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Key Points 

 We conducted a pre-registered mega-analysis integrating data from eight fMRI 

neurofeedback studies to examine feedback processing and regulation recalibration 

during neurofeedback training.  

 During feedback processing, feedback was associated with activity in the reward system, 

dorsal attention network, default mode network, and cerebellum; as well as with reward 

system-related connectivity within the salience network. 

 We found no positive results during regulation blocks; however, additional analyses 

suggest that recalibration may have already occurred during feedback presentation.  

 

Abstract 

The acquisition of new skills is facilitated by providing individuals with feedback that reflects their 

performance. This process creates a closed loop that involves feedback processing and 

regulation recalibration to promote effective training. Functional magnetic resonance imaging 

(fMRI)-based neurofeedback is unique in applying this principle by delivering direct feedback on 

the self-regulation of brain activity. Understanding how feedback-driven learning occurs requires 

examining how feedback is evaluated and how regulation adjusts in response to feedback signals. 

In this pre-registered mega-analysis, we re-analyzed data from eight intermittent fMRI 

neurofeedback studies (N = 153 individuals) to investigate brain regions where activity and 

connectivity are linked to feedback processing and regulation recalibration (i.e., regulation after 

feedback) during training. We harmonized feedback scores presented during training in these 

studies and computed their linear associations with brain activity and connectivity using 

parametric general linear model analyses. We observed that, during feedback processing, 

feedback scores were positively associated with (1) activity in the reward system, dorsal attention 

network, default mode network, and cerebellum; and with (2) reward system-related connectivity 

within the salience network. During regulation recalibration, no significant associations were 

observed between feedback scores and either activity or associative learning-related connectivity. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.08.19.608543doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608543
http://creativecommons.org/licenses/by/4.0/


Our results suggest that neurofeedback is processed in the reward system, supporting the theory 

that reinforcement learning shapes this form of brain training. In addition, the involvement of large-

scale networks in feedback processing, continuously transitioning between evaluating external 

feedback and internally assessing the adopted cognitive state, suggests that higher-level 

processing is integral to this type of learning. Our findings highlight the pivotal role of performance-

related feedback as a driving force in learning, potentially extending beyond neurofeedback 

training to other feedback-based processes.  
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1. Introduction 

Feedback can facilitate and aid the acquisition of new skills by providing individuals with 

information about their performance. The information has to be evaluated and compared to the 

previous action in order to improve task performance. This process creates a closed-loop system, 

where feedback is constantly updated and individuals adjust mental strategies accordingly. In 

order to maximize positive and minimize negative feedback, individuals learn by adapting their 

mental strategies, which involves processing feedback information (requiring emotional valuation 

and memory), and the motivation for and planning of new mental strategy. This learning process 

is known as reinforcement learning.  

Reinforcement learning is usually associated with the modulation of dopaminergic activity in the 

reward system, a brain network comprising limbic regions (midbrain, ventral and dorsal striatum, 

orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, thalamus), as well as the anterior 

and posterior cingulate, insular cortex, and inferior frontal gyrus (O’Doherty, 2004; Schultz et al., 

1997; Tricomi and DePasque, 2016; Tsukamoto et al., 2006). Several functional imaging studies 

have shown greater activity in several of these regions in response to positive feedback (Elliott et 

al., 2003; Marco-Pallarés et al., 2007; Nieuwenhuis et al., 2005b, 2005a). The limbic system is 

thought to have an important role in feedback processing due to its involvement in motivation and 

assigning value to information (Haber, 2011). Notably, the nucleus accumbens (NAcc) is a key 

integrative region for feedback processing, motivation, and learning, and is thought to modulate 

behavior according to a goal (Goto and Grace, 2005), being connected to the amygdala, the 

hippocampus (Goto and Grace, 2008), the ventral tegmental area (Camara et al., 2009; Knutson 

and Gibbs, 2007), as well as other limbic regions and cortical regions. After receiving feedback 

on task performance, the individual can reframe cognitive strategies to improve performance. The 

dlPFC plays a critical role in associative learning due to its engagement in working memory, 

attentional switching, and response selection (Niendam et al., 2012). Top-down attentional control 

is primarily associated with the posterior parietal cortex (and intraparietal sulcus) (Corbetta and 

Shulman, 2002; Green and McDonald, 2008). Alongside parietal regions, the anterior cingulate 

cortex and NAcc have been suggested to be involved in behavior adaptation (Holroyd and Coles, 

2002).  

Feedback is essential for learning, but when it comes to training the brain directly, we do not have 

conscious access to our own brain activity. Neurofeedback overcomes this shortcoming by 

converting brain activity into sensory feedback (e.g., a visual thermometer). Using neurofeedback, 
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participants can learn to modulate their own brain activity voluntarily, which can lead to behavioral 

changes (Sitaram et al., 2017; Weiskopf et al., 2004). Neurofeedback experiments entail a 

distinctive form of learning, wherein the objective is to improve the self-regulation of a particular 

neural signal. Neurofeedback learning is thought to be driven by reinforcement learning, whereby 

neural states become more probable when they are associated with performance-related rewards 

(Lubianiker et al., 2022; Shibata et al., 2019; Sitaram et al., 2017). In this context, effective 

feedback processing represents a crucial factor in reinforcement learning. Several other factors 

make neurofeedback a worthwhile paradigm to investigate the neural mechanisms of feedback 

processing and regulation recalibration. Often, neurofeedback experiments provide graded 

feedback rather than binary feedback, which can be studied using parametric general linear 

models (GLM) (Radua et al., 2018). Neurofeedback experiments also often employ the acquisition 

with whole-brain coverage. Finally, neurofeedback studies using intermittent feedback, as 

opposed to continuous feedback, separate feedback presentation and periods of self-regulation 

into temporally distinct blocks, allowing feedback evaluation to be examined without interference 

from self-regulation (Johnson et al., 2012; Lubianiker et al., 2022). Although several cognitive 

theories have been proposed to elucidate the mechanisms underlying learning in neurofeedback 

experiments (Lubianiker et al., 2022; Sitaram et al., 2017), and the focus of some studies on brain 

responses due to feedback during neurofeedback training (Dewiputri et al., 2021; Emmert et al., 

2016; Hinterberger et al., 2005; Mathiak et al., 2015; Radua et al., 2018; Shibata et al., 2019), the 

relationship between feedback scores and brain changes during feedback and regulation blocks 

in the context of neurofeedback training remains poorly understood. 

Here, our goal was to capitalize on existing neurofeedback studies to investigate the brain 

correlates of feedback processing and regulation recalibration, i.e., adapting or reinforcing a 

regulation strategy depending on the feedback received. More specifically, we reanalyzed a 

dataset of 153 participants from eight fMRI-based intermittent neurofeedback studies using 

parametric GLMs. Pooling data from several neurofeedback studies allows for examining 

generalizable neural mechanisms while minimizing study-specific effects (e.g., feedback 

representation, directionality of regulation, and target brain regions). We only included studies 

using intermittent feedback to make sure that the feedback processing and self-regulation are 

temporally not overlapping.  

We hypothesized that, in the context of neurofeedback training, (1) during feedback presentation 

blocks, performance-related feedback scores are positively associated with activity in reward-

related brain regions (ventral tegmental area, NAcc, ventral striatum, anterior cingulate cortex, 
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anterior insular cortex), and (2) with connectivity between those regions. We also hypothesized 

that (3) during regulation blocks, performance-related feedback scores on the previous trial are 

negatively associated with activity in brain regions related to neurofeedback control (dorsolateral 

prefrontal cortex, posterior parietal cortex, lateral occipital cortex, thalamus) and (4) with 

connectivity between those regions. The negative association posited in hypotheses 3 and 4 

would indicate that a reduction in the level of performance-related feedback received would 

necessitate greater effort for the recalibration of the regulatory strategy, resulting in an increase 

in brain activity/connectivity.  

Testing these hypotheses will contribute to our understanding of how the brain processes 

feedback and how regulation is recalibrated after feedback presentation in neurofeedback 

training. The insights we gain from this study might also generalize to other feedback-based 

learning contexts that depend on reward processing and regulation recalibration. Thus, our 

findings may inform neuroscientific theories of learning and future brain-based interventions to 

optimize learning. 

 

2. Materials and Methods 

The hypotheses and the analyses were preregistered prior to conducting the study: osf.io/bzweg/ 

 

2.1. Data collection procedure  

The present study is a mega-analysis (Costafreda, 2009), which involved systematically 

searching the literature for relevant studies, requesting data sharing from the authors, and 

analyzing the raw data from neurofeedback training using a different approach than that employed 

in the offline analyses of the original studies.  

First, we systematically searched for articles whose data could potentially be included in our 

mega-analysis study using the Scopus systematic search (www.scopus.com). The full procedure 

for the systematic search is described in the first section of the Supp. Material. Inclusion criteria 

were (1) original research on neurofeedback, (2) studies using fMRI as the acquisition technique, 

(3) paradigms using intermittent (rather than continuous) neurofeedback, and (4) published as 

peer-reviewed scientific articles. The search identified seven studies that could be included in our 
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mega-analysis. Two additional studies were included that were not identified in the search but 

met the inclusion criteria for this analysis (Amano et al., 2016; Zweerings et al., 2019). We 

contacted all authors via e-mail and inquired about data sharing of raw anatomical and functional 

imaging data, performance-related feedback scores for each feedback block, and basic 

information about the experimental design (e.g., block onsets and durations). We also requested 

minimal descriptive demographic information on gender and age. Of the nine selected studies, 

we obtained consent and collected data from eight fMRI-neurofeedback studies (Amano et al., 

2016; Hellrung et al., 2018; Keller et al., 2021; Krause et al., 2021; Pamplona et al., 2020; 

Scheinost et al., 2020; Zweerings et al., 2020, 2019). This study protocol was approved by the 

ethics committee of the University of Vienna (EK 00621).  

 

2.2. Participants 

Relevant demographic information about each study is described in Table 1. Irrespective of the 

original design, only data from healthy participants who received intermittent and veridical 

feedback were considered. Participants who received sham feedback (Scheinost et al., 2020) 

were not included in this study. Due to technical issues in the data sharing process, data from 

some participants could not be recovered (four from Zweerings et al., 2019, and one from Hellrung 

et al., 2018) resulting in a data set of 153 participants. 

 

Table 1. Demographic details of each included study (studies ordered by sample size after study-specific exclusion 

criteria).  

Study Handedness 
Number of groups in the 
original study 

Head motion as an 
exclusion criterion 

Number of 
participants* 

Mean age 
Number of 
females* 

Sham 
feedback 
group 

Keller et al., 2021 Right 2 (patients and HC) 
Yes. Two HC 
participants removed 
from the analysis 

37 32.3 ± 2.1 15 No 

Zweerings et al., 2019 Right 
2 (schizophrenia patients 
and HC) 

No 35 34.4 ± 12.1 16 No 

Zweerings et al., 2020 Right 
3 (2 PTSD in a cross-over 
design, 1 HC) 

No 21 44.1 ± 10.9 9 No 

Hellrung et al., 2018 Right 
3 (1 continuous, 1 
intermittent feedback, 1 no 
feedback) 

Yes. Scan-to-scan 
movements of more 
than 3 mm 

18 27.8 ± 3.8 0 No 

Pamplona et al., 2020 Right 
2 (1 NF, 1 behavioral test-
retest only) 

No 15 26.9 ± 3.8 10 No 

Amano et al., 2016 (some 
additional details of this 
study can be found in 
Cortese et al., 2021) 

Not collected 2 (1 NF, 1 no feedback) No 12 21.2 ± 1.8 1 No 

Scheinost et al., 2020 Right 2 (NF and sham feedback) Yes 10 21.5 ± 2.6 10 
Yes, yoked 
feedback 

Krause et al., 2021 
Right:8, Left:1, 
Ambidexterity:1 

1 No 10 25.8 ± 6.2 5 No 

Note: * After exclusion, considering only the relevant group for the present study. HC = healthy controls; PTSD = post-traumatic 

stress disorder; NF = neurofeedback. 
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2.3. fMRI acquisition parameters and experimental design of the studies 

A summary of the fMRI acquisition parameters is shown in the supplementary material (Table 

S1). For all studies, data acquisition was performed using 3T MRI scanners, echo-planar 

sequences and axial slice orientation. A summary of the experimental design for each study can 

also be found in the supplementary material (Table S2). 

 

2.4. Data Analysis  

2.4.1. Harmonization of feedback values 

We investigated linear associations between performance-related feedback during 

neurofeedback training and estimates of brain activity and connectivity in parametric analyses 

(i.e., over a range of feedback scores), rather than in a categorical analysis (i.e., positive versus 

negative feedback). Feedback scores from each dataset were harmonized across studies before 

computing these associations.  

In the first step, we converted feedback scores into numerical values. Three studies presented a 

two-digit representation proportional to the previous block of self-regulation performance (Keller 

et al., 2021; Zweerings et al., 2020, 2019). Accordingly, no numerical transformation was 

conducted for these studies. For the other five studies, feedback was presented graphically in the 

form of thermometers (Hellrung et al., 2018; Pamplona et al., 2020), concentric discs (Amano et 

al., 2016; Krause et al., 2021), or a speedometer (Scheinost et al., 2020). We converted the 

feedback scores of all datasets to decimal numbers in the range 0-1, proportional to the level of 

steps compared to the maximum and minimum possible representations provided after the 

regulation block. Datasets from three studies (Hellrung et al., 2018; Krause et al., 2021; Zweerings 

et al., 2019) combined up- and down-regulation trials during neurofeedback training. To reflect 

feedback representation of success and failure independent of directionality, we inverted the scale 

for feedback presentation blocks following down-regulation (i.e., 0 and 1 represented the upper 

and lower feedback limits, respectively). For one study, the requested direction of feedback 

representation was rightward (Scheinost et al., 2020), so 0 and 1 represented the leftmost and 

rightmost feedback limits, respectively.  
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For some datasets, the converted feedback values showed a highly non-uniform distribution that 

could affect the linear regression of the parametric analysis. In extreme cases, a high number of 

feedback scores near the upper or lower limits would lead, in practice, to a categorical analysis 

(most commonly, near the upper and lower limits). Therefore, we applied the following iterative 

procedure to remove highly frequent range-specific values. First, for each individual, we 

calculated the histogram of feedback scores with h bins, in which h is the number of possible 

subject-specific graphical feedback steps between the minimum and maximum feedback scores 

received by the subject during training (Hellrung et al., 2018; Keller et al., 2021; Pamplona et al., 

2020; Zweerings et al., 2020, 2019). In some studies, continuous graphical feedback steps were 

presented, and h was determined by subtracting for each subject the minimum feedback score 

from the maximum and dividing the result by 100 (Amano et al., 2016; Krause et al., 2021; 

Scheinost et al., 2020). We then calculated the mean and standard deviation (SD) of the counts 

across the bins. If the bin with the highest count of feedback scores was above the threshold of 

the mean value plus three SD, one score from a randomly selected feedback presentation block 

belonging to that bin was marked as censored. Then, the mean and SD of the counts across bins 

were recalculated, and the procedure was repeated until the bin with the highest count was not 

higher than the threshold. Finally, scores from feedback presentation blocks marked as censored 

were removed from the analyses. The final mean percentage (± SD) of censored feedback scores 

across individuals in each dataset was 30.0 ± 15.1% for Keller et al., 2021; 40.3 ± 14.7% for 

Zweerings et al., 2019; 7.1 ± 10.6% for Zweerings et al., 2020; 1.2 ± 2.5% for Hellrung et al., 

2018; zero for Pamplona et al., 2020; 81.5 ± 6.5% for Amano et al., 2016; and 4.2 ± 4.4% for 

Scheinost et al., 2020; 0.1 ± 0.2 for Krause et al., 2021. The final mean number (± SD) of 

maintained feedback scores across individuals in each dataset was 50.4 ± 10.9 for Keller et al., 

2021; 41.6 ± 13.0 for Zweerings et al., 2019; 16.7 ± 2.0 for Zweerings et al., 2020; 23.7 ± 0.6 for 

Hellrung et al., 2018, 40 for Pamplona et al., 2020; 98.6 ± 34.9 for Amano et al., 2016; 11.5 ± 0.5 

for Scheinost et al., 2020; 375.5 ± 8.4 for Krause et al., 2021.  

 

2.4.2. fMRI preprocessing 

We applied the same preprocessing pipeline to the requested raw data to minimize variance 

across studies that could arise from disparities in MRI acquisition parameters and preprocessing. 

All fMRI data were preprocessed prior to statistical mapping using MATLAB (version R2022b, 

www.mathworks.com) and the Statistical Parametric Mapping toolbox (SPM12, Wellcome 
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Department of Imaging Neuroscience, University College London, UK). We first slice-time 

corrected functional MRI data (according to the slice acquisition order of the dataset) using the 

middle slice as the reference. From the resulting images, we estimated the translation and rotation 

parameters of head motion, and resliced the images to a created mean image using a fourth-

degree B-spline interpolation. We then coregistered the anatomical image to this mean image 

using a rigid-body model. The coregistered anatomical image was used to generate a deformation 

field to normalize the resulting anatomical and functional images of all subjects according to the 

standard Montreal Neurological Institute (MNI) stereotactic space with a resolution of 2 x 2 x 2 

mm³. Finally, we performed spatial smoothing using a Gaussian kernel of 8 mm³ at full-width half 

maximum (FWHM). 

 

2.4.3. First-level analysis of the association between performance-related feedback 

and estimates of activity/connectivity  

We performed voxel-wise mass-univariate general linear model (GLM) analyses using SPM12 to 

determine regions whose activity/connectivity are parametrically associated with feedback values 

during feedback presentation blocks as well as during the subsequent regulation blocks. One 

GLM was specified separately for each model to test for distinct hypotheses.    

Prior to GLM analyses, we concatenated the runs of each individual to center feedback scores 

subject-wise rather than run-wise, to increase the number of blocks for parametric analysis and 

to extract single time series for connectivity analyses. This step was done using the SPM 

‘spm_fmri_concatenate’ function 

(github.com/spm/spm12/blob/master/spm_fmri_concatenate.m), which includes run-specific 

regressors to remove run effects (henceforth, run-effect regressors) and corrects the high-pass 

filter and non-sphericity calculations. 

Model 1. Model 1 investigated the association between performance-related feedback and activity 

during feedback blocks (Hypothesis 1). As indicated in the preregistration, for some datasets, the 

last feedback block of each run was not included in the regressor because this block was at the 

end of the training run and its delayed hemodynamic response could not be determined. For each 

individual, we constructed two regressors, one for feedback presentation blocks and one for 

regulation blocks, as boxcar functions using study-specific onsets and durations. The 

(unmodulated) regressor representing feedback presentation was orthogonalized with a 
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parametrically modulated regressor representing the performance-dependent feedback score 

presented in each block.  

Model 2. Model 2 was designed to investigate brain regions whose connectivity with a reward-

related region, the NAcc, is associated with the level of performance-related feedback during 

feedback blocks (Hypothesis 2). The estimated connectivity during the feedback presentation was 

computed using the psycho-physiological interaction (PPI) analysis (O’Reilly et al., 2012). Similar 

to Model 1, the last feedback block of each run was not considered in some datasets. We used 

the IBASPM 71 atlas (Alemán-Gómez et al., 2006) within the WFU PickAtlas toolbox (Maldjian et 

al., 2003, www.nitrc.org/projects/wfu_pickatlas/) to create a binary mask of the bilateral NAcc. We 

then extracted the averaged time course within the NAcc across concatenated runs and computed 

the element-by-element product of this time course and the “task” regressor. This task regressor 

was an HRF-convolved boxcar function constructed from the modulated feedback presentation 

blocks. Variance explained by the six head motion parameters, run-effect regressors, and 

regressors of no interest was removed. Finally, we estimated the first-level betas voxel-wise for 

each GLM based on the PPI regressors.  

Model 3.  Model 3 investigated the association between performance-related feedback and 

activity during regulation blocks (Hypothesis 3). The first regulation block of each run was not 

included in the model, because there was no feedback presentation block prior to the first 

regulation block. As announced in the preregistration, we constructed four regressors 

representing feedback presentation blocks, baseline blocks, the first four seconds of the 

regulation blocks (referred to here as “onset of regulation”), and the remaining regulation block. 

We included only the beginning of the regulation blocks in the model, as we assumed that 

modulation would be stronger during the initial phase of a new strategy, compared to its 

maintenance over the remainder of the block. Although regulation recalibration driven by feedback 

may occur later in the block, we focus here exclusively on the initial phase due to our assumption 

that feedback-driven recalibration happens primarily at the beginning of the regulation block 

followed by a lower degree of feedback-driven maintenance of activity. Methodologically, adopting 

a short and consistent duration for modeling the initial recalibration phase helps control for the 

wide variation in regulation block durations across studies, which range from 6 seconds (e.g., 

Amano et al., 2016) to 180 seconds (e.g., Scheinost et al., 2020; see Table S2). Additionally, the 

(unmodulated) regressor representing the onset of regulation was orthogonalized with a 

parametrically modulated regressor corresponding to performance-related feedback score 

presented in each previous feedback block.  
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Model 4. Model 4 was designed to investigate brain regions whose connectivity with the 

dorsolateral prefrontal cortex (dlPFC) is associated with performance-related feedback during the 

onset of regulation blocks (Hypothesis 4). The estimated connectivity during the onset these 

blocks was computed using PPI analysis. Similar to Model 3, the first regulation block in each run 

was not considered. The left dlPFC was selected as the ROI due to its established link to 

neurofeedback control (Emmert et al., 2016; Sitaram et al., 2017). To define this ROI, we first 

downloaded a meta-analytic map from Neurosynth (https://neurosynth.org/) using the term “dlpfc”. 

Then, using the MarsBaR toolbox (marsbar.sourceforge.net), we created a 6-mm-radius spherical 

ROI centered on the MNI coordinate peak (-46, 38, 30) from the meta-analytic map to represent 

the dlPFC. We then extracted the averaged time course within the dlPFC across concatenated 

runs and computed the element-by-element product of this time course and the “task” regressor. 

This task regressor was an HRF-convolved boxcar function based on the modulated onset of 

regulation blocks. Variance explained by the six head motion parameters, run-effect regressors, 

and regressors of no interest was removed. Finally, we estimated the first-level betas voxel-wise 

for each GLM based on the PPI regressors.  

All parametric modulators were specified as first order (linear association). In addition to 

unmodulated, modulated, and run-effect regressors, the six head motion parameters estimated 

in the preprocessing step were added to the first-level design matrices. For six datasets (Hellrung 

et al., 2018; Keller et al., 2021; Krause et al., 2021; Pamplona et al., 2020; Zweerings et al., 2020, 

2019), we applied a high-pass filter with a 128-s cut-off to remove the low-frequency signal. Due 

to the long periods between feedback presentation blocks, a high-pass filter with a cut-off of half 

the run duration (Nurmi et al., 2018) was applied to the remaining two datasets. We used a liberal 

whole-brain mask with a threshold of 0.1 and a first-degree auto-regressive model to remove the 

autocorrelation in the signal. Regressors were convolved with the canonical hemodynamic 

response function (HRF) of SPM12. For each individual and each model, we created contrast 

maps with the beta estimates of the feedback-modulated regressors representing activity in 

feedback blocks (Model 1), connectivity in feedback blocks (Model 2), activity in regulation onset 

blocks (Model 3), and connectivity in regulation onset blocks (Model 4). For Models 1 and 2, we 

included the following study-specific regressors to represent covariates of no interest: self-

regulation training blocks (Keller et al., 2021; Zweerings et al., 2020, 2019), blocks for assessing 

emotional neural responses (Keller et al., 2021), for presenting a percent sign (neutral feedback) 

(Keller et al., 2021; Zweerings et al., 2020, 2019), for passive viewing of a picture (Keller et al., 

2021; Zweerings et al., 2020) for backward counting (Hellrung et al., 2018; Zweerings et al., 2019), 
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and for feedback related to backward counting (Hellrung et al., 2018). The same covariates were 

included in Models 3 and 4, as well as the remaining regulation block period for all studies. Finally, 

we estimated the t-value map to test for voxelwise activation differences from zero for each 

individual. The PPI estimation, i.e., Models 2 and 4, was not performed for the data of Scheinost 

et al., because of the absence of baseline blocks. 

 

2.4.4. Group-level analysis of activation and connectivity estimates 

To investigate group estimates of whole-brain activation and connectivity, we performed second-

level random-effects analyses using individual SPM t-value maps. We used t-values instead of 

the more conventional contrast maps (which here correspond to beta activation maps) to make 

the datasets more comparable.  

Second-level one-sample t-tests were performed separately for each model, using a constant 

regressor as the regressor of interest to test for non-zero voxel-wise group estimates. Binary 

regressors representing studies (i.e., with values of one or zero indicating inputs belonging or not 

belonging to a given study) were included as covariates of no interest. These covariates were 

orthogonalized with respect to the constant regressor. We used an explicit mask that included the 

entire cerebrum and the superior part of the cerebellum. As specified in the preregistration, to 

generate whole-brain group-level thresholded maps, we applied a voxel-level inclusion threshold 

of p < 0.001 and a cluster-level threshold of p < 0.05, FWE (family-wise error)-corrected for 

multiple comparisons using random-field theory (Worsley et al., 1996). Since many brain clusters 

were identified as significant in Model 1, we applied a more stringent statistical threshold (p < 

0.05, FWE-corrected at the voxel level) to this model in order to pinpoint regions with the strongest 

associations. We generated whole-brain maps for visualization using bspmview 

(bobspunt.com/software/bspmview/). We reported peak coordinates (multiple peaks were 

reported for the same clusters if the separation between them was greater than 10 mm) and the 

results were automatically labeled using Automated Anatomical Labelling 3 (AAL3) (Rolls et al., 

2020). For visualization purposes only and due to the lack of significant results for Models 3 and 

4, we also report whole-brain maps thresholded for small effect sizes for these models. These 

liberal maps were obtained by thresholding absolute t-values at 𝑡 = 2.46 for Model 3 and 𝑡 = 2.38 

for Model 4, which would correspond to the threshold for a weak effect size (𝑑 = 0.20), obtained 

by the following formula: 
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𝑡 = 𝑑 ∙ √𝑁      (1) 

where 𝑑 is the effect size (Cohen's d), and N is the sample size (𝑁 = 152 for Model 3 and 𝑁 = 142 

for Model 4).  

To establish associations between our whole-brain results and the cognitive significance of the 

findings, we computed the spatial Pearson’s correlation between the group-level t-value maps 

and 400 meta-analytic maps from Neurosynth (Yarkoni et al., 2011) using Python. This analysis 

was performed using the unthresholded group-level maps from Model 1, due to the hypothesis-

driven positive results (Section 3.1), and Model 2, due to the exploratory-driven positive results 

(section 3.2) (the lack of statistical power in the PPI analysis may have contributed to the whole-

brain negative results in the hypothesis-driven analysis – see Section 4.2). The 400 meta-analytic 

maps were obtained using the NiMARE library, which employs the Latent Dirichlet Allocation 

approach to the abstract or text of articles in the Neurosynth database (Poldrack et al., 2012). We 

then ranked and reported the 20 term sets from the meta-analytic maps with the highest positive 

correlations. With these rankings, we aimed to identify the main neural functional aspects related 

to the resulting whole-brain maps of these models. 

 

2.4.5. ROI analysis 

An additional exploratory ROI analysis (i.e., not preregistered) was performed to investigate 

whether activation or connectivity in regions that could be potentially related to feedback 

processing or regulation recalibration in neurofeedback experiments, according to previous 

literature. We included the following ROIs involved in (1) performance-related reward processing 

(Camara et al., 2009; Drueke et al., 2015; Marco-Pallarés et al., 2007; Tricomi and DePasque, 

2016): caudate nucleus, putamen, thalamus, NAcc, and substantia nigra; (2) self-regulation: 

(Sitaram et al., 2017): subgenual, rostral and superior anterior cingulate cortex (ACC), anterior 

and posterior insula, dorsolateral prefrontal cortex (dlPFC), posterior parietal cortex, and lateral 

occipital cortex; and (3) internally-oriented attention (Andrews-Hanna et al., 2014): medial 

prefrontal cortex (mPFC) and posterior cingulate cortex. ROI analyses were performed separately 

for Models 1-4. This analysis complements the whole-brain analyses because averaging the 

voxels within predefined ROIs might increase the signal-to-noise ratio, leading to higher statistical 

power. Because Models 2 and 4 considered connectivity with the NAcc and the dlPFC, 

respectively, these regions were removed from the ROI analyses for these Models. The ROIs and 
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their center coordinates are described in Table 2. The full procedure for the definition of ROI 

masks is described in the second section of the Supp. Material. 

 

Table 2. Regions of interest and their center coordinates. 

Region of interest Center-of-mass MNI coordinates (mm) 

Caudate nucleus (-11.8, 9.8, 6.2); (12.0, 11.5, 8.2) 

Putamen (-25.1, 1.7, 4.3); (25.3, 0.9, 0.6) 

Thalamus (-11.1, -16.8, 4.6); (7.2, -15.0, 6.3) 

Nucleus accumbens (-12.1, 7.2, -11.3); (9.5, 8.2, -10.5) 

Subgenual anterior cingulate cortex (1.1, 23.0, -10.3) 

Rostral anterior cingulate cortex (3.0, 34.0, 4.0) 

Superior anterior cingulate cortex (-0.7, 30.6, 20.5) 

Anterior insula (-34.9, 16.8, -2.9); (34.8, 17.9, -0.5) 

Posterior insula (-38.2, -15.9, 10.2); (39.3, -11.8, 9.6) 

Substantia nigra (-6.7, -20.4, -12.9); (6.3, -19.9, -14.4) 

Medial prefrontal cortex (-1.0, 54.0, 18.3) 

Posterior cingulate cortex (-3.8, -50.8, 24.9) 

Dorsolateral prefrontal cortex (-42.8, 28.6, 30.2); (40.4, 36.4, 31.0) 

Posterior parietal cortex (-24.2, -59.7, 59.8); (17.5, -60.9, 55.7) 

Lateral occipital cortex (46.0, -72.2, -3.4); (46.0, -72.2, -3.4) 

Note: MNI = Montreal Neurological Institute. 

 

Using MATLAB custom scripts, we extracted and averaged the SPM t-values, obtained in the 

first-level analysis, from voxels within each defined ROI. This procedure was repeated for each 

individual, study, and model. Due to incomplete coverage, one individual was removed from the 

Keller et al. dataset for the analysis of the subgenual ACC, two individuals were removed from 

the Hellrung et al. dataset for the analysis of the posterior cingulate gyrus; and all individuals from 

the Hellrung et al.’s dataset for the analysis in the posterior parietal cortex. Using R (version 4.3.2 

(2022-10-31), PBC, Boston, MA, USA; rstudio.com), we ran linear regressions for each ROI and 

model using the following function: 

lm(value ~ 1 + study, data = data, contrasts = list(study=contr.sum))    (2) 

in which value is the mean SPM t-value within the ROI, and study is the study to which the 

individual belongs. Thus, we tested whether the intercept of the linear regression was non-null 

(i.e., if the association of the estimate with the feedback scores is significantly different from zero) 

while the studies were treated as covariates of no interest. The intercept was considered 
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significant if the estimated 95% confidence interval of the result did not cross the zero-level. These 

confidence intervals were adjusted for multiple comparisons using the Bonferroni method at the 

ROI level. Using R, forest plots were generated for visualization. 

 

3. Results 

3.1. Model 1 – association between feedback and activation during 

feedback blocks 

In the whole-brain analysis, we found a positive association between performance-related 

feedback and activity in clusters that included the basal ganglia (NAcc, ventral part of the caudate 

nucleus, anterior part of the putamen, and ventral pallidum), bilateral IFG, rostral ACC, PCC, 

mPFC, left angular gyrus, and bilateral cerebellum (voxel-wise uncorrected p < 0.001 and cluster-

wise FDR-corrected p < 0.05; Fig. 1A, Table S3) during the feedback blocks. Using a more 

stringent threshold than the preregistered one, we found that the most robust associations were 

in the bilateral NAcc, mPFC, and right cerebellum (FWE-corrected voxel-level threshold p < 0.05; 

Fig. 1B, Table 3). In the ROI analysis, we also observed this positive association in the NAcc, 

rostral ACC, and mPFC (Fig. 1C). From the main meta-analytic terms associated with the result 

for Model 1 (Table 4), we observed that the group-level whole-brain result corresponds with brain 

patterns commonly linked to neurofeedback training processes, including cognitive regulation, 

strategic thinking, motivational systems, decision-making, retrieval processes, associative 

learning, and reward processing. These associations indicate that the whole-brain group-level 

map for Model 1 reflects not only feedback processing but also other higher-order cognitive 

processes involved in regulation strategies during neurofeedback training.  
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Figure 1. Model 1. (A) Whole-brain map (N = 153) showing brain areas where activation is positively associated with 

feedback scores during feedback blocks (voxel-wise uncorrected p < 0.001 and cluster-wise FDR-corrected p < 0.05). 

The z-coordinates for the axial slices are displayed at the bottom left corner of each slice. (B) Using a more stringent 

threshold than the preregistered one, we found that the most robust associations were in the nucleus accumbens, 

medial prefrontal cortex, and cerebellum (FWE-corrected voxel-level threshold p < 0.05). (C) Results from the region-

of-interest (ROI) analysis showing regions where activation is positively associated with feedback values during 

feedback blocks. Asterisks and red color represent significant positive associations, while gray represents no 

significant association. CI = confidence interval; ACC = anterior cingulate cortex.  

 

Table 3. Significant clusters in whole-brain analyses for Model 1 (Fig. 1B, strong association between activity and 

feedback scores). Regions were labeled based on the meta-analytic associations of Neurosynth.  

Region Label 
Extent 

(voxels) 
t-value 

MNI Coordinates 

x y z 

L nucleus accumbens 190 7.01 -12 2 -8 

R nucleus accumbens 133 6.78 12 6 -4 

Medial prefrontal cortex 375 6.39 -4 44 -6 

R cerebellum 131 6.04 36 -72 -30 

 

Table 4. Top meta-analytic terms for the highest correlations between group-level t-value maps (for Models 1 and 2) 

and meta-analytic maps. These computations are based on spatial correlations using Pearson’s correlation across 

400 meta-analytic maps from Neurosynth (Yarkoni et al., 2011). Highlighted text shows meta-analytic terms that can 

be associated to cognitive processes typically related to neurofeedback training.  

Rank 

Model 1 – association between performance-
related feedback and activity 

Model 2 – association between performance-
related feedback and connectivity 

Correlation Meta-analytic terms Correlation Meta-analytic terms 

1 0.33 retrieval, memory, episodic 0.26 frontal, inferior, gyrus 

2 0.31 items, recognition, item 0.21 prefrontal, cortex, dorsolateral 

3 0.30 pfc, prefrontal, cortex 0.21 face, faces, fusiform 

4 0.30 encoding, memory, recognition 0.20 error, errors, monitoring 

5 0.30 prefrontal, cortex, dorsolateral 0.19 prediction, predictive, predictions 

6 0.29 motivation, avoidance, approach 0.18 inhibition, response, stop 

7 0.29 pairs, associative, associations 0.18 resonance, magnetic, control 

8 0.29 mpfc, medial, prefrontal 0.18 faces, face, facial 

9 0.29 decision, making, choice 0.18 category, categories, categorization 

10 0.27 pictures, neutral, picture 0.18 task, performing, cognitive 

11 0.26 strategies, strategy, strategic 0.17 reading, letter, chinese 

12 0.25 relational, strength, strong 0.17 reading, phonological, dyslexia 

13 0.25 emotional, emotion, amygdala 0.17 detection, novelty, oddball 

14 0.24 deception, truth, lying 0.17 conflict, response, monitoring 

15 0.24 regulation, emotion, reappraisal 0.16 pictures, neutral, picture 

16 0.24 cortex, anterior, cingulate 0.16 cortex, visual, temporal 

17 0.24 learning, learned, associations 0.16 memory, working, verbal 

18 0.24 reward, striatum, monetary 0.16 deception, truth, lying 

19 0.24 cortex, lateral, prefrontal 0.15 rule, rules, abstraction 
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20 0.23 rule, rules, abstraction 0.15 encoding, memory, recognition 

 

 

3.2. Model 2 – association between feedback and connectivity with NAcc 

during feedback blocks 

In the whole-brain analysis, we found no associations between performance-related feedback 

and task-related connectivity with the NAcc during the feedback blocks. (For illustration purposes 

only, we provide a map showing associations at a lower threshold than the preregistered one; 

Fig. S1, Table S4). In the ROI analysis, we observed a positive association in the superior ACC, 

bilateral anterior insula, and substantia nigra (Fig. 2). From the main meta-analytic terms 

associated with the result for Model 2 (Table 4), we observed that the whole-brain group-level 

map corresponds with brain patterns commonly related to error and conflict monitoring, predictive 

processing, and cognitive performance. These associations indicate that the whole-brain group-

level map for Model 2 reflects cognitive control towards task performance. 
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Figure 2. Results from region-of-interest (ROI) analysis of Model 2 showing regions whose connectivity with NAcc is 

positively associated with feedback values during feedback blocks. Asterisks and red color represent significant 

positive associations and gray color represent no significant association. CI = confidence interval, ACC = anterior 

cingulate cortex. 

 

3.3. Model 3 – association between feedback and activation during self-

regulation   

We found no associations between the preceding performance-related feedback and activity 

during regulation blocks in the whole-brain analysis. For visualization, a whole-brain map showing 
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effect sizes greater than small for this association is provided (Fig. S2A, Table S5). Similarly, no 

associations were found between the preceding level of performance-related feedback and 

activity during regulation blocks in the ROI analysis (Fig. S2B).  

 

3.4. Model 4 – association between feedback and connectivity with the 

dlPFC during self-regulation  

We found no associations between the preceding performance-related feedback and task-related 

connectivity with the dlPFC during regulation blocks in the whole-brain analysis. For visualization, 

a whole-brain map showing effect sizes greater than small for this association is provided (Fig. 

S3A, Table S6). Similarly, no associations were found between the preceding level of 

performance-related feedback and task-related connectivity with the dlPFC during regulation 

blocks in the ROI analysis (Fig. S3B).  

 

4. Discussion 

We investigated brain regions whose activity and connectivity were associated with feedback 

processing or regulation recalibration during neurofeedback training. The findings are based on 

a mega-analysis of eight studies and a total of 153 individuals. We found positive associations 

between activity and feedback scores during feedback processing in the nucleus accumbens 

(NAcc), putamen, caudate, ventral pallidum, medial prefrontal cortex, bilateral inferior frontal 

gyrus, rostral anterior cingulate cortex, posterior cingulate cortex, left angular gyrus, left superior 

parietal lobule, and cerebellum (Fig. 1). Additionally, an exploratory connectivity analysis revealed 

that connectivity between the NAcc and several brain regions – specifically the substantia nigra, 

anterior insula, and superior anterior cingulate cortex – was positively associated with feedback 

scores during feedback processing (Fig. 2). We found no regions whose activity or connectivity 

with the dlPFC was significantly associated with feedback scores during regulation recalibration. 

In this discussion, we will elaborate on our findings of brain regions associated with reward 

processing during neurofeedback training by grouping them into core functional brain networks, 

namely the basal ganglia, the default mode network, and the salience network, as well as other 

regions associated with attentional control and activity-modulating dopaminergic regions. A 
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summary of the findings and possible feedback-related roles of each network is depicted in Figure 

3.  

 

 

 

Figure 3. Summary of the findings and suggested interpretation in the context of neurofeedback training and feedback. The colors 
represent key functions associated with the corresponding brain regions and presumably employed during neurofeedback 
training. These functional groupings are based on established associations from previous studies, described in sections 4.1 and 
4.2. The shapes represent whether the finding is related to either activity or connectivity estimations in the analysis. mPFC = medial 
prefrontal cortex, rACC = rostral anterior cingulate cortex, sACC = superior anterior cingulate cortex, IFG = inferior frontal gyrus, 
Ins = insular cortex, SN = substantia nigra, PCC = posterior cingulate cortex, Ang = angular gyrus, SPL = superior posterior lobule, 
Cer = cerebellum, L/R = left/right. 

 

In neurofeedback training, individuals can learn control over, e.g., activity within a predefined 

region by receiving contingent feedback that reflects the regulation performance. Several theories 

have been postulated to explain feedback-based learning during neurofeedback training. For 

example, it was proposed that operant conditioning (i.e., reinforcement) drives learning in 

neurofeedback training (Hellrung et al., 2022; Lubianiker et al., 2022; Sitaram et al., 2017). After 

the feedback is processed and evaluated, the individual’s strategy is modulated in order to 
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improve performance and prediction error is thought to decrease over successful training. For 

example, a “neurofeedback control network” has been proposed based on contrasting self-

regulation over sham feedback (Ninaus et al., 2013), on the identification of common activations 

during regulation blocks across fMRI-neurofeedback studies (Emmert et al., 2016), or based on 

the comparison between continuous and intermittent feedback (Dewiputri et al., 2021). These 

studies indicate the involvement of regions comprising the salience and the frontoparietal control 

networks, related to the control of cognitive processes modulated by bottom-up stimuli and the 

switch between externalized and internalized cognitive processes (Corbetta and Shulman, 2002; 

Dosenbach et al., 2008; Menon, 2011; Sridharan et al., 2008). All these processes represent 

important aspects of neurofeedback learning, and revealing their underlying neural mechanisms 

is paramount to a better understanding of feedback-based learning.  

 

4.1. Model 1 – association between feedback and activation during 

feedback blocks 

We confirmed our first hypothesis, which stated that, during feedback presentation blocks, 

performance-related feedback scores are positively associated with activity in reward-related 

brain regions. More specifically, we observed that brain activity associated with feedback 

processing was mainly located in the bilateral NAcc, which is part of the basal ganglia and an 

important region of the dopaminergic reward system. The fact that the reward-related regions are 

associated with feedback scores provided during neurofeedback training supports the theory that 

neurofeedback learning is driven by reinforcement learning (Hellrung et al., 2022; Lubianiker et 

al., 2022; Shibata et al., 2019). We also observed this association in the medial prefrontal cortex, 

rostral anterior cingulate cortex, and cerebellum (Fig. 1A and 1C); as well as in other parts of the 

basal ganglia, the bilateral inferior frontal gyrus, posterior cingulate cortex, left angular gyrus, and 

left superior parietal lobule (Fig. 1A).  

The basal ganglia have been linked to reward (Nieuwenhuis et al., 2005b; Schultz, 2016; 

Yacubian et al., 2006), learning (Camara et al., 2009; Schultz, 1998), and motivational processes 

(Ikemoto et al., 2015). Animal studies show that an intact basal ganglia response to reward is 

essential for successful learning in neurofeedback training (Koralek et al., 2012). Previous studies 

have suggested that the basal ganglia are involved in regulating brain activation in neurofeedback 

studies (Dewiputri et al., 2021; Emmert et al., 2016; Hinterberger et al., 2005; Shibata et al., 2019). 

However, such findings on self-regulation could potentially be entangled with feedback 
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processing, as the analyses were performed in neurofeedback experiments employing 

continuous feedback (Haller et al., 2013). During neurofeedback experiments with continuous 

feedback, the evaluation of feedback and regulation of the target brain regions occurs 

simultaneously. Here, we analyzed data from neurofeedback experiments that temporally 

segregate feedback appraisal and regulation phases. Therefore, we suggest that basal ganglia 

involvement is related to feedback appraisal, rather than self-regulation of neurofeedback training. 

We observed a strong association between feedback scores and activity during feedback blocks 

in the NAcc (part of the ventral striatum). This association is consistent with several studies 

showing that the NAcc shows higher activity for positive compared to negative feedback (Delgado 

et al., 2000; Fouragnan et al., 2018; Marco-Pallarés et al., 2007; Nieuwenhuis et al., 2005b; 

Yacubian et al., 2006). The NAcc is an integrative region that connects cortical and limbic regions, 

as well as the midbrain, and regions associated with dopamine release (Garris et al., 1999). Other 

studies have shown that activity in the NAcc correlates with gain-related prediction error 

(Montague et al., 1996; Shohamy, 2011; Yacubian et al., 2006), which is crucial for associative 

learning (Daniel and Pollmann, 2012). The involvement of the NAcc in feedback processing during 

neurofeedback, and its established link to prediction error may also indicate the applicability of 

the associative learning theory of neurofeedback learning. The ventral striatum has also been 

implicated in unconscious reward processing (Ramot et al., 2016; Sitaram et al., 2017). Therefore, 

it is noteworthy that neurofeedback studies using implicit feedback, i.e., a setup that operates 

without the conscious awareness of the participant but with indirect methods to induce intended 

brain activity (Watanabe et al., 2017), also elicit activation of the ventral striatum (Shibata et al., 

2019). 

Although the highest association between activity and feedback scores during neurofeedback 

training was found in the NAcc, we also found this association in other regions of the basal ganglia 

(Fig. 1A). We observed this positive association in the ventral part of the caudate nucleus and the 

anterior part of the putamen. These regions comprise the dorsal striatum, which has been 

reported to be more activated in response to positive than negative feedback (Drueke et al., 2015; 

Duijvenvoorde et al., 2008; Wächter et al., 2009). It has been suggested that the dorsal striatum 

receives reward-related information from the ventral striatum and uses this information to predict 

and maximize positive outcomes (Tricomi and DePasque, 2016; Yin et al., 2005). The dorsal 

striatum is part of the “associative loop”, which links rewards or punishments with previous actions 

(Tricomi and DePasque, 2016). Furthermore, activation in the caudate due to performance-

related intrinsic feedback is similar to that produced by extrinsic (e.g., monetary) rewards or 

punishments (Tricomi and DePasque, 2016). Tricomi et al. (2006) proposed that the caudate 
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facilitates feedback-based learning by identifying and assigning value to correct and incorrect 

responses (Tricomi et al., 2006). The ventral caudate has also been associated with short-term 

reward and behavioral learning through prediction error (Haruno et al., 2004). Furthermore, the 

stimulus-action-reward association was found to be located in the anterior part of the putamen 

(Haruno and Kawato, 2006). These fMRI findings regarding a more precise anatomical definition 

of the ventral striatum in reward processing are consistent with our results. We also observed that 

the anterior part of the ventral pallidum (Fig. 1A), another major basal ganglia region, was 

positively associated with feedback scores during neurofeedback training. Studies indicate that 

the ventral pallidum codes several aspects of reward, such as information about prediction error, 

valence, and surprise (Schultz, 2016; Tachibana and Hikosaka, 2012). Furthermore, we observed 

a positive association between feedback scores and activity in the rostral anterior cingulate cortex. 

The present findings are consistent with previous research indicating that the rostral anterior 

cingulate cortex is influenced by a positive discrepancy between actual and anticipated feedback, 

and that this region plays a pivotal role in evaluating salient feedback and shaping optimal learning 

strategies (Amiez et al., 2012). 

Our meta-analytic association analysis suggests that the results of Model 1 capture not only 

feedback processing, but also other higher-order cognitive processes involved in neurofeedback 

training (Table 4). Highly ranked meta-analytic terms – that can be summarized broadly as 

cognitive regulation, strategic thinking, motivational systems, decision-making, retrieval 

processes, and associative learning – indicate that the resulting whole-brain map may also relate 

to the process of identifying and optimizing mental states or strategies that yield high feedback 

scores. These processes are typically associated with cortical rather than subcortical activations. 

Indeed, we observed a positive association between activity and feedback scores during 

neurofeedback training in key regions of the default mode network (Andrews-Hanna et al., 2014): 

mPFC, posterior cingulate cortex, and left angular gyrus (Fig. 1A). This large-scale brain system, 

which is commonly associated with deactivation in response to stimuli demanding externally-

directed attention (Fox et al., 2005), conversely shows activation when internally-directed 

attention is induced (Gusnard et al., 2001; Harrison et al., 2008; McDonald et al., 2017; Pamplona 

et al., 2020; Spreng, 2012). Previous findings support that the presentation of feedback during 

neurofeedback training induces the involvement of some regions of the default mode network 

(Shibata et al., 2019) or even the whole network (Radua et al., 2018). Interestingly, our results 

show that the more positive the performance-related feedback, the greater the activity in the 

default mode network. This finding indicates that positive rewards resulting from successful self-

regulation during training may elicit higher levels of internally-focused attention, potentially related 
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to the evaluative aspects of the strategy employed. Alternatively, or possibly in conjunction with 

this, negative feedback may prompt an active, goal-directed control process that alters the self-

regulation strategy, drawing on higher-order cognitive processes and suppressing the default 

mode network. The process of revisiting, evaluating, and selecting self-regulatory strategies 

essentially uses internally-focused attention (Kam and Handy, 2013). An internal evaluation of 

the self-regulatory strategy is presumably necessary to maximize performance in subsequent 

trials and thus optimize reward. The association between default mode network activity and 

feedback scores may also support the reinforcement learning theory in neurofeedback: higher 

rewards elicit a higher level of internal appraisal, which in turn may be beneficial to drive learning 

over training. Methodologically, our findings also suggest that caution should be taken when 

designing neurofeedback experiments that target voluntary deactivation of the default mode 

network (or the other regions resulting from Model 1) using continuous feedback. While down-

regulation of this brain system is intended, positive feedback generated by successful regulation 

could, at least partially, elicit positive responses and thus operate in the opposite direction as 

intended. Therefore, this feedback presentation interference favors the use of intermittent over 

continuous feedback, depending on the target region.  

Associations in other cortical regions evidencing higher-order cognitive processes during 

neurofeedback training were observed. Our results show that activity in cortical regions, such as 

the bilateral inferior frontal gyrus, was positively associated with feedback scores during 

neurofeedback training (Fig. 1A). These findings are consistent with previous studies on the 

neural mechanisms of reward (Duijvenvoorde et al., 2008; Radua et al., 2018) and strategy 

execution during intermittent neurofeedback (Dewiputri et al., 2021). Involvement of the inferior 

frontal cortex may reflect the semantic conceptualization of abstract (nonverbal) information 

(Hoffman et al., 2015) or the selection of competing executed strategies retrieved from semantic 

memory during feedback presentation (Thompson-Schill et al., 1997). Reward-related activation 

in the visual cortex has been previously reported and interpreted as enhanced visual processing 

of stimuli (Drueke et al., 2015). We also observed that the cerebellum was positively associated 

with feedback scores. While relatively little is known about cerebellar activations and feedback 

processing, activation in the right cerebellum has previously been associated with positive 

(compared to negative) feedback (Marco-Pallarés et al., 2007). A recent animal study also 

showed that the cerebellum sends excitatory projections to reward-encoding regions (Carta et al., 

2019). Finally, we found that feedback scores were positively associated with activity in the left 

superior parietal lobule (Fig. 1A). This region has been implicated in top-down attentional control 

processes (Corbetta and Shulman, 2002; Green and McDonald, 2008), goal-directed behavior 
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(Bressler and Menon, 2010), and feedback processing (Crone et al., 2008). Altogether, we 

interpret this region to be responsible for controlling attentional effort in proportion to feedback 

values.  

 

4.2. Model 2 – association between feedback values and connectivity with 

NAcc during feedback blocks 

Model 1 confirmed the NAcc as the key region for feedback processing during neurofeedback 

training. Model 2 investigated regions whose connectivity with the NAcc was modulated by the 

feedback scores. This was done using PPI, which controls for functional connectivity that is 

independent of the task (e.g., in resting-state designs), thus revealing only functional connectivity 

that is modulated by feedback processing (O’Reilly et al., 2012). We confirmed our second 

hypothesis, which stated that, during feedback presentation blocks, performance-related 

feedback scores are positively associated with connectivity within reward-related brain regions. 

More specifically, significant associations were identified between feedback scores and 

connectivity with the NAcc in the substantia nigra, anterior insula, and superior anterior cingulate 

cortex (Fig. 2). It is important to note that this confirmation is based on exploratory analysis, 

specifically ROI analysis, rather than whole-brain analysis. However, a corollary of the definition 

of PPI analysis is that it lacks  power and is prone to a high rate of false negatives (O’Reilly et al., 

2012), primarily due to the similarity between the PPI regressor and both the task and seed time-

courses. (In fact, by applying a more liberal threshold, it is possible to partially reproduce the 

regions identified in the ROI analysis within the whole-brain map; Fig. S1).  

It is known that the substantia nigra connects to the NAcc via the dopaminergic pathway and 

projects to various sites of the basal ganglia (Camara et al., 2009; Rabey and Hefti, 1990; Schultz, 

2016). In fact, reward processing has been associated with activation in the substantia nigra 

(Cohen et al., 2012; Yasuda et al., 2012). The anterior insula and the superior anterior cingulate 

cortex (Fig. 2) constitute the salience network, which facilitates switching between internally- and 

externally-oriented cognitive processes (Menon, 2011; Sridharan et al., 2008). In this regard, our 

meta-analytic association analysis implicates that the group-level whole-brain map of Model 2 

relates to monitoring of prediction error towards task performance. These findings align with a 

recent study reporting that the salience network underlies feedback processing during intermittent 

neurofeedback (Dewiputri et al., 2021). In the context of feedback-related reward, the recruitment 

of the salience network may be necessary to mediate the external reward evaluation (i.e., 
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prediction error monitoring), followed by the internal weighting and judgment of adopted mental 

strategies to optimize feedback (i.e., task performance). The functional coupling between the 

NAcc and the salience network indicates that the switching of mental processes undertaken by 

the salience network may be triggered by basal ganglia activity and the positive association 

indicates that this triggering is stronger for positive feedback.  

 

4.3. Models 3 and 4 – null results for associations between feedback values 

and activation/dlPFC connectivity during self-regulation  

Models 3 and 4 were designed to investigate activation/connectivity during the regulation blocks 

associated with the preceding feedback score. Our aim was to investigate how feedback can 

modulate regulation recalibration, specifically strategy adaptation during self-regulation after 

receiving feedback. We hypothesized that there would be negative associations with feedback 

due to its increased adaptation-demanding nature of negative feedback. We hypothesized that 

this association would be primarily located in the dlPFC. The dlPFC has been suggested to be 

involved in cognitive control during neurofeedback learning (Ninaus et al., 2013; Sitaram et al., 

2017). However, we could not confirm our third and fourth hypotheses, which stated that, during 

regulation blocks, performance-related feedback scores would be associated with 

activity/connectivity with dlPFC in brain regions related to neurofeedback control. Therefore, 

although activation in the dlPFC during self-regulation has been found to be ubiquitous across 

studies (Emmert et al., 2016), its initial-phase activation or functional coupling with other regions 

may not be modulated by feedback scores. Another possibility is that the process we 

hypothesized to take place at the beginning of the regulation blocks may have already been 

initiated when the performance-related feedback was presented. This interpretation would explain 

why we did not observe time-locked responses in the subsequent regulation blocks. In this case, 

recalibration could have already been occurring during the feedback blocks, and the results in 

Models 1 and 2 would reflect not only feedback processing but also adaptation or reinforcement 

of mental strategies. In fact, the results from the meta-analytic association analysis (Table 4) 

suggest that this was in fact the case: results from Models 1 and 2 were not restricted to feedback 

processing but also higher-order cognitive processes related to the identification and refinement 

of regulation strategies during neurofeedback training. 

The regulation recalibration in our study relies on the implicit assumption that participants could 

both learn the regulation task and recalibrate regulation effectively during early training phases, 
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since all feedback blocks and subjects were included in the analysis. Ideally, a more precise 

model would focus exclusively on successful runs (or even blocks) or from participants identified 

as learners. However, defining "learners" or "successful runs" is challenging, as the definition of 

learning success lacks consensus in the literature (Haugg et al., 2020). From an analytical 

perspective, we used available feedback scores across all training, since restricting the analysis 

to successful blocks alone would significantly reduce the amount of data, potentially leading to 

insufficient data for a regression analysis. This generalization may partly explain our negative 

findings for Models 3 and 4, as the inclusion of blocks where regulation based on feedback was 

not achieved, as well as the inclusion of non-learners, may have obscured positive results. In 

addition, factors like noisy feedback signals and low individual learning rates may have further 

hindered the findings. However, our primary focus was to characterize prediction error, where 

discrepancies between expected and actual feedback drive learning. This concept remains 

consistent throughout the learning process, independent of phase or individual success. Future 

research could refine this approach by evaluating feedback-dependent regulation recalibration in 

only successful blocks and learners. 

 

4.4. Limitations of the study 

Firstly, the feedback-modulated connectivity analyses were based on one seed each for Models 

2 and 4. Due to our pre-registered methodology and computationally demanding analysis, we 

restricted our analysis to a priori defined seeds. Future work may investigate other potentially 

representative regions.  

Secondly, it should be noted that feedback appraisal is inherently subjective (Tricomi and 

DePasque, 2016). For example, highly motivated or initially successful individuals might perceive 

a half-full feedback representation as more negative than those who are poorly motivated or 

initially unsuccessful. Similarly, in bidirectional neurofeedback studies, the ability to regulate in 

one direction may be easier than in the other. Therefore, an individual’s perception of success 

may depend on the difficulty of regulating in each direction. To account for such differences, future 

studies may include data on subject-specific motivation levels in their analysis.  

Thirdly, only one out of eight studies included sham feedback; therefore, we could not compare 

sham and veridical feedback and could not extend our results to sham feedback. However, we 
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argue that the neural mechanisms for processing sham feedback should lead to similar results, 

as long as the feedback presentation is not perceived as sham feedback (Ninaus et al., 2013).  

Fourthly, feedback success and failure were evaluated using a one-dimensional scale and cannot 

be dissociated in our study. From a methodological perspective, it would not be reasonable to 

separate failure and success for some datasets of our study (Radua et al., 2018), since the 

feedback representations varied parametrically on the same scale. However, it is conceivable that 

some of the anticipated regions (e.g., in ROI analyses) were not identified as associated with 

feedback due to the modeling strategy of defining success and failure within a single one-

dimensional scale. We argue that studying the neural mechanisms of graded feedback, as 

opposed to binary, is, therefore more informative and ecologically valid (Radua et al., 2018). 

 

5. Conclusion 

Our mega-analysis using data from eight fMRI-neurofeedback experiments revealed that 

feedback processing is primarily associated with activity in subcortical regions (NAcc, putamen, 

caudate, and pallidum) and the cerebellum. Such findings indicate that neurofeedback is 

processed in core regions of the reward system, suggesting that inherent motivational and 

reward/punishment aspects shape neurofeedback learning. The evoked neural responses are 

similar to those elicited by extrinsic or primary rewards, representing the dopaminergic release 

for rewarding feedback. We also observed that activity and connectivity with the NAcc was 

positively associated with feedback scores in several large-scale networks. This involvement is 

likely to represent the internally-directed attention to the strategies adopted and their appraisal for 

the subsequent trials, the switch between attention to internal appraisal and external reward 

modulated by the basal ganglia, and the top-down attention for associating feedback and self-

regulatory performance. As a corollary to the positive association between activity and feedback 

scores, our findings have implications for neurofeedback paradigms that use continuous feedback 

to train down-regulation of the brain regions reported here. Specifically, feedback reward 

associated with successful down-regulation would elicit a positive neural response to down-

regulation effort, i.e., researchers may consider a possible interference between down-regulation 

performance and feedback-related activation. 

Our findings contribute to the understanding of how self-regulatory learning is promoted by 

neurofeedback paradigms. We provide evidence that this learning process occurs through 
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reinforcement learning: positive feedback elicits activity in the reward system, which in turn 

promotes performance improvement over training. These findings may extend to other feedback-

dependent learning paradigms and recalibration of strategies towards a goal (Tricomi and 

DePasque, 2016). In addition, we show that large-scale networks, which allocate and modulate 

attentional resources to both externally-presented feedback and evaluative processing of self-

regulatory strategies, are involved in the learning process of neurofeedback training. Such a 

finding may be more specific to neurofeedback paradigms due to their introspective nature of 

evaluating internal self-regulatory strategies. Overall, our findings highlight the importance of 

feedback as a driving force for learning – from grades on a school exam to complex experimental 

paradigms such as neurofeedback.  
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