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Highlights

1) We developed MouseMapper: Al-driven pipeline for whole-body structural analysis in mice

2) MouseMapper revealed obesity-induced changes in nerves and immune cells across multiple organs
3) MouseMapper identified facial nerve alterations in obesity linked to impaired whisker sensitivity

4) MouseMapper has the potential for holistic 3D analysis of systemic diseases

Supplementary Videos can be seen at:_http://discotechnologies.org/MouseMapper/
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ABSTRACT

Many diseases, such as obesity, have systemic effects
that impact multiple organ systems throughout the body.
However, tools for comprehensive, high-resolution
analysis of disease-associated changes at the whole-
body scale have been lacking. Here, we developed a
suite of deep learning-based image analysis algorithms
(MouseMapper) and integrated it with tissue clearing
and light-sheet microscopy to enable a comprehensive
analysis of diseases impacting diverse systems across
the mouse body. This approach enables the quantitative
analysis of cellular and structural changes across the
entire mouse body at unprecedented resolution and
scale, including tracking nerves over several centimeters
in whole animal bodies. To demonstrate its power, we
applied MouseMapper to study nervous and immune
systems in high-fat diet induced obesity. We uncovered
widespread changes in both immune cell distribution and
nerve structures, including alterations in the trigeminal
nerve characterized by a reduced number of nerve
endings in obese mice. These structural abnormalities
were associated with functional deficits of whisker
sensing and proteomic changes in the trigeminal
ganglion, primarily affecting pathways related to axon
growth and the complement system. Additionally, we

found heterogeneity in obesity-induced whole-body
inflammation across different tissues and organs.
Our study demonstrates MouseMapper’'s capability
to discover and quantify pathological alterations at the
whole-body level, offering a powerful approach for
investigating the systemic impacts of various diseases.

INTRODUCTION

Many diseases, including lifestyle-induced conditions
such as obesity, have far-reaching effects that affect
multiple organ systems throughout the body. These
systemic effects underscore the interconnected nature
of body physiology and the need for holistic approaches
to understanding pathological changes. However, tools
to study cellular and molecular alterations at the whole-
body scale in interconnected systems have been lacking,
limiting our ability to understand their broad impacts.
Advanced tissue clearing methods combined with light-
sheet fluorescence microscopy (LSFM) have enabled
the visualization of entire mouse bodies and large human
samples at single-cell resolution’*. While these methods
permit imaging entire samples such as whole mouse
bodies®®, the lack of advanced image analysis tools to
quantify cellular and elongated structures such as nerves
on a whole-body scale has been a major bottleneck for
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Figure 1: Direct visualization of nerves and macrophages in obesity on the whole-
body scale.

a, Workflow to study obesity-induced changes on the whole-body scale. b-c, Representative 3D reconstructions of vDISCO cleared
and imaged chow and HFD-fed mice showing b, UCHL 1-EGFP+ peripheral nerves and c, CD68-EGFP+ immune cells (n=3/group).
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discovering altered tissue regions in whole bodies. Tools
for detecting structural and anatomical changes across
scales would also allow selecting regions for further
molecular characterization to reveal the mechanisms
governing the systemic effects of diseases”

Obesity is associated with chronic low-grade inflammation
and a plethora of metabolic dysfunctions such as insulin
resistance, impaired glucose tolerance, or hypertension.
It increases the risk of developing other comorbidities,
including type 2 diabetes, peripheral neuropathies,
cardiovascular diseases, stroke and certain types of
cancers®®. The connection of obesity to a wide range
of diseases underscores the systemic effects that
large accumulations of body fat can have on overall
health. Recognizing obesity as a systemic challenge
emphasizes the need for holistic characterizations of
underlying structural and cellular changes that occur with
excess body fat.

To this end, here, we developed MouseMapper, an
ensemble of deep learning methods to segment and
analyze whole body images of the nervous and immune
systems and select regions of interest for subsequent
molecular analysis (Fig. 1a). MouseMapper has three
modules for 1) the segmentation of peripheral nerves, 2)
the segmentation of CD68+ immune cells, and 3) mapping
of segmented structures to organs and tissues across
entire mouse bodies. The combination of these models
enabled us to study biological structures in their complete
spatial and anatomical context. Using MouseMapper,
we identified structural alterations in diverse properties
of the nerve and immune cell networks with high
spatial resolution. Among others, we discovered axonal
alterations of trigeminal nerve innervating whiskers in
mice, which were associated with behavioral changes
and proteomic alterations related to axon degeneration
and remodeling. Our whole mouse body scans are
available online for the scientific community interested
in further exploring HFD-induced changes in the tissues
and organs of their interest.

RESULTS

Direct visualizations of nerves and immune systems
in obesity

In this work we aimed to develop a comprehensive
toolset for studying disease-induced whole-body
changes, specifically for the study of obesity. To this
end, we subjected mice that express EGFP under the
peripheral nerve marker UCHL1/PGP9.5 promoter
(UCHL1-EGFP mice) or the monocyte/macrophage
marker CD68 (CD68-EGFP mice) to HFD-feeding for
16-18 weeks. This led to significantly increased body
weights compared to chow-fed controls, mainly due to
increased adipose tissue, while lean mass remained
similar (Suppl. Fig. 1a-b). HFD feeding was associated
with impaired insulin response, demonstrating successful
induction of metabolic dysfunction in the reporter mice
(Suppl. Fig. 1c-d). vDISCO clearing and light-sheet

imaging of transparent mouse bodies enabled whole-
body visualization of the peripheral nervous system (Fig.
1b, Suppl. Video 1) and CD68-EGFP+ immune cells
(Fig. 1c, Suppl. Video 2) in 3D not only in lean mice
but also in large obese mouse bodies. For example, in
UCHL1-EGFP mice we could clearly trace nerve bundles
over lengths of several centimeters, including their paths
from the dorsal root ganglia (DRG) into the subcutaneous
adipose tissue (ScAT) depot (Fig. 1b). UCHL1-EGFP+
nerves were also visible in internal organs such as heart,
liver, spleen, kidneys as well as in brown fat (Suppl.
Fig. 1e-k). In obese CD68-EGFP mice, an increase in
CD68-EGFP+ cell infiltration was apparent throughout
the mouse body compared to chow fed controls, with
most prominent accumulations in the liver and visceral
AT (ViscAT) including epididymal, mesenteric, perirenal
and cardiac ectopic adipose tissue (Fig. 1¢, Suppl. Fig.
2a, Suppl. Fig. 3, Suppl. Video 3-4).

Deep learning ensemble enables whole-body
analysis

For an unbiased analysis of obesity induced changes in
whole mouse body images, we developed MouseMapper
(Fig. 2a), an ensemble of deep learning models that
compares animals and conditions. The MouseMapper
ensemble consists of three main modules: 1) the Nerve-
Module that segments nerves in the entire mouse body
and converts them into graphs, facilitating comprehensive
mapping and quantitative analysis of nerve characteristics;
2) the Immune-Module that segments immune cells and
quantifies their distributions; and 3) the Tissue-Module
that maps organs and tissues to make quantitative data
comparable between conditions and animals and to
facilitate biological interpretation. The combination of
these modules enables a comprehensive description of
structural changes in nerves and immune cell distribution
across the entire body driven by obesity (Fig. 2a).

Our models were trained in a supervised fashion, with
ground truth data being generated using a 3D virtual
reality (VR) annotation pipeline™. For the Nerve-
Module, we annotated nerves in VR (35 sub-volumes
with  300x300x300 voxels and 7 sub-volumes with
approximately 1000x1000x1000 voxels) from UCHL1-
EGFP mouse scans (Fig. 2b). We used those patches
for training and testing multiple deep leaning models
(see Methods). Among the networks tested, the 3D
UNet showed the best segmentation performance with a
volumetric dice of 0.7913 £ 0.1423 (Fig. 2c, Suppl. Table
1) and was used for our nerve segmentation module.

To develop the Immune-Module, we sampled and VR-
annotated CD68-EGFP+ cells in five 256x256x256
voxel patches from CD68-EGFP whole mouse scans,
representing > 500 contrast-positive cells in adipose
tissue and muscle (Suppl. Fig. 2b). After training and
testing, we found the 3D UNet-based model achieved


https://doi.org/10.1101/2024.08.18.608300
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.18.608300; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a
Nerve-Module
::\ ] H (é Quantification .
‘m:f’ b Nerve segmentation module HFD-induced
X B changes
£ - Tissue-Module L *Ensemble merging °
120\ * Graph enrichment

» Co-Localization
» Feature evaluation

i Organ and Tissue Map

Immune-Module

Unbiased Immune cell segmentation
Raw Data
b VR annotation Network training Network output

4 -

¢ [ lrr Il

d

3. Tissue Map

Al- based organ segmentation
Al- based tissue segmentation
Combining organ and tissue maps

Figure 2: Development of an ensemble of deep learning methods for automated

segmentation of nerves, immune cells, organs and tissues.

a, Workflow: Mice that underwent vDISCO clearing, light-sheet imaging and 3D reconstruction are analyzed using MouseMapper.
MouseMapper consists of three modules: the Nerve-Module for deep learning based nerve segmentation, the Immune-Module for
deep learning based immune cell detection and the Tissue-Module for automated organ and tissue segmentation. b, To train the
Nerve-Module, nerves were annotated using virtual reality (VR). ¢, 3D qualitative evaluation of the network performance for the
segmentation of nerves based on volumetric dice. Areas that overlap with reference annotations (TP) are masked in green, areas
with no overlap in reference annotations (FP) are masked in red. Undetected reference annotation areas (FN) are marked in blue.
TP, true positive; FP, false positive; FN, false negative. d, The Tissue-Module to segment organs and tissues uses the raw image
scan and segments organs (Organ Map) and tissues (Tissue Map), which can be combined to generate a whole mouse map.
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superior performance compared to other deep learning
networks (Suppl. Table 2, Suppl. Fig. 2c). In addition,
our network was able to segment CD68-EGFP+ cells in
other tissues, which were not part of the initial training,
including liver and gut (Suppl. Table 3) indicating zero-
shot inference abilities (transferability to unseen tissue of
our model).

Next, we engineered the deep learning-based Tissue-
Module (Fig. 2d, Suppl. Fig. 4a) that allows mapping
segmented structures (e.g., nerves and immune
cells here) to organs and tissues, enabling a nuanced
interpretation of structural or cellular changes across
conditions. To enable efficient organ mapping in the
Tissue-Module, given that cell-level accuracy is of lower
priority, we down-sampled images of autofluorescence
and Propidium iodide (PI) (Suppl. Fig. 4a). This enabled
the processing of larger volumes by the neural network
allowing it to learn shape information while minimizing
training time, inference time, and memory requirements.
To generate data for training and testing the models,
we annotated 20 organs (Suppl. Table 4) in each of
10 whole-body mouse scans using VR. We used the
annotations from six animals to train multiple neural
networks and tested their performance on the other four
animals. The 3D UNet architecture implemented in the
Tissue-Module again performed best for comprehensive
organ segmentation (Suppl. Table 4).

While working with down-sampled data provides highly
accurate organ segmentation, adipose and muscle
tissue segmentation relies on detecting differences in
tissue texture, which is not well preserved in the down-
sampled images and requires the use of full resolution
data. Therefore, we created a separate VR-annotated
dataset containing representative patches from muscle,
ViscAT, ScAT and brown adipose tissue in full resolution.
After completing the training, our network which uses
the 3D UNet as the basis showed the best performance
compared to other neural networks (Suppl. Table 5). By
integrating our organ and tissue models, our final Tissue-
Module generates a comprehensive anatomical map of
the mouse (Fig. 2d, Suppl. Fig. 4b-f, Suppl. Video 5-6).
Indeed, the volume extraction of segmented tissue and
organs revealed expected increases in adipose tissue
(including ViscAT and ScAT) and liver volumes in HFD-
fed mice compared to chow-fed mice (Suppl. Fig. 4g-j,
Suppl. Table 6). In addition, we found that total lymph
node mass was increased upon HFD-feeding. Thus, this
map serves as a unified reference framework, enabling
precise localization of quantitative findings from cellular
and anatomical analyses across different body regions.

In summary, MouseMapper represents a robust and
automated Al-driven pipeline to detect and quantify
system-wide changes in nerve structures or immune cell
distributions in any size mouse body.

Al-based segmentation identifies structural changes
associated with behavioral defects in facial nerves
in obesity

Obesity is associated with various neuronal malfunctions,
including peripheral neuropathies, yet a comprehensive
characterization of obesity-induced changes in peripheral
nerves on the whole-body scale is lacking. Toward this
goal, we applied MouseMapper with the Nerve-Module
and Tissue-Module to whole-body scans of normal
and obese UCHL1-EGFP mice (Fig. 1b). Thereby,
we generated whole-body segmentation maps of the
peripheral nervous system in both normal and obese
mice (Fig. 3a). By quantifying the segmented nerve
voxels in the whole body and mapping them to specific
tissues using the Tissue-Module, we found a significant
increase in nerves in adipose tissue, suggesting a
concomitant increase of innervation along with increased
adipose tissue mass due to HFD-feeding (Supp. Fig.
5a). In line, nerve density in adipose tissue was similar
between the groups (Fig. 3b). Notably, we observed a
significant decrease in nerves located in the head (Fig.
3b). Most prominently, we observed structural alterations
in the infraorbital nerves that innervate the whisker pad
upon HFD-induced obesity (Fig. 3c-d, Suppl. Fig. 5d-
f). The infraorbital nerve, a key branch of the maxillary
nerve and part of the facial trigeminal nerve, is essential
for sensory perception, facilitating whisker-mediated
tactile exploration and environmental sensing. To quantify
the spatial structure of these nerves in more detail, we
extracted graphs from the binary nerve segmentation,
measuring nerve thickness and the number of nerve
endings, but also quantifying the complexity of the nerve
network by determining the number and length of edges
and the number of nodes/vertices''. Here, nodes/vertices
represent the points of intersection or branching within
the nerve network and edges the connections between
these points along the nerve pathways. Quantification
of nerve segmentation graphs showed that the number
of nerve endings, edges and vertices were reduced by
67.1%, 69.5% and 16.8%, respectively in HFD-fed obese
mice (Fig. 3e-g). Notably, the thickness of the infraorbital
nerve was similar between the chow and HFD-fed
mice (Fig. 3h), indicating defects in axonal extensions
close to the external skin surface rather than a general
degeneration of the nerve.

To assess the functional implications of these structural
changes, we performed whisker stimulation tests and
found that obese mice exhibited a diminished response
to whisker stimulation (Fig. 4a). This finding suggests
that obesity-induced structural changes in facial nerves
may contribute to sensory dysfunction, highlighting the
potential importance of our observations.
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Figure 3: Whole-body nerve segmentation reveal structural changes in the infraor-
bital nerve in obesity.

a, Representative whole-body nerve segmentation in chow and HFD-fed mice. b-c, Quantification of Al-segmented nerve densities
in chow and HFD fed UCHL1-EGFP mice in whole bodies and indicated areas. For the quantification of the nerve density in the
head, we masked out the brain for the analysis. n=3/group. ¢, Schematic of a mouse head showing the trigeminal nerve with its
three branches arising from the trigeminal ganglion. d, Representative heads of chow and HFD-fed mice showing UCHL1-EGFP+
nerves and Al-based segmentation of these nerves. Structural changes in the infraorbital nerve (part of the maxillary branch of
the trigeminal nerve) are indicated with the orange arrow. e-h, Quantification of characteristics of the infraorbital nerve after
graph extractions (n= 6 infraorbital nerves from 3 chow mice, and 5 infraorbital nerves from 3 HFD-fed mice). *p<0.05, **p<0.01.
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Structural changes in infraorbital nerve coincide
with proteomic alterations in the trigeminal ganglion
By developing and applying MouseMapper, we
identified and characterized the specification of neuronal
abnormalities, particularly in the infraorbital nerve
projections of obese mice. Next, to investigate the
molecular mechanisms underlying these changes in
the infraorbital nerve, we performed spatial proteomics
profiing of the trigeminal ganglia, the origin of the

NC-ND 4.0 International license.

infraorbital nerve and the location of their neuronal cell
bodies. We dissected the trigeminal ganglia of chow
and HFD-fed mice that we imaged above, collected
18G-needle punch-sized samples, and analyzed them
using the mass spectrometry-based proteomics (Fig.
4b, Suppl. Fig. 6a). We identified more than 6.000
total proteins in each sample (Suppl. Fig. 6b). Among
them, 230 were differentially regulated (67 up-regulated,
163 down-regulated, Fig. 4c) in the trigeminal ganglia
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Figure 4: Structural changes in the infraorbital nerve associate with changes in

the TG proteome.

a, Functional assessment of the response after whisker stimulation (n=6/group, **p< 0.01). b, Samples for spatial proteomics
profiling were extracted from the trigeminal ganglions of UCHL1-EGFP mice. ¢, Volcano plot showing differentially regulated

proteins in chow vs HFD-fed mice. d, Pathway analysis showing

differentially regulated pathways. Gray bar on the left side of the

plot represents the log10 of p-value of each pathway whereas the right side of the plot depicts the number of proteins significantly
different in each pathway, red representing the number of up-regulated proteins and blue representing the number of down-
regulated proteins. e, Chord plot showing a subset of differentially regulated pathways and the corresponding proteins.
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between chow and HFD-fed mice.

Pathway analysis revealed multiple differentially
regulated pathways in obese mice, including “Regulation
of actin cytoskeleton,” “Rho GTPase effectors,” and
“Axon guidance” (Fig. 4d,e, Suppl. Fig. 6¢). This could
indicate disruptions in actin dynamics, which is essential
for maintaining axonal structure and function. In addition,
significantly regulated pathways included “Complement
and coagulation cascade”, “Erb-Signalling” and
“Sphingolipid signaling” pathways that are involved in
inflammation and cellular stress response, among other
processes, which also fits to the dysregulation of many
general and innate immune pathways (Fig. 4d,e, Suppl.
Fig. 6¢).

Among down-regulated proteins, we identified multiple
members of the serpin serine protease inhibitor (SERPIN)
A family (Fig. 4e). SERPINA1 has anti-inflammatory
properties, especially linked to neutrophils (by inhibiting
neutrophil elastase) and is known to protect from tissue
damage’. SERPINA3 is an inhibitor of cathepsin G,
another protease important in neutrophil related immune
responses and implicated in inflammation related tissue
damage'. Downregulation of SERPINA proteins could
lead to a reduced ability to control inflammation-induced
tissue damage and degradation of structural proteins
essential for nerve integrity. We used western blotting
for some differentially regulated proteins to validate
our proteomic findings in protein lysates of trigeminal
ganglion tissue. Thereby, we could confirm the decreased
expression of SERPINA1, ERK activation, and increased
expression of the GTPase SEPTIN7 (Suppl. Fig. 6d and
e).

Together, spatial molecular profiling of the trigeminal
ganglion in HFD-fed mice, revealed by our MouseMapper
deep learning ensemble, showed significant proteomic
alterations. Among these, we identified dysregulated
pathways related to axon growth and remodeling, and
inflammation, which could explain structural changes in
the infraorbital nerves.

Revealing whole-body wide inflammation in obesity
Chronic inflammation is a major hallmark of obesity,
intricately linked to the development of various chronic
diseases throughout the body. The systemic nature of
obesity-induced inflammation underscores the critical
importance of understanding which tissues and organs
are affected in obese animals and to what degree. To
study the spatial context of inflammation in obesity, we
applied MouseMapper using the Immune-Module and
Tissue-Module to whole-body scans of lean and obese

CD68-EGFP mice (Fig. 5a-b).

The CD68-EGFP+ immune cells were visible as round,
cluster-like structures in tissues such as adipose tissue,
liver, skeletal muscle and the peritoneum (Suppl. Fig.
2a, Suppl. Fig. 3, Suppl. Video 4). The size of immune
cell clusters can indicate the inflammatory state within
tissues, with larger clusters correlating with a more
activated and pro-inflammatory state™. Thus, we
generated inflammation maps of CD68-EGFP+ immune
cells and grouped them into three different sizes of
clusters: small clusters with few cells, medium sized with
tens of immune cells and large ones with hundreds of
immune cells (Fig. 5¢c-d, Suppl. Video 7). Using these
categories, we analyzed the density of the three different
classes of CD68-EGFP+ clusters (Fig. 5e) and found
notable decreases in small cluster portions within the
liver, ViscAT and stomach upon HFD-feeding, whereas
this category remained unchanged in ScAT, peritoneum,
and muscle (Fig. 5e). Conversely, the portion of medium-
sized clusters showed an increase specifically in the
liver, ViscAT and stomach highlighting a shift from small
to medium clusters in these tissues. Additionally, we
observed significant increases in large clusters in ScAT,
ViscAT, peritoneum, colon and stomach signifying an
intensification of inflammatory activity and immune cell
involvement in these tissues in obesity (Fig. 5e).

Direct visualization of CD68-EGFP+ cells revealed
widespread increases throughout the body following
HFD-induced obesity. Using the Tissue-Module combined
with the Al-based macrophage detection of the Immune-
Module, we quantified shifts in CD68+ cluster sizes,
confirming elevated inflammatory states across tissues
in response to a HFD-induced obesity and providing
detailed spatial information.

DISCUSSION

In In this study, we developed MouseMapper, a deep
learning ensemble for comprehensive end-to-end analysis
of whole-body systems. Our approach enables 3D organ
and tissue mapping of structural changes to study
disease-induced changes in biological systems down
to cellular resolutions at the whole-body scale without
pre-defining specific tissue regions. MouseMapper
can faithfully segment elongated nerve structures over
centimeters in whole mouse bodies. It can also identify
and analyze immune cells from single cells to clusters of
hundreds of cells in 3D.

Figure 5: Whole-body wide inflammation in obesity.

a, Representative images of CD68-EGFP mice (300 uym Z-projection) with Al-based segmentation of CD68-EGFP signal of
medium and large sized clusteres overlaid in red (n=3/group). b, Z-projection (300 um) showing ViscAT with CD68-EGFP (upper
panel) and Al-based segmentation (lower panel) of an obese mouse. ¢, Segmented cells were grouped into three size clusters:
small (blue), medium (green), large (red). d, Whole-body CD68-EGFP segmentation results in representative chow and HFD-
fed mice showing small, medium and large cluster densities. e, Quantification of small, medium and large cluster proportions in

indicated organs and tissues. n=3/group, *p<0.05, **p<0.01.
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A key strength of MouseMapper lies in its powerful deep
learning ensemble, trained on datasets coming from
cell-level imaging of whole mouse bodies. This includes
nerves traced over long distances using virtual reality in
entire mammalian bodies at high resolution - a dataset
that presents unique challenges due to the diverse tissue
backgrounds encountered across the body, from muscle
to bones to various organs. This unique training data
enabled us to train 3D UNet models capable of faithfully
segmenting complex structures across heterogeneous
environments. MouseMapper is built as a versatile, multi-
modular system that is easily adaptable to other tissue
structures such as blood vessels, lymph vessels, or
different types of cellular clusters. Notably, our Tissue-
Module provides crucial anatomical context that can
localize identified changes within specific organs and
tissues and can serve as a common reference framework
for other whole-body data. To promote further research
and development in this field, we are making our data
and algorithms publicly available.

Our key biological findings include structural changes
in the infraorbital nerve of obese mice, characterized
by reduced axonal extensions and altered network
complexity. The infraorbital nerve belongs to the facial
trigeminal nerve, which consists of three branches
that convey sensory signals from the face through the
trigeminal ganglion'™. Our data reveal a previously
unrecognized impact of obesity on facial nerve structure.
The reductions in nerve endings and network complexity,
suggest a potential mechanism for sensory alterations
in obesity, including the reduced sensitivity to whisker
stimulation observed by us and the aberrant sensory and
pain processing previously observed in obese mice'
'8, The proteomic changes identified in the trigeminal
ganglion offer insights into the molecular underpinnings
of these neuronal changes. In this regard, the observed
changes in pathways related to cytoskeletal regulation
and axon guidance in the trigeminal ganglion could
potentially explain the observed changes in infraorbital
nerve structure, as both are essential for structural
plasticity’®®. The proteomic changes related to
inflammation underscore the link between obesity
and neuroinflammation?'. These insights could pave
the way for novel therapeutic approaches targeting
neuroinflammation and cytoskeletal integrity in obesity
and related conditions. Notably, these changes likely
reflect a combination of neuronal and non-neuronal
responses, as neurons comprise only a fraction of cells
in the ganglia?.

Our data using CD68-EGFP mice support previous
findings that obesity is associated with chronic
inflammation?3, as we observed increased expression of
CD68-EGFP+ cells throughout the mouse. In line with
previous reports, our data confirm a more pronounced
accumulation of large CD68-EGFP+ clusters in visceral
fat compared to subcutaneous fat?*. Our whole-body

mapping approach adds a comprehensive spatial view of
obesity-induced inflammation, revealing tissue-specific
patterns of macrophage accumulations.

We made the whole mouse body maps available online,
where scientists can easily scroll through large datasets
of HFD versus chow-fed mice to investigate neuronal
and immune cell alterations (Chow-Nerve, HED-Nerve,
Chow-Inflammation, HFD-Inflammation). Researchers
can quickly identify obesity-induced changes in
their tissues/organs of interest and explore potential
connections with other body systems. These online maps
can save time and resources and provide a broader
context for understanding localized changes within the
global landscape of obesity-induced alterations.

In  conclusion, we developed MouseMapper, an
ensemble of deep learning tools for characterizing
structural changes in whole body systems in response to
diseases or other perturbations. We revealed alterations
in axons innervating the face in obesity and showed
global inflammation associated with regional clustering
of immune cells in various areas. While we applied
MouseMapper to obesity here, the pipeline can be easily
adapted to other complex diseases and other body-wide
systems such as the lymphatic and vascular system. In
combination with spatial proteomics analysis of hotspots
of structural alterations, MouseMapper facilitates the
identification of potential therapeutic targets to reverse
or prevent pathological changes. MouseMapper thus
provides a blueprint for the holistic analysis of complex
biological phenomena in 3D.

MATERIAL AND METHODS

Animals

8-week-old male UCHL1-EGFP and CD68—EGFP mice
on a C57BL/6J background were fed either a chow diet
or a high-fat diet (60% fat, #D12492i from Research Diets
Inc.) for 16-18 weeks ad libitum. Mice were maintained
on a 12-h light-dark cycle. Body composition was
determined using an EchoMRI-100H system (EchoMRI,
Houston, TX, USA). For insulin tolerance tests (ITTs),
mice were fasted for 6h and i.p. injected with 0.75 U/kg
insulin. Blood glucose was measured from the tail vein
at indicated time points using glucose test stripes. Mice
were sacrificed following deep anesthesia with a mix of
ketamine/xylazine, followed by intracardiac perfusion with
heparinized PBS (10 U/ml heparin) and by a perfusion with
4% paraformaldehyde (PFA). Mice were post-fixed over-
nightin 4% PFA and subsequently washed five times with
PBS shaking (300 rpm) at room temperature for 1h for
each wash step. Animal experimentation was performed
in accordance with the European Union directives and
the German animal welfare act (Tierschutzgesetz). They
have been approved by the state ethics committee and
the government of Upper Bavaria (ROB-55.2-2532.
Vet_02-21-133, ROB-55.2-2532.Vet_02-16-117, ROB-
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55.2-2532.Vet_02-17-49).

Whisker stimulation test

The whisker test paradigm was adapted from the
methods described previously?*# and the Neuroscore
test?®. To avoid introducing confounding variables, mice
were kept in their original cages. A g-tip with a wooden
end was used to administer the test. Initially, the g-tip was
presented in front of the mouse’s head and allowed to
touch it. This was followed by four consecutive strokes,
first to the whiskers on the right side and then on the left
side of the face. The response to the g-tip stimulation
was evaluated using a modified whisker score test. A
normal behavioral response to the stimulation, such
as turning the head towards or away from the g-tip or
initiating grooming, was assigned a score of one. A lack
of response to the stimulation was assigned a score of
zero. Both sides of the face were stimulated four times,
and the scores were recorded by a blinded evaluator.
The maximum whisker score was 8, in which mice would
have responded to all stimuli. The total score was then
averaged for both sides. High scores (3-4) indicated
normal responses to the stimulation, while low scores (0-
2) suggested a lack of reaction, consistent with sensory
deficits.

vDISCO nanobody labeling and clearing

vDISCO was performed as previously described?* in
combination with GFP-Nanobooster labeling (Atto647N-
conjugated anti-GFP nanobooster Chromotek Cat.#
gba647n-100;RRID:AB_2629215) for 6 days and passive
labeling for 3 days. Mice underwent DISCO clearing®'
using a Tetrahydrofuran (THF) /H20 series (50% THF,
70% THF x2, 90%THF, 100%THF) for 24h per step
followed by an incubation in dichloromethane (DCM)
for 6h. Tissues were incubated in benzyl alcohol/benzyl
benzoate (BABB, 1:2 v/v) until tissue transparency was
reached (>48 h).

Light sheet fluorescence microscopy

Light-sheet imaging for whole mouse bodies was
conducted using a dipping 1.1x objective lens (LaVision
BioTec) on an Ultramicroscope Blaze (LaVision BioTec).
Tiling scans were acquired with 35% overlap, 100%
sheet-width 0.035 NA, 100ms exposure and a 6 um
Z-step size. The images were taken in 16bit depth and
at a nominal resolution of 5.9 ym/voxel on the XY axes.
In z-dimension we took images in 6um steps using two-
sided illumination. Stitching of tile scans was carried out
using Fiji’s stitching plugin with the “Stitch Sequence of
Grids of Images” feature®? and custom Python scripts.

3D reconstruction

Dorsal and ventral scans were fused as previously
described? using Arivis and exported whole-body TIFF
stacks were used for image analysis.

Annotation of data in virtual reality for ground truth
data generation

Annotations of ground-truth data was performed in
virtual reality'® using the syGlass software as previously
described.

VR-annotation of peripheral nerves was conducted on
35 300x300x300 voxel sub volumes from UCHL1-EGFP
mouse scans. Additionally, seven complete trigeminal
nerve images of varying sizes were cropped from the
UCHL1 channel and included in the annotation. VR-
annotation for CD68-EGFP+ cells was performed in
five 256x256x256 voxel patches from CD68-EGFP
whole mouse scans, selected from representative
regions of interest. Annotations were based on both the
autofluorescence and CD68-EGFP signal channels.
These patches were further cropped down into 40
128x128x128 voxels patches, that were used to train 3D
networks for the segmentation of the markers of interest.
For the development of the Tissue-Module, we annotated
20 organs of interest in ten downsampled (10-fold) mouse
scans (six from CD68-EGFP and four from UCHL1 mice,
with five chow-fed and five HFD-fed mice from each line)
using the autofluorescence and propidium iodide (PI)
channels with the syGlass software. This approach was
sufficient to distinguish all organs of interest. To generate
reference annotations for the tissue segmentation, we
annotated an initial dataset of three 1024x1024x1024
voxels sized patches in full resolution, containing
500 million voxels of fat (visceral, subcutaneous and
brown), 145 million voxels of muscle, 16 million voxels
of bone tissue, and 8 million voxels of bone marrow. We
iteratively increase the size of our annotated dataset
through inference on un-annotated patches, and manual
correction of the wrongly segmented areas.

Deep learning-based segmentation for peripheral
nerves (Nerve-Module)

To train the peripheral nerve segmentation network, we
divided the 35 annotated patches from various parts
throughout the mouse body into 28 for training and seven
for testing. Similarly, the seven trigeminal nerve images
were split into five for training and two for testing. To fit
the gpu memory constraints, the five training samples of
the trigeminal nerve were further cropped into patches
matching the size of the patches from other parts of the
mouse body. Consequently, a total of 565 300x300x300
voxel patches were obtained for network training. For
model evaluation, we used seven testing patches from
various parts throughout the mouse body along with the
remaining two trigeminal nerve samples.

Initially, we implemented and trained the following
baseline architectures: Attention UNET, NNFormer,
SwWIinUNETR, UNETR, VNet, and 3D UNet. We trained
these with a patch size of 128x128x128 voxels, initial
learning rate of 1e-3, SGD Optimizer, learning rate decay
and Binary Cross Entropy + DICE loss for 1000 epochs.
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Upon inspecting the training curves, we observed that
the models were almost but not fully converged, and, due
to its superior performance, we chose to further train the
3D UNet Architecture.

The final model for peripheral nerve segmentation was
trained using the nnUNet pipeline, with a patch size of
128x128x128 voxels, an initial learning rate of 1e-3 with
learning rate decay, and the SDG optimizer for 2000
epochs. Additionally, we incorporated the cIDICE loss
function®® into the baseline by adding it with a weight of
0.5 to the original loss. The cIDICE loss function aids
the model in capturing the topology and connectivity of
nerves, leading to more complete nerve segmentation
performance.

Before inputting the patches into the network for
training or testing, we performed sample-wise percentile
normalization. Specifically, for patches from the whole
body and every trigeminal sample, we computed the
0.5th percentile and 99.5th percentile of all voxel intensity
values to set the minimum and maximum thresholds.
Intensity values below the lower percentile or above the
upper percentile were clipped to the minimum or maximum
thresholds. Finally, we applied min-max normalization.
This normalization step enhanced patch contrast by
stretching the intensity range between the chosen
percentiles and removing outliers, thereby emphasizing
nerve regions to improve model performance.

Deep learning-based segmentation of CD68-EGFP+
cells (Immune-Module)

For training the CD68 segmentation network, we
implemented the following architectures: 3D UNet*,
V-NET?®, Attention UNET?®®, NNFormer® and UNETR?®,
The networks were trained by using the nnUNet pipeline,
with a patch size of 128x128x128 voxels, channel-wise
min-max normalization, initial learning rate of 0.001,
learning rate decay, SDG optimizer, for 1000 epochs.
We train using 5-fold cross validation, and evaluate voxel
DICE, instance DICE* and Betti Matching scores®.
Based on two out of the three metrics, we select the 3D
UNet for carrying out our downstream quantifications.

Whole-body organ and tissue segmentation (Tissue-
Module)

For the segmentation of internal organs, we used six
annotated mice (from the CD68-EGFP line) to train
five different networks: 3D UNet* , V-NET®, Attention
UNET?¢, NNFormer®, Swin UNETR*'. All the architectures
were trained through the nnUNET?' pipeline using
z-score normalization of each channel, and foreground
oversampling. The networks were trained with Stochastic
Gradient Descent (SGD) optimizer, using a batch size
of 2, patch size of 64x256x128 voxels, initial learning
rate of 0.01 and learning rate decay, for a total of 1000
epochs. The resulting networks were evaluated on the
four UCHL1 mice. During training, we performed 5-fold
cross validation, and the final predictions were made by

ensembling the five resulting networks. We report voxel-
wise Dice scores in Supplementary Table 4. We identified
the 3D UNet as the best performing network architecture,
with the following properties: 6 downsampling layers, 5
upsampling layers, 3x3x3 sized convolutional blocks and
a maximum feature size of 320 in the bottleneck.
Second, we train a model to segment the soft tissues
of mice, such as muscle and adipose tissue. We
iteratively increased the size of our annotated dataset
through inference on un-annotated patches, and manual
correction of the wrongly segmented areas. As aresult, our
final networks were trained on a dataset of 387 samples
containing a total volume of 2 billion voxels of adipose
tissue, and 2 billion voxels of muscle. We then train on
these patches the following neural network architectures:
3D UNet, V-NET, Attention UNET, and UNETR. We
trained using 5-fold cross-validation, and for evaluation,
we report and select based on the validation scores of
the ensembles of the 5 resulting networks (Suppl. Table
5). The networks were trained with SGD optimizer, using
a batch size of 2, patch size of 128x128x128 voxels,
initial learning rate of 0.001, and learning rate decay, for a
total of 1000 epochs. Again, the convolutional 3D UNET
performs best among the implemented baselines.
Thefinalinference pipeline forthe Tissue-Moduleis carried
outby sequential inference of our model ensemble for first,
the organs, and then for the tissues. Specifically, first, the
autofluorescence and PI channels of the acquired LSFM
stack are downsampled to a resolution of 59x59x60 um/
voxel, and saved as a 3D Nifti volume. This is then fed
into the organ segmentation network. The result is a 3D
volume containing the masks of the 20 organs of interest,
which can be used downstream for localizing structures
of interest within organs, or for the quantification of organ
volumes. Next, the organ masks are upsampled, and a
“non-organ” mask is calculated, which is applied to the
original scan. Through this process, we obtain a mask of
the mouse volume that does not contain internal organs.
As the size of the resulting data is too large to efficiently
process, the “non-organ mouse images” are cropped into
sub-volumes of 500 x 500 x 500 voxels, which are fed
into the tissue segmentation network. These patches can
then be reconstructed, resulting in a full-resolution tissue
map. Lastly, by combining the organ maps and the tissue
maps, we obtain a spatial segmentation of major organs
and tissues in the mouse body.

Whole-body inference of CD68-EGFP mice

For inference of CD68-EGFP on the whole-body mouse
scans, we first cropped the autofluorescence and CD68
channels of the LSFM scans. For this, we used the same
patch sizes and distribution as for the tissue segmentation.
Then, a subset of the resulting sub volumes was
selected, based on whether these were within the body
of the mice. These patches were run through the CD68+
segmentation network. The resulting binary masks
were split into components by using the cc3d library?®
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for connected component analysis. Subsequently, each
individual detected connected component was post-
processed by storing its location, volume, center of mass,
and shape?”. Next, we combined the inference results of
our ensemble. Based on location of the center of mass,
we automatically assign each segmented CD68-EGFP+
cluster to the internal organs or the segmented tissues,
with blobs not located in any of these being discarded
as false positives. We further discard components whose
shape was elongated (string-like) as false positives, as
these can often be artifacts, representing high-contrast
blood vessels or nerves. Lastly, we grouped the detected
CD68-EGFP clusters into three discrete categories,
based on their volume (amount of segmented voxels
within @ component): small (smaller than 50 voxels),
medium (between 50 and 500 voxels), and large (over
500 voxels). We chose these categories based on the
observation that, when considering the total spatial
volume of all clusters, each of these three categories
would represent a similar amount (approximately 30%)
of the total CD68+ segmented volume. Then, for each
mouse and for each organ or tissue, we studied the %
composition of each of these categories, and analyzed
differences between the Chow and HFD groups.

While applying the CD68 segmentation network to
the whole mouse bodies, we observe it displays zero-
shot transfer learning abilities in the limited setting of
applying the model in inference to certain novel tissues,
where we observe positive detections. Hence, in order
to validate any reported changes, we perform a) visual
analysis of the resulting segmentation, and b) a VR-
based annotation of a representative test patch in the
tissue of interest. We compare the result of the automatic
segmentation against the manual annotation in order to
evaluate the network’s transfer learning abilities. We only
consider valid quantifications where the network passes
with a DICE score>65%.

Whole-body inference of UCHL1-EGFP mice

To apply the nerve segmentation network to whole-
body scans in full resolution efficiently, we adapted the
sliding window inference method previously used for
segmentation tasks in medical image (MONAI*?) and the
mouse brain (DELIVR™). Our inference is implemented
using the highly efficient ZARR file format and DASK
parallel computing framework, enabling lazy loading and
multiprocessing for data handling and writing tasks and
therefore a rapid full body analysis.

Before inference, we applied percentile normalization
to each scan, similar to the model training stage. Given
the significant imbalance between nerve voxels and
background voxels in whole-body scans, we computed
the 0.10th percentile and 99.9th percentile of all non-zero
voxel intensity values to set the minimum and maximum
thresholds, to effectively enhance the contrast between
nerves and the background.

After inference, we obtained the whole-body nerve

segmentation of UCHL1-EGFP mice. We then performed
connected component analysis to post-process the
segmentation results, eliminating large false positive
segments caused by high-intensity regions within the
mouse body. Subsequently, we quantified the nerve
voxels and density from three perspectives: the entire
body, individual tissues, and specific organs.

To quantify nerves in the entire body, the organ and
tissue segmentations from the Tissue-Module were
combined to form a binary mask of major organs and
tissues in the mouse body. By dilating this binary mask,
we created a whole-body mask that covers the entire
mouse body, allowing us to compute the nerve voxels and
density within. For tissue wise quantification, the tissue
segmentation from the Tissue-Module was utilized to
calculate the nerve voxels and density in fat and muscle
tissues. For quantifying nerves for specific organs, we
accounted for structures in the immediate vicinity of
the organs by extending the organ segmentation by a
15-voxel boundary to calculate the organ wise statistics.
Notably, to create the head mask, we overlaid the dilated
brain masked with whole-body mask, resulting in a
precise mask for quantifying the nerve voxels inside.

Computational
MouseMapper
The experiments presented in this work were carried
out using a cohort of 12 mice (6 HFD feeding, 6 chow).
Clearing and imaging these mice generated 46700 2D
z-slices and 12 trillion voxels, occupying 10.35 Terabytes.
To accurately quantify these data, our annotation
efforts resulted in significantly ample datasets. For the
Nerve-Module, we manually annotated 72 GB of data.
While building the Immune-Module, we annotated 350
MB of data from representative areas in visceral and
subcutaneous fat, as well as in the peritoneum. The
organ segmenter of the Tissue Module was trained
using 10 GB of downsampled organ data, whereas
the tissue segmenter (for fat, muscle, bone and bone
marrow) was trained using 46 GB of full-resolution
tissue annotations, built as a mixture of manual and
automatic annotations. In order to train the networks
building our MouseMapper pipeline, as well as to run the
predictions and quantifications presented in this paper,
the High Performance Computing cluster of Helmholtz
Zentrum Munich was used. Thus, the processes could be
parallelized and carried out more efficiently. We estimate
that a total of 7250 GPUhours were necessary to execute
the presented experiments and quantifications.

load of training and applying

Graph extraction

Graph extraction was performed as previously
described" 3. Similarly we extracted the skeletonization,
depth map and extracted a graph of the resulting
skeleton. All nodes with degree 2 were pruned from the
graph, as well as small, isolated sub graphs. Since the
resulting image data was too large to fit into a reasonable
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amount of RAM, we separated the whole image into sub
blocks using dask. Then, we extracted the graphs from
each sub block and merged them together. We fused all
nodes together on the border between two blocks where
the Euclidian distance between nodes was less than a
given threshold by introducing a new edge between the
nodes. We quantify the thickness of each node and each
edge using the depth map, the degree of each node and
the number of leaf nodes (nodes with degree = 1).

Spatial proteomics sample preparation

For spatial proteomics of trigeminal ganglia of UCHL1-
EGFP mice, 18G needle punches prepared from
rehydrated trigeminal ganglia and subsequently used
for proteomics sample preparations as described
previously’. Briefly, the samples were resuspended in
6% SDS buffer, heat denatured at 95°C for 45 min at
600 rpm in a thermoshaker, sonicated in high mode for
30 cycles (30 sec OFF, 30 sec ON) (Bioruptor® Plus;
Diagenode) and then precipitated using 80% acetone
overnight in -20°C. The next day, these samples were
centrifuged and the pellet was resuspended in SDC
lysis buffer (2% SDC, 100 mM Tris-HCI pH 8.5). The
samples in the SDC buffer were sonicated in high mode
for 15 cycles (30 sec OFF, 30 sec ON) (Bioruptor® Plus;
Diagenode). The samples were again heated at 95°C
at 600 rpm in a thermoshaker for 45 min. The protein
samples were digested with Trypsin and LysC (1:50,
protease:protein ratio) at 37°C, 1,000 rpm shaking,
overnight. Resulting peptides were acidified with 1%
TFA 99% isopropanol with 1:1 volume-to-volume ratio,
vortexed and centrifuged to pellet residual particles.
The supernatant was transferred to fresh tubes and
subjected to in-house built StageTip clean-up consisted
of three layers of styrene divinylbenzene reversed-phase
sulfonate (SDB-RPS; 3 M Empore) membranes. Peptides
were loaded on the activated (100% ACN, 1% TFA in
30% Methanol, 0.2% TFA, respectively) StageTips, run
through the SDB-RPS membranes, and washed by
EtOAc including 1% TFA, isopropanol including 1% TFA,
and 0.2% TFA, respectively. Peptides were then eluted
from the membranes via 60 pL elution buffer (80% ACN,
1.25% NH40H) and dried using a vacuum centrifuge (40
min at 45°C). Finally, peptides were reconstituted in 8-10
pL of loading buffer (2% ACN, 0.1% TFA) and stored in
-80°C until further use.

Liquid chromatography and mass spectrometry (LC-
MS/MS)

The mass spectrometry data was acquired in data-
independent acquisition (DIA) mode. The LC-MS/MS
analysis was carried out using EASY nanoLC 1200
(Thermo Fisher Scientific) coupled with trapped ion
mobility spectrometry quadrupole time-of-flight single
cell proteomics mass spectrometer (timsTOF SCP,
Bruker Daltonik GmbH, Germany) via a CaptiveSpray
nano-electrospray ion source. Peptides (50 ng) were

loaded onto a 25 cm Aurora Series UHPLC column with
CaptiveSpray insert (75 pm ID, 1.6 ym C18) at 50°C
and separated using a 50 min gradient (5-20% buffer B
in 30 min, 20-29% buffer B in 9 min, 29-45% in 6 min,
45-95% in 5 min, wash with 95% buffer B for 5 min,
95-5% buffer B in 5 min) at a flow rate of 300 nL/min.
Buffer A and B were water with 0.1 vol% formic acid and
80:20:0.1 vol% ACN:water: formic acid, respectively.
MS data were acquired in single-shot library- free DIA
mode and the timsTOF SCP was operated in DIA/parallel
accumulation serial fragmentation (PASEF) using the
high sensitivity detection-low sample amount mode. The
ion accumulation and ramp time were set to 100 ms each
to achieve nearly 100% duty cycle. The collision energy
was ramped linearly as a function of the mobility from 59
eV at 1/K0 =1.6 Vs cm?to 20 eV at 1/K0 = 0.6 Vs cm™.
The isolation windows were defined as 24 X 25 Th from
m/z 400 to 1000.

Proteomics data processing

diaPASEF raw files were searched against the mouse
uniport database using DIA-NN (Ref. PMID: 31768060).
Peptides length range from seven amino acids
were considered for the search including N-terminal
acetylation. Oxidation of methionine was set as a variable
modification and cysteine carbamidomethylation as fixed
modification. Enzyme specificity was set to Trypsin/P with
2 missed cleavages. The FASTA digest for library-free
search was enabled for predicting the library generation.
The FDR was set to 1% at precursor and global protein
level. Match-between-runs (MBR) feature was enabled
and quantification mode was set to “Robust LC (high
precision)”. The Protein Group column in DIA-NN’s report
was used to identify the protein group and PG.MaxLFQ
was used to calculate the differential expression.

Proteomics data analysis

Data were analyzed using scanpy (v. 1.10.1) and
anndata (v. 0.8.0) in Python 3.10. Twelve independent
samples were analyzed from each group (High-Fat
Diet and Chow) from three animals with samples
from both right and left trigeminal ganglia. All proteins
expressed in less than half of the samples in each group
were filtered out, resulting in 6686 proteins used for
downstream analyses. The data was log-transformed
and normalized per sample. The missing values were
input using KNNImputer (n_neighbors=5) from sklearn
package (v. 1.2.1). With scanpy’s dendrogram function
scipy’s hierarchical linkage clustering was calculated
on a Pearson correlation matrix over groups which
was calculated for 50 averaged principal components.
To identify differentially regulated proteins across two
groups (HFD and Chow), we combined samples from
the right and the left trigeminal ganglia. Differential
expression analysis was conducted using Scanpy’s
method * rank_genes_groups’ with method set to "t-test
We applied a threshold of p < 0.05 and |log fold change|
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> 0.5 to identify differentially expressed proteins (DEPs).
These DEPs were subsequently visualized using volcano
plots. Pathway enrichment analysis was performed on
the combined up- and down-regulated proteins using
the KEGG and Reactome databases. The most relevant
pathways were highlighted, displaying the DEPs involved
in each pathway.

Statistical analysis

Results from biological replicates were expressed as
meants.e.m. Statistical analysis was performed using
GraphPad Prism (v.9). To compare two conditions,
unpaired Student’s t-tests or Mann—Whitney U-tests were
performed. Insulin tolerance tests were analyzed using
two-way ANOVA with Sidak’s multiple comparisons test.
Proteomics data analysis was performed as described
above.

Data and Code Availability
Supplementary Videos can be seen here:_http://dis-

cotechnologies.org/MouseMapper/
Whole body scans can be found to scroll through :

Chow-Nerve, HFD-Nerve, Chow-Inflammation, HFD-
Inflammation. Supplementary Videos can be viewed
here:discotechnologies.org/MouseMapper.Our
code will be made available here: https://github.com/
erturklab/mouseMapper
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Video legends

Supplementary Video 1. Whole-body reconstructions of
normal (left) and obese (right) UCHL1-EGFP mice. Peripheral
nerves (UCHL1-EGFP+) are shown in green, bones and or-
gans are shown in red (propidium iodide labeled) and muscle
(autofluorescence) is shown in blue.

Supplementary Video 2. Whole-body reconstructions of
normal (left) and obese (right) CD68-EGFP mice. Immune
cells (CD68-EGFP+) are shown in cyan, bones and organs
are shown in magenta (propidium iodide labeled) and muscle
(autofluorescence) is shown in yellow.

Supplementary Video 3. Whole-body reconstructions of a
chow-fed CD68-EGFP mouse showing CD68-EGFP+ cells in
the whole mouse. Immune cells (CD68-EGFP+) are shown

in cyan, bones and organs are shown in magenta (propidium
iodide labeled) and muscle (autofluorescence) is shown in
yellow.

Supplementary Video 4. Whole-body reconstructions of

a HFD-fed CD68-EGFP mouse showing infiltrating CD68-
EGFP+ cells in the whole mouse with accumulations in ScAT,
ViscAT and the peritoneum. Immune cells (CD68-EGFP+)
are shown in cyan, bones and organs are shown in magenta
(propidium iodide labeled) and muscle (autofluorescence) is
shown in yellow.

Supplementary Video 5. Representative chow-fed mouse
showing Al-segmented organs and tissue. Each color repre-
sents a different organ or tissue segmented using the Tissue-
Module of MouseMapper.

Supplementary Video 6. Representative obese mouse show-
ing Al-segmented organs and tissue. Each color represents a
different organ or tissue segmented using the Tissue-Module
of MouseMapper.

Supplementary Video 7. Representative obese CD68-EGFP
mouse showing Al-segmented immune cell clusters (blue:
small clusters, green: medium-sized clusters, red: large-sized
clusters).
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Suppl. Figure 1 — HFD-feeding associated with increased body weight.

a-b, Body composition analysis using EchoMRI of UCHL1 and CD68 —EGFP mice, (n=3/group, BW: Body weight). c¢-d Insulin
tolerance test. (n=3/group). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. e, Representative 3D reconstruction of a HFD-fed
UCHL1-EGFP animal to showcase expression of UCHL1-EGFP+ nerves shown in green in all panels. e-k, Zoomed in views of
dashed regions in (f) showing the heart demonstrating the nerves in the heart with yellow arrows, lungs in (g) nerves with blue
arrows, spleen in (h), nerves with white arrows, abdominal cavity with the kidneys and a part of the spleen in (i), nerves in the
visceral fat are shown here with pink arrows, brown adipose tissue (BAT) in (j) different zoomed in regions show the innervation
with orange arrows and lastly the the visceral and subcutaneous white adipose tissue (scWAT) in (k), light purple arrows show the
visceral fat innervation and the zoomed images with dark purple outline and arrows show the subcutaneous adipose tissue nerve
innervation. Right two panels depict different depths around the same subcutaneous fat region. The images are acquired with a
4x objective and are shown using different brightness and contrast settings in different organs. The thickness of the MIPs are as

follows : 500 ym in (f), 100 ym in (g), 230 um for left and 500 um for right panel in (h), 1500 pym in (i), 600 pm in (j) and 1500 pm
in (k).
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Suppl. Figure 2: Development of the Inmune-Module of MouseMapper

a, Images of indicated areas in chow and HFD-fed mice showing CD68-EGFP+ cells in cyan (WAT: white adipose tissue). b,
To train the Immune-Module, CD68-EGFP+ cells were annotated using virtual reality (VR). Annotations were used to train a
deep neural network, which generates the segmentation of CD68-EGFP+ cells as network output. ¢, 3D qualitative evaluation
of the network performance for the segmentation of CD68-EGFP+ cells based on instance dice. Areas that overlap with
reference annotations (TP) are masked in green, areas with no overlap in reference annotations (FP) are masked in red.
Undetected reference annotation areas (FN) are marked in blue. TP, true positive; FP, false positive; FN, false negative.
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Suppl. Figure 3 — High resolution CD68-EGFP organ comparison

a-h, Representative 3D reconstruction and 2D 60 ym thick maximum intensity projections (MIP) of (a) lung, (b) liver, (c) spleen,
(d) heart, (e) ScAT, (f) eWAT, (g) thymus and (h) accessory axillary lymph node from the CD68-eGFP mouse line after vDISCO
and light sheet imaging for chow and high fat diet fed animals. The left two columns represent the 3D reconstruction of the organs
and the right two columns represent the MIPs. For each representation chow fed animals are shown on the left column and the
high-fat diet fed animals are shown in the right column. The images are acquired with a 4x objective and are visualized using the
same brightness and contrast settings.
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Suppl. Figure 4: Al-based segmentation of organs and tissues with using the Tis-
sue-Module of MouseMapper.

a, Pipeline depicting the workflow of the organ and tissue segmentation model that was used in CD68-EGFP and UCHL1-EGFP
mouse lines. b-c, Representative obese mouse showing Al-segmented organs and tissue. Each color represents a different organ
or tissue segmented displaying b, ventral, c, sagittal view of the body. d-f Head from a representative chow animal in rostral
view with Al-segmented organs and tissues in different z-planes. g-h, Organ (g) and tissue volumes (h) segmented in UCHL1-
EGFP mice with the pipeline shown in a. White represents the chow group and green represents the HFD group. i-j, Organ (i)
and tissue (j) volumes segmented in CD68-EGFP mice with the pipeline shown in a. White represents the chow group and cyan
represents the HFD group. n=3/group, *p<0.05, **p<0.01, ***p<0.001.
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Suppl. Figure 5: Quantification of segmented nerves and 3D visualization of
UCHL1-EGFP mouse heads after vDISCO clearing, imaging, and reconstruction.

a, Total nerve voxels of segmented nerves in the whole body, fat and muscle. b-c, Organ-wise quantification of nerve density in
indicated organs/tissues. n=3/group, **p<0.01. d, Dorsal view of 3D reconstructions of heads of chow- and HFD-fed mice showing
UCHL1-EGFP+ nerves. e, Sagittal view of 3D reconstructions of heads of chow- and HFD-fed mice showing UCHL1-EGFP+
nerves. f, Zoomed-in images of the intricate nerve structures. White arrows indicate structural changes in the infraorbital nerve
across all panels.
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Suppl. Figure 6. Trigeminal ganglion proteome differences in chow vs high-fat diet

fed animals.
a, Dissected trigeminal nerve from UCHL1-EGFP mouse before (left) and after (right) puncture with the 18G needle. Red arrow
indicates the excised region that was subjected to proteomic analysis. b, number of protein groups detected in each
proteomic sample. Cho stands for chow group and HFD stands for high-fat diet-fed group. L stands for the left trigeminal ganglion
and R stands for the right trigeminal ganglion. ¢, Pathway analysis from the TG of chow vs HFD is depicted. The pathways that are
affected are shown on the y-axis of the plot. Gray bar on the left side of the plot represents the log10 of p-value of each pathway
whereas the right side of the plot depicts the number of proteins significantly different in each pathway, red representing the
number of up-regulated proteins and blue representing the number of down-regulated proteins. d, Western blot of protein lysates
from trigeminal ganglions of chow and HFD-fed mice to validate proteins that were differentially expressed in the proteomic
analysis: SEPTIN7, SERPINA1, p-ERK, and ERK proteins using western blot. Vinculin is shown as representative loading control
(n=3/group). e, Quantification of SEPTIN7, SERPINA1 and pERK/ERK protein levels detected in chow vs HFD groups (p<0.05 for
each difference in protein expression, n=3/group).
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Supplementary Table 1: Evaluation of different networks for nerve segmentation based on the
volumetric dice. The best performing scores are highlighted in bold. Our final 3D Unet is composed
of the same building blocks as the 3D Unet, but it has been trained with the addition of the
Centerline DICE score to loss function and for an extended (2000) number of epochs.

Attention | N Former | SWinUNETR | UNETR | VNET | 3D unet | Fnal3D
Unet Unet
Voxel
DICE 0.6521 0.6205 0.6318 05180 | 0.5161 0.6687 0.7694
Score

Supplementary Table 2: Evaluation of CD68 marker segmentation network. We report the average
voxel and instance DICE scores, as well as Betti Matching score, obtained on the validation set at
the end of training. Best scores are highlighted in bold. A high DICE score and low Betti Matching
score indicate good performance.

Scozcti']f’t‘:\c';‘j:;"ork AttentionUnet | NNFormer UNETR VNET 3D UNet
Voxel DICE 0.6685656 | 0.6895897 | 0.6835672 | 0.6987444 | 0.6868189
Instance DICE 0.83393675 | 0.8507939 | 0.8338425 | 0.8473859 | 0.85342973
Betti Matching Score | 0.416529168 | 0.397961519 | 0.463957805 | 0.430044453 | 0.36935299

Supplementary Table 3: Transfer learning abilities of the

CD68-EGFP segmentation network on new tissue types.

Organ Instance DICE score
Stomach 0.6963
Colon 0.6832
Liver 0.6759
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Supplementary Table 4: Organ segmentation performance of different baselines, per organ. We
evaluated state of the art architectures for 3D structure segmentation on a stand-alone test set,
comprised of 4 whole body mice (2 HFD, 2 chow). We report the average DICE score, per organ. Best
performing scores for each case are highlighted in bold.

Organ\
Network AttentionUnet NNFormer SwinUNETR 3D UNet
architecture
Spleen 0.91371775 0.94894576 0.93309945 0.91092151
Kidneys 0.97267586 0.93032014 0.89774877 0.9762361
Lungs 0.9401775 0.91957378 0.83477843 0.94498158
Heart 0.96156639 0.91270357 0.90297139 0.95824647
Brain 0.98283041 0.9677701 0.97718501 0.98289859
Gallbladder 0.7923587 0.49352396 0.54942632 0.7797811
Adrenal glands 0.9251489 0.82583666 0.79534006 0.93445438
Liver 0.95344108 0.93522882 0.91427165 0.95384806
Thymus 0.89085966 0.88994277 0.88707769 0.89394242
Lymph nodes 0.91784495 0.86091363 0.87262303 0.91692603
Gut 0.47927877 0.44504771 0.44276318 0.50523841
Diaphragm 0.72079068 0.70729929 0.69553173 0.74165958
Pancreas 0.58869672 0.56822401 0.41258866 0.62522465

Abdominal wall

(peritoneum) 0.84319705 0.82153213 0.82839638 0.84549576
Spinal cord 0.84208506 0.82547545 0.84191978 0.84481466
Testes 0.93766016 0.84609985 0.88627297 0.93748099
Preputial gland 0.92438507 0.90678233 0.88193274 0.92707711
Peyer patches 0.5689556 0.10222362 0.48704222 0.56012666
Vesicular gland 0.86798155 0.87190825 0.8211478 0.86536998
Bladder 0.49881184 0.33731034 0.35585785 0.51761812

Average 0.82612312 0.75583309 0.76089871 0.83111715
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Supplementary Table 5: Tissue segmentation performance of different architectures for the
indicated tissue types. We report the DICE score of 5-fold cross validation result on the final

epoch. Best performance is highlighted in bold.

Tissue\
Network AttentionUnet NNFormer UNETR VNET 3D UNet
architecture
Fat 0.904+0.017 0.864+0.038 0.864+0.032 | 0.152+0.304 0.908+021
Muscle 0.958+0.014 0.933+0.013 0.941+0.015 | 0.157+0.314 | 0.961+0.009
Bone 0.740+0.061 0.669+0.046 0.671+0.059 | 0.102+0.203 | 0.756+0.046
Bone 0.881+0.055 |  0.853+0.037 0.865:0.018 | 0.129+0.258 | 0.887+0.028
Marrow
Mean+STD | 0.873+0.028 0.832+0.018 0.839+0.020 | 0.224+0.228 | 0.880+0.017
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Supplementary Table 6: Organs and tissue volumes from CD68 and UCHL1-EGFP mouse scans were determined

by Al-based segmentation.

CD68-eGFP Chow mean HFD mean Difference between p-value
— means + SEM
spleen 24.98666667 17.18 -7.807 £ 2.965 0.058
kidneys 130.1333333 108.89 -21.24 + 25.20 0.4852
lungs 162.5933333 117.4766667 -45.12 £ 23.05 0.122
heart 144.37 137.1833333 -7.187 £ 27.44 0.8064
brain 245.1833333 228.9066667 -16.28 = 25.22 0.5538
gallbladder 3.163333333 3.126666667 -0.03667 + 0.9461 0.9709
adrenal glands 1.42 1.433333333 0.01333 +0.2532 0.9605
liver 534.6333333 1019.283333 484.7 £ 51.19 0.0007
thymus 8.673333333 8.893333333 0.2200 + 1.339 0.8775
lymph nodes 12.37333333 17.54666667 5.173 + 1.908 0.0534
stomach 92.86333333 68.50333333 -24.36 = 19.30 0.2756
small intestine 166.56 153.68 -12.88 + 48.34 0.8031
colon 175.9133333 49.62666667 -126.3 + 47.39 0.0561
diaphragm 49.63666667 52.14666667 -0.01000 + 19.49 0.9996
pancreas 99.58 50.74 -48.84 + 28.30 0.1595
abdominal wall 437.2366667 499.61 62.37 + 81.08 0.4846
spinal cord 55.77333333 40.93666667 -14.84 + 9.646 0.1988
testes 46.63333333 48.52333333 1.890 + 9.109 0.8458
preputial gland 38.17 39.13333333 0.9633 + 11.61 0.9378
peyer patches 0.956666667 1.186666667 0.2300 + 0.3235 0.5163
vesicular gland 108.17 145.9833333 -37.81333333 0.2
bladder 22.62 15.81666667 -6.803 = 5.077 0.2513
muscle 4546.926667 4669.773333 122.8 + 346.8 0.7411
fat 3714.77 10472.75 6758 + 997.3 0.0025
visceral fat 1264.936667 3269.026667 2004 + 383.0 0.0064
subcutaneous fat 2449.833333 7203.726667 4754 +£ 623.2 0.0016
UCHL1-eGFP Chow mean HFD mean Difference between p-value
means + SEM
spleen 23.79 21.10666667 -2.683 + 1.287 0.1053
kidneys 131.96 104.8433333 -27.12+9.279 0.0431
lungs 203.2533333 120.4066667 -82.85 + 32.57 0.0637
heart 131.7566667 117.9366667 -13.82 = 8.048 0.1611
brain 204.8966667 222.9933333 18.10 + 32.83 0.6108
gallbladder 2.386666667 2.043333333 -0.3433 + 0.6701 0.6354
adrenal glands 1.453333333 1.46 0.006667 + 0.2092 0.9761
liver 517.63 906.0033333 388.4 £ 194.6 0.1827
thymus 9.683333333 10.05666667 0.3733 + 2.154 0.8708
lymph nodes 14.67333333 20.48666667 5.813 +1.032 0.0049
stomach 291.66 101.69 -190.0 = 52.54 0.0224
small intestine 431.2966667 231.5 -199.8 + 89.52 0.0894
colon 211.6566667 262.3466667 50.69 + 84.85 0.5824
diaphragm 56.25666667 57.69333333 1.437 + 8.376 0.8721
pancreas 107.0166667 109.2033333 2.187 + 15.56 0.8951
abdominal wall 503.4766667 486.22 -17.26 + 18.54 0.4045
spinal cord 50.45333333 40.27666667 -10.18 = 3.420 0.0409
testes 44.75333333 29.51333333 -15.24 + 2.992 0.007
preputial gland 31.4 19.00666667 -12.39 + 4.341 0.0462
peyer patches 1.963333333 1.916666667 -0.04667 + 0.6190 0.9435
vesicular gland 161.02 140.2333333 -20.79 + 16.57 0.278
bladder 18.12 13.2 -4.920 = 7.062 0.5244
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