

# Placental and fetal microbiota in rhesus macaque: a case study using metagenomic sequencing

1 **Running title:** Fetal Microbiota in Rhesus Macaque

2

3 **Authors:** Qiao Du<sup>1,†</sup>, Xu Liu<sup>1,†</sup>, Rusong Zhang<sup>1</sup>, Gang Hu<sup>2</sup>, Qinghua Liu<sup>2</sup>, Wen Ma<sup>1</sup>, Ying Hu<sup>1</sup>,  
4 Zhenxin Fan<sup>1</sup>, Jing Li<sup>1\*</sup>

5

6 **Affiliations:**

7 <sup>1</sup> Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life  
8 Sciences, Sichuan University, Chengdu, Sichuan, China

9 <sup>2</sup> SCU-SGHB Joint Laboratory on Non-human Primates Research, Sichuan Green-house Biotech Co.,  
10 Ltd., Meishan, Sichuan, China

11

12 **\* Correspondence:**

13 Professor Jing Li, Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education),  
14 College of Life Sciences, Sichuan University, China. E-mail: ljtjf@126.com; Tel: 13808067169.

15

16 <sup>†</sup>These authors contributed equally to this work and share first authorship.

17

18 **Keywords:** metagenomics, rhesus macaques, NHP, fetal microbiota, immunity.

19 **Abstract**

20 Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into  
21 the origins and effects of fetal microbiota on immunity development during gestation. Rhesus  
22 macaques (RMs) serve as valuable non-human primate (NHP) models due to their similarities to  
23 humans in development, placental structure, and immune response. In this study, metagenomic  
24 analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal (GI) tissues of an unborn  
25 RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these  
26 tissues. We observed substantial microbial sharing between the mother and fetus, with the microbial  
27 composition of the placenta and umbilical cord more closely resembling that of the fetal organs than  
28 the maternal intestine. Notably, compared with other adult RMs, there was a clear convergence  
29 between maternal and fetal microbiota, alongside distinct differences between the microbiota of  
30 adults and the fetus, which underscores the unique microbial profiles in fetal environments.  
31 Furthermore, the fetal microbiota displayed a less developed carbohydrate metabolism capacity than  
32 adult RMs. It also shared antibiotic resistance genes (ARGs) with both maternal and adult RM

33 microbiomes, indicating potential vertical transmission. Comparative analysis of the metagenomes  
34 between the RM fetus and a human fetus revealed significant differences in microbial composition  
35 and genes, yet also showed similarities in certain abundant microbiota. Collectively, our results  
36 contribute to a more comprehensive understanding of the intrauterine microbial environment in  
37 macaques.

38 **1 Introduction**

39 Activation of the fetal immune system during gestation significantly impacts fetal health and  
40 pregnancy outcomes (1-8). A well-developed immune system with a diverse immune repertoire is  
41 essential for the fetus to respond effectively to potential antigens and other threats (6, 9, 10). Fetal  
42 inflammatory response, closely linked to immune system activation, is a key indicator of overall fetal  
43 health (6, 7, 11, 12). Additionally, diverse immune cells present in the fetal gut may initiate immune  
44 activation, highlighting the gut as a critical site for immune responses (13-17). Initial studies  
45 predominantly supported the sterile womb hypothesis, suggesting that the placenta functions as an  
46 immune organ protecting the fetus from exposure to external antigens and microbes during  
47 pregnancy (18-20). Furthermore, the placenta's role extends beyond mere barrier protection,  
48 encompassing maternal-fetal cell communication and regulation of immune interactions (21-23).  
49 However, an increasing number of studies provided evidence of low-biomass microbes in human  
50 placental and fetal tissues (24-31). Notably, early exposure to microbes can influence the developing  
51 immune system, subsequently affecting reproduction and pregnancy outcomes (32-36). Amid  
52 concerns about potential contamination, robust research methods, including the use of negative  
53 controls, culture techniques, and scanning electron microscopy, have successfully validated the  
54 presence of microorganisms in the intrauterine environment (35, 37-40). These studies challenged  
55 prior beliefs, reshaping our understanding of microbial vertical transmission and its role in  
56 developing immune system and reproductive outcomes.

57 The primary limitation in current research on human placental and fetal microbiota is the difficulty in  
58 obtaining placental and fetal tissue before delivery. Post-delivery tissue collection introduces  
59 confounding variables that can potentially skew experimental results (29, 41-43). To address these  
60 challenges, researchers have increasingly turned to animal models, with non-human primates (NHPs)  
61 proving particularly valuable due to their close physiological, anatomical, reproductive, genetic,  
62 behavioral, and immune similarities to humans (44-48). Among NHPs, Rhesus macaques (RMs),  
63 noted for their developmental patterns, placental structures, and immune responses highly similar to  
64 those of humans, are especially significant, making them an effective model for studying microbial  
65 infection and fetal immunity in pregnancy (47-52). However, research on intrauterine microbiota in  
66 RMs remains relatively scarce, largely due to ethical and welfare concerns associated with collecting  
67 fetal samples from NHPs (53, 54). Several studies using 16S rRNA sequencing to investigate  
68 microbial signals in fetal and placental tissue of RMs and Japanese macaques have reached  
69 controversial conclusions regarding the presence of intrauterine microbiota (55-60). Given these  
70 challenges and the existing controversies, further targeted research is essential.

71 In the current study, we utilized cesarean section to collect fetal samples from a deceased pregnant  
72 RM and conducted a comprehensive metagenomic analysis of fetal microbes. Despite the  
73 implementation of stringent criteria to exclude environmental contamination and low-quality  
74 sequences, we observed a variety of metabolically active microbes in the placenta, umbilical cord,  
75 and fetal organs. To explore potential vertical transmission in RMs, we compared the microbial  
76 profiles of the mother and the fetus. Comparisons of microbial composition, function, and antibiotic  
77 resistance genes (ARGs) were conducted between fetal, maternal, and other adult RMs provided

78 further evidence supporting the possibility of vertical transmission. Separately, we compared the  
79 microbiota between the RM fetus and a human fetus, revealing key differences and similarities and  
80 suggesting the potential of RMs as a model for studying human fetal microbiomes. This study aims  
81 to contribute valuable information to the understanding and research of fetal microbiota and its  
82 potential impact on fetal immunity and overall health.

83 **2 Materials and Methods**

84 **2.1 Sample collection**

85 Maternal intestinal contents, as well as placental, umbilical cord, fetal spleen, and fetal  
86 gastrointestinal (GI) tissues, were obtained from a captive female RM housed at the Sichuan Green-  
87 House Biotech Co., Ltd. (Meishan, Sichuan, China). The company was established by West China  
88 Hospital of Sichuan University and has gained the License for Experimental Animals and Production  
89 of Experimental Animal Feed and License for Use of Experimental Animals. All the macaques are  
90 conducted periodical physical examinations by professional veterinaries and there is a daily  
91 inspection of all the monkey rooms. The dietary composition of the macaque in this experiment was  
92 as follows: 50% corn, 14% wheat, 15% soybean meal, 5% wheat bran, 4.5% fish meal, 5.5% sucrose,  
93 5% bone meal, 0.1% multivitamins, 0.1% vitamin C powder, 0.1% trace elements, 0.1% lysine, 0.2%  
94 methionine, and 0.1% vitamin B complex powder. All procedures were conducted in accordance with  
95 and under the approval of the Ethics Committee of the College of Life Sciences, Sichuan University,  
96 China.

97 The subject of our study was an eight-year-old maternal macaque. The macaque, in the late stage of  
98 pregnancy, died around 19th to 20th weeks of gestation. The maternal macaque was under the  
99 vigilant care of seasoned caregivers and was kept under long-term observation. Notably, no evident  
100 signs of illness were observed in the macaque during both the pregnancy and pre-pregnancy periods.  
101 A qualified veterinarian conducted an autopsy on the maternal macaque less than two hours after its  
102 death, revealing no obvious pathological anomalies in the tissues. The fetus's death was a  
103 consequence of the mother's death. According to the caregivers' records, the maternal macaque died  
104 on August 10, 2022. The death of the maternal macaque was probably caused by the stress from high  
105 temperatures during that period.

106 Before the dissection of the maternal macaque, the entire ultraclean workbench was disinfected  
107 thoroughly. Intestinal contents from the mother were collected using aseptic equipment. The fetus,  
108 which did not pass through the birth canal, was retrieved after excision of the entire sterilized uterus,  
109 which was placed in an ultraclean workbench for ultraviolet irradiation. All samples were collected  
110 using sterile instruments. Before dissection, swabs of the workbench and operator hands were used as  
111 environmental controls, samples of phosphate-buffered saline (PBS) wash of the dissection  
112 instruments were used as PBS controls, and blank swabs and PBS solution were used as blank  
113 controls (Figure S1). Although we did not perform metagenomic sequencing on these control  
114 samples due to their low DNA content, we conducted library preparation for DNA quantification to  
115 verify that the potential contribution of environmental contamination to our sample data was minimal  
116 (mean  $\pm$  SD ng/ $\mu$ L, controls:  $0.48 \pm 0.37$ ).

117 **2.2 Metagenomic sequencing and quality control**

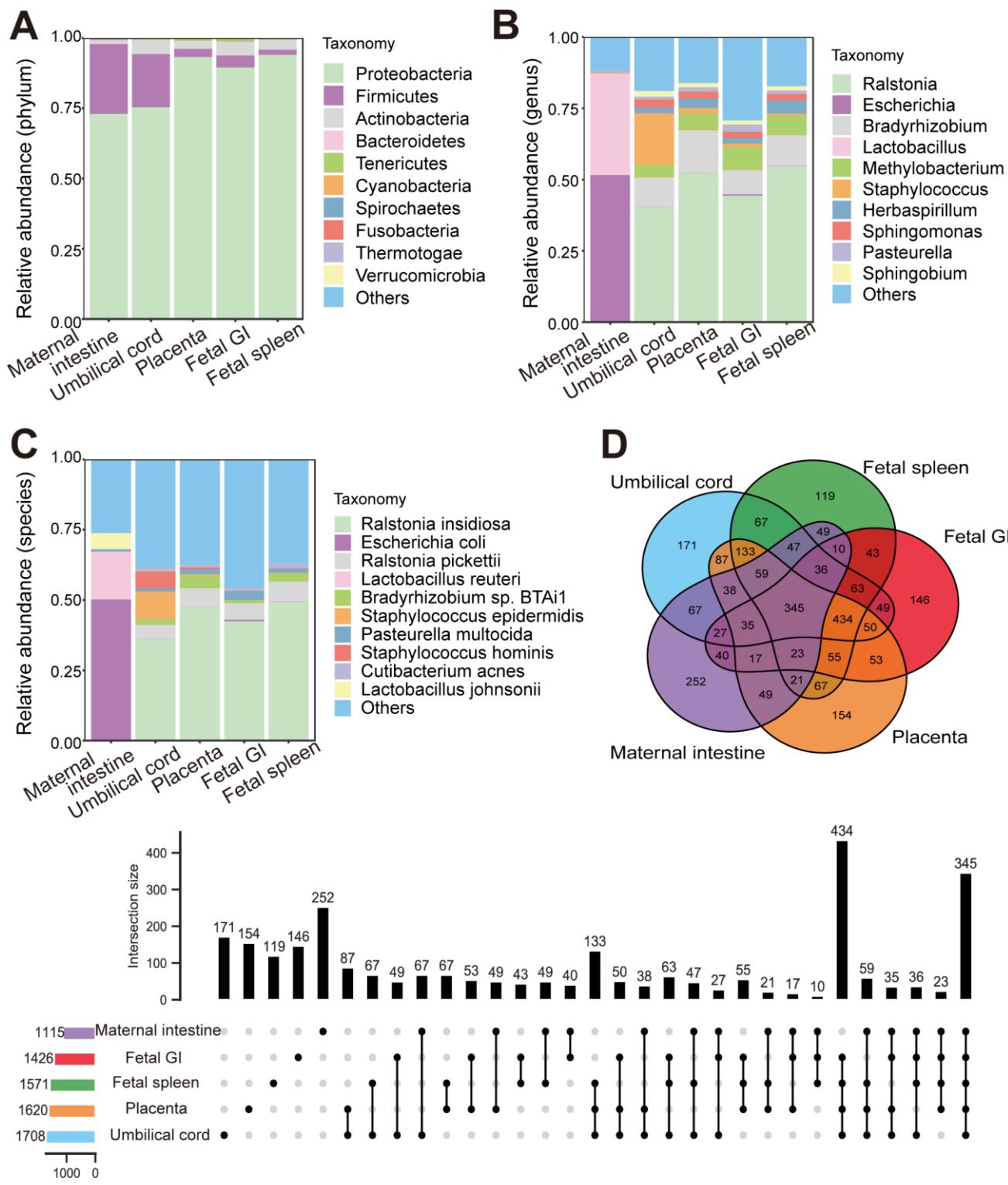
118 All DNA samples were extracted using a Tiangen DNA Stool Mini Kit (Tiangen Biotech Co., Ltd.,  
119 China) and sent to Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for metagenomic  
120 sequencing. In total, 0.2  $\mu$ g of DNA per sample was used as input for the DNA library preparations,

121 and the sequencing library was generated using a NEBNext® UltraTM DNA Library Prep Kit for  
122 Illumina (NEB, USA, Catalog #: E7370L). After library quality assessment and quantification, the  
123 qualified libraries were sequenced using the Illumina 6000 platform with a paired-end length of 150  
124 bp. The Q30 and Q20 values of all samples were approximately 90% and 95%, respectively,  
125 indicating that the correct rate of base calling was relatively high (Table S1). Adapters and low-  
126 quality reads in the raw data were removed using Fastp (61). Host contamination was removed using  
127 Bowtie2 (62) based on the RM reference genome (assembly Mmul\_10).

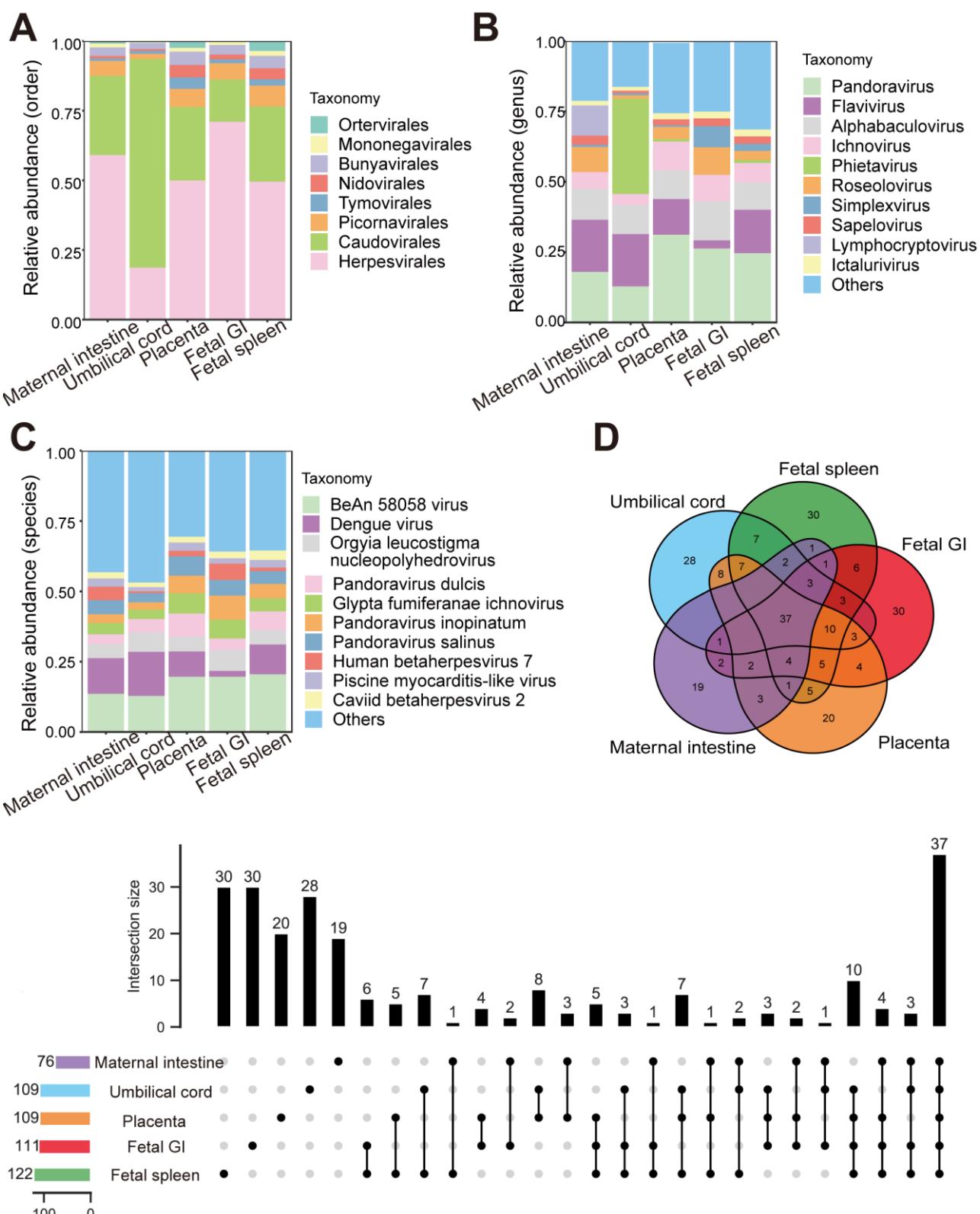
128 Additionally, gut metagenomic data of seven healthy adult RMs were included for comparison with  
129 fetuses, two of which were downloaded from the China National GeneBank Database (CNGBdb)  
130 (accession number CNP0002963), and the remaining five were obtained from our laboratory. We  
131 downloaded three metagenomic datasets of intestinal contents from a single human fetus, sourced  
132 from the Genome Sequence Archive for Human (accession number HRA003676). These samples  
133 were collected using aseptic techniques from elective pregnancy terminations during the 19th to 20th  
134 weeks.

### 135 **2.3 Data processing and analyses**

136 Metagenome *de novo* assembly was conducted using MEGAHIT (63) with the option “-m 0.95 --  
137 min-contig-len 300”. The genes in the metagenomic data were obtained using Prodigal (64) with the  
138 option “-p meta”. Non-redundant genes were constructed using CD-HIT (65) with the option “-c 0.95  
139 -aS 0.90” and quantified using Salmon (66) with the option “--meta”. The non-redundant amino acid  
140 sequences translated from the genes were used for subsequent functional prediction. Functional  
141 annotations of carbohydrate-active enzymes (CAZymes) and ARGs were performed using  
142 DIAMOND (67) with the option “--id 80% --query-cover 70% --evaluate 1e-5” and rgi based on the  
143 Carbohydrate Active enZYmes database (68) and comprehensive antibiotic resistance database (69).  
144 Total abundance of each functional gene type was the sum of the abundances of all genes mapped to  
145 the same type. The abundances of CAZyme genes and ARGs were normalized by transcripts per  
146 million (TPM). The microbial metabolic pathways and gene families were predicted using  
147 HUMANn3 (70) based on the ChocoPhlAn and UniRef90 EC filtered databases (71), and  
148 abundances were normalized by counts per million (CPM). The taxonomic annotation of  
149 metagenomic sequences was performed using kraken2 (72) with the option “--use-mpa-style”. The  
150 abundances of taxa were normalized to relative abundance.


151 Principal coordinate analysis (PCoA) and Bray-Curtis distance were calculated using the Adonis test  
152 in the vegan package of the R statistical environment (version 4.2.3) (73). Alpha-diversity analysis  
153 was done by the vegan package of R statistical software with Wilcoxon’s rank-sum test. Statistical  
154 significance of differences in numbers were analyzed using the Wilcoxon’s rank-sum test with  $p <$   
155 0.05. Differentially abundant pathways were screened by STAMP (v2.1.3) based on Welch’s t-test  
156 (FDR < 0.05; Benjamini–Hochberg method).

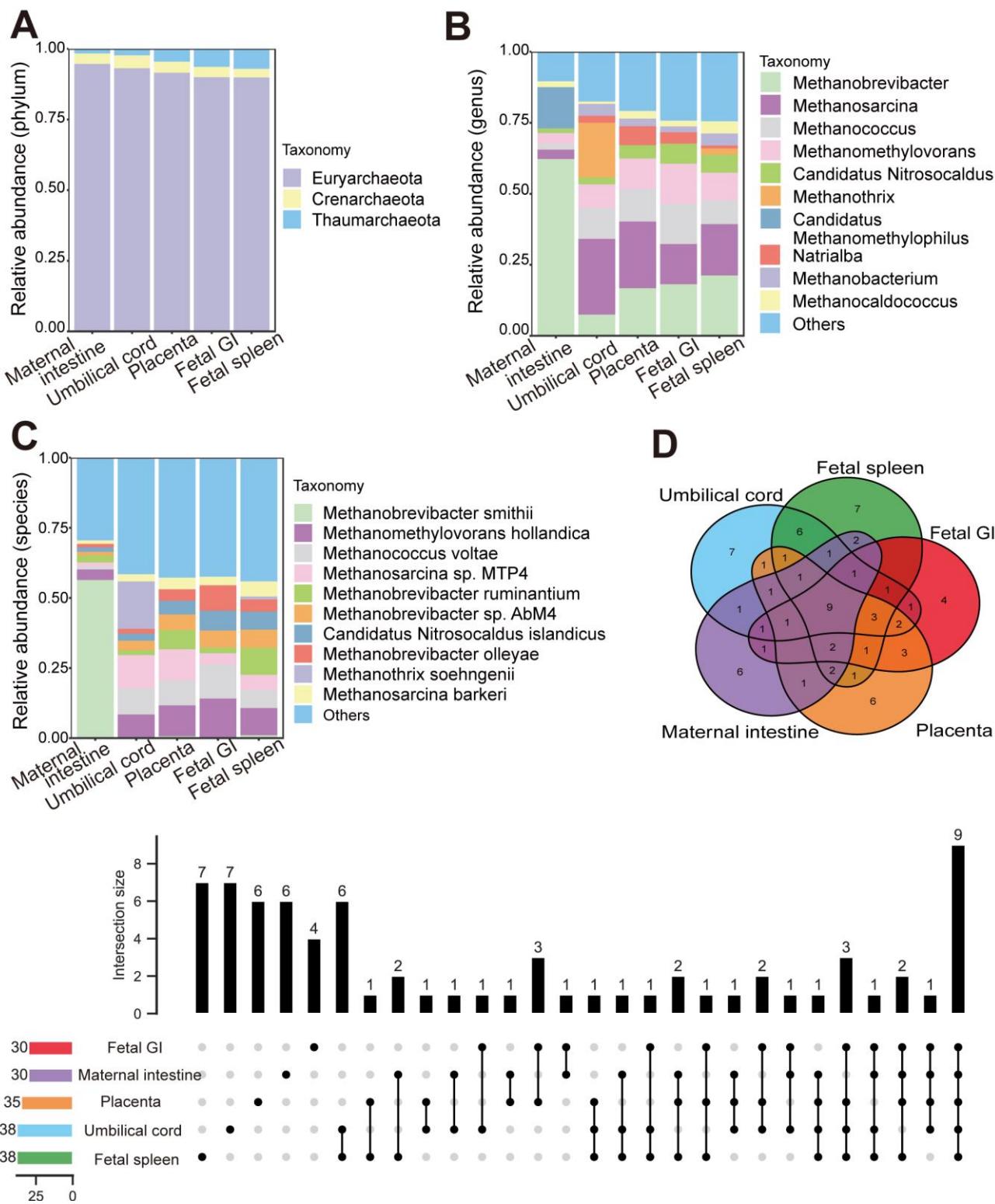
## 157 **3 Results**


### 158 **3.1 Microbial composition of maternal intestine, placenta, umbilical cord, and fetal organs**

159 Microbial signals in the cesarean-delivered RM fetus were investigated. To minimize background  
160 contamination, environmental, PBS, and blank controls were utilized, with undetectable (below  
161 sequencing thresholds) microbial DNA indicating negligible impact on the results. Metagenomic  
162 sequencing of maternal intestinal content and placental, umbilical cord, fetal spleen, and fetal GI  
163 tissues identified 2 806 species of bacteria (belonging to 31 phyla and 891 genera, Figure 1A-C), 242

164 species of viruses (belonging to eight orders and 102 genera, Figure 2A-C), and 74 species of archaea  
165 (belonging to three phyla and 44 genera, Figure 3A-C). A PCoA plot, based on Bray-Curtis distances  
166 of microbial species-level relative abundance profiles, revealed that samples from the placenta,  
167 umbilical cord, fetal spleen, and fetal GI clustered closely together, distinct from the maternal  
168 intestinal sample (Figure S2A). For comparative analysis of microbial composition between fetal and  
169 maternal samples, samples from the placenta, umbilical cord, fetal spleen, and fetal GI were grouped  
170 as the “fetal group” for further analysis. Within this fetal group, a total of 2 554 species of bacteria  
171 (belonging to 28 phyla and 826 genera), 223 species of viruses (belonging to eight orders and 97  
172 genera), and 68 species of archaea (belonging to three phyla and 142 genera) were identified.




174 **Figure 1** Bacterial distribution in maternal and fetal samples. **(A)** Main bacteria phyla with the  
175 highest relative abundance in different samples. **(B)** Main bacteria genera with the highest relative  
176 abundance in different samples. **(C)** Main bacteria species with the highest relative abundance in  
177 different samples. **(D)** UpSet diagram and Venn diagram of exclusive and shared maternal and fetal  
178 bacteria in different samples.



180 **Figure 2** Viral distribution in maternal and fetal samples. (A) Main virus orders with the highest  
181 relative abundance in different samples. (B) Main virus genera with the highest relative abundance in  
182 different samples. (C) Main virus species with the highest relative abundance in different samples.

183 (D) UpSet diagram and Venn diagram of exclusive and shared maternal and fetal viruses in different  
184 samples.

185



186

187 **Figure 3** Archaeal distribution in maternal and fetal samples. **(A)** Main archaea phyla with the  
188 highest relative abundance in different samples. **(B)** Main archaea genera with the highest relative  
189 abundance in different samples. **(C)** Main archaea species with the highest relative abundance in  
190 different samples. **(D)** UpSet diagram and Venn diagram of exclusive and shared maternal and fetal  
191 archaea in different samples.

192

193 Among the 2 806 bacterial species identified, 345 were shared by the maternal and fetal groups, with  
194 the number of organ-unique bacteria varying from 119 (fetal spleen) to 252 (maternal intestine)  
195 (Figure 1D). In total, 779 out of 2 554 bacterial species were shared by the placenta, umbilical cord,  
196 fetal spleen, and fetal GI samples, each containing 203, 238, 168, and 186 unique bacteria species  
197 (Figure S2B). Notably, each fetal sample shared considerable bacterial species with the maternal  
198 intestinal sample, varying from 533 to 654 species (Table S2). Among the most dominant bacteria in  
199 the maternal and fetal samples (Table 1), Proteobacteria and Firmicutes were the dominant shared  
200 phyla in both groups. Interestingly, no dominant shared genera or species were found between the  
201 maternal and fetal groups. Within the fetal group, the dominant bacteria in the placenta, umbilical  
202 cord, fetal GI, and spleen samples were generally identical, although *Staphylococcus* was a dominant  
203 genus in the umbilical cord but not in the other fetal samples.

204 Table 1 Top five bacteria with the highest relative abundance in maternal and fetal RMs.

| Level  | Maternal intestine   | Placenta                | Umbilical cord          | Fetal GI tissue         | Fetal spleen            |
|--------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Phylum | Proteobacteria       | Proteobacteria          | Proteobacteria          | Proteobacteria          | Proteobacteria          |
|        | Firmicutes           | Firmicutes              | Firmicutes              | Actinobacteria          | Actinobacteria          |
|        | Bacteroidetes        | Actinobacteria          | Actinobacteria          | Firmicutes              | Firmicutes              |
|        | Spirochaetes         | Tenericutes             | Bacteroidetes           | Tenericutes             | Tenericutes             |
|        | Actinobacteria       | Bacteroidetes           | Tenericutes             | Bacteroidetes           | Bacteroidetes           |
| Genus  | <i>Escherichia</i>   | <i>Ralstonia</i>        | <i>Ralstonia</i>        | <i>Ralstonia</i>        | <i>Ralstonia</i>        |
|        | <i>Lactobacillus</i> | <i>Bradyrhizobium</i>   | <i>Staphylococcus</i>   | <i>Bradyrhizobium</i>   | <i>Bradyrhizobium</i>   |
|        | <i>Campylobacter</i> | <i>Methylobacterium</i> | <i>Bradyrhizobium</i>   | <i>Methylobacterium</i> | <i>Methylobacterium</i> |
|        | <i>Streptococcus</i> | <i>Herbaspirillum</i>   | <i>Methylobacterium</i> | <i>Enterobacter</i>     | <i>Herbaspirillum</i>   |
|        | <i>Shigella</i>      | <i>Sphingomonas</i>     | <i>Sphingomonas</i>     | <i>Pasteurella</i>      | <i>Sphingomonas</i>     |

|                |                                 |                                      |                                   |                              |                                   |
|----------------|---------------------------------|--------------------------------------|-----------------------------------|------------------------------|-----------------------------------|
| <b>Species</b> | <i>Escherichia coli</i>         | <i>Ralstonia insidiosa</i>           | <i>Ralstonia insidiosa</i>        | <i>Ralstonia insidiosa</i>   | <i>Ralstonia insidiosa</i>        |
|                | <i>Lactobacillus reuteri</i>    | <i>Ralstonia pickettii</i>           | <i>Staphylococcus epidermidis</i> | <i>Ralstonia pickettii</i>   | <i>Ralstonia pickettii</i>        |
|                | <i>Lactobacillus johnsonii</i>  | <i>Bradyrhizobium sp. BTAi1</i>      | <i>Staphylococcus hominis</i>     | <i>Pasteurella multocida</i> | <i>Bradyrhizobium sp. BTAi1</i>   |
|                | <i>Lactobacillus amylovorus</i> | <i>Pasteurella multocida</i>         | <i>Ralstonia pickettii</i>        | <i>Enterobacter cloacae</i>  | <i>Herbaspirillum seropedicae</i> |
|                | <i>Campylobacter hyoilealis</i> | <i>Bradyrhizobium diazoefficiens</i> | <i>Bradyrhizobium sp. BTAi1</i>   | <i>Cutibacterium acnes</i>   | <i>Cutibacterium acnes</i>        |

205

206 Compared with the identified bacteria, the proportion of identified viruses and archaea was notably  
 207 small, with only 0.33%-1.85% viruses and 0.097%-0.18% archaea, respectively (Figure S2E).  
 208 Among the 242 virus species identified, 37 were shared by the maternal intestine and fetal group,  
 209 each sample harboring 19–30 organ-specific viruses (Figure 2D). The four fetal samples (placenta,  
 210 umbilical cord, fetal spleen, and fetal GI) shared 47 virus species, each harboring 23, 28, 31, and 32  
 211 unique viruses, respectively (Figure S2C). And there were 43-50 virus species were share by the  
 212 individual fetal samples and maternal intestinal sample (Table S2). Among the most abundant  
 213 viruses, Caudovirales, Herpesvirales, and Picornavirales were the dominant shared orders between  
 214 the maternal and fetal groups (Table 2), and *Pandoravirus* and *Alphabaculovirus* were the dominant  
 215 shared genera. Most of the dominant virus genera were consistent across the four fetal samples,  
 216 although the umbilical cord sample differed somewhat from the other fetal samples. Among the 74  
 217 archaea species identified, nine were common between the maternal and the fetal groups, with each  
 218 harboring 4–7 unique species (Figure 3D). In total, 12 archaeal species were shared by the four fetal  
 219 samples, with each fetal sample (Figure S2D). Furthermore, 15–18 archaeal species were shared by  
 220 the maternal and four fetal samples (Table S2). Both groups contained the same dominant phyla  
 221 (Table 3), although the umbilical cord sample differed somewhat in dominant genera.

222

223 Table 2 Top five viruses with the highest relative abundance in maternal and fetal RMs.

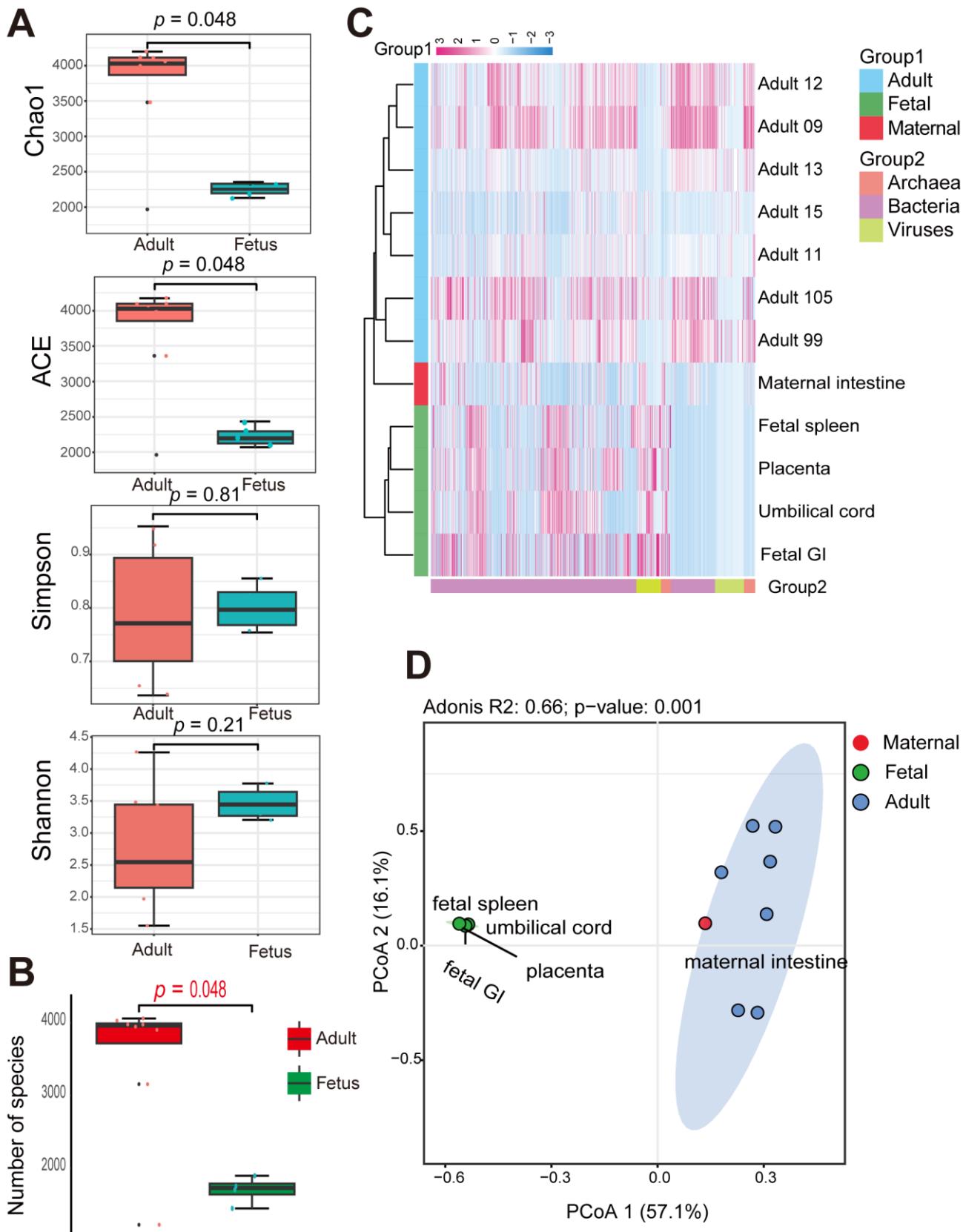
| <b>Level</b> | <b>Maternal intestine</b> | <b>Placenta</b> | <b>Umbilical cord</b> | <b>Fetal GI tissue</b> | <b>Fetal spleen</b> |
|--------------|---------------------------|-----------------|-----------------------|------------------------|---------------------|
| <b>Order</b> | Herpesvirales             | Herpesvirales   | Caudovirales          | Herpesvirales          | Herpesvirales       |
|              | Caudovirales              | Caudovirales    | Herpesvirales         | Caudovirales           | Caudovirales        |
|              | Picornavirales            | Picornavirales  | Bunyavirales          | Picornavirales         | Picornavirales      |

|                |                                                |                                      |                                                |                                                |                                                |
|----------------|------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                | Bunyavirales                                   | Bunyavirales                         | Picornavirales                                 | Bunyavirales                                   | Bunyavirales                                   |
|                | Mononegavirales                                | Nidovirales                          | Tymovirales                                    | Nidovirales                                    | Nidovirales                                    |
| <b>Genus</b>   | <i>Flavivirus</i>                              | <i>Pandoravirus</i>                  | <i>Phietavirus</i>                             | <i>Pandoravirus</i>                            | <i>Pandoravirus</i>                            |
|                | <i>Pandoravirus</i>                            | <i>Flavivirus</i>                    | <i>Flavivirus</i>                              | <i>Alphabaculovirus</i>                        | <i>Flavivirus</i>                              |
|                | <i>Alphabaculovirus</i>                        | <i>Alphabaculovirus</i>              | <i>Pandoravirus</i>                            | <i>Roseolovirus</i>                            | <i>Alphabaculovirus</i>                        |
|                | <i>Lymphocryptovirus</i>                       | <i>Ichnovirus</i>                    | <i>Alphabaculovirus</i>                        | <i>Ichnovirus</i>                              | <i>Ichnovirus</i>                              |
|                | <i>Roseolovirus</i>                            | <i>Roseolovirus</i>                  | <i>Ichnovirus</i>                              | <i>Simplexvirus</i>                            | <i>Roseolovirus</i>                            |
| <b>Species</b> | <i>BeAn 58058 virus</i>                        | <i>BeAn 58058 virus</i>              | <i>Dengue virus</i>                            | <i>BeAn 58058 virus</i>                        | <i>BeAn 58058 virus</i>                        |
|                | <i>Dengue virus</i>                            | <i>Dengue virus</i>                  | <i>BeAn 58058 virus</i>                        | <i>Pandoravirus inopinatum</i>                 | <i>Dengue virus</i>                            |
|                | <i>Macacine gammaherpesvirus 4</i>             | <i>Pandoravirus dulcis</i>           | <i>Orgyia leucostigma nucleopolyhedrovirus</i> | <i>Orgyia leucostigma nucleopolyhedrovirus</i> | <i>Pandoravirus dulcis</i>                     |
|                | <i>Pandoravirus salinus</i>                    | <i>Glypta fumiferanae ichnovirus</i> | <i>Staphylococcus phage StB27</i>              | <i>Glypta fumiferanae ichnovirus</i>           | <i>Pandoravirus inopinatum</i>                 |
|                | <i>Orgyia leucostigma nucleopolyhedrovirus</i> | <i>Pandoravirus salinus</i>          | <i>Staphylococcus virus PH15</i>               | <i>Human betaherpesvirus 7</i>                 | <i>Orgyia leucostigma nucleopolyhedrovirus</i> |

224

225 Table 3 Top five archaea with the highest relative abundance in maternal and fetal RMs.

| Level         | Maternal intestine | Placenta      | Umbilical cord | Fetal GI tissue | Fetal spleen  |
|---------------|--------------------|---------------|----------------|-----------------|---------------|
| <b>Phylum</b> | Euryarchaeota      | Euryarchaeota | Euryarchaeota  | Euryarchaeota   | Euryarchaeota |

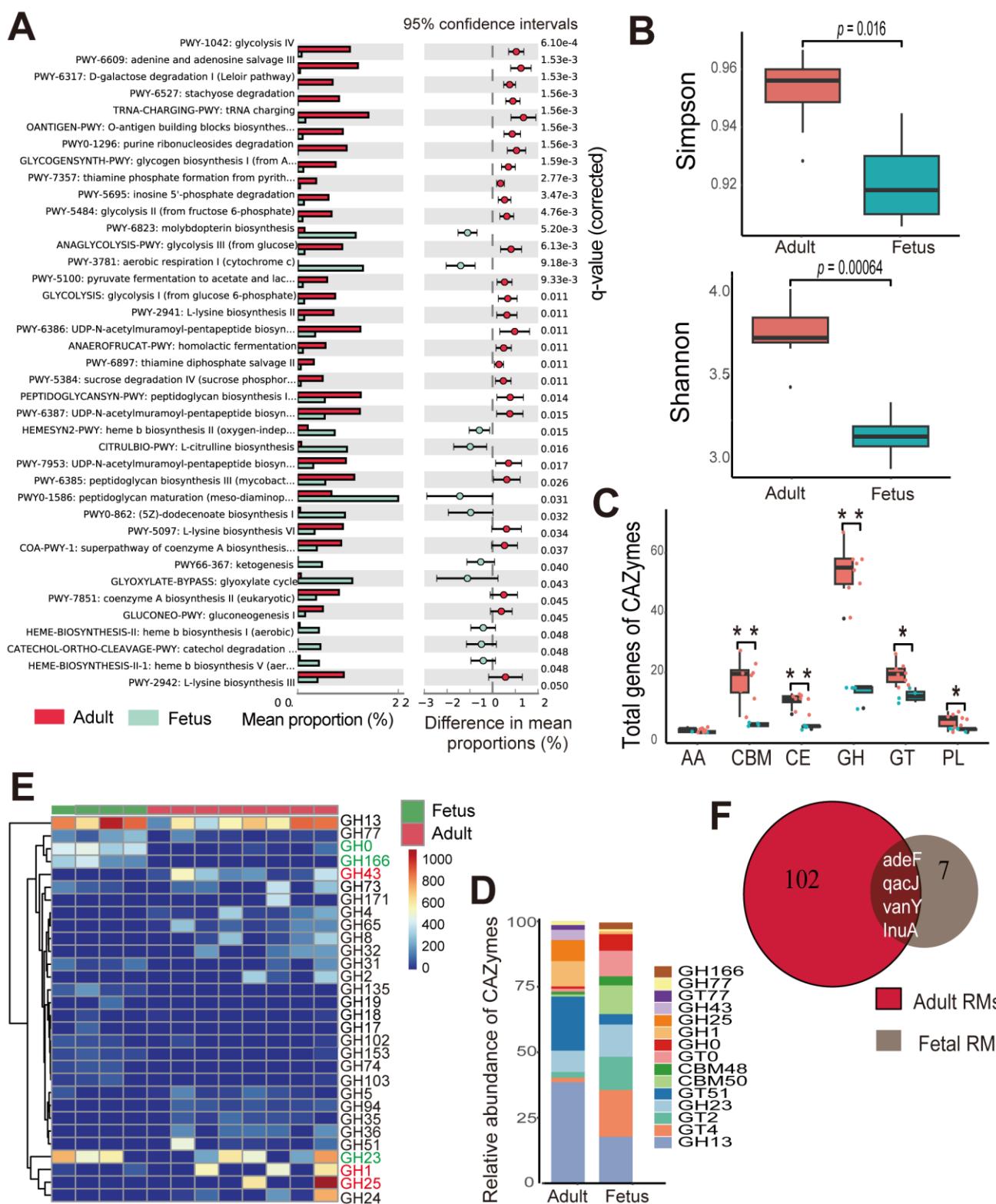

|         |                                              |                                        |                                        |                                            |                                            |
|---------|----------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------|
|         | Crenarchaeota                                | Thaumarchaeota                         | Crenarchaeota                          | Thaumarchaeota                             | Thaumarchaeota                             |
|         | Thaumarchaeota                               | Crenarchaeota                          | Thaumarchaeota                         | Crenarchaeota                              | Crenarchaeota                              |
| Genus   | <i>Methanobrevibacter</i>                    | <i>Methanosarcina</i>                  | <i>Methanosarcina</i>                  | <i>Methanobrevibacter</i>                  | <i>Methanobrevibacter</i>                  |
|         | <i>Candidatus Methanomethylophilus</i>       | <i>Methanobrevibacter</i>              | <i>Methanothrix</i>                    | <i>Methanococcus</i>                       | <i>Methanosarcina</i>                      |
|         | <i>Methanomethylovorans</i>                  | <i>Methanococcus</i>                   | <i>Methanococcus</i>                   | <i>Methanomethylovorans</i>                | <i>Methanomethylovorans</i>                |
|         | <i>Methanosarcina</i>                        | <i>Methanomethylovorans</i>            | <i>Methanomethylovorans</i>            | <i>Methanosarcina</i>                      | <i>Methanococcus</i>                       |
|         | <i>Methanospaera</i>                         | <i>Methanothermococcus</i>             | <i>Methanobrevibacter</i>              | <i>Candidatus Nitrosocaldus</i>            | <i>Candidatus Nitrosocaldus</i>            |
| Species | <i>Methanobrevibacter smithii</i>            | <i>Methanomethylovorans hollandica</i> | <i>Methanothrix soehngenii</i>         | <i>Methanomethylovorans hollandica</i>     | <i>Methanobrevibacter ruminantium</i>      |
|         | <i>Candidatus Methanomethylophilus alvus</i> | <i>Methanosarcina sp. MTP4</i>         | <i>Methanosarcina sp. MTP4</i>         | <i>Methanococcus voltae</i>                | <i>Methanomethylovorans hollandica</i>     |
|         | <i>Methanomethylovorans hollandica</i>       | <i>Methanococcus voltae</i>            | <i>Methanococcus voltae</i>            | <i>Methanobrevibacter olleyae</i>          | <i>Methanobrevibacter sp. AbM4</i>         |
|         | <i>Methanospaera stadtmanae</i>              | <i>Methanothermococcus okinawensis</i> | <i>Methanomethylovorans hollandica</i> | <i>Candidatus Nitrosocaldus islandicus</i> | <i>Methanococcus voltae</i>                |
|         | <i>Methanobrevibacter ruminantium</i>        | <i>Methanobrevibacter ruminantium</i>  | <i>Methanosarcina siciliae</i>         | <i>Methanobrevibacter sp. AbM4</i>         | <i>Candidatus Nitrosocaldus islandicus</i> |

226

227 **3.2 Comparison of microbial composition and function between fetal and adult RMs**

228 To assess microbial differences between fetal and adult RMs, seven gut metagenomic datasets  
 229 obtained from adult RMs were included for analysis. Comparing  $\alpha$ -diversity between the adult and  
 230 fetal groups revealed significant differences in the ACE and Chao1 indices (richness) ( $p < 0.05$ ;  
 231 Figure 4A), but no significant differences in the Shannon and Simpson indices (richness and  
 232 heterogeneity). Notably, the number of microbial species was significantly higher in adult samples  
 233 compared to the fetal samples ( $p < 0.05$ ; Figure 4B). The heatmap of microbes at the genus level

234 indicated that placental, umbilical cord, fetal spleen, and fetal GI samples clustered separately from  
235 maternal intestinal and other adult RM samples, highlighting the distinct microbial composition  
236 between the adult and fetal groups (Figure 4C). Abundant microbes exhibited differences between  
237 the adult and fetal groups. Specifically, the predominant bacteria in the adult microbiome were  
238 Bacteroidetes and Firmicutes, whereas Proteobacteria was dominant in the fetal microbiome (Table  
239 S3). It is evident that while the maternal samples clustered with other adult RM samples, their  
240 microbial composition closely aligned with that of the fetal group (Figure 4C). The PCoA results  
241 based on microbial species-level abundance further corroborated the heatmap results (Figure 4D).  
242 Furthermore, the PCoA results for viruses, bacteria, and archaea (Figure S3) showed that viral  
243 composition between the fetal and maternal samples was more similar (Figure S3A) than their  
244 bacterial or archaeal compositions (Figure S3B, C).




246 **Figure 4** Different analyses of microbial composition between adult and fetal RMs. (A) Alpha  
247 diversity estimates (ACE, Chao1, Shannon, and Simpson indices) between fetal and adult groups (B)

248 Comparison of microbial species number in adult and fetal groups (Wilcoxon's rank-sum test,  $p <$   
249 0.05). **(C)** Heatmap plot of bacteria, archaea, and viruses in each sample at genus level. **(D)** PCoA  
250 plot based on Bray-Curtis distance of species-level relative abundance of microbiota between adult  
251 and fetal samples (Adonis,  $R^2 = 0.66$ ,  $p = 0.001$ ).

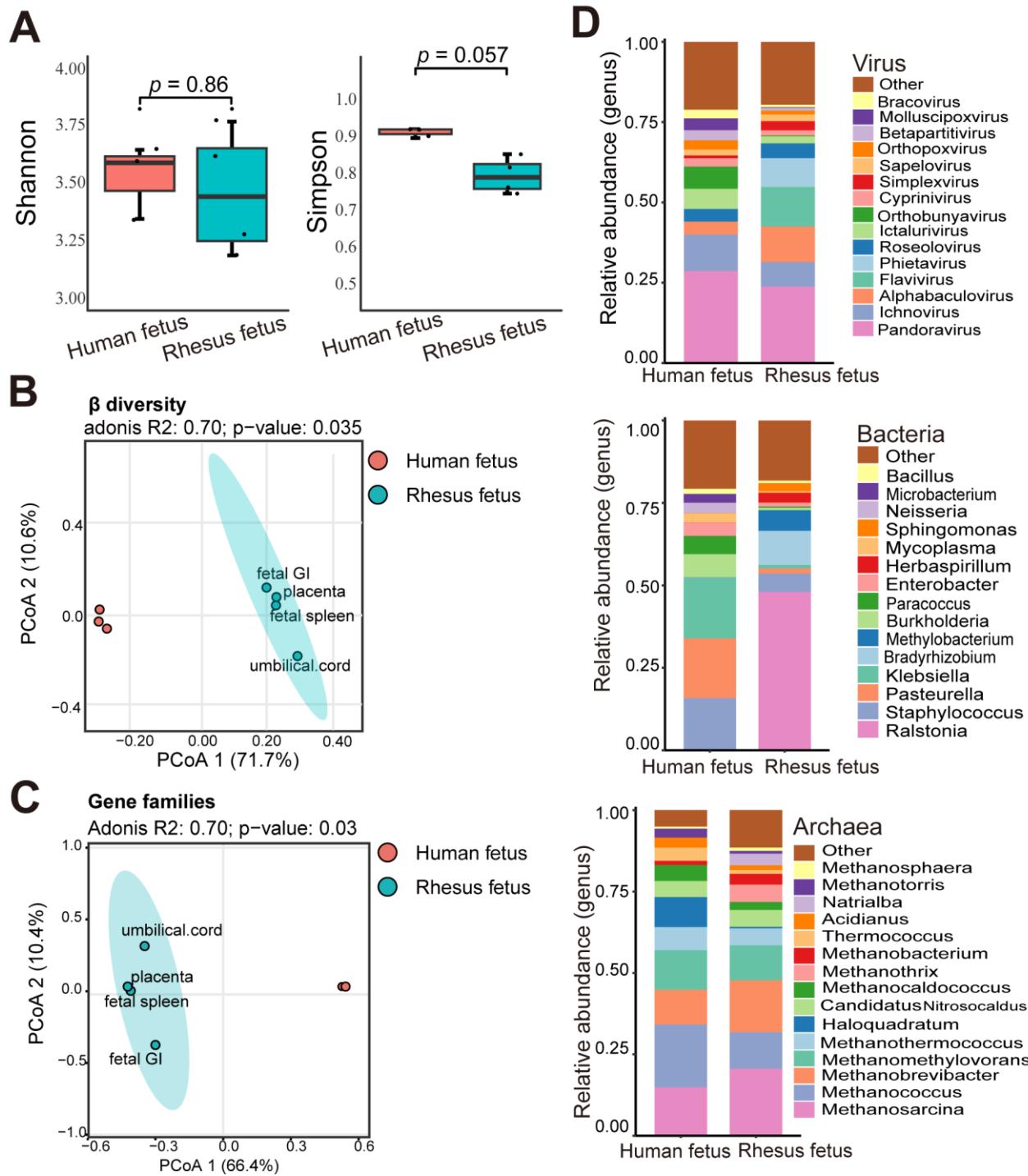
252

253 Functional differences between the fetal and adult groups were also studied. The PCoA analysis  
254 demonstrated a distinct separation between fetal and adult microbial gene families, with maternal  
255 samples displaying a closer similarity to those of the fetal microbiomes (Figure S3D). Building on  
256 these genetic findings, we next explored the associated metabolic pathways. The microbiota of the  
257 adult group was primarily enriched in protein, ribonucleotide, and peptidoglycan synthesis pathways  
258 (Figure S4A), while the fetal group was primarily enriched in pathways related to nucleotide and  
259 amino acid synthesis, fatty acid synthesis and oxidation, and energy metabolism (Figure S4B-E). A  
260 total of 39 significantly distinct metabolic pathways were identified between the groups (Figure 5A).  
261 Of these, 28 pathways were enriched in the adult group, which were mainly related to carbohydrate  
262 metabolism essential for energy conversion, metabolic regulation, and energy balance. Conversely, of  
263 the 11 pathways enriched in the fetal group, the most significant were associated with energy  
264 synthesis and metabolism, including molybdopterin biosynthesis, aerobic respiration I (cytochrome  
265 c), and heme b biosynthesis II (oxygen-independent).



266

267 **Figure 5** Functional comparison of microbiota between adult and fetal RMs. (A) Functionally  
268 predicted pathways differing in abundance in adult and fetal groups. Bar plot shows mean  
269 proportions of pathways. Only  $p < 0.05$  is shown (Welch's  $t$ -test, false discovery rate (FDR)-  
270 adjusted). (B) Alpha diversity estimates (Shannon and Simpson indices) of CAZyme genes between  
271 fetal and adult groups. (C) Gene number comparisons of GH, GT, CBM, CE, PL, and AA. \* $p$ -value


272 < 0.05, \*\**p*-value < 0.01 **(D)** Main CAZymes with highest relative abundance in adult and fetal  
273 microbiome. **(E)** Heatmap plot of abundance of top 30 GH family genes. GHs marked in red or green  
274 are most abundant in RM or human fetal groups. Red GHs mean significantly more abundant in adult  
275 microbiome of RMs, and green GHs mean significantly more abundant in fetal microbiome. **(F)**  
276 Distribution of ARGs in two groups.

277

278 We next identified microbial CAZymes, including glycoside hydrolase (GH), glycosyl transferase  
279 (GT), carbohydrate-binding module (CBM), carbohydrate esterase (CE), polysaccharide lyase (PL),  
280 and auxiliary activity (AA) between the two groups. The Shannon and Simpson indices indicated that  
281 CAZyme diversity was significantly higher in the adult group than in the fetal group (*p* < 0.05;  
282 Figure 5B). The adult microbiome contained a significantly greater number of CAZyme genes than  
283 the fetal microbiome (Figure S4F). Notably, the adult samples displayed significantly more GHs,  
284 GTs, CBMs, CEs, and PLs than the fetal samples (Figure 5C). In both groups, GH was the most  
285 abundant family, followed by GT. The top five prevalent CAZyme families in the adult group were  
286 GH13, GT51, GH1, GH25, and GH23, and in the fetal group were GT4, GH13, GT2, GH23, and  
287 CBM50 (Figure 5D). Given the critical role of the GH family in carbohydrate degradation, we  
288 compared the abundances of different GH family members between the adult and fetus groups. GH13  
289 was the most abundant GH family member, while GH1, GH25, and GH43 were more abundant in the  
290 adult group, and GH23, GH0, and GH166 were more abundant in the fetal group (Figure 5E and  
291 S4G). Many GH family genes abundant in the adult group were less so in the fetal group. Notably,  
292 seven ARGs were identified in the fetal samples (six ARGs in umbilical cord, one ARG in placenta,  
293 one ARG in fetal spleen, and two ARGs in fetal GI) and 102 ARGs were identified in the adult  
294 group, including the mother. Among them, four ARGs (adeF, qacJ, vanY, and InuA) were shared by  
295 the adult and fetal groups (Figure 5F).

### 296 3.3 Comparison of fetal microbial composition between the RM and human

297 Metagenomic datasets of intestinal contents from a single human fetus were downloaded for  
298 comparison with the RM fetus data. A total of 96 species of viruses (belonging to 52 genera), 32  
299 species of archaea (belonging to three phyla and 19 genera), and 982 species of bacteria (belonging to  
300 20 phyla and 431 genera) were identified in the human fetal samples. Comparison of  $\alpha$ -diversity  
301 between the two species showed no significant differences in Shannon and Simpson indices (Figure  
302 6A). However, at microbial species-level abundance, PCoA distinctly separated the human and RM  
303 fetal samples (*p* < 0.05; Figure 6B). A similar distinction emerged following PCoA of gene family  
304 abundance of microbiota (*p* < 0.05, Figure 6C).



305

306 **Figure 6** Different analysis of microbial composition between human and RM fetal samples. (A)  
307 Alpha diversity estimates (Shannon and Simpson indices) between two groups (Wilcoxon's rank-sum  
308 test,  $p > 0.05$ ). (B) PCoA plot based on Bray-Curtis distance of species-level relative abundance of  
309 microbiota between human and RM fetal samples (Adonis,  $R^2 = 0.7$ ,  $p = 0.034$ ). (C) PCoA plot based  
310 on gene family abundance between human and RM fetal samples (Adonis,  $R^2 = 0.66$ ,  $p = 0.031$ ). (D)  
311 Top 15 abundant microbial genera (virus, archaea, and bacteria) in two groups.

312

313 Comparing microbial composition between the RM and human fetal samples, bacteria exhibited  
314 more pronounced differences at the genus levels than viruses and archaea (Figure 6D). Despite the  
315 differences in microbiota between the two species, several microbes were shared. For instance, both  
316 the RM and human fetal samples contained methanogens being the dominant archaea (Table S4). The  
317 dominant bacterial phyla in the fetal microbiota of both species displayed a high degree of similarity  
318 (Figure S5 and Table S5).

319 **4 Discussion**

320 **4.1 Microbes identified in RM fetus**

321 Previous studies indicate that the development of the human immune system begins early in fetal life  
322 (5, 6, 35), with exposure to maternal antigens and microbial entities that traverse the placental barrier  
323 into fetal tissues (13, 33, 37, 74). This microbial and antigenic exposure is believed to prime the fetal  
324 immune system, establishing a foundation for lifelong immunity and tolerance (35). As a widely used  
325 animal model, RMs offer a valuable opportunity to investigate the fetal microbiota (47-52). In the  
326 present study, we performed metagenomic analysis on fetal organs obtained in a sterile manner by  
327 cesarean section, and further collected samples of placenta, umbilical cord, and maternal intestine  
328 content to study microbial signal in fetus. Following rigorous experimental design, including the  
329 exclusion of background contamination and removal of low-quality and host sequences, we detected  
330 diverse microbes (including 223 virus species, 2 554 bacteria species, and 68 archaea species) in the  
331 placental, umbilical cord, and fetal organ samples. A considerable number of shared microbes were  
332 found in the placenta, umbilical cord, and fetal organs, with certain microbes exhibiting significant  
333 similarity to those in the maternal intestine. Our findings suggest that in RMs, the fetus is exposed to  
334 maternal microbes prior to birth due to vertical transmission. These findings are consistent with  
335 previous studies in humans, NHPs, and mice that show the presence of microbes in the intrauterine  
336 environment (25, 35, 38, 58, 60) and the vertical transmission of microbes from the mother (75-77).  
337 However, we detected microorganisms present in fetal samples but absent in the maternal intestine.  
338 Several studies suggested that the fetal microbiome may be attributed to multiple potential maternal  
339 sources, including oral, endometrial, and urogenital microbiotas (78-82). Such a diverse range of  
340 microbiota sources could account for the difference in microorganisms observed between the  
341 maternal intestine and fetal samples. Together, our analysis provides significant insights into the  
342 microbiota and immune development of rhesus monkey fetuses.

343 However, the presence of fetal microbiota remains controversial, with the long-held view positing the  
344 fetus develops in a sterile intrauterine environment until birth (83). Moreover, a recent study by Theis  
345 et al. isolated *Cutibacterium acnes* from one colony out of 96 fetal and placental samples of RMs,  
346 and with 16S rRNA sequencing, they found the bacterium in the fetal samples, and particularly in the  
347 maternal decidua with relative high abundance. However, given that this bacterium was also detected  
348 in nearly half of the background technical controls and is commonly present on human skin (84)  
349 there is a possibility of contamination (57). This study obtained a RM fetus in a sterile manner by  
350 cesarean section without contamination from the birth canal, and we applied stringent experimental  
351 conditions and rigorous control settings to avoid contamination. We also detected the *Cutibacterium*  
352 *acnes* with relatively high abundance in the fetal samples. Consistent with our result, *Cutibacterium*  
353 *acnes* was reported to be a significant portion of bacterial isolates from human placenta and amniotic  
354 fluid in normal term pregnancies (85). Unfortunately, due to the limited sample size, whether  
355 *Cutibacterium acnes* exists in the intrauterine environment of RM or not, still needs further  
356 verification with advanced analysis methods and more fetal samples in future. Different to the case of  
357 *Cutibacterium acnes*, other bacteria such as *Acinetobacter* and *Ottowia*, identified in our fetal

358 samples, were also detected in uterine wall samples of RMs but were seldom found in controls by  
359 Theis et al's study (57). These bacteria have also been detected from the human endometrium (86-  
360 91). Additionally, *Ralstonia insidiosa*, found in high abundance in our fetal samples, was a resident  
361 bacterium at the maternal-fetal interface (40). This bacterium was detected in the human placental  
362 basal plate and villus through 16S rRNA sequencing and validated by quantitative real-time PCR and  
363 fluorescent in situ hybridization (39, 40). Parnell et al. further demonstrated that *Ralstonia insidiosa*  
364 can enter the placenta via the intrauterine route in a pregnant mouse model, suggesting a mechanism  
365 for its presence at the maternal-fetal interface (40). This evidence supports their relevance to the  
366 uterine environment and reinforces our hypothesis about their presence in the RM uterine  
367 environment.

368 Recent studies have highlighted the functional involvement of archaea, single-celled prokaryotes, in  
369 health and disease (92, 93). Our results indicated that the most abundant archaea at the phylum level,  
370 Euryarchaeota, was shared by maternal and fetal samples. Euryarchaeota contains the greatest  
371 number and diversity of archaea (94), including methanogens. The methanogens were also the  
372 dominant archaeal component in fetal samples in our study. At present, however, the functional and  
373 pathogenic impacts of archaea in animals remain poorly understood (95, 96). Additionally, the viral  
374 profiles in both maternal and fetal samples were similar, indicating the possibility of vertical  
375 transmission of viruses from the mother to the fetus within the uterus.

## 376 4.2 Microbes in placenta and umbilical cord

377 Identification of microbes in the placenta and umbilical cord is crucial, as the placenta serves as the  
378 primary barrier between the fetus and mother, and the umbilical cord supplies essential nutrients for  
379 fetal development and survival (97, 98). However, the mechanism by which microbes traverse the  
380 placental barrier and reach the fetus remains unresolved, despite the potential impact of microbes on  
381 fetal health (99, 100). Studies on the presence of microorganisms in the placenta and umbilical cord  
382 are pivotal for developing effective strategies to prevent fetal microbial infections.

383 In the present study, diverse microbes were identified in the placenta, umbilical cord, and two fetal  
384 organs, while the umbilical cord exhibited a lower microbial DNA content relative to other samples.  
385 The microbial profiles of the placenta and umbilical cord more closely resembled those of the fetal  
386 spleen and fetal GI than the maternal intestine. The placenta, umbilical cord, and fetal organs shared  
387 various dominant microbes and showed similar microbial diversity and composition, strongly  
388 suggesting that placental microbes may be the primary contributors to the fetal microbiome (25, 55,  
389 74). *Proteobacteria* was the most abundant bacteria in the placenta, consistent with findings from  
390 human studies (85, 101). The umbilical cord microbiota differed somewhat from that of other fetal  
391 samples, possibly due to its transportation role, relatively low microbial DNA content, or increased  
392 host contamination. *Staphylococcus* was notably abundant in the umbilical cord samples. This  
393 bacterium has been detected in fetal and placental samples from Japanese macaques (55), as well as  
394 in human amniotic fluid, placental, and cord blood samples (85, 102). While prevalent in human  
395 placenta and various fetal organs through clinical culturing (35), some sequence-based studies  
396 suggest their presence may be due to background contamination (103).

## 397 4.3 Microbial differences between adult RMs and fetus

398 Physiological and nutritional changes from the fetal stage to adulthood induce persistent changes in  
399 the microbial composition and enrichment of genes associated with carbohydrate metabolism (104,  
400 105). In contrast to fetal nutrition, which relies on glucose provided by the mother (106), adult RMs  
401 encounter a much more complex environment and diet. Our results showed pronounced differences

402 in microbial compositions and functions between adult RMs and fetuses. Regarding microbial  
403 composition, the abundant microbial taxa differed between adult and fetal samples, with adults  
404 exhibiting significantly higher microbial richness. In addition, the different bacteria possess  
405 carbohydrates targeting distinct polysaccharides for degradation and facilitate their colonization in  
406 the gut through the evolution of carbohydrates (107, 108). Consequently, adult RMs may exhibit a  
407 more pronounced carbohydrate metabolism than fetuses, as reflected by our results showing the  
408 greater diversity and abundance of CAZyme genes detected in the adult microbiome. The dominant  
409 CAZymes in the adult and fetal microbiomes were different. In the adult microbiome, GHs were the  
410 predominant CAZymes, while in fetuses, both GHs and GTs were prevalent. These enzyme families  
411 are primarily responsible for carbohydrate degradation and synthesis, respectively (109, 110). GH  
412 family genes were significantly enriched in adult microbiome than fetal microbiome, especially GH1  
413 and GH43, which are associated with hemicellulose and cellulose degradation (109-111) and support  
414 the dietary demands of adult RMs to metabolize fiber-intensive foods (112, 113). In both the adult  
415 and fetal microbiomes, GH13 was the dominant GH family. Notably, GH13, a significant family of  
416 glycoside hydrolases, is involved in the degradation of glycogen, oligosaccharides, polysaccharides,  
417 and starch (114, 115).

418 Maternal antibiotic treatment during pregnancy has long-lasting effects on the fetal microbiota and  
419 health (116-118). Maternal ARGs can be transmitted to the fetus and influence the fetal microbiome  
420 and resistome profiles to induce resistance (119-121). As the fetal microbiota is a critical determinant  
421 of early immunity development, overall health, and antibiotic treatment efficacy (35), a  
422 comprehensive understanding of fetal ARGs is crucial. In this study, even without direct antibiotic  
423 exposure to the fetus, we identified four ARGs in the fetal samples that aligned with those in  
424 maternal and adult RMs, suggesting a vertical transmission of ARG-containing microbes during  
425 pregnancy. Subsequent examinations of bacteria harboring ARGs, and the impact of specific  
426 antibiotics may aid in the development of preventive and treatment strategies for healthy pregnancy  
427 outcomes (122-124).

#### 428 **4.4 Microbial differences between human and RM fetuses**

429 The microbial components of NHPs tend to resemble those of humans more closely than those of  
430 other animals (125, 126). Our analysis revealed a convergence in certain dominant microbiota  
431 between human and RM fetuses. Specifically, Proteobacteria was the most abundant phylum in both  
432 human fetal intestines and RM fetal organs. Other research has highlighted the dominance of  
433 Proteobacteria in the human neonatal gut during the first week of life (127), which facilitates  
434 colonization by strict anaerobes and underscores the susceptibility of bacterial communities at this  
435 stage (128, 129). Proteobacteria constitutes a major community in the human placenta and umbilical  
436 cord blood (37, 130), with overlaps noted between placental communities and those in amniotic fluid  
437 and meconium (131, 132). Additionally, the intestinal abundance of Proteobacteria in both macaques  
438 and humans significantly increases during pregnancy (133, 134). Based on published studies and the  
439 high abundance of Proteobacteria observed in maternal RM in our study, it is reasonable to speculate  
440 that, similar to humans (135), Proteobacteria in RM fetuses may also be transmitted from the mother  
441 *in utero*. Of note, Firmicutes and Bacteroidetes are reported to be the primary phyla in both adult  
442 humans and RMs (136-140), suggesting that, during the transition from fetus to adulthood in both  
443 species, Firmicutes and Bacteroidetes displace Proteobacteria as the prevailing bacteria. Our results  
444 also revealed that methanogens were the dominant archaea in the fetuses of both human and RM.  
445 These observations underscore the similarity in microbial communities between human and RM  
446 fetuses, suggesting macaques as good models to study human microbial composition and  
447 transmission.

448 However, disparities in the microbiome between adult humans and RMs were evident, likely  
449 stemming from significant differences in genetic, physiological, dietary, environmental factors,  
450 among others (141-143). In our microbial analysis, significant differences were observed in the  
451 overall compositions, potential functions, and abundance of specific microbes between the human  
452 and RM fetuses. Given the microbial differences between RMs and humans, caution is necessary  
453 when extrapolating the findings of this study to human biology.

454 In conclusion, our research reported a detailed case analysis of the microbial composition and  
455 function within an RM fetus, meticulously obtained via cesarean section to avoid contamination from  
456 the birth canal. By preparing DNA libraries from environmental and blank controls, we confirmed  
457 low environmental contamination in our samples, reinforcing the validity of our findings. We  
458 observed a diverse array of microorganisms in the womb and fetus. As crucial connections between  
459 mother and fetus, the placenta and umbilical cord exhibit a microbial composition that more closely  
460 resembles that of the fetus rather than the mother. These observations suggest a potential maternal-  
461 fetal microbial transfer, possibly through these structures, as supported by substantial microbial  
462 sharing and clustered microbial profiles between the mother and fetus compared to other adult RMs.  
463 Importantly, the discovery of seven ARGs in the RM fetus further suggests potential vertical  
464 transmission, highlighting the possible critical role these microbes may play in fetal health and  
465 immune system development. In terms of the unique fetal microbial profile, our findings reveal  
466 substantial differences in microbial composition and functional pathways between the fetus and  
467 adults. Notably, the fetus exhibited a less developed capacity for carbohydrate metabolism,  
468 characterized by fewer diverse genes and less complex pathways compared to adults. Our findings  
469 not only emphasize maternal-fetal microbial transfer but also help in formulating strategies to tackle  
470 microbial-induced challenges in fetal health and development. However, it is noteworthy that,  
471 obtaining placental and fetal samples from NHPs is known to be difficult due to ethical and welfare  
472 considerations. Future research, enriched with more microbiome data from macaque fetal samples  
473 and innovative methodologies, will benefit to elucidate the impact of fetal microbiota on the  
474 developing immune system, thereby advancing our understanding of these complex biological  
475 processes.

476

## 477 **Declarations**

## 478 **Data availability**

479 The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive  
480 in National Genomics Data Center (GSA: CRA014938 and CRA014939) that are accessible at  
481 <https://ngdc.cncb.ac.cn/gsa>.

## 482 **Ethics approval and consent to participate**

483 This study was approved by the Ethics Committee of the College of Life Sciences, Sichuan  
484 University, China (SCU230810001). All sample collection and utility protocols fully complied with  
485 the guidelines of the Management Committee of Experimental Animals of Sichuan Province, China  
486 (SYXK-Sichuan, 2019-192).

## 487 **Consent for publication**

488 Not Applicable.

489 **Competing interests**

490 Authors Gang Hu and Qinghua Liu are employed by SCU-SGHB Joint Laboratory on Non-human  
491 Primates Research. The remaining authors declare that the research was conducted in the absence of  
492 any commercial or financial relationships that could be construed as a potential conflict of interest.

493 **Funding**

494 This work was supported by the Science and Technology Foundation of Sichuan Province, China  
495 (2021YJ0136).

496 **Authors' contributions**

497 QD: Writing – original draft, Writing – review & editing, Formal Analysis, Visualization; XL:  
498 Writing – review & editing, Methodology, Formal Analysis; RSZ: Writing – review & editing,  
499 Methodology; GH: Writing – review & editing, Data curation; Resources; QHL: Writing – review &  
500 editing, Data curation; Resources; WM: Writing – review & editing, Visualization; YH: Writing –  
501 review & editing, Visualization; ZXZ: Writing – review & editing, Project administration; JL:  
502 Supervision, Writing – review & editing, Funding acquisition.

503 **Acknowledgements**

504 We thank Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for metagenomic  
505 sequencing and give special thanks to Sichuan Green-House Biotech Co., Ltd. for the provision of  
506 samples.

507 **References**

- 508 1. Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, et al. Cd161  
509 Contributes to Prenatal Immune Suppression of Ifn- $\Gamma$ -Producing Plzf+ T Cells. *The Journal of  
510 Clinical Investigation* (2019) 129(9):3562-77.
- 511 2. Le BL, Sper R, Nielsen SC, Pineda S, Nguyen Q-H, Lee J-Y, et al. Maternal and Infant  
512 Immune Repertoire Sequencing Analysis Identifies Distinct Ig and Tcr Development in Term and  
513 Preterm Infants. *The Journal of Immunology* (2021) 207(10):2445-55.
- 514 3. McGovern N, Shin A, Low G, Low D, Duan K, Yao LJ, et al. Human Fetal Dendritic Cells  
515 Promote Prenatal T-Cell Immune Suppression through Arginase-2. *Nature* (2017) 546(7660):662-6.
- 516 4. Papadopoulou M, Tieppo P, McGovern N, Gosselin F, Chan JK, Goetgeluk G, et al. Tcr  
517 Sequencing Reveals the Distinct Development of Fetal and Adult Human V $\gamma$ 9V $\delta$ 2 T Cells. *The  
518 Journal of Immunology* (2019) 203(6):1468-79.
- 519 5. Park J-E, Botting RA, Domínguez Conde C, Popescu D-M, Lavaert M, Kunz DJ, et al. A Cell  
520 Atlas of Human Thymic Development Defines T Cell Repertoire Formation. *Science* (2020)  
521 367(6480):eaay3224.
- 522 6. Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation.  
523 *Frontiers in immunology* (2020) 11:588.
- 524 7. Romero R, Gomez R, Ghezzi F, Yoon BH, Mazor M, Edwin SS, et al. A Fetal Systemic  
525 Inflammatory Response Is Followed by the Spontaneous Onset of Preterm Parturition. *American  
526 journal of obstetrics and gynecology* (1998) 179(1):186-93.

527 8. Zhivaki D, Lo-Man R, editors. In Utero Development of Memory T Cells. *Seminars in*  
528 *Immunopathology*; 2017: Springer.

529 9. Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, et al. Timely and Spatially  
530 Regulated Maturation of B and T Cell Repertoire During Human Fetal Development. *Science*  
531 *translational medicine* (2015) 7(276):276ra25-ra25.

532 10. Leavy O. Fetal Immune Repertoire. *Nature Reviews Immunology* (2015) 15(4):201-. doi:  
533 10.1038/nri3841.

534 11. Para R, Romero R, Miller D, Galaz J, Done B, Peyvandipour A, et al. The Distinct Immune  
535 Nature of the Fetal Inflammatory Response Syndrome Type I and Type II. *ImmunoHorizons* (2021)  
536 5(9):735-51.

537 12. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, et al. The Fetal  
538 Inflammatory Response Syndrome. *Clinical obstetrics and gynecology* (2007) 50(3):652-83.

539 13. Li N, van Unen V, Abdelaal T, Guo N, Kasatskaya SA, Ladell K, et al. Memory Cd4+ T  
540 Cells Are Generated in the Human Fetal Intestine. *Nature immunology* (2019) 20(3):301-12.

541 14. Nikiforou M, Jacobs EM, Kemp MW, Hornef MW, Payne MS, Saito M, et al. Intra-Amniotic  
542 Candida Albicans Infection Induces Mucosal Injury and Inflammation in the Ovine Fetal Intestine.  
543 *Scientific reports* (2016) 6(1):1-9.

544 15. Schreurs RR, Baumdick ME, Sagebiel AF, Kaufmann M, Mokry M, Klarenbeek PL, et al.  
545 Human Fetal Tnf-A-Cytokine-Producing Cd4+ Effector Memory T Cells Promote Intestinal  
546 Development and Mediate Inflammation Early in Life. *Immunity* (2019) 50(2):462-76. e8.

547 16. Stras SF, Werner L, Toothaker JM, Olaloye OO, Oldham AL, McCourt CC, et al. Maturation  
548 of the Human Intestinal Immune System Occurs Early in Fetal Development. *Developmental cell*  
549 (2019) 51(3):357-73. e5.

550 17. Wolfs TG, Kramer BW, Thuijls G, Kemp MW, Saito M, Willems MG, et al.  
551 Chorioamnionitis-Induced Fetal Gut Injury Is Mediated by Direct Gut Exposure of Inflammatory  
552 Mediators or by Lung Inflammation. *American Journal of Physiology-Gastrointestinal and Liver*  
553 *Physiology* (2014) 306(5):G382-G93.

554 18. Robbins JR, Bakardjiev AI. Pathogens and the Placental Fortress. *Current Opinion in*  
555 *Microbiology* (2012) 15(1):36-43. doi: <https://doi.org/10.1016/j.mib.2011.11.006>.

556 19. Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y, et al. Human  
557 Placental Trophoblasts Confer Viral Resistance to Recipient Cells. *Proceedings of the National*  
558 *Academy of Sciences* (2013) 110(29):12048-53.

559 20. Bayer A, Delorme-Axford E, Sleighter C, Frey TK, Trobaugh DW, Klimstra WB, et al.  
560 Human Trophoblasts Confer Resistance to Viruses Implicated in Perinatal Infection. *American*  
561 *Journal of obstetrics and gynecology* (2015) 212(1):71. e1-. e8.

562 21. Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q. Decidual Natural Killer Cells: A Good  
563 Nanny at the Maternal-Fetal Interface During Early Pregnancy. *Frontiers in Immunology*  
564 (2021):1684.

565 22. PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, et al. Immune  
566 Mechanisms at the Maternal-Fetal Interface: Perspectives and Challenges. *Nature immunology*  
567 (2015) 16(4):328-34.

568 23. Than NG, Hahn S, Rossi SW, Szekeres-Bartho J. *Fetal-Maternal Immune Interactions in*  
569 *Pregnancy*. Frontiers Media SA (2019). p. 2729.

570 24. Al Alam D, Danopoulos S, Grubbs B, Ali NAtBM, MacAogain M, Chotirmall SH, et al.  
571 Human Fetal Lungs Harbor a Microbiome Signature. *American journal of respiratory and critical*  
572 *care medicine* (2020) 201(8):1002-6.

573 25. Younge N, McCann JR, Ballard J, Plunkett C, Akhtar S, Araújo-Pérez F, et al. Fetal Exposure  
574 to the Maternal Microbiota in Humans and Mice. *JCI insight* (2019) 4(19).

575 26. Willyard C. Baby's First Bacteria. *Nature* (2018) 553:264-6.

576 27. Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, et al. Visualization of  
577 Microbes by 16s in Situ Hybridization in Term and Preterm Placentas without Intraamniotic  
578 Infection. *American Journal of Obstetrics and Gynecology* (2019) 221(2):146. e1-. e23.

579 28. Rackaityte E, Halkias J, Fukui E, Mendoza V, Hayzelden C, Crawford E, et al. Viable  
580 Bacterial Colonization Is Highly Limited in the Human Intestine in Utero. *Nature medicine* (2020)  
581 26(4):599-607.

582 29. Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A Critical Assessment of the  
583 "Sterile Womb" and "in Utero Colonization" Hypotheses: Implications for Research on the Pioneer  
584 Infant Microbiome. *microbiome* (2017) 5(1):1-19.

585 30. Kundu P, Blacher E, Elinav E, Pettersson S. Our Gut Microbiome: The Evolving Inner Self.  
586 *Cell* (2017) 171(7):1481-93.

587 31. Heijtz RD, editor. Fetal, Neonatal, and Infant Microbiome: Perturbations and Subsequent  
588 Effects on Brain Development and Behavior. *Seminars in Fetal and Neonatal Medicine*; 2016:  
589 Elsevier.

590 32. Hussain T, Murtaza G, Kalhoro DH, Kalhoro MS, Yin Y, Chughtai MI, et al. Understanding  
591 the Immune System in Fetal Protection and Maternal Infections During Pregnancy. *Journal of*  
592 *Immunology Research* (2022) 2022.

593 33. Jain N. The Early Life Education of the Immune System: Moms, Microbes and (Missed)  
594 Opportunities. *Gut Microbes* (2020) 12(1):1824564.

595 34. McCauley KE, Rackaityte E, LaMere B, Fadrosh DW, Fujimura KE, Panzer AR, et al.  
596 Heritable Vaginal Bacteria Influence Immune Tolerance and Relate to Early-Life Markers of Allergic  
597 Sensitization in Infancy. *Cell Reports Medicine* (2022) 3(8):100713.

598 35. Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial  
599 Exposure During Early Human Development Primes Fetal Immune Cells. *Cell* (2021) 184(13):3394-  
600 409. e20.

601 36. Vidal Jr MS, Menon R. In Utero Priming of Fetal Immune Activation: Myths and  
602 Mechanisms. *Journal of Reproductive Immunology* (2023):103922.

603 37. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The Placenta Harbors a  
604 Unique Microbiome. *Science translational medicine* (2014) 6(237):237ra65-ra65.

605 38. Leon LJ, Doyle R, Diez-Benavente E, Clark TG, Klein N, Stanier P, et al. Enrichment of  
606 Clinically Relevant Organisms in Spontaneous Preterm-Delivered Placentas and Reagent  
607 Contamination across All Clinical Groups in a Large Pregnancy Cohort in the United Kingdom.  
608 *Applied and environmental microbiology* (2018) 84(14):e00483-18.

609 39. Parnell LA, Briggs CM, Cao B, Delannoy-Bruno O, Schrieffer AE, Mysorekar IU. Microbial  
610 Communities in Placentas from Term Normal Pregnancy Exhibit Spatially Variable Profiles.  
611 *Scientific reports* (2017) 7(1):11200.

612 40. Parnell LA, Willsey GG, Joshi CS, Yin Y, Wargo MJ, Mysorekar IU. Functional  
613 Characterization of Ralstonia Insidiosa, a Bona Fide Resident at the Maternal-Fetal Interface. *bioRxiv*  
614 (2019):721977.

615 41. Egli G, Newton M. The Transport of Carbon Particles in the Human Female Reproductive  
616 Tract. *Fertility and sterility* (1961) 12(2):151-5.

617 42. Seong HS, Lee SE, Kang JH, Romero R, Yoon BH. The Frequency of Microbial Invasion of  
618 the Amniotic Cavity and Histologic Chorioamnionitis in Women at Term with Intact Membranes in  
619 the Presence or Absence of Labor. *American journal of obstetrics and gynecology* (2008) 199(4):375.  
620 e1-. e5.

621 43. Romero R, Nores J, Mazor M, Sepulveda W, Oyarzun E, Parra M, et al. Microbial Invasion  
622 of the Amniotic Cavity During Term Labor. Prevalence and Clinical Significance. *The Journal of  
623 reproductive medicine* (1993) 38(7):543-8.

624 44. Grigsby PL, editor. Animal Models to Study Placental Development and Function  
625 Throughout Normal and Dysfunctional Human Pregnancy. *Seminars in reproductive medicine*; 2016:  
626 Thieme Medical Publishers.

627 45. Pronovost GN, Yu KB, Coley-O'Rourke EJ, Telang SS, Chen AS, Vuong HE, et al. The  
628 Maternal Microbiome Promotes Placental Development in Mice. *Science Advances* (2023)  
629 9(40):eadk1887.

630 46. Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, 't Hart BA, et al. Why Primate  
631 Models Matter. *American journal of primatology* (2014) 76(9):801-27.

632 47. Carlsson HE, Schapiro SJ, Farah I, Hau J. Use of Primates in Research: A Global Overview.  
633 *American Journal of Primatology: Official Journal of the American Society of Primatologists* (2004)  
634 63(4):225-37.

635 48. Carter AM. Animal Models of Human Placentation—a Review. *Placenta* (2007) 28:S41-S7.

636 49. Buse E, Häeger J-D, Svensson-Arvelund J, Markert UR, Faas MM, Ernerudh J, et al. The  
637 Placenta in Toxicology. Part I: Animal Models in Toxicology: Placental Morphology and Tolerance  
638 Molecules in the Cynomolgus Monkey (*Macaca Fascicularis*). *Toxicologic Pathology* (2014)  
639 42(2):314-26.

640 50. Estes JD, Wong SW, Brenchley JM. Nonhuman Primate Models of Human Viral Infections.  
641 *Nature reviews Immunology* (2018) 18(6):390-404.

642 51. Daadi MM, Barberi T, Shi Q, Lanford RE. Nonhuman Primate Models in Translational  
643 Regenerative Medicine. *Stem Cells and Development* (2014) 23(S1):83-7.

644 52. Newman C, Friedrich TC, O'Connor DH. Macaque Monkeys in Zika Virus Research: 1947–  
645 Present. *Current opinion in virology* (2017) 25:34-40.

646 53. Prescott MJ. Ethics of Primate Use. *Advances in science and research* (2010) 5(1):11-22.

647 54. Vermeire T, Epstein M, Badin R, Flecknell P, Hoet P, Hudson-Shore M, et al. Final Opinion  
648 on the Need for Non-Human Primates in Biomedical Research, Production and Testing of Products  
649 and Devices (Update 2017). *Sci Comm Heal Environ Emerg Risks* (2017).

650 55. Chu D, Prince A, Ma J, Baquero K, Blundell P, Takahashi D, et al. 114: Evidence of Fetal  
651 Microbiota and Its Maternal Origins in a Non-Human Primate Model. *American Journal of*  
652 *Obstetrics & Gynecology* (2017) 216(1):S80.

653 56. Prince A, Chu D, Meyer K, Ma J, Baquero K, Blundell P, et al. 23: The Fetal Microbiome Is  
654 Altered in Association with Maternal Diet During Gestation. *American Journal of Obstetrics &*  
655 *Gynecology* (2017) 216(1):S17.

656 57. Theis KR, Romero R, Winters AD, Jobe AH, Gomez-Lopez N. Lack of Evidence for  
657 Microbiota in the Placental and Fetal Tissues of Rhesus Macaques. *Mosphere* (2020) 5(3):e00210-20.

658 58. Chu D, Prince A, Ma J, Pace R, Takahashi D, Friedman J, et al. 115: Contribution of the Fetal  
659 Microbiome to the Taxonomic Diversity and Functionality of the Postnatal Gut Microbiome in a  
660 Non-Human Primate (Nhp) Model. *American Journal of Obstetrics & Gynecology* (2018)  
661 218(1):S82-S3.

662 59. Prince A, Ma J, Hu M, Chu D, Miller L, Jobe A, et al. 843: Chorioamnionitis Induced by  
663 Intra-Amniotic Injection of IL-1, LPS, or Ureaplasma Parvum Is Associated with an Altered  
664 Microbiome in a Primate Model of Inflammatory Preterm Birth. *American Journal of Obstetrics &*  
665 *Gynecology* (2018) 218(1):S503.

666 60. Prince AL, Ma J, Hu M, Chu DM, Miller L, Jobe A, et al. 521: Intra-Amniotic Injection  
667 Alters the Intrauterine Microbiome in a Primate Model of Inflammatory Preterm Birth. *American*  
668 *Journal of Obstetrics & Gynecology* (2019) 220(1):S349.

669 61. Chen S, Zhou Y, Chen Y, Gu J. Fastp: An Ultra-Fast All-in-One Fastq Preprocessor.  
670 *Bioinformatics* (2018) 34(17):i884-i90.

671 62. Langmead B, Salzberg SL. Fast Gapped-Read Alignment with Bowtie 2. *Nature methods*  
672 (2012) 9(4):357-9.

673 63. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. Megahit: An Ultra-Fast Single-Node Solution  
674 for Large and Complex Metagenomics Assembly Via Succinct De Bruijn Graph. *Bioinformatics*  
675 (2015) 31(10):1674-6.

676 64. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic  
677 Gene Recognition and Translation Initiation Site Identification. *BMC bioinformatics* (2010) 11:1-11.

678 65. Fu L, Niu B, Zhu Z, Wu S, Li W. Cd-Hit: Accelerated for Clustering the Next-Generation  
679 Sequencing Data. *Bioinformatics* (2012) 28(23):3150-2.

680 66. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon Provides Fast and Bias-  
681 Aware Quantification of Transcript Expression. *Nature methods* (2017) 14(4):417-9.

682 67. Buchfink B, Xie C, Huson DH. Fast and Sensitive Protein Alignment Using Diamond. *Nature*  
683 *methods* (2015) 12(1):59-60.

684 68. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The Carbohydrate-  
685 Active Enzymes Database (Cazy) in 2013. *Nucleic acids research* (2014) 42(D1):D490-D5.

686 69. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. Card 2020:  
687 Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. *Nucleic*  
688 *acids research* (2020) 48(D1):D517-D25.

689 70. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al.  
690 Species-Level Functional Profiling of Metagenomes and Metatranscriptomes. *Nature methods* (2018)  
691 15(11):962-8.

692 71. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. Uniref: Comprehensive and Non-  
693 Redundant Uniprot Reference Clusters. *Bioinformatics* (2007) 23(10):1282-8.

694 72. Wood DE, Salzberg SL. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact  
695 Alignments. *Genome biology* (2014) 15(3):1-12.

696 73. R Core Team R. R: A Language and Environment for Statistical Computing. (2013).

697 74. Cao B, Stout MJ, Lee I, Mysorekar IU. Placental Microbiome and Its Role in Preterm Birth.  
698 *Neoreviews* (2014) 15(12):e537-e45.

699 75. Hirsch AJ, Roberts VH, Grigsby PL, Haese N, Schabel MC, Wang X, et al. Zika Virus  
700 Infection in Pregnant Rhesus Macaques Causes Placental Dysfunction and Immunopathology. *Nature  
701 communications* (2018) 9(1):263.

702 76. Aronsson F, Lannebo C, Paucar M, Brask J, Kristensson K, Karlsson H. Persistence of Viral  
703 Rna in the Brain of Offspring to Mice Infected with Influenza a/Wsn/33 Virus During Pregnancy.  
704 *Journal of neurovirology* (2002) 8(4):353-7.

705 77. Wolfe B, Kerr AR, Mejia A, Simmons HA, Czuprynski CJ, Golos TG. Sequelae of Fetal  
706 Infection in a Non-Human Primate Model of Listeriosis. *Frontiers in Microbiology* (2019) 10:2021.

707 78. Walker RW, Clemente JC, Peter I, Loos RJF. The Prenatal Gut Microbiome: Are We  
708 Colonized with Bacteria in Utero? *Pediatr Obes* (2017) 12 Suppl 1(Suppl 1):3-17. Epub 2017/04/28.  
709 doi: 10.1111/ijpo.12217.

710 79. Yu K, Rodriguez M, Paul Z, Gordon E, Gu T, Rice K, et al. Transfer of Oral Bacteria to the  
711 Fetus During Late Gestation. *Scientific Reports* (2021) 11(1):708. doi: 10.1038/s41598-020-80653-y.

712 80. Keelan JA, Payne MS. Vaginal Microbiota During Pregnancy: Pathways of Risk of Preterm  
713 Delivery in the Absence of Intrauterine Infection? *Proceedings of the National Academy of Sciences  
714* (2015) 112(47):E6414-E.

715 81. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine Infection and Preterm Delivery. *New  
716 England journal of medicine* (2000) 342(20):1500-7.

717 82. Stout MJ, Conlon B, Landau M, Lee I, Bower C, Zhao Q, et al. Identification of Intracellular  
718 Bacteria in the Basal Plate of the Human Placenta in Term and Preterm Gestations. *American journal  
719 of obstetrics and gynecology* (2013) 208(3):226. e1-. e7.

720 83. Walter J, Hornef MW. A Philosophical Perspective on the Prenatal in Utero Microbiome  
721 Debate. *Microbiome* (2021) 9(1):5.

722 84. Omer H, McDowell A, Alexeyev OA. Understanding the Role of Propionibacterium Acnes in  
723 Acne Vulgaris: The Critical Importance of Skin Sampling Methodologies. *Clinics in dermatology  
724* (2017) 35(2):118-29.

725 85. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human Gut Colonisation May Be  
726 Initiated in Utero by Distinct Microbial Communities in the Placenta and Amniotic Fluid. *Scientific  
727 reports* (2016) 6(1):1-13.

728 86. Devi CA, Ranjani A, Dhanasekaran D, Thajuddin N, Ramanidevi T. Surveillance of  
729 Multidrug Resistant Bacteria Pathogens from Female Infertility Cases. *African Journal of  
730 Biotechnology* (2013) 12(26).

731 87. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et  
732 al. Evidence That the Endometrial Microbiota Has an Effect on Implantation Success or Failure.  
733 *American journal of obstetrics and gynecology* (2016) 215(6):684-703.

734 88. Winters AD, Romero R, Gervasi MT, Gomez-Lopez N, Tran MR, Garcia-Flores V, et al.  
735 Does the Endometrial Cavity Have a Molecular Microbial Signature? *Scientific reports* (2019)  
736 9(1):9905.

737 89. Leoni C, Ceci O, Manzari C, Fosso B, Volpicella M, Ferrari A, et al. Human Endometrial  
738 Microbiota at Term of Normal Pregnancies. *Genes* (2019) 10(12):971.

739 90. Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The Microbiota Continuum Along the  
740 Female Reproductive Tract and Its Relation to Uterine-Related Diseases. *Nature communications*  
741 (2017) 8(1):875.

742 91. Miles SM, Hardy BL, Merrell DS. Investigation of the Microbiota of the Reproductive Tract  
743 in Women Undergoing a Total Hysterectomy and Bilateral Salpingo-Oopherectomy. *Fertility and*  
744 *sterility* (2017) 107(3):813-20. e1.

745 92. Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al. Fungal  
746 Signature in the Gut Microbiota of Pediatric Patients with Inflammatory Bowel Disease.  
747 *Inflammatory bowel diseases* (2015) 21(8):1948-56.

748 93. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, et al. Inflammation,  
749 Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's  
750 Disease. *Cell host & microbe* (2015) 18(4):489-500.

751 94. Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, Ecology  
752 and Evolution of Archaea. *Nature microbiology* (2020) 5(7):887-900.

753 95. Kumondorova A, Serkan İ. Archaea and Their Potential Pathogenicity in Human and Animal  
754 Diseases. *Journal of Istanbul Veterinary Sciences* (2019) 3(3):79-84.

755 96. Cavicchioli R, Curmi PM, Saunders N, Thomas T. Pathogenic Archaea: Do They Exist?  
756 *Bioessays* (2003) 25(11):1119-28.

757 97. Sapunar D, Arey LB, Rogers K. Prenatal Development (2023) [cited 2022 October 18].  
758 Available from: <https://www.britannica.com/science/prenatal-development>.

759 98. Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC. How Nutrition and the Maternal  
760 Microbiota Shape the Neonatal Immune System. *Nature Reviews Immunology* (2017) 17(8):508-17.

761 99. Megli CJ, Coyne CB. Infections at the Maternal–Fetal Interface: An Overview of  
762 Pathogenesis and Defence. *Nature Reviews Microbiology* (2022) 20(2):67-82. doi: 10.1038/s41579-  
763 021-00610-y.

764 100. Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission During  
765 Human Pregnancy. *Cell Host Microbe* (2017) 21(5):561-7. Epub 2017/05/12. doi:  
766 10.1016/j.chom.2017.04.007.

767 101. Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes During Pregnancy, Birth, and  
768 Infancy. *Frontiers in microbiology* (2016):1031.

769 102. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, et al. Isolation  
770 of Commensal Bacteria from Umbilical Cord Blood of Healthy Neonates Born by Cesarean Section.  
771 *Curr Microbiol* (2005) 51(4):270-4. Epub 2005/09/28. doi: 10.1007/s00284-005-0020-3.

772 103. Glassing A, Dowd SE, Galanduk S, Davis B, Chiodini RJ. Inherent Bacterial DNA  
773 Contamination of Extraction and Sequencing Reagents May Affect Interpretation of Microbiota in  
774 Low Bacterial Biomass Samples. *Gut pathogens* (2016) 8:1-12.

775 104. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of  
776 Microbial Consortia in the Developing Infant Gut Microbiome. *Proceedings of the National  
777 Academy of Sciences* (2011) 108(supplement\_1):4578-85.

778 105. Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-Active Enzymes (Cazymes) in  
779 the Gut Microbiome. *Nature Reviews Microbiology* (2022) 20(9):542-56.

780 106. Kalhan S, Parimi P. Gluconeogenesis in the Fetus and Neonate. *Semin Perinatol* (2000)  
781 24(2):94-106. Epub 2000/05/11. doi: 10.1053/sp.2000.6360.

782 107. Martens EC, Kelly AG, Tauzin AS, Brumer H. The Devil Lies in the Details: How Variations  
783 in Polysaccharide Fine-Structure Impact the Physiology and Evolution of Gut Microbes. *Journal of  
784 molecular biology* (2014) 426(23):3851-65.

785 108. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B. The Abundance and Variety  
786 of Carbohydrate-Active Enzymes in the Human Gut Microbiota. *Nature Reviews Microbiology*  
787 (2013) 11(7):497-504.

788 109. Comtet-Marre S, Chaucheyras-Durand F, Bouzid O, Mosoni P, Bayat AR, Peyret P, et al.  
789 Fibrochip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of  
790 Rumen Microbiota. *Frontiers in microbiology* (2018) 9:215.

791 110. Kuntothom T, Luang S, Harvey AJ, Fincher GB, Opassiri R, Hrmova M, et al. Rice Family  
792 Gh1 Glycoside Hydrolases with B-D-Glucosidase and B-D-Mannosidase Activities. *Archives of  
793 Biochemistry and Biophysics* (2009) 491(1-2):85-95.

794 111. Heins RA, Cheng X, Nath S, Deng K, Bowen BP, Chivian DC, et al. Phylogenomically  
795 Guided Identification of Industrially Relevant Gh1 B-Glucosidases through DNA Synthesis and  
796 Nanostructure-Initiator Mass Spectrometry. *ACS chemical biology* (2014) 9(9):2082-91.

797 112. Sun B, Xia Y, Garber PA, Amato KR, Gomez A, Xu X, et al. Captivity Is Associated with  
798 Gut Mycobiome Composition in Tibetan Macaques (*Macaca Thibetana*). *Frontiers in Microbiology*  
799 (2021) 12:665853.

800 113. Wang Y, Yang X, Zhang M, Pan H. Comparative Analysis of Gut Microbiota between Wild  
801 and Captive Golden Snub-Nosed Monkeys. *Animals* (2023) 13(10):1625.

802 114. Kuriki T, Imanaka T. The Concept of the A-Amylase Family: Structural Similarity and  
803 Common Catalytic Mechanism. *Journal of bioscience and bioengineering* (1999) 87(5):557-65.

804 115. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the Large  
805 Glycoside Hydrolase Family 13 into Subfamilies: Towards Improved Functional Annotations of A-  
806 Amylase-Related Proteins. *Protein Engineering, Design and Selection* (2006) 19(12):555-62.

807 116. Nahum GG, Uhl K, Kennedy DL. Antibiotic Use in Pregnancy and Lactation: What Is and Is  
808 Not Known About Teratogenic and Toxic Risks. *Obstetrics & Gynecology* (2006) 107(5):1120-38.

809 117. Prescott S, Dreisbach C, Baumgartel K, Koerner R, Gyamfi A, Canellas M, et al. Impact of  
810 Intrapartum Antibiotic Prophylaxis on Offspring Microbiota. *Frontiers in Pediatrics* (2021)  
811 9:754013.

812 118. Chen C-M, Chou H-C, Yang Y-CS. Maternal Antibiotic Treatment Disrupts the Intestinal  
813 Microbiota and Intestinal Development in Neonatal Mice. *Frontiers in Microbiology* (2021)  
814 12:684233.

815 119. Patangia DV, Ryan CA, Dempsey E, Stanton C, Ross RP. Vertical Transfer of Antibiotics  
816 and Antibiotic Resistant Strains across the Mother/Baby Axis. *Trends in Microbiology* (2022)  
817 30(1):47-56.

818 120. Bi Y, Tu Y, Zhang N, Wang S, Zhang F, Suen G, et al. Multiomics Analysis Reveals the  
819 Presence of a Microbiome in the Gut of Fetal Lambs. *Gut* (2021) 70(5):853-64.

820 121. Gosalbes M, Vallès Y, Jiménez-Hernández N, Balle C, Riva P, Miravet-Verde S, et al. High  
821 Frequencies of Antibiotic Resistance Genes in Infants' Meconium and Early Fecal Samples. *Journal*  
822 *of developmental origins of health and disease* (2016) 7(1):35-44.

823 122. Schrag SJ, Zywicki S, Farley MM, Reingold AL, Harrison LH, Lefkowitz LB, et al. Group B  
824 Streptococcal Disease in the Era of Intrapartum Antibiotic Prophylaxis. *New England Journal of*  
825 *Medicine* (2000) 342(1):15-20.

826 123. Klassert TE, Zubiria-Barrera C, Kankel S, Stock M, Neubert R, Lorenzo-Diaz F, et al. Early  
827 Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. *Frontiers in*  
828 *Cellular and Infection Microbiology* (2020) 10:332.

829 124. Gonçalves LF, Chaiworapongsa T, Romero R. Intrauterine Infection and Prematurity. *Mental*  
830 *retardation and developmental disabilities research reviews* (2002) 8(1):3-13.

831 125. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity  
832 Humanizes the Primate Microbiome. *Proceedings of the National Academy of Sciences* (2016)  
833 113(37):10376-81. doi: doi:10.1073/pnas.1521835113.

834 126. Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, et al. Comparative  
835 Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-Human Primate, and  
836 Human Feces. *Frontiers in microbiology* (2018) 9:2897.

837 127. Guaraldi F, Salvatori G. Effect of Breast and Formula Feeding on Gut Microbiota Shaping in  
838 Newborns. *Frontiers in cellular and infection microbiology* (2012) 2:94.

839 128. Chow WL, Lee Y-K. Mucosal Interactions and Gastrointestinal Microbiota. *Gastrointestinal*  
840 *microbiology* (2006) 1:123-36.

841 129. Wilson M. *Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease*:  
842 Cambridge University Press (2005).

843 130. Miko E, Csaszar A, Bodis J, Kovacs K. The Maternal–Fetal Gut Microbiota Axis:  
844 Physiological Changes, Dietary Influence, and Modulation Possibilities. *Life* (2022) 12(3):424.

845 131. Ardissonne AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, et al.  
846 Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. *PloS one*  
847 (2014) 9(3):e90784.

848 132. Madan JC, Salari RC, Saxena D, Davidson L, O'Toole GA, Moore JH, et al. Gut Microbial  
849 Colonisation in Premature Neonates Predicts Neonatal Sepsis. *Archives of Disease in Childhood-*  
850 *Fetal and Neonatal Edition* (2012) 97(6):F456-F62.

851 133. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host  
852 Remodeling of the Gut Microbiome and Metabolic Changes During Pregnancy. *Cell* (2012)  
853 150(3):470-80.

854 134. Sun B, Xu X, Xia Y, Cheng Y, Mao S, Xiang X, et al. Variation of Gut Microbiome in Free-  
855 Ranging Female Tibetan Macaques (*Macaca Thibetana*) across Different Reproductive States.  
856 *Animals* (2020) 11(1):39.

857 135. Shin N-R, Whon TW, Bae J-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut  
858 Microbiota. *Trends in biotechnology* (2015) 33(9):496-503.

859 136. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of  
860 the Human Gut Microbiome. *nature* (2011) 473(7346):174-80.

861 137. Chen T, Li Y, Liang J, Li Y, Huang Z. Gut Microbiota of Provisioned and Wild Rhesus  
862 Macaques (*Macaca Mulatta*) Living in a Limestone Forest in Southwest Guangxi, China.  
863 *MicrobiologyOpen* (2020) 9(3):e981.

864 138. Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, et al. Biogeography of the  
865 Intestinal Mucosal and Luminal Microbiome in the Rhesus Macaque. *Cell host & microbe* (2015)  
866 17(3):385-91.

867 139. Wu Y, Yao Y, Dong M, Xia T, Li D, Xie M, et al. Characterisation of the Gut Microbial  
868 Community of Rhesus Macaques in High-Altitude Environments. *BMC microbiology* (2020) 20:1-  
869 16.

870 140. Adriansjach J, Baum ST, Lefkowitz EJ, Van Der Pol WJ, Buford TW, Colman RJ. Age-  
871 Related Differences in the Gut Microbiome of Rhesus Macaques. *The Journals of Gerontology: Series A* (2020) 75(7):1293-8.

873 141. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet  
874 Rapidly and Reproducibly Alters the Human Gut Microbiome. *Nature* (2014) 505(7484):559-63.

875 142. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of  
876 Mammals and Their Gut Microbes. *science* (2008) 320(5883):1647-51.

877 143. Chen Z, Yeoh YK, Hui M, Wong PY, Chan MC, Ip M, et al. Diversity of Macaque  
878 Microbiota Compared to the Human Counterparts. *Scientific reports* (2018) 8(1):15573.

879