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ABSTRACT

Many diseases, such as obesity, have systemic effects 
that impact multiple organ systems throughout the body. 
However, tools for comprehensive, high-resolution 
analysis of disease-associated changes at the whole-
body scale have been lacking. Here, we developed a 
suite of deep learning-based image analysis algorithms 
(MouseMapper) and integrated it with tissue clearing 
and light-sheet microscopy to enable a comprehensive 
analysis of diseases impacting diverse systems across 
the mouse body. This approach enables the quantitative 
analysis of cellular and structural changes across the 
entire mouse body at unprecedented resolution and 
scale, including tracking nerves over several centimeters 
in whole animal bodies. To demonstrate its power, we 
applied MouseMapper to study nervous and immune 
systems in high-fat diet induced obesity. We uncovered 
widespread changes in both immune cell distribution and 
nerve structures, including alterations in the trigeminal 
nerve characterized by a reduced number of nerve 
endings in obese mice. These structural abnormalities 
were associated with functional deficits of whisker 
sensing and proteomic changes in the trigeminal 
ganglion, primarily affecting pathways related to axon 
growth and the complement system. Additionally, we 

found heterogeneity in obesity-induced whole-body 
inflammation across different tissues and organs. 
Our study demonstrates MouseMapper’s capability 
to discover and quantify pathological alterations at the 
whole-body level, offering a powerful approach for 
investigating the systemic impacts of various diseases. 

INTRODUCTION

Many diseases, including lifestyle-induced conditions 
such as obesity, have far-reaching effects that affect 
multiple organ systems throughout the body. These 
systemic effects underscore the interconnected nature 
of body physiology and the need for holistic approaches 
to understanding pathological changes. However, tools 
to study cellular and molecular alterations at the whole-
body scale in interconnected systems have been lacking, 
limiting our ability to understand their broad impacts. 
Advanced tissue clearing methods combined with light-
sheet fluorescence microscopy (LSFM) have enabled 
the visualization of entire mouse bodies and large human 
samples at single-cell resolution1-4. While these methods 
permit imaging entire samples such as whole mouse 
bodies5,6, the lack of advanced image analysis tools to 
quantify cellular and elongated structures such as nerves 
on a whole-body scale has been a major bottleneck for 
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Figure 1: Direct visualization of nerves and macrophages in obesity on the whole-
body scale. 

a, Workflow to study obesity-induced changes on the whole-body scale. b-c, Representative 3D reconstructions of vDISCO cleared 
and imaged chow and HFD-fed mice showing b, UCHL1-EGFP+ peripheral nerves  and c, CD68-EGFP+ immune cells (n=3/group).
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discovering altered tissue regions in whole bodies. Tools 
for detecting structural and anatomical changes across 
scales would also allow selecting regions for further 
molecular characterization to reveal the mechanisms 
governing the systemic effects of diseases7.

Obesity is associated with chronic low-grade inflammation 
and a plethora of metabolic dysfunctions such as insulin 
resistance, impaired glucose tolerance, or hypertension. 
It increases the risk of developing other comorbidities, 
including type 2 diabetes, peripheral neuropathies, 
cardiovascular diseases, stroke and certain types of 
cancers8,9. The connection of obesity to a wide range 
of diseases underscores the systemic effects that 
large accumulations of body fat can have on overall 
health. Recognizing obesity as a systemic challenge 
emphasizes the need for holistic characterizations of 
underlying structural and cellular changes that occur with 
excess body fat. 
To this end, here, we developed MouseMapper, an 
ensemble of deep learning methods to segment and 
analyze whole body images of the nervous and immune 
systems and select regions of interest for subsequent 
molecular analysis (Fig. 1a). MouseMapper has three 
modules for 1) the segmentation of peripheral nerves, 2) 
the segmentation of CD68+ immune cells, and 3) mapping 
of segmented structures to organs and tissues across 
entire mouse bodies. The combination of these models 
enabled us to study biological structures in their complete 
spatial and anatomical context. Using MouseMapper, 
we identified structural alterations in diverse properties 
of the nerve and immune cell networks with high 
spatial resolution. Among others, we discovered axonal 
alterations of trigeminal nerve innervating whiskers in 
mice, which were associated with behavioral changes 
and proteomic alterations related to axon degeneration 
and remodeling. Our whole mouse body scans are 
available online for the scientific community interested 
in further exploring HFD-induced changes in the tissues 
and organs of their interest.

RESULTS

Direct visualizations of nerves and immune systems 

in obesity

In this work we aimed to develop a comprehensive 
toolset for studying disease-induced whole-body 
changes, specifically for the study of obesity. To this 
end, we subjected mice that express EGFP under the 
peripheral nerve marker UCHL1/PGP9.5 promoter 
(UCHL1-EGFP mice) or the monocyte/macrophage 
marker CD68 (CD68-EGFP mice) to HFD-feeding for 
16-18 weeks. This led to significantly increased body 
weights compared to chow-fed controls, mainly due to 
increased adipose tissue, while lean mass remained 
similar (Suppl. Fig. 1a-b). HFD feeding was associated 
with impaired insulin response, demonstrating successful 
induction of metabolic dysfunction in the reporter mice 
(Suppl. Fig. 1c-d). vDISCO clearing and light-sheet 

imaging of transparent mouse bodies enabled whole-
body visualization of the peripheral nervous system (Fig. 

1b, Suppl. Video 1) and CD68-EGFP+ immune cells 
(Fig. 1c, Suppl. Video 2) in 3D not only in lean mice 
but also in large obese mouse bodies. For example, in 
UCHL1-EGFP mice we could clearly trace nerve bundles 
over lengths of several centimeters, including their paths 
from the dorsal root ganglia (DRG) into the subcutaneous 
adipose tissue (ScAT) depot (Fig. 1b). UCHL1-EGFP+ 
nerves were also visible in internal organs such as heart, 
liver, spleen, kidneys as well as in brown fat (Suppl. 

Fig. 1e-k). In obese CD68-EGFP mice, an increase in 
CD68-EGFP+ cell infiltration was apparent throughout 
the mouse body compared to chow fed controls, with 
most prominent accumulations in the liver and visceral 
AT (ViscAT) including epididymal, mesenteric, perirenal 
and cardiac ectopic adipose tissue (Fig. 1c, Suppl. Fig. 

2a, Suppl. Fig. 3, Suppl. Video 3-4). 

Deep learning ensemble enables whole-body 

analysis 

For an unbiased analysis of obesity induced changes in 
whole mouse body images, we developed MouseMapper 
(Fig. 2a), an ensemble of deep learning models that 
compares animals and conditions. The MouseMapper 
ensemble consists of three main modules: 1) the Nerve-
Module that segments nerves in the entire mouse body 
and converts them into graphs, facilitating comprehensive 
mapping and quantitative analysis of nerve characteristics; 
2) the Immune-Module that segments immune cells and 
quantifies their distributions; and 3) the Tissue-Module 
that maps organs and tissues to make quantitative data 
comparable between conditions and animals and to 
facilitate biological interpretation. The combination of 
these modules enables a comprehensive description of 
structural changes in nerves and immune cell distribution 
across the entire body driven by obesity (Fig. 2a). 

Our models were trained in a supervised fashion, with 
ground truth data being generated using a 3D virtual 
reality (VR) annotation pipeline10. For the Nerve-
Module, we annotated nerves in VR (35 sub-volumes 
with 300x300x300 voxels and 7 sub-volumes with 
approximately 1000x1000x1000 voxels) from UCHL1-
EGFP mouse scans (Fig. 2b). We used those patches 
for training and testing multiple deep leaning models 
(see Methods). Among the networks tested, the 3D 
UNet showed the best segmentation performance with a 
volumetric dice of 0.7913 ± 0.1423 (Fig. 2c, Suppl. Table 

1) and was used for our nerve segmentation module. 

To develop the Immune-Module, we sampled and VR-
annotated CD68-EGFP+ cells in five 256x256x256 
voxel patches from CD68-EGFP whole mouse scans, 
representing > 500 contrast-positive cells in adipose 
tissue and muscle (Suppl. Fig. 2b). After training and 
testing, we found the 3D UNet-based model achieved 
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Figure 2: Development of an ensemble of deep learning methods for automated 
segmentation of nerves,  immune cells, organs and tissues. 
a, Workflow: Mice that underwent vDISCO clearing, light-sheet imaging and 3D reconstruction are analyzed using MouseMapper. 
MouseMapper consists of  three modules: the Nerve-Module for deep learning based nerve segmentation, the Immune-Module for  
deep learning based immune cell detection and the Tissue-Module for automated organ and tissue segmentation. b, To train the 
Nerve-Module, nerves were annotated using virtual reality (VR). c, 3D qualitative evaluation of the network performance for the 
segmentation of nerves based on volumetric dice. Areas that overlap with reference annotations (TP) are masked in green, areas 
with no overlap in reference annotations (FP) are masked in red. Undetected reference annotation areas (FN) are marked in blue. 
TP, true positive; FP, false positive; FN, false negative. d, The Tissue-Module to segment organs and tissues uses the raw image 
scan and segments organs (Organ Map) and tissues (Tissue Map), which can be combined to generate a whole mouse map. 
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superior performance compared to other deep learning 
networks (Suppl. Table 2, Suppl. Fig. 2c). In addition, 
our network was able to segment CD68-EGFP+ cells in 
other tissues, which were not part of the initial training, 
including liver and gut (Suppl. Table 3) indicating zero-
shot inference abilities (transferability to unseen tissue of 
our model).

Next, we engineered the deep learning-based Tissue-
Module (Fig. 2d, Suppl. Fig. 4a) that allows mapping 
segmented structures (e.g., nerves and immune 
cells here) to organs and tissues, enabling a nuanced 
interpretation of structural or cellular changes across 
conditions.  To enable efficient organ mapping in the 
Tissue-Module, given that cell-level accuracy is of lower 
priority, we down-sampled images of autofluorescence 
and Propidium iodide (PI) (Suppl. Fig. 4a). This enabled 
the processing of larger volumes by the neural network 
allowing it to learn shape information while minimizing 
training time, inference time, and memory requirements. 
To generate data for training and testing the models, 
we annotated 20 organs (Suppl. Table 4) in each of 
10 whole-body mouse scans using VR. We used the 
annotations from six animals to train multiple neural 
networks and tested their performance on the other four 
animals. The 3D UNet architecture implemented in the 
Tissue-Module again performed best for comprehensive 
organ segmentation (Suppl. Table 4). 
While working with down-sampled data provides highly 
accurate organ segmentation, adipose and muscle 
tissue segmentation relies on detecting differences in 
tissue texture, which is not well preserved in the down-
sampled images and requires the use of full resolution 
data. Therefore, we created a separate VR-annotated 
dataset containing representative patches from muscle, 
ViscAT, ScAT and brown adipose tissue in full resolution. 
After completing the training, our network which uses 
the 3D UNet as the basis showed the best performance 
compared to other neural networks (Suppl. Table 5). By 
integrating our organ and tissue models, our final Tissue-
Module generates a comprehensive anatomical map of 
the mouse (Fig. 2d, Suppl. Fig. 4b-f, Suppl. Video 5-6). 
Indeed, the volume extraction of segmented tissue and 
organs revealed expected increases in adipose tissue 
(including ViscAT and ScAT) and liver volumes in HFD-
fed mice compared to chow-fed mice (Suppl. Fig. 4g-j, 

Suppl. Table 6). In addition, we found that total lymph 
node mass was increased upon HFD-feeding. Thus, this 
map serves as a unified reference framework, enabling 
precise localization of quantitative findings from cellular 
and anatomical analyses across different body regions. 

In summary, MouseMapper represents a robust and 
automated AI-driven pipeline to detect and quantify 
system-wide changes in nerve structures or immune cell 
distributions in any size mouse body.

AI-based segmentation identifies structural changes 
associated with behavioral defects in facial nerves 

in obesity 

Obesity is associated with various neuronal malfunctions, 
including peripheral neuropathies, yet a comprehensive 
characterization of obesity-induced changes in peripheral 
nerves on the whole-body scale is lacking. Toward this 
goal, we applied MouseMapper with the Nerve-Module 
and Tissue-Module to whole-body scans of normal 
and obese UCHL1-EGFP mice (Fig. 1b). Thereby, 
we generated whole-body segmentation maps of the 
peripheral nervous system in both normal and obese 
mice (Fig. 3a). By quantifying the segmented nerve 
voxels in the whole body and mapping them to specific 
tissues using the Tissue-Module, we found a significant 
increase in nerves in adipose tissue, suggesting a 
concomitant increase of innervation along with increased 
adipose tissue mass due to HFD-feeding (Supp. Fig. 

5a). In line, nerve density in adipose tissue was similar 
between the groups (Fig. 3b). Notably, we observed a 
significant decrease in nerves located in the head (Fig. 

3b). Most prominently, we observed structural alterations 
in the infraorbital nerves that innervate the whisker pad 
upon HFD-induced obesity (Fig. 3c-d, Suppl. Fig. 5d-

f). The infraorbital nerve, a key branch of the maxillary 
nerve and part of the facial trigeminal nerve, is essential 
for sensory perception, facilitating whisker-mediated 
tactile exploration and environmental sensing. To quantify 
the spatial structure of these nerves in more detail, we 
extracted graphs from the binary nerve segmentation, 
measuring nerve thickness and the number of nerve 
endings, but also quantifying the complexity of the nerve 
network by determining the number and length of edges 
and the number of nodes/vertices11. Here, nodes/vertices 
represent the points of intersection or branching within 
the nerve network and edges the connections between 
these points along the nerve pathways. Quantification 
of nerve segmentation graphs showed that the number 
of nerve endings, edges and vertices were reduced by 
67.1%, 69.5% and 16.8%, respectively in HFD-fed obese 
mice (Fig. 3e-g). Notably, the thickness of the infraorbital 
nerve was similar between the chow and HFD-fed 
mice (Fig. 3h), indicating defects in axonal extensions 
close to the external skin surface rather than a general 
degeneration of the nerve. 

To assess the functional implications of these structural 
changes, we performed whisker stimulation tests and 
found that obese mice exhibited a diminished response 
to whisker stimulation (Fig. 4a). This finding suggests 
that obesity-induced structural changes in facial nerves 
may contribute to sensory dysfunction, highlighting the 
potential importance of our observations.
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Figure 3: Whole-body nerve segmentation reveal structural changes in the infraor-
bital nerve in obesity.
 a, Representative whole-body nerve segmentation in chow and HFD-fed mice. b-c, Quantification of AI-segmented nerve densities  
in chow and HFD fed UCHL1-EGFP mice in whole bodies and indicated areas. For the quantification of the nerve density in the 
head, we masked out the brain for the analysis. n=3/group. c, Schematic of a mouse head showing the trigeminal nerve with its 
three branches arising from the trigeminal ganglion. d, Representative heads of chow and HFD-fed mice showing UCHL1-EGFP+ 
nerves and AI-based segmentation of these nerves. Structural changes in the infraorbital nerve (part of the maxillary branch of 
the trigeminal nerve) are indicated with the orange arrow. e-h, Quantification of  characteristics of the infraorbital nerve after 
graph extractions (n= 6 infraorbital nerves from 3 chow mice, and 5 infraorbital nerves from 3 HFD-fed mice). *p<0.05, **p<0.01. 
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Structural changes in infraorbital nerve coincide 

with proteomic alterations in the trigeminal ganglion 

By developing and applying MouseMapper, we 
identified and characterized the specification of neuronal 
abnormalities, particularly in the infraorbital nerve 
projections of obese mice. Next, to investigate the 
molecular mechanisms underlying these changes in 
the infraorbital nerve, we performed spatial proteomics 
profiling of the trigeminal ganglia, the origin of the 

infraorbital nerve and the location of their neuronal cell 
bodies. We dissected the trigeminal ganglia of chow 
and HFD-fed mice that we imaged above, collected 
18G-needle punch-sized samples, and analyzed them 
using the mass spectrometry-based proteomics (Fig. 

4b, Suppl. Fig. 6a). We identified more than 6.000 
total proteins in each sample (Suppl. Fig. 6b). Among 
them, 230 were differentially regulated (67 up-regulated, 
163 down-regulated, Fig. 4c) in the trigeminal ganglia 

Figure 4: Structural changes in the infraorbital nerve associate with changes in 
the TG proteome.
a, Functional assessment of the response after whisker stimulation (n≥6/group, **p< 0.01). b, Samples for spatial proteomics 
profiling were extracted from the trigeminal ganglions of UCHL1-EGFP mice. c, Volcano plot showing differentially regulated 
proteins in chow vs HFD-fed mice. d, Pathway analysis showing differentially regulated pathways. Gray bar on the left side of the 
plot represents the log10 of p-value of each pathway whereas the right side of the plot depicts the number of proteins significantly 
different in each pathway, red representing the number of up-regulated proteins and blue representing the number of down-
regulated proteins. e, Chord plot showing a subset of differentially regulated pathways and the corresponding proteins.
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(legend on next page)
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between chow and HFD-fed mice.
Pathway analysis revealed multiple differentially 
regulated pathways in obese mice, including “Regulation 
of actin cytoskeleton,” “Rho GTPase effectors,” and 
“Axon guidance” (Fig. 4d,e, Suppl. Fig. 6c). This could 
indicate disruptions in actin dynamics, which is essential 
for maintaining axonal structure and function. In addition, 
significantly regulated pathways included “Complement 
and coagulation cascade”, “Erb-Signalling” and 
“Sphingolipid signaling” pathways that are involved in 
inflammation and cellular stress response, among other 
processes, which also fits to the dysregulation of many 
general and innate immune pathways (Fig. 4d,e, Suppl. 

Fig. 6c).
Among down-regulated proteins, we identified multiple 
members of the serpin serine protease inhibitor (SERPIN) 
A family (Fig. 4e). SERPINA1 has anti-inflammatory 
properties, especially linked to neutrophils (by inhibiting 
neutrophil elastase) and is known to protect from tissue 
damage12. SERPINA3 is an inhibitor of cathepsin G, 
another protease important in neutrophil related immune 
responses and implicated in inflammation related tissue 
damage13. Downregulation of SERPINA proteins could 
lead to a reduced ability to control inflammation-induced 
tissue damage and degradation of structural proteins 
essential for nerve integrity. We used western blotting 
for some differentially regulated proteins to validate 
our proteomic findings in protein lysates of trigeminal 
ganglion tissue. Thereby, we could confirm the decreased 
expression of SERPINA1, ERK activation, and increased 
expression of the GTPase SEPTIN7 (Suppl. Fig. 6d and 

e).
Together, spatial molecular profiling of the trigeminal 
ganglion in HFD-fed mice, revealed by our MouseMapper 
deep learning ensemble, showed significant proteomic 
alterations. Among these, we identified dysregulated 
pathways related to axon growth and remodeling, and 
inflammation, which could explain structural changes in 
the infraorbital nerves.

Revealing whole-body wide inflammation in obesity  
Chronic inflammation is a major hallmark of obesity, 
intricately linked to the development of various chronic 
diseases throughout the body. The systemic nature of 
obesity-induced inflammation underscores the critical 
importance of understanding which tissues and organs 
are affected in obese animals and to what degree. To 
study the spatial context of inflammation in obesity, we 
applied MouseMapper using the Immune-Module and 
Tissue-Module to whole-body scans of lean and obese 

CD68-EGFP mice (Fig. 5a-b). 

The CD68-EGFP+ immune cells were visible as round, 
cluster-like structures in tissues such as adipose tissue, 
liver, skeletal muscle and the peritoneum (Suppl. Fig. 

2a, Suppl. Fig. 3, Suppl. Video 4). The size of immune 
cell clusters can indicate the inflammatory state within 
tissues, with larger clusters correlating with a more 
activated and pro-inflammatory state14. Thus, we 
generated inflammation maps of CD68-EGFP+ immune 
cells and grouped them into three different sizes of 
clusters: small clusters with few cells, medium sized with 
tens of immune cells and large ones with hundreds of 
immune cells (Fig. 5c-d, Suppl. Video 7). Using these 
categories, we analyzed the density of the three different 
classes of CD68-EGFP+ clusters (Fig. 5e) and found 
notable decreases in small cluster portions within the 
liver, ViscAT and stomach upon HFD-feeding, whereas 
this category remained unchanged in ScAT, peritoneum, 
and muscle (Fig. 5e). Conversely, the portion of medium-
sized clusters showed an increase specifically in the 
liver, ViscAT and stomach highlighting a shift from small 
to medium clusters in these tissues. Additionally, we 
observed significant increases in large clusters in ScAT, 
ViscAT, peritoneum, colon and stomach signifying an 
intensification of inflammatory activity and immune cell 
involvement in these tissues in obesity (Fig. 5e). 

Direct visualization of CD68-EGFP+ cells revealed 
widespread increases throughout the body following 
HFD-induced obesity. Using the Tissue-Module combined 
with the AI-based macrophage detection of the Immune-
Module, we quantified shifts in CD68+ cluster sizes, 
confirming elevated inflammatory states across tissues 
in response to a HFD-induced obesity and providing 
detailed spatial information.

DISCUSSION

In In this study, we developed MouseMapper, a deep 
learning ensemble for comprehensive end-to-end analysis 
of whole-body systems. Our approach enables 3D organ 
and tissue mapping of structural changes to study 
disease-induced changes in biological systems down 
to cellular resolutions at the whole-body scale without 
pre-defining specific tissue regions. MouseMapper 
can faithfully segment elongated nerve structures over 
centimeters in whole mouse bodies. It can also identify 
and analyze immune cells from single cells to clusters of 
hundreds of cells in 3D.

a, Representative images of CD68-EGFP mice (300 µm Z-projection) with AI-based segmentation of CD68-EGFP signal of 
medium and large sized clusteres overlaid in red (n=3/group). b, Z-projection (300 µm) showing ViscAT with CD68-EGFP (upper 
panel) and AI-based segmentation (lower panel) of an obese mouse. c, Segmented cells were grouped into three size clusters: 
small (blue), medium (green), large (red). d, Whole-body CD68-EGFP segmentation results in representative chow and HFD-
fed mice showing small, medium and large cluster densities. e, Quantification of small, medium and large cluster proportions in 
indicated organs and tissues. n=3/group, *p<0.05, **p<0.01.

Figure 5: Whole-body wide inflammation in obesity.
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A key strength of MouseMapper lies in its powerful deep 
learning ensemble, trained on datasets coming from 
cell-level imaging of whole mouse bodies. This includes 
nerves traced over long distances using virtual reality in 
entire mammalian bodies at high resolution - a dataset 
that presents unique challenges due to the diverse tissue 
backgrounds encountered across the body, from muscle 
to bones to various organs. This unique training data 
enabled us to train 3D UNet models capable of faithfully 
segmenting complex structures across heterogeneous 
environments. MouseMapper is built as a versatile, multi-
modular system that is easily adaptable to other tissue 
structures such as blood vessels, lymph vessels, or 
different types of cellular clusters. Notably, our Tissue-
Module provides crucial anatomical context that can 
localize identified changes within specific organs and 
tissues and can serve as a common reference framework 
for other whole-body data. To promote further research 
and development in this field, we are making our data 
and algorithms publicly available.

Our key biological findings include structural changes 
in the infraorbital nerve of obese mice, characterized 
by reduced axonal extensions and altered network 
complexity. The infraorbital nerve belongs to the facial 
trigeminal nerve, which consists of three branches 
that convey sensory signals from the face through the 
trigeminal ganglion15. Our data reveal a previously 
unrecognized impact of obesity on facial nerve structure. 
The reductions in nerve endings and network complexity, 
suggest a potential mechanism for sensory alterations 
in obesity, including the reduced sensitivity to whisker 
stimulation observed by us and the aberrant sensory and 
pain processing previously observed in obese mice16-

18. The proteomic changes identified in the trigeminal 
ganglion offer insights into the molecular underpinnings 
of these neuronal changes. In this regard, the observed 
changes in pathways related to cytoskeletal regulation 
and axon guidance in the trigeminal ganglion could 
potentially explain the observed changes in infraorbital 
nerve structure, as both are essential for structural 
plasticity19,20. The proteomic changes related to 
inflammation underscore the link between obesity 
and neuroinflammation21. These insights could pave 
the way for novel therapeutic approaches targeting 
neuroinflammation and cytoskeletal integrity in obesity 
and related conditions. Notably, these changes likely 
reflect a combination of neuronal and non-neuronal 
responses, as neurons comprise only a fraction of cells 
in the ganglia22.  
Our data using CD68-EGFP mice support previous 
findings that obesity is associated with chronic 
inflammation23, as we observed increased expression of 
CD68-EGFP+ cells throughout the mouse. In line with 
previous reports, our data confirm a more pronounced 
accumulation of large CD68-EGFP+ clusters in visceral 
fat compared to subcutaneous fat24. Our whole-body 

mapping approach adds a comprehensive spatial view of 
obesity-induced inflammation, revealing tissue-specific 
patterns of macrophage accumulations. 

We made the whole mouse body maps available online, 
where scientists can easily scroll through large datasets 
of HFD versus chow-fed mice to investigate neuronal 
and immune cell alterations (Chow-Nerve, HFD-Nerve, 
Chow-Inflammation, HFD-Inflammation). Researchers 
can quickly identify obesity-induced changes in 
their tissues/organs of interest and explore potential 
connections with other body systems. These online maps 
can save time and resources and provide a broader 
context for understanding localized changes within the 
global landscape of obesity-induced alterations.

In conclusion, we developed MouseMapper, an 
ensemble of deep learning tools for characterizing 
structural changes in whole body systems in response to 
diseases or other perturbations. We revealed alterations 
in axons innervating the face in obesity and showed 
global inflammation associated with regional clustering 
of immune cells in various areas. While we applied 
MouseMapper to obesity here, the pipeline can be easily 
adapted to other complex diseases and other body-wide 
systems such as the lymphatic and vascular system. In 
combination with spatial proteomics analysis of hotspots 
of structural alterations, MouseMapper facilitates the 
identification of potential therapeutic targets to reverse 
or prevent pathological changes. MouseMapper thus 
provides a blueprint for the holistic analysis of complex 
biological phenomena in 3D.

MATERIAL AND METHODS

Animals

8-week-old male UCHL1-EGFP and CD68–EGFP mice 
on a C57BL/6J background were fed either a chow diet 
or a high-fat diet (60% fat, #D12492i from Research Diets 
Inc.) for 16-18 weeks ad libitum. Mice were maintained 
on a 12-h light–dark cycle. Body composition was 
determined using an EchoMRI-100H system (EchoMRI, 
Houston, TX, USA). For insulin tolerance tests (ITTs), 
mice were fasted for 6h and i.p. injected with 0.75 U/kg 
insulin. Blood glucose was measured from the tail vein 
at indicated time points using glucose test stripes. Mice 
were sacrificed following deep anesthesia with a mix of 
ketamine/xylazine, followed by intracardiac perfusion with 
heparinized PBS (10 U/ml heparin) and by a perfusion with 
4% paraformaldehyde (PFA). Mice were post-fixed over-
night in 4% PFA and subsequently washed five times with 
PBS shaking (300 rpm) at room temperature for 1h for 
each wash step. Animal experimentation was performed 
in accordance with the European Union directives and 
the German animal welfare act (Tierschutzgesetz). They 
have been approved by the state ethics committee and 
the government of Upper Bavaria (ROB-55.2-2532.
Vet_02-21-133, ROB-55.2-2532.Vet_02-16-117, ROB-
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Annotation of data in virtual reality for ground truth 

data generation

Annotations of ground-truth data was performed in 
virtual reality10 using the syGlass software as previously 
described.
VR-annotation of peripheral nerves was conducted on 
35  300x300x300 voxel sub volumes from UCHL1-EGFP 
mouse scans. Additionally, seven complete trigeminal 
nerve images of varying sizes were cropped from the 
UCHL1 channel and included in the annotation. VR-
annotation for CD68-EGFP+ cells was performed in 
five 256x256x256 voxel patches from CD68-EGFP 
whole mouse scans, selected from representative 
regions of interest. Annotations were based on both the 
autofluorescence and CD68-EGFP signal channels. 
These patches were further cropped down into 40 
128x128x128 voxels patches, that were used to train 3D 
networks for the segmentation of the markers of interest.
For the development of the Tissue-Module, we annotated 
20 organs of interest in ten downsampled (10-fold) mouse 
scans (six from CD68-EGFP and four from UCHL1 mice, 
with five chow-fed and five HFD-fed mice from each line) 
using the autofluorescence and propidium iodide (PI) 
channels with the syGlass software.  This approach was 
sufficient to distinguish all organs of interest. To generate 
reference annotations for the tissue segmentation, we 
annotated an initial dataset of three 1024x1024x1024 
voxels sized patches in full resolution, containing 
500 million voxels of fat (visceral, subcutaneous and 
brown), 145 million voxels of muscle, 16 million voxels 
of bone tissue, and 8 million voxels of bone marrow. We 
iteratively increase the size of our annotated dataset 
through inference on un-annotated patches, and manual 
correction of the wrongly segmented areas. 

Deep learning-based segmentation for peripheral 

nerves (Nerve-Module)

To train the peripheral nerve segmentation network, we 
divided the 35 annotated patches from various parts 
throughout the mouse body into 28 for training and seven 
for testing. Similarly, the seven trigeminal nerve images 
were split into five for training and two for testing. To fit 
the gpu memory constraints, the five training samples of 
the trigeminal nerve were further cropped into patches 
matching the size of the patches from other parts of the 
mouse body. Consequently, a total of 565  300x300x300 
voxel patches were obtained for network training. For 
model evaluation, we used seven testing patches from 
various parts throughout the mouse body along with the 
remaining two trigeminal nerve samples. 
Initially, we implemented and trained the following 
baseline architectures: Attention UNET, NNFormer, 
SwinUNETR, UNETR, VNet, and 3D UNet. We trained 
these with a patch size of 128x128x128 voxels, initial 
learning rate of 1e-3, SGD Optimizer, learning rate decay 
and Binary Cross Entropy + DICE loss for 1000 epochs. 

55.2-2532.Vet_02-17-49).

Whisker stimulation test
The whisker test paradigm was adapted from the 
methods described previously25-28 and the Neuroscore 
test29. To avoid introducing confounding variables, mice 
were kept in their original cages. A q-tip with a wooden 
end was used to administer the test. Initially, the q-tip was 
presented in front of the mouse’s head and allowed to 
touch it. This was followed by four consecutive  strokes, 
first to the whiskers on the right side and then on the left 
side of the face. The response to the q-tip stimulation 
was evaluated using a modified whisker score test. A 
normal behavioral response to the stimulation, such 
as turning the head towards or away from the q-tip or 
initiating grooming, was assigned a score of one. A lack 
of response to the stimulation was assigned a score of 
zero. Both sides of the face were stimulated four times, 
and the scores were recorded by a blinded evaluator. 
The maximum whisker score was 8, in which mice would 
have responded to all stimuli. The total score was then 
averaged for both sides. High scores (3-4) indicated 
normal responses to the stimulation, while low scores (0-
2) suggested a lack of reaction, consistent with sensory 
deficits.

vDISCO nanobody labeling and clearing

vDISCO was performed as previously described2,30 in 
combination with GFP-Nanobooster labeling (Atto647N-
conjugated anti-GFP nanobooster Chromotek Cat.# 
gba647n-100;RRID:AB_2629215) for 6 days and passive 
labeling for 3 days. Mice underwent DISCO clearing31 
using a Tetrahydrofuran (THF) /H20 series (50% THF, 
70% THF x2, 90%THF, 100%THF) for 24h per step 
followed by an incubation in dichloromethane (DCM) 
for 6h. Tissues were incubated in benzyl alcohol/benzyl 
benzoate (BABB, 1:2 v/v) until tissue transparency was 
reached (>48 h).

Light sheet fluorescence microscopy
Light-sheet imaging for whole mouse bodies was 
conducted using a dipping 1.1× objective lens (LaVision 
BioTec) on an Ultramicroscope Blaze (LaVision BioTec). 
Tiling scans were acquired with 35% overlap, 100% 
sheet-width 0.035 NA, 100ms exposure and a 6 µm 
Z-step size. The images were taken in 16bit depth and 
at a nominal resolution of 5.9 μm/voxel on the XY axes. 
In z-dimension we took images in 6μm steps using two-
sided illumination. Stitching of tile scans was carried out 
using Fiji’s stitching plugin with the “Stitch Sequence of 
Grids of Images” feature32 and custom Python scripts.

3D reconstruction

Dorsal and ventral scans were fused as previously 
described2 using Arivis and exported whole-body TIFF 
stacks were used for image analysis.
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Upon inspecting the training curves, we observed that 
the models were almost but not fully converged, and, due 
to its superior performance, we chose to further train the 
3D UNet Architecture.
The final model for peripheral nerve segmentation was 
trained using the nnUNet pipeline, with a patch size of 
128x128x128 voxels, an initial learning rate of 1e-3 with 
learning rate decay, and the SDG optimizer for 2000 
epochs. Additionally, we incorporated the clDICE loss 
function33 into the baseline by adding it with a weight of 
0.5 to the original loss. The clDICE loss function aids 
the model in capturing the topology and connectivity of 
nerves, leading to more complete nerve segmentation 
performance. 
Before inputting the patches into the network for 
training or testing, we performed sample-wise percentile 
normalization. Specifically, for patches from the whole 
body and every trigeminal sample, we computed the 
0.5th percentile and 99.5th percentile of all voxel intensity 
values to set the minimum and maximum thresholds. 
Intensity values below the lower percentile or above the 
upper percentile were clipped to the minimum or maximum 
thresholds. Finally, we applied min-max normalization. 
This normalization step enhanced patch contrast by 
stretching the intensity range between the chosen 
percentiles and removing outliers, thereby emphasizing 
nerve regions to improve model performance.

Deep learning-based segmentation of CD68-EGFP+ 

cells (Immune-Module)

For training the CD68 segmentation network, we 
implemented the following architectures: 3D UNet34, 
V-NET35, Attention UNET36, NNFormer37 and  UNETR38. 
The networks were trained by using the nnUNet pipeline, 
with a patch size of 128x128x128 voxels, channel-wise 
min-max normalization, initial learning rate of 0.001, 
learning rate decay, SDG optimizer, for 1000 epochs. 
We train using 5-fold cross validation, and evaluate voxel 
DICE, instance DICE39 and Betti Matching scores40. 
Based on two out of the three metrics, we select the 3D 
UNet for carrying out our downstream quantifications. 

Whole-body organ and tissue segmentation (Tissue-

Module)

For the segmentation of internal organs, we used six 
annotated mice (from the CD68-EGFP line) to train 
five different networks: 3D UNet34 , V-NET35, Attention 
UNET36, NNFormer37, Swin UNETR41. All the architectures 
were trained through the nnUNET21 pipeline using 
z-score normalization of each channel, and foreground 
oversampling. The networks were trained with Stochastic 
Gradient Descent (SGD) optimizer, using a batch size 
of 2, patch size of 64x256x128 voxels, initial learning 
rate of 0.01 and learning rate decay, for a total of 1000 
epochs. The resulting networks were evaluated on the 
four UCHL1 mice. During training, we performed 5-fold 
cross validation, and the final predictions were made by 

ensembling the five resulting networks. We report voxel-
wise Dice scores in Supplementary Table 4. We identified 
the 3D UNet as the best performing network architecture, 
with the following properties: 6 downsampling layers, 5 
upsampling layers, 3x3x3 sized convolutional blocks and 
a maximum feature size of 320 in the bottleneck.   
Second, we train a model to segment the soft tissues 
of mice, such as muscle and adipose tissue. We 
iteratively increased the size of our annotated dataset 
through inference on un-annotated patches, and manual 
correction of the wrongly segmented areas. As a result, our 
final networks were trained on a dataset of 387 samples 
containing a total volume of 2 billion voxels of adipose 
tissue, and 2 billion voxels of muscle. We then train on 
these patches the following neural network architectures: 
3D UNet, V-NET, Attention UNET, and UNETR. We 
trained using 5-fold cross-validation, and for evaluation, 
we report and select based on the validation scores of 
the ensembles of the 5 resulting networks (Suppl. Table 
5). The networks were trained with SGD optimizer, using 
a batch size of 2, patch size of 128x128x128 voxels, 
initial learning rate of 0.001, and learning rate decay, for a 
total of 1000 epochs. Again, the convolutional 3D UNET 
performs best among the implemented baselines. 
The final inference pipeline for the Tissue-Module is carried 
out by sequential  inference of our model ensemble for first, 
the organs, and then for the tissues. Specifically, first, the 
autofluorescence and PI channels of the acquired LSFM 
stack are downsampled to a resolution of 59x59x60 um/
voxel, and saved as a 3D Nifti volume. This is then fed 
into the organ segmentation network. The result is a 3D 
volume containing the masks of the 20 organs of interest, 
which can be used downstream for localizing structures 
of interest within organs, or for the quantification of organ 
volumes. Next, the organ masks are upsampled, and a 
“non-organ” mask is calculated, which is applied to the 
original scan. Through this process, we obtain a mask of 
the mouse volume that does not contain internal organs. 
As the size of the resulting data is too large to efficiently 
process, the “non-organ mouse images” are cropped into 
sub-volumes of 500 x 500 x 500 voxels, which are fed 
into the tissue segmentation network. These patches can 
then be reconstructed, resulting in a full-resolution tissue 
map.  Lastly, by combining the organ maps and the tissue 
maps, we obtain a spatial segmentation of major organs 
and tissues in the mouse body.
 
Whole-body inference of CD68-EGFP mice

For inference of CD68-EGFP on the whole-body mouse 
scans, we first cropped the autofluorescence and CD68 
channels of the LSFM scans. For this, we used the same 
patch sizes and distribution as for the tissue segmentation. 
Then, a subset of the resulting sub volumes was 
selected, based on whether these were within the body 
of the mice. These patches were run through the CD68+ 
segmentation network. The resulting binary masks 
were split into components by using the cc3d library29 
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for connected component analysis. Subsequently, each 
individual detected connected component was post-
processed by storing its location, volume, center of mass, 
and shape27. Next, we combined the inference results of 
our ensemble. Based on location of the center of mass, 
we automatically assign each segmented CD68-EGFP+ 
cluster to the internal organs or the segmented tissues, 
with blobs not located in any of these being discarded 
as false positives. We further discard components whose 
shape was elongated (string-like) as false positives, as 
these can often be artifacts, representing high-contrast 
blood vessels or nerves.  Lastly, we grouped the detected 
CD68-EGFP clusters into three discrete categories, 
based on their volume (amount of segmented voxels 
within a component): small (smaller than 50 voxels), 
medium (between 50 and 500 voxels), and large (over 
500 voxels). We chose these categories based on the 
observation that, when considering the total spatial 
volume of all clusters, each of these three categories 
would represent a similar amount (approximately 30%) 
of the total CD68+ segmented volume.  Then, for each 
mouse and for each organ or tissue, we studied the % 
composition of each of these categories, and analyzed 
differences between the Chow and HFD groups. 
While applying the CD68 segmentation network to 
the whole mouse bodies, we observe it displays zero-
shot transfer learning abilities in the limited setting of 
applying the model in inference to certain novel tissues, 
where we observe positive detections. Hence, in order 
to validate any reported changes, we perform a) visual 
analysis of the resulting segmentation, and b) a VR-
based annotation of a representative test patch in the 
tissue of interest. We compare the result of the automatic 
segmentation against the manual annotation in order to 
evaluate the network’s transfer learning abilities. We only 
consider valid quantifications where the network passes 
with a DICE score>65%. 

Whole-body inference of UCHL1-EGFP mice

To apply the nerve segmentation network to whole-
body scans in full resolution efficiently, we adapted the 
sliding window inference method previously used for 
segmentation tasks in medical image (MONAI42) and the 
mouse brain (DELIVR10). Our inference is implemented 
using the highly efficient ZARR file format and DASK 
parallel computing framework, enabling lazy loading and 
multiprocessing for data handling and writing tasks and 
therefore a rapid full body analysis. 
Before inference, we applied percentile normalization 
to each scan, similar to the model training stage. Given 
the significant imbalance between nerve voxels and 
background voxels in whole-body scans, we computed 
the 0.10th percentile and 99.9th percentile of all non-zero 
voxel intensity values to set the minimum and maximum 
thresholds, to effectively enhance the contrast between 
nerves and the background.
After inference, we obtained the whole-body nerve 

segmentation of UCHL1-EGFP mice. We then performed 
connected component analysis to post-process the 
segmentation results, eliminating large false positive 
segments caused by high-intensity regions within the 
mouse body. Subsequently, we quantified the nerve 
voxels and density from three perspectives: the entire 
body, individual tissues, and specific organs. 
To quantify nerves in the entire body, the organ and 
tissue segmentations from the Tissue-Module were 
combined to form a binary mask of major organs and 
tissues in the mouse body. By dilating this binary mask, 
we created a whole-body mask that covers the entire 
mouse body, allowing us to compute the nerve voxels and 
density within. For tissue wise quantification, the tissue 
segmentation from the Tissue-Module was utilized to 
calculate the nerve voxels and density in fat and muscle 
tissues. For quantifying nerves for specific organs, we 
accounted for structures in the immediate vicinity of 
the organs by extending the organ segmentation by a 
15-voxel boundary to calculate the organ wise statistics. 
Notably, to create the head mask, we overlaid the dilated 
brain masked with whole-body mask, resulting in a 
precise mask for quantifying the nerve voxels inside.

Computational load of training and applying 

MouseMapper 
The experiments presented in this work were carried 
out using a cohort of 12 mice (6 HFD feeding, 6 chow). 
Clearing and imaging these mice generated 46700 2D 
z-slices and 12 trillion voxels, occupying 10.35 Terabytes.
To accurately quantify these data, our annotation 
efforts resulted in significantly ample datasets. For the 
Nerve-Module, we manually annotated 72 GB of data. 
While building the Immune-Module, we annotated 350 
MB of data from representative areas in visceral and 
subcutaneous fat, as well as in the peritoneum. The 
organ segmenter of the Tissue Module was trained 
using 10 GB of downsampled organ data, whereas 
the tissue segmenter (for fat, muscle, bone and bone 
marrow) was trained using 46 GB of full-resolution 
tissue annotations, built as a mixture of manual and 
automatic annotations. In order to train the networks 
building our MouseMapper pipeline, as well as to run the 
predictions and quantifications presented in this paper, 
the High Performance Computing cluster of Helmholtz 
Zentrum Munich was used. Thus, the processes could be 
parallelized and carried out more efficiently. We estimate 
that a total of 7250 GPUhours were necessary to execute 
the presented experiments and quantifications.

Graph extraction

Graph extraction was performed as previously 
described11,43. Similarly we extracted the skeletonization, 
depth map and extracted a graph of the resulting 
skeleton. All nodes with degree 2 were pruned from the 
graph, as well as small, isolated sub graphs. Since the 
resulting image data was too large to fit into a reasonable 
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amount of RAM, we separated the whole image into sub 
blocks using dask. Then, we extracted the graphs from 
each sub block and merged them together. We fused all 
nodes together on the border between two blocks where 
the Euclidian distance between nodes was less than a 
given threshold by introducing a new edge between the 
nodes. We quantify the thickness of each node and each 
edge using the depth map, the degree of each node and 
the number of leaf nodes (nodes with degree = 1).

Spatial proteomics sample preparation

For spatial proteomics of trigeminal ganglia of UCHL1-
EGFP mice, 18G needle punches prepared from 
rehydrated trigeminal ganglia and subsequently used 
for proteomics sample preparations as described 
previously7. Briefly, the samples were resuspended in 
6% SDS buffer, heat denatured at 95°C for 45 min at 
600 rpm in a thermoshaker, sonicated in high mode for 
30 cycles (30 sec OFF, 30 sec ON)  (Bioruptor® Plus; 
Diagenode) and then precipitated using 80% acetone 
overnight in -20°C. The next day, these samples were 
centrifuged and the pellet was resuspended in SDC 
lysis buffer (2% SDC, 100 mM Tris-HCl pH 8.5). The 
samples in the SDC buffer were sonicated in high mode 
for 15 cycles (30 sec OFF, 30 sec ON) (Bioruptor® Plus; 
Diagenode). The samples were again heated at 95°C 
at 600 rpm in a thermoshaker for 45 min. The protein 
samples were digested with Trypsin and LysC (1:50, 
protease:protein ratio) at 37°C, 1,000 rpm shaking, 
overnight. Resulting peptides were acidified with 1% 
TFA 99% isopropanol with 1:1 volume-to-volume ratio, 
vortexed and centrifuged to pellet residual particles. 
The supernatant was transferred to fresh tubes and 
subjected to in-house built StageTip clean-up consisted 
of three layers of styrene divinylbenzene reversed-phase 
sulfonate (SDB-RPS; 3 M Empore) membranes. Peptides 
were loaded on the activated (100% ACN, 1% TFA in 
30% Methanol, 0.2% TFA, respectively) StageTips, run 
through the SDB-RPS membranes, and washed by 
EtOAc including 1% TFA, isopropanol including 1% TFA, 
and 0.2% TFA, respectively. Peptides were then eluted 
from the membranes via 60 µL elution buffer (80% ACN, 
1.25% NH4OH) and dried using a vacuum centrifuge (40 
min at 45°C). Finally, peptides were reconstituted in 8-10 
µL of loading buffer (2% ACN, 0.1% TFA) and stored in 
-80°C until further use.

Liquid chromatography and mass spectrometry (LC-

MS/MS)

The mass spectrometry data was acquired in data-
independent acquisition (DIA) mode. The LC-MS/MS 
analysis was carried out using EASY nanoLC 1200 
(Thermo Fisher Scientific) coupled with trapped ion 
mobility spectrometry quadrupole time-of-flight single 
cell proteomics mass spectrometer (timsTOF SCP, 
Bruker Daltonik GmbH, Germany) via a CaptiveSpray 
nano-electrospray ion source. Peptides (50 ng) were 

loaded onto a 25 cm Aurora Series UHPLC column with 
CaptiveSpray insert (75 μm ID, 1.6 μm C18) at 50°C 
and separated using a 50 min gradient (5-20% buffer B 
in 30 min, 20-29% buffer B in 9 min, 29-45% in 6 min, 
45-95% in 5 min, wash with 95% buffer B for 5 min, 
95-5% buffer B in 5 min) at a flow rate of 300 nL/min. 
Buffer A and B were water with 0.1 vol% formic acid and 
80:20:0.1 vol% ACN:water: formic acid, respectively. 
MS data were acquired in single-shot library- free DIA 
mode and the timsTOF SCP was operated in DIA/parallel 
accumulation serial fragmentation (PASEF) using the 
high sensitivity detection-low sample amount mode. The 
ion accumulation and ramp time were set to 100 ms each 
to achieve nearly 100% duty cycle. The collision energy 
was ramped linearly as a function of the mobility from 59 
eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2. 
The isolation windows were defined as 24 X 25 Th from 
m/z 400 to 1000.

Proteomics data processing

diaPASEF raw files were searched against the mouse 
uniport database using DIA-NN (Ref. PMID: 31768060). 
Peptides length range from seven amino acids 
were considered for the search including N-terminal 
acetylation. Oxidation of methionine was set as a variable 
modification and cysteine carbamidomethylation as fixed 
modification. Enzyme specificity was set to Trypsin/P with 
2 missed cleavages. The FASTA digest for library-free 
search was enabled for predicting the library generation. 
The FDR was set to 1% at precursor and global protein 
level. Match-between-runs (MBR) feature was enabled 
and quantification mode was set to “Robust LC (high 
precision)”. The Protein Group column in DIA-NN’s report 
was used to identify the protein group and PG.MaxLFQ 
was used to calculate the differential expression.

Proteomics data analysis

Data were analyzed using scanpy (v. 1.10.1) and 
anndata (v. 0.8.0) in Python 3.10. Twelve independent 
samples were analyzed from each group (High-Fat 
Diet and Chow) from three animals with samples 
from both right and left trigeminal ganglia. All proteins 
expressed in less than half of the samples in each group 
were filtered out, resulting in 6686 proteins used for 
downstream analyses. The data was log-transformed 
and normalized per sample. The missing values were 
input using KNNImputer (n_neighbors=5) from sklearn 
package (v. 1.2.1). With scanpy’s dendrogram function 
scipy’s hierarchical linkage clustering was calculated 
on a Pearson correlation matrix over groups which 
was calculated for 50 averaged principal components.
To identify differentially regulated proteins across two 
groups (HFD and Chow), we combined samples from 
the right and the left trigeminal ganglia. Differential 
expression analysis was conducted using Scanpy’s 
method ` rank_genes_groups` with method set to `t-test 
We applied a threshold of p < 0.05 and |log fold change| 
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> 0.5 to identify differentially expressed proteins (DEPs). 
These DEPs were subsequently visualized using volcano 
plots. Pathway enrichment analysis was performed on 
the combined up- and down-regulated proteins using 
the KEGG and Reactome databases. The most relevant 
pathways were highlighted, displaying the DEPs involved 
in each pathway.

Statistical analysis

Results from biological replicates were expressed as 
mean ± s.e.m. Statistical analysis was performed using 
GraphPad Prism (v.9). To compare two conditions, 
unpaired Student’s t-tests or Mann–Whitney U-tests were 
performed. Insulin tolerance tests were analyzed using 
two-way ANOVA with Šídák’s multiple comparisons test. 
Proteomics data analysis was performed as described 
above.

Data and Code Availability

Supplementary Videos can be seen here:Supplementary Videos can be seen here: http://dis- http://dis-

cotechnologies.org/MouseMapper/cotechnologies.org/MouseMapper/
Whole body scans can be found to scroll through : 
Chow-Nerve, HFD-Nerve, Chow-Inflammation, HFD-
Inflammation. Supplementary Videos can be viewed 
here:d isco techno log ies .org /MouseMapper.Our 
code will be made available here: https://github.com/
erturklab/mouseMapper
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Video legendsVideo legends

Supplementary Video 1. Whole-body reconstructions of 

normal (left) and obese (right) UCHL1-EGFP mice. Peripheral 

nerves (UCHL1-EGFP+) are shown in green, bones and or-

gans are shown in red (propidium iodide labeled) and muscle 

(autofluorescence) is shown in blue.
Supplementary Video 2. Whole-body reconstructions of 

normal (left) and obese (right) CD68-EGFP mice. Immune 

cells (CD68-EGFP+) are shown in cyan, bones and organs 

are shown in magenta (propidium iodide labeled) and muscle 

(autofluorescence) is shown in yellow.
Supplementary Video 3. Whole-body reconstructions of a 

chow-fed CD68-EGFP mouse showing CD68-EGFP+ cells in 

the whole mouse. Immune cells (CD68-EGFP+) are shown 

in cyan, bones and organs are shown in magenta (propidium 

iodide labeled) and muscle (autofluorescence) is shown in 
yellow.

Supplementary Video 4. Whole-body reconstructions of 

a  HFD-fed CD68-EGFP mouse showing infiltrating CD68-
EGFP+ cells in the whole mouse with accumulations in ScAT, 

ViscAT and the peritoneum. Immune cells (CD68-EGFP+) 

are shown in cyan, bones and organs are shown in magenta 

(propidium iodide labeled) and muscle (autofluorescence) is 
shown in yellow.

Supplementary Video 5. Representative chow-fed mouse 

showing AI-segmented organs and tissue. Each color repre-

sents a different organ or tissue segmented using the Tissue-
Module of MouseMapper.

Supplementary Video 6. Representative obese mouse show-

ing AI-segmented organs and tissue. Each color represents a 

different organ or tissue segmented using the Tissue-Module 
of MouseMapper.

Supplementary Video 7. Representative obese CD68-EGFP 

mouse showing AI-segmented immune cell clusters (blue: 

small clusters, green: medium-sized clusters, red: large-sized 

clusters).
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a-b, Body composition analysis using EchoMRI of UCHL1 and CD68 –EGFP mice, (n=3/group, BW: Body weight). c-d Insulin 
tolerance test. (n=3/group). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. e, Representative 3D reconstruction of a HFD-fed 
UCHL1-EGFP animal to showcase expression of UCHL1-EGFP+ nerves shown in green in all panels. e-k, Zoomed in views of 
dashed regions in (f) showing the heart demonstrating the nerves in the heart with yellow arrows, lungs in (g) nerves with blue 
arrows, spleen in (h), nerves with white arrows, abdominal cavity with the kidneys and a part of the spleen in (i), nerves in the 
visceral fat are shown here with pink arrows, brown adipose tissue (BAT)  in (j) different zoomed in regions show the innervation 
with orange arrows and lastly the the visceral and subcutaneous white adipose tissue (scWAT) in (k), light purple arrows show the 
visceral fat innervation and the zoomed images with dark purple outline and arrows show the subcutaneous adipose tissue nerve 
innervation. Right two panels depict different depths around the same subcutaneous fat region. The images are acquired with a 
4x objective and are shown using different brightness and contrast settings in different organs. The thickness of the MIPs are as 
follows : 500 µm in (f), 100 µm in (g), 230 µm for left and 500 µm for right panel in (h), 1500 µm in (i), 600 µm in (j) and 1500 µm 
in (k).

Suppl. Figure 1 – HFD-feeding associated with increased body weight.
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Suppl. Figure 2: Development of the Immune-Module of MouseMapper

a, Images of indicated areas in chow and HFD-fed mice showing CD68-EGFP+ cells in cyan (WAT: white adipose tissue). b, 

To train the Immune-Module, CD68-EGFP+ cells were annotated using virtual reality (VR). Annotations were used to train a 
deep neural network, which generates the segmentation of CD68-EGFP+ cells as network output. c, 3D qualitative evaluation 
of the network performance for the segmentation of CD68-EGFP+ cells based on instance dice. Areas that overlap with 
reference annotations (TP) are masked in green, areas with no overlap in reference annotations (FP) are masked in red. 
Undetected reference annotation areas (FN) are marked in blue. TP, true positive; FP, false positive; FN, false negative.
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Suppl. Figure 3 – High resolution CD68-EGFP organ comparison

a-h, Representative 3D reconstruction and 2D 60 µm thick maximum intensity projections (MIP) of (a) lung, (b) liver, (c) spleen, 
(d) heart, (e) ScAT, (f) eWAT, (g) thymus and (h) accessory axillary lymph node from the CD68-eGFP mouse line after vDISCO 
and light sheet imaging for chow and high fat diet fed animals. The left two columns represent the 3D reconstruction of the organs 
and the right two columns represent the MIPs. For each representation chow fed animals are shown on the left column and the 
high-fat diet fed animals are shown in the right column. The images are acquired with a 4x objective and are visualized using the 
same brightness and contrast settings. 
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Suppl. Figure 4: AI-based segmentation of organs and tissues with using the Tis-
sue-Module of MouseMapper. 
 a, Pipeline depicting the workflow of the organ and tissue segmentation model that was used in CD68-EGFP and UCHL1-EGFP 
mouse lines. b-c, Representative obese mouse showing AI-segmented organs and tissue. Each color represents a different organ 
or tissue segmented displaying b,  ventral, c, sagittal view of the body. d-f Head from a representative chow animal in rostral 
view with AI-segmented organs and tissues in different z-planes. g-h,  Organ (g) and tissue volumes (h) segmented in UCHL1-
EGFP mice with the pipeline shown in a. White represents the chow group and  green represents the HFD group. i-j, Organ (i) 
and tissue (j) volumes segmented in CD68-EGFP mice with the pipeline shown in a. White represents the chow group and  cyan 
represents the HFD group.  n=3/group, *p<0.05, **p<0.01, ***p<0.001.
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a, Total nerve voxels of segmented nerves in the whole body, fat and muscle. b-c, Organ-wise quantification of nerve density in 
indicated organs/tissues. n=3/group, **p<0.01. d, Dorsal view of 3D reconstructions of heads of chow- and HFD-fed mice showing 
UCHL1-EGFP+ nerves. e, Sagittal view of 3D reconstructions of heads of chow- and HFD-fed mice showing UCHL1-EGFP+ 
nerves. f, Zoomed-in images of the intricate nerve structures. White arrows indicate structural changes in the infraorbital nerve 
across all panels.

Suppl. Figure 5: Quantification of segmented nerves and 3D visualization of 
UCHL1-EGFP mouse heads after vDISCO clearing, imaging, and reconstruction.
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Suppl. Figure 6. Trigeminal ganglion proteome differences in chow vs high-fat diet 
fed animals .
a, Dissected trigeminal nerve from UCHL1-EGFP mouse before (left) and after (right) puncture with the 18G needle. Red arrow  
indicates the excised region that was subjected to proteomic analysis. b, number of protein groups detected in each 
proteomic sample. Cho stands for chow group and HFD stands for high-fat diet-fed group. L stands for the left trigeminal ganglion 
and R stands for the right trigeminal ganglion. c, Pathway analysis from the TG of chow vs HFD is depicted. The pathways that are 
affected are shown on the y-axis of the plot. Gray bar on the left side of the plot represents the log10 of p-value of each pathway 
whereas the right side of the plot depicts the number of proteins significantly different in each pathway, red representing the 
number of up-regulated proteins and blue representing the number of down-regulated proteins. d, Western blot of protein lysates 
from trigeminal ganglions of chow and HFD-fed mice to validate proteins that were differentially expressed in the proteomic 
analysis: SEPTIN7, SERPINA1, p-ERK, and ERK proteins using western blot. Vinculin is shown as  representative loading control 
(n=3/group). e, Quantification of SEPTIN7, SERPINA1 and pERK/ERK protein levels detected in chow vs HFD groups (p<0.05 for 
each difference in protein expression, n=3/group).
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