

000 001 Multi-Modal Large Language Model Enables Protein Function Prediction 002 003 004

005
006 **Mingjia Huo¹, Han Guo¹, Xingyi Cheng², Digvijay Singh³, Hamidreza Rahmani⁴, Shen Li², Philipp Gerlof⁴, Trey Ideker⁵,**
007
008 **Danielle A. Grotjahn⁴, Elizabeth Villa^{3, 6}, Le Song^{2, 7}, and Pengtao Xie^{1, 8✉}**
009
010
011

012
013 ¹Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
014
015 ²BioMap Research, Palo Alto, CA 94303, USA
016
017 ³School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
018
019 ⁴Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
020
021 ⁵Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
022
023 ⁶Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
024
025 ⁷Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi, UAE
026
027 ⁸Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

Predicting the functions of proteins can greatly accelerate biological discovery and applications, where deep learning methods have recently shown great potential. However, these methods predominantly predict protein functions as discrete categories, which fails to capture the nuanced and complex nature of protein functions. Furthermore, existing methods require the development of separate models for each prediction task, a process that can be both resource-heavy and time-consuming. Here, we present ProteinChat, a versatile, multi-modal large language model that takes a protein's amino acid sequence as input and generates comprehensive narratives describing its function. ProteinChat is trained using over 1,500,000 (protein, prompt, answer) triplets curated from the Swiss-Prot dataset, covering diverse functions. This novel model can universally predict a wide range of protein functions, all within a single, unified framework. Furthermore, ProteinChat supports interactive dialogues with human users, allowing for iterative refinement of predictions and deeper exploration of protein functions. Our experimental results, evaluated through both human expert assessment and automated metrics, demonstrate that ProteinChat outperforms general-purpose LLMs like GPT-4, one of the flagship LLMs, by over ten-fold. In addition, ProteinChat exceeds or matches the performance of task-specific prediction models.

Protein Function Prediction | Large Language Models | Multi-modal Learning

Correspondence: p1xie@ucsd.edu

Introduction

Proteins, composed of amino acid sequences that determine their unique structures and functions, are fundamental molecules essential for life-sustaining processes. Understanding protein functions and properties (collectively referred to as functions in this manuscript for simplicity) is crucial for advancing biological knowledge and driving innovations in drug discovery, disease treatment, and synthetic biology (1–5). Predicting protein functions is a complex and challenging task due to the inherent diversity and intricate nature of proteins (6–10). Recent advancements in deep learning have demonstrated significant potential in improving the accuracy and efficiency of protein function prediction (11–18). By leveraging extensive datasets of protein sequences, structures, and annotated functions, deep learning models can discern intricate patterns and relationships that often elude traditional computational

methods. The success of tools like CLEAN (17), which predicts enzyme functions with superior accuracy compared to traditional methods like BLASTp (19), exemplifies the transformative impact of deep learning in the field.

However, existing deep learning-based methods for protein function prediction face significant limitations that prevent them from fully capturing the diverse range of protein functions. These methods typically predict protein functions as discrete categories (7, 12, 13, 16–18). This oversimplification fails to reflect the complex and nuanced nature of proteins which often perform multiple functions, engage in various interactions, and participate in intricate biological pathways. Additionally, existing methods necessitate the development of specialized models for each prediction task, resulting in a fragmented approach that lacks efficiency and scalability (8, 13, 15–18). The absence of a unified model capable of concurrently handling various prediction tasks limits a holistic understanding of protein functions. This fragmentation also increases the complexity and resource requirements for research and development, as developing, training, and maintaining multiple specialized models is significantly more challenging than managing a single, versatile model.

Large language models (LLMs) (20–22) hold significant potential for addressing the limitations of current deep learning-based protein function prediction methods. These LLM models excel in generating high-quality text, making them well-suited for describing complex protein functions through comprehensive narratives. Furthermore, a single, pretrained LLM can perform a wide array of prediction tasks using task-specific user instructions or questions described in natural language (referred to as *prompts*) (23, 24), eliminating the necessity of training separate models for each task. Furthermore, LLMs facilitate interactive dialogues with human users (25, 26), enabling iterative refinement of generated textual predictions.

We developed ProteinChat, a multi-modal LLM that integrates two modalities - protein sequences and text. It takes an amino acid sequence and a prompt as inputs, and generates a detailed textual prediction of the protein's

057 function. Unlike traditional methods that predict protein
058 functions as discrete categories, ProteinChat generates
059 coherent and comprehensive texts to predict the multi-
060 faceted functions of proteins, capturing the detailed roles,
061 interactions, and biological context of proteins in a manner
062 akin to human expert descriptions. Moreover, ProteinChat
063 enables the use of diverse prompts for various prediction
064 tasks that cover a wide range of protein functions and
065 properties within this single tool, thereby streamlining
066 the whole protein function exploration process without
067 requiring new model training or extensive maintenance.
068 Significantly outperforming current methods including
069 GPT-4 (24), ProteinChat can make accurate predictions
070 across a broad spectrum of protein functions, which were
071 evaluated using multiple metrics including assessments by
072 human experts.

073

074 Results

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

ProteinChat overview. ProteinChat accepts two types of inputs simultaneously: the amino acid sequence of a protein and a prompt tailored for easy, human-like dialogues with ProteinChat. For example, when given the prompt “describe the functions of this protein”, ProteinChat generates a detailed free-form text describing the protein’s various functions (Fig. 1a). Besides free-form prediction, ProteinChat can also predict specific function categories. For example when prompted with “What type of enzyme is this? Choose from [a list of categories]”, ProteinChat chooses a specific answer from the list (Fig. 1a).

ProteinChat consists of three key modules: a protein encoder, an LLM, and an adaptor that bridges the two (Fig. 1b). The protein encoder processes the amino acid sequence of the input protein, generating a representation vector for each amino acid, which captures the molecular characteristics of that amino acid. The adaptor aligns these representations with the LLM by transforming them into a format that is compatible with the LLM’s input. Once this alignment is achieved, the LLM integrates the amino acid sequence with the prompt, and then utilizes this combined input to generate a textual prediction of the protein’s function. We utilized xTrimoPGLM (27), a state-of-the-art protein language model, as the protein encoder, and Vicuna-13B (25), fine-tuned from Llama-2 (21), as the LLM of ProteinChat.

To train the ProteinChat model, we assembled a comprehensive dataset comprising (protein, prompt, answer) triplets sourced from the Swiss-Prot database (28), the expertly curated section of UniProt Knowledgebase (UniProtKB) (29). The dataset contains approximately 1.5 million triplets from 523,994 proteins. In each triplet, the protein and prompt serve as inputs to the ProteinChat model, while the answer represents the desired output of ProteinChat. The answer can be either a detailed free-form text describing protein functions or a UniProtKB keyword

representing a specific function category. This dataset comprehensively encompasses a diverse taxonomy of proteins and their various functions (Fig. 1c).

For the pretrained LLM (Vicuna-13B), we applied Low-Rank Adaptation (LoRA) (30) for fine-tuning. Specifically, a low-rank update matrix was added to each pretrained weight matrix. During fine-tuning, only the low-rank matrix was updated, while the original pretrained weight matrices remain fixed. For the pretrained protein encoder (xTrimoPGLM), full fine-tuning was utilized: all the pretrained weights were updated. The adaptor was trained from scratch. The trainable weights were optimized by minimizing the negative log-likelihood loss between the input data (proteins and prompts) and the corresponding output answers. Further details on the training of ProteinChat are provided in Methods.

ProteinChat’s free-form predictions vastly outperform GPT-4. Using the prompt “please describe the function of this protein”, ProteinChat generated free-form text predictions for the functions of 200 randomly selected proteins from Swiss-Prot. These proteins were not included in the training data. The random selection process resulted in a diverse set of proteins with a wide range of functions. The generated textual predictions offer more specific details about protein functions compared to discrete categories like Enzyme Commission (EC) numbers (17) and Gene Ontology terms (31, 32). As mentioned before, Swiss-Prot includes a textual description of each protein’s function, which was used as ground truth in our evaluation. For a comparative analysis between ProteinChat and GPT-4 (a flagship LLM), we utilized GPT-4 to predict protein functions using two types of inputs: amino acid sequences as strings and protein names. The prompts used for GPT-4 are provided in Methods. We performed a human assessment of the predictions generated by both ProteinChat and GPT-4, where experts specializing in proteins compared the predictions with the corresponding ground truth. They assigned scores of 2, 1, 0, or *Ambiguous* to each prediction. A score of 2 is given when the prediction completely matches, partially matches, adds accurate details to, or provides a credible alternative to the ground truth. A score of 1 is assigned when the prediction is partially correct but contains inaccuracies compared to the ground truth. A score of 0 is assigned when a prediction is completely inaccurate or irrelevant to the ground truth. The *Ambiguous* score is used when it lacks sufficient information to make a comparison between the prediction and the ground truth. A detailed description of the assessment rubric can be found in Extended Data Table 2. Fig. 2c provides examples illustrating how these scores were assigned.

ProteinChat achieved an average human assessment score of 1.48, significantly outperforming GPT-4, which had a score of 0.14, by more than ten times. The distribution of

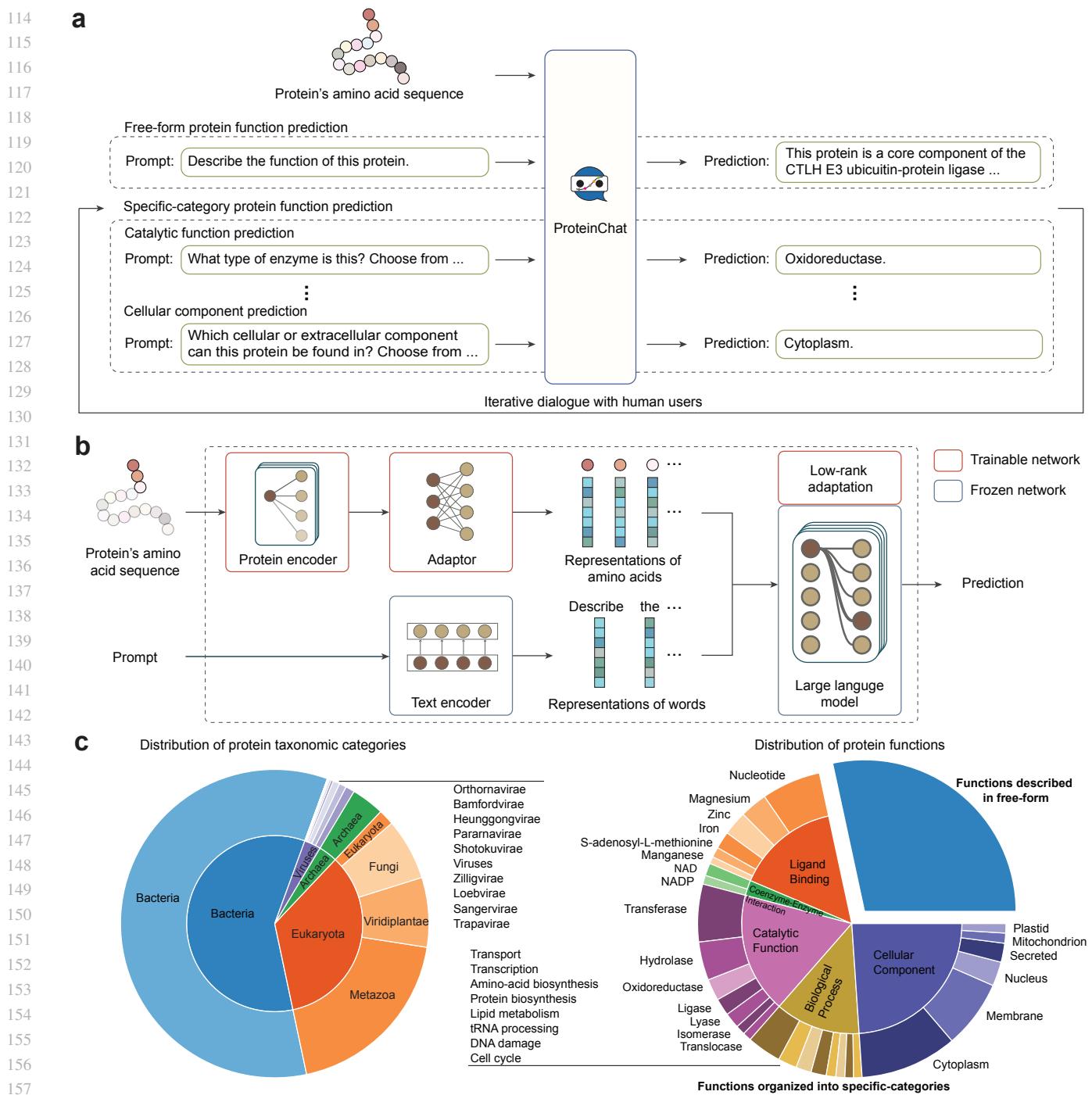


Fig. 1 | ProteinChat is a multi-modal LLM capable of predicting protein functions represented either in free-form text or as specific categories. a, ProteinChat enables versatile prediction of protein functions, allowing users to submit various requests in flexible natural language (known as prompts). By using task-specific prompts, ProteinChat can perform a variety of prediction tasks within a single framework without changing model parameters. ProteinChat facilitates interactive dialogues with users by retaining the conversation history, including prompts and corresponding predictions, allowing for in-depth analysis of a specific protein over multiple interactions. b, Model architecture of ProteinChat. It takes the amino acid sequence of a protein and a prompt as inputs, then generates a prediction in natural language. ProteinChat consists of a protein encoder that learns representation vectors for amino acids (AAs), an adaptor that transforms these representations into a format compatible with LLMs, and an LLM that generates the prediction based on the AAs' representations and the prompt. c, An extensive dataset, comprising proteins from various taxonomic groups, was constructed to train ProteinChat. In the left pie chart, the inner ring represents superkingdoms, while the outer ring represents kingdoms. ProteinChat was trained to make two types of predictions: one generates free-form textual descriptions, and the other predicts specific function categories. The pie chart on the right displays the relative proportions of the training data devoted to these two types.

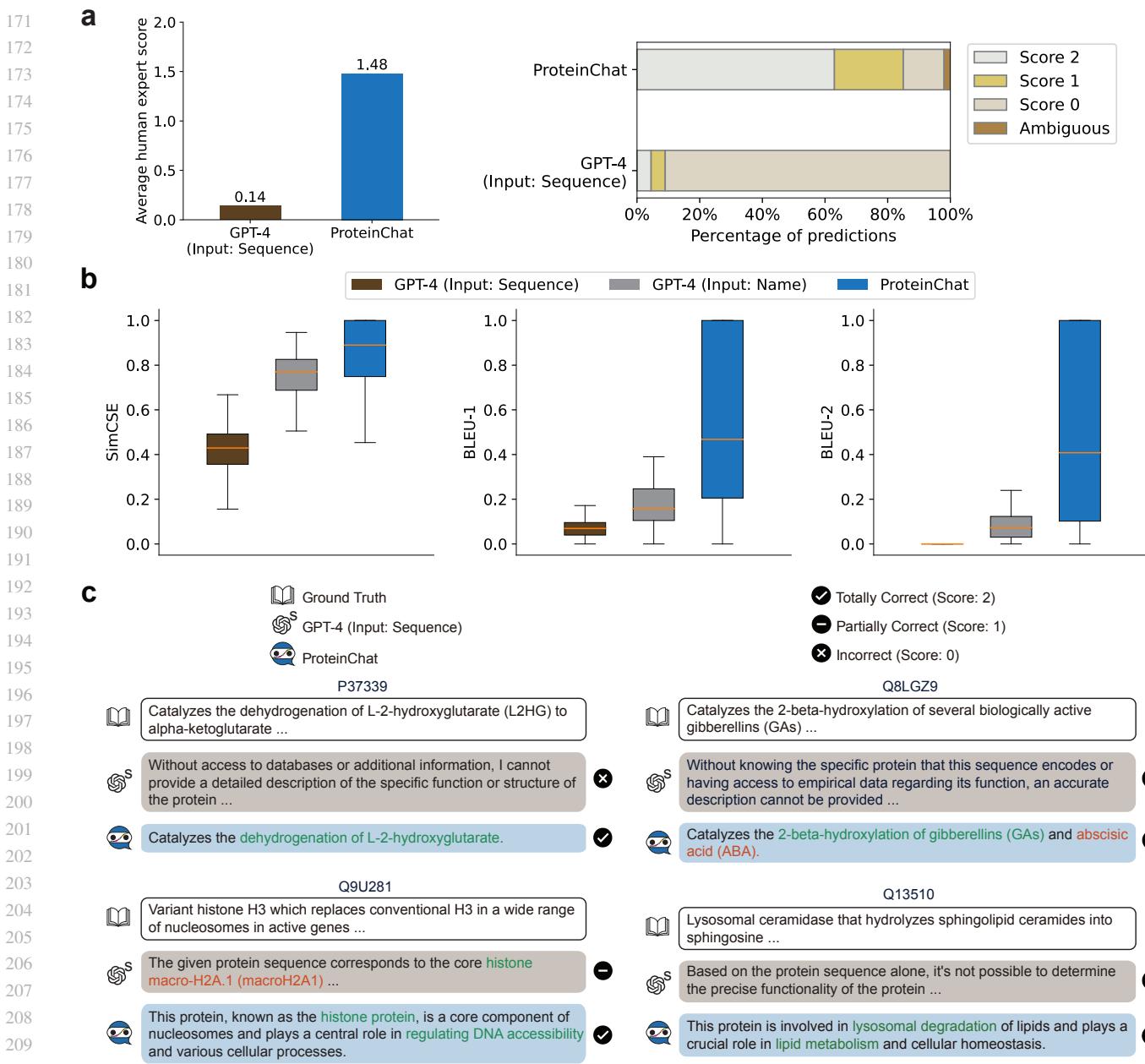


Fig. 2 | ProteinChat accurately predicts protein functions expressed in textual descriptions and outperforms GPT-4. **a**, ProteinChat significantly outperforms GPT-4 in human expert assessments, by more than ten-fold. Experts assessed predictions on a 0-2 scale: 2 for completely correct, 1 for partially correct, and 0 for incorrect. The average scores are on the left, with the distribution of scores on the right. Like ProteinChat, GPT-4 uses amino acid sequences of proteins as input. **b**, In automated evaluation metrics including SimCSE, BLEU-1, and BLEU-2, ProteinChat demonstrates significantly superior performance compared to GPT-4 which uses amino acid sequences or protein names as inputs. **c**, Examples of predictions generated by ProteinChat and GPT-4 demonstrate that ProteinChat's predictions are more accurate and informative than those of GPT-4.

scores further highlights the substantial difference between the two models. For ProteinChat, the percentage of proteins that received scores of 2, 1, 0, and Ambiguous were 63%, 22%, 13%, and 2%, respectively. In comparison, GPT-4's corresponding percentages were 4.5%, 4.5%, 91%, and 0%.

In addition to human assessment, we employed two widely used automated metrics, SimCSE (33) and BLEU (34), to assess the similarity between predicted and ground truth functions for both ProteinChat and GPT-4. SimCSE

assesses semantic similarity by comparing the contextual embeddings of texts, generating scores ranging from -1 to 1, with higher values indicating stronger semantic similarity. BLEU, which scores between 0 and 1 with higher values indicating better performance, assesses lexical similarity by comparing n-grams. ProteinChat achieved average SimCSE, BLEU-1, and BLEU-2 scores of 0.85, 0.55, and 0.51 respectively, substantially outperforming GPT-4, which scored 0.42, 0.07, and 0.01 with protein sequences as input, and 0.74, 0.18, and 0.08 with protein names as input

228 (Fig. 2b).

229

230 Fig. 2c and Extended Data Fig. 5 present the predictions
231 made by ProteinChat and GPT-4 for some randomly
232 selected proteins, with human expert assessments. These
233 proteins have widely distinct functions and properties. ProteinChat's
234 predictions consistently surpass those of GPT-4 for these proteins. Specifically, the predictions made by
235 GPT-4 were significantly non-specific, uninformative, and
236 inaccurate. For example, it responded with statements like,
237 "without access to databases or additional information, I
238 cannot provide a detailed description of the specific function
239 or structure of the protein". In contrast, the predictions made
240 by ProteinChat accurately describe protein functions with
241 rich detail and specificity, closely aligning with the ground
242 truth. For example, ProteinChat's prediction for protein
243 P37339 received a human assessment score of 2 ("totally
244 correct"). ProteinChat accurately identified the protein's
245 catalytic functions and specified that its catalytic activity
246 involves the dehydrogenation of L-2-hydroxyglutarate,
247 which aligns very well with the ground truth. In contrast, the
248 response from GPT-4 is uninformative. ProteinChat's pre-
249 diction for protein Q8LGZ9 received a score of 1 ("partially
250 correct"): it accurately predicted that the protein catalyzes
251 the 2-beta-hydroxylation of gibberellins (GAs); however,
252 it incorrectly predicted that the protein also catalyzes the
253 2-beta-hydroxylation of abscisic acid (ABA). Despite this
254 error, the prediction is still significantly more informative
255 than that of GPT-4, which provided no useful insights.
256 Notably, among ProteinChat's predictions scored as 1, 86%
257 accurately identified the core function but lacked precision
258 on specific details. For example, ProteinChat correctly
259 identified the function or reaction but misattributed the
260 substrate or location, or pinpointed the biological process
261 but failed to specify the involved protein.

262

263 Furthermore, the predictions in Fig. 2c illustrate that,
264 unlike previous methods that predict protein functions as
265 discrete categories, ProteinChat generates cohesive and thor-
266ough natural language narratives about the diverse functions
267 of proteins. Previous methods often fall short in capturing
268 the complexity and nuance of protein functions, as they
269 reduce these functions to simplistic categories. ProteinChat,
270 however, generates rich, detailed descriptions that mirror
271 the comprehensive analyses provided by human experts.
272 This capability allows for a more holistic understanding of
273 proteins, encompassing their intricate roles, interactions,
274 and biological significance. By utilizing large language
275 models, ProteinChat describes the multifaceted nature of
276 proteins in a way that is both accessible and scientifically
277 rigorous. This method enhances our understanding of
278 individual proteins and facilitates insights into the broader
279 biological systems they operate within. The results from
280 human expert assessments, automated evaluations, and
281 qualitative examples all clearly demonstrate that ProteinChat
282 significantly outperforms GPT-4. This superior

283

284 performance is primarily due to ProteinChat's enhanced
285 ability in interpreting a fundamental language of biology,
286 i.e., protein sequences (translated from DNA sequences). As
287 a multi-modal LLM, ProteinChat is specifically designed to
288 understand the amino acid sequences of proteins through a
289 specialized Protein Language Model (PLM) and articulates
290 its understanding via a comprehensive LLM. The PLM is
291 specifically trained on vast datasets of protein sequences,
292 allowing it to capture intricate biochemical relationships
293 and patterns that are essential for accurate protein function
294 prediction. This specialized training enables ProteinChat
295 to offer precise annotations, identify functional domains,
296 and predict potential interactions with high accuracy.
297 Additionally, ProteinChat's ability to integrate and syn-
298 thesize data from various sources, including structural
299 databases and functional annotations, further enhances its
300 predictive capabilities. In contrast, GPT-4 treats amino acid
301 sequences merely as strings of letters, relying on a general
302 textual language model for interpretation, which results
303 in a markedly inferior ability in comprehending proteins.
304 Despite its impressive linguistic prowess, GPT-4 lacks the
305 domain-specific training and the multi-modal capabilities
306 that ProteinChat possesses. GPT-4's general text-based
307 approach to interpreting amino acid sequences means it
308 can miss subtle but crucial biochemical nuances, leading
309 to less reliable predictions. Although GPT-4's predictions
310 based on protein names were more informative, they are
311 still less specific than those of ProteinChat. It is worth
312 noting that protein names often reveal real protein functions,
313 giving GPT-4 an unfair advantage compared to ProteinChat.
314 In theory, GPT-4 (using protein name) can only work for
315 well-known proteins with extensive, well-documented
316 literature, which was presumably used to train GPT-4. It
317 cannot respond well to novel or undocumented proteins, as
318 there was no prior literature to feed its training. These novel
319 proteins are the bedrock of future scientific discoveries, thus
320 marking a significant limitation of general-purpose LLMs in
321 driving innovation in proteomics. In contrast, ProteinChat
322 is built upon amino acid sequences, a more fundamental
323 feature of proteins, enabling it to understand novel proteins
324 and predict their functions accurately. We also utilized other
325 metrics to evaluate ProteinChat, including assessments by
326 GPT-4 (Extended Data Fig. 2a) and biological term accuracy
327 (Extended Data Fig. 2b), where ProteinChat demonstrated
328 superior performance. Visualizations (Extended Data Fig. 3)
329 demonstrate that ProteinChat effectively groups functionally
330 similar proteins together in its protein representation space,
331 facilitating the accurate prediction of protein functions.

ProteinChat excels in predicting discrete function categories with high accuracy. In some databases, certain protein functions are organized into discrete categories. For example, in UniProtKB, the catalytic functions of enzymes are categorized as hydrolases, oxidoreductases, lyases, and others. While ProteinChat is designed as a general-purpose tool for generating detailed and nuanced descriptions of a

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

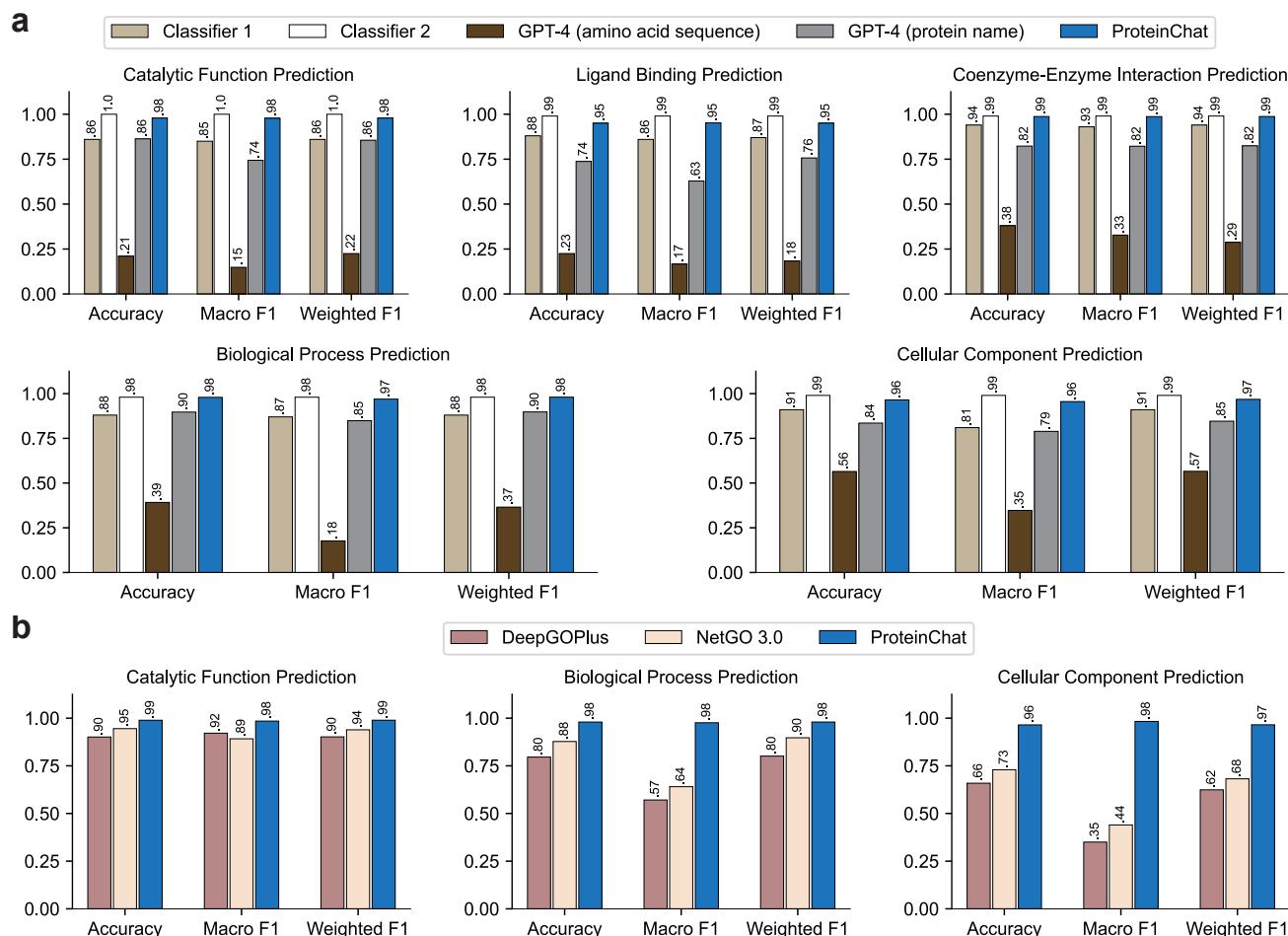


Fig. 3 | ProteinChat demonstrates exceptional accuracy in specific-category predictions, significantly outperforming GPT-4 and specialized classifiers. **a**, In five specific prediction tasks curated from UniProt, including catalytic function prediction, ligand binding prediction, coenzyme-enzyme interaction prediction, biological process prediction, and cellular component prediction, where protein functions are represented as discrete categories, ProteinChat achieves significantly better accuracy, macro F1, and weighted F1 scores compared to GPT-4 and specialized classifiers. **b**, In predicting protein functions represented using Gene Ontology (GO) categories, ProteinChat significantly outperforms two state-of-the-art GO classifiers - DeepGOPlus and NetGO 3.0.

protein's functions, it can also be customized for specific protein function prediction tasks where functions are categorized discretely. This can be achieved by appropriately adjusting the prompts. We applied ProteinChat to five specific protein function/property prediction tasks curated from UniProtKB, including catalytic function prediction, ligand binding function prediction, coenzyme-enzyme interaction prediction, biological process prediction, and cellular component compartmentalization prediction. These tasks encompass a broad spectrum of protein functions/properties (Methods). It is important to note that these prediction tasks are not mutually exclusive and can overlap. For instance, a particular catalytic function might involve specific ligand binding, or a catalytic function could be a part of a broader biological process.

To accomplish these tasks, we designed task-specific prompts (Methods) for ProteinChat, following a similar style. For enzyme catalytic function prediction, the prompt is “What type of enzyme is this? Choose from *[a list of categories]*”. For biological process prediction, the prompt

was: “What biological process is this protein involved in? Choose from *[a list of categories]*”. ProteinChat then selects a specific answer from the given list of categories. The discrete nature of these categories allowed us to objectively evaluate ProteinChat’s performance in comparison to other methods. We employed accuracy, macro F1 score, and weighted F1 score as evaluation metrics, with F1 scores specifically accounting for both false positives and false negatives. We also developed specialized classifier models, each designed to perform a specific prediction task, to evaluate how well ProteinChat, as a more general-purpose model, compares to these task-specific models.

Across all five prediction tasks, ProteinChat demonstrated near-optimal performance (Fig. 3a). It achieved accuracy, macro F1, and weighted F1 scores within the range of 0.95 to 0.99. In contrast, GPT-4’s performance was significantly lower when provided with either a protein name or an amino acid sequence as input. Additionally, ProteinChat either outperformed or matched the results of specialized classifiers, which is particularly remarkable

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

Protein Q9U281 (Histone H3.3 type 2)

Give the following protein: <protein>(embedding)MART-KQT.....</protein>. Please answer my questions. Please provide a detailed description of the protein.

This protein, known as the histone protein, is a core component of nucleosomes and plays a central role in regulating DNA accessibility and various cellular processes.

Can you elaborate on the specific type of histone protein described, its unique properties, and its function in the regulation of DNA accessibility within cells?

The histone protein is a nucleosome-forming protein that plays a central role in regulating DNA accessibility and various cellular processes. As the core component of nucleosomes, the histone protein is involved in transcription regulation, DNA replication, DNA repair, and chromosomal stability, among other cellular processes. Histone proteins are subject to post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitination, which regulate nucleosome structure and DNA accessibility. Additionally, histone variants and non-histone proteins are incorporated into nucleosomes, further modulating nucleosome structure and function.

Protein Q9XZG9 (Cecropin-A)

Give the following protein: <protein>(embedding)IFFFV-FAC.....</protein>. Please answer my questions. Tell me about this protein.

Has antibacterial activity.

What specific antibacterial activity?

Has antibacterial activity against several Gram-positive and Gram-negative bacteria.

Protein Q9LU44 (Splicing factor-like protein 1)

Give the following protein: <protein>(embedding)MESV-EMNN.....</protein>. Please answer my questions. Briefly summarize the functionality of this protein.

This protein is involved in pre-mRNA splicing and plays a role in alternative splicing.

Which metal is this protein capable of binding?

This protein is capable of binding zinc ions.

Fig. 4 | Interactive dialogues between ProteinChat and human users about proteins Q9U281, Q9XZG9, and Q9LU44.

given that ProteinChat employs a single model to handle all these prediction tasks, whereas the specialized classifiers are individually trained for each different task. Developing a specialized model for each prediction task involves extensive training data collection, model training, and hyperparameter tuning, which is time-consuming, resource-intensive, and requires significant domain expertise to ensure accuracy and reliability. Additionally, specialized models cannot easily adapt to new or related tasks without undergoing the entire development process again. In contrast, ProteinChat leverages a single model to perform a variety of protein function prediction tasks by simply modifying the prompts, thereby eliminating the need for developing separate models for each task. This enhances efficiency, flexibility, and scalability.

Next, we utilized ProteinChat to predict protein functions/properties represented by discrete Gene Ontology (GO) (31) categories and compared its performance against leading GO classifiers, including DeepGOPlus (35) and NetGO 3.0 (36). Gene Ontology (GO) is a database that provides a hierarchical structure of categories widely used for annotating protein functions/properties. ProteinChat significantly outperforms DeepGOPlus and NetGO 3.0 in predicting catalytic functions, biological processes, and cellular components (Fig. 3b). For example, ProteinChat achieves a macro F1 score of 0.98 in predicting biological processes, significantly outperforming DeepGOPlus and NetGO, which have scores of 0.57 and 0.64, respectively. ProteinChat outperforms both DeepGOPlus and NetGO

due to its ability in retaining and processing the entire sequence of amino acid representations using a protein language model. This ability allows ProteinChat to capture intricate relationships, positional context, and long-range dependencies within the sequence, which are essential for accurate protein function/properties prediction. In contrast, NetGO 3.0 averages the representations into a single vector, losing important sequence information and contextual relationships. DeepGOPlus utilizes convolutional neural networks (CNNs) to learn representations for amino acids, which falls short in capturing long-range dependency between amino acids when compared to the Transformer (37) based protein encoder employed in ProteinChat.

ProteinChat enables interactive and iterative predictions of protein functions. ProteinChat facilitates interactive dialogues between users and the system. After obtaining the initial predictions from ProteinChat, users can input more detailed and specific prompts to further refine and expand these predictions. Fig. 4 presents three example dialogues between ProteinChat and human users, corresponding to proteins Q9U281, Q9XZG9, and Q9LU44 in UniProtKB. The dialogue on the left pertains to Q9U281, where the user inquires about the general function of this protein. ProteinChat identifies it as a histone protein involved in modulating DNA accessibility. Subsequently, the user inquires about the specific functions of this histone protein, and ProteinChat provides detailed predictions, highlighting the protein's roles in transcription regulation and post-translational modifications. The top right dialogue pertains to Q9XZG9,

399 where ProteinChat initially predicts that the protein has an-
400 antibacterial function. Based on the user's further prompt, Pro-
401 teinChat then accurately predicts the protein can inhibit the
402 growth of both Gram-positive and Gram-negative bacteria.
403 The bottom right example focuses on Q9LU44. When in-
404 quired about general functions, ProteinChat predicts that the
405 protein is involved in pre-mRNA splicing. Upon further in-
406 quiry into specific molecular functions, such as metal bind-
407 ing, ProteinChat predicts that the protein binds zinc ions.
408 This dynamic interaction between ProteinChat and users fa-
409 cilitates continuous, in-depth analysis of the same protein,
410 in contrast to previous methods that offer only single-shot
411 predictions. Users can delve deeper into the specifics of pro-
412 tein functions, exploring intricate details and nuances that
413 single-shot predictions might miss. This ensures that the pre-
414 dictions are not only more accurate but also more compre-
415 hensive, uncovering complex protein behaviors and mech-
416 anisms.

417 Discussion

418 ProteinChat illustrates two important concepts. Firstly, the
419 fundamental language of biology - amino acid sequences -
420 encodes highly rich information about underlying biolog-
421 ical processes. This information is both computable and
422 predictive, suggesting that this language can be harnessed
423 to develop powerful predictive models in other areas
424 of biology, as demonstrated by ProteinChat. Secondly,
425 achieving a balance is crucial when designing deep learning
426 models for biological applications. While highly specialized
427 models like DeepGo or NetGo are effective in specific tasks,
428 they may overlook the complex, multi-tasking nature of
429 proteins that are involved in multiple biological pathways.
430 On the other hand, overly generalized models, such as
431 GPT-4, might lack the precision needed for accurate,
432 domain-specific predictions. ProteinChat strikes a balance
433 between these extremes, offering broad generalization
434 across proteomics while maintaining high accuracy and
435 specificity, as demonstrated in Fig. 2 and 3.

436 ProteinChat is designed to minimize the need for con-
437 tinuous user training while allowing for periodic updates
438 and enhancements by us, the developers. For example, we
439 plan to integrate more advanced versions of Llama (e.g.,
440 Llama-3 (38)) as the textual LLM component of Protein-
441 Chat, improving the quality of human-like interactions.
442 Additionally, incorporating newer versions of xTrimoPGLM
443 will further enhance ProteinChat's accuracy and specificity.
444 These planned improvements will ensure that ProteinChat
445 remains both competitive and up-to-date. Furthermore,
446 ProteinChat's versatility enables seamless integration with
447 other deep-learning models, such as those based on struc-
448 ture prediction like AlphaFold (39), allowing it to predict
449 the functions of proteins in the context of their 3D structures.

450 Some predictions made by ProteinChat, currently la-
451 beled as incorrect by human experts, may actually uncover

452 previously unidentified properties and functions of these
453 proteins. As a result, the scores we assigned to ProteinChat
454 could potentially be even higher. More importantly, predic-
455 tions deemed incorrect might actually offer new insights or
456 hypotheses that warrant further experimental validation. For
457 many proteins, only a portion of their amino acid sequences
458 have been fully understood, with the remainder still elusive
459 and sometimes labeled as "junk" - sequences that seem-
460 ingly do not contribute significantly to the protein's main
461 function (40). ProteinChat has the potential to shed light
462 on these currently uninterpretable sequences. Additionally,
463 large portions of proteins can consist of disordered segments
464 - sequences that do not fold into a stable structure (41).
465 Historically, these segments have often been truncated in
466 structural and biophysical studies, leading to incomplete
467 characterizations. However, recent research indicates
468 that these disordered segments are crucial for the phase
469 separation of proteins into specific cellular compartments,
470 where they carry out their functions (42). ProteinChat,
471 which can analyze the entire protein sequence, could be
472 particularly effective in interpreting these disordered seg-
473 ments and predicting their phase-separating characteristics.
474 This capability may already be reflected in ProteinChat's
475 predictions related to cellular compartmentalization.

476 In conclusion, we present ProteinChat, a versatile tool
477 for predicting protein functions represented in text using a
478 multi-modal large language model. ProteinChat provides
479 nuanced and in-depth predictions, surpassing both general-
480 purpose LLMs and task-specific classifiers. Its ability in
481 handling various prediction tasks within a single framework
482 and facilitating interactive predictions allows for flexible,
483 comprehensive, and in-depth analysis of protein functions.

484 References

1. Edward M Marcotte, Matteo Pellegrini, Ho-Leung Ng, Danny W Rice, Todd O Yeates, and David Eisenberg. Detecting protein function and protein-protein interactions from genome sequences. *Science*, 285(5428):751–753, 1999.
2. Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution, structure, and function. *Cell systems*, 12(6):654–669, 2021.
3. Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippé, Jason Yim, Helen E Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.
4. Dina Listov, Casper A Goverde, Bruno E Correia, and Sarel Jacob Fleishman. Opportunities and challenges in design and optimization of protein function. *Nature Reviews Molecular Cell Biology*, pages 1–15, 2024.
5. Tanja Kortemme. De novo protein design—from new structures to programmable functions. *Cell*, 187(3):526–544, 2024.
6. David Lee, Oliver Redfern, and Christine Orengo. Predicting protein function from sequence and structure. *Nature reviews molecular cell biology*, 8(12):995–1005, 2007.
7. Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, Tobias Witkop, Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-Hur, et al. A large-scale evaluation of computational protein function prediction. *Nature methods*, 10 (3):221–227, 2013.
8. Sapir Peled, Olga Leiderman, Rotem Charar, Gilat Efroni, Yaron Shav-Tal, and Yanay Ofran. De-novo protein function prediction using dna binding and rna binding proteins as a test case. *Nature communications*, 7(1):13424, 2016.
9. Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. *Proceedings of the National Academy of Sciences*, 118(15):e2016239118, 2021.
10. Maxwell L Bileschi, David Belanger, Drew H Bryant, Theo Sanderson, Brandon Carter, D Sculley, Alex Bateman, Mark A DePristo, and Lucy J Colwell. Using deep learning to annotate the protein universe. *Nature Biotechnology*, 40(6):932–937, 2022.
11. Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning enables high-quality and

456 high-throughput prediction of enzyme commission numbers. *Proceedings of the National*
457 *Academy of Sciences*, 116(28):13996–14001, 2019.

458 12. Cen Wan and David T Jones. Protein function prediction is improved by creating synthetic
459 feature samples with generative adversarial networks. *Nature Machine Intelligence*, 2(9):
460 540–550, 2020.

461 13. Vladimir Gligorjević, P Douglas Renfrew, Tomasz Kosciolak, Julia Koehler Leman, Daniel
462 Berenborg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-based protein function prediction using graph convolutional networks. *Nature*
463 *communications*, 12(1):3168, 2021.

464 14. Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca
465 Dogan. Learning functional properties of proteins with language models. *Nature Machine*
466 *Intelligence*, 4(3):227–245, 2022.

467 15. Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M
468 Castro, Robert Ragotte, Amijai Saragovi, Lukas F Miles, Minkyung Baek, et al. Scaffolding
469 protein functional sites using deep learning. *Science*, 377(6604):387–394, 2022.

470 16. Xiaogen Zhou, Wei Zheng, Yang Li, Robin Pearce, Chengxin Zhang, Eric W Bell, Guijun
471 Zhang, and Yang Zhang. I-tasser-mtd: a deep-learning-based platform for multi-domain
472 protein structure and function prediction. *Nature Protocols*, 17(10):2326–2353, 2022.

473 17. Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao.
474 Enzyme function prediction using contrastive learning. *Science*, 379(6639):1358–1363,
475 2023.

476 18. Maxat Kulmanov, Francisco J Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T
477 Aruld, and Robert Hohendorf. Protein function prediction as approximate semantic entailment.
478 *Nature Machine Intelligence*, 6(2):220–228, 2024.

479 19. Stephan F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
480 Basic local alignment search tool. *Journal of molecular biology*, 215(3):403–410, 1990.

481 20. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
482 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
483 models are few-shot learners. *Advances in neural information processing systems*, 33:
484 1877–1901, 2020.

485 21. Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
486 Nikolay Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
487 foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

488 22. Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4:
489 Enhancing vision-language understanding with advanced large language models. In *Inter-
490 national Conference on Learning Representations*, 2024.

491 23. Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
492 Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
493 general intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.

494 24. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
495 Aleman, Diogo Almeida, Janko Alten Schmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
496 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

497 25. Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
498 Zheng, Siyuan Zhuang, Yonghai Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
499 Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March
500 2023.

501 26. Peter Lee, Sébastien Bubeck, and Joseph Petro. Benefits, limits, and risks of gpt-4 as an
502 ai chatbot for medicine. *New England Journal of Medicine*, 388(13):1233–1239, 2023.

503 27. Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan,
504 Boyan Wang, Xin Zeng, et al. xtrimpplm: unified 100b-scale pre-trained transformer for
505 deciphering the language of protein. *arXiv preprint arXiv:2401.06199*, 2024.

506 28. UniProtKB. Swiss-prot dataset. <https://www.uniprot.org/uniprotkb?query=reviewed:true>, 2024.

507 29. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic
508 Acids Research*, 51(D1):D523–D531, 11 2022. doi: 10.1093/nar/gkac1052.

509 30. Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
510 Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International
511 Conference on Learning Representations*, 2022.

512 31. Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler,
513 J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene
514 ontology: tool for the unification of biology. *Nature genetics*, 25(1):25–29, 2000.

515 32. Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
516 *Nucleic acids research*, 47(D1):D330–D338, 2019.

517 33. T Gao, X Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
518 embeddings. In *EMNLP 2021-2021 Conference on Empirical Methods in Natural Language
519 Processing, Proceedings*, 2021.

520 34. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
521 automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the
522 Association for Computational Linguistics*, pages 311–318, 2002.

523 35. Maxat Kulmanov and Robert Hohendorf. Deepgoplus: improved protein function prediction
524 from sequence. *Bioinformatics*, 36(2):422–429, 2020.

525 36. Shaqun Wang, Ronghui You, Yunjia Liu, Yi Xiong, and Shanfeng Zhu. Netgo 3.0: protein
526 language model improves large-scale functional annotations. *Genomics, Proteomics &
527 Bioinformatics*, 21(2):349–358, 2023.

528 37. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
529 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural
530 information processing systems*, 30, 2017.

531 38. Meta. Introducing meta llama 3: The most capable openly available llm to date. <https://ai.meta.com/blog/meta-llama-3/>, 2024.

532 39. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
533 neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly
534 accurate protein structure prediction with alphafold. *Nature*, 596(7873):583–589,
535 2021.

536 40. Simon C Lovell. Are non-functional, unfolded proteins ('junk proteins') common in the
537 genome? *FEBS letters*, 554(3):237–239, 2003.

538 41. Robin Van Der Lee, Marija Buljan, Benjamin Lang, Robert J Weatheritt, Gary W Daughdrill,
539 A Keith Dunker, Monika Fuxreiter, Julian Gough, Joerg Gsponer, David T Jones, et al. Classifi-
540 cation of intrinsically disordered regions and proteins. *Chemical reviews*, 114(13):
541 6559–6631, 2014.

542 42. Anthony A Hyman, Christoph A Weber, and Frank Jülicher. Liquid-liquid phase separation
543 in biology. *Annual review of cell and developmental biology*, 30(1):39–58, 2014.

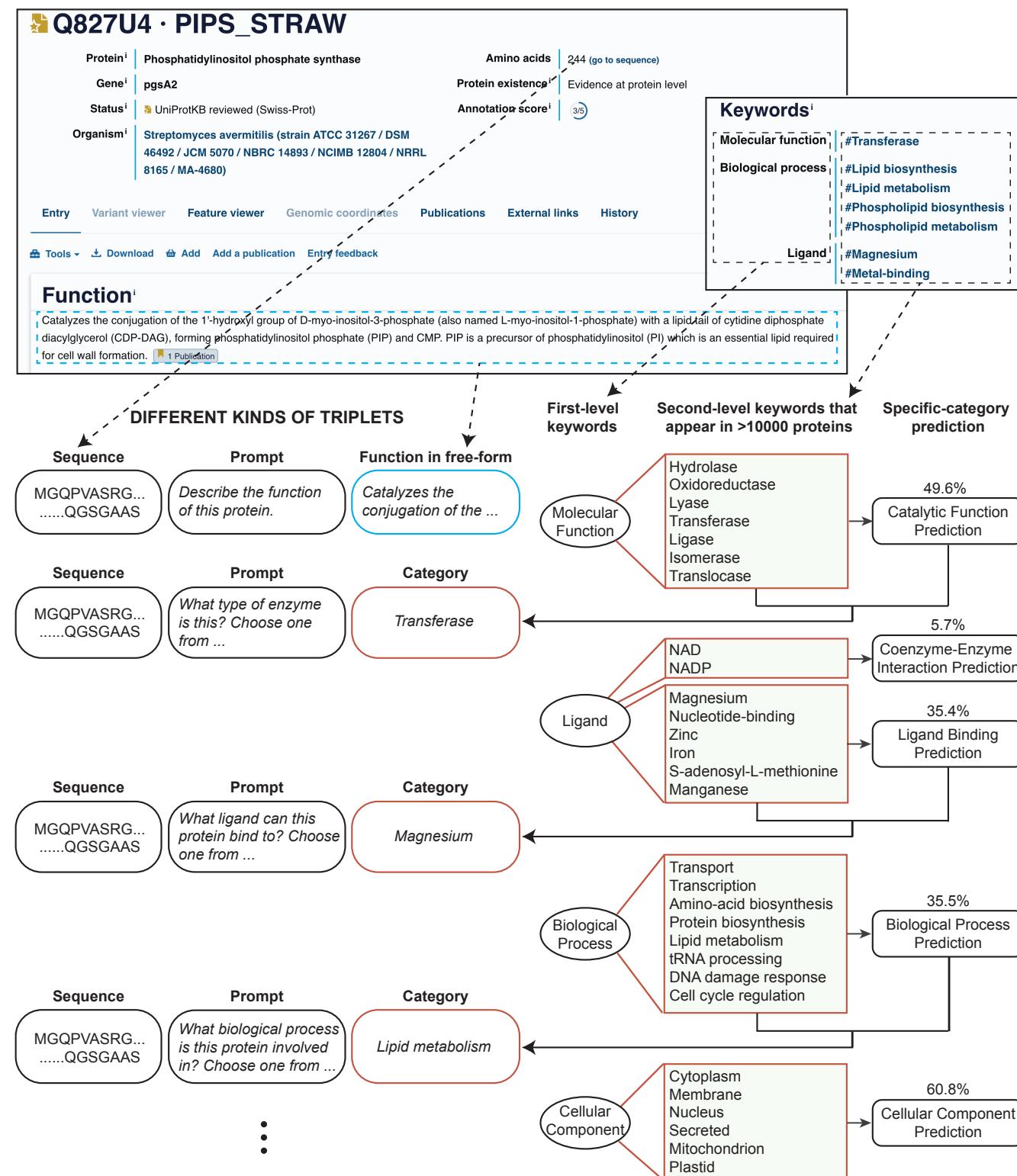
Methods

Dataset preprocessing. We collected the amino acid sequences of proteins and their functions from Swiss-Prot (28), the reviewed subset of proteins in UniProtKB (29). The “Function” section in UniProtKB provides a textual description of a protein’s functions. Additionally, the “Keywords” section offers a controlled vocabulary with a hierarchical structure that describes various aspects of protein functions, including activities, locations, interactions, and more. The Swiss-Prot database within UniProtKB, which was manually curated by experts, serves as a high-quality reference for protein functions. The data used in this study was based on the UniProt 2023_02 version, released on May 2nd, 2023¹. We downloaded the metadata in JSON format and extracted the protein functions by filtering entries where `commentType` is set to “Function”. We excluded all functions that contain the `molecule` field, indicating that the function pertains to a subsequence of amino acids after clipping rather than the entire protein sequence. This exclusion is necessary because the protein can serve as a precursor to various chains or peptides. UniProtKB specifies the role of each peptide separately under distinct `molecule`² entries. As a result, functions for 2,071 proteins were excluded, reducing the total to 523,994 proteins. In our text-based protein function prediction study, we randomly selected 200 proteins to form the test set. For each specific prediction task, 100 proteins were randomly chosen as the test set. The remaining proteins were divided into a training set and a validation set in a 9:1 ratio.

From the training proteins and their associated textual descriptions of functions, we curated the training dataset for ProteinChat (Extended Data Fig. 1). For each training protein p , we created a training example represented as a triplet (protein’s amino acid sequence, prompt, answer). The amino acid sequence and the prompt serve as the inputs to ProteinChat, while the answer is the expected output. Specifically, the amino acid sequence of p serves as the first element in the triplet, the prompt “Describe the function of this protein” forms the second element, and the textual description of p ’s function acts as the third element. To enhance ProteinChat’s robustness against linguistic variations, we also employed other semantically equivalent prompts during the training process (22). Additionally, we generated training triplets based on UniProtKB keywords, which are organized into a hierarchy. There are 10 first-level keywords, and we selected 4 that are relevant to

¹<https://www.uniprot.org/release-notes/2023-05-03-release>

²<https://www.uniprot.org/help/function>



Extended Data Fig. 1 | An illustration of the process used to curate (protein sequence, prompt, answer) triplets from the Swiss-Prot database. The percentages represent the percentages of protein entries in Swiss-Prot, whose keywords cover the listed categories.

570
571
572
573
574

Extended Data Table 1. Prompts linked to keywords and the number of curated triplets for each keyword.

Catalytic function			
Prompt: What type of enzyme is this? Choose one from the following options: hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase.			
Function category	Number of triplets	UniProtKB keyword	GO term
Transferase	98540	KW-0808	GO:0016740
Hydrolase	65580	KW-0378	GO:0016787
Oxidoreductase	36864	KW-0560	GO:0016491
Ligase	29379	KW-0436	GO:0016874
Lyase	26546	KW-0456	GO:0016829
Isomerase	16283	KW-0413	GO:0016853
Translocase	14708	KW-1278	-
Ligand binding			
Prompt: What ligand can this protein bind to? Choose one from the following options: magnesium, nucleotide-binding, zinc, iron, S-adenosyl-L-methionine, and manganese.			
Function category	Number of triplets	UniProtKB keyword	GO term
Nucleotide-binding	101082	KW-0547	GO:0000166
Magnesium	46675	KW-0460	-
Zinc	41464	KW-0862	-
Iron	29555	KW-0408	-
S-adenosyl-L-methionine	17332	KW-0949	-
Manganese	12067	KW-0464	-
Coenzyme-enzyme interaction			
Prompt: What coenzyme does this enzyme interact with? Choose one from the following options: nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP).			
Function category	Number of triplets	UniProtKB keyword	GO term
Nicotinamide adenine dinucleotide (NAD)	21502	KW-0520	-
Nicotinamide adenine dinucleotide phosphate (NADP)	15102	KW-0521	-
Biological process			
Prompt: What biological process is this protein involved in? Choose one from the following options: molecule transport, DNA to mRNA transcription, amino acid biosynthesis, protein biosynthesis from mRNA molecules, lipid metabolism, tRNA processing, DNA damage response, and cell cycle regulation.			
Function category	Number of triplets	UniProtKB keyword	GO term
Molecule transport	58648	KW-0813	-
DNA to mRNA transcription	32127	KW-0804	-
Amino acid biosynthesis	26272	KW-0028	GO:0008652
Protein biosynthesis from mRNA molecules	26063	KW-0648	GO:0006412
Lipid metabolism	16282	KW-0443	GO:0006629
tRNA processing	15380	KW-0819	GO:0008033
DNA damage response	14565	KW-0227	GO:0006974
Cell cycle regulation	14474	KW-0131	GO:0007049
Cellular component			
Prompt: What is the cellular localization of this protein? Choose one from the following options: cytoplasm, membrane, nucleus, secreted, mitochondrion, and plastid.			
Function category	Number of triplets	UniProtKB keyword	GO term
Cytoplasm	165882	KW-0963	GO:0005737
Membrane	116756	KW-0472	GO:0016020
Nucleus	41431	KW-0539	GO:0005634
Secreted	32360	KW-0964	GO:0005576
Mitochondrion	17206	KW-0496	GO:0005739
Plastid	15990	KW-0934	GO:0009536

617
618
619
620
621
622
623
624
625
626
protein functions, including molecular functions, binding properties, biological processes, and cellular localization. Furthermore, we chose 31 second-level keywords associated with over 10,000 proteins. These keywords cover 93% of all proteins in Swiss-Prot. Extended Data Table 1 was used to curate training triplets from keywords. For a given protein p associated with a keyword k , the corresponding prompt t for k was identified from this table. For example, if the keyword is KW-0808 (“Transferase”), the corresponding

prompt is “What type of enzyme is this? Choose one from the following options: hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase.” This forms the triplet (p, t, k) . On average, 2.7 triplets were curated per protein. Extended Data Table 1 presents the number of triplets curated from each keyword. Triplets curated from keywords related to molecular function, biological process, and cellular localization cover 67.1%, 35.5%, and 60.8% of all proteins, respectively. The final training dataset for

627 ProteinChat was formed by combining triplets curated from
 628 textual descriptions of functions and keywords. Similarly,
 629 a validation set of triplets was curated from the validation
 630 proteins.
 631

632 **ProteinChat model.** ProteinChat employs xTrimoPGLM-
 633 1B (27) as the protein sequence encoder and Vicuna-
 634 13B (25) as the large language model. The xTrimoPGLM-
 635 1B model comprises 24 Transformer (37) layers, 32
 636 attention heads, and an embedding dimension of 2048. It
 637 was pretrained on the Uniref90 (43) and ColabFoldDB (44)
 638 datasets using two strategies: masked language modeling
 639 (MLM) (45) and general language modeling (GLM) (46).
 640 The MLM strategy enhances xTrimoPGLM-1B's under-
 641 standing of protein sequences, while the GLM strategy
 642 improves its generative capabilities. Vicuna-13B, fine-tuned
 643 from Llama2-13B (21), retains the same architecture as
 644 Llama2-13B including 40 Transformer layers, 40 attention
 645 heads, and an embedding dimension of 5120. Vicuna-
 646 13B was trained by fine-tuning Llama2-13B on a dataset
 647 of 70K user-shared dialogues collected from ShareGPT.com.
 648

649 For an input protein \mathbf{x}_p , we utilize the pretrained
 650 xTrimoPGLM-1B encoder g to generate a protein em-
 651 bedding $g(\mathbf{x}_p)$ of size $l \times 2048$, with l to be the length of
 652 the amino acid sequence. A linear layer (i.e., adaptor) \mathbf{W}
 653 is applied to map these protein embeddings to the LLM
 654 input embedding space, resulting in a new embedding
 655 $\mathbf{h}_p = g(\mathbf{x}_p) \times \mathbf{W}$ of size $l \times 5120$. This embedding can
 656 be directly input into the LLM to represent the protein. To
 657 combine the protein embedding with the textual prompt, we
 658 design the LLM Input and Response fields following the
 659 conversational format of Vicuna (25):
 660

- (LLM Input) Human: <Protein> ProteinHere</Protein>Prompt Assistant:
- (LLM Response) Answer

661 As previously mentioned, each training example consists
 662 of a (protein, prompt, answer) triplet. We replace the
 663 placeholders Prompt and Answer with the corresponding
 664 elements from the triplet. All text in the LLM input, except
 665 for ProteinHere, is referred to as the *auxiliary prompt*,
 666 including the special characters <, >, and /. We denote
 667 the tokenized auxiliary prompt as \mathbf{x}_{aux} . Next, we use the
 668 LLM to embed \mathbf{x}_{aux} , resulting in the auxiliary prompt em-
 669 bedding \mathbf{h}_{aux} . After obtaining this embedding, we replace
 670 ProteinHere with the protein embedding \mathbf{h}_p generated
 671 by the adaptor and feed the entire prompt into the LLM.
 672

673 The model is trained using a language modeling task,
 674 where it learns to generate successive tokens by considering
 675 the preceding context. During the training process, the main
 676 objective is to optimize the log-likelihood of these tokens.
 677 In ProteinChat, only the Answer part is used to compute
 678 the loss. By explicitly adding an ending symbol to the
 679 answer, the model is also trained to predict where to stop.
 680

681 Specifically, for a target answer \mathbf{x}_a of length l , we compute
 682 the probability of generating \mathbf{x}_a by:

$$p(\mathbf{x}_a | \mathbf{x}_p, \mathbf{x}_{\text{aux}}) = \prod_{i=0}^l p_{\theta} \left(\mathbf{x}_a^{(i)} | \mathbf{x}_p, \mathbf{x}_{\text{aux}}, \mathbf{x}_a^{<(i)} \right), \quad (1)$$

683 where \mathbf{x}_p is the protein sequence and \mathbf{x}_{aux} is the auxiliary
 684 prompt in tokens. \mathbf{x}_a is the answer to be trained on. We use
 685 $\mathbf{x}_a^{(i)}$ and $\mathbf{x}_a^{<(i)}$ to denote the i -th token and all tokens before
 686 the i -th one. θ denotes the trainable model parameters.

687 **Training details of ProteinChat.** We used the Adam (47)
 688 optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a weight decay
 689 of 0.05. We applied a cosine learning rate decay with a peak
 690 learning rate of $1e-5$ and a linear warm-up of 2000 steps. The
 691 minimum learning rate was $1e-6$. Due to the high memory
 692 consumption required for fine-tuning the encoder and LLM,
 693 we utilized a mini-batch size of one per GPU and limited
 694 the protein length to a maximum of 600 residues. Notably,
 695 87.1% of the proteins had sequence lengths within this limit.
 696 For protein sequences longer than this limit, we truncated
 697 the excess length. We used 8 NVIDIA A100 GPUs, with 4
 698 accumulation steps, resulting in an effective batch size of 32.
 699 We trained the model for 210K steps. In LoRA, we set the
 700 rank to 8, LoRA alpha to 16, and dropout rate to 0.05.

701 **Evaluation metrics.** We employed SimCSE (33) to as-
 702 sess the semantic similarity between the ground truth pro-
 703 tein function and the predicted function. SimCSE lever-
 704 ages a contrastive learning framework (48) and utilizes the
 705 RoBERTa-base (49) model (denoted by f_{θ}) to generate sen-
 706 tence embeddings. The semantic similarity is quantified by
 707 calculating the cosine similarity of these embeddings, with
 708 scores ranging from -1 to 1, where higher values signify
 709 greater semantic alignment. Specifically, let s and s' rep-
 710 resent the ground truth protein function and the predicted
 711 function, respectively. The SimCSE score is computed as:

$$\text{cosim}(f_{\theta}(s), f_{\theta}(s')),$$

712 where $f_{\theta}(s)$ and $f_{\theta}(s')$ are the embeddings of s and s'
 713 extracted by the RoBERTa-base model f_{θ} . $\text{cosim}(\cdot, \cdot)$
 714 denotes the cosine similarity operation.

715 BLEU (34) is computed using a set of modified n-gram
 716 precisions. Specifically,

$$\text{BLEU} = \text{BP} \cdot \exp \left(\sum_{n=1}^N w_n \log p_n \right), \quad (2)$$

717 where p_n is the modified precision for n-gram, $w_n > 0$ and
 718 $\sum_{n=1}^N w_n = 1$. The brevity penalty (BP) is applied to penal-
 719 ize short generated text. Let c be the length of the generated
 720 text and r be the length of the ground truth. BP is computed
 721 as follows:

$$\text{BP} = \begin{cases} 1 & \text{if } c > r \\ \exp(1 - \frac{r}{c}) & \text{if } c \leq r \end{cases} \quad (3)$$

684
685
686
687
688
689
690
691
692
693
694

The weighted F1 score is computed by averaging the F1 scores of all categories, taking into account the number of true instances (support) for each category. The macro F1 score is calculated by averaging the F1 scores of all categories without considering their support. The macro F1 score is computed by taking the arithmetic mean (aka unweighted mean) of all the per-category F1 scores, and the weighted F1 score is calculated by taking the mean of all per-category F1 scores while considering each category's support.

695
696
697
698
699
700
701
702
703
704
705

In specific prediction tasks (i.e., classification tasks), both ProteinChat and GPT-4 occasionally produced responses containing multiple answers. For example, a response for biological process prediction might include both molecule transport and amino-acid biosynthesis. Such responses were deemed incorrect, even if they contained the correct answer. We only considered a response correct when it exclusively presented the single correct answer. Additionally, during the evaluation, all texts were standardized to lowercase to avoid the influence of letter casing.

706
707
708
709
710
711
712
713
714
715
716
717
718
719

Experimental details for the GPT-4 baseline. To solicit function predictions from GPT-4 using protein names, we used the following prompt: “You are a biologist specialized in protein functions. Given the name of a protein: *[protein name]*, please describe the function of this protein.” When using the amino acid sequence of a protein to solicit function predictions from GPT-4, we used the following prompt: “Given the sequence of a protein: *[a string of amino acid letters such as MARYFRRRKFCRFTAEGVQEIDYKDIATLKNYITES-GKIVPSRITGTRAKYQRQLARAIRYLSLLPYTDRHQ]*, please describe the function of this protein.”

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

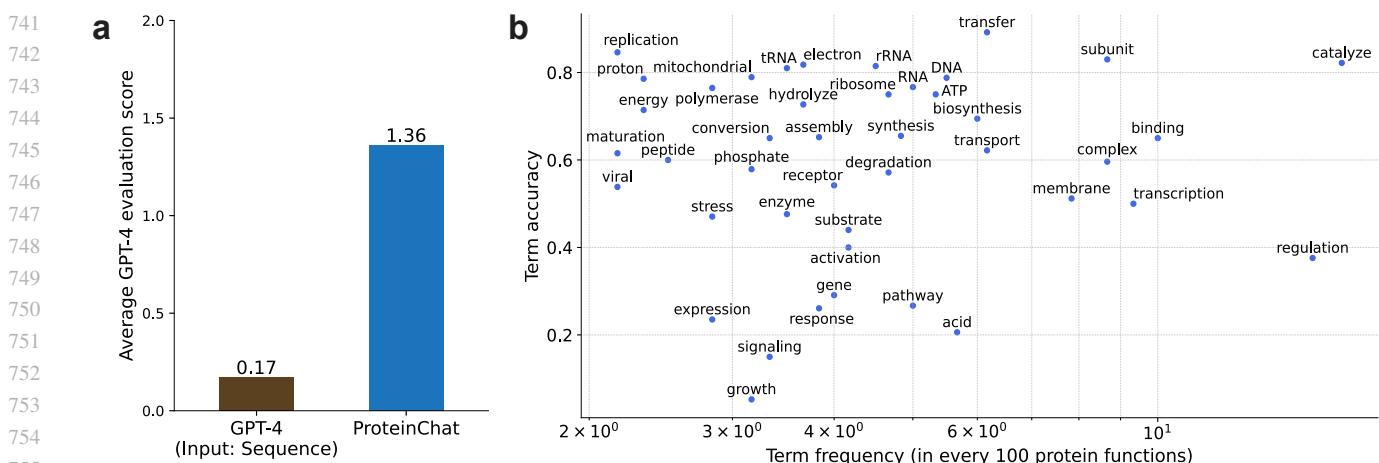
Experimental details for specific prediction tasks. Predicting enzyme catalytic functions involves determining which of the seven categories of chemical reactions a given enzyme can catalyze. These categories include hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase. The prompt for this prediction task was “What type of enzyme is this? Choose from *[the list of categories above]*”. Similarly, predicting ligand binding entails identifying the specific ligand a protein can bind to, while predicting coenzyme-enzyme interactions focuses on determining which coenzyme interacts with a given enzyme. The prompts for these tasks are outlined in Extended Data Table 1. In the biological process prediction task, the goal is to predict the biological processes in which a protein is involved, including molecule transport, DNA to mRNA transcription, amino acid biosynthesis, protein biosynthesis from mRNA molecules, lipid metabolism, tRNA processing, DNA damage response, and cell cycle regulation. Cellular component prediction involves determining the cellular localization of proteins (32). While cellular localization

does not directly define protein functions, it is often intrinsically linked to the roles proteins play within the cell. For example, proteins involved in energy production, such as those in the electron transport chain, are typically located within the mitochondria. We evaluated ProteinChat’s ability in identifying proteins’ cellular localization from six categories: cytoplasm, membrane, nucleus, secreted, mitochondrion, and plastid, using the following prompt: “What is the cellular localization of this protein? Choose from *[a list of the six categories]*”.

For each of these specific prediction tasks, we developed a specialized classifier. Each classifier includes a protein encoder based on the pretrained xTrimoPGLM-1B and a classification head based on a multi-layer perceptron. Given the amino acid sequence of a protein, the protein encoder extracts representations for each amino acid. These representations are then averaged into a single vector, which is subsequently fed into the classification head to predict the class label. The classification head is a Multilayer Perceptron (MLP) with two layers. For all classification tasks, the first layer of the MLP contains 128 hidden units. The second layer’s number of hidden units corresponds to the number of categories specific to the task. For each classifier, we trained two variants: 1) keeping the pretrained protein encoder fixed and only training the classification head (referred to as Classifier 1), and 2) training both the protein encoder and the classification head (referred to as Classifier 2). The weights of the MLP were initialized using the Kaiming initialization method. We used the same learning rate and optimizer as in the ProteinChat training configurations. The batch size was set to 32, and a checkpoint was saved every 2500 iterations. The checkpoint with the best performance on 300 randomly selected validation examples was then chosen. For each task, there were 100 test proteins. The training data for the specialized classifiers was curated from the UniProtKB database. The number of training examples for the classifiers in the tasks of predicting catalytic functions, ligand binding, coenzyme-enzyme interactions, biological processes, and cellular components were 277548, 198215, 31672, 340276, and 198661 respectively.

The two Gene Ontology (GO) classifiers - DeepGO-Plus (35) and NetGO 3.0 (36) - utilize online web services to predict GO terms with rankings. A prediction is considered correct if the ground truth GO term holds the highest rank among all possible answers for the given question.

Use GPT-4 to assess ProteinChat’s text-based predictions of protein functions. GPT-4 has demonstrated effectiveness in assessing the quality of text generated by large language models. We utilized GPT-4 to assess the accuracy of ProteinChat’s text-based function predictions by comparing them with the ground truth descriptions. The specific prompt provided to GPT-4 for this evaluation is: “You are a biologist specialized in protein functions. Please compare



Extended Data Fig. 2 | a. GPT-4 evaluation scores for ProteinChat, compared to GPT-4 predictions using protein sequences as input. **b.** ProteinChat's prediction accuracy for biological terms across varying frequencies.

the predicted function '*[predicted function]*' with the ground truth function '*[ground truth function]*'. Then give a score based on the following rubric. Assign a score of 2 if the predicted function is an exact match to the ground-truth function, or it is a subset of the ground-truth function. Assign a score of 1 if some aspects of the predicted function align with the ground truth but other aspects conflict with it. Assign a score of 0 if the predicted function does not align with the ground truth at all." The evaluation rubric mirrored that of human expert assessments, consisting of scores 2, 1, and 0. GPT-4 assigned an average score of 1.36 to ProteinChat's predictions for the 200 test proteins (Extended Data Fig. 2a). In contrast, GPT-4's own generated predictions received a significantly lower average score of 0.17. The correlation between the evaluation results of human experts and GPT-4 was 0.72, indicating a strong agreement.

ProteinChat accurately predicts biological terms. To further evaluate the correctness of the text-based protein functions predicted by ProteinChat, we introduced an additional evaluation metric called Biological Term Accuracy. We collected a set of biological terms and assessed the accuracy for each term t as follows: For each test protein, if t is either present or absent in both the protein's ground truth function description and the function predicted by ProteinChat, then the prediction is considered correct. Otherwise, it is considered incorrect. The accuracy for t is defined as the ratio of the number of correct predictions to the total number of test proteins. To collect a vocabulary of biological terms, we utilized SciSpacy (50), a Python library tailored for biomedical and scientific text processing, to extract biological terms from 600 randomly sampled ground truth function descriptions. From these extracted terms, we selected the 43 most frequently occurring terms. Extended Data Fig. 2b shows the accuracy of these terms versus their frequency on a logarithmic scale. ProteinChat achieved high accuracy on the majority of these terms, demonstrating its capability to capture key biological information in its pre-

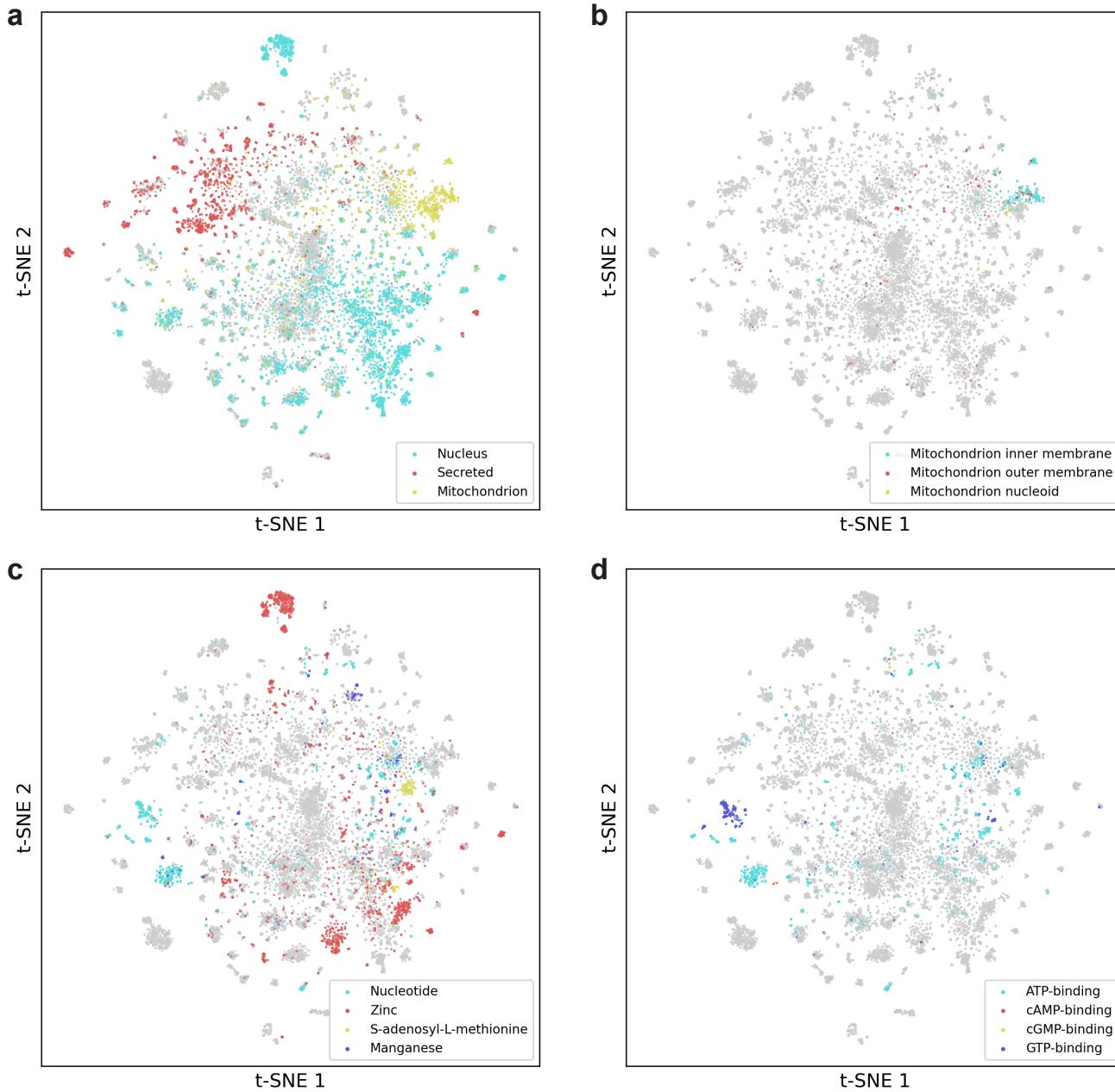
dictions.

Proteins with identical functions are located close to each other in the representation space of ProteinChat.

To better understand how ProteinChat predicts protein functions, we visualized its learned protein representations in a 2D space using t-SNE (51). For each input protein's amino acid sequence, we utilized the trained xTrimoPGLM (27) protein encoder and the trained adaptor in ProteinChat to extract a representation vector for each amino acid. We then computed the overall representation of the entire protein by averaging the representations of all the amino acids. We projected the protein representation vectors into a 2D space using t-SNE (51) for visualization. Extended Data Fig. 3 presents a visualization of all $n = 20,426$ human proteins from the Swiss-Prot dataset. Each dot in the figure represents a protein. In Extended Data Fig. 3a, we have highlighted proteins with ground truth labels for three cellular localizations: nucleus ($n = 5,617$), secreted ($n = 2,113$), and mitochondrion ($n = 1,309$). As observed, proteins with the same cellular localization are clustered together in the representation space. Similar patterns can be observed in Extended Data Fig. 3b-d. This demonstrates ProteinChat's ability in grouping functionally similar proteins together, thereby enhancing the accuracy of function predictions.

Impact of hyperparameters. We investigated how the hyperparameters used during text generation in ProteinChat affect the quality of the generated text. Extended Data Fig. 4 show the average BLEU-1 (higher is better) and perplexity (PPL, lower is better) scores when varying beam search depth (the number of top results maintained during the search for the best responses) and temperature (the likelihood of sampling low-probability tokens). Our findings show that the performance remains relatively stable across different beam search depth values. On the other hand, we observed that a higher temperature slightly decreases generation performance. This is likely because higher temperatures encourage more diverse and less predictable token selection,

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



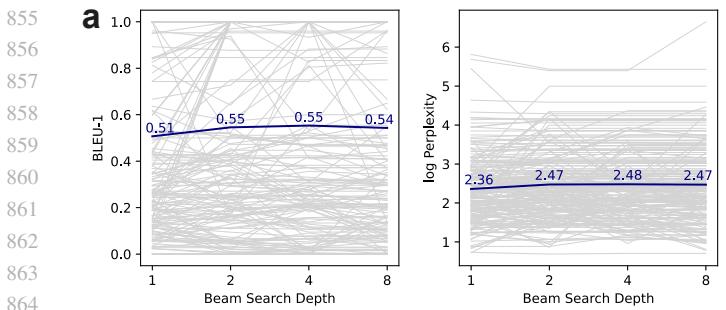
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

Extended Data Fig. 3 | t-SNE visualization of protein representations extracted by the protein encoder and adaptor of ProteinChat. **a**, Proteins located in three cellular locations, including nucleus, secreted, and mitochondrion, are highlighted. **b**, Proteins located in three mitochondrial components - inner membrane, outer membrane, and nucleoid - are highlighted. **c**, Proteins that bind with four ligands - nucleotide, zinc, S-adenosyl-L-methionine, and manganese - are highlighted. **d**, Proteins binding with ATP, cAMP, cGMP, and GTP are highlighted.

which can lead to the generation of less coherent and grammatically incorrect sentences.

Related work. To better analyze, annotate, and predict protein functions, significant research has been conducted in recent years. The Critical Assessment of Function Annotation (CAFA) competition (7) is designed to develop machine learning models for predicting the Gene Ontology (GO) categories associated with protein functions. As of 2023, this competition has been held five times, yielding diverse solutions such as comparing unsolved sequences

with known proteins, integrating multiple data sources, and applying machine learning algorithms with insights into biological processes to decipher protein functions. Notable work has focused on predicting GO functions, including DeepGOPlus (18, 35) and NetGO 3.0 (36). These methods typically train separate models for each sub-ontology in GO, which encompasses molecular function ontology (MFO), biological process ontology (BPO), and cellular component ontology (CCO). Recent deep learning methods have demonstrated great efficacy in predicting specific protein functions. These include Graph Neural Networks (13),



Extended Data Fig. 4 | BLEU-1 and perplexity scores of text-based protein functions predicted by ProteinChat, evaluated under different beam search depths (a) and temperatures (b).

diffusion models (3), transfer learning (52), and contrastive learning (17). These methods focus on predicting protein functions represented as discrete categories, but they are unable to predict functions described in free-form text, which typically contains more detailed information than category labels.

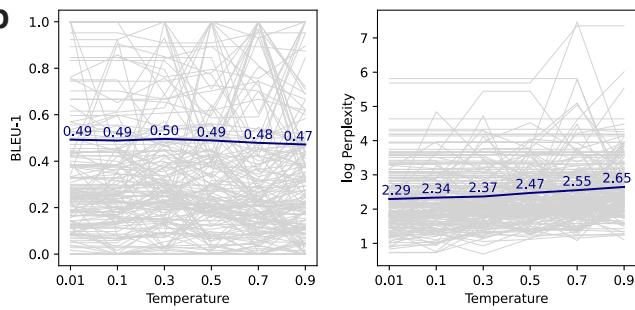
Multi-modal learning, particularly in image-text applications, has seen significant advancements recently. The CLIP model (53) employs contrastive learning to align image and text embeddings effectively. The BLIP-2 framework (54) integrates images and text prompts to generate relevant responses using large language models. Building on BLIP-2, MiniGPT-4 (22) enhances performance by incorporating the more powerful Llama-2 model. Additionally, LLaVA (55) combines a vision encoder with a large language model for various visual-textual tasks, including scientific question answering. In the scientific domain, multi-modal learning has gained increasing attention. MoleculeSTM (56) utilizes contrastive learning to simultaneously learn representations for chemical structures and textual descriptions of molecules. ProtST (57) employs contrastive learning and multi-modal mask prediction to align protein sequences with their textual descriptions, enabling zero-shot classification and text-protein retrieval. In contrast to ProtST, ProteinChat offers free-form protein function prediction, a feature not available in ProtST. Additionally, MultiVI (58) is a deep generative model that integrates multi-modal single-cell datasets, facilitating the joint analysis of chromatin accessibility and gene expression measurements.

Data availability

All data used in this study are available at <https://drive.google.com/file/d/1n5Ant3S5QE0Yx-DznRa3lannFanclWB7/view?usp=sharing>.

Code availability

The source code of this work is available at <https://github.com/mignonjia/ProteinChat>. We use ESM-1B (9) instead of xTrimoPGLM as the protein encoder



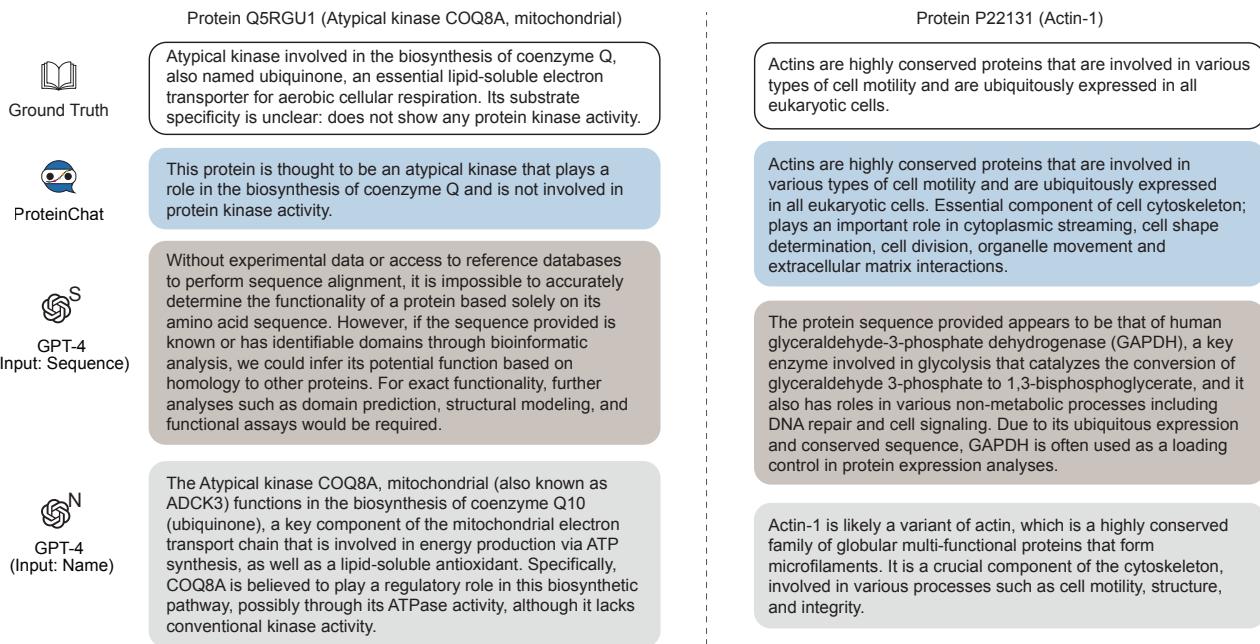
in this GitHub repository because xTrimoPGLM is currently not publicly available.

Reference

43. Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches. *Bioinformatics*, 31(6):926–932, 2015.
44. Milti Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin Steinberger. Colabfold: making protein folding accessible to all. *Nature methods*, 19(6):679–682, 2022.
45. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, 2019.
46. Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhang Qiu, Zhiin Yang, and Jie Tang. Glm: General language model pretraining with autoregressive blank infilling. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 320–335, 2022.
47. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International Conference on Learning Representations*, 2015.
48. Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In *2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06)*, volume 2, pages 1735–1742. IEEE, 2006.
49. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.
50. Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. Scispacy: Fast and robust models for biomedical natural language processing. In *Proceedings of the 18th BioNLP Workshop and Shared Task*, pages 319–327, 2019.
51. Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
52. Peicong Lin, Yumeng Yan, Huanyu Tao, and Sheng-You Huang. Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes. *Nature Communications*, 14(1):4935, 2023.
53. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
54. Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pages 19730–19742. PMLR, 2023.
55. Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024.
56. Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based retrieval and editing. *Nature Machine Intelligence*, 5(12):1447–1457, 2023.
57. Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of protein sequences and biomedical texts. In *International Conference on Machine Learning*, pages 38749–38767. PMLR, 2023.
58. Tal Ashuach, Mariano I Gabito, Rohan V Koodli, Giuseppe-Antonio Saldi, Michael I Jordan, and Nir Yosef. MultiVi: deep generative model for the integration of multimodal data. *Nature Methods*, 20(8):1222–1231, 2023.

Extended Data Table 2. Rubric for human expert assessment of predicted protein functions.

912	913	Summary	Criteria	Score
914	915	Correct	The predicted function satisfies one of the following criteria: 1) It is an exact match to the ground-truth function. 2) It is a subset of the ground-truth function. 3) It contains additional, accurate information beyond the ground-truth function. 4) It does not directly align with the ground-truth function but represents another correct function for the protein. This can be verified through domain knowledge or by checking the publication associated with this protein on UniProtKB.	2
916	917	Partially Correct	While some aspects of the predicted function align with the ground truth, other aspects conflict with it.	1
918	919	Incorrect	The predicted function meets one of the following criteria: 1) It is entirely inaccurate. 2) It is irrelevant to the question.	0
920	921	Ambiguous	It lacks information to make a comparison between the predicted function and the ground truth function.	-



Extended Data Fig. 5 | Comparison of predictions generated by ProteinChat and GPT-4 using amino acid sequences or protein names as inputs for two additional randomly selected test proteins.