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25 Abstract

26 Reading is a cognitive skill that requires our brain to go through a myriad of changes 

27 during learning. While many studies have described how reading acquisition shapes 

28 children’s brain function, less is known about the impact of reading on brain structure. 

29 Here we examined short-term causal effects of reading training on preschoolers’ behavior 

30 and white matter structure. Forty-eight English-speaking preschoolers (4y10m to 6y2m) 

31 participated in a randomized controlled trial where they were randomly assigned to two 

32 training programs: the Letter training program was focused on key skills for reading (e.g., 

33 decoding and letter knowledge), while the Language training program strengthened oral 

34 language comprehension skills without exposure to text. Longitudinal behavioral data 

35 showed that only the Letter Training group increased letter knowledge and decoding 

36 skills after the two-week training. Diffusion MRI measures (FA and MD) of eighteen 

37 white matter pathways (including the left arcuate and the left inferior longitudinal 

38 fasciculus) did not reveal any statistically significant changes for either group despite 

39 high degrees of scan-rescan reliability across sessions. These findings suggest that a two-

40 week reading training program can cause changes in preschoolers’ letter knowledge and 

41 decoding abilities, without being accompanied by measurable changes in the diffusion 

42 properties of the major white matter pathways of the reading network. We conclude 

43 highlighting possible constraints (i.e., age, training onset and duration, cognitive profile) 

44 to reading-related white matter plasticity.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.16.608210doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.16.608210
http://creativecommons.org/licenses/by/4.0/


3

45 Introduction

46 Reading is a complex cognitive skill that has an impact on brain structure and function. 

47 Learning to decode written language not only changes the way the brain functions [1,2], 

48 but is also associated with changes in the structural properties of white matter pathways 

49 [3–5]. However, it is still unclear under which conditions (e.g., quantity and quality of the 

50 training, developmental stage), and at what time scale experience-dependent structural 

51 changes emerge. In addition, the relationship between learning-driven changes in 

52 reading behavior and brain plasticity is still underspecified. To deepen our 

53 understanding of the short-term effects of the initial phase of reading acquisition on brain 

54 structure, we ran a diffusion magnetic resonance study (dMRI) that used a randomized 

55 controlled trial in preschoolers to test how training in letter-speech sound knowledge 

56 affects behavior, white matter structure, and their relationship over the course of two 

57 weeks.

58

59 A growing body of research reports a relationship between reading experience and 

60 structural properties of white matter pathways [6]. Among the white matter tracts of the 

61 reading circuitry there are the left arcuate (AF), connecting language areas in frontal and 

62 temporal lobes [7], and the left inferior longitudinal fasciculus (ILF), which connects the 

63 anterior temporal cortex to more posterior ventral-occipital areas (including the visual 

64 word form area, [8]). Diffusion properties of left AF and ILF, such as fractional anisotropy 
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65 (FA) and mean diffusivity (MD), have been related to reading performances in a single 

66 time point (concurrent or prior to the dMRI acquisition, [9–11]), as well as over a series 

67 of longitudinal observations [4,5,12,13]. Recent studies have started to highlight the 

68 presence of a dynamic relationship between the longitudinal trajectories of white matter 

69 structure and changes of reading performance over time [14,15]. For instance, studies 

70 focused on long-term reading-related structural plasticity reported that typically 

71 developing children show increased FA and/or decreased MD in reading white matter 

72 pathways (e.g., left AF and left ILF) as reading scores improve. These structural changes 

73 are evident over one to four years of formal reading instruction [11,13,16–18]. Moreover, 

74 the rate of FA change in the left AF relates to the rate of change in reading performances 

75 over a period of five years of reading instruction [15]. 

76 Longitudinal studies focused on a shorter period of reading training have led to mixed 

77 findings. Table 1 summarizes the available longitudinal research on reading-dependent 

78 changes of white matter diffusion properties. Unfortunately, the picture provided by 

79 these studies is only partial since most research so far has been focused on reading 

80 interventions for children with (or at-risk of) reading disorders and its short-term effects 

81 on white matter properties. 

82 Table 1. Studies on white matter changes due to short-term reading intervention 

83 programs.
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Paper Intervention Age 
(y)

Sample 
Size

Language Intervention specific effects (Group x Session)

Duration 
(h)

Type Behavior dMRI Behavior - 
dMRI 

coupling

Diffusion 
property 
examined

[5] 100  g-p 8-
10 

72 
(37 C)

English x x 
(FA, 
RD)

x (FA, RD) FA, RD, AD

[4] 160a i-p 7-
12 

43 
(19 C)

English x x 
(FA, 
MD)

x (MD) FA, MD

[19] 160a i-p 7-
12 

73 
(41 C)

English x x 
(MD, 
MDe)

N.A. MD, MDe, 
AWF, DK, 

R1

[20] 24b g-p 8-9 35 
(22 C)

English x - N. A. FA, MD

[21] 18 i-c 5-6 83 
(52 C)

Dutch N.A. - N.A. FA

[3] 18 i-c 5-6 90
(59 C)

Dutch N.A. x 
(MWF)

N.A. MWF

[12] 100-120 g-p 7-9 41 
(15 C)

English x N.A. xc (FA, MD) FA, MD

84

85 Intervention Type: g = intervention was carried out in small groups; i = intervention was 

86 carried out individually; c = intervention was computerized; p = intervention was carried 

87 out in person. 

88 Sample Size: overall sample size including the experimental and the control groups. C = 

89 control group sample size. The experimental groups always included children with 

90 reading disorders or at-risk of reading disorders who were enrolled in intensive 

91 remediation programs. The control groups included in the studies included typically 
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92 developing children, as well as children with or at-risk of reading disorders. They either 

93 did not receive any intervention or were enrolled in a non-language specific training 

94 program.

95 Intervention specific effects: x: present; - : absent, N.A.: not available. FA = fractional 

96 anisotropy; RD = radial diffusivity; AD = axial diffusivity; MD = mean diffusivity; MDe = 

97 extra-axonal mean diffusivity; AWF = axonal water fraction; DK = diffusion kurtosis; T1rt 

98 = T1 relaxation time; MWF = myelin water fraction.

99  a The dMRI effects were visible after 46 hours of intervention.b 225 hours only for 4 kids. 

100 c It would not survive a multiple comparison correction.

101

102 Although the number of studies conducted on this topic is still low, some preliminary 

103 trends can be highlighted given the available findings. First, all studies consistently 

104 showed that only children who received reading intervention improved their reading 

105 performance, confirming the efficacy of short-term reading training programs 

106 [4,5,12,19,20]. Second, these intervention-specific behavioral changes were not always 

107 accompanied by fast learning-driven white matter changes, suggesting that behavioral 

108 and brain structure changes do not necessarily co-occur or this co-occurrence might be 

109 specific to a subset of white matter diffusion properties [3–5,19–21]. Third, there is scarce 

110 and mixed evidence on how effects generalize across different age ranges and types of 

111 training, pointing to the need for additional research on short-term coupling between 
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112 reading behavior and white matter plasticity [4,5,12]. Finally, all studies listed above 

113 focused on remediation programs and large effects were seen with intensive (high 

114 dosage) training in late elementary school children [4,12]. Hence, they provide insights 

115 on rapid white matter changes that might also reflect compensatory mechanisms of the 

116 reading circuitry, or other factors that are unique to older children with dyslexia, rather 

117 than solely plasticity due to the experience of learning to read. 

118 The present exploratory study aims to complement the available research on short-term 

119 white matter plasticity by focusing on language and literacy training programs in 

120 typically developing preschool children. A randomized controlled trial was conducted 

121 with English-speaking preschoolers who were enrolled in a two-week program which 

122 either trained reading or spoken language skills (Letter and Language program, 

123 respectively). Behavioral and dMRI measures were collected before and after the training 

124 to test how preschool learning might affect changes in the white matter. To better 

125 characterize the quality and consistency of children’s dMRI measures over time, scan-

126 rescan reliability metrics were calculated for each dMRI measure (FA and MD) and white 

127 matter tract.

128

129 Materials and Methods

130 Participants
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131 Forty-eight English-speaking preschoolers (5 years of age; range: 58-74 months) 

132 participated in a randomized controlled trial in the summer before starting kindergarten 

133 (Fig 1). The recruitment period started on June 2nd and ended on November 19th, 2019. 

134 An initial behavioral session ensured that all children participating in the study satisfied 

135 the following inclusion criteria: not knowing all uppercase letters and their 

136 corresponding sounds; having a Peabody Picture Vocabulary Test score higher than 85 

137 (PPVT, 4th Edition; [22]); having normal or corrected to normal vision; being able to hold 

138 still for 5 minutes during an MRI mock scan. No neuropsychological or psychiatric 

139 disorder was reported. All children gave their assent to participate in the study, and their 

140 parents (or legal guardians) signed an informed consent form. The study was approved 

141 by the Institutional Review Board of the University of Washington. 

142 --- Figure 1 ---

143 Fig 1. Graphical representation of the randomized controlled trial.

144

145 Procedure

146 Participants were randomly assigned to one of two different training programs: a Letter 

147 (n = 24) or a Language (n = 24) organized into a fun and engaging summer camp. The 

148 Letter program followed the Slingerland method [23] and was focused on the 

149 foundational skills of reading such as letter recognition, letter-speech sound associations, 
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150 and phonemic awareness (e.g., blending and segmentation of syllables and trigrams; 

151 Table 1). The Language program focused on oral linguistic abilities such as recognizing 

152 syntactic categories in spoken sentences, listening, comprehending and retelling stories, 

153 and learning new vocabulary (Table 1). Critically, the Language program did not include 

154 any exposure to written language compared to the Letter program which was almost 

155 exclusively focused on written language. Each training program was delivered to a small 

156 group of children (n = 6) by two teachers, who had a background in Education or Speech 

157 pathology. Each program lasted two weeks (3 hours/day, 5 days/week, 30 total hours) 

158 and was based on pedagogical models of Direct Instruction and Gradual Release of 

159 Responsibility. Letter and Language activities adopted a multisensory approach 

160 involving vision, audition and kinesthetics. Both programs had the same daily schedule 

161 and the learning process was scaffolded, so that the content of the activities followed an 

162 increasing degree of complexity. Each daily session started with 20 minutes of free play 

163 and ended with story time (Table 1). Starting from day 2, each daily activity started with 

164 a brief rehearsal of previous lessons.

165

166 Table 2. Description of the daily activities performed in the Letter and Language 

167 Training programs.

Letter Training Program daily activities
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Free game (20 min) Children could freely play with blocks, puzzles, and modeling 
clay.

Phonological awareness 
(25 min)

Children were introduced to segmentation and blending of 
syllables, trigrams (C-VC and CVC) and onset-rime words 
through songs and interactive games.

Letters (25 min) Children learned two lowercase letters per day based on letter-
picture correspondences and whiteboard writing activities. 

Blending and Decoding 
(25 min)

Children were guided to blend three letters together and then 
decide whether the outcome was a real word or not.

Center activities
(20 min x 2 daily sessions)

Children rotated among four different learning stations to 
reinforce what was learned in the daily session.

Story time
(10 min)

The teachers read a brief (5-10 minutes) story to the kids.

Language Training Program daily activities

Free game (20 min) Children could freely play with blocks, puzzles, and modeling 
clay.

Syntax awareness (25 min) Children built sentences using a set of picture cards, which 
represented different words. They were instructed about the 
function of different words in a sentence. Each card was color 
coded based on the grammatical category the word belonged to 
(e.g., noun, verb, adjective),

Listening and comprehension (25 
min)

Children listened to a story and were guided to identify different 
narrative elements (e.g., characters, theme, problem).

Vocabulary
(25 min)

Children were introduced to the meaning of new words based 
on picture cards, context-based information, personal 
experience, and examples. Simple exercises were proposed 
where kids had to use the new words in the right context.

Center activities
(20 min x 2 daily sessions)

Children rotated among four different learning stations to 
reinforce what was learned in the daily session.

Story time
(10 min)

The teachers read a brief (5-10 minutes) story to the kids, who 
were then asked to identify story elements based on what they 
learned in the listening and comprehension daily activity.

168
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169 Behavioral and diffusion magnetic resonance imaging (dMRI) measures were collected 

170 before (average time: 19 days, SD: 9.23) and after (average time: 8 days, SD: 3.90) each 

171 training program.

172 Behavioral data acquisition

173 During the behavioral session, the following standardized tests were administered: 

174 Phonological and Print Awareness Scale (tests of Initial sound matching, Final sound 

175 matching, and Phonemic awareness were administered from [24]); Phonological 

176 Awareness Literacy Screening (the Pseudoword decoding list was administered from 

177 [25]); Narrative Language Measures (the Story Retell test was administered from [26]); 

178 and the Expressive Vocabulary Test Third Edition [27]. Alphabet knowledge was also 

179 tested through flashcards presented in random order. There were 26 flashcards for 

180 uppercase letters, and 26 flashcards for lowercase letters. Each of the 26 cards was shown 

181 to the child and they were asked “What letter is this?” and “What sound does it make?”. 

182 The total score of the alphabet knowledge test was 52, both for upper and lowercase 

183 letters.

184 dMRI data acquisition and preprocessing

185 MRI data was collected through a 3 T Phillips Achieva scanner with a 32-channel head 

186 coil (Philips, Eindhoven, Netherlands). A whole-brain anatomical volume at 1.0 x 1.0 x 
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187 1.0 mm resolution was acquired using a T1-weighted MPRAGE sequence (TR 9.2 s, TE 

188 4.35 ms, matrix size 224 x 224, field of view 224 x 224 x 170, 170 slices). Diffusion-weighted 

189 magnetic resonance imaging (dMRI) data of the full brain were acquired with a spatial 

190 resolution of 2.0 mm3 (anterior-posterior phase encoding direction). A diffusion-

191 weighted imaging (DWI) scan was acquired with 32 non-collinear directions (b-value = 

192 1500 s/mm2; TR = 7200; TE = 83 ms). Four volumes with no diffusion weighting were also 

193 acquired (b-value = 0). To correct for echo-planar imaging distortions, one scan with a 

194 reversed phase encoding direction (posterior-anterior) and with three non-diffusion-

195 weighted volumes was collected.

196 The T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) using 

197 N4BiasFieldCorrection [28], ANTs 2.3.1), and used as T1w-reference throughout the 

198 workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh 

199 (ANTs 2.3.1), using OASIS as target template. Spatial normalization to the ICBM 152 

200 Nonlinear Asymmetrical template version 2009c [29] was performed through nonlinear 

201 registration with antsRegistration (ANTs 2.3.1, [30], using brain-extracted versions of 

202 both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

203 white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 

204 using FAST (FSL 6.0.3, [31]).

205 DMRI preprocessing and reconstruction were carried out using QSIprep 0.13.0RC2 ([32–

206 34]), which is based on Nipype 1.6.0[32–34], Nilearn 0.7.1 [35] and Dipy 1.4.0 [36]. The 
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207 preprocessing included topup distortion, MP-PCA denoising, motion and Eddy current 

208 correction (q-space smoothing factor = 10, 5 iterations; [37–40]). Only experimental 

209 sessions with a maximum framewise displacement below 4 mm and an average 

210 framewise displacement below 1 mm were further analyzed (Letter group pre-training 

211 session: 21; Letter group pre-training session: 22; Language group pre-training session: 

212 19; Language group post-training session: 20). Multi-tissue fiber response functions were 

213 estimated using the dhollander algorithm as implemented in MRtrix3 [41]. Fiber 

214 orientation distributions (FODs) in each voxel were estimated via constrained spherical 

215 deconvolution (CSD,[42,43] using an unsupervised multi-tissue method[44,45]. 

216 Anatomically constrained tracking (ACT) was applied. FODs were intensity-normalized 

217 using mtnormalize[46]. Probabilistic tractography was carried out using the following 

218 QSIprep parameters: 1M streamlines, minimum length: 30 mm, maximum length: 250 

219 mm. Fiber segmentation was carried out using pyAFQ 0.9 default parameters 

220 (https://yeatmanlab.github.io/pyAFQ;[47,48] cleaning iterations = 5, distance threshold = 

221 5 SD, length threshold: 4 SD). Eighteen default tracts were segmented: Left/Right Arcuate, 

222 Left/Right Anterior Thalamic Radiation, Left/Right Cingulum, Left/Right Corticospinal 

223 Tract, Anterior/Posterior Forceps, Left/Right Inferior Fronto-Occipital Fasciculus, 

224 Left/Right Inferior Longitudinal Fasciculus, Left/Right Superior Longitudinal Fasciculus, 

225 Left/Right Uncinate. Diffusion metrics were calculated using the constrained spherical 

226 deconvolution model (CSD[49,50] and projected onto the tracts. Each streamline was 
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227 resampled into a fixed number of nodes (n = 100), and average values of fractional 

228 anisotropy (FA), and mean diffusivity (MD) were calculated for each node. FA and MD 

229 were mapped onto each tract, weighting the values based on the streamline’s distance 

230 from the core of the tract [47]. Hence, FA and MD values of each white matter tract were 

231 calculated as the average across all 100 nodes of the tract profile.

232

233 Results

234 Behavioral results

235 A linear mixed effect model (LME) was run to test for behavioral effects due to the type 

236 of training received. Time (pre vs post session), Training Type (Letter vs Language) and 

237 their interaction were included as fixed effects. By-subject random intercepts and slopes 

238 were also included. Only models on alphabet knowledge (average accuracy of upper and 

239 lower case) and decoding skills showed a significant interaction between Training Type 

240 and Time (alphabet knowledge:  = 0.822, SE = 0.370, t = 2.224, p = 0.026; decoding skills: 

241  = 0.970, SE = 0.326, t = 2.972, p = 0.003) indicating that children participating in the Letter 

242 Training improved their letter knowledge ( = 2.770, SE = 0.784, t = 3.532, p < 0.001) and 

243 decoding ability ( = 1.689, SE = 0.496, t = 3.403, p = 0.001), while children participating in 

244 the Language Training group did not show such behavioral changes (alphabet 
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245 knowledge:  = 0.896, SE = 0.776, t = 1.154,  p = 0.248; decoding skills:  = 0.194, SE = 0.415, 

246 t = 0.469, p = 0.639; Fig 2).

247 --- Figure 2 ---

248 Fig 2. Training-related behavioral changes. 

249 First two columns: behavioral changes in alphabet knowledge from the Letter and 

250 Language Training groups for each experimental session. The third column shows the 

251 distribution of alphabet knowledge changes (i.e. difference between the individual scores 

252 obtained in the post and pre-training sessions) for each group.

253

254 dMRI results

255 Scan Rescan reliability

256 For each white matter tract and diffusion property (FA and MD), we calculated scan-

257 rescan reliability metrics to quantify the consistency of two types of dMRI measures 

258 between experimental sessions: profile and subject reliability (as in [51]). For the profile 

259 reliability, a Pearson correlation was calculated between the pre and post session tract 

260 profiles of each participant. To calculate the subject reliability, a Pearson correlation was 

261 calculated between the pre and post sessions median values of the tract profiles of each 

262 participant. Individual correlation coefficients were averaged for each tract to obtain a 
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263 reliability estimate. Our dMRI measures showed high degrees of scan-rescan reliability 

264 between the two experimental sessions (profile reliability: FA, median r = 0.99, range 0.93-

265 0.99; MD, median r = 0.92, range: 0.65-0.99; subject reliability: FA, median r = 0.83, range 

266 0.62-0.90; MD, median r = 0.87, range: 0.55-0.92; Fig 3, for Subject reliability of each 

267 experimental group, see S1 and S2 Figs).

268 --- Figure 3 ---

269 Fig 3. Scan Rescan reliability. 

270 The two columns show the profile and subject reliability estimates of each white matter 

271 tract examined in the study. The two rows show reliability estimates for FA and MD, 

272 respectively. ARC: Arcuate Fasciculus; ATR: Anterior Thalamic Radiation; CGC: 

273 Cingulum Cingulate; CST: Corticospinal Tract; FA: Anterior Forceps; FP: Posterior 

274 Forceps; IFO: Inferior Longitudinal Fasciculus; ILF: Inferior Longitudinal Fasciculus; SLF: 

275 Superior Longitudinal Fasciculus; UNC: Uncinate.

276

277 Training effects on dMRI measures

278 An LME model was run on the average FA and MD values of each tract profile to test for 

279 structural changes due to the type of training received. Time (pre vs post session), 

280 Training Type (Letter vs Language) and their interaction were included as fixed factors. 

281 By-subject random intercepts were also included. No structural changes were observed 

282 between experimental sessions (FA: all ts<2; MD: all ts<2.5) or between the two groups 
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283 (FA: all ts<2.8; MD: all ts<2). Interactions between Training Type and Time were not 

284 significant (FA: all ts<2.12; MD: all ts<2), suggesting that no statistically significant 

285 changes were observed for either group over the 2-week training period (Fig 4 shows the 

286 results for the left arcuate; for similar results on the left ILF, see S3 Fig). 

287 --- Figure 4 ---

288 Fig 4. Training-related dMRI changes of the left arcuate. 

289 First two columns: structural changes of the left arcuate are shown for the Letter and 

290 Language Training groups and each experimental session. The third column shows the 

291 distribution of FA and MD changes (i.e. difference between the individual profiles 

292 observed in the post and pre-training sessions) for each group.

293 Similar LME models were fitted for each single node of each tract profile and they 

294 confirmed this pattern of results (Figs 5 and 6); there were no observable changes in white 

295 matter properties over the two-week training period.

296 --- Figure 5 ---

297 Fig 5. FA tract profile for each experimental group and training session. 

298 The plots show FA values estimated based on the beta coefficients extracted from node-

299 by-node LME models. Shaded areas represent +/- 2 SE. ARC: Arcuate Fasciculus; ATR: 

300 Anterior Thalamic Radiation; CGC: Cingulum Cingulate; CST: Corticospinal Tract; FA: 
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301 Anterior Forceps; FP: Posterior Forceps; IFO: Inferior Longitudinal Fasciculus; ILF: 

302 Inferior Longitudinal Fasciculus; SLF: Superior Longitudinal Fasciculus; UNC: Uncinate.

303 --- Figure 6 ---

304 Fig 6. MD tract profile for each experimental group and training session. 

305 The plots show MD values estimated based on the beta coefficients extracted from node-

306 by-node LME models. Shaded areas represent +/- 2 SE. ARC: Arcuate Fasciculus; ATR: 

307 Anterior Thalamic Radiation; CGC: Cingulum Cingulate; CST: Corticospinal Tract; FA: 

308 Anterior Forceps; FP: Posterior Forceps; IFO: Inferior Longitudinal Fasciculus; ILF: 

309 Inferior Longitudinal Fasciculus; SLF: Superior Longitudinal Fasciculus; UNC: Uncinate.

310 To estimate the evidence supporting the null hypothesis (H0: no plasticity), additional 

311 Bayesian analyses were run on each tract to compare the dMRI training effect (post-pre 

312 mean profile difference) between the two groups. Bayes factors supported small-to-

313 moderate evidence for the null effect in the majority of the tracts, including all tracts that 

314 are part of the reading circuitry (FA: BFs<1 in 16 of the 18 tracts; MD: BFs<1 in 12 of the 

315 18 tracts; Fig 7). 

316 --- Figure 7 ---

317 Fig 7. Bayes factors relative to the group comparison of the dMRI training effect for 

318 each tract. 
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319 ARC: Arcuate Fasciculus; ATR: Anterior Thalamic Radiation; CGC: Cingulum Cingulate; 

320 CST: Corticospinal Tract; FA: Anterior Forceps; FP: Posterior Forceps; IFO: Inferior 

321 Longitudinal Fasciculus; ILF: Inferior Longitudinal Fasciculus; SLF: Superior 

322 Longitudinal Fasciculus; UNC: Uncinate.

323

324 Linking training effects between behavioral and dMRI measures

325 Despite the lack of experience-driven white matter plasticity at the group level, it is 

326 possible that longitudinal change in alphabet knowledge might relate to longitudinal 

327 white matter changes. To test this hypothesis, the two groups were combined and 

328 Pearson correlations were calculated to check whether individual changes in alphabet 

329 knowledge (average of lower and upper case knowledge) could be mapped onto 

330 structural changes of left AF and ILF. This analysis did not show significant effects after 

331 Bonferroni correction (see Table 3).

FA MD

r p corrected r p corrected

Left ARC -0.38 0.104 0.12 0.99

Left ILF -0.41 0.060 0.36 0.124

332 Table 3. Pearson correlations between post-pre differences in reading performance and 

333 structural properties. 

334
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335 Discussion

336 This randomized controlled trial examined short-term effects of a Letter and a Language 

337 training program on preschoolers’ reading performance and brain structure. The findings 

338 suggest that a two-week Letter training program causes improvements in preschoolers’ 

339 letter knowledge and decoding skills. However, this behavioral effect was not 

340 accompanied by short-term changes in the diffusion properties (i.e., FA and MD) of white 

341 matter pathways, within or outside the reading circuitry. The presence of quick 

342 behavioral changes as a result of Letter training confirms previous findings on the 

343 effectiveness of short-term reading instruction, which has been observed in children with 

344 and without reading disorders [52–55].

345 Our dMRI findings further complement the existing literature on short-term reading-

346 relating brain plasticity by showing that reading performance improvements are not 

347 always accompanied by changes in diffusion properties of white matter pathways 

348 [4,5,12,20,21]. The high reliability estimates for both FA and MD scores across sessions 

349 ensure that this null effect could not be accounted for by low dMRI data quality. Bayesian 

350 analyses provided support for the null hypothesis (no change in white matter diffusion) 

351 for all major white matter tracts of the reading network. In addition, correlation analyses 

352 confirmed the lack of a clear correspondence between preschoolers’ individual 

353 behavioral changes and variations in structural properties of reading white matter 

354 pathways. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.16.608210doi: bioRxiv preprint 

https://paperpile.com/c/B8b9QF/rRbQh+9wJ9Y+d0wRr+5rgUG
https://paperpile.com/c/B8b9QF/yweg2+d6PlC+jSKiy+RR55Y+Hxljq
https://doi.org/10.1101/2024.08.16.608210
http://creativecommons.org/licenses/by/4.0/


21

355 One aspect that can account for the lack of structural changes is the type and intensity of 

356 the reading program. Previous studies have mainly focused on effects of reading 

357 intervention in children diagnosed with dyslexia, which can have an intense and 

358 profound impact on struggling readers' cognitive and social lives. In the current study, 

359 our reading training proposed preschool/kindergarten activities that are usually carried 

360 out in a classroom setting. Since these training programs are similar to common preschool 

361 and kindergarten classrooms, they might not represent a dramatic enough environmental 

362 change to cause large-scale remodeling of the white matter. Related to this point, another 

363 variable that can account for our results is the cognitive profile of the trainees. This is the 

364 first randomized controlled trial on the effects of a short-term reading training with 

365 typically developing preschoolers. Previous experimental evidence collected so far (Table 

366 1) refers to the effects of short-term remediation programs on children with reading 

367 disorders or at-risk of reading disorders. Hence, the large effects that have been reported 

368 so far might reflect the dramatic environmental change of entering an intensive 

369 intervention environment after struggling in school for years. This experience is quite 

370 different than typically developing children beginning formal reading instruction [3–

371 5,19].

372 Another possible explanation to consider is the type of diffusion properties examined 

373 here. Recent dMRI findings on the short-term effects of reading intervention programs in 

374 preschoolers reported structural changes only in myelin water fraction, but not in FA and 
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375 MD scores [3,21]. This might suggest that MRI measures more specifically related to 

376 myelination would better reflect reading-related short-term plasticity around 5 years of 

377 age. However, within 7 and 12 years of age an opposite pattern of results have been 

378 reported, with MD and FA providing evidence for rapid structural plasticity while no 

379 training-dependent changes were reported for more myelin-specific correlates, such as 

380 axonal water fraction and R1 [4,19]. These results are still compatible with the idea that 

381 short-term plasticity due to reading training might affect different structural properties 

382 of white matter depending on the developmental time window (e.g., there might be a 

383 higher degree of plasticity for myelin-specific indexes in the early stages of life). 

384 Additional research is needed in order to clarify which type of diffusion properties can 

385 be shaped by experience as a function of age (e.g., neural or non-neuronal plasticity, intra 

386 or extra axonal plasticity, [3,19,56]).

387 Finally, another potential explanation for our dMRI findings regards the presence of a 

388 possible time shift between the training effects on behavior and brain structure, with 

389 white matter changes happening over a larger temporal scale compared to behavioral 

390 changes. For instance, our findings are still compatible with the idea that at this early age 

391 the amount of training received is not sufficient to shape what will become the reading 

392 circuit later on. Although some studies have shown no time lag between behavioral and 

393 structural changes in response to a short reading intervention program [3–5,12], the exact 
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394 time course of reading-related neuroplasticity is still understudied and needs further 

395 investigation.

396

397 Overall, this heterogeneous picture of findings on short-term reading-related structural 

398 neuroplasticity highlights the need to better define the conditions under which white 

399 matter can be shaped by experience. Several experiential and developmental factors 

400 might modulate the degree of white matter plasticity exhibited in response to reading 

401 training or intervention. Research evidence coming from other cognitive domains might 

402 give us some insights on the critical constraining variables to be considered. For instance, 

403 studies testing for the presence of a sensitive period of sensory and motor white matter 

404 circuits suggest that the time onset of the environmental exposure is a key factor to 

405 establish whether white matter structure is stable or plastic [57,58]. Other factors that 

406 have been suggested to modulate the balance between structural plasticity and stability 

407 are the type and the duration of experiential exposure [59–63] and the individual 

408 cognitive health and lifestyle risk factors [61,64]. 

409

410 In conclusion, this randomized controlled trial highlights that a two-week literacy 

411 training can cause fast behavioral changes in preschoolers’ reading performance,  without 

412 being accompanied by fast FA and MD changes of the reading circuitry. These findings 

413 highlight that rapid diffusion properties variations are not always observed in response 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.16.608210doi: bioRxiv preprint 

https://paperpile.com/c/B8b9QF/MH5yP+1449W
https://paperpile.com/c/B8b9QF/3dT0v+kqr4r+Sjew6+TAprr+KvRcC
https://paperpile.com/c/B8b9QF/M6e9x+Sjew6
https://doi.org/10.1101/2024.08.16.608210
http://creativecommons.org/licenses/by/4.0/


24

414 to short-term reading training and point to the need of specifying the conditions under 

415 which white matter structure is plastic versus stable. 
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593 S1 Fig. Subject reliability of FA for each experimental group.

594 S2 Fig. Subject reliability of MD for each experimental group.

595 S3 Fig. Training-related dMRI changes of the left inferior fasciculus.

596 First two columns: structural changes of the left ILF are shown for the Letter and 

597 Language Training groups and each experimental session. The third column shows the 

598 distribution of FA and MD changes (i.e. difference between the individual profiles 

599 observed in the post and pre-training sessions) for each group.
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