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Abstract

Reading is a cognitive skill that requires our brain to go through a myriad of changes
during learning. While many studies have described how reading acquisition shapes
children’s brain function, less is known about the impact of reading on brain structure.
Here we examined short-term causal effects of reading training on preschoolers’ behavior
and white matter structure. Forty-eight English-speaking preschoolers (4y10m to 6y2m)
participated in a randomized controlled trial where they were randomly assigned to two
training programs: the Letter training program was focused on key skills for reading (e.g.,
decoding and letter knowledge), while the Language training program strengthened oral
language comprehension skills without exposure to text. Longitudinal behavioral data
showed that only the Letter Training group increased letter knowledge and decoding
skills after the two-week training. Diffusion MRI measures (FA and MD) of eighteen
white matter pathways (including the left arcuate and the left inferior longitudinal
fasciculus) did not reveal any statistically significant changes for either group despite
high degrees of scan-rescan reliability across sessions. These findings suggest that a two-
week reading training program can cause changes in preschoolers’ letter knowledge and
decoding abilities, without being accompanied by measurable changes in the diffusion
properties of the major white matter pathways of the reading network. We conclude
highlighting possible constraints (i.e., age, training onset and duration, cognitive profile)

to reading-related white matter plasticity.
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Introduction

Reading is a complex cognitive skill that has an impact on brain structure and function.
Learning to decode written language not only changes the way the brain functions [1,2],
but is also associated with changes in the structural properties of white matter pathways
[3-5]. However, it is still unclear under which conditions (e.g., quantity and quality of the
training, developmental stage), and at what time scale experience-dependent structural
changes emerge. In addition, the relationship between learning-driven changes in
reading behavior and brain plasticity is still underspecified. To deepen our
understanding of the short-term effects of the initial phase of reading acquisition on brain
structure, we ran a diffusion magnetic resonance study (dMRI) that used a randomized
controlled trial in preschoolers to test how training in letter-speech sound knowledge
affects behavior, white matter structure, and their relationship over the course of two

weeks.

A growing body of research reports a relationship between reading experience and
structural properties of white matter pathways [6]. Among the white matter tracts of the
reading circuitry there are the left arcuate (AF), connecting language areas in frontal and
temporal lobes [7], and the left inferior longitudinal fasciculus (ILF), which connects the
anterior temporal cortex to more posterior ventral-occipital areas (including the visual

word form area, [8]). Diffusion properties of left AF and ILF, such as fractional anisotropy
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(FA) and mean diffusivity (MD), have been related to reading performances in a single
time point (concurrent or prior to the dMRI acquisition, [9-11]), as well as over a series
of longitudinal observations [4,5,12,13]. Recent studies have started to highlight the
presence of a dynamic relationship between the longitudinal trajectories of white matter
structure and changes of reading performance over time [14,15]. For instance, studies
focused on long-term reading-related structural plasticity reported that typically
developing children show increased FA and/or decreased MD in reading white matter
pathways (e.g., left AF and left ILF) as reading scores improve. These structural changes
are evident over one to four years of formal reading instruction [11,13,16-18]. Moreover,
the rate of FA change in the left AF relates to the rate of change in reading performances
over a period of five years of reading instruction [15].

Longitudinal studies focused on a shorter period of reading training have led to mixed
findings. Table 1 summarizes the available longitudinal research on reading-dependent
changes of white matter diffusion properties. Unfortunately, the picture provided by
these studies is only partial since most research so far has been focused on reading
interventions for children with (or at-risk of) reading disorders and its short-term effects
on white matter properties.

Table 1. Studies on white matter changes due to short-term reading intervention

programs.
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Paper Intervention Age | Sample | Language | Intervention specific effects (Group x Session)
(y) Size
Duration | Type Behavior | dMRI | Behavior - Diffusion
(h) dMRI property
coupling examined
(5] 100 gp | 8 72 English x x x (FA, RD) | FA,RD, AD
10 (37C) (FA,
RD)
[4] 1602 i-p 7- 43 English X X x (MD) FA, MD
12 (19C) (FA,
MD)
[19] 1602 ip | 7 73 English X X N.A. MD, MDe,
12 (41C) (MD, AWF, DK,
MDe) R1
[20] 24b gp | 89 35 English X - N. A FA, MD
(220)
[21] 18 ic | 56 83 Dutch N.A. - N.A. FA
(52C)
(3] 18 ic | 56 90 Dutch N.A. X N.A. MWF
(59 C) (MWF)
[12] 100-120 gp | 79 41 English X N.A. | x*(FA, MD) FA, MD
(15C)

Intervention Type: g = intervention was carried out in small groups; i = intervention was
carried out individually; c = intervention was computerized; p = intervention was carried
out in person.

Sample Size: overall sample size including the experimental and the control groups. C =
control group sample size. The experimental groups always included children with
reading disorders or at-risk of reading disorders who were enrolled in intensive

remediation programs. The control groups included in the studies included typically
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92  developing children, as well as children with or at-risk of reading disorders. They either

93 did not receive any intervention or were enrolled in a non-language specific training

94  program.

95 Intervention specific effects: x: present; - : absent, N.A.: not available. FA = fractional

96 anisotropy; RD =radial diffusivity; AD = axial diffusivity; MD = mean diffusivity; MDe =

97  extra-axonal mean diffusivity; AWF = axonal water fraction; DK = diffusion kurtosis; T1rt

98 =TI relaxation time; MWF = myelin water fraction.

99  2The dMRI effects were visible after 46 hours of intervention. 225 hours only for 4 kids.
100  <It would not survive a multiple comparison correction.
101
102  Although the number of studies conducted on this topic is still low, some preliminary
103  trends can be highlighted given the available findings. First, all studies consistently
104  showed that only children who received reading intervention improved their reading
105 performance, confirming the efficacy of short-term reading training programs
106 [4,5,12,19,20]. Second, these intervention-specific behavioral changes were not always
107  accompanied by fast learning-driven white matter changes, suggesting that behavioral
108 and brain structure changes do not necessarily co-occur or this co-occurrence might be
109  specific to a subset of white matter diffusion properties [3-5,19-21]. Third, there is scarce
110  and mixed evidence on how effects generalize across different age ranges and types of

111 training, pointing to the need for additional research on short-term coupling between
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112 reading behavior and white matter plasticity [4,5,12]. Finally, all studies listed above
113  focused on remediation programs and large effects were seen with intensive (high
114 dosage) training in late elementary school children [4,12]. Hence, they provide insights
115  on rapid white matter changes that might also reflect compensatory mechanisms of the
116  reading circuitry, or other factors that are unique to older children with dyslexia, rather
117  than solely plasticity due to the experience of learning to read.

118  The present exploratory study aims to complement the available research on short-term
119  white matter plasticity by focusing on language and literacy training programs in
120  typically developing preschool children. A randomized controlled trial was conducted
121 with English-speaking preschoolers who were enrolled in a two-week program which
122  either trained reading or spoken language skills (Letter and Language program,
123  respectively). Behavioral and dMRI measures were collected before and after the training
124  to test how preschool learning might affect changes in the white matter. To better
125  characterize the quality and consistency of children’s dMRI measures over time, scan-
126  rescan reliability metrics were calculated for each dMRI measure (FA and MD) and white

127 matter tract.

128

129 Materials and Methods

130 Participants
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131  Forty-eight English-speaking preschoolers (5 years of age; range: 58-74 months)
132  participated in a randomized controlled trial in the summer before starting kindergarten
133 (Fig 1). The recruitment period started on June 2"4 and ended on November 19, 2019.
134  Aninitial behavioral session ensured that all children participating in the study satisfied
135 the following inclusion criteria: not knowing all uppercase letters and their
136  corresponding sounds; having a Peabody Picture Vocabulary Test score higher than 85
137  (PPVT, 4th Edition; [22]); having normal or corrected to normal vision; being able to hold
138  still for 5 minutes during an MRI mock scan. No neuropsychological or psychiatric
139  disorder was reported. All children gave their assent to participate in the study, and their
140  parents (or legal guardians) signed an informed consent form. The study was approved

141 by the Institutional Review Board of the University of Washington.

142 --- Figure 1 ---

143  Fig 1. Graphical representation of the randomized controlled trial.

144

145 Procedure

146  Participants were randomly assigned to one of two different training programs: a Letter
147  (n =24) or a Language (n = 24) organized into a fun and engaging summer camp. The
148  Letter program followed the Slingerland method [23] and was focused on the

149  foundational skills of reading such as letter recognition, letter-speech sound associations,
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150 and phonemic awareness (e.g., blending and segmentation of syllables and trigrams;
151  Table 1). The Language program focused on oral linguistic abilities such as recognizing
152  syntactic categories in spoken sentences, listening, comprehending and retelling stories,
153  and learning new vocabulary (Table 1). Critically, the Language program did not include
154  any exposure to written language compared to the Letter program which was almost
155  exclusively focused on written language. Each training program was delivered to a small
156  group of children (n = 6) by two teachers, who had a background in Education or Speech
157  pathology. Each program lasted two weeks (3 hours/day, 5 days/week, 30 total hours)
1568 and was based on pedagogical models of Direct Instruction and Gradual Release of
159  Responsibility. Letter and Language activities adopted a multisensory approach
160  involving vision, audition and kinesthetics. Both programs had the same daily schedule
161  and the learning process was scaffolded, so that the content of the activities followed an
162  increasing degree of complexity. Each daily session started with 20 minutes of free play
163  and ended with story time (Table 1). Starting from day 2, each daily activity started with
164  a brief rehearsal of previous lessons.

165

166  Table 2. Description of the daily activities performed in the Letter and Language

167  Training programs.

Letter Training Program daily activities
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168

Free game (20 min)

Children could freely play with blocks, puzzles, and modeling
clay.

Phonological awareness
(25 min)

Children were introduced to segmentation and blending of
syllables, trigrams (C-VC and CVC) and onset-rime words
through songs and interactive games.

Letters (25 min)

Children learned two lowercase letters per day based on letter-
picture correspondences and whiteboard writing activities.

Blending and Decoding
(25 min)

Children were guided to blend three letters together and then
decide whether the outcome was a real word or not.

Center activities
(20 min x 2 daily sessions)

Children rotated among four different learning stations to
reinforce what was learned in the daily session.

Story time
(10 min)

The teachers read a brief (5-10 minutes) story to the kids.

Language Training Program daily activities

Free game (20 min)

Children could freely play with blocks, puzzles, and modeling
clay.

Syntax awareness (25 min)

Children built sentences using a set of picture cards, which
represented different words. They were instructed about the
function of different words in a sentence. Each card was color
coded based on the grammatical category the word belonged to
(e.g., noun, verb, adjective),

Listening and comprehension (25

Children listened to a story and were guided to identify different

min) narrative elements (e.g., characters, theme, problem).
Vocabulary Children were introduced to the meaning of new words based
(25 min) on picture cards, context-based information, personal

experience, and examples. Simple exercises were proposed
where kids had to use the new words in the right context.

Center activities
(20 min x 2 daily sessions)

Children rotated among four different learning stations to
reinforce what was learned in the daily session.

Story time
(10 min)

The teachers read a brief (5-10 minutes) story to the kids, who
were then asked to identify story elements based on what they
learned in the listening and comprehension daily activity.

10
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169  Behavioral and diffusion magnetic resonance imaging (dMRI) measures were collected

170  before (average time: 19 days, SD: 9.23) and after (average time: 8 days, SD: 3.90) each

171 training program.

172 Behavioral data acquisition

173 During the behavioral session, the following standardized tests were administered:
174  Phonological and Print Awareness Scale (tests of Initial sound matching, Final sound
175 matching, and Phonemic awareness were administered from [24]); Phonological
176  Awareness Literacy Screening (the Pseudoword decoding list was administered from
177  [25]); Narrative Language Measures (the Story Retell test was administered from [26]);
178 and the Expressive Vocabulary Test Third Edition [27]. Alphabet knowledge was also
179  tested through flashcards presented in random order. There were 26 flashcards for
180  uppercase letters, and 26 flashcards for lowercase letters. Each of the 26 cards was shown
181  to the child and they were asked “What letter is this?” and “What sound does it make?”.
182  The total score of the alphabet knowledge test was 52, both for upper and lowercase

183 letters.

184 dMRI data acquisition and preprocessing

185  MRI data was collected through a 3 T Phillips Achieva scanner with a 32-channel head

186  coil (Philips, Eindhoven, Netherlands). A whole-brain anatomical volume at 1.0 x 1.0 x

11
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187 1.0 mm resolution was acquired using a T1-weighted MPRAGE sequence (TR 9.2 s, TE
188  4.35ms, matrix size 224 x 224, field of view 224 x 224 x 170, 170 slices). Diffusion-weighted
189  magnetic resonance imaging (dMRI) data of the full brain were acquired with a spatial
190  resolution of 2.0 mm3 (anterior-posterior phase encoding direction). A diffusion-
191 weighted imaging (DWI) scan was acquired with 32 non-collinear directions (b-value =
192 1500 s/mm?; TR =7200; TE = 83 ms). Four volumes with no diffusion weighting were also
193  acquired (b-value = 0). To correct for echo-planar imaging distortions, one scan with a
194  reversed phase encoding direction (posterior-anterior) and with three non-diffusion-
195  weighted volumes was collected.

196  The T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) using
197  N4BiasFieldCorrection [28], ANTs 2.3.1), and used as Tlw-reference throughout the
198  workflow. The Tlw-reference was then skull-stripped using antsBrainExtraction.sh
199  (ANTs 2.3.1), using OASIS as target template. Spatial normalization to the ICBM 152
200 Nonlinear Asymmetrical template version 2009c [29] was performed through nonlinear
201  registration with antsRegistration (ANTs 2.3.1, [30], using brain-extracted versions of
202  both T1lw volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF),
203  white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w
204  using FAST (FSL 6.0.3, [31]).

205 DMRI preprocessing and reconstruction were carried out using QSIprep 0.13.0RC2 ([32-

206  34]), which is based on Nipype 1.6.0[32-34], Nilearn 0.7.1 [35] and Dipy 1.4.0 [36]. The

12
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207  preprocessing included topup distortion, MP-PCA denoising, motion and Eddy current
208  correction (g-space smoothing factor = 10, 5 iterations; [37-40]). Only experimental
209 sessions with a maximum framewise displacement below 4 mm and an average
210  framewise displacement below 1 mm were further analyzed (Letter group pre-training
211 session: 21; Letter group pre-training session: 22; Language group pre-training session:
212 19; Language group post-training session: 20). Multi-tissue fiber response functions were
213  estimated using the dhollander algorithm as implemented in MRtrix3 [41]. Fiber
214  orientation distributions (FODs) in each voxel were estimated via constrained spherical
215 deconvolution (CSD,[42,43] using an unsupervised multi-tissue method[44,45].
216 Anatomically constrained tracking (ACT) was applied. FODs were intensity-normalized
217  using mtnormalize[46]. Probabilistic tractography was carried out using the following
218  QSlprep parameters: 1M streamlines, minimum length: 30 mm, maximum length: 250

219 mm. Fiber segmentation was carried out using pyAFQ 0.9 default parameters

220  (https://veatmanlab.github.io/pyAFQ;[47,48] cleaning iterations = 5, distance threshold =

221 55D, length threshold: 4 SD). Eighteen default tracts were segmented: Left/Right Arcuate,
222  Left/Right Anterior Thalamic Radiation, Left/Right Cingulum, Left/Right Corticospinal
223  Tract, Anterior/Posterior Forceps, Left/Right Inferior Fronto-Occipital Fasciculus,
224  Left/Right Inferior Longitudinal Fasciculus, Left/Right Superior Longitudinal Fasciculus,
225  Left/Right Uncinate. Diffusion metrics were calculated using the constrained spherical

226  deconvolution model (CSD[49,50] and projected onto the tracts. Each streamline was

13
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227 resampled into a fixed number of nodes (n = 100), and average values of fractional
228  anisotropy (FA), and mean diffusivity (MD) were calculated for each node. FA and MD
229  were mapped onto each tract, weighting the values based on the streamline’s distance
230 from the core of the tract [47]. Hence, FA and MD values of each white matter tract were

231 calculated as the average across all 100 nodes of the tract profile.

232

233 Results

234 Behavioral results

235 A linear mixed effect model (LME) was run to test for behavioral effects due to the type
236  of training received. Time (pre vs post session), Training Type (Letter vs Language) and
237  their interaction were included as fixed effects. By-subject random intercepts and slopes
238  were also included. Only models on alphabet knowledge (average accuracy of upper and
239  lower case) and decoding skills showed a significant interaction between Training Type
240  and Time (alphabet knowledge: B = 0.822, SE = 0.370, t = 2.224, p = 0.026; decoding skills:
241 B=0.970,SE=0.326, t =2.972, p =0.003) indicating that children participating in the Letter
242  Training improved their letter knowledge ( =2.770, SE = 0.784, t = 3.532, p < 0.001) and
243  decoding ability (B =1.689, SE = 0.496, t = 3.403, p = 0.001), while children participating in

244  the Language Training group did not show such behavioral changes (alphabet
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knowledge: p =0.896, SE =0.776, t =1.154, p =0.248; decoding skills: B =0.194, SE = 0.415,
t=0.469, p = 0.639; Fig 2).

--- Figure 2 ---

Fig 2. Training-related behavioral changes.

First two columns: behavioral changes in alphabet knowledge from the Letter and
Language Training groups for each experimental session. The third column shows the
distribution of alphabet knowledge changes (i.e. difference between the individual scores

obtained in the post and pre-training sessions) for each group.

dMRI results

Scan Rescan reliability

For each white matter tract and diffusion property (FA and MD), we calculated scan-
rescan reliability metrics to quantify the consistency of two types of dMRI measures
between experimental sessions: profile and subject reliability (as in [51]). For the profile
reliability, a Pearson correlation was calculated between the pre and post session tract
profiles of each participant. To calculate the subject reliability, a Pearson correlation was
calculated between the pre and post sessions median values of the tract profiles of each

participant. Individual correlation coefficients were averaged for each tract to obtain a
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263  reliability estimate. Our dMRI measures showed high degrees of scan-rescan reliability
264  between the two experimental sessions (profile reliability: FA, median r=0.99, range 0.93-
265  0.99; MD, median r = 0.92, range: 0.65-0.99; subject reliability: FA, median r = 0.83, range
266  0.62-0.90; MD, median r = 0.87, range: 0.55-0.92; Fig 3, for Subject reliability of each

267  experimental group, see S1 and S2 Figs).

268 --- Figure 3 ---

269  Fig 3. Scan Rescan reliability.

270  The two columns show the profile and subject reliability estimates of each white matter
271 tract examined in the study. The two rows show reliability estimates for FA and MD,
272  respectively. ARC: Arcuate Fasciculus; ATR: Anterior Thalamic Radiation; CGC:
273  Cingulum Cingulate; CST: Corticospinal Tract; FA: Anterior Forceps; FP: Posterior
274  Forceps; IFO: Inferior Longitudinal Fasciculus; ILF: Inferior Longitudinal Fasciculus; SLF:
275  Superior Longitudinal Fasciculus; UNC: Uncinate.

276
277 Training effects on dMRI measures

278  An LME model was run on the average FA and MD values of each tract profile to test for
279  structural changes due to the type of training received. Time (pre vs post session),
280 Training Type (Letter vs Language) and their interaction were included as fixed factors.
281  By-subject random intercepts were also included. No structural changes were observed
282  between experimental sessions (FA: all ts<2; MD: all ts<2.5) or between the two groups
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283  (FA: all ts<2.8; MD: all ts<2). Interactions between Training Type and Time were not
284  significant (FA: all ts<2.12; MD: all ts<2), suggesting that no statistically significant

285 changes were observed for either group over the 2-week training period (Fig 4 shows the

286  results for the left arcuate; for similar results on the left ILF, see S3 Fig).

287 --- Figure 4 -

288 Fig 4. Training-related dMRI changes of the left arcuate.

289  First two columns: structural changes of the left arcuate are shown for the Letter and
290 Language Training groups and each experimental session. The third column shows the
291  distribution of FA and MD changes (i.e. difference between the individual profiles

292  observed in the post and pre-training sessions) for each group.

293  Similar LME models were fitted for each single node of each tract profile and they
294  confirmed this pattern of results (Figs 5 and 6); there were no observable changes in white

295  matter properties over the two-week training period.

296 --- Figure 5 ---

297  Fig5. FA tract profile for each experimental group and training session.

298  The plots show FA values estimated based on the beta coefficients extracted from node-
299  by-node LME models. Shaded areas represent +/- 2 SE. ARC: Arcuate Fasciculus; ATR:

300  Anterior Thalamic Radiation; CGC: Cingulum Cingulate; CST: Corticospinal Tract; FA:
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301 Anterior Forceps; FP: Posterior Forceps; IFO: Inferior Longitudinal Fasciculus; ILF:

302 Inferior Longitudinal Fasciculus; SLF: Superior Longitudinal Fasciculus; UNC: Uncinate.

303 --- Figure 6 ---

304 Fig 6. MD tract profile for each experimental group and training session.

305 The plots show MD values estimated based on the beta coefficients extracted from node-
306 by-node LME models. Shaded areas represent +/- 2 SE. ARC: Arcuate Fasciculus; ATR:
307  Anterior Thalamic Radiation; CGC: Cingulum Cingulate; CST: Corticospinal Tract; FA:
308 Anterior Forceps; FP: Posterior Forceps; IFO: Inferior Longitudinal Fasciculus; ILF:

309 Inferior Longitudinal Fasciculus; SLF: Superior Longitudinal Fasciculus; UNC: Uncinate.

310 To estimate the evidence supporting the null hypothesis (HO: no plasticity), additional
311  Bayesian analyses were run on each tract to compare the dMRI training effect (post-pre
312 mean profile difference) between the two groups. Bayes factors supported small-to-
313  moderate evidence for the null effect in the majority of the tracts, including all tracts that
314  are part of the reading circuitry (FA: BFs<1 in 16 of the 18 tracts; MD: BFs<1 in 12 of the

315 18 tracts; Fig 7).

316 --- Figure 7 ---

317  Fig 7. Bayes factors relative to the group comparison of the dMRI training effect for

318 each tract.
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319  ARC: Arcuate Fasciculus; ATR: Anterior Thalamic Radiation; CGC: Cingulum Cingulate;
320 CST: Corticospinal Tract; FA: Anterior Forceps; FP: Posterior Forceps; IFO: Inferior
321 Longitudinal Fasciculus; ILF: Inferior Longitudinal Fasciculus; SLF: Superior

322 Longitudinal Fasciculus; UNC: Uncinate.

323

324 Linking training effects between behavioral and dMRI measures

325 Despite the lack of experience-driven white matter plasticity at the group level, it is
326  possible that longitudinal change in alphabet knowledge might relate to longitudinal
327  white matter changes. To test this hypothesis, the two groups were combined and
328 Pearson correlations were calculated to check whether individual changes in alphabet
329 knowledge (average of lower and upper case knowledge) could be mapped onto
330 structural changes of left AF and ILF. This analysis did not show significant effects after

331  Bonferroni correction (see Table 3).

FA MD
r p corrected | r p corrected
Left ARC -0.38 0.104 0.12 0.99
Left ILF -0.41 0.060 0.36 0.124
332 Table 3. Pearson correlations between post-pre differences in reading performance and
333  structural properties.
334
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335 Discussion

336  This randomized controlled trial examined short-term effects of a Letter and a Language
337  training program on preschoolers’ reading performance and brain structure. The findings
338 suggest that a two-week Letter training program causes improvements in preschoolers’
339 letter knowledge and decoding skills. However, this behavioral effect was not
340 accompanied by short-term changes in the diffusion properties (i.e., FA and MD) of white
341 matter pathways, within or outside the reading circuitry. The presence of quick
342  behavioral changes as a result of Letter training confirms previous findings on the
343  effectiveness of short-term reading instruction, which has been observed in children with
344  and without reading disorders [52-55].

345 Our dMRI findings further complement the existing literature on short-term reading-
346  relating brain plasticity by showing that reading performance improvements are not
347 always accompanied by changes in diffusion properties of white matter pathways
348  [4,5,12,20,21]. The high reliability estimates for both FA and MD scores across sessions
349  ensure that this null effect could not be accounted for by low dMRI data quality. Bayesian
350 analyses provided support for the null hypothesis (no change in white matter diffusion)
351 for all major white matter tracts of the reading network. In addition, correlation analyses
352 confirmed the lack of a clear correspondence between preschoolers’ individual
353  behavioral changes and variations in structural properties of reading white matter
354  pathways.
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355  One aspect that can account for the lack of structural changes is the type and intensity of
356 the reading program. Previous studies have mainly focused on effects of reading
357 intervention in children diagnosed with dyslexia, which can have an intense and
358 profound impact on struggling readers' cognitive and social lives. In the current study,
359  our reading training proposed preschool/kindergarten activities that are usually carried
360 outinaclassroom setting. Since these training programs are similar to common preschool
361 and kindergarten classrooms, they might not represent a dramatic enough environmental
362 change to cause large-scale remodeling of the white matter. Related to this point, another
363  variable that can account for our results is the cognitive profile of the trainees. This is the
364 first randomized controlled trial on the effects of a short-term reading training with
365 typically developing preschoolers. Previous experimental evidence collected so far (Table
366 1) refers to the effects of short-term remediation programs on children with reading
367  disorders or at-risk of reading disorders. Hence, the large effects that have been reported
368 so far might reflect the dramatic environmental change of entering an intensive
369 intervention environment after struggling in school for years. This experience is quite
370 different than typically developing children beginning formal reading instruction [3—
371 519].

372  Another possible explanation to consider is the type of diffusion properties examined
373  here. Recent dMRI findings on the short-term effects of reading intervention programs in

374  preschoolers reported structural changes only in myelin water fraction, but notin FA and
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375 MD scores [3,21]. This might suggest that MRI measures more specifically related to
376  myelination would better reflect reading-related short-term plasticity around 5 years of
377 age. However, within 7 and 12 years of age an opposite pattern of results have been
378 reported, with MD and FA providing evidence for rapid structural plasticity while no
379  training-dependent changes were reported for more myelin-specific correlates, such as
380 axonal water fraction and R1 [4,19]. These results are still compatible with the idea that
381  short-term plasticity due to reading training might affect different structural properties
382  of white matter depending on the developmental time window (e.g., there might be a
383 higher degree of plasticity for myelin-specific indexes in the early stages of life).
384  Additional research is needed in order to clarify which type of diffusion properties can
385 be shaped by experience as a function of age (e.g., neural or non-neuronal plasticity, intra
386  or extra axonal plasticity, [3,19,56]).

387  Finally, another potential explanation for our dMRI findings regards the presence of a
388 possible time shift between the training effects on behavior and brain structure, with
389  white matter changes happening over a larger temporal scale compared to behavioral
390 changes. For instance, our findings are still compatible with the idea that at this early age
391  the amount of training received is not sufficient to shape what will become the reading
392  circuit later on. Although some studies have shown no time lag between behavioral and

393  structural changes in response to a short reading intervention program [3-5,12], the exact
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394  time course of reading-related neuroplasticity is still understudied and needs further
395 investigation.
396
397  Opverall, this heterogeneous picture of findings on short-term reading-related structural
398 neuroplasticity highlights the need to better define the conditions under which white
399 matter can be shaped by experience. Several experiential and developmental factors
400 might modulate the degree of white matter plasticity exhibited in response to reading
401  training or intervention. Research evidence coming from other cognitive domains might
402  give us some insights on the critical constraining variables to be considered. For instance,
403  studies testing for the presence of a sensitive period of sensory and motor white matter
404  circuits suggest that the time onset of the environmental exposure is a key factor to
405  establish whether white matter structure is stable or plastic [57,58]. Other factors that
406  have been suggested to modulate the balance between structural plasticity and stability
407 are the type and the duration of experiential exposure [59-63] and the individual
408  cognitive health and lifestyle risk factors [61,64].
409
410 In conclusion, this randomized controlled trial highlights that a two-week literacy
411  training can cause fast behavioral changes in preschoolers’ reading performance, without
412 being accompanied by fast FA and MD changes of the reading circuitry. These findings

413 highlight that rapid diffusion properties variations are not always observed in response
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414 to short-term reading training and point to the need of specifying the conditions under

415  which white matter structure is plastic versus stable.
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Supporting information

S1 Fig. Subject reliability of FA for each experimental group.

S2 Fig. Subject reliability of MD for each experimental group.

S3 Fig. Training-related dMRI changes of the left inferior fasciculus.

First two columns: structural changes of the left ILF are shown for the Letter and
Language Training groups and each experimental session. The third column shows the
distribution of FA and MD changes (i.e. difference between the individual profiles

observed in the post and pre-training sessions) for each group.
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