

1 **Study of excess manganese stress response highlights the central role of manganese
2 exporter Mn_x for holding manganese homeostasis in the cyanobacterium
3 *Synechocystis* sp. PCC 6803**

4

5 Mara Reis¹, Sanja Zenker¹, Prisca Viehöver², Karsten Niehaus³, Andrea Bräutigam¹, Marion
6 Eisenhut^{1*}

7

8

9 Author affiliations:

10 ¹Computational Biology, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld
11 University, Bielefeld, Germany

12 ²Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) and Faculty of
13 Biology, Bielefeld University, Bielefeld, Germany

14 ³Proteome and Metabolome Research, Center for Biotechnology (CeBiTec) and Faculty of
15 Biology, Bielefeld University, Bielefeld, Germany

16

17

18

19 *Correspondence:

20 Marion Eisenhut, marion.eisenhut@uni-bielefeld.de

21

22

23

24

25

26 Keywords:

27 cyanobacteria; manganese; toxicity; RNA-seq; regulation; transporter

28

29

30

31

32

33

34

35

36

37 **ABSTRACT**

38 Cellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced
39 within narrow borders. In cyanobacteria, sufficient Mn supply is critical for assuring the
40 function of the oxygen-evolving complex as central part of the photosynthetic machinery.
41 However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is
42 unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the
43 impact of excess Mn on physiology and global gene expression in the model organism
44 *Synechocystis* sp. PCC 6803. We compared the response of the wild type and the knock-out
45 mutant in the manganese exporter (Mnx), Δmnx , which is disabled in the export of surplus Mn
46 and thus functions as model for toxic Mn overaccumulation. While growth and pigment
47 accumulation in Δmnx was severely impaired 24 h after addition of 10-fold Mn, the wild type
48 was not affected and thus mounted an adequate transcriptional response. RNA-seq data
49 analysis revealed that the Mn stress transcriptomes were partly resembling an iron limitation
50 transcriptome. However, the expression of iron limitation signature genes *isiABDC* was not
51 affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation
52 in *Synechocystis*. We suggest that the Ferric uptake regulator, Fur, gets partially mismetallated
53 under Mn excess conditions and thus interferes with an iron-dependent transcriptional
54 response. To encounter mismetallation and other Mn-dependent problems on protein level,
55 the cells invest into transcripts of ribosomes, proteases, and chaperones. In case of the Δmnx
56 mutant the consequences of the disability to export excess Mn from the cytosol manifest in
57 additionally impaired energy metabolism and oxidative stress transcriptomes with fatal
58 outcome. This study emphasizes the central importance of Mn homeostasis and the
59 transporter Mnx's role in restoring and holding it.

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74 **INTRODUCTION**

75 All organisms rely on an adequate manganese (Mn) supply to maintain the functions of
76 enzymes, such as glycosyl transferases, oxalate oxidase, or Mn-dependent superoxide
77 dismutase [1, 2]. Organisms performing oxygenic photosynthesis have in comparison to non-
78 photosynthetic organisms a 100-fold higher demand for Mn since they use Mn for the oxidation
79 of H₂O at the oxygen-evolving complex (OEC) [3]. The OEC is a central part of photosystem II
80 (PSII) and hosts the catalytic Mn cluster (Mn₄CaO₅), stabilized by PsbO, PsbP, and PsbQ in
81 plants and PsbO, PsbU, and PsbV in cyanobacteria, respectively [4–8]. To ensure proper
82 provision of Mn to the OEC, the model cyanobacterium *Synechocystis* sp. PCC 6803 (hereafter
83 *Synechocystis*) maintains cellular Mn homeostasis. In a light dependent manner, Mn is
84 imported via outer membrane pores with a low selectivity to the periplasm [4, 9]. Here, 75 %
85 of the cell's Mn pool are stored and bound either to the outer membrane or Mn cupin A (MncA)
86 [4, 8]. The remaining 25 % are located in the cytoplasm or in the thylakoid system [3, 8, 10]
87 and are associated with nucleic acids and small molecule chelates or bound to different
88 metalloproteins [11]. To match the high Mn demand of the OEC, Mn is transported into the
89 cytoplasm by two different Mn import systems. Recently, two members of the unknown protein
90 family 0016 (UPF0016), the hemi manganese exchangers (Hmx) 1 and 2 were demonstrated
91 to facilitate constitutive Mn uptake via the plasma membrane [12]. Upon limited Mn supply (<
92 1 μM, [13]), Hmx1/2 uptake is assisted by the high-affinity ABC-type transporter MntCAB (Mn
93 transporter), which is transcriptionally regulated by the ManSR (manganese sensor / regulator)
94 two-component system [13–15]. If Mn supply is sufficient (> 1 μM) Mn²⁺-ions bind to amino
95 acid residues in the periplasmic loop of the sensor protein ManS. This leads to
96 autophosphorylation of ManS, which phosphorylates the response regulator ManR
97 subsequently. Phosphorylated ManR binds to the promoter of the *mntCAB* operon, blocking
98 its expression. On the contrary, when Mn is scarce, ManS is not activated by phosphorylation,
99 ManR not phosphorylated and the *mntCAB* operon is expressed, leading to increased import
100 of Mn [13, 14]. Cytoplasmic Mn is either used in the cytoplasm by Mn-requiring enzymes or is
101 further distributed to the thylakoid lumen by the Mn exporter (Mnx) also known as
102 Synechocystis Photosynthesis Affected Mutant 71 (SynPAM71), another member of the
103 UPF0016 [10, 16]. Though it is questionable whether Mn limited conditions occur in aquatic
104 environments, in lab experiments very low Mn supply (< 0.1 μM) leads to decreased
105 photosynthetic activity since the H₂O oxidation capacity of the OEC is lowered and as a
106 consequence the overall growth rate is reduced [17].

107 In contrast to Mn limitation, Mn excess has not been studied in detail in cyanobacteria,
108 yet. A surplus of Mn results in decreased chlorophyll a content and reduced photosystem I
109 (PSI) activity on the physiological level and eventually leads to cell death in *Synechocystis* [10,
110 16]. The mechanism of this Mn toxicity is not well understood. Besides induction of iron (Fe)

111 limitation, the most plausible mode of action is the mismetallation of enzymes and regulatory
112 proteins, changing or abolishing their activity [8, 18]. According to the Irving-Williams series
113 ($Mg^{2+} < Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$), different metal ions compete with each other
114 to be bound by amino acid residues [8, 19]. Correct metalation is only favored due to strictly
115 controlled concentrations of the different metals at the site of metal incorporation during or after
116 protein biosynthesis [20]. The vital importance for controlling the intracellular Mn concentration
117 and subcellular allocation could be demonstrated for the mutant in the thylakoid Mn transporter
118 Mnx [10]. Mnx transports Mn from the cytoplasm into the thylakoid lumen, where the OEC and
119 the highest demand for Mn supply is located. The knock-out mutant Δmnx displays high light
120 sensitivity and a significantly longer recovery time compared to the wild type (WT) after
121 photoinhibition, presumably due to the lack of Mn in the thylakoid lumen for enabling the high
122 D1 turnover [10]. It was shown that the Δmnx mutant is highly sensitive towards Mn excess
123 conditions in general and displays a lethal phenotype upon Mn stress as it accumulates Mn
124 intracellularly [10]. Obviously, the subcellular Mn pools need to be carefully maintained at
125 constant levels to ensure proper cell growth and Mnx plays a critical role in the correct
126 subcellular Mn distribution [10]. However, it is not understood why the cytoplasmic Mn overload
127 in *Synechocystis* is detrimental.

128 In this study, we aimed at a mechanistic understanding of the Mn excess response in
129 the cyanobacterium *Synechocystis*. To this end, we grew *Synechocystis* cells under standard
130 (1x) $MnCl_2$ and excess (10x) $MnCl_2$ conditions and investigated physiological and
131 transcriptional effects. We studied the WT and the mutant Δmnx , which is defective in the
132 export of Mn from the cytosol. The WT survives 10x Mn and hence displays an adequate
133 transcriptional response. Δmnx succumbs to 10x Mn and shows a similar though more
134 pronounced transcriptional response in comparison to the WT. According to our results, Mn
135 excess induces a transcriptional Fe acclimation response with significantly reduced PSI and
136 PSII, phycobilisomes, and Fe importer transcript abundances in both cell lines. We suggest
137 that mismetallation of the transcriptional regulator Ferric uptake regulator (Fur) is one
138 causative factor. In addition, the Δmnx mutant displays a significant transcriptional reduction
139 of ATPase and carbon metabolism genes in general and shows features of a response towards
140 oxidative stress. Protective mechanisms are not sufficient to compensate for the Mn-
141 dependent mismetallation, energy depletion, and reactive oxygen species (ROS) generation
142 in the Δmnx mutant with fatal outcome.

143

144

145

146

147

148 **METHODS**

149 **Cyanobacterial strains and growth conditions**

150 A *Synechocystis* sp. PCC 6803 glucose-tolerant (Japan) strain served as the WT. The Δmnx
151 mutant line was generated in a previous study by insertion of a kanamycin resistance cassette
152 into the *mnx* (sll0615) open reading frame [10]. Cells were grown in BG11 medium, pH 7.5
153 [21]. Cultivation in Erlenmeyer flasks was performed on a shaker at 100 rpm, 30 °C, and
154 continuous LED illumination at an intensity of 100 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. For the Δmnx mutant
155 line, the medium was supplemented with 50 $\mu\text{g } \mu\text{L}^{-1}$ kanamycin. Before sampling for RNA
156 isolation, cells were resuspended in fresh medium, adjusted to an optical density at 750 nm
157 (OD_{750}) of 0.3 and cell suspensions split into two flasks per strain. BG11 medium in one flask
158 was supplemented with standard concentration of MnCl_2 (1x Mn, 9 $\mu\text{M MnCl}_2$). BG11 medium
159 in the other flask was supplemented with excess MnCl_2 (10x, 90 $\mu\text{M MnCl}_2$). All treatments
160 were performed in biological triplicates. After 24 h cultivation, 10 mL samples were taken from
161 each culture and centrifuged in pre-cooled tubes for 10 min at 3,000 rpm, 4 °C. Cell pellets
162 were snap-frozen in liquid N_2 and stored at -80 °C until further use.

163

164 **Drop tests**

165 For the drop test assays, *Synechocystis* cultures were grown as described above in BG11
166 medium with standard concentration of 9 $\mu\text{M MnCl}_2$ and adjusted to an OD_{750} of 0.2. Dilutions
167 of the cell suspensions 1:10, 1:100, and 1:1,000 were prepared and 2 μL of each dilution
168 dropped onto BG11 agar plates [21] containing different concentrations of MnCl_2 and/or Fe-
169 NH_4 -citrate. Afterwards, plates were grown for 5 d at 30 °C under continuous illumination of
170 100 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$.

171

172 **Growth performance and pigment measurements**

173 To determine the growth rate of WT and Δmnx under Mn standard conditions and Mn excess
174 conditions, growth curves were generated. For this approach, liquid cultures were grown as
175 described above in Erlenmeyer flasks on a shaker. After precultivation, two 50 ml batches of
176 WT and Δmnx mutant with an OD_{750} of 0.2 were filled into growth tubes for the Multi-Cultivator
177 MC-1000-OD (Drásov, Czech Republic, Photon Systems Instruments) and 9 μM or 90 μM
178 MnCl_2 were added to one tube of WT and Δmnx , respectively. The cultures were grown for 7
179 d bubbled with filtered ambient air under constant illumination of 100 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ at
180 30 °C. To estimate the growth rates, the OD_{750} was recorded every 20 minutes. The growth
181 rate was determined during the logarithmic growth phase (0 h to 24 h and 24 h to 96 h) using
182 the formula:

183
$$\text{growth rate } \mu [\text{h}^{-1}] = \frac{\ln (\text{OD}_{750} t_2 [\text{h}] * 1000 * \text{dilution factor}) - \ln (\text{OD}_{750} t_1 [\text{h}] * 1000 * \text{dilution factor})}{t_2 [\text{h}] - t_1 [\text{h}]}$$

184 To calculate the chlorophyll *a*, phycocyanin, and carotenoid content, OD₆₈₀ (chlorophyll *a*),
185 OD₆₂₅ (phycocyanin), and OD₄₉₀ (carotenoids) were measured every 24 h in triplicates.
186 Pigment contents were estimated according to [22].

187

188 **RNA-seq analysis**

189 RNA was extracted from cell pellets using the Qiagen® RNeasy Plant Mini Kit (Hilden,
190 Germany, Qiagen GmbH) following the manufacturer's instructions with 10 µL 2-
191 mercaptoethanol per 1 mL RLT buffer. For cell lysis, 500 µL beads with a size of 0.2 – 0.4 µm
192 were used in a Precyllis Evolution cell lyser (Montigny-le-Bretonneux, France, Bertin
193 Technologies) for 4 x 30 s at 2,000 rpm with 15 s pauses in between. RNA was prepared
194 according to the Illumina® TruSeq Stranded Total RNA With Illumina Ribo-Zero Plus
195 (Hayward, USA, Illumina). Procedure of rRNA depletion and preparation of the library were
196 conducted as stated in the protocol of the corresponding reference guide from Illumina. The
197 library-pool was sequenced using the Illumina® NextSeq500 with 76 BP SR (single read) at a
198 HighOutput Flowcell.

199 All data analyses were performed with R 4.3.0. Differential gene expression analysis
200 was performed with edgeR using the classic test followed by Benjamini-Hochberg multiple
201 hypothesis correction [23, 24]. A principal component analysis was performed on transcript per
202 million (TPM) values using the prcomp function with parameters scale = T and center = T.
203 Loadings were calculated, the six highest absolute values for component 1 and 2 were
204 selected, and colored by the highest level KEGG Kyoto Encyclopedia of Genes and Genomes
205 (KEGG) [25] map annotation.

206

207 **KEGG Enrichment**

208 KEGG Ontology (KO)-term annotations were retrieved from eggNOG-mapper [26] with default
209 parameters, KAAS [27] against *Synechocystis* sp. PCC 6803, *Synechocystis elongatus* PCC
210 7942, *Nostoc* sp. PCC 7120, and *Arabidopsis thaliana*, as well as directly downloaded from
211 KEGG. The coding sequences from *Synechocystis* sp. PCC 6803 were used to obtain KO-
212 term annotations from KAAS and eggNOG. Enrichments of significantly differentially abundant
213 transcripts were tested on the “KEGG map” annotation level as well as the “KEGG module”
214 level for the mutant and control, using Fisher's exact tests [28]. Up-regulated genes were
215 defined as those with a log₂-fold change > 0 with *q*-value < 0.05 and down-regulated genes as
216 log₂-fold change < 0 and *q*-value < 0.05. Enrichments on the PCA eigenvalues were done as
217 described above separately for positive and negative values using a cut-off of 0.015 and
218 Fisher's exact test. Enrichments with a *P*-value ≤ 0.05 were considered significant.

219

220

221 **Data availability**

222 All code used in this analysis is available on GitLab (<https://gitlab.ub.unibielefeld.de/computationalbiology/mn-excess-rna-seq>; will be made public upon publication).
223 The RNA-seq data set is available at the European Nucleotide Archive (ENA) with the project
224 ID PRJEB75422. A table with transcript abundances and statistical data for all genes is
225 provided in Table S1.

226

227

228 **RESULTS**

229 **Mn excess impairs growth and pigment accumulation of Δmnx**

230 To assess the physiological impact of different Mn regimes on WT and the Δmnx mutant line,
231 growth rates and pigment contents were determined. To this end, cells were inoculated into
232 BG11 medium supplemented with either the standard concentration of MnCl₂ (1x Mn, 9 μ M
233 MnCl₂) or with an excess concentration of MnCl₂ (10x Mn, 90 μ M MnCl₂) and grown for 4 d. A
234 pale green phenotype was observed for the Δmnx mutant in comparison to the WT under both
235 standard growth conditions and Mn stress conditions (Fig. 1A). The growth rates for the first
236 24 h after transfer to excess Mn medium did not significantly differ between all cultures (Fig.
237 1B). However, the growth rate determined for the 24 h-to-96 h interval demonstrated a
238 significantly depleted growth of the Δmnx mutant when grown under Mn excess (10x Mn)
239 conditions (Fig. 1C). The rate was highly variable for the Δmnx mutant in standard
240 concentrations (Fig. 1C). The WT was not affected in growth by the elevated levels of Mn. With
241 respect to pigment levels, the Δmnx mutant grown in Mn excess accumulated significantly
242 lower levels of chlorophyll a (Fig. 1D) and phycocyanin (Fig. 1E) over time. The carotenoid
243 level was slightly but significantly reduced only after 48 h of growth under Mn excess conditions
244 in the Δmnx mutant (Fig. 1F). On the basis of these results we selected the timepoint 24 h after
245 the experimental start to study effects of Mn treatment on the transcriptome of WT and mutant
246 to avoid pleiotropic cytotoxic effects. At this time point Δmnx shows first symptoms, such as
247 reduced pigmentation, but still grows WT-like.

248

249 **Transcriptional profile of the Δmnx mutant is more strongly affected by Mn excess than
250 the WT**

251 To assess the effect of excess Mn on the transcriptomes of WT and the Δmnx mutant, three
252 independent biological transcriptomes for each line were analyzed after 24 h growth under
253 standard Mn and excess Mn treatment. The principal component analysis (PCA) of the
254 transcript abundances does not show strong transcriptome differences between WT and
255 mutant under 1x Mn treatment as their samples cluster together (Fig. 2A). The PCA revealed
256 the Mn treatment as the major factor (PC1) contributing to 44 % of the variation, while the
257

258 intracellular Mn allocation likely accounts for the 18 % variation in PC2 (Fig. 2A). A larger
259 distance between the Mn excess treated Δmnx to 1x samples compared to the WT replicates
260 was observed in the first dimension. In addition, WT samples under excess Mn clustered away
261 from all others in the second dimension. This result indicates a quantitative difference in the
262 transcriptional response upon Mn excess in WT and Δmnx cells and a qualitative difference in
263 the response of WT to excess Mn. To gain first insight into the major contributing genes and
264 their functional classification, component loading of the PCA was extracted and the first twelve
265 components examined (Fig. 2B, Table S2). For PC1, *hemF* (sll1185, assigned to KEGG map
266 “Porphyrin metabolism”), *cpgG* (sll2051, “Photosynthesis proteins”), a protein of unknown
267 function (sll0554, “NA”), *apcC* (sll3383, “Photosynthesis proteins”), *por* (sll0506, “Porphyrin
268 metabolism”), and *psbA2* (sll1311, “Photosynthesis proteins”) have the strongest absolute
269 impact. For PC2, *pstC1* (sll0681, “Transporters”) and *pstA1* (sll0682, “Transporters”), *feoB*
270 (sll1277, “Transporters”), *pilQ* (sll1277, “Bacterial motility proteins”), and two proteins of
271 unknown function (sll0182 and sll1106, “NA”) have the biggest absolute influence (Fig. 2B,
272 Table S2). An enrichment of transcript’s eigenvalues shows enrichments for PC1 for
273 “Photosynthesis”, “Carbon fixation, and “Ribosomes” and for PC2 for “Ribosomes”,
274 “Photosynthesis, “Prokaryotic defense”, and “Transporters” (Table S3).

275 As suggested by the PCA, comparison of the number of differentially expressed genes
276 (DEGs) upon Mn excess treatment to standard Mn concentrations showed differences
277 between WT and mutant. In the WT, 1,026 transcripts were found significantly changed ($q <$
278 0.01, 27.8 % of all genes), with 499 genes showing enhanced transcript abundances and 527
279 genes showing reduced transcript abundances (Fig. 2C) 24 h after Mn excess treatment. Cells
280 of the Δmnx mutant had 1,528 significantly ($q < 0.01$, 41.4 % of all genes) changed transcripts,
281 with 733 genes showing enhanced transcript abundances and 795 genes showing reduced
282 transcript abundances (Fig. 2D). Calculating DEGs between genotypes within a treatment
283 resulted in 25 significantly changed ($q < 0.01$, 0.7 % of all genes) genes under Mn control
284 conditions (Fig. S1A, Table S4-1) and 862 significantly changed ($q < 0.01$, 23.3 % of all genes)
285 genes under Mn excess conditions (Fig. S1B, Table S4-2), which agrees with the clustering of
286 samples in the PCA (Fig. 2A). A scatterplot of the analyzed transcript abundance in WT and
287 Δmnx showed an apparently linear relationship between the transcriptional response of both
288 WT and Δmnx (Fig. 2E). The genes with the strongest transcriptional response had similar
289 magnitude of response in mutant and WT while the genes with a more modest response
290 between 4-fold up and down showed a stronger response in the mutant (Fig. 2E). The
291 transcripts most impacted by Mn excess in both genotypes are mostly uncharacterized genes
292 located on the extrachromosomal plasmids pSYSM, pSYSA and pSYSX (\log_2 -fold change $>$
293 $|1.5|$, Table S5. In addition, also *futC* (sll1878) and *exbD1* (sll1405), which are Fe responsive
294 genes [29] were severely affected in their transcript abundance (Table S5). A small subset of

295 transcripts falls away from the linear relationship (Fig. 2E) and likely represents those loading
296 the PC2 of the PCA (Fig. 2A). These 81 transcripts include 20 with higher abundance in WT
297 but lower in the mutants, such as *cbbL* (s/r0009) or *petC* (s/l1316), and 61 with significantly
298 lower abundance in WT but higher in the mutant, such as *hliA* (s/s2542) or *ycf64* (s/r1846)
299 (Table S6). With the exception of a transposase and a gene without annotation, all transcripts
300 are changed less than 2-fold in WT (Table S6).

301 These results indicate that WT and Δmnx display a shared response to Mn stress, but
302 the Δmnx mutant line is more affected by Mn excess and the WT shows a small exclusive
303 response.

304

305 **The functional transcriptome response largely overlaps between WT and Δmnx mutant**
306 For a detailed and mechanistic understanding of the Mn excess response, we analyzed the
307 shared *versus* the strain specific transcriptional responses (DEGs with \log_2 -fold change $\leq |1|$
308 and $q \leq 0.01$) of WT and mutant.

309 WT and mutant share a response of 751 transcripts (Fig. 3A, B) despite displaying large
310 differences in growth behavior (Fig. 1). The 400 shared less abundant transcripts represent 76
311 % of all less abundant WT transcripts but only 50 % of the genes with reduced transcript
312 abundance in the Δmnx mutant (Fig. 3A). Among the 351 shared transcripts with enhanced
313 abundances, the overlap was similar with 70 % for the WT and 52 % for the Δmnx mutant (Fig.
314 3B).

315 To gain functional insights, we tested for enrichments of pathways using KEGG map
316 annotations (Table S7) and sub-categories annotated as KEGG modules (Table S8). 24 h after
317 Mn excess treatment, both WT and Δmnx mutant showed for their genes with reduced
318 transcript abundances (Fig. 3C) significant enrichment ($P \leq 0.05$) of the KEGG maps
319 “Photosynthesis”, “Photosynthesis proteins” and “Antenna proteins”. On the more specific
320 KEGG module level, “PSI” was enriched for both strains. The biosynthesis of 3-deoxy-D-
321 manno-octulosonic acid-lipid A (KDO₂-lipid A), a component of the lipopolysaccharide layer of
322 the outer membrane in gram-negative bacteria [30], was the only pathway that was
323 downregulated in the WT according to KEGG modules enrichment as was lysine degradation.
324 The Δmnx mutant line solely showed enrichments of several pathways in C metabolism. The
325 KEGG module enrichments ($P \leq 0.05$) revealed reduced transcripts (Fig. 3C) corresponding
326 to the modules “Calvin-Benson-Bassham (CBB) cycle”, “Glycolysis”, “Entner-Doudoroff
327 pathway”, and “F-type ATPase”, and corresponding to the maps “Ile biosynthesis”, “Heme
328 biosynthesis”, “CO₂ fixation”, “Replication and repair” only in the Δmnx mutant line.

329 With regard to genes with enhanced transcript abundances upon Mn excess treatment
330 (Fig. 3D), WT and Δmnx mutant shared enrichment of the categories “NAD(P)H:quinone
331 oxidoreductase”, “ β -carotene biosynthesis”, “Ribosomes”, and “Signaling proteins”. While the

332 specific WT response of 148 transcripts did not show any further enrichment, the Δmnx mutant
333 was affected additionally in “Ubiquinone biosynthesis”, “Chaperones and folding catalysts”,
334 “Carotenoid biosynthesis”, “Carbohydrate metabolism”, and “Glutathione metabolism”.
335

336 **Mn importer MntCAB is reduced in transcript abundance upon Mn excess treatment**

337 We hypothesized that Mn excess affects the expression patterns of genes that encode proteins
338 involved in Mn homeostasis (Fig. 4, [8]). The gene transcripts of the low-Mn inducible high-
339 affinity Mn importer MntCAB [31] were significantly less abundant in both WT and mutant. The
340 second, constitutive Mn import system Hmx1/2 [12], was not significantly changed in transcript
341 abundances in both strains. In the WT, also the Mn exporter gene *mnx* was not affected on
342 transcript level. Transcripts of PratA, which is postulated to function in loading of the pre-D1
343 protein with Mn, was significantly more abundant with even higher induction in the Δmnx
344 mutant line [32]. In accordance, levels of *psbA2* and *psbA3*, encoding D1, were significantly
345 upregulated in both genotypes but even higher in Δmnx upon Mn excess treatment. For the
346 Mn responsive two-component system ManSR, transcript abundances of ManS were
347 unaffected, while transcript levels of ManR were significantly induced in the mutant only. Since
348 metal transporters may be co-regulated under metal stress situations, we investigated also
349 expression of metal ion transport systems for Ca, Cu, Mg, Mo, Ni, Co, Zi, and K (Table S9)
350 [33]. We found for the genes *copBAC* significantly higher abundances in both cell lines. Copper
351 resistance protein BAC (CopBAC) is a cation efflux transporter, which is known to export
352 copper [33].

353

354 **Transcriptional Mn excess response is partially congruent with Fe acclimation response**

355 Since studies on *Escherichia coli* (*E. coli*) have demonstrated that Mn excess induces Fe
356 limitation [18] and the most affected genes in our work are known to be Fe responsive (Fig.
357 2E), we hypothesized that the Mn excess transcriptomes show features of an Fe limitation
358 response. To test this hypothesis, we compared our transcriptome data to transcriptomic data
359 of Fe limitation in *Synechocystis* for major Fe-responsive pathways (Fig. 5, [29]). Transcript
360 abundances of photosynthesis (phycobilisome, PSI, PSII, and ATPase) and CBB cycle
361 corresponding genes were significantly reduced upon Mn treatment as they are in Fe limitation
362 (Fig. 5). Three genes behaved opposite in Mn excess compared to Fe limitation, *psaA* was
363 upregulated in Fe limitation but reduced in Mn excess, and for the D1 encoding genes *psbA2*
364 and *psbA3* no information is available in Fe limitation but they were upregulated in Mn excess.
365 Fe limitation induces chaperones and proteases [29, 34] and in Mn excess transcripts
366 encoding chaperones and proteases were more abundant (Fig. 5). Other genes from known
367 Fe limitation response pathways reacted under Mn excess conditions in a reverse manner.
368 Transcripts encoding carboxysomal proteins, as part of the carbon concentrating mechanism

369 (CCM) had enhanced transcript levels under Mn excess (Fig. 5). Transcripts encoding the
370 major Fe importer in the plasma membrane, ATP-binding cassette-type Fe(III) transporter
371 *FutABC*, *futABC* were significantly less abundant under Mn excess conditions, while Fe
372 limitation leads to enhanced transcript levels [35]. Transcript accumulation of other genes
373 encoding Fe importers, such as *ferrous iron transport protein B*, *feoB*, was significantly reduced
374 under Mn excess in WT only. The energy transmitter genes *tonB* and *exbD1/B1* were
375 significantly reduced in transcript abundance, compared to the control as were the genes for
376 outer membrane channel proteins (OMPs). The typical Fe limitation indicative genes iron
377 stress induced (*isi*) *isiA* and *isiB* were not significantly altered in their transcript abundances.
378 The inconsistent pattern led to a non-significant overlap between the transcriptome responses
379 of Mn excess and Fe limitation as tested by hypergeometric distribution calculation (Table
380 S10).

381 To get a fuller picture, we also investigated functional categories associated with above
382 mentioned pathways but not specifically mentioned in the iron limitation data set [29]. Studying
383 expression of transcription factors that are known to be intrinsic regulators of Fe
384 homeostasis in *Synechocystis*, that are Fur, SufR, and PchR [36, 37] we found for *fur* and *sufR*
385 significantly stronger transcript levels especially in Δmnx , while *pchR* was reduced (Fig. 5).
386 Connected to the light reactions of photosynthesis, we detected mostly reduced transcript
387 levels of genes involved in heme and chlorophyll biosynthesis with the exception of cytochrome
388 c biogenesis in Mn excess and mixed pattern in significantly changed transcripts the Fe
389 limitation data (Fig. 5). Fe-S cluster biogenesis is an exception to shared WT and mutant
390 excess Mn responses. It is majorly operated by the sulfur utilization factor (Suf) system in
391 *Synechocystis* and was only enhanced on transcript level of the *sufBCDS* operon in the Δmnx
392 mutant again with mixed responses observed in Fe limitation (Fig. 5). With regard to Fe storage
393 the transcriptional response to Mn excess is varied. The two bacterioferritin (bfr) family protein
394 genes *bfrA* and *bfrB* [38] were both reduced on transcript level in Δmnx . The bfr-associated
395 ferredoxin encoding gene *ss/2250* [36] was strongly down-regulated in both genotypes, while
396 unaffected under Fe limitation. The gene *s/r1894*, encoding an Fe storage protein of the Dps
397 family [39], was enhanced in transcript abundance under both Fe limitation and Mn excess.
398 The transcripts encoding subunits of NAD(P)H:chinon-oxidoreductase (NDH-1) complexes,
399 which are central components of respiration, cyclic electron flow, and intracellular CO₂
400 accumulation [40], were up-regulated in Mn excess with the sole exception of *ndhO* but
401 opposite in Fe limitation for the two significant data points. Glycolytic enzymes were reduced
402 in transcripts upon Mn excess treatment with no significant changes in Fe limitation. With
403 regard to prevention of ROS formation, we observed enhanced transcript abundances of the
404 flavodiiron proteins Flv2, Flv3, and Flv4, which serve as alternative electron sinks at the
405 acceptor side of PSI [41] and no significant changes in Fe limitation. Furthermore, ROS

406 scavenging by superoxide dismutase (SOD) and glutathione appeared stronger on transcript
407 level and again no significant changes in Fe limitation were determined.

408 Taken together, the comparison of the Mn excess transcriptome with Fe limitation
409 transcriptome showed a partial overlap however with contrasting patterns to some extent, while
410 the Fe-limitation signature genes *isiABCD* are unaffected under Mn excess conditions. Effects
411 were stronger in the Δmnx mutant.

412

413 **Fe surplus does not rescue the Mn excess phenotype in Δmnx**

414 Based on the results from the transcriptome data, which was in parts similar to a Fe limitation
415 response, we hypothesized that additional Fe supplementation shall rescue growth of Δmnx
416 upon Mn excess. Accordingly, we performed growth tests (Fig. 6) on BG11 plates with standard
417 (1x Mn) or excess Mn concentrations (10x Mn) and increasing Fe-NH₄-citrate concentrations
418 (1x, 6 μ g mL⁻¹ Fe-NH₄-citrate to 20x, 120 μ g mL⁻¹ Fe-NH₄-citrate). While a growth difference
419 between WT and Δmnx mutant at standard Mn concentration was not obvious, the lethal
420 phenotype of the Δmnx mutant under Mn excess conditions could not be compensated by extra
421 supplementation with Fe up to 20x (Fig. 6).

422

423

424 **DISCUSSION**

425 Mn toxicity is a poorly understood process. It is clear that the cellular Mn load needs to be
426 controlled within narrow borders. For single-cell organisms, such as *Vibrio cholerae*, *E. coli*,
427 or *Synechocystis*, it was observed that already a 2- to 3-fold increased Mn-loading was lethal
428 when the main Mn export system was knocked out [10, 16, 18, 42, 43]. So far, only for *E. coli*
429 a detailed study of the Mn excess response has been performed [18]. In this organism Mn
430 excess leads to Fe deficiency. As a consequence, Fe-S cluster assembly and heme biogenesis
431 are impaired. This leads to a disruption of Fe-dependent electron transport chains and a block
432 of the tricarboxylic acid cycle, causing an ATP crisis, which affects vital cellular processes.
433 Additionally, the production of ROS induces DNA damage and affects protein stability [18]. In
434 contrast to heterotrophic bacteria like *E. coli*, cyanobacteria have an at least 100-fold higher
435 demand for Mn, since they utilize the micronutrient as the inorganic catalyst of light-driven
436 water oxidation [4]. Thus, it is possible that Mn homeostasis and its regulatory network works
437 differently.

438

439 **WT displays an adequate transcriptional response that reflects coping with Mn stress**

440 The physiological response of the WT with stable growth and pigmentation (Fig. 1) indicated
441 that the WT was able to handle the extra Mn and took measures to restore Mn homeostasis
442 after application of excess Mn and/or to function in excess Mn. Likely, the Mn exporter Mnx

443 enabled efficient efflux of Mn surplus and recovery of at least adequate cellular Mn pools that,
444 if combined with the observed transcriptional changes, allowed unaffected growth. According
445 to our results, the transport capacity of Mn^x is not regulated on the transcriptional level (Fig.
446 4). It is rather likely that posttranslational regulation might occur to regulate the activity of Mn^x.
447

448 Coping with the Mn stress implicates that the transcriptional profile we detected for the
449 WT is an adequate response. The transcriptional response and anticipated consequences in
450 *Synechocystis* are summarized in Fig. 7 and discussed in the following.

451 **Excess Mn treatment does not induce Fe limitation in *Synechocystis***

452 In general, the WT transcriptomes were affected by the Mn treatment after 24 h, though to a
453 rather mild extent in comparison to the Δmnx mutant. In accordance with Mn stress induced
454 Fe depletion observed in *E. coli* [18] we detected features of a typical Fe limitation response
455 in the cyanobacterium *Synechocystis*. This response included reduced transcript abundances
456 of genes involved in chlorophyll and heme biosynthesis, photosynthesis covering both light
457 and carbon reactions, carbon catabolism and respiration (Fig. 5, Fig. 7). However, the overlap
458 between the Mn excess transcriptomes and a representative Fe limitation transcriptome [29]
459 was not significant. We also compared our data with further Fe limitation transcriptomes [36,
460 44, 45] coming to the same result (Table S10). Not being Fe-limited is additionally supported
461 by the unaffected levels of *isiABCD* (Fig. 5). Induction of this operon is considered as hallmark
462 for Fe limitation in cyanobacteria [46]. We did not observe limitation in intracellular Fe content
463 4 h after high Mn treatment in an earlier experiment [10]. Thus, we suggest that the partially
464 congruent response is not caused by the cellular Fe status but due to cross regulation of metal-
465 responsive transcriptional regulators.

466

467 **Mismetallation of the transcriptional regulator Fur likely triggers parts of transcriptional 468 response towards Mn excess**

469 A reasonable explanation for the partially Fe-dependent transcriptional response is possible
470 crosstalk of transcriptional regulators. Fur is generally considered as a key regulator in
471 bacterial Fe homeostasis [47]. According to our data, the transcript abundance of *fur* is
472 significantly increased in both cell lines (Fig. 5, Fig. 7), which was also described by [44] upon
473 Fe limitation in *Synechocystis*. Many targets of the Fur regulon are affected during Mn excess
474 conditions (Table S11), however in an unexpected way. The Fur-regulated Fe importers FhuA,
475 FutABC, FeoAB, TonB/ExbBD, and FecBCDE are under Fe limitation typically up-regulated
476 [36] but under Mn stress down-regulated (Fig. 5). The transcriptome data suggests that Fur
477 itself commits besides an Fe- also a Mn-dependent response. In case of Fe-binding by Fur,
478 the binding of one Fe²⁺-ion per monomer induces the dimerization of Fur and thereby enables
479 the binding of the transcription factor to Fur boxes. Mostly, Fur acts as a repressor and e.g.,

480 represses expression of Fe importers upon Fe sufficiency, but can also act as indirect activator
481 via the repression of regulatory asRNAs [47]. However, Fur was demonstrated to bind not only
482 Fe but also Mn in *Bacillus subtilis*, that is mismetallation of Fur, leading to inappropriate
483 repression of Fe uptake proteins [48]. This is in line with our observation of transcriptional
484 reduction of Fe import proteins (Fig. 5, Fig. 7) and at least partially explains the transcriptional
485 response being similar to an Fe acclimation response. It is furthermore conceivable that Mn-
486 binding not only changes the activity of the transcriptional regulator with regard to
487 repression/activation but also enables control of regulons different from those typically known
488 for Fe-Fur. Mismetallation appears in the case of Fur to be rather advantageous and not a
489 collateral damage.

490 Fur is also central to the regulation of the *isiABCD* operon. Typically, Fe limitation
491 results in Fur-dependent de-repression of the *isiABCD* operon [36]. Thus, the unaffected
492 transcript level of *isiABCD* support mismetallation of Fur as likely regulatory mechanism but
493 also additional levels of regulation need to be considered. Transcript accumulation of *isiABCD*
494 is regulated via Fur and the antisense RNA *iscR*, which is transcribed from the noncoding *isiA*
495 DNA strand. Both mechanisms lead to a repression of either the *isiABCD* operon directly (Fur)
496 or lead to a degradation of the corresponding RNA (*iscR*) [49]. Furthermore, the *isiABCD*
497 operon is positively regulated via the oxidative stress responsive regulator RpaB [50] and
498 negatively via the Fe regulator PfsR [51]. The gene transcripts of both transcriptional regulators
499 were not altered in our transcriptome data (Table S1).

500 With regard to Mn-dependent transcriptional regulation heterotrophic bacteria mainly
501 use two different mechanisms: Mn-binding transcription factors, i.e. MntR, and Mn-binding
502 riboswitches, i.e. the *yybP-ykoY* riboswitch (reviewed in [11]). In contrast, little is known for
503 cyanobacteria. So far, only the ManSR two-component system has been identified to be involved
504 in regulation of Mn homeostasis in cyanobacteria [13–15, 44]. In agreement with the high
505 external Mn concentration in our study, expression of the response regulator ManR was
506 increased (Fig. 4), and the response regulator likely phosphorylated by ManS. As a result,
507 binding of phosphorylated ManR repressed transcription of its primary target, the *mntCAB*
508 operon, hampering further Mn uptake via this system (Fig. 4, Fig. 7).

509 Consistently with studies on Fe and/or Mn limitation [44], we observed cross-regulation
510 of genes playing central roles in Mn and Fe homeostasis. We suggest a likely interconnection
511 of Fur and ManR or yet unknown Mn-dependent regulators to integrate signals and orchestrate
512 an appropriate transcriptional response enabling to finally deal with the stress situation. Future
513 studies will reveal the function of transcriptional regulators in maintaining Mn homeostasis.

514

515

516

517 **Diminishment of Mn uptake comes along with reduced Fe uptake**

518 According to [18], Mn stress in *E. coli* induces down-regulation on transcriptional level of Fe
519 import and biosynthesis genes for the Fe siderophore enterobactin, leading to an Fe limitation
520 phenotype. Upon extra addition of Fe to the medium, the transcript abundances of Fe import
521 systems were raised and thus, it was possible to rescue the Mn stress phenotype in the *E. coli*
522 mutant in the Mn efflux pump MntP [18]. We observed likewise downregulation of Fe import
523 systems but were not able to compensate Mn toxicity in the *Synechocystis* Δmnx mutant by
524 supplementation with extra Fe (Fig. 6). We suggest that this observation is due to the
525 occurrence of different uptake mechanisms in both organisms:

526 *E. coli* is an Fe-centric bacterium, which does not rely on Mn except for ROS
527 scavenging. Hence, for Fe uptake several transporters exist, such as FecABCDE, FepBCDG,
528 FhuA and FeoAB [52–54], while Mn import is facilitated by the highly specific Mn importer MntH
529 [55]. Upon Mn limitation and oxidative stress, MntH expression is induced to facilitate Mn influx
530 [56]. In contrast, cyanobacteria, such as *Synechocystis*, are dependent on both, abundant Fe
531 and Mn supplies. Efficient Mn uptake to ensure Mn-dependent photosynthetic water-splitting
532 activity [4] is realized by the use and interplay of the inducible high-affinity MntCAB and the
533 constitutive Hmx1/2 [12] system at the plasma membrane and Mnx [10, 16] at the thylakoid
534 membrane [57]. Also, the mainly Fe-transporting FutABC system likely supports Mn import,
535 however in a low-affinity manner [8, 12, 44]. The entrance via the outer membrane into the
536 periplasm is suggested to be shared between Fe, Mn, and other metals. According to the
537 transcriptional profiles, the overaccumulation of Mn leads to decreased transcription of genes
538 encoding the Mn import systems MntCAB (Fig. 4) and FutABC (Fig 5). As a result, further
539 efficient Mn uptake is likely reduced or stopped to prevent the cell from damage due to the
540 accumulation of intracellular Mn (Fig. 7). According to its suggested house-keeping function
541 [12], transcript levels of the Hmx1/2 Mn transporter remained unaltered. The Mn exporter Mnx
542 was not affected in the WT on transcriptional level (Fig. 4). Possibly, to fully abolish Mn uptake,
543 also components for the uptake via the outer membrane, *tonB*, *exbB1*, and *exbD1* [36] were
544 significantly lowered in transcript levels. The transcriptional repression is again explainable
545 with mismetallated Fur, since it acts as transcriptional regulator of those genes. As a
546 consequence, Fe uptake using the same outer membrane passage was hindered, too.
547 Interestingly, Sharon and coworkers [44] already postulated a common transcriptional
548 response of certain Fe and Mn transporters under Fe- and/or Mn-limiting conditions. A shared
549 path of Fe and Mn was furthermore supported by the finding that addition of surplus Fe did not
550 rescue the Δmnx mutant from death under Mn excess conditions (Fig. 6). Furthermore, this
551 result also fosters the notion that Fe limitation was not the reason for cell death of the Δmnx
552 mutant upon excess Mn treatment. The Fe uptake systems are down-regulated but not fully
553 repressed on transcriptional level. Thus, extra Fe supply would have enabled enhanced Fe

554 uptake by the cells and compensated a possible limitation phenotype. However, the treatment
555 did not rescue the Δmnx mutant and again supports together with unaffected expression of
556 *isiABCD* (Fig. 5) that Fe limitation was not causing the fatal outcome of Mn excess treatment
557 in the Δmnx mutant.

558 The enhanced expression of *copBAC* (Fig. 4), which encodes a typically Cu-exporting
559 transporter [33] is either explained by the co-regulation with Fe [58] or a hypothetical
560 assignment of CopBAC as (low-affinity) Mn exporter. However, involvement in Mn transport
561 remains to be tested.

562

563 **Detrimental effects of Mn excess are fought on several levels**

564 Mismetallation is a common event when metal homeostasis is disturbed [59]. Prime targets for
565 mismetallation are Fe-containing proteins. Hence is PSI, which is also transcriptionally down-
566 regulated (Fig. 3C, Fig. 5), the major target of Mn excess within the PS apparatus of plants,
567 such as *Arabidopsis thaliana* ([60]), and possibly also in *Synechocystis*. As a consequence,
568 photosynthetic electron transfer is impaired and entails a highly delicate challenge for oxygenic
569 photosynthetic organism. To prevent or deal with the formation of ROS, the transcriptomes
570 inform about possible strategies *Synechocystis* employs (Fig. 7): i) Transcript levels of Flv
571 proteins Flv2/3/4 are enhanced (Fig 5) to serve as an alternative electron sink at PSI [41]; ii)
572 Transcript abundances of ROS scavenger proteins (SodB, GPX cycle, Fig 5) are up-regulated;
573 iii) *psbA* is up-regulated in expression for accelerated PSII turnover (Fig. 4); iv) To fight issues
574 on protein level that come with mismetallation, such as misfolding or inhibited enzyme activity,
575 protease and chaperones (e.g., FtsH1/2, GroEL1/L2/S, ClpB/B2, DnaJ/K1) are more efficiently
576 transcribed (Fig. 5), as also indicated by KEGG map enrichment for chaperons and folding
577 catalysts in the Δmnx mutant (Fig. 3D, Table S7). Overall, it was obvious that after Mn excess
578 treatment transcript levels of proteins with rather stable pools, such as photosynthesis or
579 antenna proteins, were down-regulated while in contrast transcripts related to ribosomes were
580 enhanced (Fig. 3C, D). This finding indicates that cells rather invest in ribosomes (Fig. 3D, Fig.
581 7) likely to foster biosynthesis of proteins with higher turnover due to being either damaged by
582 ROS (e.g., PsbA), mismetallated, or misfolded.

583

584 **One causative factor of Mn intoxication in Δmnx is reduced energy metabolism**

585 In contrast to the WT, the Δmnx mutant was strongly negatively impacted by Mn in growth and
586 pigmentation (Fig. 1). To investigate the nature/reason of Mn toxicity, the Δmnx mutant is a
587 reasonable study object since Mn efflux is hindered in this line due to the deletion of Mnx [10,
588 16]. An app. 3-fold enhanced intracellular Mn load could be demonstrated [10, 16]. Basically,
589 the Δmnx mutant mounts an adequate response on transcriptional level that corresponds with

590 the WT response. Alterations that are exclusive to the mutant may indicate critical effects of
591 Mn toxicity.

592 Besides transporters, Δmnx -exclusive large changes on transcriptional level after Mn
593 excess application were detected for the categories “photosynthesis” and “central carbon
594 metabolism” (Fig. 3, Fig. 5, Fig. 7). Photosynthesis as the basis of the energy metabolism for
595 oxygenic photosynthetic organisms is highly Fe-dependent: Chlorophyll biosynthesis is directly
596 linked to heme biosynthesis and PSI together with the cytochrome- b_6f complex requires a total
597 of 12 Fe atoms, which are mainly used as cofactors or as Fe-S clusters [35]. Genes encoding
598 proteins of the light reactions (PSI, PSII, phycobilisome, pigment biosynthesis, cytochrome b_6f
599 complex) were reduced in their transcript abundances in general under Mn excess conditions
600 (Fig. 5; Table S7), as also indicated by the component loading of PC1 (Fig. 2B, Table S2, Table
601 S3) and KEGG map enrichment (Fig. 3C). Reduction in pigment accumulation, that is
602 chlorophyll, phycocyanin, and also carotenoids, was clearly detectable also on physiological
603 level in the Δmnx mutant after adding excess Mn (Fig. 1C, D, E) and is considered as a typical
604 sign of Mn intoxication [61], as the reduction in PSI is [60]. Besides photosynthesis, our results
605 furthermore showed that transcripts corresponding to the ATPase were significantly reduced
606 in abundance (Fig. 3C; Fig. 5; Table S10). We postulate, light harvesting and photosynthetic
607 electron transport become consequently impaired under Mn excess conditions, finally
608 manifesting in reduced generation of ATP and reduction equivalents. The depletion in
609 reduction equivalents goes hand in hand with impaired CO₂ fixation due to reduced transcript
610 levels of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) subunits and enzymes
611 of the CBB cycle (Fig. 3C; Fig. 5). Switching to heterotrophic life style is not assistant, since
612 also genes encoding glycolytic enzymes are together with ATPase down-regulated (Fig. 3C;
613 Fig. 5). As indicated by higher transcript levels of NDH-1 (Fig. 5), cells enhance cyclic electron
614 transfer to match the reduced NADH+H⁺ consumption due to reduced CO₂-fixation capacity
615 via Rubisco and the CBB cycle but current cellular ATP need. In summary, our results from
616 the RNA-seq analysis indicate a significant reduction of ATP generation and energy
617 metabolism in general (Fig. 7).

618

619 **Oxidative stress is concurrently causative for Mn intoxication in Δmnx**

620 Another obvious differential feature of the transcriptional response in the Δmnx mutant upon
621 Mn treatment is the induction of the *sufBCDS* operon. The operon encodes for proteins of the
622 SUF-system, which is central to the biogenesis of Fe-S cluster proteins in cyanobacteria and
623 other bacteria (reviewed in [62]). Expression of the operon is under control of the transcription
624 regulator SufR, which binds one [4Fe-4S]-cluster per subunit, forms homodimers as
625 holoproteins, and acts as repressor upon binding. The Fe-S cluster functions as sensor for Fe
626 availability and cellular redox status [63]. Oxidative stress causes damage to the SufR Fe-S

627 clusters. As a result, the binding-affinity of SufR to the *sufBCDS*-promoter region is reduced
628 and expression of the *sufBCDS* operon not any longer repressed [37, 63]. Accordingly, we
629 interpret the enhanced expression of the operon as an indication for sensing of enhanced
630 oxidative stress in Δmnx as also noted by enhanced expression of ROS scavenging enzymes
631 (Fig. 5, Fig. 7).

632 The enhanced ROS generation is possibly a consequence of the cytoplasmic Mn
633 overload and concurrent mismetallation events, which impair photosynthetic electron transfer.
634 Ample chaperones and folding catalysts are up in Δmnx (Fig. 3D; Fig. 5) indicating tightened
635 protein quality issues. However, while the WT was able to adjust cytosolic Mn homeostasis by
636 Mn_x-catalyzed Mn efflux, the mutant just tipped over the edge of tolerable cytoplasmic Mn
637 concentration and the sum of protective mechanisms is not sufficient to alleviate Mn toxicity.
638 The central importance of Mn_x in maintaining cytoplasmic Mn homeostasis is highlighted by
639 the observation that *Synechocystis* WT thrives even on 400 μ M MnCl₂ tested [10]. Without
640 Mn_x, the ultimate outcome of high cytoplasmic Mn load due to impaired Mn efflux is cell death
641 (Fig. 7).

642

643 **Conclusions**

644 The cyanobacterium *Synechocystis* tolerates treatments with high MnCl₂ concentrations
645 without negative effects on its performance. Respective transcriptional profiles indicate
646 mismetallation of the canonical Fe-regulated transcription regulator Fur, enabling
647 crossregulation of Mn- and Fe-responsive genes. Investment into ribosomes likely enable
648 compensation of Mn-dependent mismetallation and protein damage. In case of impaired Mn
649 efflux by Mn_x, cytoplasmic Mn accumulation acts toxic by shutting-down central parts in energy
650 metabolism covering both photosynthesis and respiration. Emerging ROS generation cannot
651 be sufficiently compensated by protective measures making the effects of Mn intoxication in
652 the Δmnx mutant fatal. Our analyses thus reveal i) Mn_x is not involved in sensing and
653 transmission of cellular Mn status, but ii) Mn_x is of absolute importance in balancing
654 cytoplasmic Mn homeostasis.

655

656

657 **Funding information**

658 This work was funded by the Deutsche Forschungsgemeinschaft (DFG) through the grant EI
659 945/3-2 to ME. We acknowledge support for the publication costs by the Open Access
660 Publication Fund of Bielefeld University and the DFG. This work was supported by the BMBF-
661 funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI)
662 (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B,
663 031A537C, 031A537D, 031A538A).

664 **Acknowledgements**

665 The authors thank the class (2022) of the master module “Methods and examples of functional
666 genome research” at Bielefeld University for experimental support.

667

668 **Author contributions**

669 M.R. and M.E. designed the experiments; M.R., P.V., and M.E., performed the experiments;
670 P.V., K.N., A.B., and M.E. provided resources; M.R., S.Z., K.N., A.B. and M.E. analyzed the
671 data; M.R. and M.E. wrote the manuscript with input from S.Z., K.N., and A.B.; all authors
672 reviewed the final draft of the manuscript.

673

674 **Conflict of interest**

675 The authors declare no conflict of interest.

676

677 **REFERENCES**

- 678 1. **Chandler LE, Bartsevich V V., Pakrasi HB.** Regulation of manganese uptake in
679 *Synechocystis* 6803 by rfrA, a member of a novel family of proteins containing a
680 repeated five-residues domain. *Biochemistry* 2003;42:5508–5514.
- 681 2. **Sevilla F, López-Gorgé J, Gómez M, del Río LA.** Manganese superoxide dismutase
682 from a higher plant. *Planta* 1980;150:153–157.
- 683 3. **Stengel A, Gügel IL, Hilger D, Rengstl B, Jung H, et al.** Initial steps of photosystem
684 II *de novo* assembly and preloading with manganese take place in biogenesis centers
685 in *Synechocystis*. *Plant Cell* 2012;24:660–675.
- 686 4. **Keren N, Kidd MJ, Penner-Hahn JE, Pakrasi HB.** A light-dependent mechanism for
687 massive accumulation of manganese in the photosynthetic bacterium *Synechocystis*
688 sp. PCC 6803. *Biochemistry* 2002;41:15085–15092.
- 689 5. **De Las Rivas J, Heredia P, Roman A.** Oxygen-evolving extrinsic proteins
690 (PsbO,P,Q,R): Bioinformatic and functional analysis. *Biochim Biophys Acta Bioenerg*
691 2007;1767:575–582.
- 692 6. **Zhang B, Zhang C, Liu C, Jing Y, Wang Y, et al.** Inner Envelope CHLOROPLAST
693 MANGANESE TRANSPORTER 1 Supports Manganese Homeostasis and
694 Phototrophic Growth in Arabidopsis. *Mol Plant* 2018;11:943–954.
- 695 7. **Xiao Y, Huang G, You X, Zhu Q, Wang W, et al.** Structural insights into
696 cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. *Nat
697 Plants* 2021;7:1132–1142.
- 698 8. **Eisenhut M.** Manganese Homeostasis in Cyanobacteria. *Plants* 2020, Vol 9, Page 18
699 2019;9:18.
- 700 9. **Duy D, Soll J, Philipp K.** Solute channels of the outer membrane: From bacteria to
701 chloroplasts. *Biol Chem* 2007;388:879–889.

711 10. **Brandenburg F, Schoffman H, Kurz S, Krämer U, Keren N, et al.** The
712 *Synechocystis* manganese exporter Mn^x is essential for manganese homeostasis in
713 cyanobacteria. *Plant Physiol* 2017;173:1798–1810.

714

715 11. **Waters LS.** Bacterial manganese sensing and homeostasis. *Current Opinion in
716 Chemical Biology* 2020;55:96–102.

717

718 12. **Reis M, Brandenburg F, Knopp M, Flachbart S, Bräutigam A, et al.** Hemi
719 Manganese Exporters 1 and 2 enable manganese transport at the plasma membrane
720 in cyanobacteria. *bioRxiv* 2023;2023.02.16.528846.

721

722 13. **Yamaguchi K, Suzuki I, Yamamoto H, Lyukevich A, Bodrova I, et al.** A two-
723 component Mn²⁺-sensing system negatively regulates expression of the *mntCAB*
724 operon in *Synechocystis*. *Plant Cell* 2002;14:2901–2913.

725

726 14. **Zorina A, Sinetova MA, Kupriyanova E V., Mironov KS, Molkova I, et al.**
727 *Synechocystis* mutants defective in manganese uptake regulatory system, ManSR,
728 are hypersensitive to strong light. *Photosynth Res* 2016;130:11–17.

729

730 15. **Ogawa T, Bao DH, Katoh H, Shibata M, Pakrasi HB, et al.** A two-component signal
731 transduction pathway regulates manganese homeostasis in *Synechocystis* 6803, a
732 photosynthetic organism. *J Biol Chem* 2002;277:28981–28986.

733

734 16. **Gandini C, Schmidt SB, Husted S, Schneider A, Leister D.** The transporter
735 SynPAM71 is located in the plasma membrane and thylakoids, and mediates
736 manganese tolerance in *Synechocystis* PCC6803. *New Phytol* 2017;215:256–268.

737

738 17. **Salomon E, Keren N.** Manganese Limitation Induces Changes in the Activity and in
739 the Organization of Photosynthetic Complexes in the Cyanobacterium *Synechocystis*
740 sp. Strain PCC 6803. *Plant Physiol* 2011;155:571–579.

741

742 18. **Kaur G, Kumar V, Arora A, Tomar A, Ashish, et al.** Affected energy metabolism
743 under manganese stress governs cellular toxicity. *Sci Rep* 2017;7:1–11.

744

745 19. **Irving J. P. H and W, Irving, H. and Williams JP.** Order of stability of metal
746 complexes. *Nature* 1948;162:746–747.

747

748 20. **Foster AW, Osman D, Robinson NJ.** Metal preferences and metallation. *J Biol Chem*
749 2014;289:28095–28103.

750

751 21. **Rippka E, Deruelles J, Waterbury NB.** Generic Assignments, Strain Histories and
752 Properties of Pure Cultures of Cyanobacteria. *J Gen Microbiol* 1979;111:1–61.

753

754 22. **Sigalat C, De Kouchkovsky Y.** Fractionnement et caractérisation de l'appareil
755 photosynthétique de l'algue bleue unicellulaire *Anacystis nidulans*. I. Obtention de
756 fractions membranaires par "lyse osmotique" et analyse pigmentaire. *Physiol Veg*
757 1975;13:243–258

758

759 23. **Robinson MD, McCarthy DJ, Smyth GK.** edgeR: A Bioconductor package for
760 differential expression analysis of digital gene expression data. *Bioinformatics*
761 2009;26:139–140.

762

763 24. **Benjamini Y, Hochberg Y.** Controlling the False Discovery Rate: A Practical and
764 Powerful Approach to Multiple Testing. *J R Stat Soc Series B Stat Methodol*
765 1995;57:289–300.

766

767 25. **Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K.** KEGG: new
768 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res*
769 2017;45:D353.

770

771 26. **Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J.**
772 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain
773 Prediction at the Metagenomic Scale. *Mol Biol Evol* 2021;38:5825–5829.

774

775 27. **Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M.** KAAS: an automatic
776 genome annotation and pathway reconstruction server. *Nucleic Acids Res*
777 2007;35:W182–W185

778

779 28. **Fisher RA.** On the Interpretation of χ^2 from Contingency Tables, and the Calculation
780 of P. *J R Stat Soc* 1922;85:87.

781

782 29. **Singh AK, McIntyre LM, Sherman LA.** Microarray analysis of the genome-wide
783 response to iron deficiency and iron reconstitution in the cyanobacterium
784 *Synechocystis* sp. PCC 6803. *Plant Physiol* 2003;132:1825–1839.

785

786 30. **Opiyo SO, Pardy RL, Moriyama H, Moriyama EN.** Evolution of the Kdo2-lipid A
787 biosynthesis in bacteria. *BMC Evol Biol* 2010;10:1–13.

788

789 31. **Bartsevich VV, Pakrasi HB.** Molecular identification of an ABC transporter complex
790 for manganese: Analysis of a cyanobacterial mutant strain impaired in the
791 photosynthetic oxygen evolution process. *EMBO J* 1995;14:1845–1853.

792

793 32. **Nickelsen J, Rengstl B.** Photosystem II assembly: From cyanobacteria to plants.
794 *Annu Rev of Plant Biol* 2013;64:609–635.

795

796 33. **Giner-Lamia J, López-Maury L, Reyes JC, Florencio FJ.** The CopRS two-
797 component system is responsible for resistance to copper in the cyanobacterium
798 *Synechocystis* sp. PCC 6803. *Plant Physiol* 2012;159:1806–1818.

799

800 34. **Hernández-Prieto MA, Schön V, Georg J, Barreira L, Varela J, et al.** Iron
801 deprivation in *synechocystis*: Inference of pathways, non-coding RNAs, and regulatory
802 elements from comprehensive expression profiling. *G3: Genes Genomes Genet*
803 2012;2:1475–1495.

804

805 35. **Kroh GE, Pilon M.** Regulation of Iron Homeostasis and Use in Chloroplasts. *Int J Mol
806 Sci* 2020, Vol 21, Page 3395 2020;21:3395.

807

808 36. **Riediger M, Hernández-Prieto MA, Song K, Hess WR, Futschik ME.** Genome-wide
809 identification and characterization of Fur-binding sites in the cyanobacteria
810 *Synechocystis* sp. PCC 6803 and PCC 6714. *DNA Res* 2021;28:dsab023.

811

812 37. **Wang T, Shen G, Balasubramanian R, McIntosh L, Bryant DA, et al.** The *sufR*
813 Gene (sll0088 in *Synechocystis* sp. Strain PCC 6803) Functions as a Repressor of the
814 *sufBCDS* Operon in Iron-Sulfur Cluster Biogenesis in Cyanobacteria. *J Bacteriol*
815 2004;186:956.

816

817 38. **Keren N, Aurora R, Pakrasi HB.** Critical Roles of Bacterioferritins in Iron Storage and
818 Proliferation of Cyanobacteria. *Plant Physiol* 2004;135:1666–1673.

819

820 39. **Shcolnick S, Shaked Y, Keren N.** A role for mrgA, a DPS family protein, in the
821 internal transport of Fe in the cyanobacterium *Synechocystis* sp. PCC6803. *Biochim
822 Biophys Acta Bioenerg* 2007;1767:814–819.

823
824 40. **Hualing M.** Cyanobacterial NDH-1 Complexes. *Front Microbiol* 2022;13:933160.
825
826 41. **Mustila H, Muth-Pawlak D, Aro EM, Allahverdiyeva Y.** Global proteomic response
827 of unicellular cyanobacterium *Synechocystis* sp. PCC 6803 to fluctuating light upon
828 CO₂ step-down. *Physiol Plant* 2021;173:305–320.
829
830 42. **Waters LS, Sandoval M, Storz G.** The *Escherichia coli* MntR Miniregulon Includes
831 Genes Encoding a Small Protein and an Efflux Pump Required for Manganese
832 Homeostasis. *J Bacteriol* 2011;193:5887–5897.
833
834 43. **Fisher CR, Wyckoff EE, Peng ED, Payne SM.** Identification and characterization of a
835 putative manganese export protein in *Vibrio cholerae*. *J Bacteriol* 2016;198:2810–
836 2817.
837
838 44. **Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, et al.** The hierarchy of
839 transition metal homeostasis: Iron controls manganese accumulation in a unicellular
840 cyanobacterium. *Biochim Biophys Acta Bioenerg* 2014;1837:1990–1997.
841
842 45. **Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME.** The
843 Transcriptional Landscape of the Photosynthetic Model Cyanobacterium
844 *Synechocystis* sp. PCC6803. *Sci Rep* 2016 6:1 2016;6:1–15.
845
846 46. **Salomon E, Keren N.** Acclimation to environmentally relevant Mn concentrations
847 rescues a cyanobacterium from the detrimental effects of iron limitation. *Environ
848 Microbiol* 2015;17:2090–2098.
849
850 47. **Lee JW, Helmann JD.** Functional specialization within the fur family of
851 metalloregulators. *BioMetals* 2007;20:485–499.
852
853 48. **Ma Z, Faulkner MJ, Helmann JD.** Origins of specificity and cross-talk in metal ion
854 sensing by *Bacillus subtilis* Fur. *Mol Microbiol* 2012;86:1144–1155.
855
856 49. **Jia A, Zheng Y, Chen H, Wang Q.** Regulation and Functional Complexity of the
857 Chlorophyll-Binding Protein IsiA. *Front Microbiol* 2021;12:774107.
858
859 50. **Riediger M, Kadowaki T, Nagayama R, Georg J, Hihara Y, et al.** Biocomputational
860 Analyses and Experimental Validation Identify the Regulon Controlled by the Redox-
861 Responsive Transcription Factor RpaB. *iScience* 2019;15:316–331.
862
863 51. **Cheng D, He Q.** PfsR Is a Key Regulator of Iron Homeostasis in *Synechocystis* PCC
864 6803. *PLoS One* 2014;9:e101743.
865
866 52. **Peter Howard S, Herrmann C, Stratillo CW, Braun V.** *In vivo* synthesis of the
867 periplasmic domain of TonB inhibits transport through the FecA and FhuA iron
868 siderophore transporters of *Escherichia coli*. *J Bacteriol* 2001;183:5885–5895.
869
870 53. **Lau CKY, Krewulak KD, Vogel HJ.** Bacterial ferrous iron transport: the Feo system.
871 *FEMS Microbiol Rev* 2016;40:273–298.
872
873 54. **Chenault SS, Earhart CF.** Identification of hydrophobic proteins FepD and FepG of
874 the *Escherichia coli* ferrienterobactin permease. *J Gen Microbiol* 1992;138:2167–
875 2171.
876
877 55. **Bosma EF, Rau MH, Van Gijtenbeek LA, Siedler S.** Regulation and distinct
878 physiological roles of manganese in bacteria. *FEMS Microbiol Rev* 2021;45:fuab028.

879

880 56. **Martin JE, Waters LS, Storz G, Imlay JA.** The *Escherichia coli* Small Protein MntS
881 and Exporter MntP Optimize the Intracellular Concentration of Manganese. *PLoS*
882 *Genet* 2015;11:e1004977

883

884 57. **Bartsevich VV, Pakrasi HB.** Membrane topology of MntB, the transmembrane protein
885 component of an ABC transporter system for manganese in the cyanobacterium
886 *Synechocystis* sp. strain PCC 6803. *J Bacteriol* 1999;181:3591–3593.

887

888 58. **Bernal M, Casero D, Singh V, Wilson GT, Grande A, et al.** Transcriptome
889 Sequencing Identifies SPL7-Regulated Copper Acquisition Genes *FRO4/FRO5* and
890 the Copper Dependence of Iron Homeostasis in Arabidopsis. *Plant Cell* 2012;24:738–
891 761.

892

893 59. **Imlay JA.** The mismetallation of enzymes during oxidative stress. *J Biol Chem*
894 2014;289:28121–28128.

895

896 60. **Millaleo R.** Excess manganese differentially inhibits photosystem I versus II in
897 *Arabidopsis thaliana*. *J Exp Bot* 2012;63:695–709.

898

899 61. **Csatorday K, Gombos Z, Szalontai B.** Mn²⁺ and Co²⁺ toxicity in chlorophyll
900 biosynthesis. *Proc Natl Acad Sci USA* 1984;81:476–478.

901

902 62. **Pérard J, Ollagnier de Choudens S.** Iron–sulfur clusters biogenesis by the SUF
903 machinery: close to the molecular mechanism understanding. *J Biol Inorg Chem*
904 2018;23:581–596.

905

906 63. **Shen G, Balasubramanian R, Wang T, Wu Y, Hoffart LM, et al.** SufR Coordinates
907 Two [4Fe-4S]2+, 1+ Clusters and Functions as a Transcriptional Repressor of the
908 *sufBCDS* Operon and an Autoregulator of *sufR* in Cyanobacteria. *J Biol Chem*
909 2007;282:31909–31919.

910

911 64. **Mills LA, McCormick AJ, Lea-Smith DJ.** Current knowledge and recent advances in
912 understanding metabolism of the model cyanobacterium *Synechocystis* sp. PCC 6803.
913 *Biosci Rep* 2020;40:20193325.

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928 **FIGURE LEGENDS**

929

930 **Fig. 1:** Effects of Mn treatment on growth and pigment content. **(A)** Phenotypic appearance of
931 WT and Δmnx mutant line under $MnCl_2$ standard (1x, 9 μM $MnCl_2$) and excess (10x, 90 μM
932 $MnCl_2$) conditions at different time points in the MC-1000-OD Multi-Cultivator. **(B), (C)** Growth
933 rates of WT and Δmnx mutant line under different $MnCl_2$ regimes. Shown are growth rates for
934 the first 24 h (0 – 24 h interval) (B) and the 24 h-to-96 h interval (C). **(D)** Chlorophyll a content,
935 **(E)** Phycocyanin content, **(F)** Carotenoid content in WT and Δmnx cells grown under different
936 $MnCl_2$ regimes. Pigment levels were normalized to the optical density at 750 nm (OD_{750}).
937 Significance in (B)-(F) was evaluated with Student's t-Test $P \leq 0.05$ (*); $P \leq 0.01$ (**).

938

939 **Fig. 2:** Effect of $MnCl_2$ treatment on transcriptomes of WT and Δmnx . **(A)** Principal component
940 analysis (PCA) of transcript abundances in WT and Δmnx cells grown under control and Mn
941 excess (+Mn) conditions. **(B)** Component loading of the PCA. Eigenvectors of principal
942 component 1 (PC1) and 2 (PC2) are shown with the corresponding gene loci. The color of the
943 eigenvectors is according to the KEGG map of the respective gene, as displayed in the legend.
944 Table S2 gives further information regarding the respective \log_2 -fold changes of the gene and
945 the assigned gene function. **(C)+(D)** Volcano plots of the global transcriptome responses of
946 WT **(C)** and Δmnx **(D)** towards different $MnCl_2$ treatments. Shown are \log_2 -fold changes
947 (\log_2FC) of Mn excess (10x, 90 μM $MnCl_2$) versus Mn control (1x, 9 μM $MnCl_2$) conditions.
948 Significant changes ($q < 0.01$; edgeR, [23]) are plotted in green (up) or violet (down)
949 respectively. The number of significantly up- and downregulated genes is given for each
950 genotype. **(E)** Scatterplot of the transcript abundances as \log_2FC in WT and Δmnx . Orange
951 color indicates significantly different ($q \leq 0.01$) transcript abundances in WT and Δmnx upon
952 $MnCl_2$ treatment, grey represents not significant differences. Gene loci of transcripts with a
953 \log_2FC of $\geq |2.5|$ are displayed.

954

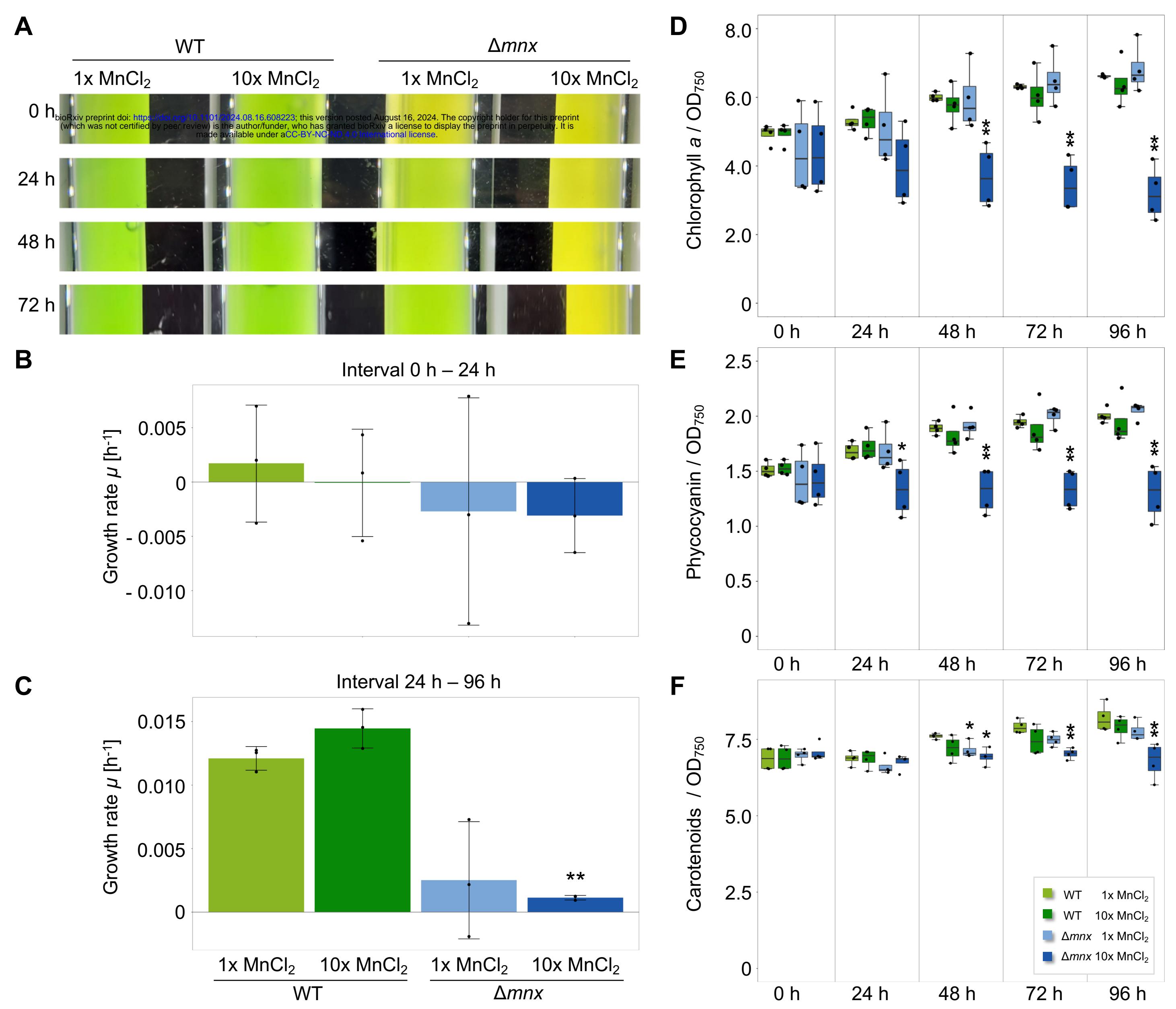
955 **Fig. 3:** Comparison of the transcriptional response of WT and Δmnx towards Mn excess.
956 Overlap in transcriptional responses upon Mn excess (DEGs with \log_2 -fold change $\leq |1|$ and q
957 ≤ 0.01) is shown with Venn diagrams. The number (#) and percentage (%) of genes, which are
958 shared or specific for Δmnx and the WT, respectively, is given. **(A)** Overlap of genes with
959 significantly reduced transcript abundances in WT and Δmnx **(B)** Overlap of genes with
960 significantly enhanced transcript abundances in WT and Δmnx . **(C)** Overlap of significantly (P
961 ≤ 0.05) enriched KEGG modules and maps in significantly reduced transcripts. **(D)** Overlap of
962 significantly ($P \leq 0.05$) enriched KEGG modules and maps in significantly enhanced
963 transcripts.

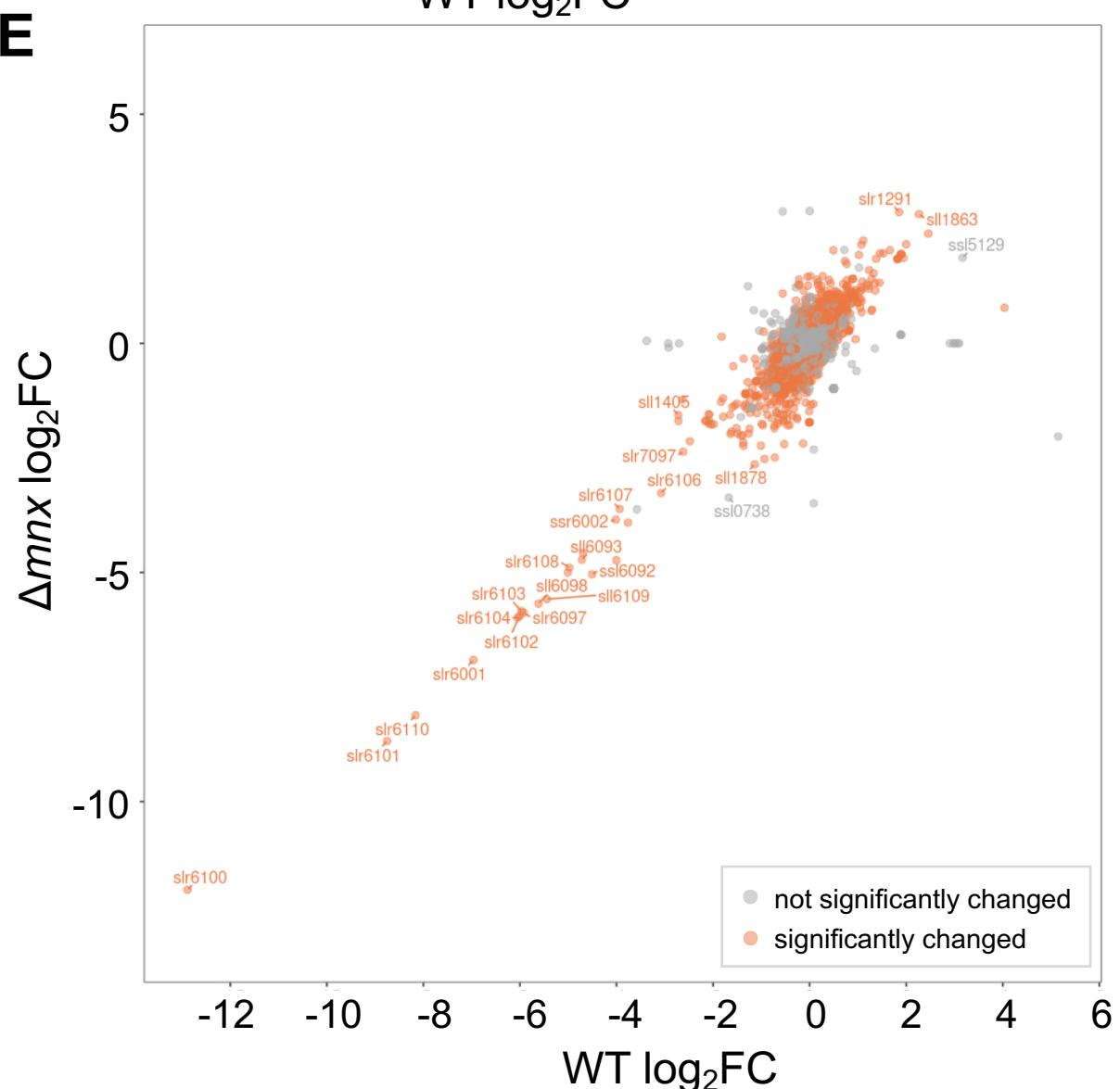
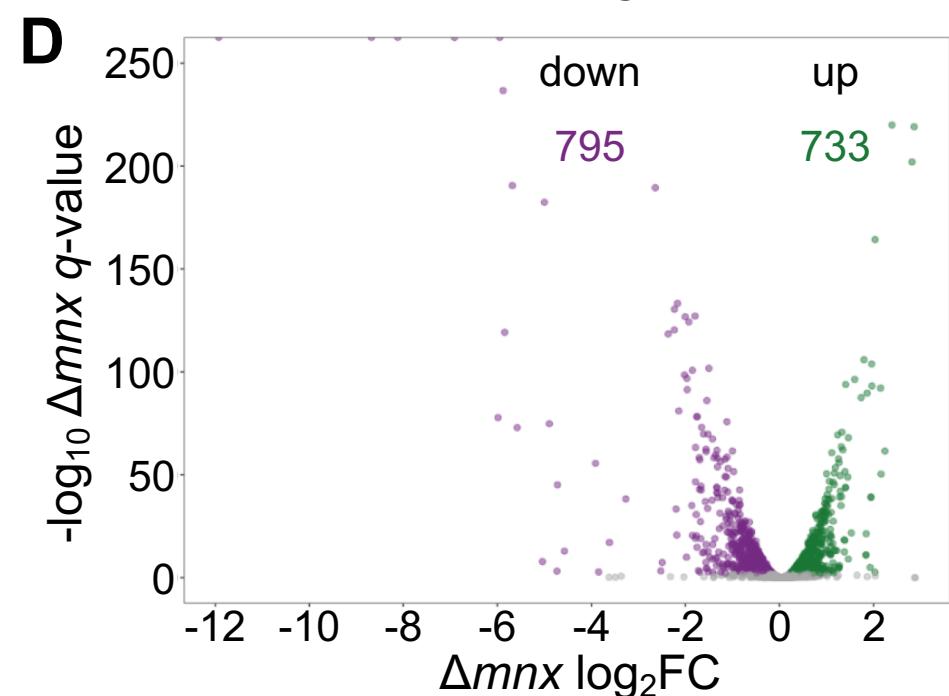
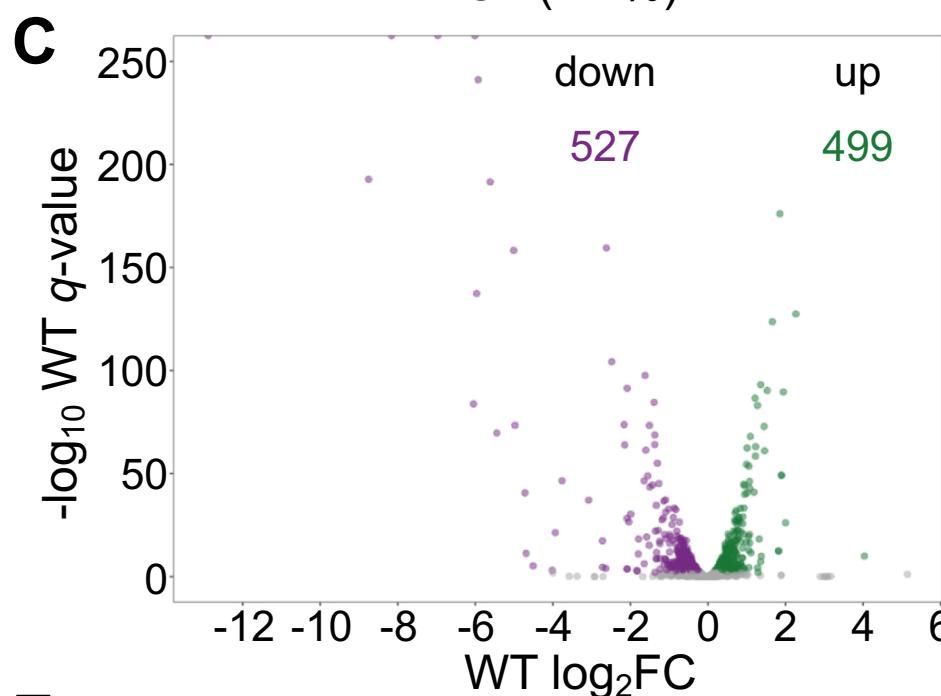
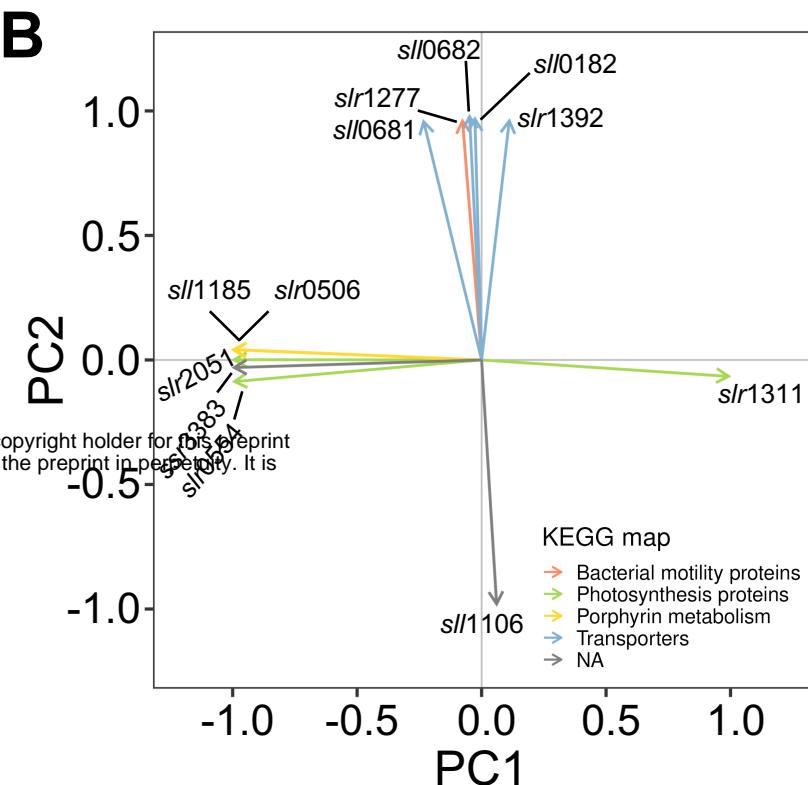
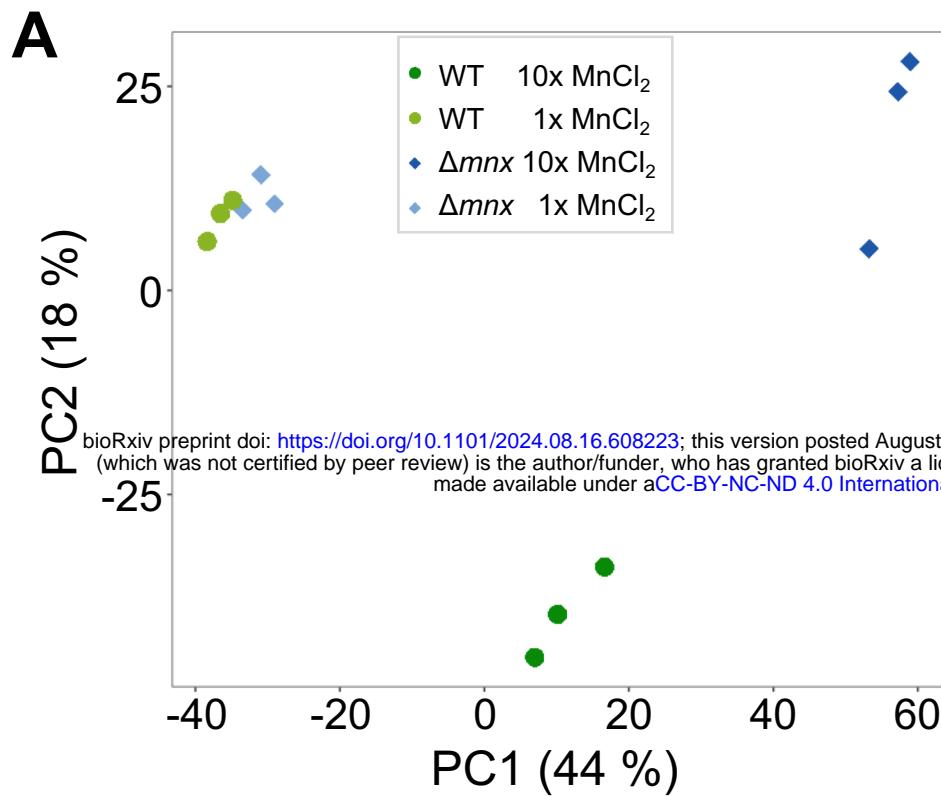
964

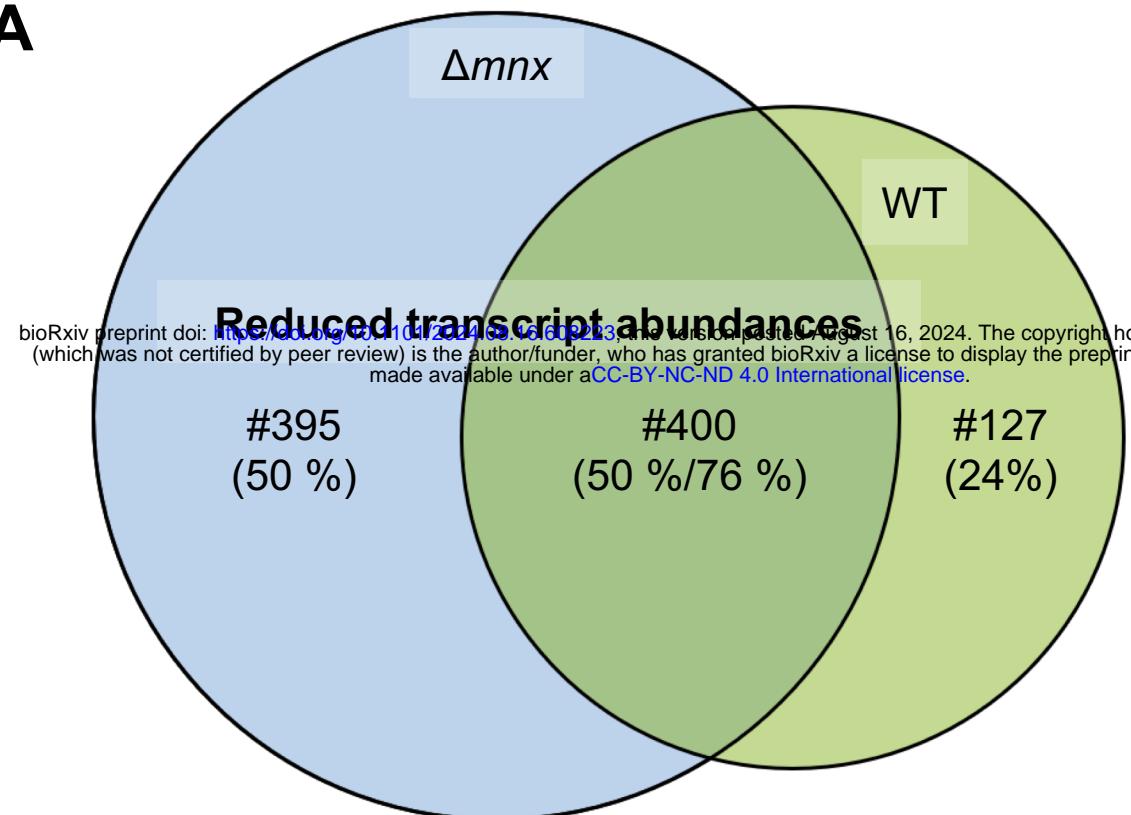
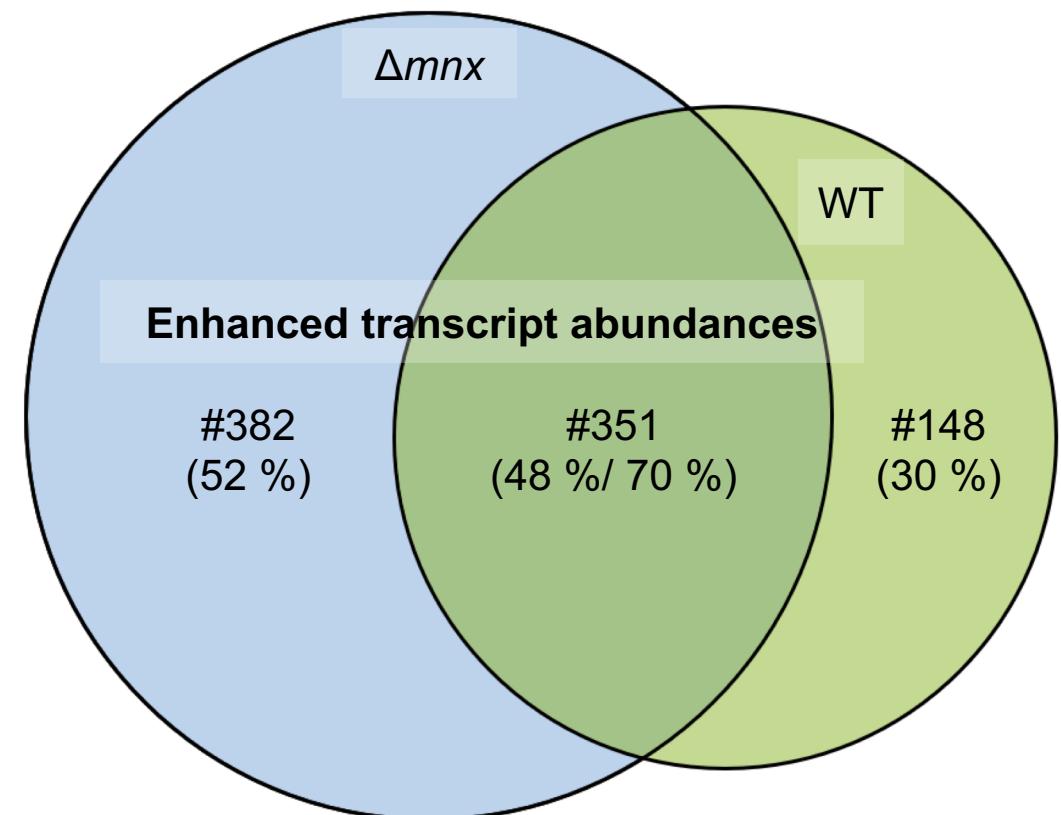
965 **Fig. 4:** Transcriptional response of genes involved in Mn homeostasis. Transcriptional
966 response upon Mn excess treatment is presented as heatmap of corresponding \log_2 -fold
967 change ($\log_2\text{FC}$) for the WT and Δmnx mutant line. Statistical differences were evaluated
968 according to Benjamini-Hochberg with $q \leq 0.05$ (*); $q \leq 0.01$ (**). Gene loci and names were
969 obtained from [64]

970

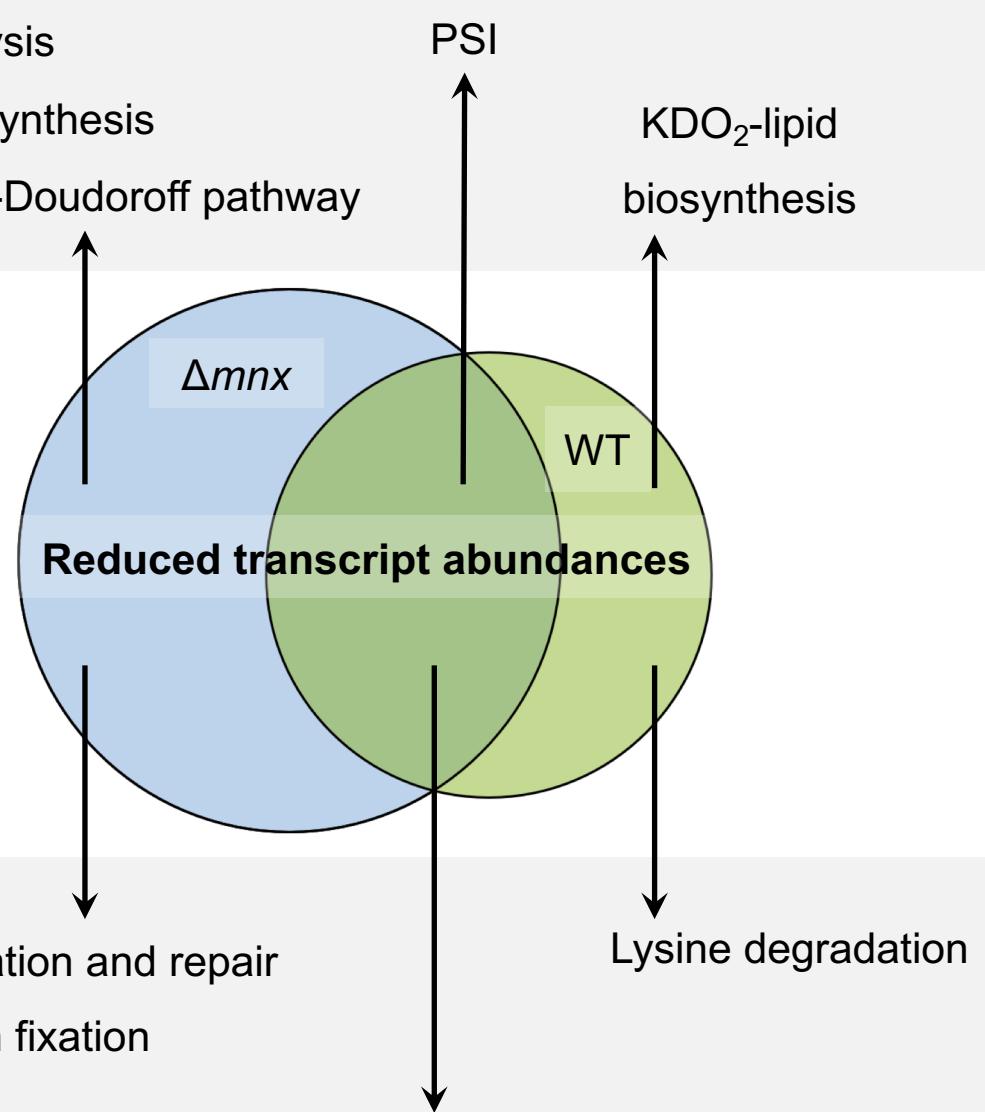
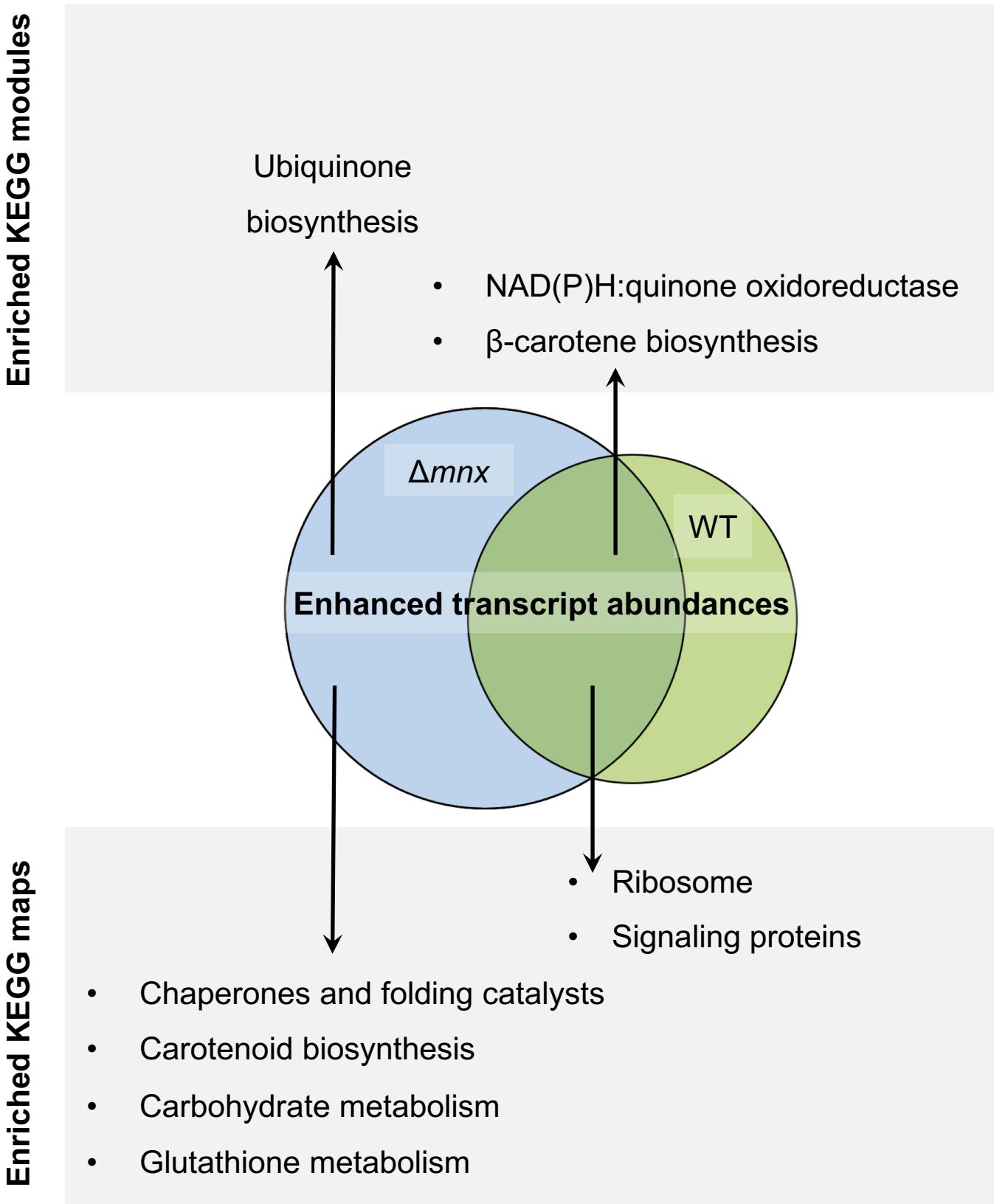
971 **Fig. 5:** Comparison of Mn excess transcriptional response in WT and Δmnx with Fe limitation
972 response according to Singh et al. (2003) [29] in WT. Color coding of the boxes indicates the
973 reduced (violet) or increased (green) transcript abundance of the corresponding gene(s)
974 represented by the mean of the \log_2 -fold changes ($\log_2\text{FC}$). Asterisks indicate significant
975 changes with *: $q\text{-value} < 0.05$, **: $q\text{-value} < 0.01$. Values are given in Table S10. Some data
976 points of the Fe limitation set exceed the color coded \log_2 -fold change of |3| and are presented
977 in deep violet and green for better comparison. Abbreviations: C.: carbohydrate, CBB: Calvin-
978 Benson-Bassham cycle, CCM: carbon concentration mechanism, Ch: chlorophyll a
979 biosynthesis, Cyto. c: cytochrome c biosynthesis, ED: Entner-Doudoroff pathway, Fe: iron,
980 OMPs: outer membrane channel proteins, ROS: reactive oxygen species.

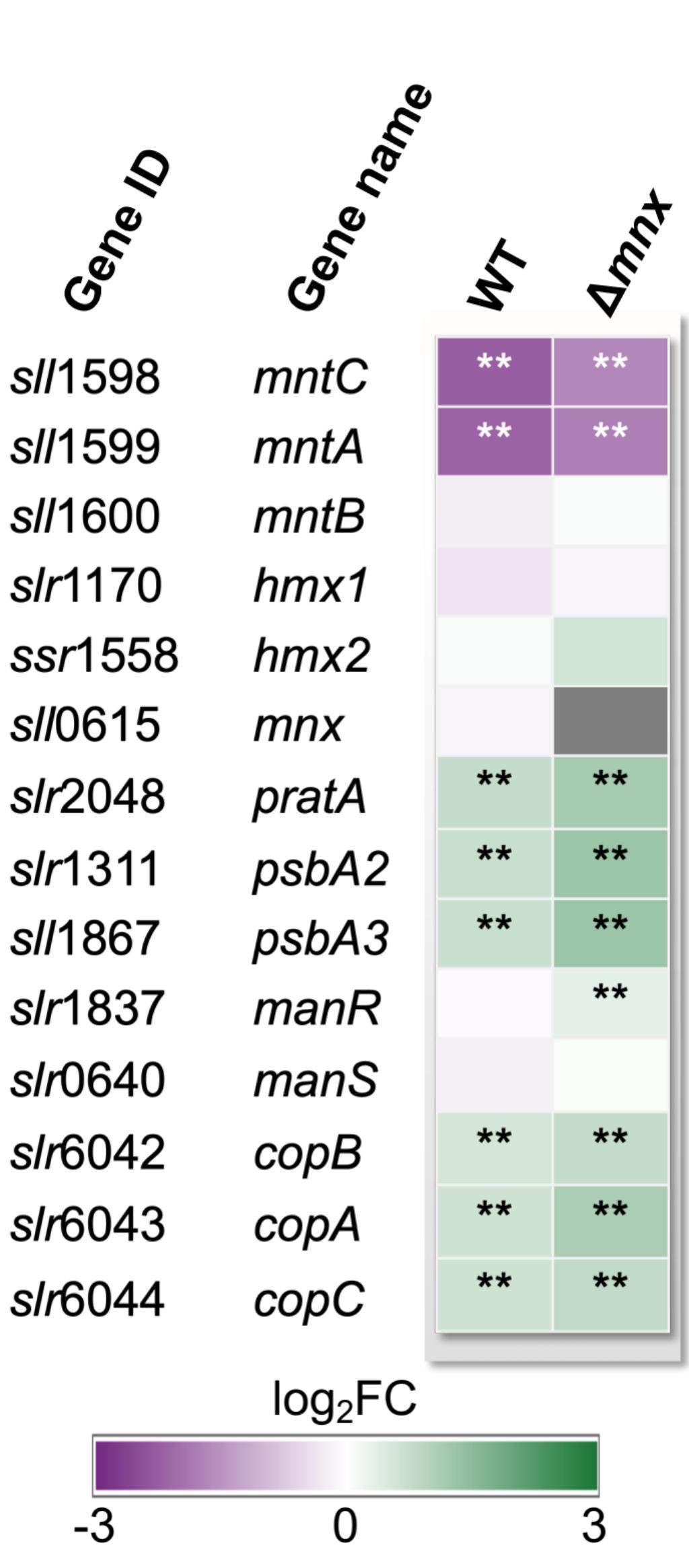

981

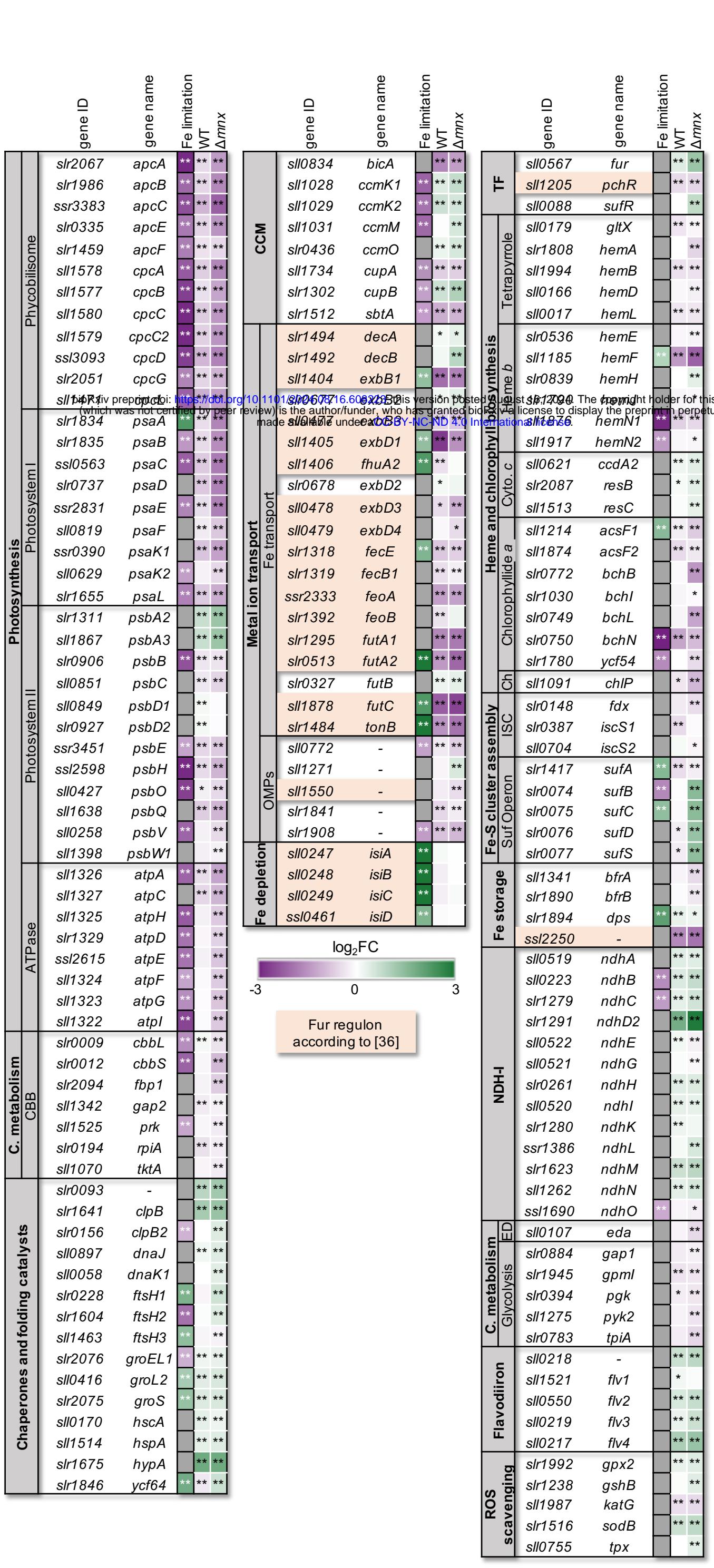





982 **Fig. 6:** Growth of WT and Δmnx mutant line under different Mn/Fe treatments. Growth of
983 different dilutions (1:1, 1:10, 1:100, 1:1,000) were investigated on BG11 medium
984 supplemented with standard Mn/Fe concentrations (1x Mn, 9 μM MnCl_2 ; 1x Fe, 6 $\mu\text{g mL}^{-1}$ Fe-
985 $\text{NH}_4\text{-citrate}$), standard 1x Mn and surplus Fe (10x Fe, 6 $\mu\text{g mL}^{-1}$ Fe- $\text{NH}_4\text{-citrate}$), or on excess
986 Mn (10x Mn) and increasing Fe concentrations (1x, 5x, 10x, 20x Fe). Plates were
987 photographed after 5 d incubation under continuous illumination with 100 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$
988 at 30 °C.



989

990 **Figure 7:** Model for a Mn excess response in *Synechocystis*. Presented are the effects of a
991 Mn excess treatment on the global transcriptome of *Synechocystis* WT and Δmnx mutant,
992 which is defective in Mn efflux. The tile color indicates whether genes of the functional category
993 were enhanced (green), reduced (violet), or unchanged (white) in transcript abundance 24 h
994 after application of Mn excess stress in both, WT and Δmnx mutant. Responses that are
995 exclusive to the Δmnx mutant are displayed by a color-framed tile. The response of specific
996 transcripts is given in Fig. 5 and Table S1. Transcription factors related to Fe (Fur) and Mn
997 import (ManR), and Fe-S cluster assembly (SufR) are transcriptionally up-regulated. In
998 dependence of the cytoplasmic Mn status, Fur likely gets mismetallated with Mn instead of Fe
999 and conveys a transcriptional response that is partially overlapping with an Fe acclimation
1000 response in *Synechocystis*. Cellular entrance of both Mn and Fe gets reduced due to down-
1001 regulation of Fe and Mn import systems as well as OMPs. Importantly, transcripts of the Fe



1002 deficiency responsive operon *isiABCD* are not altered, indicating that cells are not suffering
1003 from Fe limitation. Cu export via CopABC is upregulated on transcript level. We suggest that
1004 CopABC possibly assists Mn export in the Δmnx mutant. However, this is a speculation and
1005 thus indicated with a question mark (?). Fe-dependent heme and chlorophyll biosynthesis is
1006 down-regulated on transcript level, overall leading to a lower abundance of photosynthesis,
1007 that is light-harvesting via phycobilisomes (PBS), light reactions and carbon reactions (CBB
1008 cycle), and carbohydrate metabolism related gene transcripts. Together with a downregulation
1009 of ATPase corresponding gene transcripts, cellular energy levels become depleted, with
1010 arrested cell growth as outcome. To cope with the detrimental effects of Mn excess, several
1011 protection mechanisms (D1 turnover, flavodiiron proteins, ROS scavenging, proteases and
1012 chaperons) are enhanced on transcript level to prevent cell death. In the case of the Δmnx
1013 mutant the Mn exporter is not operative. The mutant is not able to adjust cytoplasmic Mn
1014 homeostasis. Consistently exclusive to Δmnx mutant cells is the enhanced expression of the
1015 *sufBCDS* operon, involved in Fe-S cluster assembly, which indicates ROS stress in those cells
1016 upon Mn stress treatment. The protection mechanisms to deal with ROS and also
1017 mismetallation effects are insufficient and lead to cell death. Abbreviations: CBB cycle: Calvin-
1018 Benson-Bassham cycle, CEF: cyclic electron flow, CopBAC: copper resistance protein BAC,
1019 Cu: copper, Fe: iron, Fe-S: iron-sulfur cluster, Fur: ferric uptake regulator, ManR: Mn regulator,
1020 isi: iron stress induced, Mn: manganese, OMP: outer membrane channel protein, PBS:
1021 phycobilisome, PSI/II: photosystem I/II, ROS: reactive oxygen species, SufR: sulfur utilization
1022 factor regulator.

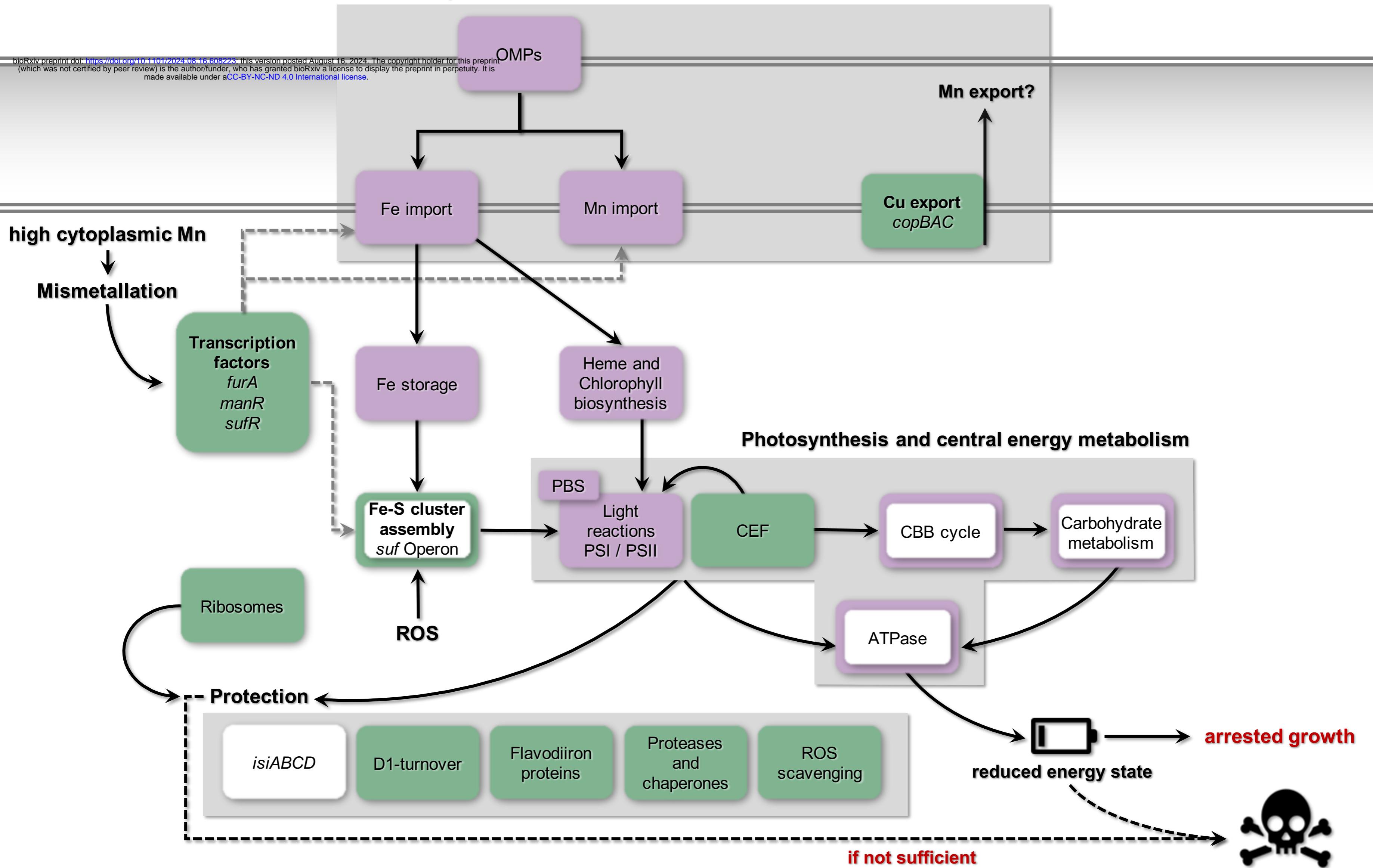





A**B****C**

- F-type ATPase
- CBB cycle
- Heme biosynthesis
- Glycolysis
- Ile biosynthesis
- Entner-Doudoroff pathway

D



Metal transport

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.16.608223>; this version posted August 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

