What is the cellular localization of this protein? Choose
from [a list of the six categories]”.

For each of these specific prediction tasks, we devel-
oped a specialized classifier. Each classifier includes a
protein encoder based on the pretrained xTrimoPGLM-1B
and a classification head based on a multi-layer perceptron.
Given the amino acid sequence of a protein, the protein
encoder extracts representations for each amino acid. These
representations are then averaged into a single vector, which
is subsequently fed into the classification head to predict the
class label. The classification head is a Multilayer Percep-
tron (MLP) with two layers. For all classification tasks, the
first layer of the MLP contains 128 hidden units. The second
layer’s number of hidden units corresponds to the number of
categories specific to the task. For each classifier, we trained
two variants: 1) keeping the pretrained protein encoder
fixed and only training the classification head (referred to as
Classifier 1), and 2) training both the protein encoder and the
classification head (referred to as Classifier 2). The weights
of the MLP were initialized using the Kaiming initialization
method. We used the same learning rate and optimizer
as in the ProteinChat training configurations. The batch
size was set to 32, and a checkpoint was saved every 2500
iterations. The checkpoint with the best performance on 300
randomly selected validation examples was then chosen.
For each task, there were 100 test proteins. The training
data for the specialized classifiers was curated from the
UniProtKB database. The number of training examples for
the classifiers in the tasks of predicting catalytic functions,
ligand binding, coenzyme-enzyme interactions, biological
processes, and cellular components were 277548, 198215,
31672, 340276, and 198661 respectively.

The two Gene Ontology (GO) classifiers - DeepGO-
Plus (35) and NetGO 3.0 (36) - utilize online web services to
predict GO terms with rankings. A prediction is considered
correct if the ground truth GO term holds the highest rank
among all possible answers for the given question.

Use GPT-4 to assess ProteinChat’s text-based predic-
tions of protein functions. GPT-4 has demonstrated effec-
tiveness in assessing the quality of text generated by large
language models. We utilized GPT-4 to assess the accuracy
of ProteinChat’s text-based function predictions by compar-
ing them with the ground truth descriptions. The specific
prompt provided to GPT-4 for this evaluation is: “You are
a biologist specialized in protein functions. Please compare
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Extended Data Fig. 2 | a, GPT-4 evaluation scores for ProteinChat, compared to GPT-4 predictions using protein sequences as input. b, ProteinChat’s prediction accuracy
for biological terms across varying frequencies.

the predicted function ‘[predicted function]’ with the ground
truth function ‘[ground truth function]’. Then give a score
based on the following rubric. Assign a score of 2 if the pre-
dicted function is an exact match to the ground-truth func-
tion, or it is a subset of the ground-truth function. Assign
a score of 1 if some aspects of the predicted function align
with the ground truth but other aspects conflict with it. As-
sign a score of 0 if the predicted function does not align with
the ground truth at all.” The evaluation rubric mirrored that
of human expert assessments, consisting of scores 2, 1, and
0. GPT-4 assigned an average score of 1.36 to ProteinChat’s
predictions for the 200 test proteins (Extended Data Fig. 2a).
In contrast, GPT-4’s own generated predictions received a
significantly lower average score of 0.17. The correlation
between the evaluation results of human experts and GPT-4
was 0.72, indicating a strong agreement.

ProteinChat accurately predicts biological terms. To
further evaluate the correctness of the text-based protein
functions predicted by ProteinChat, we introduced an ad-
ditional evaluation metric called Biological Term Accuracy.
We collected a set of biological terms and assessed the ac-
curacy for each term t as follows: For each test protein,
if t is either present or absent in both the protein’s ground
truth function description and the function predicted by Pro-
teinChat, then the prediction is considered correct. Other-
wise, it is considered incorrect. The accuracy for t is defined
as the ratio of the number of correct predictions to the to-
tal number of test proteins. To collect a vocabulary of bi-
ological terms, we utilized SciSpacy (50), a Python library
tailored for biomedical and scientific text processing, to ex-
tract biological terms from 600 randomly sampled ground
truth function descriptions. From these extracted terms, we
selected the 43 most frequently occurring terms. Extended
Data Fig. 2b shows the accuracy of these terms versus their
frequency on a logarithmic scale. ProteinChat achieved high
accuracy on the majority of these terms, demonstrating its
capability to capture key biological information in its pre-

dictions.

Proteins with identical functions are located close to
each other in the representation space of ProteinChat.
To better understand how ProteinChat predicts protein func-
tions, we visualized its learned protein representations in a
2D space using t-SNE (51). For each input protein’s amino
acid sequence, we utilized the trained xTrimoPGLM (27)
protein encoder and the trained adaptor in ProteinChat to ex-
tract a representation vector for each amino acid. We then
computed the overall representation of the entire protein by
averaging the representations of all the amino acids. We
projected the protein representation vectors into a 2D space
using t-SNE (51) for visualization. Extended Data Fig. 3
presents a visualization of all n = 20,426 human proteins
from the Swiss-Prot dataset. Each dot in the figure represents
a protein. In Extended Data Fig. 3a, we have highlighted pro-
teins with ground truth labels for three cellular localizations:
nucleus (n = 5,617), secreted (n = 2,113), and mitochon-
drion (n = 1,309). As observed, proteins with the same cel-
lular localization are clustered together in the representation
space. Similar patterns can be observed in Extended Data
Fig. 3b-d. This demonstrates ProteinChat’s ability in group-
ing functionally similar proteins together, thereby enhancing
the accuracy of function predictions.

Impact of hyperparameters. We investigated how the hy-
perparameters used during text generation in ProteinChat
affect the quality of the generated text. Extended Data
Fig. 4 show the average BLEU-1 (higher is better) and per-
plexity (PPL, lower is better) scores when varying beam
search depth (the number of top results maintained during
the search for the best responses) and temperature (the like-
lihood of sampling low-probability tokens). Our findings
show that the performance remains relatively stable across
different beam search depth values. On the other hand, we
observed that a higher temperature slightly decreases genera-
tion performance. This is likely because higher temperatures
encourage more diverse and less predictable token selection,
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Extended Data Fig. 3 | t-SNE visualization of protein representations extracted by the protein encoder and adaptor of ProteinChat. a, Proteins located in
three cellular locations, including nucleus, secreted, and mitochondrion, are highlighted. b, Proteins located in three mitochondrial components - inner membrane, outer
membrane, and nucleoid - are highlighted. c, Proteins that bind with four ligands - nucleotide, zinc, S-adenosyl-L-methionine, and manganese - are highlighted. d, Proteins
binding with ATP, cAMP, cGMP, and GTP are highlighted.

which can lead to the generation of less coherent and gram-
matically incorrect sentences.

Related work. To better analyze, annotate, and predict
protein functions, significant research has been conducted
in recent years. The Critical Assessment of Function
Annotation (CAFA) competition (7) is designed to develop
machine learning models for predicting the Gene Ontology
(GO) categories associated with protein functions. As of
2023, this competition has been held five times, yielding
diverse solutions such as comparing unsolved sequences

with known proteins, integrating multiple data sources, and
applying machine learning algorithms with insights into
biological processes to decipher protein functions. Notable
work has focused on predicting GO functions, including
DeepGOPlus (18, 35) and NetGO 3.0 (36). These methods
typically train separate models for each sub-ontology in GO,
which encompasses molecular function ontology (MFO),
biological process ontology (BPO), and cellular component
ontology (CCO). Recent deep learning methods have
demonstrated great efficacy in predicting specific protein
functions. These include Graph Neural Networks (13),
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Extended Data Fig. 4 | BLEU-1 and perplexity scores of text-based protein functions predicted by ProteinChat, evaluated under different beam search depths (a) and
temperatures (b).

diffusion models (3), transfer learning (52), and contrastive
learning (17). These methods focus on predicting protein
functions represented as discrete categories, but they are
unable to predict functions described in free-form text,
which typically contains more detailed information than
category labels.

Multi-modal learning, particularly in image-text appli-
cations, has seen significant advancements recently. The
CLIP model (53) employs contrastive learning to align
image and text embeddings effectively. The BLIP-2 frame-
work (54) integrates images and text prompts to generate
relevant responses using large language models. Building
on BLIP-2, MiniGPT-4 (22) enhances performance by
incorporating the more powerful Llama-2 model. Ad-
ditionally, LLaVA (55) combines a vision encoder with
a large language model for various visual-textual tasks,
including scientific question answering. In the scientific
domain, multi-modal learning has gained increasing atten-
tion. MoleculeSTM (56) utilizes contrastive learning to
simultaneously learn representations for chemical structures
and textual descriptions of molecules. ProtST (57) employs
contrastive learning and multi-modal mask prediction to
align protein sequences with their textual descriptions,
enabling zero-shot classification and text-protein retrieval.
In contrast to ProtST, ProteinChat offers free-form protein
function prediction, a feature not available in ProtST.
Additionally, MultiVI (58) is a deep generative model that
integrates multi-modal single-cell datasets, facilitating the
joint analysis of chromatin accessibility and gene expression
measurements.

Data availability
All data used in this study are available at
https://drive.google.com/file/d/
1n5Ant3S5QE0Yx-DznRa3lannFanc1WB7/view?
usp=sharing.

Code availability
The source code of this work is available at https:
//github.com/mignonjia/ProteinChat. We use
ESM-1B (9) instead of xTrimoPGLM as the protein encoder

in this GitHub repository because xTrimoPGLM is currently
not publicly available.
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Extended Data Table 2. Rubric for human expert assessment of predicted protein functions.

Summary Criteria Score

Correct The predicted function satisfies one of the following criteria:
1) It is an exact match to the ground-truth function.
2) It is a subset of the ground-truth function.
3) It contains additional, accurate information beyond the ground-truth function.
4) It does not directly align with the ground-truth function but represents another correct function for the protein. This can
be verified through domain knowledge or by checking the publication associated with this protein on UniProtKB.

2

Partially Correct While some aspects of the predicted function align with the ground truth, other aspects conflict with it. 1
Incorrect The predicted function meets one of the following criteria:

1) It is entirely inaccurate.
2) It is irrelevant to the question.

0

Ambiguous It lacks information to make a comparison between the predicted function and the ground truth function. -

Without experimental data or access to reference databases 
to perform sequence alignment, it is impossible to accurately 
determine the functionality of a protein based solely on its 
amino acid sequence. However, if the sequence provided is
known or has identifiable domains through bioinformatic 
analysis, we could infer its potential function based on
homology to other proteins. For exact functionality, further 
analyses such as domain prediction, structural modeling, and
functional assays would be required.

GPT-4
(Input: Sequence)

ProteinChat

The Atypical kinase COQ8A, mitochondrial (also known as 
ADCK3) functions in the biosynthesis of coenzyme Q10
(ubiquinone), a key component of the mitochondrial electron 
transport chain that is involved in energy production via ATP 
synthesis, as well as a lipid-soluble antioxidant. Specifically, 
COQ8A is believed to play a regulatory role in this biosynthetic 
pathway, possibly through its ATPase activity, although it lacks 
conventional kinase activity.

This protein is thought to be an atypical kinase that plays a 
role in the biosynthesis of coenzyme Q and is not involved in 
protein kinase activity.

Ground Truth

Actins are highly conserved proteins that are involved in various 
types of cell motility and are ubiquitously expressed in all 
eukaryotic cells. 

The protein sequence provided appears to be that of human 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key 
enzyme involved in glycolysis that catalyzes the conversion of 
glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate, and it 
also has roles in various non-metabolic processes including 
DNA repair and cell signaling. Due to its ubiquitous expression 
and conserved sequence, GAPDH is often used as a loading 
control in protein expression analyses.

Actin-1 is likely a variant of actin, which is a highly conserved 
family of globular multi-functional proteins that form 
microfilaments. It is a crucial component of the cytoskeleton, 
involved in various processes such as cell motility, structure, 
and integrity.

Actins are highly conserved proteins that are involved in 
various types of cell motility and are ubiquitously expressed 
in all eukaryotic cells. Essential component of cell cytoskeleton; 
plays an important role in cytoplasmic streaming, cell shape 
determination, cell division, organelle movement and 
extracellular matrix interactions.

Protein Q5RGU1 (Atypical kinase COQ8A, mitochondrial) Protein P22131 (Actin-1)

S

N

GPT-4 
(Input: Name)

Atypical kinase involved in the biosynthesis of coenzyme Q, 
also named ubiquinone, an essential lipid-soluble electron 
transporter for aerobic cellular respiration. Its substrate 
specificity is unclear: does not show any protein kinase activity.

Extended Data Fig. 5 | Comparison of predictions generated by ProteinChat and GPT-4 using amino acid sequences or protein names as inputs for two additional randomly
selected test proteins.
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