

1

2 Protective threshold of a potent neutralizing Zika virus monoclonal antibody in rhesus 3 macaques

4

5 Joseph P. Nkolola¹, David Hope¹, Ruaron Guan¹, Alessandro Colarusso¹, Malika Aid¹, Robert H.
6 Carnahan^{2,3}, James E. Crowe Jr. ^{2,3,4}, and *Dan H. Barouch¹

7

8 ¹Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA,
9 USA; ²Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA;

¹⁰Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

11 ⁴Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical
12 Center, Nashville, TN, USA

14 Author e-mails: jnkolola@bidmc.harvard.edu (Joseph Nkolola), dhope@bidmc.harvard.edu
15 (David Hope), rguan2@bidmc.harvard.edu (Ruaron Guan), acolarus@bidmc.harvard.edu
16 (Alessandro Colarusso), maid@bidmc.harvard.edu (Malika Aid), robert.carnahan@vumc.org
17 (Robert H. Carnahan), james.crowe@vumc.org (James E. Crowe Jr.)

*Corresponding author: Dan H. Barouch, M.D., Ph.D., Center for Virology and Vaccine Research, 330 Brookline Avenue, E/CLS-1043, Boston, MA 02115, USA.

Telephone: 617-735-4485; Fax: 617-735-4566; Email: dbarouch@bidmc.harvard.edu

22

23 **Abstract**

24 Zika virus (ZIKV) is a mosquito-borne flavivirus that caused a global pandemic in 2016-
25 2017 with continued ongoing transmission at low levels in several countries. In the absence of an
26 approved ZIKV vaccine, neutralizing monoclonal antibodies (mAbs) provide an option for the
27 prevention and treatment of ZIKV infection. Previous studies identified a potent neutralizing
28 human mAb ZIKV-117 that reduced fetal infection and death in mice following ZIKV challenge.
29 In this study, we report exquisite potency of ZIKV-117 in a titration study in rhesus macaques to
30 protect against ZIKV challenge. We show complete protection at a dose of 0.016 mg/kg ZIKV-
31 117, which resulted in median serum concentrations of 0.13 µg/mL. The high potency of this mAb
32 supports its potential clinical development as a novel biotherapeutic intervention for ZIKV.

33

34 **Importance**

35 In this study, we report the potency of the ZIKV-specific neutralizing antibody ZIKV-117
36 against ZIKV challenge in a titration study rhesus macaques. This high potency supports the
37 further development of this mAb for ZIKV.

38

39 **Key words:** Zika, biotherapeutic, antibody, non-human primate, efficacy

40

41 **Introduction**

42 Zika virus (ZIKV) is a member of the Flaviviridae family of positive-stranded RNA
43 viruses and was first isolated in a rhesus macaque in Uganda in 1947 and in humans in 1952^{1,2}.
44 Although primarily transmitted by the *Aedes aegypti* mosquito³, human-to-human transmission
45 can occur via sexual⁴, vertical⁵ and blood transfusion⁶ routes. ZIKV outbreaks were reported in
46 Micronesia in 2007⁷, Oceania in 2013–2014⁸, Brazil in 2015–2017⁹, and many countries in the
47 Americas in 2016-2017¹⁰ and was declared a public health emergency of international concern by
48 WHO¹¹. While 80% of persons infected with ZIKV are asymptomatic or mildly symptomatic,
49 during the 2015-2017 Brazilian epidemic a causal link was established between ZIKV infection
50 and microcephaly and other congenital malformations in pregnant women¹², as well as the
51 neurologic condition of Guillain-Barré syndrome in adults¹³.

52 Although Zika cases have decreased significantly in frequency since their peak in 2017,
53 the possibility of future outbreaks underscores the need for better preparedness, including the
54 development of vaccines and biotherapeutics¹⁴. A previous study reported the identification of a
55 potent neutralizing human mAb ZIKV-117, which was isolated from an otherwise healthy
56 individual with history of symptomatic ZIKV infection¹⁵. ZIKV-117 neutralized ZIKV strains
57 belonging to African, Asian and American lineages and mediated reduction of tissue pathology,
58 placental and fetal infection, and mortality in murine models of experimental infection¹⁵. More
59 recently, a nanostructured lipid carrier delivering an alphavirus replicon encoding ZIKV-117
60 showed robust protection both as a pre-exposure prophylaxis and post-exposure therapy in mice¹⁶.
61 The mechanism of neutralization afforded by the ZIKV-117 mAb involves binding to domain II
62 of the E protein on the ZIKV surface and cross-linking E glycoprotein dimers, resulting in
63 prevention of the rearrangement of E proteins necessary for low-pH mediated fusion¹⁷. In the

64 current study, we assessed the potency of ZIKV-117 in rhesus macaques to protect against ZIKV
65 challenge.

66

67 **Materials and methods**

68 *Study design.* 24 rhesus macaques were housed at Bioqual, Rockville, MD, and the study
69 was conducted in compliance with all relevant local, state, and federal regulations and was
70 approved by the Bioqual Animal Care and Use Committee (IACUC). Six groups of rhesus
71 macaques (*Macaca mulatta*) were intravenously (I.V.) infused on day -1 with ZIKV-117 mAb at
72 doses of 2.0, 0.4, 0.08, 0.016, 0.0032, or 0 mg/kg. To assess protective efficacy against ZIKV
73 challenge, all groups were challenged subcutaneously (S.Q.) on day 0 with 10^6 viral particles (VP)
74 [10³ plaque-forming units (PFU)] of ZIKV strain ZIKV-BR isolated from northeast Brazil^{18, 19}.

75 *Pharmacokinetics.* Serum levels of the ZIKV-117 mAb were monitored using a previously
76 described human IgG specific enzyme-linked immunosorbent assay (ELISA)²⁰. In brief, ELISA
77 plates were coated overnight at 4°C with 1 µg/mL of goat anti-human IgG (H+L) secondary
78 antibody (monkey pre-adsorbed) (Novus Biologicals) and then blocked for 2 hours. Serum samples
79 were assayed at 3-fold dilutions starting at a 1:3 dilution in Blocker Casein in PBS (Thermo Fisher
80 Scientific) diluent. Samples were incubated for 1 hour at ambient temperature and then removed,
81 and plates were washed. Wells then were incubated for 1 hour with horseradish peroxidase (HRP)-
82 conjugated goat anti-human IgG (monkey pre-adsorbed) (Southern Biotech) at a 1:4,000 dilution.
83 Wells were washed and then incubated with SureBlue Reserve TMB Microwell Peroxidase
84 Substrate (Seracare) (100 µL/well) for 3 min followed by TMB Stop Solution (Seracare) to stop
85 the reaction (100 µL/well). Microplates were read at 450 nm. The concentrations of the human

86 mAbs were interpolated from the linear range of concurrently run purified human IgG (Sigma)
87 standard curves using Prism software, version 11.0 (GraphPad).

88 *RT-PCR.* Plasma viral loads after ZIKV-BR challenge were monitored for 3 weeks using
89 a previously established reverse transcription-polymerase chain reaction (RT-PCR) assay¹⁹. In
90 brief, the wildtype ZIKV BeH815744 Cap gene was used as a standard and was cloned into
91 pcDNA3.1+, and the AmpliCap-Max T7 High Yield Message Maker Kit was used to transcribe
92 RNA (Cellscript, WI, USA). RNA was purified using the RNA clean and concentrator kit (Zymo
93 Research, CA, USA). Ten-fold dilutions of the RNA standard were reverse transcribed and
94 included with each RT-PCR assay. Viral loads were calculated as virus particles (VP) per mL.
95 Assay sensitivity was 50 copies/mL.

96 *Modeling.* Estimation of a protective threshold for ZIKV-117 prophylaxis was performed
97 by comparing ZIKV-117 mAb concentration in serum at the time of challenge with the time-
98 weighted average values for the change of sgRNA viral load in serum samples from day 1 to 10
99 after viral challenge. A fitting curve was estimated using the locally weighted scatterplot
100 smoothing (LOWESS) method as previously described²¹.

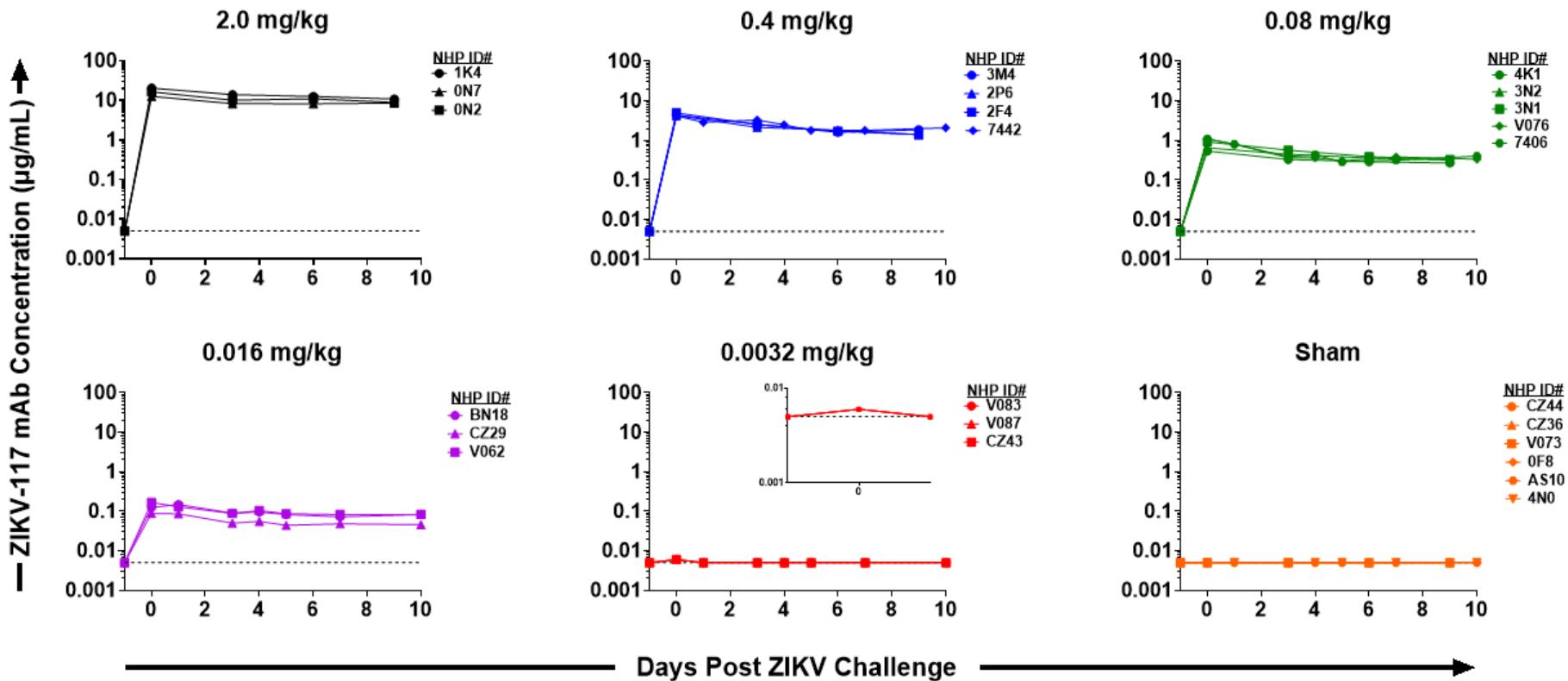
101

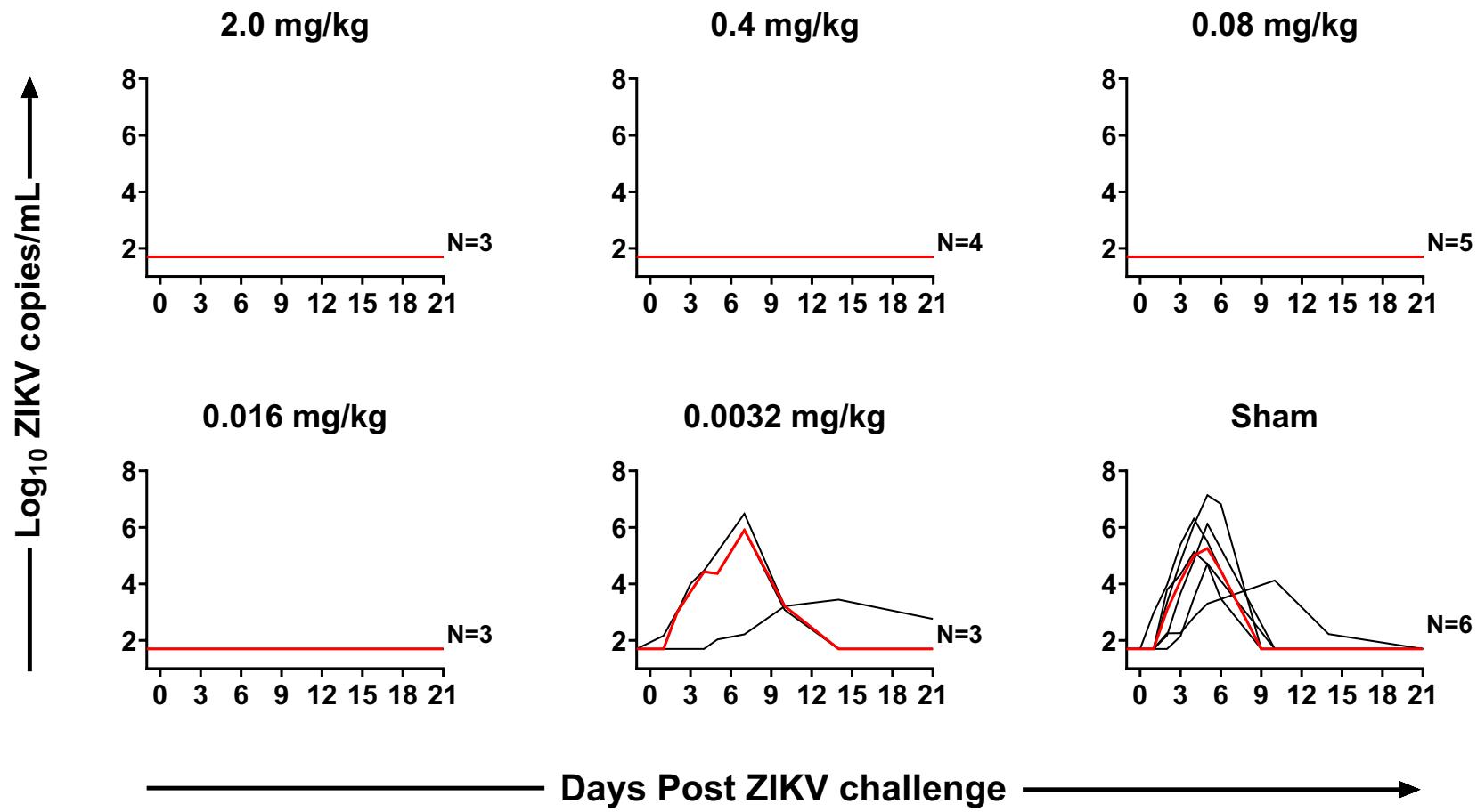
102 **Results and Discussion**

103 24 rhesus macaques received an I.V. infusion of 2.0 (N=3), 0.4 (N=4), 0.08 (N=5), 0.016
104 (N=3), 0.0032 (N=3), or 0 (N=6) mg/kg ZIKV-117 on day -1. Serum ZIKV-117 levels were
105 determined through day 10 by ELISA and showed the expected biphasic profile involving a rapid
106 distribution phase followed by a slower elimination phase (**Figure 1**). Peak mAb levels were
107 observed on day 0, one day following mAb administration. Animals that received 2.0, 0.4, 0.08,
108 0.016, 0.0032, and 0 mg/kg ZIKV-117 exhibited mean peak concentrations of 16.4, 4.5, 0.9, 0.13,

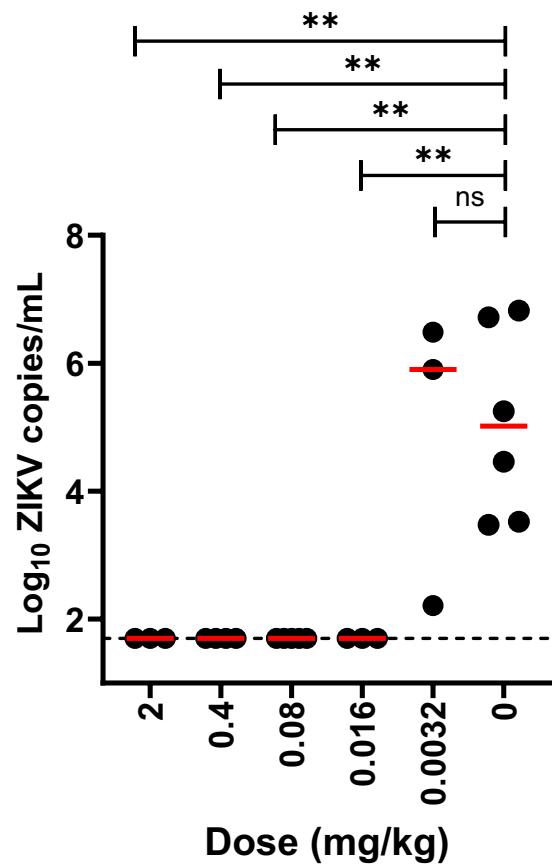
109 0.006, and 0 μ g/mL respectively on day 0 (**Figure 1**). Circulating ZIKV-117 levels were observed
110 over 10 days in all groups that received ZIKV-117, except for the 0.0032 mg/kg group for which
111 we only detected borderline ZIKV-117 levels on day 0. No ZIKV-117 levels were detected in the
112 sham control group.

113 All animals were challenged on day 0 with 10^6 VP ZIKV-BR by the S.Q. route. The ZIKV-
114 BR strain has been reported to recapitulate key clinical indications in wild-type SJL mice,
115 including fetal microcephaly and intrauterine growth restriction¹⁸. Sham-inoculated animals
116 demonstrated median peak viral loads of $4.7 \log_{10}$ copies/mL (range 3.3 to $7.1 \log_{10}$ copies/mL;
117 n=6) on day 5-6 following challenge (**Figure 2**). In contrast, animals that received 2.0, 0.4, 0.08,
118 and 0.016 mg/kg ZIKV-117 showed complete protection with no detectable viremia (<50
119 copies/mL) at all time points (**Figures 2, 3A**). Animals that received 0.0032 mg/kg ZIKV-117
120 showed median peak viral loads of $5.9 \log_{10}$ copies/mL (range 2.2 to $6.5 \log_{10}$ copies/mL; n=3) on
121 day 6-7 following challenge, comparable to the sham control animals (**Figures 2, 3A**).

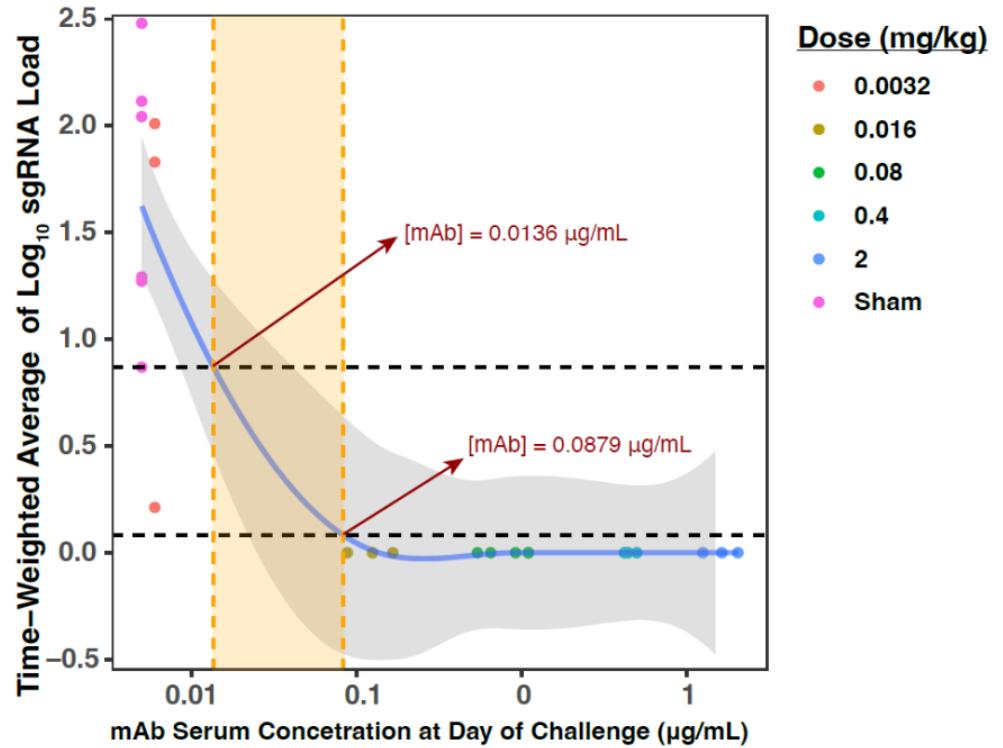

122 We observed complete protection at a dose of 0.016 mg/kg ZIKV-117, which corresponded
123 to median serum concentrations of 0.13 μ g/mL (**Figures 2, 3A**). To model the threshold for
124 protection more accurately, a fitting curve was estimated using the locally weighted scatterplot
125 smoothing (LOWESS) method and suggested that the ZIKV-117 protective threshold was 0.014 –
126 0.088 μ g/mL (**Figure 3B**). These data demonstrate the high potency of ZIKV-117 for protection
127 against ZIKV-BR challenge in rhesus macaques (**Figure 3B**).


128 At least 89 countries and territories have had mosquito-borne transmission of ZIKV²². In
129 this study, we show that ZIKV-117 is exquisitely potent for ZIKV protection in rhesus macaques.
130 Doses of 0.016 mg/kg ZIKV-117 provided complete protection in this model, suggesting that 0.13
131 μ g/mL is above the minimum protective threshold for this antibody. While a subset of potently

132 neutralizing antibodies that target the conformational epitope of surface E glycoprotein dimers of
133 both dengue virus and ZIKV have been identified²³, ZIKV-117 remains the only ultrapotent ZIKA-
134 specific neutralizing mAb to the best of our knowledge²⁴. Taken together, our data suggests the
135 potential of ZIKV-117 as a novel biotherapeutic for ZIKV.


136

137



A.

B.

149

150 **Figure 3**

151

152

153 **Figure Legends**

154

155 **Figure 1.** ZIKV-117 pharmacokinetics following infusion as measured by a human IgG-specific
156 ELISA. Each line corresponds to a single animal. The horizontal dashed line represents the
157 assay limit of detection (0.005 μ g/mL).

158

159 **Figure 2.** ZIKV-BR viral loads following challenge as determined by RT-PCR. Each black line
160 corresponds to a single animal and the red line depicts the median for each group.

161

162 **Figure 3. (A)** Comparison of peak median ZIKV viral loads in each group compared with sham
163 controls. The horizontal dashed line represents assay limit of detection (50 copies/mL). Adjusted
164 Kruskal-Wallis tests are shown; **P<0.05. **(B)** Time-weighted average (TWA) values for the
165 change of viral loads from day 1 to 10 after viral challenge (y-axis) compared with log serum
166 ZIKV-117 concentrations on the day of challenge (x-axis). The fitting curve was estimated using
167 the locally weighted scatterplot smoothing (LOWESS) method and is shown in purple, and gray
168 shading indicates the 95% confidence interval. Horizontal black dotted lines indicate designated
169 TWA thresholds for full (bottom line) and partial (top line) protection. Vertical dotted orange lines
170 indicate maximal and minimal predicted cutoff for protective antibody concentration in serum.

171

172 **Acknowledgements**

173 Authors would like to thank Camille Mazurek (BIDMC) for technical assistance.

174

175 **Author contributions**

176 The study was conceptualized by R.H.C., J.E.C, and D.H.B; J.P.N., D.H. and R.G. performed the
177 experiments; J.P.N., M.B. and A.C. performed data analyses; J.P.N and D.H.B. drafted the original
178 manuscript. All co-authors contributed to reviewing and editing the final manuscript.

179

180 **Correspondence**

181 Correspondence and requests for materials should be addressed to D.H.B.
182 (dbarouch@bidmc.harvard.edu).

183

184 **Funding**

185 This study was supported by Defense Advanced Research Projects Agency (DARPA) grant
186 HR0011-18-2-0001.

187

188 **Conflicts of Interest**

189 J.E.C. has served as a consultant for Luna Labs USA, Merck Sharp & Dohme Corporation,
190 Emergent Biosolutions, a former member of the Scientific Advisory Boards of Gigagen
191 (Grifols), of Meissa Vaccines, and BTG International, is founder of IDBiologics and receives
192 royalties from UpToDate. The laboratory of J.E.C. received unrelated sponsored research

193 agreements from AstraZeneca, Takeda Vaccines, and IDBiologics during the conduct of the
194 study. All other authors declare no competing interests.

195

196

197 **References**

¹ Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity.

Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952).

² MacNamara, F. N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. *Trans. R. Soc. Trop. Med. Hyg.* 48, 139–145 (1954).

³ Diagne CT, Diallo D, Faye O, Ba Y, Faye O, Gaye A, Dia I, Faye O, Weaver SC, Sall AA, Diallo M. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. *BMC Infect Dis.* 15:492 (2015)

⁴ Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. *Emerg Infect Dis.* 21(2):359-61 (2015).

⁵ Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB. Probable non-vector-borne transmission of Zika virus, Colorado, USA. *Emerg Infect Dis.* 17(5):880-2 (2011).

⁶ Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau VM, Broult J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. *Euro Surveill.* 19(14) (2014).

⁷ Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella

A, Biggerstaff BJ, Fischer M, Hayes EB. Zika virus outbreak on Yap Island, Federated States of Micronesia. *N Engl J Med.* 360(24):2536-43 (2009).

⁸ Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D. Zika virus, French polynesia, South pacific, 2013. *Emerg Infect Dis.* 20(6):1085-6 (2014)

⁹ Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K. First report of autochthonous transmission of Zika virus in Brazil. *Mem Inst Oswaldo Cruz.* 110(4):569-72 (2015).

¹⁰ Faria NR, Azevedo RDS, Kraemer MUG, Souza R, Cunha MS, Hill SC, Thézé J, Bonsall MB, Bowden TA, Rissanen I, Rocco IM, Nogueira JS, Maeda AY, Vasami FGDS, Macedo FLL, Suzuki A, Rodrigues SG, Cruz ACR, Nunes BT, Medeiros DBA, Rodrigues DSG, Queiroz ALN, da Silva EVP, Henriques DF, da Rosa EST, de Oliveira CS, Martins LC, Vasconcelos HB, Casseb LMN, Simith DB, Messina JP, Abade L, Lourenço J, Alcantara LCJ, de Lima MM, Giovanetti M, Hay SI, de Oliveira RS, Lemos PDS, de Oliveira LF, de Lima CPS, da Silva SP, de Vasconcelos JM, Franco L, Cardoso JF, Vianez-Júnior JLDG, Mir D, Bello G, Delatorre E, Khan K, Creatore M, Coelho GE, de Oliveira WK, Tesh R, Pybus OG, Nunes MRT, Vasconcelos PFC. Zika virus in the Americas: Early epidemiological and genetic findings. *Science* 352(6283):345-349 (2016).

¹¹<http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/>

¹² Mlakar J, Korva M, Tul N, Popović M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T. Zika Virus Associated with Microcephaly. *N Engl J Med* 374(10):951-8 (2016).

¹³ Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawché F. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. *Lancet* 387(10027):1531-1539 (2016).

¹⁴ Haque A, Akçeşme FB, Pant AB. A review of Zika virus: hurdles toward vaccine development and the way forward. *Antivir Ther* 23(4):285-293 (2018).

¹⁵ Sapparapu G, Fernandez E, Kose N, Bin Cao, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. *Nature* 540(7633):443-447 (2016).

¹⁶ Erasmus JH, Archer J, Fuerte-Stone J, Khandhar AP, Voigt E, Granger B, Bombardi RG, Govero J, Tan Q, Durnell LA, Coler RN, Diamond MS, Crowe JE Jr, Reed SG, Thackray LB, Carnahan RH, Van Hoeven N. Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. *Mol Ther Methods Clin Dev.* 18:402-414 (2020).

¹⁷ Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, Long F, Fokine A, Porta JC, Jiang W, Diamond MS, Crowe JE Jr, Kuhn RJ, Rossmann MG. A human antibody against Zika virus crosslinks the E protein to prevent infection. *Nat Commun.* 8:14722 (2017).

¹⁸ Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandão WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltrão-Braga PC. The Brazilian Zika virus strain causes birth defects in experimental models. *Nature* 534(7606):267-71 (2016).

¹⁹ Larocca RA, Abbink P, Peron JP, Zanotto PM, Iampietro MJ, Badamchi-Zadeh A, Boyd M, Ng'ang'a D, Kirilova M, Nityanandam R, Mercado NB, Li Z, Moseley ET, Bricault CA, Borducchi EN, Giglio PB, Jetton D, Neubauer G, Nkolola JP, Maxfield LF, De La Barrera RA, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH. Vaccine protection against Zika virus from Brazil. *Nature* 536(7617):474-8 (2016).

²⁰ Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schäfer A, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Martinez DR, Williamson LE, Chen EC, Jones T, Day S, Myers L, Hassan AO, Kafai NM, Winkler ES, Fox JM, Shrihari S, Mueller BK, Meiler J, Chandrashekhar A, Mercado NB, Steinhardt JJ, Ren K, Loo YM, Kallewaard NL, McCune BT, Keeler SP, Holtzman MJ, Barouch DH, Gralinski LE, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE Jr. Potently neutralizing and protective human antibodies against SARS-CoV-2. *Nature* 584(7821):443-449 (2020).

²¹ Cobb RR, Nkolola J, Gilchuk P, Chandrashekhar A, Yu J, House RV, Earnhart CG, Dorsey NM, Hopkins SA, Snow DM, Chen RE, VanBlargan LA, Hechenblaickner M, Hoppe B, Collins L, Tomic MT, Nonet GH, Hackett K, Slaughter JC, Lewis MG, Andersen H, Cook A, Diamond MS, Carnahan RH, Barouch DH, Crowe JE Jr. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. *Med.* 3(3):188-203.e4 (2022).

²² <https://www.who.int/publications/m/item/zika-epidemiology-update---february-2022>

²³ Renner M, Flanagan A, Dejnirattisai W, Puttikhunt C, Kasinrerk W, Supasa P, Wongwiwat W, Chawansuntati K, Duangchinda T, Cowper A, Midgley CM, Malasit P, Huiskonen JT, Mongkolsapaya J, Sreaton GR, Grimes JM. Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. *Nat Immunol.* 19(11):1248-1256 (2018).

²⁴ Woodson SE, Morabito KM. Continuing development of vaccines and monoclonal antibodies against Zika virus. *NPJ Vaccines* 9(1):91 (2024).