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ABSTRACT

Nanopore sequencing, a third-generation sequencing technology, has revolutionized the gene sequenc-
ing industry with its advantages of long reads, fast speed, real-time sequencing and analysis, and
potential in detecting base modifications. This technology allows researchers to sequence longer DNA
fragments in a single read, providing more comprehensive genomic information compared to previous
methods. Nanopore sequencing operates on electrical signals generated by a nanopore embedded in a
membrane separating two electrolyte-filled chambers. When single-stranded DNA (ssDNA) passes
through the nanopore, it creates variations in the current that correspond to different DNA bases. By
analyzing these current fluctuations with machine learning algorithms, the DNA sequence can be
determined. In this study, we introduced several improvements to nanopore sequencing, including
nanopore local chemistry sequencing, novel motor and pore proteins, chip design, and basecalling
algorithms. Our new nanopore sequencing platform, CycloneSEQ, demonstrated long-duration se-
quencing (107 hours) on a single chip with high yield (>50 Gb). In human genomic DNA sequencing,
CycloneSEQ was able to produce long reads with N50 33.6 kb and modal identity 97.0%. Preliminary
findings on human whole-genome de novo assembly, variant calling, metagenomics sequencing, and
single-cell RNA sequencing have further highlighted CycloneSEQ’s potential across different areas
of genomics.

1 Introduction

Nanopore sequencing, which has emerged as a novel sequencing technology in recent years, has revolutionized the
gene sequencing industry due to its advantages of long reads, real-time sequencing, portability, and minimal library
preparation [1]. This technology enables researchers to sequence longer fragments of DNA in a single read, providing
more comprehensive genomic information compared to previous methods. Nanopore sequencing is based on electrical
signals [2]. It involves a nanopore, which can be either a protein or solid-state structure, embedded in a membrane
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that separates two electrolyte-filled chambers. When a voltage is applied across these chambers, it generates a steady
transmembrane current. As molecules, such as single-stranded DNA (ssDNA), enter the nanopore, they obstruct the
flow of ions, creating variations in the current known as nanopore signals. The obstruction of the current varies with
different DNA bases (adenine, thymine, cytosine, and guanine) as the ssDNA passes through the nanopore. By detecting
these current fluctuations and analyzing them using machine learning algorithms, the DNA sequence can be determined
[3] [4] [2].

The development of nanopore sequencing can be traced back to the 1980s, encompassing stages of concept validation,
technology development, and commercial application. In 1989, scientists George Church, David Deamer and Daniel
Branton proposed the concept of using nanopores for DNA sequencing [5]. In 1996, Kasianowicz and colleagues
first demonstrated the phenomenon of current blockade by DNA molecules passing through an α-hemolysin protein
nanopore, laying the foundation for nanopore sequencing [6]. In 1997, Deamer and Akeson further validated that
the current signals produced by single nucleotides passing through a nanopore could be used to distinguish different
nucleotides [7]. In 2012, Oxford Nanopore Technologies launched the first portable nanopore sequencer, the MinION,
marking the entry of nanopore sequencing into practical application. In 2016, Oxford Nanopore Technologies introduced
the PromethION, a high-throughput nanopore sequencing platform that further enhanced sequencing speed and accuracy.
Currently, nanopore sequencing technology is widely applied in genomics, transcriptomics, epigenetics, and clinical
diagnostics [5].

In this study, we experimented with several improvements to the nanopore sequencing technology, including novel motor
and pore proteins, chip design, basecalling algorithms, and nanopore local chemistry (NLC) sequencing method. We
demonstrate our new nanopore sequencing platform, CycloneSEQ, is able to perform long-duration (107 h) sequencing
on a single chip with high yield (>50 Gb). Whole-genome sequencing of the HG002 cell line produced long reads
with N50 33.6 kb and modal identity 97.0%. Further data analyses of CycloneSEQ confirmed its capability of high-
throughput long-read sequencing and potential in genomic, metagenomic and epigenomic applications. Preliminary
down-stream analyses on human whole-genome de novo assembly, variant calling, metagenomics sequencing and
single-cell RNA sequencing further demonstrated the potential of CycloneSEQ in various domains of genomics.

2 Results

2.1 Screening of motor and pore proteins

Motor proteins and pore proteins are two key components of a nanopore sequencing system, playing crucial roles in
the precise and efficient sequencing of nucleic acids [8]. We selected helicases as our motor proteins for nanopore
sequencing due to their inherent ability to unwind dsDNA, a critical function for sequencing applications. Through
comprehensive sequence and structural searches within deep-sea metagenomic databases, we identified numerous
motor proteins with novel sequences and structures. These newly discovered proteins exhibit low sequence homology
(approximately 35%) to known helicases, indicating their unique evolutionary paths and potential for novel functionality.
The structures of these proteins and ssDNA complexes predicted by AlphaFold3 [9]show that they possess distinct
helicase characteristics and exhibit significant structural novelty compared to known structures (Fig. 1a).

Following extensive experimental screening and mutational engineering, we found that most of these motor proteins
were well-suited for nanopore sequencing. For example, BCH-X, a member of candidate proteins, demonstrated strong
DNA binding and 5’ to 3’ DNA unwinding activity. This activity is essential for maintaining the progression of DNA
strands through the nanopore. By screening mutants of BCH-X, we achieved a sequencing speed of approximately 380
bp/s under our sequencing conditions, with high uniformity (Fig. 1b). High speed uniformity is critical in nanopore
sequencing because it ensures consistent data output and reduces the likelihood of errors, thereby enhancing the overall
accuracy and reliability of the sequencing process.

In tandem with motor proteins, pore proteins are integral to the function of nanopore sequencing systems, as they form
the channels through which nucleic acids are translocated and detected. Similarly to our approach with motor proteins,
we identified several different families of pore proteins with novel sequences and structures from deep-sea metagenomic
databases. These proteins exhibit less than 50% sequence homology to known pore proteins, highlighting their potential
for providing new insights and capabilities in sequencing technologies. AlphaFold3[9] structure prediction and protein
preparation results show that they can form a nanoscale channel structure as a homomultimer. (Fig. 1a) Using BCP-Y
as an example, in pore insertion experiments, BCP-Y can efficiently embed into the membrane and exhibits low-noise
open pore currents at different voltages, demonstrating its potential for application in nanopore sequencing (Fig. 1c).
By screening a large number of mutants (especially in the sensor region) and combining them with the motor protein
BCH-X, the pore protein BCP-Y can facilitate ssDNA translocation and sequencing with high signal complexity and
good signal-to-noise ratio of the sequencing current signal (Fig. 1d). This ultimately led to a significant improvement in
the accuracy of BCP-Y nanopore sequencing. Additionally, novel structural features at the BCP-Y “lip” motif (abundant
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Figure 1: Screening of motor and pore proteins.
(a) Schematic diagram of AlphaFold3 structure prediction of candidate helicases (top) and pore (bottom) proteins. (b)
Distribution of nanopore sequencing speed of helicase BCH-X. (c) Voltage ramping study of pore portein BCP-Y, with
voltages set at 0 V, 0.02 V, 0.04 V, 0.10 V, 0.14V and 0.18 V. (d) Representative nanopore sequencing current signal of
a single DNA strand generated by helicase BCH-X coupled with pore protein BCP-Y. The magnified section displays
"current squiggles" caused by different nucleotides translocating through the nanopore.

positive charges) endow it with enhanced nucleic acid capture capabilities, facilitating more efficient DNA threading
through the pore and thereby contributing to the overall efficiency and reliability of the sequencing process.

2.2 Pre-training and fine-tuning of the basecalling algorithm

Existing basecalling models for nanopore sequencing primarily use supervised training, requiring large amounts of
labeled sequencing data [10]. This method is costly and involves extensive training cycles. When data is insufficient,
prediction accuracy suffers, leading to high costs and low accuracy [8]. We adopted a pre-training and fine-tuning
approach to address these issues (Fig. 11). During pre-training, the model learns from vast amounts of unlabeled data,
allowing it to "understand" the data. Fine-tuning then uses pre-trained weights for rapid convergence and enhanced
accuracy. Inspired by Facebook’s wav2vec 2.0 [11], a pre-training method for speech tasks, we employed it for
basecalling. Wav2vec 2.0 uses a large corpus of unlabeled speech data for pre-training and a small amount of labeled
data for fine-tuning downstream tasks, demonstrating this approach’s feasibility.

Our pre-training utilized a dual loss function: Contrastive Loss to gauge the context network’s predictive capability, and
Diversity Loss to enhance the quantization codebooks’ expressiveness. We identified a flaw in wav2vec 2.0’s handling
of contrastive loss, where positive and negative samples could map to the same quantized vector. Our improvement
penalizes such occurrences, reducing cases where contrastive loss approaches zero and enhancing training effectiveness
(see Methods). After pre-training, the model was fine-tuned for base identification. A linear layer maps the output to
categories representing the four nucleobases and a placeholder. We used CTC-Loss for optimization. The fine-tuned
model showed marked improvements in error rates and faster convergence compared to models initialized randomly (Fig.
10), highlighting the effectiveness of leveraging pre-trained weights, especially with limited labeled data. Experiments
on human and other species data indicated that pre-training enables the model to generalize across species, evidenced
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by superior performance on species not covered during pre-training. Additionally, non-masked fine-tuning yielded
better results, contrary to wav2vec 2.0’s findings [11], suggesting task-specific differences in optimal training strategies.

Pre-training on a diverse dataset covering various species reduces error rates and accelerates convergence. Future
directions include scaling up the model and training samples for enhanced accuracy and expanding species diversity
in training data for broader downstream task support. Additionally, leveraging weak label data, as demonstrated by
OpenAI’s Whisper model, could enhance sequencing models’ robustness and utility.

2.3 Nanopore local chemistry (NLC): a novel method for single-molecule sequencing

The local chemical environment within or near the nanopore is a critical determinant of the performance and accuracy
of nanopore sequencing technologies. Variations in local ion concentration, pH, and the presence of other molecular
species can significantly influence the ionic current, biochemical reactions, and consequently, the detection and
discrimination of nucleotides as they translocate through the pore. The local ion concentration, in particular, affects
the electrostatic landscape of the nanopore, which can alter the speed and behavior of nucleic acid molecules during
sequencing. Understanding and controlling the local chemical conditions are therefore essential for optimizing the
sequencing process, reducing error rates, and achieving high-fidelity reads. Ongoing research into the local chemistry
of nanopores aims to elucidate the complex interplay between these factors and to develop strategies for maintaining
optimal conditions throughout the sequencing run.

Beyond optimizing data quality by manipulating the local chemical environment near the pore, we introduced a novel
sequencing method, termed nanopore local chemistry (NLC) sequencing. We first created an asymmetric chemical
environment on each side of the nanopore. On the cis side, the sequencing buffer contained no magnesium ions (Mg2+),
while the electrolyte on the trans side contained 20 mM magnesium ions (Fig. 2a). DNA helicase requires both
magnesium ions and ATP to properly unwind the DNA double helix. Specifically, magnesium ions first bind with ATP
to form an Mg-ATP complex. This complex, which is the actual substrate for DNA helicase, can be recognized and
utilized by the helicase. When we introduced library molecules (a mixture of dsDNA and helicase) on the cis side, the
DNA double helix could not be properly unwound due to the lack of Mg2+ (Fig. 2a).

However, after applying the transmembrane potential (U = 180 mV), Mg2+ ions were transported from the trans
microwell to the cis side through the nanopore, creating a local concentration gradient of Mg2+ on the cis side near the
pore (Fig. 2b). According to the simulation results (Fig. 2c), the Mg2+ concentration maximized near the pore and
decayed rapidly. Library molecules captured by the nanopore electric field were pulled near the nanopore entrance and
exposed to the Mg2+-rich environment. Magnesium ions near the pore bound with ATP to form an Mg-ATP complex,
which was then utilized by the helicase, thus activating sequencing (Fig. 2d).

The ionic current trace produced by NLC sequencing are shown in Fig. 2e compared with conventional nanopore
sequencing current trace (Fig. 2f). In both cases, we applied a transmembrane potential of 180mV. The open pore
current, when there isn’t DNA translocating through the pore, of NLC is 206.70 pA with and a standard deviation
of 0.51 pA. The open pore current of conventional nanopore sequencing is 193.91 pA with a standard deviation of
0.76 pA, respectively. The mean current during sequencing, when DNA passing through the pore, for NLC is 49.1 pA,
with a standard deviation of 7.25 pA, an amplitude of 61.22pA. The mean current during sequencing for conventional
nanopore sequencing method is 57.17 pA, with a standard deviation of 11.00 pA, an amplitude of 68.05pA. To draw a
conclusion, both methods exhibit very similar characteristic current values. As shown in Fig. 2 e-f, the library DNA
molecule (approximately 1.5 kb in total length) contains three repetitive sequences, which are successfully reflected in
the current signals of both sequencing methods.

2.4 A nanopore sequencing platform based on improved chip design

The design of the nanopore sequencing chip is a critical factor in the advancement of nanopore sequencing technology,
which offers a unique approach to DNA and RNA sequencing by monitoring changes in ionic current as nucleic acids
pass through a biological nanopore. This technology relies on a sensor chip designed with arrays of microwells, which
support membrane arrays and contain microelectrodes at the bottom of each well. In this setup, biological nanopores
are inserted into the membrane arrays that are uniformly formed on the sensor chip. The membranes are self-assembled
in a bilayer form via lipid molecules. Each nanopore is electrically connected to electrodes that precisely measure the
ionic current disruptions caused by nucleotide sequences moving through the pore.

The core metrics of a nanopore sequencer are primarily sequencing throughput and accuracy. To enhance sequencing
throughput, we employed high-density nanopore arrays on the sequencing chip and optimized the spatial distance
between nanopores to maximize the parallel processing of nucleic acid strands. The pitch distance between each
microwell is around 200 µm, resulting in a maximum nanopore density of approximately 28.9 per mm² (Fig. 3a).
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Figure 2: The nanopore local chemistry (NLC) sequencing method.
(a) Schematic representation with no trans-membrane potential applied (U = 0 mV). Magnesium ions are present
in the trans microwell, but not in the cis microwell, preventing dsDNA unwinding. (b) When the trans-membrane
potential is activated (U = 180 mV), magnesium ions translocate from the trans microwell to the cis side through the
nanopore, creating a localized concentration of magnesium ions. (c) COMSOL simulation of Mg2+ ion concentration
distribution (U = 0 mV). (d) COMSOL simulation of Mg2+ ion concentration distribution when a trans-membrane
potential is activated (U= 180 mV). (e-f) Sequencing current trace of nanopore local chemistry (NLC) method (e) and
the conventional (f) method. The library DNA molecules contain three repetitive sequences, which are successfully
reflected in the current signals of both sequencing methods (indicated by red dashed boxes).

Additionally, we engineered the microwell wall structure to maximize the electrolyte buffer volume within each well,
leading to an electrochemical system with prolonged stability.

To improve sequencing accuracy, we focused on enhancing the signal-to-noise ratio of the chip. This involves
implementing smaller apertures for the microwells. In our system, minimizing the size of the aperture (with a diameter
of ≤76 µm) results in a smaller final membrane area (Fig. 3b). A smaller membrane area leads to lower membrane
capacitance (≤20 pF) and reduced noise, which is electrically coupled to the measuring system.
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Figure 3: Improved chip design for nanopore sequencing.
(a) Scanning electron microscope (SEM) micrograph of sensor arrays for nanopore sequencing. Sensor units are spaced
approximately 200 µm apart and are arranged in a honeycomb pattern to maximize sensor density. (b) Confocal image
of the membrane array formed on the sensor chip. Electrolyte in each microwell is shown in red, while the membrane
solution is shown in green. (c) Median open pore current of all effective single nanopores on a sensor chip during a
112-hour sequencing run. (d) Cumulative number of bases sequenced over time in a 107-hour sequencing on a single
flowcell.

These design improvements enabled our sensor chip to support over four days of continuous sequencing with consistent
open-pore currents (Fig. 3c). We sequenced the E. coli genome for 107 hours on a single flowcell. This sequencing
run cumulatively yielded 53.4 Gb data that passed the internal basecalling quality criteria (Fig. 3d), demonstrating the
possibility to achieve high sequence yield by sequencing for a prolonged period of time. Among the 12.6 million reads
generated, 12.1 million (95.6%) was mapped to the E. coli reference genome. We note that no buffer re-flush or library
washing was employed here, which are common ways to maintain sequencing speed and accuracy.

Based on the novel nanopore sensor chip design described above, we have successfully constructed a nanopore based
single-molecule sequencing platform named as CycloneSEQ. As illustrated in Fig. 4b, The flow cell module of
CycloneSEQ comprises a microfluidic chip enabling the transportation and temporary storage of sample molecules as
well as supporting electrochemical reaction, an arrayed chip containing nanopores, a signal acquisition application-
specific integrated circuit (ASIC), and a printed circuit board with surface mounted components. Cell samples to be
sequenced are processed through lysis, nucleic acid extraction, and other methods to extract long-chain DNA molecules.
These DNA molecules are then subjected to DNA repair and adapter ligation. Subsequently, we mount flow cells
in the socket of the CycloneSEQ sequencer and perform a chip self-check. After the self-check process, the system
indicates whether the chip meets the quality criteria and the number of effective nanopores on each individual chip.
After self-check process, we sequentially add the sequencing reagents and the library molecules to be sequenced into the
micro-port of the chip, following a specific order. Then, we initiate the sequencing process through the software. Owing
to the characteristics of nanopore single-molecule sequencing, as soon as the sequencing starts, the high-performance
workstation paired with the sequencer can commence the base calling process. The CycloneSEQ sequencer is capable
of supporting sequencing and base calling in real time simultaneously.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608720
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - AUGUST 9, 2024

Figure 4: A single-molecule nanopore sequencing platform.
(a) Schematic representation of a sensor unit constructed with an insulating membrane containing an inserted nanopore,
along with cis and trans chambers and corresponding electrodes. (b) Exploded view diagram of a flow cell. (c) Library
preparation process for nanopore sequencing. (d) CycloneSEQ nanopore sequencer. (e) High-performance workstation
and operating software for the CycloneSEQ nanopore sequencing platform.

2.5 Error profile of CycloneSEQ

To systematically evaluate the performance of the CycloneSEQ platform, we generated whole-genome sequencing
(WGS) data for the thoroughly characterized Genome in a Bottle (GIAB) consortium HG002 lymphoid cell line.
Overall, the read lengths of the HG002 WGS data were distributed over a broad range from < 5 kb to > 50 kb, with a
mean read length of 19.2 kb. The N50 value, defined as the length of the longest read that, together with longer reads,
contain over 50% of all sequenced bases, was 33.6 kb (Fig. 5a). The mean bases quality values were predominantly
in the range between 12 and 16, with a small cluster of short reads that have lower quality scores (Fig. 5b). The
distribution of quality scores were fairly consistent in different relative positions of each read, and only dropped slighly
near 5’ and 3’ ends (Fig. 5c).

We aligned the sequencing reads to the diploid HG002 v1.0.1 reference genome in a haplotype-specific manner (see
Methods), and analysed the frequency and types of sequencing errors from based on the alignment pattern. After
removing reads with mean base quality scores below 10, which accounted for less than 10% of total bases, the accuracy
of most reads ranged between 93% and 99%, with a modal value at 9̃7% (Fig. 5d). The overall per-base error rate
was estimated to be 3.94%, with deletions being the most frequent type of error, with an error rate contribution of
2.34%, followed by mismatches (0.83%) and insertions (0.77%) (Fig. 5e). For mismatch errors, A-to-G and G-to-A
errors were significantly more common than other types of base substitutions, both of which had more than 0.2%
error rate contributions (Fig. 5f). The enrichment of A-to-G and G-to-A errors was presumably due to the structural
similarity between adenine and guanosine nucleotides, which lead to similar current signals [12]. Among the insertion
and deletion errors, most errors affected either one or two bases, with only less than 10% insertion and deletion errors
affecting three of more bases (Fig. 5g). Comparing per-read error rates estimated by reference alignment with reported
mean base quality scores, we found that the reported quality scores was remarkably close to the actual sequencing
accuracy (Fig. 5h). In contrast, similar systematic biases of quality scores often exist in other long-read sequencing
platforms, which may affect downstream applications that rely on quality scores, such as variant calling [12]. We further
analyzed the consensus accuracy of CycloneSEQ reads based on the de novo assemblies of the E. coli genome. The
phred-scale quality value (QV) increased with coverage depth and reached 40 (i.e. error rate 0.01%) at 40× coverage
(Fig. 5i), confirming the possibility to acquire highly accurate consensus sequences using CycloneSEQ data alone.

2.6 Variant calling and de novo assembly of the HG002 genome

Variant calling and de novo assembly are among the most important applications of long-read sequencing in genomics
research. For variant calling, long-read sequencing provides longer sequences that can resolve complex structural
variants that are challenging for short-read sequencing. Longer reads also reduce ambiguity in read alignment,
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Figure 5: Whole-genome sequencing of the HG002 cell line.
(a) The distribution of read lengths. The cumulative fraction of bases (y axis) contained in reads longer than a given
threshold (x axis) is shown. Gray dotted lines denote N50, which represents the length of the longest read that, together
with longer reads, contain over 50% of all sequenced bases. b Joint distribution of read lengths (x axis) and read quality
scores (y axis). (c) Mean base quality (y axis) along different relative positions of the read (x axis). (d) Distribution of
per-read identity. Per-read identity is calculated by aligning reads to the diploid HG002 v1.0.1 reference genome. (e)
The overall error rate and the contributions of insertion, deletion and mismatch errors. (f) Contribution of each type
of mismatch errors to the overall error rate. (g) Distribution of indel sizes for insertion and deletion errors. (h) Base
quality calibration curve showing the relationship between per-read error rate (y axis) and per-read mean base quality (x
axis). The blue line with dots represents observed results in CycloneSEQ data and the black line represents the expected
error rates based theoretical calculations. (i) Consensus accuracy of CycloneSEQ reads (y axis) plotted against mean
coverage depth (x axis). (d)-(g) are based on reads with mean base quality ≥ 10.

eliminating potential alignment errors in complex genomic regions. For de novo assembly, longer reads cover larger
genomic regions in single reads, reducing computational complexity, and are more likely to span large repetitive
elements, improving assembly contiguity. We observed that the coverage depth of CycloneSEQ reads were highly
uniform across the human genome (except in the repeat-rich centromere regions prone to alignment errors), providing
solid support for both variant calling and de novo assembly applications (Fig. 13).

Here, we generated variant calling and haplotype-resolved de novo assembly results for the HG002 genome using
CycloneSEQ data. Variant calling was performed using our in-house bioinformatics tools LRAPmut and LRAPsv
(see Methods) and compared against the Genome in a Bottle (GIAB) HG002 benchmark [13]. For single-nucleotide
polymorphisms (SNPs), we achieved a precision of 0.992 and a recall of 0.990 at a sequencing depth of 30× (Fig. 6).
Small insertions and deletions (indels) present a challenge for variant calling due to their similarity to the predominant
sequencing errors in CycloneSEQ data (Fig. 6). Utilizing variant imputation based on the 1000 Genomes reference
panel (see Methods), we attained a precision of 0.955 and a recall of 0.890 at 30× coverage (Fig. 6). For structural
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Figure 6: Variant calling of HG002.
Precision (a), recall (b) and F1-score (c) statistics of HG002 variant calling results based on CyclongSEQ data. The
GIAB HG002 variant benchmark dataset was used as the ground truth.

variants (SVs), we observed that increased sequencing coverage had a more pronounced effect on improving precision
and recall compared to SNPs and indels. Specifically, we achieved a precision of 0.948 and a recall of 0.954 at 40×
coverage (Fig. 6).

The haplotype-resolved whole-genome de novo assembly for HG002 was generated using the Shasta assembler [14].
This assembly was evaluated against the Telomere-to-Telomere (T2T) consortium HG002 reference sequence (see
Methods). We found that most chromosomes were assembled with a high level of completeness, with only the
complex, repeat-rich centromere regions missing from the assembly (Fig. 7a). The short arms of the five acrocentric
chromosomes—13, 14, 15, 21, and 22—were assembled with fragmented contigs due to the presence of satellite
repeats and high sequence similarity among them. Other parts of the genome were mostly assembled with long,
haplotype-resolved contigs, except the two sex chromosomes, likely due to the limited ability of the current Shasta
implementagtion to handle the haplodity of X and Y chromosomes and the sequence homology between them. The
NGA50 value of the assembly was 23.8 Mb (Fig. 7b), indicating that 50% of the genome was assembled with contigs of
at least 23.8 Mb in length. The overall error rate of the assembly was estimated to be 0.12%, with deletions contributing
the most to the overall error rate, followed by insertions and mismatch errors (Fig. 7c). Further developments on read
lengths, accuracy and assembly methods will likely improve assembly contiguity and quality in the future.

2.7 Metagenome sequencing of mock sample

Metagenomic sequencing is an important application of nanopore sequencing. To evaluate the performance of
CycloneSEQ in assembling microorganism genomes and estimating their relative abundance from a mixed sample,
we generated 7.7 Gb sequencing data from the ZymoBIOMICS Gut Microbiome Standard mock metagenome sample,
which contained a mixture of 17 microorganism species of predefined abundances. By alignment of CycloneSEQ reads
to the corresponding reference genomes, we were able to accurately quantify the relative DNA abundance of 15 out
of the 17 species in the sample based on sequencing depths, including both high-GC and low-GC species (Fig. 8a).
Only two of the least abundant species could not be identified from sequencing data: Enterococcus faecalis (abundance
0.001%) and Clostridium perfringens (abundance 0.0001%).

In addition to reference-based quantification, we performed de novo assembly using the Flye assembler [15] based on
CycloneSEQ data. Among the 17 species in the sample, ten species had relative DNA and genome copy abundances
above 1%, all of which were assembled with high levels of genome completeness, with nine out of ten genomes
successfully circularized (Fig. 8b and Table 1). Based on the assembled genomes, we were also able to perform accurate
quantification of the copy numbers and sequence lengths of 16S, 5S and 23S rRNA of these ten species (Tables 2, 3,
and 4).

2.8 Single-cell RNA sequencing of GM12878 cell line

Long-read sequencing in single-cell RNA sequencing (scRNA-seq) offers significant advantages, including the ability
to capture full-length transcripts, which provides a more comprehensive view of isoform diversity, alternative splicing,
and gene fusion events. This detailed transcriptome profiling enhances the understanding of cellular heterogeneity
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Figure 7: Haplotype-resolved whole-genome assembly for HG002.
(a) Alignment of the assembled sequences to the T2T HG002 reference sequence. Each row represent a chromosome.
Haplotype-resolved contigs and unresolved unitigs are shown in blue and gray, respectively. (b) Assembly contiguity
represented as the fraction of genome assembled (y axis) for each minimum contig length (x axis). (c) Overall error rate
of the assembly and error rates for deletion, insertion and mismatch errors.

and complex gene regulatory networks. Here, we present preliminary results on applying the CycloneSEQ platform
in scRNA-seq using mRNA from the GM12878 cell line, and compare the results with scRNA-seq data generated
from the same cDNA libraries using BGI DNBSEQ short-read sequencing. As most transcripts were less than 10 kb in
length, it was possible to obtain full-length coverage from single CycloneSEQ long reads. We found that the mean
coverage depth was slightly higher near the 3’ end of each gene and lower near the 5’ end of each gene (Fig. 9a), likely
due to incomplete reverse transcription and/or degregation of mRNA near 5’ ends. Despite this, the overall coverage
depths were highly uniform from the 5’ to 3’ end of each transcript (Fig. 9a), providing solid support for the discovery
of potential novel isoforms. The total number of genes detected in each cell by CycloneSEQ ranged between 300 and
4,000 and showed a strong linear correlation (R2 = 0.95) with that of DNBSEQ data. Gene expression quantification
results from CycloneSEQ were also highly consistent (R2 = 0.93) with those of DNBSEQ short-read sequencing,
suggesting that our CycloneSEQ platform was capable of accurate transcript quantification in single-cell sequencing.

3 Discussions

Nanopore sequencing has revolutionized genomics by enabling the real-time analysis of nucleic acids without the need
for amplification or chemical labeling. Despite its transformative impact, several limitations, such as relatively high
error rate and low throughput, still hinder its broader adoption and effectiveness. In this study, we developed several
novel components of nanopore sequencing technology, including motor and pore proteins, chip design, and basecalling
algorithms. We show that our new sequencing platform, CycloneSEQ, is capable of generating high-throughput
long-read sequencing data useful for downstream applications.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608720
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - AUGUST 9, 2024

Figure 8: Metagenome sequencing and methylation prediction.
(a) Correlation between expected (x axis) and observed (y axis) relative DNA abundance in the mock metagenome
sample. Each dot represents a microorganism strain. Dot colors represent the GC content of the genome of the assayed
strains. (b) Assembled genome fraction of ten species in the mock metagenome sample. Colors represent the relative
DNA abundances.

Figure 9: Single-cell RNA sequencing of GM12878 cell line.
(a) Normalized coverage depths (y axis) along different relative positions of the gene body (x axis). Transcripts shorter
than 100 bp are not included. (b) Correlation between the number of detected gene in each cell by DNBSEQ (x axis)
and that by CycloneSEQ (y axis) platforms. Each dot represents a cell. R represents the Pearson regression coefficient.
(c) Correlation between pseudobulk gene expression levels measured by DNBSEQ (x axis) and that by CycloneSEQ (y
axis) platforms. Each dot represents a gene detected by both platforms. R represents the Pearson regression coefficient.

One significant limitation of current nanopore sequencing technology is its accuracy. Although improvements have been
made, the error rate remains higher compared to short-read sequencing technologies. This issue can be addressed by
screening for novel motor and pore proteins and developing more advanced basecalling algorithms that could enhance
the precision and speed of nanopore sequencing [16]. Future development and integration of non-protein pores, such
as synthetic nanopores, may provide more stable and consistent results, reducing the error rates and increasing the
reliability of the technology [17]. Another area of improvement lies in the membranes used for nanopore sequencing.
Novel membranes with enhanced stability and reduced noise could significantly improve the quality of the sequencing
data [18]. Advances in materials science could lead to the development of membranes that are more resilient to the
harsh conditions often encountered during sequencing, thereby extending their lifespan and efficiency.

Sequencing of modified DNA and RNA bases remains a challenge for nanopore technology. Modified bases play
crucial roles in various biological processes, and accurate detection is essential for understanding epigenetics and other
regulatory mechanisms. Enhancing the capability of nanopore sequencing to accurately read modified bases would be a
significant breakthrough, potentially achieved through the use of advanced bioinformatics algorithms and improved
pore chemistry [19].

The potential of nanopore technology extends beyond nucleic acids to the sequencing of amino acids, peptides, and
proteins. Protein sequencing using nanopores could revolutionize proteomics, enabling the direct analysis of proteins
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and their post-translational modifications. Although still in its infancy, this application holds promise for significant
advancements in understanding protein structure and function [20].

Clinical applications of nanopore sequencing are vast, ranging from rapid pathogen identification to point-of-care
testing. However, the high costs and limited throughput of current systems restrict their widespread use in clinical
settings. Reducing costs and improving throughput are critical for the adoption of nanopore sequencing in routine
clinical practice [8][21]. Innovations in sequencing chemistry, automation, and data analysis could make nanopore
sequencing more accessible and practical for clinical diagnostics. Additionally, nanopore sequencing holds great
potential for population cohort studies, providing insights into genetic diversity and disease susceptibility on a large
scale. The ability to sequence entire genomes quickly and cost-effectively, and accurately characterize structure variation
could transform epidemiological studies and public health initiatives. Continued advancements in reducing costs and
increasing throughput are essential to fully realize the potential of nanopore sequencing in both clinical and population
cohort applications.

4 Methods

4.1 Development of Motor Proteins and Pore Proteins

All protein sequences were derived from a deep-sea metagenomic database, and all mutant designs were based on
AlphaFold3 [9] structure predictions. The proteins were overexpressed in BL21(DE3) or similar strains, followed by
purification using affinity chromatography, ion exchange chromatography, and size-exclusion chromatography. DNA
libraries were prepared from the motor protein BCH-X mutants, Y-shaped adaptors and input DNA. After embedding the
pore protein BCP-Y mutants into membranes, sequencing buffer and the test libraries were added, and then sequencing
was performed at 0.18V and 30°C to collect current signals. The sequencing speeds were obtained by dividing the
length of the specific sequence DNA by its translocation time. The open pore currents of BCP-Y mutants were recorded
at different voltages (0V, 0.02V, 0.04V, 0.10V, 0.14V, and 0.18V).

4.2 Training and validation of basecalling models

4.2.1 Model architecture

Our model consists of three key components (Fig. 11): (1) Feature Encoder: A multi-layer 1D convolution network
processes raw signals through feature encoding, capturing relevant information from the sequencing data. It includes
multiple blocks, each with 1D convolution and GELU activation for downsampling and extracting local patterns; (2)
Quantization Module: The feature encoder output is discretized using product quantization into a finite representation
space, enhancing the model’s self-supervised learning capability. (3) Mask and Context Networks: The feature encoder
outputs are processed by a mask module before being fed into the context network, composed of multiple transformer
layers. This network approximates relative positional encoding and enhances contextual understanding.

4.2.2 Improved definition of the Contrastive Loss

The objective function of self-supervised pre-training comprises two components: Contrastive Loss and Diversity Loss.
These components optimize different aspects of the training process to improve model performance. Contrastive Loss
measures the contextual network’s ability to predict future outputs. The Transformer’s output at time t (ct) should
match the quantization module’s output at time t (qt). Additionally, ct should differ from outputs at k other randomly
selected positions (distractors) in the sequence. The original Contrastive Loss is defined as:

Lm = − log
exp(sim(ct, qt)/k)∑

q′∼Qt
exp(sim(ct, q′)/k)

where Qt = {qt, q′1, q′2, ..., q′i, ..., q′K}, sim() is a predefined similarity function, q′i is the i-th interference vector, and k
is a predefined temperature parameter.

We identified an issue where positive and negative samples could map to the same quantized vector, undermining
performance. Assuming qt is the positive sample’s quantized vector at time t, the corresponding negative sample
quantized vectors are divided into q′, not equal to qt, and p′, equal to qt:

Lm = − log
exp(sim(ci, qi)/k)

exp(sim(ci, qi)/k) +
∑

q′ exp(sim(ci, q′)/k) +
∑

p′ exp(sim(ci, p′)/k)
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Negative samples mapping to the same quantized vector as positive samples undermine contrastive loss. In wav2vec
2.0, such negatives do not contribute to the contrastive loss, making the last denominator term zero. This issue halts the
training process when contrastive loss becomes zero, preventing gradient updates.

We introduced a penalty count(p′) · l for such cases, with l as the penalty coefficient (l = 0.01):

Lm = − log
exp(sim(ci, qi)/k)

exp(sim(ci, qi)/k) +
∑

q′ exp(sim(ci, q′)/k) + count(p′) · l

Our method applies penalties to both Contrastive Loss and Diversity Loss, ensuring negative samples contribute
meaningfully. This improvement reduces instances where contrastive loss reaches zero, enhancing training robustness
and effectiveness.

4.2.3 Pre-training and fine-tuning

The pre-trained data originated from the BGI Cyclone nanopore sequencing platform, including sequences from various
species: 80% human genome, 20% rice, Saccharomyces cerevisiae, and Bacillus subtilis. Data was sampled at 5 kHz,
filtering abnormal signals, and divided into chunks of 5000 signal points, creating 300 million pre-training chunks. We
used a 15% probability mask, mask length of 5. The feature encoder employed a 3-layer 1D convolution with a stride of
(1,1,5), kernel size of (5, 5, 19), and dimension of (4, 16, 768). The context network utilized a 10-layer transformer with
512 hidden units and 8 heads. Training on 64 NVIDIA A100-PCIE-40GB GPUs for 3.5 days, batch size 1024, using
Adam optimizer with learning rate 0.005 and linear decay. α = 0.1 for diversity loss, K = 100 for negative examples,
G = 2 and V = 320 for the quantization module. Fig. 12 shows training and validation loss over iterations.

Fine-tuning used data from the BGI Cyclone sequencing platform. An existing basecaller (Bonito) predicted base
sequences, compared with a standard library, selecting those with coverage >95% as labels. Post pre-training, the model
was fine-tuned on 40 million annotated human samples, with 10,000 evaluation samples, for 1.3 days on 16 NVIDIA
A100-PCIE-40GB GPUs, batch size 256. Using Adam optimizer with a warm-up over 200 steps followed by linear
decay, we experimented with learning rates of 0.0005 and 0.001, reporting the best results. Models were evaluated
using median error rate.

4.3 Nanopore local chemistry (NLC) sequencing

We established a model in COMSOL to simulate and analyze the concentration distribution of Mg2+ in the cis and trans
chambers on both sides of the nanopore. The system model parameters were set as follows: the nanopore opening
diameter was 2 nm, the length was set to 10 nm, and the width and height of both the cis and trans chambers were set
to 100 nm and 52.5 nm, respectively. The cis chamber was filled with a 0.5 M KCl aqueous solution, and the trans
chamber was filled with a 0.5 M KCl and 20 mM MgCl2 aqueous solution. In this model, we considered two main
transport mechanisms: ion diffusion and ion electrophoresis. Given that the nanopore interior was assumed to be neutral
without any charge settings, the effect of electroosmotic flow was neglected. Different trans-membrane potentials were
applied to the system, and the steady-state Mg2+ concentration gradient distribution was calculated via COMSOL.

As shown in Fig. 2c, the lower chamber was subjected to a boundary condition potential of 0 V, and the upper chamber
was grounded at 0 V, resulting in no applied potential difference across the nanopore. Under this condition, there was
no significant ion electrophoresis behavior guided by an electric field. The concentration gradient distribution of Mg2+

was primarily determined by free diffusion of ions. As shown in Fig. 2d, when the lower chamber was subjected to a
boundary condition potential of 0.18 V and the upper chamber was grounded at 0 V, an applied potential difference of
approximately 0.18 V was established across the nanopore.

4.4 Nanopore sensor chip

The nanopore sensor chip was fabricated using standard semiconductor manufacturing techniques, including pho-
tolithography, thin film deposition, and patterning. The confocal image was captured using a Nikon C2+ microscope.
The membrane solution was mixed with 2 µM BODIPY PL fluorescent dye, which has an excitation peak at 502 nm
and an emission peak at 511 nm. The electrolyte in the microwell was stained with 0.02% wt Sulforhodamine B, which
has an excitation peak at 559 nm and an emission peak at 577 nm.

4.5 DNA Extraction and Library Preparation

High molecular weight DNA extraction and optional length sorting were performed on the sample to obtain DNA suitable
for long-read nanopore sequencing. The quality of the extracted DNA was assessed by measuring the A260/A280 ratio,
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which was maintained between 1.8 and 2.0. End repair reagents were used to repair the ends of the DNA fragments
and add deoxyadenosine (dA) tails, which facilitated subsequent adaptor ligation. Oligos were annealed in TE buffer
to form Y-shaped adaptors. The sequencing library was prepared from motor protein BCH-X, Y-shaped adaptors and
input DNA.

4.6 Sequencing error analyses

For sequencing error analyses, low-speed sequencing mode was used to generate the HG002 whole genome sequencing
data on the CycloneSEQ platform. We first randomly sampled 20,000 reads from the sequencing data, which were
aligned to both haplotypes of the diploid reference genome HG002 v1.0.1 using Minimap2 [22]. Insertion, deletion
and mismatch errors were identified from the CIGAR string of the resulting alignments. Error rates were calculated
by dividing the total length of errors by the total alignment length. To compute read quality for each read, we first
converted Phred-scale base quality values to error rates, and then calculated the average error rate of all bases in each
read. The resulting average error rate was finally converted back to Phred-scale to represent the read quality of each
read. Visualization was performed using Matplotlib [23] and Seaborn [24] in Python.

4.7 Variant calling

We used minimap2 version 2.24-r1164-dirty to align reads to a reference genome. For small variant calling, we utilized
LRAPmut version v1.0 (https://github.com/Roick-Leo/LRAPmut) with CycloneSEQ data, and for structural variant
calling, we employed LRAPsv version v1.0 (https://github.com/Roick-Leo/LRAPsv). Haplotype imputation based
on 1000 genomes reference panel was applied to improve the performance of indel variant calling. HG002 data was
removed from the reference panel prior to imputation. To benchmark the variant calls, we assessed the small variant
calls against the GIAB truth set using hap.py v0.3.15 (). Additionally, we used Truvari v4.2.2 (ref [25]) to produce
performance metrics by comparing the predicted structural variants with the benchmark SVs.

4.8 De novo assembly of the HG002 genome

The haplotype-resolved \textit{de novo} assembly of the HG002 genome was generated using Shasta v0.11.1 [14],
based on CycloneSEQ reads at approximately 80× genomic coverage. The following command was used:

shasta-Linux-0.11.1 \
--input <INPUT_FASTQ> \
--assemblyDirectory <OUTPUT_FOLDER> \
--config Nanopore-Phased-May2022 \
--threads 16 \
--memoryMode filesystem \
--memoryBacking disk

Assembly evaluation was performed by aligning the assembly to the T2T HG002 reference sequence
(https://github.com/marbl/HG002). Each assembly contig was separately aligned to the paternal and maternal haplotypes
of the HG002 reference sequence. The alignment with the largest number of matched bases was selected for evaluation.
Deletion, insertion, and mismatch error rates were calculated based on the CIGAR string of the resulting alignment.

4.9 Assembly and quantification of a mock metagenome sample

The ZymoBIOMICS Gut Microbiome Standard (Catalog No. D6331) comprises 18 bacterial strains, 2 fungal strains,
and 1 archaeal strain, with a theoretical genomic DNA abundance ranging from 0.0001% to 14%. Reference genomes,
along with 16S and 18S rRNA genes, are accessible online [26]. DNA was extracted from the mock samples using the
MGIEasy Stool Microbiome DNA Extraction Kit according to the manufacturer’s protocols.

Chopper 0.6.0 (https://github.com/wdecoster/chopper) was utilized to filter out reads with a quality score lower than Q10
and a length shorter than 1,000 base pairs using the following parameters: -q 10 –minlength 1000. Then, the reads
were assembled using the Flye 2.8.3-b1695 using the following parameters: –meta –nano-raw. Semibin2 2.1.0 was
applied to generate bins for the mock community using the following parameters: (single_easy_bin –environment
global –sequencing-type long_read). Assembly quality was assessed using Quast v5.0.2. Then, the rRNA
genes were predicted using barrnap 0.9 using the following parameters: –kingdom -reject 0.01 -evalue 1e-3.
tRNA was predicted by tRNAscan-SE 2.0.12 using the following parameters: -B . For quantification and evaluation,
plasmid sequences were removed from the reference sequences. Relative DNA abundances of each strain was estimated

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608720doi: bioRxiv preprint 

https://github.com/Illumina/hap.py
https://github.com/marbl/HG002
https://doi.org/10.1101/2024.08.19.608720
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - AUGUST 9, 2024

by aligning reads to the combined reference sequences of all strains, and summarising the total number of aligned bases
for each strain.

4.10 Single-cell RNA sequencing of GM12878 cell line

For DNBSEQ sequencing, sample preparation, cell isolation, mRNA extraction, reverse transcription, library preparation,
sequencing were performed according to the manufacturer’s guidelines of the DNASEQ C4 platform. For CycloneSEQ
sequencing, the same procedure was followed with the addition of PCR amplification of cDNA libraries. The amplified
libraries was sequenced on two CycloneSEQ chips. scRNAseq data analyses was performed using an in-house pipeline
based on GENCODE GRCh38 transcript annotations.
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7 Supplementary information

7.1 Supplementary figures

Figure 10: Architecture of the pre-training model for base-calling
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Figure 11: Performance of fine-tuned basecalling model

Figure 12: Training (a) and validation (b) loss in the pre-train stage of the basecalling model.
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Figure 13: Coverage depth of CycloneSEQ data in the HG002 genome.
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7.2 Supplementary tables

Species Relative abundance (%) Genome size (Mb) Assembled fraction (%)
Faecalibacterium prausnitzii 14 2.914 100

Veillonella rogosae 14 2.158 100
Roseburia hominis 14 3.463 100
Bacteroides fragilis 14 5.167 99.988
Prevotella corporis 6 2.947 99.977

Bifidobacterium adolescentis 6 2.090 97.067
Fusobacterium nucleatum 6 2.448 99.96
Lactobacillus fermentum 6 1.905 99.997

Clostridioides difficile 1.5 4.209 99.894
Akkermansia muciniphila 1.5 2.851 100

Table 1: The relative abundance, genome size, and assembled fraction of different species in the mock metagenome
sample.

Species with relative genomic DNA or genome copy abundances below 1% are excluded.

Species 16S rRNA CN (truth) 16S rRNA CN (assembly) 16S rRNA length (truth) 16S rRNA length (assembly)
Faecalibacterium prausnitzii 6 6 1509 1508

Veillonella rogosae 4 4 1561 1561
Roseburia hominis 4 4 1524 1528
Bacteroides fragilis 6 6 1527 1525
Prevotella corporis 4 4 1528 1527

Bifidobacterium adolescentis 5 4 1528 1526
Fusobacterium nucleatum 5 5 1514 1514
Lactobacillus fermentum 5 5 1573 1572

Clostridioides difficile 12 12 1501 1500
Akkermansia muciniphila 3 3 1509 1509

Table 2: Statistics of 16S rRNA copy numbers (CN) and lengths of different species in the mock metagenome sample.
Species with relative genomic DNA or genome copy abundances below 1% are excluded.

Species 5S rRNA CN (truth) 5S rRNA CN (assembly) 5S rRNA length (truth) 5S rRNA length (assembly)
Akkermansia muciniphila 3 3 108 108

Bacteroides fragilis 6 6 106 106
Bifidobacterium adolescentis 6 5 109 109

Clostridioides difficile 11 11 105 106
Faecalibacterium prausnitzii 6 6 112 112

Fusobacterium nucleatum 5 5 107 107
Lactobacillus fermentum 5 5 112 112

Prevotella corporis 4 4 109 109
Roseburia hominis 4 4 100 100
Veillonella rogosae 4 4 110 110

Table 3: Statistics of 5S rRNA copy numbers (CN) and lengths of different species in the mock metagenome sample.
Species with relative genomic DNA or genome copy abundances below 1% are excluded.
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Species 23S rRNA CN (truth) 23S rRNA CN (assembly) 23S rRNA length (truth) 23S rRNA length (assembly)
Akkermansia muciniphila 3 3 2830 2830

Bacteroides fragilis 6 6 2880 2880
Bifidobacterium adolescentis 4 5 3040 3049

Clostridioides difficile 12 13 2893 2894
Faecalibacterium prausnitzii 6 6 2831 2831
Fusobacterium nucleatum 5 5 2892 2891
Lactobacillus fermentum 5 5 2917 2917

Prevotella corporis 4 4 2892 2894
Roseburia hominis 4 4 2884 2885
Veillonella rogosae 4 4 2927 2928

Table 4: Statistics of 23S rRNA copy numbers (CN) and lengths of different species in the mock metagenome sample.
Species with relative genomic DNA or genome copy abundances below 1% are excluded.
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