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Abstract

The hippocampus is a structure in the medial temporal lobe which serves multiple
cognitive functions. While important, the development of the hippocampus in the formative
period of childhood and adolescence has not been extensively investigated, with most
contemporary research focusing on macrostructural measures of volume. Thus, there has been
little research on the development of the micron-scale structures (i.e., microstructure) of the
hippocampus, which engender its cognitive functions. The current study examined age-related
changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong
gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years).
Surface-based hippocampal modelling was combined with established microstructural
approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density
Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density
Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification,
and thickness) were found between 8-19 years, while significant changes in microstructure
measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean
diffusivity (from DTI) were found. In particular, there was a significant increase across age in
neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and
mean diffusivity across the hippocampal subfields and long-axis. A significant negative
correlation between age and MR apparent soma radius was found in the subiculum and CA1
throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered
variability in age-related microstructural changes between the subfields and long-axis, which
may reflect ostensible developmental differences along these two axes. Finally, correlation of
hippocampal surfaces representing age-related changes of microstructure with maps derived
from histology allowed for postulation of the potential underlying microstructure that diffusion
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changes across age may be capturing. Overall, distinct neurite and soma developmental profiles
in the human hippocampus during late childhood and adolescence are reported for the first time.

1. Introduction

The hippocampus is a widely studied yet enigmatic archicortical region that is typically
parcellated into mesoscopic subfields which differ in both structure and function (Ding & Van
Hoesen, 2015; Duvernoy et al., 2013). Part of its mystery arises from its relatively
uncharacterized development. One hypothesis posits that the evolutionary development of the
neocortex arose from a primordial hippocampus and amygdala, highlighting its importance in
acquiring higher-order cognitive functions (Giaccio, 2006; Sanides, 1964; Sanides, 1970).
However, little is known about how the hippocampus develops on the timescale of a human
lifespan, particularly in late childhood (~6-12 years) and adolescence (~12-18 years). This
characterization is critical to better understand the formation of human cognition, and the
principal role the hippocampus has in functions like episodic and semantic memory, spatial
navigation, emotion, behaviour, and more (Buzsaki & Moser, 2013; Squire, 1992; Strange et al.,
2014; Sweatt, 2010).

While important, it is a challenging task to study the hippocampus during the early years
of human development. Contemporary research has used non-invasive methods such as magnetic
resonance imaging (MRI) to examine the hippocampus and its subfields across these early
developmental stages (Callow et al., 2020; Giedd et al., 1996; Gogtay et al., 2006; Krogsrud et
al., 2014; Langnes et al., 2020; Lee et al., 2014; Pfluger et al., 1999; Tamnes et al., 2018;
Uematsu et al., 2012; Vinci-Booher et al., 2023; Wierenga et al., 2014). Most studies have
focused on volumetric changes, where it has generally been shown that hippocampal volume
increases across childhood and adolescence, likely capturing an expansion of cognitive capacity
(Krogsrud et al., 2014; Langnes et al., 2020; Lee et al., 2014; Pfluger et al., 1999; Tamnes et al.,
2018; Wierenga et al., 2014). However, there have been conflicting results, with studies finding
variable patterns of age-related hippocampal volume changes (Giedd et al., 1996; Lee et al.,
2014; Tamnes et al., 2018; Wierenga et al., 2014). While volume does appear to be sensitive to
developmental changes, it is a coarse measure which is unspecific towards the intrahippocampal
gray matter. This includes components such as glial cells, neurites, soma and other micron-scale
structures (collectively termed microstructure) that are responsible for the computations which
engender hippocampal function and are of critical importance in both health and disease.

The development of gray matter microstructure is generally characterized by rapid
growth of dendrites, axons, and a proliferation of synaptic connections in early childhood, which
are pruned during later childhood years (Goldman-Rakic, 1987). Diffusion MRI (dMRI) is a
technique which sensitizes the MRI signal to the micron-scale movement of water (Le Bihan,
1995) which can be leveraged to study developmental patterns of microstructure (Lebel et al.,

2008). Previous studies using Diffusion Tensor Imaging (DTI; Basser et al., 1994) to capture
hippocampal microstructural development have generally found a negative correlation between
mean diffusivity and age in early childhood, while age-related changes in fractional anisotropy
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have been more variable (Callow et al., 2020; Langnes et al., 2020; Vinci-Booher et al., 2023).
However, these findings are not specific to any particular microstructural property, and could be
a result of changes to axon or dendrite density, myelination, soma related changes, or other
micron level alterations (Jensen & Helpern, 2010; Jelescu & Budde, 2017; Karat et al., 2024).
Recent advances in MRI hardware including stronger gradients (Jones et al., 2018; McNab et al.,
2013; Setsompop et al., 2013) and new modelling approaches (Palombo et al., 2020) appear
promising to disentangle apparent soma and neurite contributions to the dMRI signal in vivo.

In this work we examined age-related changes of hippocampal microstructure using
dMRI data acquired using an ultra-strong gradient (300 mT/m) MRI scanner in a sample of
children and adolescents (aged 8-19 years; Genc et al., 2020; Genc et al., 2024). Using
HippUnfold, a hippocampal surface-based approach, we investigated age and sex-related
changes of macro- and microstructure across the subfields and long-axis (DeKraker et al., 2022).
In particular, the Soma And Neurite Density Imaging (SANDI; Palombo et al., 2020) model was
used to derive measures related to both the soma and neurite. The Neurite Orientation Dispersion
and Density Imaging model (NODDI; Zhang et al., 2012) and DTI (Basser et al., 1994) were also
used to compare microstructure trajectories across age. Utilizing the salient orientation
information from dMRI, we also determined if there were shifts in diffusion orientation across
age which may be related to the development of the complex but organized intrahippocampal
circuitry. Finally, we derived surface maps which capture age effects for all macro- and
microstructural measures. We then correlated these maps with metrics derived from histology
and high-resolution MRI to postulate what the age-related changes might be capturing in terms
of known microstructure. Overall, we report distinct neurite and soma developmental profiles in
the human hippocampus during late childhood/adolescence for the first time. This forms a crucial
baseline for understanding the structural alterations underlying the progressive formation of
human cognition and developmental disorders, as well as open new avenues for corroborating in
vivo diffusion with histology.

2. Results
2.1 Age and sex-related changes in subfield volume & macrostructure

Previous research has typically analyzed the volume of the hippocampus across
development (Krogsrud et al., 2014; Langnes et al., 2020; Lee et al., 2014; Uematsu et al., 2012).
Figure 1 depicts the correlation between age and subfield averaged macrostructural measures of
volume, gyrification, thickness. No significant interaction was found between age and
hemisphere for volume (F(1,864)=0.001, p=0.974), gyrification (F(1,864)=0.104, p=0.747), or
thickness (F(1,864)=0.554, p=0.457), suggesting that the hemispheres display similar age-related
changes in subfield macrostructure (supplementary figure S1). Thus hemisphere data (i.e.,
between left and right hippocampus) was averaged within participants.

No significant correlations were found between age and any subfield averaged
macrostructural measure (figure 1). Similar results were found for anterior-posterior averaged
macrostructure (supplementary figure S2). As well, no significant correlation between age and
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subfield volume was found using FreeSurfer (supplementary figure S3), corroborating the result
seen in figure 1.

Figure 2 depicts the correlation between age and subfield averaged macrostructural
measures of volume, gyrification, thickness stratified by sex. Interestingly, it appears that males
generally have positive correlations between age and subfield volume, gyrification, and
thickness, while females showed little changes across age. The interaction between age and sex
was significant after false-discovery rate (FDR) correction for volume (F(1,424)=6.03,
p-adjusted=0.040) and thickness (F(1,424)=4.966, p-adjusted=0.040), while not significant for
gyrification (F(1,424)=1.573, p-adjusted=0.211).
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Figure 1. Correlation between age and subfield averaged macrostructural measures of volume,
gyrification, and thickness. The top left figure depicts the 3D location of the hippocampus
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(shown in red), and the arrow represents the position of the coronal slice shown on the top right
figure. Colours represent hippocampal subfields and relationships are quantified using Pearson's
correlation coefficient (R). The dashed lines approximately represent the midthickness surface
which gyrification and thickness were calculated and then averaged on (note that the surface
excludes the SRLM). As well, the DG and CA4 were averaged together. CA - cornu ammonis;
DG - dentate gyrus; SRLM - stratum radiatum lacunosum moleculare.
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Figure 2. Relationship between age and macrostructure by hippocampal subfield and stratified
by sex. Asterisks represent metrics with a significant interaction between age and sex after FDR
correction.

2.2 Age and sex-related changes in subfield microstructure

Supplementary figure S4 depicts the relationship between age and subfield-averaged
partial volume maps of CSF, GM, and WM (see section 5.2). No significant correlations were
found between age and the CSF partial volume measure. In CA1, CA2, CA3, and the DG/CAA4,
the GM tissue probability is generally between 0.8-1 while the CSF probability is between
0-0.07, suggesting that the microstructure measures sampled on the midthickness surface are
mostly within the GM. The subiculum has a higher WM tissue probability (0.2-0.4), which is
expected given the presence of the highly myelinated perforant path.

Figure 3 depicts the correlation between subfield averaged microstructural measures and
age using SANDI (neurite, soma, and extracellular MR signal fractions as well as MR apparent
soma radius), NODDI (orientation dispersion index), and DTI (mean diffusivity) metrics. No
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significant interaction was found between age and hemisphere for fneuriteg,np; (F(1,864)=0.014,
p=0.906), fsoma (F(1,864)=0.001, p=0.971), fextracellular (F(1,864)=0.014, p=0.907), Rsoma
(F(1,864)=0.576, p=0.448), ODI (F(1,864)=0.089, p=0.766), and MD (F(1,864)=1.223,
p=0.269), suggesting that the hemispheres display similar age-related changes in subfield
microstructure (supplementary figure S5). Thus hemisphere data was averaged within
participants.

Many significant correlations were found between age and subfield-averaged
microstructural measures (figure 3). In particular, fneuriteg,yp Was significantly positively
correlated with age across all subfields while fextracellular and MD were significantly negatively
correlated with age across all subfields (with the exception of CA2; figure 3). Rsoma was
significantly negatively correlated with age only in the subiculum and CA1. ODI and fsoma were
not significantly correlated with age in any subfield. Interestingly, the age-related slopes seen in
figure 3 were significantly different across the subfields for fneuriteganp (F(4,424)=4.354,
p-adjusted=0.011) and Rsoma (F(4,424)=3.086, p-adjusted=0.047), suggesting that the subfields
may have unique patterns of neurite and soma development. However, the slopes across age
were not significantly different across the subfields for fsoma (F(4,424)=0.511,
p-adjusted=0.894), fextracellular (F(4,424)=0.274, p-adjusted=0.894), ODI (F(4,424)=0.838,
p-adjusted=0.894), and MD (F(4,424)=0.281, p-adjusted=0.894).

Figure 4 depicts the correlation between subfield averaged microstructural measures and
age stratified by sex. The interaction between age and sex was significant after false-discovery
rate correction for fneuriteg,np (F(1,424)=43.39, p-adjusted=8x10"?), fextracellular
(F(1,424)=4.509, p-adjusted=0.04), Rsoma (F(1,424)=16.819, p-adjusted=1.47x10"**), ODI
(F(1,424)=10.392, p-adjusted=0.002), and MD (F(1,424)=14.247, p-adjusted=3.66x10"*). The
age-by-sex interaction was not significant for fsoma (F(1,424)=2.673, p-adjusted=0.103).
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Figure 3. Correlation between age and subfield averaged microstructural measures of neurite
(fneuriteganpr), SOma (fsoma), and extracellular (fextracellular) MR signal fractions, soma radius
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(Rsoma), orientation dispersion index (ODI) and mean diffusivity (MD). Colours represent
hippocampal subfields and relationships are quantified using Pearson's correlation coefficient
(R). The dashed lines approximately represent the midthickness surface which the metrics were
sampled and then averaged on. CA - cornu ammonis; DG - dentate gyrus.
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Figure 4. Relationship between age and microstructure by hippocampal subfield and stratified by
sex. Asterisks represent metrics with a significant interaction between age and sex after FDR
correction.
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2.3 Age-related changes in long-axis microstructure

Figure 5 depicts the correlation between long-axis averaged microstructural measures and
age using the same metrics as section 2.2. fneuriteg,yp; Was significantly positively correlated
with age within each long-axis parcellation, while fextracellular and MD were significantly
negatively correlated with age (figure 5). Rsoma was significantly negatively correlated with age
in the lateral anterior and body portions of the hippocampus, while ODI was significantly
positively correlated with age only in the posterior portion of the hippocampal body. Unlike
within the subfields, the age-related long-axis slopes were not significantly different across the
parcellations for fneuriteg wp; (F(4,424)=0.323, p=0.862), fsoma (F(4,424)=0.292, p=0.883),
fextracellular (F(4,424)=0.373, p=0.828), Rsoma (F(4,424)=0.804, p=0.523), ODI
(F(4,424)=2.054, p=0.086), and MD (F(4,424)=1.126, p=0.344).
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Figure 5. Correlation between age and anterior-posterior averaged microstructural measures.
Colours represent hippocampal long-axis parcellations (shown on a midthickness surface at the
top) and relationships are quantified using Pearson's correlation coefficient (R).
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2.4 Diffusion orientation changes across age

Using the first peak of the fiber orientation distribution function (see section 5.4), we
quantified how diffusion orientations vary across age. Figure 6 depicts the correlation between
age and subfield-averaged measures of long-axis, tangential, and radial oriented diffusion.
Long-axis oriented diffusion was significantly positively correlated with age in CA1. The
age-related slopes were not significantly different across the subfields for the long-axis
orientations (F(4,424)=1.6, p=0.173), tangential orientations (F(4,424)=1.125, p=0.344), and
radial orientations (F(4,424)=0.767, p=0.547).

Figure 7 depicts the same diffusion orientation metrics averaged across the long-axis
parcellation. Long-axis oriented diffusion was significantly positively correlated with age in the
lateral anterior region and the anterior hippocampal body. Radial oriented diffusion displayed a
significant negative correlation with age in the lateral anterior region and a significant positive
correlation with age in the posterior hippocampal body. This suggests that the diffusion
orientation changes across age are occurring more in the anterior and body of the hippocampus.
Interestingly, unlike across the subfields, the age-related slopes in figure 7 were significantly
different across the long-axis parcellations for both long-axis (F(4,424)=3.190,
p-adjusted=0.020) and radial (F(4,424)=5.341, p-adjusted=0.001) oriented diffusion.
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Figure 6. Relationship between age and diffusion orientations (cosine similarities) across the
hippocampal subfields and quantified with pearson's R. Top box (adapted from Karat et al.,
2023) depicts the calculation of the cosine similarity, where the HippUnfold (DeKraker et al.,
2023) axes are used to generate long-axis, tangential, and radial vectors which are then compared
with the primary diffusion orientation (peak 1 from the fiber orientation distribution function).
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Figure 7. Relationship between age and diffusion orientations (cosine similarities) across the
hippocampal long-axis and quantified with Pearson's R.

2.5 Vertex-wise relation between macro- and microstructure across age and the hippocampal
proximal-distal and long-axis

Surface t-statistic maps which capture the spatial changes in macro- and microstructural
development were generated (figure 8B; see section 5.5). These age contrast maps were then
correlated with contrived positional AP and PD gradients (figure 8A; DeKraker et al., 2024). The
correlation then describes along which hippocampal axis are any age-related macro- or
microstructural changes occurring (figure 8C). For example, the age contrast map of MD (figure
8B) can be seen to vary largely along the PD axis. This then presents as a large PD correlation
with a small AP correlation (figure 8C - greatly above the unit line). Interestingly, the age-related
changes of fneuriteygpp; and fheuriteg o (both approximately representing stick signal fractions)
appear to be correlated relatively differently to the positional gradients. fneuriteyopp; 1S more
correlated to the PD positional gradient (above the unit line) while fneuriteg,yp; 1S more
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correlated to the AP positional gradient (below the unit line). Analyzing the cosine similarities, it
can be seen that the diffusion orientations tend to vary more along AP across age.

The correlations between all the age contrast maps (i.e. looking at metric-age covariance)
is shown in supplementary figure S6. Overall there appears to be substantial correlation between

many of the age-contrasted microstructural maps.
Positional gradients
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Figure 8. Correlating surface-based age contrasted t-statistic maps with anterior-posterior (AP -
long-axis) and proximal-distal (PD - subfields) gradients (DeKraker et al., 2024). (A) Gradients
generated on a canonical surface across the AP and PD axis. (B) Subfield parcellation and four
examples of a vertex-wise age contrast map with a contrast of age. Thec age contrast maps
capture the age-related trends of each metric at each vertex. Maps were calculated with
hemisphere-averaged data and plotted on a left hippocampal surface. (C) Absolute correlation
(Pearson’s R) of all the age contrast maps (B) with the gradients (A). The size of the points
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represents the mean of the absolute values of the t-statistic across all vertices - a coarse measure
for the total relationship between a metric and age. Colour-coding refers to where each metric is
derived from. Identity line is shown as a solid black line.

2.6 Correlations of vertex-wise microstructural changes across age with MRI, PET, and
histology maps

The same age contrast maps in section 2.5 (figure 9A) were used to correlate with maps
derived from histology and MRI at high resolutions (figure 9B) using a hippocampus spin-test
(Karat et al., 2023). Figure 9C and the below paragraph presents the correlation and uncorrected
p-values between age contrast maps (figure 9A) and all histology/MRI maps (figure 9B).

The age-related changes of fheuriteg,np Were positively correlated with qR1 (R=0.33,
p=0.01) and SV2A (R=0.37, p=0.017) and negatively correlated with parvalbumin (R=-0.36,
p=0.007). The age-related changes of fneuriteyopp; were positively correlated with qR1 (R=0.42,
p=0.002) and negatively correlated with calretinin (R=-0.34, p=0.04), calbindin (R=-0.34,
p=0.02), and parvalbumin (R=-0.36, p=0.007), suggesting further differences between
fneuriteganp and neuriteyopp;. The fextracellular age contrast map was negatively correlated with
gqR1 (R=-0.24, p=0.012). Age-related changes in MD were positively correlated with calretinin
(R=0.38, p=0.044), calbindin (R=0.36, p=0.029) and parvalbumin (R=0.31, p=0.030) and
negatively correlated with qR1 (R=-0.42, p=0.002). Changes to ODI across age were found to
not correlate strongly with any histology or MRI map. With FDR correction, only the
correlations between fneuriteg,yp; and qR1, SV2A, and parvalbumin, fneuriteyopp; and qR1,
calbindin, and parvalbumin, and MD and qR1 remained significant. Finally, we found no
correlation between Merker cell body staining and the fsoma age contrast map (R=0.04, p=0.55)
and the fsoma map averaged across age (R=0.14, p=0.30) seen in supplementary figure S7.
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Figure 9. Correlating surface-based age contrast t-statistic maps with maps derived from
histology and MRI (DeKraker et al., 2024; Markello et al., 2022). (A) Vertex-wise t-statistic
maps with a contrast of age. The age contrast maps capture the age-related trends of each metric
at each vertex. Maps were calculated with hemisphere-averaged data and plotted on a left
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hippocampal surface. (B) Surface maps derived from histological staining and MRI. qR1,
Bielschowsky, Calretinin, Calbindin, and Parvalbumin maps were derived from Alkemade et al.,
2022. The synaptic vesicle glycoprotein 2A (SV2A) marker was derived from Finnema et al.,
2018. (C) Left heatmap displays the Pearson’s R correlation between all age contrast maps in (A)
and all histology and MRI maps in (B). Right heatmap displays the uncorrected p-values derived
from a hippocampus spin test using 2500 permutations (Karat et al., 2023). Note that the colour
bar is inverted such that any brighter component of the heatmap corresponds to a significant
p-value.

3. Discussion

We probed age-related alterations of hippocampal soma and neurite microstructure using
a recent approach for surface-based hippocampal modelling. We found no significant change in
volume, gyrification, and thickness across age, while significant changes in microstructure
measures related to neurites, soma, and mean diffusivity were found. Sex-specific differences in
age-related changes to macro- and microstructure were also found. Leveraging the salient
orientation information derived from dMRI, localized diffusion orientation shifts across the
hippocampal subfields and long-axis were uncovered which may relate to specific development
of the intrahippocampal circuitry. Surface-based analyses suggested large variation in age-related
microstructural changes across the proximal-distal (subfield) and anterior-posterior (long-axis)
axes, which may reflect ostensible developmental differences along these two axes. Finally,
correlation of the age-contrasted microstructure surface maps with MRI, PET, and histology
allowed for postulation of the potential underlying microstructure that diffusion changes across
age may be sensitive to.

3.1 Microstructure changes greatly across age for the subfields and long-axis

Recent evidence has suggested that the hippocampus undergoes a prolonged period of
both structural and functional development after birth (Lee et al., 2017). To investigate
hippocampal microstructural changes across development, most previous research has used DTI
(Basser et al., 1994). In the current study we found MD significantly decreased with age across
the subfields and long-axis. At the whole hippocampus level, Callow et al. (2020) found that MD
decreased between 4-8 years of age. Langnes et al. (2020) found a protracted period of decreased
MD in the anterior hippocampus up until 40 years of age, while posterior MD did not change
much in the same range. However, while MD in the current study did appear to change more
across age in the anterior portions of the hippocampus, we found the change was also significant
in the posterior region. The decrease in MD is likely attributable to an increase in stick-like
restrictions, as suggested by the significant increase across age in fneuritegyp; and a
corresponding decrease in fextracellular.

We found no significant change in FA from 8-19 years (supplementary figure S8), which
conflicts with recent work. Vinci-Booher et al. (2023) found subfield-specific changes in FA
across the age range of 5-30 years. In CA1 FA had an apparent parabolic trend across the whole
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age range. However, the trend of FA in CA1 appeared to decrease linearly when only considering
ages 8-19. The DG and subiculum had a reduction in FA across the whole age range, while
CAZ2/3 had an increase in FA (Vinci-Booher et al., 2023). Given that we found no significant
change in ODI and a significant increase in fneuriteg,yp; across age, it may be hypothesized that
FA should increase. However, it appears that FA is much more sensitive to changes in ODI than
intraneurite signal fractions (figure 10 in Zhang et al., 2012). As well, the range of ODI (0.4-0.6)
and fneuriteg yp; (0.15-0.30) values found in the current study can be seen to be in a regime of
“low” FA contrast (figure 10 in Zhang et al., 2012). Thus it appears that the hippocampal
microstructural environment is generally isotropic at 8 years, and the increase in fneuritegayp; 1S
likely coming from an increase in spatially isotropic stick-like restrictions (which ostensibly
would not change the already high ODI and thus result in no change in FA). Future investigation
of age-related changes in FA is warranted.

Analyzing the primary orientation of diffusion across age, we found an increase in the
long-axis oriented diffusion in the anterior lateral and body of the hippocampus with a general
corresponding decrease in the radial oriented diffusion. These changes may correspond to the
development of intra-hippocampal pathways with known orientation. The fimbria is a white
matter pathway which sits atop CA3/CA4 and traverses the hippocampal long-axis where at its
most posterior becomes the fornix (Zeineh et al., 2017). The increase in long-axis oriented
diffusion which appears to largely occur in the anterior and body of the hippocampus may be
capturing changes to the coherent fimbria pathway. However, if this was the case we may also
expect to see a decrease in ODI and a corresponding increase in FA in the same region. The
increase in long-axis oriented diffusion in these regions could also correspond to a change in the
perforant path, which at some levels is oriented across the long-axis (Zeineh et al., 2017).

3.2 Microstructure appears much more sensitive to age-related changes then macrostructure
One of the most common metrics used to investigate in vivo hippocampal development is
volume (in mm?*) derived with structural MRI. While common, there are conflicting results
related to hippocampal volume changes in childhood and adolescence. We found no change in
volume for any long-axis parcel or subfield (measured using HippUnfold and FreeSurfer)
between 8-19 years. At the level of the whole hippocampus, some studies have reported an
increase in volume in late childhood and adolescence (Krogsrud et al., 2014; Tamnes et al., 2018;
Wierenga et al., 2014) while others have found a very slight increase or no volume change in the
same age range (Giedd et al., 1996; Uematsu et al., 2012; Coupe et al., 2017; Narvacan et al.,
2017; Hu et al., 2013). Coupe et al. (2017) analyzed 2994 subjects across the whole lifespan and
found a very fast whole hippocampal volume increase until 8-10 years, followed by a very slow
volume increase until 40-50 years. However, the hippocampus is not a monolithic structure,
rather, its sub-regions ostensibly have different developmental trajectories. Langnes et al. (2020)
found a relative increase in both anterior and posterior hippocampal volumes from 4-20 years
while Gogtay et al. (2006) found posterior volumes increased while anterior volumes decreased
between 4-25 years. Across all the subfields, Krogsrud et al. (2014) found an increase in volume
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from ages 4-22 years, with an asymptote occurring around age 16 for all subfields. Contrastingly,
Tamnes et al. (2018) found an initial slight increase and then slight decrease in volume in the
subiculum and CA1 between ages 8-30. Linear volume decreases were found in CA2/3, CA4,
and the DG granular cell layer across the same age range.

Beyond volume, we also analyzed macrostructural measures of both thickness (in mm)
and gyrification. Similar to the result for volume, we found no significant change in subfield and
long-axis thickness and gyrification acrpss age. This suggests that the general macrostructural
form of the hippocampus may stabilize in early childhood. Although, notable differences exist
between the current study and previous research (see section 3.5 for more details). While
macrostructure does not appear to change much after 8 years, we showed distinct microstructural
changes between 8-19 years suggesting that much of the age-related changes are internal to the
hippocampal gray matter (and thus may be invisible to volume measurements). Diffusion in the
hippocampus appears to provide improved sensitivity and specificity to hippocampal
development then macrostructure (Callow et al., 2020).

3.3 Males and females display variable macro- and microstructural trends across age

Previous research has found varying trends in both volume and microstructure between
males and females across age. We found that the age-related trends of volume and thickness were
significantly different between males and females across the hippocampal subfields. In general, it
appeared that females had no significant change in volume and thickness from 8-19 years, while
males had an increase in volume and thickness particularly in CA1, CA2, and CA3. This may be
explained by previous research which suggests that female hippocampal volumes reach a plateau
sooner than male volumes (Pfluger et al., 1999; Uematsu et al., 2012; Hu et al., 2013). However,
the evidence for the age at which this plateau occurs (and if it occurs at all) is conflicting. Giedd
et al. (1996) found that hippocampal volume increased between ages 4-18 years only in females.
Pfluger et al. (1999) found that hippocampal volumes increased much faster in females than in
males between 1 month to 15 years of age. That is, at around 2 years of age female hippocampal
volumes plateaued, while male volumes kept increasing. This was corroborated by Uematsu et
al. (2012) and Hu et al. (2013), where it was shown that females reach their peak hippocampal
volume sooner than males. Contrastingly, Tamnes et al. (2018) found no sex differences in
hippocampal subregion development between 8-30 years of age, and they found general volume
changes in females across the whole age range (i.e. female volumes did not plateau in some
subfields).

Few studies have examined sex differences in microstructural development of the
hippocampus in late childhood and adolescence. In the current study we found significant sex by
age interactions in fneuriteg,yp; and fextracellular, Rsoma, ODI, and MD, suggesting that the
change in microstructure across late childhood and adolescence are different between males and
females. Vinci-Booher et al. (2023) found a nonlinear interaction of FA between sex and age in
CAZ2/3. Callow et al. (2020) found sex was not significantly related to hippocampal MD.
Interestingly, studies probing glia and neuron density and morphology in the Macaque
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hippocampus found no significant differences between males and females from juvenile to
geriatric age, or from birth up to 1-year (Robillard et al., 2016; Jabes et al., 2010). However,
these studies were limited to small sample sizes which makes any strong conclusion difficult.
Future research is needed to further understand the developmental differences of hippocampal
microstructure between males and females in the formative period of late childhood and
adolescence.

3.4 Age-related microstructural changes correlate to hippocampal axes and specific histological
metrics

The hippocampus is generally studied in the context of subfields which are the
structurally distinct subunits of the hippocampus (Karat et al., 2024; Ding and Van Hoesen,
2015). Recently the hippocampal long-axis (anterior to posterior) has garnered substantial
interest given evidence that it is also structurally and functionally distinct (Chase et al., 2015;
Strange et al., 2014; Nichols et al., 2023; Poppenk et al., 2013). Here we investigated the
age-related changes in microstructure within the context of the subfields and long-axis at the
vertex level. We showed that age-related changes in MD were much more correlated with the
proximal-distal (i.e., subfields) than the long-axis, suggesting that the subfields have greater
age-related variability from the perspective of diffusivity. Previous research has found strong
associations of age with MD particularly in the subiculum and CA1, where it does appear that
age-related changes in MD vary more across the subfields than the long-axis (Wolf et al., 2015).
However, it has also been shown that the anterior hippocampus has an extended period of MD
changes across late childhood and adolescence, while the posterior hippocampus remained
relatively unchanged (Langnes et al., 2020). Interestingly, age-related changes in fheuriteg,nn;
varied more across the long-axis than the subfields, while Rsoma and fsoma showed trends
similar to MD.

To further contextualize the results, we correlated MRI, PET, and histology maps of
specific microstructural features with the age-related diffusion microstructure maps.
Interestingly, we found that age-related changes in fneuriteg,yp; correlated with qR1 (myelin,
lipids, iron content) and a marker of synaptic density, SV2A. Put differently, in regions of high
qR1/synaptic density, fneuriteg,np; increased across age. Similarly, we found that the age-related
changes in MD correlated with qR 1, such that in regions of high qR1 MD decreased with age,
and vice versa. The age-related changes in fheuriteg,np;, fextracellular and MD thus may be
related to myelin alterations in the hippocampus. Previous research has shown that even at 11
years of age the density of myelinated fibers in humans did not reach adult levels, suggesting
myelination continues through and beyond late childhood/adolescence (Abraham et al., 2010).
Similarly, recent work has shown that oligodendrocyte-specific gene expression increased with
age, indicating subsequent myelination processes (Genc et al., 2024). Occurring concurrently
with myelination is apparent glia alterations. In Macaques it was found that astrocyte process
length and complexity increased from juvenile to adulthood (Robillard et al., 2016). An increase
in stick-like glia processes across age may also ostensibly change fneuriteg yp;. As well, the
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correlation of SV2A with fneuriteg,yp; may be a result of increased dendrite ramifications.
Mellstrom et al. (2016) found a quadratic relationship between spine density and branching order
of the basal dendrites of CA1 pyramidal neurons, suggesting that as branching order increases
(more “sticks” from the diffusion perspective) there is higher spine density, and thus a greater
synaptic density. Finally, in the current study we found that fsoma did not change much across
age, and that it was not correlated to a Merker stain for cell bodies. Indeed, Jabeés et al., (2010)
found that the number of principal neurons in the Macaque hippocampus did not change
significantly from birth to 5-9 years of age in all subfields except the granule cell layer of the
DG, which we did not have the resolution to capture in the current study. However, it should be
noted that fsoma may not be expected to correlate with a stain for cell bodies given its a signal
fraction rather than a volume fraction, as it does not account for T2 differences between
microstructural compartments. The apparent decrease in Rsoma across age could be potentially
related to an increase in glia presence. Indeed, gene expression analyses in Genc et al. (2024)
suggests that across age there is a decrease in cells with larger soma (i.e., endothelial) which are
outweighed by an increase in cells with smaller soma (i.e., oligodendrocytes).

3.5 Limitations

One limitation of the current work was the 2mm isotropic diffusion image resolution.
Given the thickness of the hippocampus, some partial voluming with surrounding CSF and
extra-hippocampal WM was expected. However, we attempted to minimize partial voluming by
sampling the diffusion measures along the middle of the hippocampal GM. To examine how
effective this was, we used FSL’s FAST tool to generate tissue type probabilities at the higher
T1w resolution. We found relatively low CSF and WM (apart from the subiculum) tissue
probability, suggesting that the sampling across the midthickness surface was mostly within the
GM. Another limitation was the correlation of the age-related microstructure t-statistic maps
with static maps derived from adult histology. Ideally the comparison would be done with
histology-derived age contrasted t-statistic maps capturing the cross-sectional changes in a
particular histological measure across development. As well, the current study had a moderate
sample size at 88 participants with a mean age of 12.6 years. That is, there were more samples in
the younger 8-12 year age range then the older 14-19 year range which could make the results
more reflective of changes occurring mainly in the late childhood stage. Given some of the
strong correlations found in the current study, it would be valuable to examine the same
advanced diffusion metrics across the whole lifespan instead of the narrower slice of childhood
and adolescence. Likewise, it would be useful to probe diffusion changes longitudinally between
childhood and adolescence, rather than the cross-sectional design used here. Finally, there is
inherent variability in contemporary methods which seek to provide measures of hippocampal
subfield volume through segmentation (HippUnfold, FreeSurfer, ANTs, manual delineation,
etc...). Given this variability it can be difficult to compare results pertaining to subfield and
long-axis volume across studies. However, in the current study both HippUnfold and FreeSurfer
provided converging evidence that hippocampal volume did not change.
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4. Conclusion

The hippocampus serves multiple cognitive functions, yet little is known about its
microstructural development. Here we report, for the first time, distinct neurite and soma
developmental profiles in the hippocampus during late childhood and adolescence using
advanced diffusion modelling. Specifically, we report an age-related increase in neurite fraction
and concurrent decrease in extracellular fraction and soma radius which appears to be subfield
and long-axis specific. Future research should look to examine the same diffusion measures
across the whole lifespan, and correlate these with cognitive processes that rely on the
hippocampus such as memory and spatial navigation.

5. Materials and methods
5.1 Data acquisition and preprocessing

88 participants aged 8-19 years (42 male, mean age=12.6, SD=2.9) were scanned on a 3T
Siemens Connectom system with ultra-strong (300 mT/m) gradients (Genc et al., 2020; Genc et
al., 2024). Structural T1-weighted (T1w) images were acquired at Imm isotropic resolution
(TE=2 ms, TR=2300 ms). Diffusion MRI data were acquired at 2 mm isotropic resolution
(TE=59 ms, TR=3000 ms) with b-values of 0 (14 volumes, interleaved), 0.5 (30 directions), 1.2
(30 directions), 2.4 (60 directions), 4.0 (60 directions), and 6.0 (60 directions) ms/um?. Diffusion
directions were determined using an electrostatic repulsion algorithm generalized across all
shells (Caruyer et al., 2013). Data were acquired using an anterior-posterior phase-encoding
direction, with one additional inverse phased encoding (posterior-anterior) volume. The total
dMRI acquisition time was 16 minutes and 14 seconds.

Data pre-processing has been described previously in Genc et al. (2020). Briefly,
preprocessing steps included: denoising (Veraart et al., 2016), slice-wise outlier detection
(Sairanen et al., 2018), drift correction (Vos et al., 2016), motion, eddy, and
susceptibility-induced distortion correction (Andersson & Sotiropoulos, 2016), Gibbs ringing
correction (Kellner et al., 2016), bias field correction (Tustison et al., 2010), and gradient
non-uniformity correction (Rudrapatna et al., 2018).

5.2 Surface modelling with HippUnfold

An automated software (HippUnfold) for hippocampal subfield segmentation and
surface-based mapping was used in this study (DeKraker et al., 2022). HippUnfold uses a deep
neural network (a ‘U-net’; Isensee et al., 2021) to segment within each subject the hippocampal
gray matter, dentate gyrus (DG), stratum radiatum lacunosum moleculare (SRLM), and the
topological bounds of the hippocampus, including the hippocampal-amygdala transition area,
medial temporal lobe cortex, pial surface, and the indusium griseum. Using the gray matter as the
domain of interest and the previously defined hippocampal boundaries, Laplace coordinates are
generated along the anterior-posterior, proximal-distal, and inner-outer directions which define a
complete 3D coordinate system of the hippocampus which respects subject morphology. Using
these coordinates, it is then possible to project subfields defined from a histological atlas to each
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subject in their native space, as well as generate surfaces at varying inner-outer/laminar depths.
The subfields include the subiculum, Cornu Ammonis (CA) 1-4, the DG, and the SRLM. In the
current work, the DG and CA4 were averaged together. As well, using the above coordinates and
generated surfaces we parcellated the hippocampal anterior-posterior (also referred to as the
long-axis) into 5 bins including the anterior uncus, anterior lateral, body anterior, body posterior,
and posterior/tail. For more detailed methods see DeKraker et al. (2022).

All segmentations were reviewed by author BGK for errors. Of the 88 subjects, 14 U-net
segmentations were manually corrected for small over- or underestimations of tissue, and
HippUnfold was rerun using the manually corrected segmentations. The metrics from
HippUnfold used in this study were gyrification and thickness which are calculated on the
generated surfaces, and the more traditional measure of subfield volume calculated in each
subject's native space. All other volumetric measures of interest (i.e., the microstructure maps)
were sampled onto the midthickness (middle of the gray matter) surface for visualization and
analysis. All midthickness surfaces used in this study were composed of 7262 vertices, roughly
corresponding to a spacing of 0.5 mm. Connectome Workbench
(https://github.com/Washington-University/workbench) was used to sample values at each
surface vertex from volume data using the enclosing method. To investigate potential partial
volume effects PVE, FSL’s FAST tool was used to generate partial volume tissue estimates of
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using the T1w images
(Zhang et al., 2001). These partial volume maps were then linearly interpolated to the lower 2
mm isotropic diffusion resolution and sampled on the midthickness surface in the same way as
the other metrics of interest. Analyses were then performed to examine if estimated tissue type
probabilities of GM, WM, and CSF varied with age. Finally, to provide a complementary
measure of subfield volume, FreeSurfer (version 7.2.0) was run across all subjects.

5.3 Microstructural modelling

The diffusion MRI data were analyzed using DTI (Basser et al., 1994), NODDI (Zhang et
al., 2012), and SANDI (Palombo et al., 2020).

The FMRIB Software Library (FSL; version 6.0.5, Smith et al., 2004) was used to fit the
diffusion tensor using all b= 0, b= 0.5, and b = 1.2 ms/um? data. DTI characterizes the diffusion
process as a symmetric 3x3 tensor which describes diffusion in different directions, where the

diffusion signal can be written as:
<-B,D>

S =S ' (1)
where S is the diffusion signal along a particular direction, B is the b-matrix (Mattiello et al.,
1997), D is the diffusion tensor, and <*>; is the Frobenius inner product. The
eigendecomposition of D provides useful metrics which capture ensemble diffusion
characteristics, including fractional anisotropy (FA; the variance of the eigenvalues - preferential
diffusion along a particular direction) and the mean diffusivity (MD; the mean of the eigenvalues
- average diffusivity in physical units). While DTI has been extensively used to interrogate brain
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microstructure, the complex nature of water diffusion in neural tissue can not usually be well
described by a single tensor (Jones et al., 2013).

The Microstructure Diffusion Toolbox (MDT; version 1.2.7) (Harms et al., 2017) was
used to fit the NODDI model using all b-values (Zhang et al., 2012). The NODDI model
assumes that water diffusion is occurring in three non-exchanging microstructural environments
consisting of intraneurite, extraneurite, and CSF compartments. The intraneurite compartment
generally refers to the space enclosed by the membrane of neurites (assumed impermeable to
water) and is modelled as a set of orientation dispersed sticks (i.e., cylinders with zero radius)
according to the Watson distribution (Zhang et al., 2012). The extraneurite compartment
comprises the space around neurites and is modelled as a cylindrically symmetric tensor. The
parallel diffusivity of the intraneurite and extraneurite compartment was fixed to 1.7 pm?*/ms.
The CSF compartment is modelled as isotropic gaussian diffusion described by a single diffusion
coefficient which was fixed to 3.0 um*/ms. The diffusion signal according to the NODDI model
can be written as (Zhang et al., 2012):

S = A= F S+ A=F)S,) +f

in in

2

S
Lso 1Sso
where f oo’ f . f o is the signal fraction from the CSF, intraneurite, and extraneurite

compartments respectively, while S 5o’ S i S on is the diffusion signal arising from the CSF,

intraneurite, and extraneurite compartments respectively. The two metrics from NODDI
investigated in this study include the f in which will be referred to as fneuriteyopp; and the

orientation dispersion index (ODI) which is derived from the Watson distribution.

To fit the SANDI model, the SANDI matlab toolbox
(https://github.com/palombom/SANDI-Matlab-Toolbox-v1.0) (Palombo et al., 2020; Ianus et al.,
2022) was used. The SANDI model assumes that water diffusion occurs in the non-exchanging
intraneurite, extracellular, and intrasoma compartments. Much like the NODDI model, the

intraneurite compartment is represented as diffusion within sticks. The extracellular compartment
is modelled as isotropic gaussian diffusion characterized by a single diffusion coefficient.

Finally, the intrasoma compartment is modelled as diffusion occurring in a restricting sphere
with a radius r. The diffusion signal according to the SANDI model can be written as (Palombo

et al., 2020):
S=0-f)fS +A-f)S) +fS 3)

in in ec ec

where f o and f ., are the signal fractions from the extracellular and intraneurite compartments,
respectively, and f = a-f in) is the signal fraction of the soma compartment. Sec, S i S is

are the diffusion signals arising from the extracellular, intraneurite, and soma compartments,
respectively. Beyond the addition of the soma compartment, the SANDI model focuses on
estimating microstructural features that are orientation independent. That is, the diffusion signal
is averaged across all gradient directions before model fitting. Thus the direction-averaged
formulations of S o and S in depart from the functional forms of the signals in NODDI which have
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an orientation dependence. Furthermore, unlike NODDI, SANDI fits the diffusivities of the
intraneurite and extracellular compartments, while fixing the intrasoma diffusivity to 3.0
um?/ms. The maps from SANDI analyzed in this study include fextracellular = f e
fneuritegynp = (1 — fec) f ;fsoma=(1 — fec)(l — f )and r referred to as Rsoma.
in in

Diffusion data and the corresponding metric maps were registered to each subject's T1w
space. Once aligned, all metrics of interest were sampled on the hippocampal midthickness
surface as described in section 5.2. From the surface maps, metrics were then averaged within
subfields or along the anterior-posterior axis for further analysis.

5.4 Orientation cosine similarities

Microstructure in the hippocampus tends to be aligned stereotypically along the
anterior-posterior (AP; long-axis), proximal-distal (PD; tangential), and/or inner-outer (10;
radial) axes (Duvernoy et al., 2013; Nieuwenhuys et al., 2008; Zeineh et al., 2017; Karat et al.,
2023). Diffusion analysis can provide a fiber orientation distribution function (fODF), where its
peaks ostensibly correspond to the orientation of the underlying microstructure (Jeurissen et al.,
2014). Similar to Karat et al. (2023), analyses were performed to examine how the first peak of
the fODF was oriented relative to the three hippocampal axes, and how these orientations may
shift across age. To calculate the fODF, we used the MRtrix3 toolbox (version 3.0.3) (Tournier et
al., 2019) and multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)
(Jeurissen et al., 2014) using all b-values with a response function averaged across all subjects.
We then extracted the first/largest peak from the spherical harmonic representation of the WM
fODF (i.e., the orientation with the maximum signal change). To get an orientation measure
along the three hippocampal axes, we obtained gradient vector fields along the AP, PD, and IO
hippocampal axes by taking the first partial derivative of the respective Laplacian coordinates
provided by HippUnfold along the X, y, and z spatial dimensions (Karat et al., 2023):

_ allJAP alIJAP alljAP
VqJAP(x;y,Z) - 9 ) 9 ) 9

L x y z

0¥, 20, awm]

VL|JPD(x, YV,z) =553 4)

x y z

Vl‘ljlo(x' y) Z) = a ) a ) a

| x y z

where _is the Laplacian scalar field along one hippocampal axis which was obtained by

A 6%]

solving Laplace's equation: v’ (P,) = 0 (DeKraker et al., 2022). The result of equation 4 is three

vector images for each hemisphere and subject, which point along a single hippocampal axis
(AP, PD, or IO). With the definition of the inner product between two vectors as

u - v = |u||v|cos(0), we take these vector fields and the aligned first peak of the fODF and
calculate voxel-wise cosine similarities as:
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Long-axis = (70, FODF,
|wAPH fODFpeakl
V¢ - fODF
Tangentiality = [[—= peed (5)
|V¢PD'| fODFpeakl
Radiality = ||—io T2 sea
|V¢10|| fODFpeakl

which is depicted in the top of figure 6. A cosine similarity of 0 corresponds to a case where the
two vectors are orthogonal, while a cosine similarity of 1 corresponds to a case where the vectors
are parallel. A higher cosine similarity thus relates to a case where diffusion is highly oriented
along a particular hippocampal axis.A total of three scalar cosine similarity metrics were
generated for each subject and hemisphere, and these metrics were sampled along the
midthickness surface as described above.

5.5 Statistics, correlations, and histology mapping
Multiple statistics were used to examine macro- and microstructure across age, sex, and
hemisphere.
5.5.1 Correlations between age and averaged macro- and microstructure

Pearson’s correlation coefficient was used to examine the relation between age and all
macro- and microstructural measures at the subfield and anterior-posterior averaged level. Using
the pearsonr function in Scipy (version 1.11.3), hypothesis testing was performed to determine
the probability that two uncorrelated variables could produce a correlation similar to the
observed correlation value. Given the large number of exploratory correlations performed, we
sought to set a minimum alpha for which the Pearson's R would be considered significant. We set
the minimum alpha to 0.01, which is analogous to a Bonferroni correction corresponding to 5
hypothesis tests (testing a metric across the 5 subfields). We also report thresholds of 0.005 and
0.0005 so that the correlations can be considered under a more conservative correction.
5.5.2 Interactions between sex, hemisphere, and age

General linear modelling was used to examine the significance of the interaction between
sex and age and hemisphere and age. That is, we sought to determine if the slopes of the macro-
and microstructure metrics across age were significantly different between sexes and
hemispheres. First a full linear model was built containing all relevant terms, then a reduced
model was built which contained all the same terms but removed a single variable of interest (sex
and age or hemisphere and age interaction). An F-test was then performed between the full and
reduced model to examine if the variable of interest resulted in a significantly better model (i.e. it
captured a significant portion of variance in the dependent variable (DV)):
= DV~ Blage + stubfield + Bssex + B4age: subfield + Bssex: subfield (6)

reduced

LMfu” = DV~ Blage + stubfield + B3sex + B4age: subfield + Bssex: subfield + B6age: sex
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where : implies an interaction between two variables and the DV was a given macro- or
microstructural metric. To examine anterior-posterior differences, similar models were built by
replacing the subfield term with an anterior-posterior parcellation term instead. Note that for
brevity not all B coefficients were shown here since each subfield and its interactions required its
own coefficients. In this example both models were identical except for an additional interaction
term between age and sex. An F-test between the reduced and full model was then used to
examine if the age by sex interaction term significantly improved the linear model. A significant
F-test suggested that the change in the DV across age was significantly different between males
and females. False-discovery rate (FDR) correction was then applied to the p-values derived
from the F-test. The same analysis was performed using an interaction of age and hemisphere, as
well as age and subfield.
5.5.3 Vertex-wise statistics

The statistics mentioned thus far were applied only to subfield and anterior-posterior
averaged values. To provide increased spatial fidelity of any age-related macro- or
microstructural change, statistics were also performed at the vertex level. At each vertex on the
hippocampal surface a linear model was built of the form:
= DV~ Blage + stex + Bgage: sex (7)

vertex

where the t-statistic for the contrast of age was extracted (where tage = ) /SD where SD is the
standard deviation of [31). These age contrasted t-statistic maps (referred to as age contrast maps)

capture the linear age-related changes of each metric at each vertex. The age contrast maps were
then correlated with contrived anterior-posterior and proximal-distal positional gradient maps
using Pearson’s R (Figure 8A). The correlations with the gradients describe along which
hippocampal axis are potential age-related microstructural changes occurring.
5.5.4 Correlations with MRI, PET, and histology

The age contrast maps (described in section 5.5.3) were correlated with high resolution
MRI, PET, and histology maps using a hippocampus spin test (Karat et al., 2023). All metrics
described below were sampled along the midthickness surface of the hippocampus. Maps of
quantitative R1 (qR1) were averaged across 4 ex vivo hippocampi at 9.4T MRI and are thought
to capture myelin, lipid, and iron content (DeKraker et al., 2024; Lutti et al., 2014; Stiiber et al.,
2014). Bielschowsky histological staining was averaged across 4 hippocampi and is
representative of all types of nerve fibers (Uchihara, 2007; Alkemade et al., 2022; DeKraker et
al., 2024). Synaptic vesicle glycoprotein 2A (SV2A) PET maps which are representative of
synaptic density were averaged across 76 in vivo hippocampi (Rossi et al., 2022). Merker
histological staining was averaged across 4 hippocampi and captures neuronal cell bodies
(DeKraker et al., 2024; Amunts et al., 2013). Finally, interneuron histological markers of
calbindin, calretinin, and parvalbumin were averaged across 4 hippocampi (Alkemade et al.,
2022; DeKraker et al., 2024). Given the large number of correlations here, we focus on the
uncorrected p-values for discussion (although we still report the FDR-corrected p-values).


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgements and funding sources
The data were acquired at the UK National Facility for In Vivo MR Imaging of Human Tissue
Microstructure funded by the EPSRC (grant EP/M029778/1) and The Wolfson Foundation. BGK
is supported by a post-graduate scholarship from the Natural Sciences and Engineering Research
Council of Canada (NSERC). SG is supported by the Royal Children’s Hospital Foundation
(RCHF 2022-1402). EPR is supported by NICHD at NIH (F32HD103313). MP is funded by
UKRI Future Leaders Fellowship (MR/T020296/2). ARK is supported by the Canada Research
Chairs program #950-231964, NSERC Discovery Grants RGPIN-2015-06639 and
RGPIN-2023-05558, Canadian Institutes for Health Research Project grant #366062, Canada
Foundation for Innovation (CFI) John R. Evans Leaders Fund project #37427, the Canada First
Research Excellence Fund, and Brain Canada. DKJ is supported by a Wellcome Trust
Investigator Award (096646/Z/11/Z) and a Wellcome Trust Strategic Award (104943/Z/14/7).

We thank the children/adolescents (and their carers) for generously donating their time to
participate in this study.


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

Abraham, H., Vincze, A., Jewgenow, L., Veszprémi, B., Kravjék, A., Gomori, E., & Seress, L.
(2010). Myelination in the human hippocampal formation from Midgestation to
adulthood. International Journal of Developmental Neuroscience, 28(5), 401-410.

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-E., Bludau, S.,
Bazin, P.-L., Lewis, L. B., Oros-Peusquens, A.-M., Shah, N. J., Lippert, T., Zilles, K., &
Evans, A. C. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science,
340(6139), 1472—1475.

Alkemade, A., Bazin, P.-L., Balesar, R., Pine, K., Kirilina, E., Méller, H. E., Trampel, R., Kros,
J. M., Keuken, M. C., Bleys, R. L., Swaab, D. F., Herrler, A., Weiskopf, N., &
Forstmann, B. U. (2022). A unified 3D map of microscopic architecture and MRI of the
human brain. Science Advances, 8(17).

Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for
off-resonance effects and subject movement in diffusion MR imaging. Neurolmage, 125,
1063-1078.

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). Mr diffusion tensor spectroscopy and imaging.
Biophysical Journal, 66(1), 259-267.

Buzsaki, G., & Moser, E. I. (2013). Memory, navigation and Theta rhythm in the
hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130—138.

Callow, D. D., Canada, K. L., & Riggins, T. (2020). Microstructural integrity of the hippocampus
during childhood: Relations with age and source memory. Frontiers in Psychology, 11.

Caruyer, E., Lenglet, C., Sapiro, G., & Deriche, R. (2013). Design of multishell sampling
schemes with uniform coverage in diffusion MRI. Magnetic Resonance in Medicine,
69(6), 1534—-1540.

Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B.
(2015). Evidence for an anterior—posterior differentiation in the human hippocampal
formation revealed by meta-analytic parcellation of fMRI coordinate maps: Focus on the
subiculum. Neurolmage, 113, 44—60.

Coupé, P., Catheline, G., Lanuza, E., & Manjon, J. V. (2017). Towards a unified analysis of brain
maturation and aging across the entire lifespan: A MRI analysis. Human Brain Mapping,
38(11), 5501-5518.

DeKraker, J., Haast, R. A., Yousif, M. D., Karat, B., Lau, J. C., Kohler, S., & Khan, A. R. (2022).


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Automated hippocampal unfolding for morphometry and subfield segmentation with
Hippunfold. eLife, 11.

DeKraker, J., Cabalo, D., Royer, J., Khan, A., Karat, B., Benkarim, O., Cruces, R. R., Frauscher,
B., Pana, R., Hansen, J., Misic, B., Valk, S., Lau, J., Kirschner, M., Bernsconi, A.,
Bernasconi, N., Muenzing, S., Axer, M., Amunts, K., ... Bernhardt, B. (2024).
HippoMaps: Multiscale Cartography of Human Hippocampal Organization. bioRxiv.

Ding, S., & Van Hoesen, G. W. (2015). Organization and detailed parcellation of human
hippocampal head and body regions based on a combined analysis of cyto- and
chemoarchitecture. Journal of Comparative Neurology, 523(15), 2233-2253.

Duvernoy, H. M., Cattin, F., & Risold, P. Y. (2013). The human hippocampus: Functional
anatomy, vascularization, and serial sections with MRI. Springer.

Finnema, S. J., Nabulsi, N. B., Mercier, J., Lin, S., Chen, M.-K., Matuskey, D., Gallezot, J.-D.,
Henry, S., Hannestad, J., Huang, Y., & Carson, R. E. (2018). Kinetic Evaluation and
test—retest reproducibility of [11C]JUCB-J, a novel radioligand for positron emission

tomography imaging of synaptic vesicle glycoprotein 2a in humans. Journal of Cerebral
Blood Flow & Metabolism, 38(11), 2041-2052.

Genc, S., Tax, C. M., Raven, E. P., Chamberland, M., Parker, G. D., & Jones, D. K. (2020).
Impact of b-value on estimates of apparent fibre density. Human Brain Mapping, 41(10),
2583-2595.

Genc, S., Ball, G., Chamberland, M., Raven, E. P, Tax, C. M., Ward, I, Yang, J. Y.-M.,
Palombo, M., & Jones, D. J. K. (2024). MRI Signatures of Cortical Microstructure in
Human Development Align with Oligodendrocyte Cell-Type Expression. bioRxiv.

Giaccio, R. G. (2006). The dual origin hypothesis: An evolutionary brain-behavior framework
for analyzing psychiatric disorders. Neuroscience & Biobehavioral Reviews, 30(4),
526-550.

Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., Vauss,
Y. C., & Rapoport, J. L. (1996). Quantitative MRI of the temporal lobe, amygdala, and
hippocampus in normal human development: Ages 4-18 years. The Journal of
Comparative Neurology, 366(2), 223-230.

Gogtay, N., Nugent, T. F., Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K. M., Clasen,
L., Toga, A. W., Giedd, J. N., Rapoport, J. L., & Thompson, P. M. (2006). Dynamic
mapping of normal human hippocampal development. Hippocampus, 16(8), 664—672.

Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Development, 58(3), 601.

Harms, R. L., Fritz, F. J., Tobisch, A., Goebel, R., & Roebroeck, A. (2017). Robust and fast
nonlinear optimization of diffusion mri microstructure models. Neurolmage, 155, 82-96.

Hu, S., Pruessner, J. C., Coupé, P., & Collins, D. L. (2013b). Volumetric analysis of medial
temporal lobe structures in brain development from childhood to adolescence.
Neurolmage, 74, 276-287.

lanus, A., Carvalho, J., Fernandes, F. F., Cruz, R., Chavarrias, C., Palombo, M., & Shemesh, N.
(2022). Soma and neurite density MRI (Sandi) of the in-vivo mouse brain and
comparison with the allen brain atlas. Neurolmage, 254, 119135.

Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). NNU-net: A
self-configuring method for deep learning-based biomedical image segmentation. Nature
Methods, 18(2), 203-211.

Jabes, A., Lavenex, P. B., Amaral, D. G., & Lavenex, P. (2010). Postnatal development of the
Hippocampal Formation: A stereological study in Macaque Monkeys. The Journal of
Comparative Neurology, 519(6), 1051-1070.

Jelescu, 1. O., & Budde, M. D. (2017). Design and validation of diffusion MRI models of white
matter. Frontiers in Physics, 5.

Jensen, J. H., & Helpern, J. A. (2010). MRI quantification of non-gaussian water diffusion by
kurtosis analysis. NMR in Biomedicine, 23(7), 698-710.

Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi-tissue
constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI
data. Neurolmage, 103, 411-426.

Jones, D. K., Alexander, D. C., Bowtell, R., Cercignani, M., Dell’Acqua, F., McHugh, D. J.,
Miller, K. L., Palombo, M., Parker, G. J. M., Rudrapatna, U. S., & Tax, C. M. W. (2018).
Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of
ultra-strong gradients for diffusion MRI. Neurolmage, 182, 8-38.

Jones, D. K., Knosche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other
fallacies: The do’s and don’ts of Diffusion MRI. Neurolmage, 73, 239-254.

Karat, B. G., DeKraker, J., Hussain, U., Kohler, S., & Khan, A. R. (2023). Mapping the


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

macrostructure and microstructure of the in vivo human hippocampus using diffusion
MRI. Human Brain Mapping, 44(16), 5485-5503.

Karat, B. G., Kohler, S., & Khan, A. R. (2024). Diffusion MRI of the hippocampus. Journal of
Neuroscience, 44(23).

Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal based
on local subvoxel-shifts. Magnetic Resonance in Medicine, 76, 1574—1581.

Krogsrud, S. K., Tamnes, C. K., Fjell, A. M., Amlien, 1., Grydeland, H., Sulutvedt, U.,
Due-Tennessen, P., Bjernerud, A., Selsnes, A. E., Haberg, A. K., Skrane, J., & Walhovd,
K. B. (2014). Development of hippocampal subfield volumes from 4 to 22 years. Human
Brain Mapping, 35(11), 5646-5657.

Langnes, E., Sneve, M. H., Sederevicius, D., Amlien, I. K., Walhovd, K. B., & Fjell, A. M.
(2020). Anterior and posterior hippocampus macro- and microstructure across the
lifespan in relation to memory—a longitudinal study. Hippocampus, 30(7), 678—692.

Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural
maturation of the human brain from childhood to adulthood. Neurolmage, 40(3),
1044-1055.

Lee, J. K., Ekstrom, A. D., & Ghetti, S. (2014). Volume of hippocampal subfields and episodic
memory in childhood and adolescence. Neurolmage, 94, 162—171.

Lee, J.K., Johnson, E.G., Ghetti, S. (2017). Hippocampal Development: Structure, Function and
Implications. In: Hannula, D., Duff, M. (eds) The Hippocampus from Cells to Systems.
Springer, Cham.

Le Bihan, D. (1995). Molecular diffusion, tissue microdynamics and microstructure. NMR in
Biomedicine, 8(7), 375-386.

Lutti, A., Dick, F., Sereno, M. 1., & Weiskopf, N. (2014). Using high-resolution quantitative
mapping of R1 as an index of cortical myelination. Neurolmage, 93, 176—188.

Markello, R. D., Hansen, J. Y., Liu, Z.-Q., Bazinet, V., Shafiei, G., Suarez, L. E., Blostein, N.,
Seidlitz, J., Baillet, S., Satterthwaite, T. D., Chakravarty, M. M., Raznahan, A., & Misic,
B. (2022). Neuromaps: Structural and Functional Interpretation of Brain Maps.

Mattiello, J., Basser, P. J., & Le Bihan, D. (1997). The B matrix in diffusion tensor echo-planar
imaging. Magnetic Resonance in Medicine, 37(2), 292-300.


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

McNab, J. A., Edlow, B. L., Witzel, T., Huang, S. Y., Bhat, H., Heberlein, K., Feiweier, T., Liu,
K., Keil, B., Cohen-Adad, J., Tisdall, M. D., Folkerth, R. D., Kinney, H. C., & Wald, L.
L. (2013). The Human Connectome Project and Beyond: Initial applications of 300MT/m
gradients. Neurolmage, 80, 234-245.

Mellstrom, B., Kastanauskaite, A., Knafo, S., Gonzalez, P., Dopazo, X. M., Ruiz-Nufio, A.,
Jefferys, J. G., Zhuo, M., Bliss, T. V., Naranjo, J. R., & DeFelipe, J. (2016). Specific
cytoarchitectureal changes in hippocampal subareas in Dadream Mice. Molecular Brain,

9(1).

Narvacan, K., Treit, S., Camicioli, R., Martin, W., & Beaulieu, C. (2017). Evolution of deep gray
matter volume across the human lifespan. Human Brain Mapping, 38(8), 3771-3790.

Nichols, E. S., Blumenthal, A., Kuenzel, E., Skinner, J. K., & Duerden, E. G. (2023).
Hippocampus long-axis specialization throughout development: A meta-analysis.
Human Brain Mapping, 44(11), 4211-4224.

Nieuwenhuys, R., van Huijzen, C., & Voogd, J. (2008). The human central nervous system.
Springer.

Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D. C., Shemesh, N., & Zhang, H.
(2020). SANDI: A compartment-based model for non-invasive apparent Soma and
neurite imaging by Diffusion MRI. Neurolmage, 215, 116835.

Pfluger, T., Weil, S., Weis, S., Vollmar, C., Heiss, D., Egger, J., Scheck, R., & Hahn, K. (1999).
Normative volumetric data of the developing hippocampus in children based on magnetic
resonance imaging. Epilepsia, 40(4), 414-423.

Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of
the human hippocampus. Trends in Cognitive Sciences, 17(5), 230-240.

Robillard, K. N., Lee, K. M., Chiu, K. B., & MacLean, A. G. (2016). Glial cell morphological
and density changes through the lifespan of rhesus macaques. Brain, Behavior, and
Immunity, 55, 60—69.

Rossi, R., Arjmand, S., Baerentzen, S. L., Gjedde, A., & Landau, A. M. (2022). Synaptic vesicle
glycoprotein 2a: Features and functions. Frontiers in Neuroscience, 16.

Rudrapatna, S., Parker, G., Roberts, J., & Jones, D. Can we correct for interactions between
subject motion and gradient-nonlinearity in diffusion MRI. 2018.

Sairanen, V., Leemans, A., & Tax, C. M. W. (2018). Fast and accurate Slicewise outlier detection


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(SOLID) with informed model estimation for diffusion MRI Data. Neurolmage, 181,
331-346.

Sanides, F. (1970). Functional architecture of motor and sensory cortices in primates in the light
of a new concept of neocortex evolution. Advances in Primatology, 1, 137-208.

Sanides, F. (1964). The cyto-myeloarchitecture of the human frontal lobe and its relation to
phylogenetic differentiation of the cerebral cortex. Journal Fur Hirnforschung, 6.

Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J. A., Keil,
B., Tisdall, M. D., Hoecht, P., Dietz, P., Cauley, S. F., Tountcheva, V., Matschl, V., Lenz,
V. H., Heberlein, K., Potthast, A., Thein, H., Van Horn, J., Toga, A., ... Wald, L. L.
(2013). Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.
Neurolmage, 80, 220-233.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J.,
Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, 1., Flitney, D. E., Niazy, R.
K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M.
(2004). Advances in functional and structural MR image analysis and implementation as
FSL. Neurolmage, 23.

Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats,
monkeys, and humans. Psychological Review, 99(2), 195-231.

Strange, B. A., Witter, M. P, Lein, E. S., & Moser, E. 1. (2014). Functional organization of the
Hippocampal Longitudinal Axis. Nature Reviews Neuroscience, 15(10), 655—669.

Stiiber, C., Morawski, M., Schifer, A., Labadie, C., Wahnert, M., Leuze, C., Streicher, M.,
Barapatre, N., Reimann, K., Geyer, S., Spemann, D., & Turner, R. (2014). Myelin and
iron concentration in the human brain: A quantitative study of MRI contrast.
Neurolmage, 93, 95-106.

Sweatt, J. D. (2010). Hippocampal function in cognition. Mechanisms of Memory, 128—149.

Tamnes, C. K., Bos, M. G. N., van de Kamp, F. C., Peters, S., & Crone, E. A. (2018).
Longitudinal development of hippocampal subregions from childhood to adulthood.
Developmental Cognitive Neuroscience, 30, 212-222.

Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D.,
Jeurissen, B., Yeh, C.-H., & Connelly, A. (2019). MRTRIX3: A fast, flexible and open
software framework for medical image processing and visualisation. Neurolmage, 202,
116137.


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Longitudinal development of hippocampal subregions from childhood to adulthood.
Developmental Cognitive Neuroscience, 30,212-222.

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C.
(2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging,
29, 1310-1320.

Uchihara, T. (2007). Silver diagnosis in Neuropathology: Principles, practice and revised
interpretation. Acta Neuropathologica, 113(5), 483—499.

Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., & Nishijo, H.
(2012). Developmental trajectories of amygdala and hippocampus from infancy to early
adulthood in healthy individuals. PLoS ONE, 7(10).

Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Diffusion MRI noise mapping using random
matrix theory. Magnetic Resonance in Medicine, 76(5), 1582—1593.

Vinci-Booher, S., Schlichting, M. L., Preston, A. R., & Pestilli, F. (2023). Development of
Human Hippocampal Subfield Microstructure and Relation to Associative Inference.
Cerebral Cortex, 33,10207-10220.

Vos, S. B., Tax, C. M., Luijten, P. R., Ourselin, S., Leemans, A., & Froeling, M. (2016). The
importance of correcting for signal drift in diffusion MRI. Magnetic Resonance in
Medicine, 77(1), 285-299.

Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014).
Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age
7 to 24. Neurolmage, 96, 67-72.

Wolf, D., Fischer, F. U., de Flores, R., Chételat, G., & Fellgiebel, A. (2015). Differential
Associations of age with volume and microstructure of hippocampal subfields in healthy
older adults. Human Brain Mapping, 36(10), 3819-3831.

Zeineh, M. M., Palomero-Gallagher, N., Axer, M., Grafel, D., Goubran, M., Wree, A., Woods,
R., Amunts, K., & Zilles, K. (2017). Direct visualization and mapping of the spatial

course of fiber tracts at microscopic resolution in the human hippocampus. Cerebral
Cortex, 27, 1779-1794.

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI:
Practical in vivo neurite orientation dispersion and density imaging of the human brain.
Neurolmage, 61(4), 1000-1016.

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608590; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

markov random field model and the expectation-maximization algorithm. /EEE
Transactions on Medical Imaging, 20(1), 45-57.


https://doi.org/10.1101/2024.08.19.608590
http://creativecommons.org/licenses/by/4.0/

