

1 Mutualisms within light microhabitats drive sensory 2 convergence in a mimetic butterfly community

3 4 5 6 **Authors:**

7
8 J. Benito Wainwright^{1*}†, Theodora Loupasaki¹, Francisco Ramírez², Iestyn L. Penry Williams¹,
9 Sam J. England³, Annalie Barker⁴, Joana I. Meier^{4,5}, Martin J. How¹, Nicholas W. Roberts¹,
10 Jolyon Troscianko⁶, Stephen H. Montgomery^{1*}

11 12 13 **Affiliations:**

14
15 ¹School of Biological Sciences, University of Bristol; Bristol, UK.

16
17 ²Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas,
Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

18
19 ³Department of Evolutionary Morphology, Museum für Naturkunde-Leibniz Institute for Evolution
and Biodiversity Science; Berlin, Germany.

20
21 ⁴ Department of Zoology, University of Cambridge; Cambridge, UK

22
23 ⁵ Tree of Life Programme, Wellcome Sanger Institute; Hinxton, UK.

24
25 ⁶Centre for Ecology & Evolution, University of Exeter, Penryn Campus; Penryn, UK.

26
27 *Corresponding authors. Emails: jbw21@st-andrews.ac.uk, s.montgomery@bristol.ac.uk

28
29 †Present address: Centre for Biological Diversity, School of Biology, University of St Andrews,
30 Fife, UK.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 **Abstract:**

50
51 Niche partitioning within variable habitats can expose species to distinct sensory
52 information. Vision is the primary sensory modality used by many animals to interact
53 with their habitat. However, within diurnal terrestrial ecosystems, little is known if, and
54 how, variation in light environments impact species assemblages and visual system
55 evolution. By studying a diverse, sympatric community of mimetic butterflies, we
56 demonstrate that forest architecture creates a mosaic of light microhabitats that drive
57 adaptive sensory convergence and divergence in both peripheral and central sensory
58 systems. Our study provides insights into the dynamic response of visual systems when
59 confronted with similar ecological challenges, and illustrates the wide-reaching
60 consequences of interspecific mutualisms, such as mimicry, on organismal evolution.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95 **Introduction:**

96
97 Environmental variability is associated with increased biodiversity via adaptive
98 partitioning across multiple ecological dimensions (1). This partitioning exposes species
99 to contrasting ecological challenges, including different light environments (2), which
100 can impact the efficacy of behaviors such as foraging, mating and predator avoidance
101 (3). In aquatic ecosystems, variation in the light environment, such as those caused by
102 spectral or intensity depth gradients, has been inferred to promote ecological
103 diversification with consequences for adaptive visual system evolution (4-6). However,
104 the sensory complexity and adaptive influence of light variation in most terrestrial
105 environments, especially in highly diverse tropical rainforests, is less well characterized.
106 As such, the universal role of light variation in shaping the adaptive evolution of
107 community structures is largely unknown.

108 Evolutionary radiations of Neotropical butterflies provide a powerful system for
109 understanding how the light environment drives both niche partitioning and sensory
110 system evolution in terrestrial ecosystems (7). For example, within the 26-million-year-
111 old tribe Ithomiini (~400 species, Nymphalidae: Danainae), unpalatable species have
112 converged in wing color pattern, morphology, and behavior to increase the efficiency of
113 their warning signal to predators, a mutualistic phenomenon called Müllerian mimicry (8-
114 12). Microhabitat segregation of predators allows multiple 'mimicry rings' to co-exist
115 within single forest communities as mimetic convergence is associated with
116 convergence in habitat use (13-15). Ithomiini also show strong patterns of variation
117 across a range of visual traits, including at the peripheral (compound eye structure),
118 central (brain structure) and molecular (visual pigment coding sequence) level,
119 suggesting lability in sensory system evolution across sympatric species with relatively
120 subtle differences in habitat preference (16, 17). However, quantitative evaluations of
121 light environments within their forest habitats are lacking, and an absence of dense
122 phylogenetic sampling limits our understanding of the selection pressures shaping the
123 evolution of visual systems in Ithomiini.

124 Here, we studied a diverse Ecuadorean community of 54 sympatric ithomiine
125 butterfly species, and the lowland rainforest that they live in. We first characterized
126 heterogeneity in sensory microhabitats, and then asked how adaptive species
127 assemblages were strengthened and maintained by abiotic (e.g. changes in the spectral
128 properties of the light environment) and biotic (e.g. mimicry) interactions. Our data
129 provide evidence that ecological interactions among species that occupy a mosaic
130 patchwork of sensory conditions can drive predictable patterns of visual system
131 evolution.

132
133
134
135
136
137
138
139
140

141 **Materials and Methods**

142

143 **Field site, animal collection and identification**

144

145 All fieldwork was conducted along designated trails which surround the Estación
146 Científica Yasuní (0°40'27" S, 76°23'50" W), at Parque Nacional Yasuní, Orellana
147 Province, Ecuador, a ~4.5 km² area of primary lowland Amazon rainforest where local
148 ithomiine diversity is high (~60 recorded species) (13). All ecological measurements and
149 eye samples were taken in August-October 2022 between 8:00AM (0800h) and 2:00PM
150 (1430h), when butterflies are most active, under permit collection no. MAAE-ARSFC-
151 2021-1763 and export permit no. 023-2022-EXP-IC-FAU-DBI/MAAE. Brain samples
152 were collected in November/December 2011 and September/October 2012 under
153 permit collection no. 0033-FAU-MAE-DPO-PNY and export permit nos. 001-FAU-MAE-
154 DPO-PNY and 006-EXP-CIEN-FAU-DPO-PNY. Permits were obtained from Parque
155 Nacional Yasuní, Ministerio del Ambiente, La Dirección Provincial de Orellana, with
156 support from the Pontificia Universidad Católica del Ecuador (PUCE) and staff at the
157 Estación Científica Yasuní.

158 Studying a single diverse community allows for robust comparative analysis
159 between species and mimicry rings by eliminating variation due to geographical
160 variables such as altitude and climate. Collecting data across three ~two-month field
161 seasons also meant that the relative species abundances in our datasets were
162 representative of their natural numbers in the community. Across the three field
163 seasons, 54 ithomiine species were sampled pertaining to the eight local mimicry rings
164 ('agnosia', 'aureliana', 'confusa', 'eurimedia', 'hermias', 'lerida', 'mamercus' and
165 'mothone'; Fig. 2A; fig. S3) (13, 14), and nine of the ten major ithomiine subtribes
166 (Dircennina, Godyridina, Ithomiina, Mechanitina, Melinaeina, Methonina, Napeogenina,
167 Oleriina, Tithoreina) (9). Genera were identified using wing venation patterns (31) and
168 then identified to species level using ID sheets for the races found locally at Yasuní,
169 provided by Dr Keith Willmott, and sexed. The wings of all sampled individuals were
170 kept in transparent envelopes as voucher specimens. Body length (cm) was also
171 measured as a condition-independent measure of body size. In 2022, a maximum of
172 twelve individuals per species were sampled for eye physiological and anatomical
173 analysis. Non-retained individuals were IDed, sexed, and marked on one wing with
174 black permanent marker prior to release to avoid future resampling.

175

176 **Spectral and ecological data**

177

178 **Transect measurements**

179

180 To investigate whether changes in forest structure created distinct light environments,
181 spectral measurements were obtained at designated points along the 'Mirador' trail, a
182 relatively straight 2.1 km topographically variable transect consisting of nine consecutive
183 ridges (~250 m above sea level) and valleys (~240 m above sea level) (Fig. 1). Ten
184 spectral measurements were taken at each ridge/valley replicate at four height
185 categories (1, 2, 3 and 4 m) which were chosen based on flight height data for
186 ithomiines previously reported by Willmott *et al.* (15) (Fig. 1). Time of day was also

187 recorded and later binned as 'early morning' (0800-0959h), 'late morning' (10:00-
188 11:59h) and 'early afternoon' (1200-1359h). Individual ithomiine butterflies caught along
189 this transect were assigned to the nearest ridge or valley and one of the four height
190 categories (1, 2, 3 and 4 m), as in Willmott *et al.* (15). No butterflies were sampled
191 above 4 m. Although this may have created a sampling bias, other studies have shown
192 ground surveys to provide an accurate proxy of ithomiine vertical stratification and, in
193 practice, very few butterflies were observed flying above 4 m, which was still
194 comfortably within the maximum reach of the hand nets (~5.5 m) (8, 13, 15).

195 Spectral irradiance measurements were taken using a lightweight, portable, open
196 source, spectroradiometer system (OSpRad), developed by Troscianko (32), consisting
197 of a Hamamatsu C12880MA microspectrometer chip (spectral range of 310 to 880 nm,
198 288-site CMOS sensor, minimal spectral resolution of 9.7 nm), combined with an
199 automated shutter (controlled by a digital servo, Savox SH-0256) and cosine-corrector,
200 and an Arduino Nano microcontroller, contained within custom made, 3D printed ABS
201 plastic housing. OSpRad comes with a custom-built app written in Python and was run
202 via the Pydroid 3 app installed onto a CUBOT Quest Lite smartphone (Android 9.0).
203 Spectral calibration was performed using a full-spectrum xenon light source (Neewer
204 NW-14EXM) with irradiance measures taken using a Jeti Specbos (1211UV)
205 spectroradiometer with NIST-traceable calibration. OSpRad provided a measure of
206 ambient light intensity from all light sources illuminating the spectroradiometer sensor
207 for each of the 288 sensor photosites (irradiance measured in $\text{Wm}^{-2}\text{nm}^{-2}$; mean
208 integration time: 14.8 ms; no. of scans per measurement: 50; Fig. 1B). For
209 measurements taken at 3 and 4 m, the OSpRad system was attached to the end of
210 hand net poles and raised to the appropriate height.

211 Hemispherical photography was also used to estimate canopy openness at each
212 ridge/valley replicate by taking an upward facing photograph with the 13 MP camera of
213 a CUBOT Quest Lite smartphone (Android 9.0) attached to a 180° clip-on fisheye lens
214 (Fig. 1A). JPEG images were run through an adapted version of the *hemispheR* R
215 package (33,34). The blue channel was extracted from the original RGB images as this
216 provided the best contrast between sky and canopy. Thresholding was then performed
217 using the *binarize_fisheye* function (using the "Otsu" method), producing binary images
218 analyzed by the *gapfrac_fisheye* function which calculates the gap fraction for each
219 image within the zenithal angle range of 0-70° using seven zenith angle rings and eight
220 azimuth segments. Canopy openness (%) was then estimated using *canopy_fisheye*
221 based on the angular distribution of each gap fraction.

222
223 *Individual measurements*

224
225 Alongside the transect measurements, individual light, and ecological measurements
226 (including hemispherical photography) were taken for 785 butterflies across 45 ithomiine
227 species found along all trails surrounding the Estación Científica Yasuní. Species
228 specific samples sizes varied from 65 for *Hypothyris anastasia* to 1 for *Hypothyris*
229 *semifulva*, *Ithomia salapia*, and *Napeogenes aethra* with 24 species consisting of more
230 than twelve individuals (Fig. S3). Flight height was estimated for each butterfly using
231 tape measures and the known length of hand net poles. Most butterflies were caught
232 within arm's reach (~3 m) but for those that were not, the OSpRad system was attached

233 to the end of hand net poles and raised to the approximate location of initial
234 observation, using distinct features of forest layers and landmarks as reference points.
235

236 *Visual modelling*
237

238 Irradiance measurements taken by OSPrad were modelled based on the trichromatic
239 visual system of *Danaus plexippus* (Nymphalidae: Danainae), the most closely related
240 species to the Ithomiini for which the maximal sensitivity (λ_{\max}) of each visual pigment is
241 known (λ_{\max} , UV = 340 nm, B = 435 nm, LW = 545 nm) (35). Opsin sequence analysis
242 by Wainwright *et al.* (17) suggests that ithomines possess the same number of
243 functional photoreceptors as *D. plexippus*, making *Danaus* a suitable model visual
244 system for calibrating the spectral measurements. The λ_{\max} values of these three visual
245 pigments were used to estimate absorbance spectra with nonlinear least-square fitting
246 according to the template by Govardovskii *et al.* (36) (fig. S1). Although this template
247 was originally designed to model the spectral sensitivity of vertebrate visual pigments,
248 previous studies have shown that it is practically identical to invertebrate models at
249 accurately describing the normalized sensitivity of rhodopsins, particularly within the
250 visible range (37). The absorbance values from these models, and the integration time
251 of each spectral reading, were used to calibrate the raw irradiance measurements. This
252 calculated photoreceptor photon capture (quantum catch, Q) for the ultraviolet (UV),
253 blue (B) and long-wavelength (LW) sensitive spectral channels, providing a measure of
254 how many photons are absorbed by each photoreceptor under the given lighting
255 conditions (measured in 10^{10} quanta $s^{-1} m^{-2}$).

256 It is worth noting that *Danaus*, and likely Ithomiini, also contain a fourth long-
257 wavelength sensitive spectral channel created by the presence of red screening
258 pigment, as indicated by red-reflecting ommatidia in their eyeshine (17,23). However,
259 the relative contribution of these screening pigments in shifting the spectral sensitivity of
260 photoreceptors is difficult to disentangle, and the inter-ommatidial connections
261 underlying color processing is poorly understood, making visual modelling using current
262 methods difficult (22,37). Our estimated quantum catches are therefore a conservative
263 estimate of the visual information available to an ithomiine butterfly within its respective
264 microhabitat.

265 A measure of overall photon catch was calculated as the estimated quantum
266 catch of the long-wavelength-sensitive photoreceptor, the primary achromatic channel in
267 invertebrates (18). As an alternative, the mean quantum catch of all three spectral
268 channels was also calculated. Both measures of photon catch were \log_{10} transformed
269 prior to analysis and analyzed in the same way. To quantify spectral composition,
270 Michelson contrasts were calculated between each spectral channel (a) and the
271 summed average of the remaining two spectral channels (b, c) $((Q_a - Q_{(b+c)/2}) / (Q_a + Q_{(b+c)/2}))$, providing an empirical measure of relative ultraviolet, blue, and long-
272 wavelength catch.
273

274 Two principal component analyses (PCA) were also conducted for the transect
275 and individual light measurements respectively. In both PCAs, PC1 explained, 98-99%
276 of variation in quantum catch, receiving equal loadings from all three spectral channels,
277 indicating that this is achromatic and equivalent to our measure of overall photon catch
278 (table S1,2). The remaining variance summarized by PC2 and PC3 describe chromatic

279 variation with the UV channel loading negatively against B and LW for PC2, and the B
280 channel loading negatively against UV and LW for PC3. This suggests opponency
281 between these channels, which complements the mechanisms by which colors are
282 processed in other insects (e.g. 39,40). In downstream analyses, the distribution of PC
283 values were normalized by $\log_{10}(n + 2)$ and $\log_{10}(n + 1)$ transformation for the transect
284 and individual measurements respectively, to avoid log-transformation of negative
285 values. Analyses of these PC axes generally mirrored results from overall photon catch
286 and relative wavelength catch analysis (for full details see table S1,S2).

287
288 *Statistical methods*
289

290 To test whether the visual environment varied along the transect according to
291 topography, canopy openness, and height from the ground, linear mixed models were
292 constructed using the function *lmer* in the *lme4* package in R (34,41). Both measures of
293 overall photon catch, PC1-3, and relative UV/B/LW catch were each regressed against
294 topography, height (as an ordinal factor), canopy openness, and their interaction.
295 Replicate number, day, and time of day were included as random effects. The
296 significance of each fixed effect was determined by comparing models with and without
297 the variable in question using the *anova()* function.

298 Based on the results of the above models, we then sought to test whether the
299 abundance of encountered mimicry rings differed between forest microhabitats which
300 displayed significant variation in light environment. This was achieved by constructing
301 Bayesian phylogenetic generalized linear mixed models with the R package
302 *MCMCglmm* (function *MCMCglmm*, family = “categorical” for binary response variables,
303 family = “gaussian” for continuous, parametric response variables) (42) using the
304 inverse correlation matrix of a calibrated and pruned ithomiine phylogeny from Chazot
305 *et al.* (9) (packages *phytools* and *ape*) (43,44). Default priors were used as fixed effects
306 and uninformative, parameter expanded priors as random effects (G: V = 1, n nu = 1,
307 alpha.mu = 0, alpha.V = 1,000; R: V = 1, nu = 0.002), as in Wainwright and Montgomery
308 (16). Species and sex were always included as random effects and models were run for
309 5,100,000 iterations with a burnin of 100,000. We report the difference in deviance
310 information criterion (Δ DIC) with and without mimicry ring, where lower DICs indicate a
311 better fit and models with Δ DIC < 2 are considered equivalent.

312 We also performed tests for mimetic segregation between light environments
313 using spectral and ecological measurements obtained from individual butterflies. By
314 applying the same parameters as described above, *MCMCglmm*s were built for each
315 spectral variable with mimicry ring, flight height, canopy openness, and the interaction
316 between these variables included as fixed effects. To assess the significance of
317 continuous variables (flight height and canopy openness), we report the posterior mean
318 (P -mean), the 95% CIs, and the P_{MCMC} .

319 By calculating species means for each variable of interest, we also recreated all
320 of the above *MCMCglmm* models using a phylogenetic generalized least-squares
321 regression (PGLS) by implementing the *pgls* function in the *caper* R package (45) with
322 Pagel’s λ set to 1 to allow conservative comparisons between models using *anova()*. In
323 this dataset, the polymorphic species *Mechanitis messenoides* was assigned to the

324 “hermias” mimicry ring as this was the observed mimicry pattern for the majority of wild-
325 caught individuals (70.59% ‘hermias’, 29.41% ‘mothone’).

326

327 **Summarizing ecological variation**

328

329 To disentangle the relative roles of light environment and flight-related morphologies in
330 driving visual system evolution (see main text), forewings from individuals sampled in
331 2011/2012 were photographed dorsally using a DSLR camera and 100 mm macro lens
332 under standardized lighting conditions. Damaged forewings were excluded from the
333 analyses. By running adapted custom scripts from Montejo-Kovacevich *et al.* (46) in FIJI
334 (47), wing surface area (mm²) and aspect ratio were calculated from these images. The
335 latter was defined as the ratio of the major and minor wing axes lengths and was used
336 as a proxy of wing shape, which is known to predict flight speed in many butterfly
337 species (22). Wing loading (g mm⁻²) is known to positively predict the lift required to fly
338 at the desired speed and was thus also calculated, by dividing body mass (in this case,
339 the total mass of the head, thorax, and abdomen) by forewing area.

340 The species means of all wing morphological variables (forewing surface area,
341 aspect ratio, forewing loading) and ecological variables (flight height, canopy openness)
342 were included in a PCA along with the mean quantum catch of the UV, B, and LW
343 spectral channels. The loadings from this PCA revealed all variation to be summarized
344 along two axes; the “light environmental” axis (EC1, 45.99% explained variation) and
345 the “wing morphological” axis (EC2, 28.71% explained variation) (eigenvalue cutoff = 1)
346 which were used in subsequent analyses (see main text; table S3). Mean canopy
347 openness and flight height loaded positively on EC1 and EC2 respectively. Mimetic
348 segregation along both these axes was investigated using PGLS (see ‘Spectral and
349 ecological data – Statistical methods’).

350

351 **Physiological and anatomical trait data**

352

353 *Eye physiological measurements*

354

355 Eye physiology was studied at the Estación Científica Yasuní at room temperature
356 using live, wild-caught individuals ($N = 363$, 56.25% female, average of ~8 individuals
357 per species) with a custom-built ophthalmoscope, previously described by Wainwright *et*
358 *al.* (17), connected to a laptop with the uEye Cockpit program (IDS Software Suite 4.95)
359 installed.

360 Briefly, butterflies were mounted in slotted plastic tubes, immobilized using
361 plasticine, and oriented with a micromanipulator to face the objective lens, so the frontal
362 region of the compound eye was in view. The ophthalmoscope was then adjusted to
363 focus on the luminous pseudopupil, a region where the optical axes of several
364 ommatidia are aligned and emit colorful eyeshine after dark adaptation, due to the
365 presence of a tapetal reflector at the proximal end of each rhabdom (48). The color and
366 heterogeneity of the eyeshine varies between butterfly species but its intensity
367 diminishes quickly upon exposure to light due to intracellular pigment migration towards
368 the rhabdomeres, preventing incoming light from reaching the tapetum (21,49). The
369 speed of this pupillary response is known to vary between ithomiine species, suggesting

370 that it might reflect how eyes physiologically respond to spatial and temporal variation in
371 the light conditions present within their respective microhabitats (17).

372 Video recordings of the eyeshine were taken after five minutes of dark adaptation
373 under standard laboratory conditions and imported into FIJI/ImageJ (43) where pupillary
374 response time was measured (Fig. 3A). The presence of red-reflecting facets was also
375 noted as this is indicative of screening pigment which is known to create an additional
376 long-wavelength spectral channel in some nymphalid butterflies, the existence of which
377 varies both between and within species (e.g. 21,49). We focus on these data as
378 available molecular evidence suggests general conservation of all functioning
379 photoreceptors in ithomiines, which means shifts in eyeshine color are more likely to be
380 a result of changes in screening pigment expression (17). The number of reflecting
381 facets were counted and categorized as being yellow or red, from which the ratio of
382 yellow:red reflecting facets was calculated for each individual. The presence of red
383 screening pigments was confirmed in at least one individual of each species.

384

385 *Eye anatomical measurements*

386

387 Following ophthalmoscopy, heads were removed and preserved in chilled RNAlater
388 (Invitrogen™ AM7021 ThermoFisher Scientific), alongside the remaining body tissue for
389 future molecular work. Samples were kept at 4 °C whenever possible before being
390 returned to the United Kingdom where they were stored at -20 °C. Whole heads were
391 imaged (proboscis and labial palps removed) from the frontal view with LAS X software
392 using a Leica EZ4 W stereo microscope with an integrated 5 MP camera at 20x
393 magnification (Fig. 3C). One compound eye was removed using a fine blade and
394 forceps and placed into 20% sodium hydroxide solution for 3-5 hours to loosen the
395 ommatidia and underlying pigment from behind the eye cuticle. The eye cuticle was
396 then isolated before making four small cuts, two on the dorso-ventral axis and two on
397 the posterior-anterior axis, enough so that it could lay flat. The flattened cuticle was
398 cleaned of debris under 95% ethanol solution and mounted on a clean microscope slide
399 with a small drop of Euparal (Elkay Laboratory Products Ltd) under a cover slip.
400 Mounted slides were then left for a minimum of 24 hours before being imaged with
401 GXCapture software on a Leica M205 C stereo microscope with an integrated 8 MP
402 camera. Images were taken at 1.6x, 2.0x, 2.5x, 3.2x and 4.0x magnification depending
403 on the size of the sample (Fig. 3C).

404 TIFF images of whole heads were imported into FIJI/ImageJ where inter-ocular
405 distance (mm), defined as the minimum horizontal gap between the two eyes, was
406 measured using the line tool. After correcting the scale in FIJI/ImageJ, facet number,
407 eye surface area, and mean facet diameter were measured from cuticle images using
408 the ommatidia detecting algorithm (ODA) (51) (Fig. 3C). This module, written in Python,
409 identifies individual facets from 2D images by extracting periodic signals from each
410 image using a 2D fast Fourier transform. All anatomical variables were \log_{10}
411 transformed before any statistical analysis.

412
413
414
415

416 *Sensory neuroanatomical measurements*

417
418 Relative investment in sensory processing structures was investigated using a separate
419 sample of wild-caught ithomiines (collected in 2011 and 2012) consisting of 392
420 individuals across 49 species. Species sample sizes varied from 28 for *Hypothyris*
421 *anastasia* to 1 for *Callithomia alexirrhoe*, *Ceratinia tutia*, *Dircenna loretia*, *Heterosais*
422 *nephele*, *Ithomia agnoscia*, *Pteronymia primula*, *Pteronymia vestilla*, and *Tithorea*
423 *harmonia*, with 17 species consisting of more than eight individuals (fig. S3B).
424 Individuals were dissected at the Estación Científica Yasuní under HEPES-buffered
425 saline (HBS; 150 mM NaCl; 5 mM KCl; 5 mM CaCl₂; 25 mM sucrose; 10 mM HEPES;
426 pH 7.4) and fixed in zinc formaldehyde solution (ZnFA; 0.25% [18.4 mM] ZnCl₂; 0.788%
427 [135 mM] NaCl; 1.2% [35 mM] sucrose; 1% formaldehyde) for 16-20 hours whilst under
428 agitation. Samples were subsequently washed in HBS three times and placed in 80%
429 methanol/20% DMSO for a minimum of two hours under agitation before being stored in
430 100% methanol at room temperature and later at -20°C upon arrival to the United
431 Kingdom.

432 The neuropil volumes within this dataset include those from individuals previously
433 acquired and analyzed by Montgomery and Ott (52) and Wainwright and Montgomery
434 (16) which were collected during the same two field seasons. The brain tissue of the
435 remaining samples was immunostained against synapsin, a conserved protein
436 expressed at pre-synaptic regions across insects, following the same protocols. Brains
437 were rehydrated in a methanol-Tris buffer series of decreasing concentration (90%,
438 70%, 50%, 30%, and 0%, pH 7.4), for 10 minutes each, and subsequently incubated in
439 5% normal goat serum (NGS; New England BioLabs, Hitchin, Hertforshire, UK) diluted
440 in 0.1 M phosphate-buffered saline (PBS: pH 7.4) and 1% DMSO (PBSd) for two hours
441 at room temperature. Samples were stained using anti-SYNORF as a primary antibody
442 (Antibody 3C11; Developmental Studies Hybridoma Bank, University of Iowa, Iowa City,
443 IA; RRID: AB_2315424) in NGS-PBSd, at a dilution of 1:30, and left for 3.5 days under
444 agitation at 4°C. To remove non-bound antibody, three two-hour washes in PBSd were
445 conducted before applying the secondary Cy2-conjugated anti-mouse antibody
446 (Jackson ImmunoResearch; Cat No. 115-225-146, RRID: AB_2307343, West Grove,
447 PA) at a dilution of 1:100 in NGS-PBSd. Samples were incubated for 2.5 days at 4°C
448 under agitation before being subjected to a glycerol dilution series (diluted in 0.1 M Tris
449 buffer, 1% DMSO) of increasing concentration (1%, 2%, and 4% for two hours each,
450 8%, 15%, 30%, 50%, 60%, 70%, and 80% for one hour each) and then dehydrated in
451 100% ethanol three times, 30 minutes each. Finally, brains were placed in methyl
452 salicylate and left for ~30 minutes for the brain tissue to sink and clear, before being
453 replaced with fresh methyl salicylate.

454 Brains were imaged at the University of Bristol's Wolfson Bioimaging Facility on a
455 confocal laser-scanning microscope (Leica SP5-AOBS/SP5-II, Leica Microsystem,
456 Mannheim, Germany) fitted with a 10x 0.4 NA objective lens (Leica Material No.
457 506285, Leica Microsystem). Each sample was scanned from the anterior and posterior
458 side separately using a 488 nm argon laser at 20% intensity, a mechanical z-step of 2
459 μm, and an x-y resolution of 512x512 pixels. Anterior and posterior image stacks were
460 later merged into a single image stack file in Amira 3D analysis software 2021.2
461 (ThermoFisher Scientific, FEI Visualization Sciences Group), using a custom *advanced*

462 merge module provided by Rémi Blanc (Application Engineer at FEI Visualization
463 Sciences Group). Prior to image segmentation, the z voxel size of the resulting merged
464 image stack was multiplied by 1.52, to correct for artificial shortening of the z-dimension
465 (52). Using Amira 2021.2, every third image of each neuropil of interest was then
466 segmented manually, based on the intensity of the synapsin immunofluorescence, by
467 creating label files for each individual with the *labelfield* module. All intervening
468 unsegmented sections were then assigned to the neuropil of interest by interpolating in
469 the z-dimension, before being edited and smoothed in all three dimensions. Volumetric
470 information was extracted using the *measure statistics* module. This procedure was
471 used to reconstruct the volume (μm^3) for five of the six primary optic lobe neuropils
472 (medulla, lobula plate, lobula, accessory medulla, and ventral lobula with total optic lobe
473 size being calculated from the sum of these raw volumes). The lamina was not included
474 as it is extremely thin in many smaller species and was easily damaged during the
475 dissections, so could not be obtained reliably for the full range of species. The ventral
476 lobula, a small neuropil found in the optic lobe, was absent in many individuals,
477 particularly females (17). Volumes were also reconstructed for the anterior optic
478 tubercle, as the most prominent central brain visual structure, and antennal lobe, as the
479 primary olfactory processing center, to test for comparable effects on olfactory
480 investment. Raw volumes for the anterior optic tubercle and antennal lobe were
481 subtracted from a measure of central brain volume to calculate the “rest of central brain”
482 which acted as an allometric control in subsequent statistical models (Fig. 4A). Each
483 paired neuropil was multiplied by two and all volumes were \log_{10} transformed before any
484 analysis.

485
486 *Statistical methods – regression analyses*

487 To test whether variation in all our measured visual traits correlate with light
488 microhabitat preference, we regressed each visual trait against EC1 (again, using
489 MCMCglmm, see “Spectral and ecological data – Statistical methods”). EC2, its
490 interaction with EC1, and, where necessary, a relevant allometric control were included
491 in the same model as additional fixed effects. We also tested for covariance amongst
492 physically and functionally connected neuropils in the brain by constructing separate
493 MCMCglmms where neuropils, whose volume showed a significant non-allometric
494 association with either EC axis, were regressed against all other significant neuropils.

495 In separate models, visual traits were also regressed against individual spectral
496 variables that significantly varied between ithomiine light microhabitats. Light
497 measurements were not taken for individuals sampled for brain tissue, so species
498 means for each spectral variable were used for the analysis of sensory neuropils. We
499 also built separate models where visual traits were regressed against individual wing
500 morphological variables (forewing area, aspect ratio, wing loading) to test whether
501 patterns of visual system evolution are correlated with changes in flight-related wing
502 morphology. Wing morphological variables were collected from individuals sampled for
503 brain tissue only, so species means for each wing variable were used in models
504 involving eye physiological and anatomical traits.

505 Eye surface area was modelled with inter-ocular distance included as an
506 additional fixed effect to control for allometric effects. To test whether larger eyes have

508 evolved to optimize functional performance by increasing facet size, facet number was
509 modelled with eye surface area as an additional fixed effect. Mean facet diameter was
510 subsequently analyzed without an allometric control to reflect differences in total light
511 capture between species. For models with neuropil volumetric data, “rest of central
512 brain” volume was included as an additional fixed effect to control for allometric effects.
513 These analyses were also recreated using PGLS, as described above, with Pagel’s λ
514 being estimated based on maximum likelihood.

515 For physiological and anatomical traits which demonstrated evidence of light
516 environment convergence, in both the MCMCglmm and PGLS analysis, we then tested
517 whether mimicry alone could predict convergent shifts in these traits (again, using
518 MCMCglmm and PGLS). For these analyses, mimicry rings were re-clustered based on
519 how species were segregated between light environments. As a post-hoc to the above
520 analysis, we conducted additional tests on anatomical traits which showed convergence
521 with mimicry (in either the MCMCglmm or PGLS analysis), using the *sma* function in the
522 *smatr* package (53). This function detects pairwise shifts in the scaling relationship
523 between the trait of interest and the appropriate allometric control, by testing for slope (β
524 shift), elevation (α or grade shift) and major axis shifts.

525

526 *Statistical methods – evolutionary modelling and analysis of convergence*

527

528 We used models of morphological evolution to investigate changes in evolutionary
529 dynamics of visual traits that showed evidence of convergence in light environment. We
530 focused on Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models, implemented
531 in the R package *mvMORPH* (54). BM models represent random-walk evolutionary
532 processes where the evolutionary rate (parameter σ^2) is constant. OU processes
533 include both a stochastic BM component and a deterministic tendency towards an
534 optimal value (θ), governed by the strength of selection (α) towards adaptive optima, the
535 optimum being the average phenotype toward which lineages subjected to the same
536 ‘selective regime’ have evolved. In the present case, these selective regimes were
537 predefined as the mimetic cluster to which a species belonged. Our hypothesis was that
538 co-mimics, or those sharing similar light environments, will have evolved towards
539 convergent adaptive optima in sensory anatomical trait space.

540 Prior to analysis, we used the species means dataset to conduct a PCA using
541 visual traits that showed evidence of light environment convergence, plus “rest of
542 central brain” volume as an allometric control where relevant (see main text). The
543 significant axes from this PCA were also regressed against EC1, EC2, and their
544 interaction, using PGLS. The reconstructed history of the selective regime on which
545 each model was fitted, was constructed using 500 character maps in *phytools* using the
546 ‘make.simmap’ function (44). These simulated character maps were used to fit BM and
547 OU models with single (BM1, OU1) and regime-specific optima (BMM, OUM) to
548 univariate models (functions ‘mvBM’ and ‘mvOU’). We also constructed an “early burst”
549 (EB) model, where visual systems diversify rapidly early on in cladogenesis (function
550 ‘mvEB’). The fit of the resulting models was compared using the mean corrected Akaike
551 information criterion (AICc) with lower AICc values indicating an improved model fit.

552 We also quantified levels of evolutionary convergence in sensory morphology
553 between co-mimics, or those sharing similar light environments, using the C indexes

554 (C1-4) calculated within the *convevol* package (55). Data were simulated under
555 Brownian motion 1,000 times to gauge significance. Lastly, a phenogram which maps
556 visual trait evolution was created using the “phenogram” function in *phytools* where
557 crossing branches indicate convergent evolution (44).

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

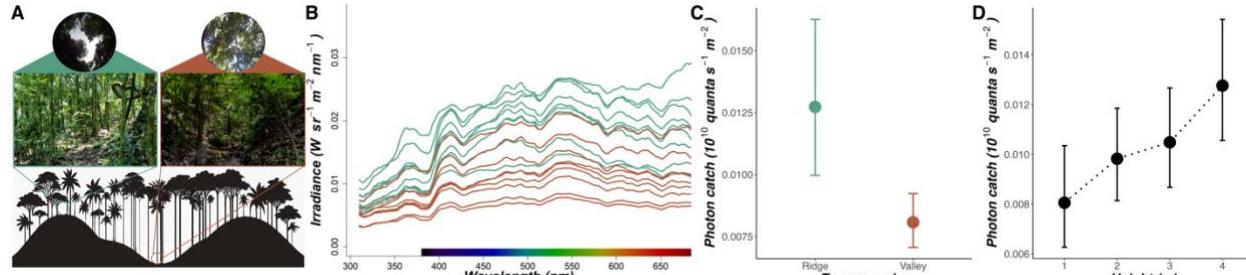
593

594

595

596

597


598

599

600 Results and Discussion

601 Variation in ecologically relevant forest light creates a mosaic of microhabitats

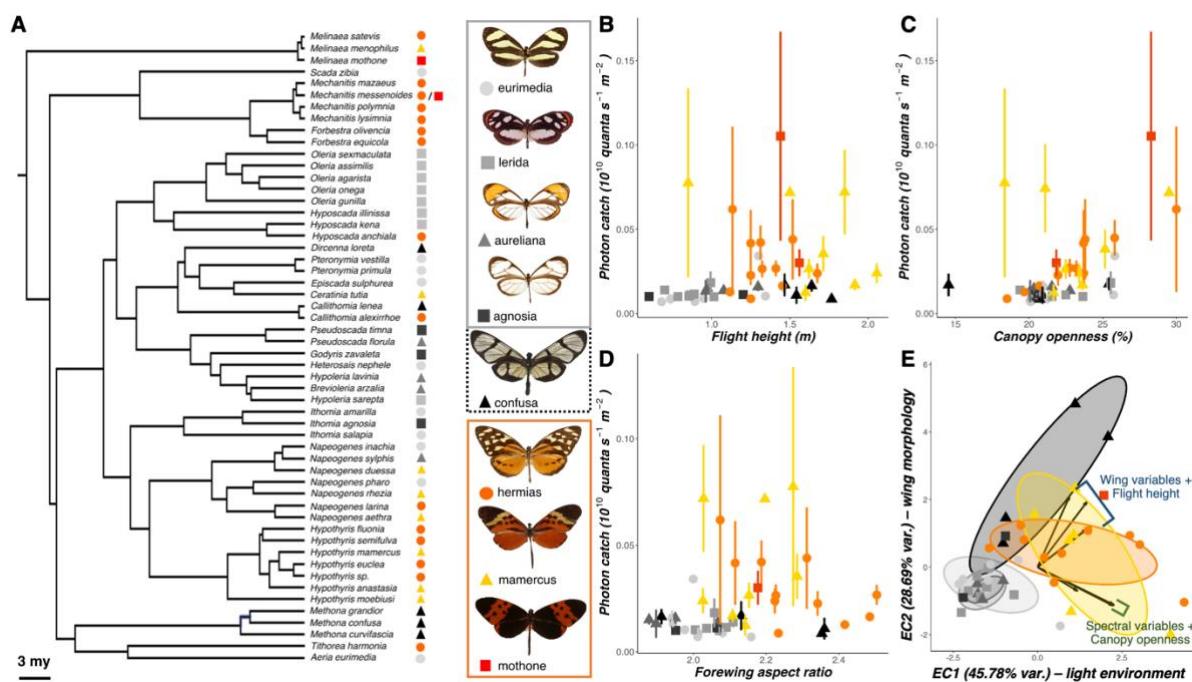
602 We collected spectral irradiance measurements across a 2.1 km topographically
603 variable forest transect, consisting of nine consecutive ridges and valleys, in Parque
604 Nacional Yasuní, Ecuador (Fig. 1A). Photoreceptor spectral sensitivities of the closely
605 related *Danaus plexippus* (Nymphalidae: Danainae; fig. S1; see materials and
606 methods) were used to estimate the photon catch (defined here as the absorption of
607 light photons captured by the long-wavelength-sensitive photoreceptor (18)), and the
608 relative number of photons captured by the ultraviolet (UV), blue (B), and long-
609 wavelength (LW) photoreceptors (see materials and methods). Overall, the architecture
610 of forest ridges created brighter and broader spectrum visual environments than forest
611 valleys (GLMM: photon catch: $\chi^2_1 = 56.890$, $p < 0.001$; Relative B catch, $\chi^2_1 = 17.262$, p
612 < 0.001 ; Relative LW catch, $\chi^2_1 = 11.098$, $p = 0.001$; Fig. 1B,C; fig. S2A; table S1). The
613 amount of light relevant to the butterfly visual system also showed a positive correlation
614 with measurement height (GLMM: $\chi^2_1 = 34.067$, $p < 0.001$; Fig. 1D) and canopy
615 openness ($\chi^2_1 = 11.023$, $p = 0.001$; fig. S2C). No interactions between topography,
616 height from the ground, or canopy openness were found for any other spectral variable
617 (table S1).

623 **Fig. 1. An overview of light environmental differences in tropical rainforests ($N = 762$, 9 ridge/valley
624 replicates). (A)** Illustration of topographic variation (9 ridges/valleys) along the 2.1 km transect at the field site in
625 Ecuador (bottom), with illustrative digital photographic images from a ridge and valley (middle) and hemispherical,
626 upward facing, 180° fisheye photographs from each location (top). **(B)** Mean raw spectral irradiance values within a
627 310-700 nm spectral range for each ridge (green) and valley (brown) replicate along the transect. **(C,D)** Mean photon
628 catch (10^{10} quanta $s^{-1} m^{-2}$) for the LW sensitivity function with respect to transect topography (C) and height from the
629 ground (m) (D). Error bars represent 95% confidence intervals

630
631 To complement our transect data, we recorded spectral irradiance measurements and
632 flight height at the capture location and position of 785 wild, individual ithomiine
633 butterflies (45 species; Fig. 2A; fig. S3). This expanded our sampling of the light
634 environment across a broader area ($\sim 4.5 \text{ km}^2$) of forest where butterflies were naturally
635 flying. While controlling for potential phylogenetic effects in species' visual niches,
636 photon catch and the relative abundance of blue wavelengths were both positively
637 correlated with canopy openness. We did not see the same effect for flight height, but
638 this is likely explained by aforementioned topographic effects which decouple flight
639 height from distance to the canopy (MCMCglmm: photon catch, P-mean = 0.010, 95%

642 CI = 0.007-0.013, $P_{MCMC} < 0.001$; Relative B catch, P-mean = 0.001, 95% CI = 0.001-
643 0.001, $P_{MCMC} < 0.001$; Fig. 2B,C; table S2A). Hence, the abundance and composition of
644 ecologically important light within tropical forests varies along both vertical (height and
645 topography) and horizontal (canopy openness) axes, validating previous categorizations
646 of “forest shade” and “small gap” light microhabitats (2).

647


648 ***Light microhabitat partitioning among mimicry rings***

649

650 Although ithomiine mimicry rings differ in topography and height (MCMCglmm;
651 topography (valley vs. ridge), $\Delta DIC = 7.856$; height, $\Delta DIC = 5.989$; fig. S4,5), our
652 spectral irradiance measurements from individual butterflies revealed finer scale
653 microhabitat partitioning between the eight mimicry rings (MCMCglmm: photon catch,
654 $\Delta DIC = 10.142$; Relative LW catch, $\Delta DIC = 5.053$; Fig. 2C,D; table S2A). Pairwise
655 contrasts revealed that all significant comparisons were between mimicry rings with
656 ‘tiger-stripe’ (opaque) and ‘clearwing’ (particularly transparent) color patterns (Fig. 2; fig.
657 S5,S6; see table S2A), suggesting a fundamental ecological split mirroring major color
658 pattern traits. Species involved in brightly colored tiger-stripe mimicry rings flew higher,
659 and occupied brighter, broader spectrum and more variable light environments
660 compared to species involved in clearwing mimicry rings, which were confined to
661 shaded forest at lower elevations. Together, our results demonstrate that heterogeneity
662 in visual niche preference and mutualistic mimetic interactions can co-evolve,
663 generating substantial ecological diversity and maintaining adaptive niche assemblages
664 within tropical forests (19). This co-evolution is likely driven, at least in part, by
665 differences in predator communities, which are known to segregate across forest types
666 (15), and the adaptive evolution of anti-predator coloration and conspecific signaling
667 (20).

668

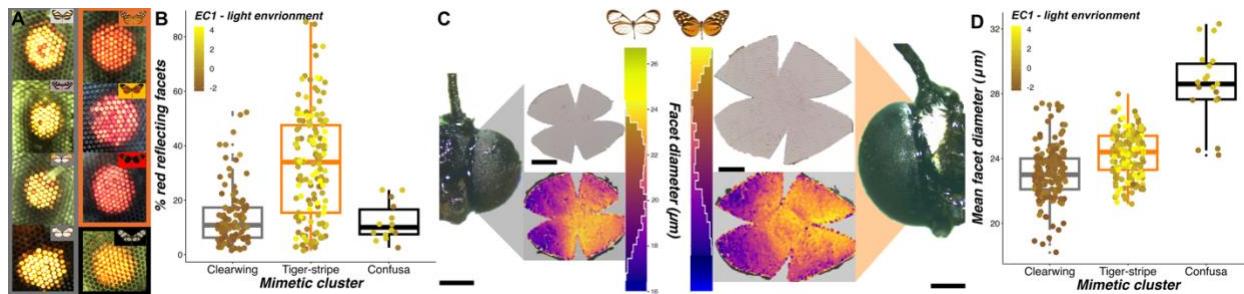
669

Fig 2. Light microhabitat segregation among ithomiine butterfly mimicry rings. (A) A pruned molecular phylogeny [from (8)] of the 54 ithomiine species sampled in the Ecuadorean community. Colored symbols at the tips represent the mimicry ring to which each species belongs. Example models of each mimicry ring are shown on the right, grouped based on their general color pattern classification (grey: clearwing, orange: tiger-stripe). 'Confusa' has a black dashed border, indicating that it is treated as a separate 'mimetic cluster' in later analyses. (B-D) Mean photon catch (10^{10} quanta $s^{-1} m^{-2}$) for the LW sensitivity function of each species ($N = 785$, 45 species), coded by mimicry ring, plotted against flight height (m) (B), canopy openness (%) (C) and forewing aspect ratio (D). Error bars indicate standard error. (E) Biplot of ecological axes 1 and 2 (EC1 and EC2) from a principal component analysis of mean spectral, ecological, and wing morphological data for each species ($N = 45$ species; see materials and methods). Points and ellipses are coded by mimicry ring. Vector lengths are proportional to the variance at that variable and their loadings are summarized using labelled brackets.

Spectral variation is independent of flight behavior

Ithomiines occupying similar mimicry rings are known to converge in flight-related morphologies, forming three mimetic clusters in flight morphospace within rainforest communities (9). In support of this, we found a positive correlation between forewing aspect ratio and light environment (Fig. 2D; fig. S7; table S2B). Therefore, variation in flight speed and performance could conceivably drive changes in visual processing independently of light microhabitat preference (10,21,22). To disentangle these effects, we conducted a principal component analysis (PCA) on three major light environmental variables (estimated photon catch for the ultraviolet, blue, and long-wavelength photoreceptors), two ecological variables (flight height and canopy openness), and three flight-related morphological measurements (forewing surface area, aspect ratio, and wing loading; see materials and methods). This resulted in two 'ecological axes' (ECs) which explained 45.78% and 28.69% of variation respectively. All spectral variables loaded most positively onto EC1, and all wing morphological variables loaded most positively onto EC2 (Fig. 2E; table S3), providing two independent 'light

702 environment' (EC1) and 'flight related wing morphology' (EC2) axes which were used in
703 subsequent analyses. 'Tiger-stripe' and 'clearwing' mimetic clusters segregated along
704 EC1 but the 'confusa' mimicry ring also diverged along the EC2 'wing morphology' axis,
705 despite occupying similar light environments to clearwing co-mimics (PGLS: EC1,
706 lambda = 0.000, $F_{7,37} = 7.686$, $p < 0.001$; EC2, lambda = 0.000, $F_{7,37} = 3.659$, $p = 0.004$)
707 (Fig. 2E, table S3). This confirms previous findings of convergent flight morphologies
708 among clearwing and tiger-stripe *ithomiine* co-mimics, with the 'confusa' mimicry ring
709 forming a third distinct 'mimetic cluster' that is treated separately hereafter (10).
710


711 ***Light microhabitat is associated with the evolution of peripheral light reception***

712

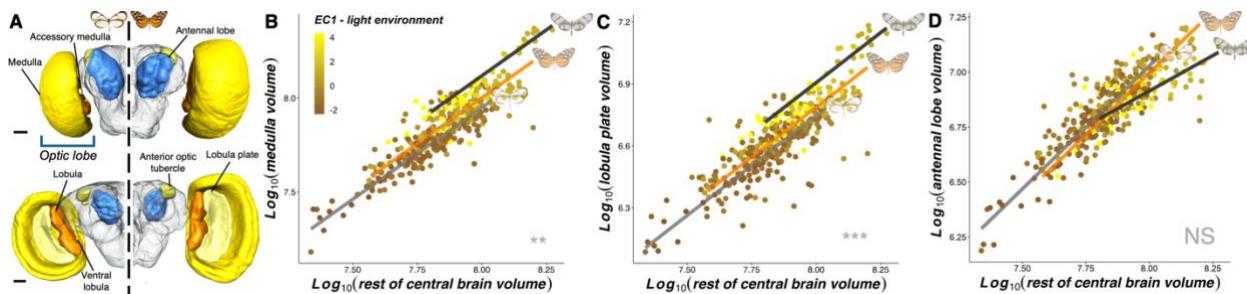
713 We hypothesized that the patterns we observed in light microhabitat preference would
714 impact the selection regimes acting on the visual system. Using wild-caught butterflies,
715 we first examined physiological data extracted from video recordings of eyeshine, which
716 reveal screening pigments that shift the spectral sensitivity of photoreceptors towards
717 longer wavelengths, resulting in red reflecting facets (17,23) (Fig. 3A). We found that
718 the relative abundance of red-reflecting facets was positively correlated with EC1,
719 meaning red-reflecting facets were more abundant in species occupying brighter light
720 environments (MCMCglmm: P-mean = -0.114, 95% CI = -0.173 - -0.059, $P_{MCMC} = 0.001$;
721 Fig. 3B; fig. S8; table S4A). This suggests that shifts in screening pigment expression
722 provide an evolutionary mechanism, operating in conjunction with the spectral tuning of
723 visual pigments, to shape visual specialization (17). Eyeshine exposure is followed by a
724 rapid pupillary response, which we used to assay how rapidly eyes physiologically
725 respond to sudden shifts in lighting conditions. No significant correlation was found
726 between EC1 (or EC2) and the speed of this pupillary response (MCMCglmm: P-mean
727 = 0.116, 95% CI = 0.004 – 0.231, $P_{MCMC} = 0.054$), suggesting that differences in
728 temporal light variability between light microhabitats does not explain variation in this
729 trait.

730 We subsequently investigated how these eye physiological adaptations have co-
731 evolved with eye structure by measuring the surface area of the eye cuticle, the number
732 of facets, and mean facet diameter (Fig. 3C). Eye surface area showed a strong
733 allometric relationship with inter-ocular distance, here used as an allometric control (fig.
734 S8,9; see materials and methods), but nevertheless showed a significant non-allometric
735 positive association, independently, with respect to both EC1 (light environment) and
736 EC2 (wing morphology) (MCMCglmm: EC1, P-mean = 0.031, 95% CI = 0.019 – 0.043,
737 $P_{MCMC} < 0.001$; EC2, P-mean = 0.040, 95% CI = 0.024 – 0.055, $P_{MCMC} < 0.001$; fig.
738 S8,9). Species occupying more illuminated light environments (i.e. species belonging to
739 tiger-stripe mimicry rings) or with forewings equipped for greater flight speeds (i.e.
740 'confusa' co-mimics) have convergently evolved larger eyes. When regressing facet
741 number against eye surface area, we again found independent, non-allometric effects of
742 light environment and wing morphology (MCMCglmm: EC1, P-mean = 0.008, 95% CI =
743 0.004 – 0.012, $P_{MCMC} < 0.001$; EC2, P-mean = 0.008, 95% CI = 0.003 – 0.014, $P_{MCMC} =$
744 0.004; fig. S8,9; table S4A), suggesting that larger eyes have evolved wider facets for
745 maximizing light capture, as well as larger numbers of facets. This was confirmed by
746 regressions of mean facet diameter against EC1 and EC2 (MCMCglmm: EC1, P-mean
747 = 0.008, 95% CI = 0.004 – 0.011, $P_{MCMC} < 0.001$; EC2, P-mean = 0.010, 95% CI =

748 0.005 – 0.015, $P_{MCMC} < 0.001$; Fig. 3C,D; fig. S8,9; table S4A). Therefore, while it
749 remains to be confirmed how these anatomical shifts impact functional performance, the
750 physical structure of the eye has repeatedly evolved in response to increased light
751 abundance found within more open forest microhabitats.

754
755
756

757 **Fig. 3. Eye physiological and anatomical associations with light environment and mimicry ($N = 363, 45$ 758 species). (A)** Example images of the frontal eyeshine from representatives of each mimicry 759 community, grouped by mimetic cluster (from left to right: *Ithomia amarilla*, *Napeogenes larina*, *Oleria gunilla*, 760 *Melinaea menophilus*, *Pseudoscada florula*, *Mechanitis messenoides*, *Godyris zavaleta*, *Callithomia lenea*). Mimicry 761 ring is indicated in the top right of each panel, with border color denoting mimetic cluster. **(B)** Convergence in the 762 proportion of red reflecting facets (%) for individuals occupying similar light environments, separated by mimetic 763 cluster. **(C)** Example frontal head photographs of *Napeogenes sylphis* (left; mimetic cluster: clearwing) and 764 *Mechanitis mazaeus* (right; mimetic cluster: tiger-stripe) alongside their imaged eye cuticle and its processed output, 765 where individual points denote identified facets, color coded by facet diameter (μm). Scale bars = 500 μm . **(D)** 766 Convergence in mean facet diameter for individuals occupying similar light environments, separated by mimetic 767 cluster. For all boxplots, brown-yellow color shades represent mean EC1 values for each species. Medians (thick 768 horizontal bars), interquartile ranges (boxes), values within 1.5 interquartile ranges of the box edges (whiskers), and 769 possible outliers (datapoints outside whiskers) are plotted.


770
771
772 **Light microhabitat is associated with the evolution of investment in visual brain**
773 **centers**

774 Next, we followed the trajectory of visual information to assess whether the light
775 environment specifically impacts the peripheral visual system, or also shapes
776 investment in sensory regions of the central brain (Fig. 4A). After accounting for overall
777 brain size (which correlates strongly and positively with other allometric controls; fig.
778 S10), significant non-allometric associations were found between EC1 and the size of
779 optic lobe neuropils, synapse-dense regions which form the primary visual processing
780 center in the brain (24). In these analyses, investment in the optic lobe as a whole
781 (MCMCgIImm: P-mean = 0.023, 95% CI = 0.013-0.033, $P_{MCMC} < 0.001$), and three of the
782 largest visual neuropils (the medulla, lobula plate and lobula; Fig. 4B,C; fig. S11; table
783 S4A,S4B), were largest in species found in more illuminated microhabitats. An
784 independent, positive, non-allometric effect of EC2 was also found for the scaling of the
785 same neuropils (fig. S12; table S4A,S4B). After controlling for covariance between
786 these three physically and functionally connected neuropils, significant effects of EC1
787 and EC2 were retained for the lobula plate (MCMCgIImm: EC1, P-mean = 0.010, 95% CI

789 = 0.004 – 0.016, P_{MCMC} = 0.001; EC2, P-mean = 0.011, 95% CI = 0.003 – 0.019, P_{MCMC}
790 = 0.007; table S4A), suggesting that selection shaping behavioral processes primarily
791 mediated by this structure might particularly explain volumetric shifts in the optic lobe.

792 Similar associations were not found for sensory neuropils within the central brain,
793 including the antennal lobe, the primary olfactory processing center, implying that
794 greater investment in visual processing does not correlate with reductions in olfactory
795 investment, or vice versa (25) (Fig. 4D; fig. S11; table S4A,B). Previous data showing
796 extensive visual system variation from insectary-reared individuals of four ithomiine
797 species also suggests that these shifts are likely heritable, rather than the result of
798 environmentally-induced plasticity (16,26). Our results therefore demonstrate that both
799 peripheral and central components of the visual pathway have evolved to exploit
800 favorable abundance of visual information present in their specific environment. This
801 contrasts with some previously reported patterns of evolution in Lepidoptera where
802 visual systems evolve to maximize the capture of unfavorable light abundance, as is
803 seen during transitions to nocturnality in many species (e.g. 27).

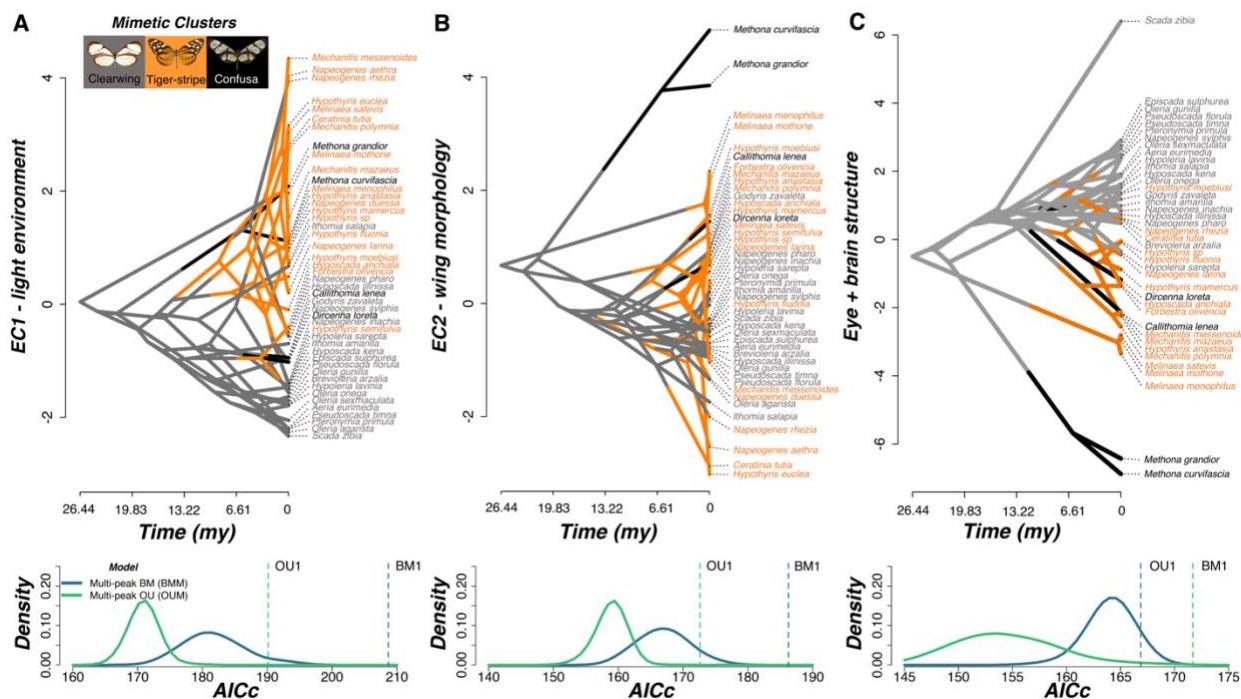
804
805

806

807 **Fig. 4. Neuroanatomical associations with light environment and mimicry (N = 374 individuals, 40 species).**
808 (A) Anterior (top) and posterior (bottom) labelled 3D surface reconstructions from the brain of *Ithomia amarilla* (left;
809 mimetic cluster: clearwing) and *Melinaea menophilus* (right; mimetic cluster: tiger-stripe). The figure illustrates all
810 reconstructed neuropils, labelled, and superimposed on an outline of the “rest of central brain”. Scale bars = 100 μ m.
811 (B-D) Non-allometric convergence between the mean light environment of each species and the level of volumetric
812 investment (μ m³) in the medulla (B), and lobula plate (C), when scaled against the volume of the “rest of central
813 brain”, with a lack of effect on the antennal lobe (D). All volumetric variables are log₁₀-transformed. Brown-yellow
814 color shades represent mean EC1 values for each species and regression lines for each mimetic cluster, estimated
815 from standardized major axis regressions are superimposed on top. Example models for each mimetic cluster are
816 shown to the right of each line. Asterisks at the bottom right of each panel indicate the significance level of EC1 at
817 predicting relative investment in each neuropil. NS P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

818

819


820 **Variation in light environments drives sensory convergence among co-mimics**

821

822 In Ithomiini, and other radiations of mimetic butterflies, shifts in mimicry patterns are
823 known to instigate speciation processes, with ecological segregation accelerating
824 reproductive isolation (28-30). As such, secondary local adaptation across distinct
825 environmental conditions may be a critical factor in the diversification of species. Given
826 our evidence that multiple aspects of variation in the visual system are associated with
827 light environments, we next tested whether ecological convergence among co-mimics

828 could also predict adaptive convergence in sensory traits. We approached this through
829 multiple statistical methods. First, when data were analyzed at an individual level using
830 phylogenetic generalized linear mixed models, the addition of mimetic cluster (three
831 groups: tiger-stripe, clearwing, confusa) improved model fit in all measured visual traits,
832 except for the relative abundance of red-reflecting facets (Fig. 3,4; table S5).
833 Standardized major axis regressions also confirmed that these differences were the
834 result of non-allometric adaptive ‘grade shifts’ (shifts along the y-axis) between mimetic
835 clusters, except for the lobula which showed a significant shift in the allometric slope
836 (Fig. 3,4; table S5). These results were further supported by a significant effect of
837 mimetic cluster on all visual traits when species means were analyzed with phylogenetic
838 generalized least squares regression (PGLS), with the exception of eye surface area
839 and facet number (see table S5).

840 These findings demonstrate that mutualistic mimetic interactions lead to sensory
841 convergence due to indirect effects of niche similarity. To test whether this convergence
842 arose via adaptive evolutionary processes, we summarized variation in traits that
843 showed significant non-allometric light environmental effects (relative abundance of red-
844 reflecting facets, eye surface area, facet number, facet diameter, and the volume of the
845 medulla, lobula plate, and lobula, and “rest of central brain” volume as an allometric
846 control) along a single principal component axis (which explained 78.95% of variation in
847 the data). Although this axis might capture allometric and non-allometric components of
848 trait variation, the loading of our allometric control (“rest of central brain” volume) along
849 this axis is relatively low compared to other traits (table S6) suggesting non-allometric
850 differences are a more distinguishing feature of visual structural variation. With this
851 summary component, which reflects variation across the visual pathway and correlates
852 independently with both EC1 and EC2 (PGLS, $\lambda = 1.000$; EC1, $t = -5.864$, $p < 0.001$;
853 EC2, $t = -7.768$, $p < 0.001$), we constructed single and multi-peak Brownian
854 motion (BM), Ornstein-Uhlenbeck (OU) and early burst (EB) models of evolution (see
855 materials and methods). EC1 (light environment) and EC2 (flight-related wing
856 morphology) were also modelled in the same way. Interspecific variation in light
857 environment preference, flight-related wing morphology, and variation in the visual
858 pathway, consistently fitted multi-peak OU models above all other models, indicating
859 that species in the same mimicry ring are attracted towards convergent adaptive optima
860 (Fig. 5; table S7). Visual system convergence was further supported by equivalent
861 models constructed for eye and brain structures separately (using separate eye and
862 brain PC axes) and by additional tests for evolutionary determinism (fig. S13; table S7).
863 Together, these analyses provide strong evidence that directional evolutionary change,
864 driven by convergence in both light microhabitat and flight-related wing morphology, has
865 generated similarities in a suite of visual system traits, reflecting local adaptation that
866 may support the maintenance of niche partitioning and, potentially, create reproductive
867 barriers within the Ithomiini radiation.

Fig. 5. Adaptive convergence in light environment, wing morphology, and visual system structure among co-mimics. (A-C) Phenograms (top panel) based on EC1, EC2 (A,B) ($N = 45$ species), and PC1 of a principal component analysis which summarized variation in eye and brain structure based on traits which showed significant light environmental effects (C) ($N = 40$ species). Instances where branches cross and concentrate in a given area indicate convergent lineages. Below each phenogram are Kernel density plots of small sample corrected Akaike Information Criterion (AICc) scores obtained from multi-peak Brownian motion (BMM) and Ornstein-Uhlenbeck (OUM) evolutionary models, constructed from 500 simulated character maps where species belonging to the same mimetic cluster were assigned to the same selective regime. Blue and green vertical dashed lines indicate the AICc score for single-peak BM (BM1) and OU (OU1) models respectively.

Summary

Our study provides empirical evidence that relatively small shifts in terrestrial light environment properties can shape adaptive and predictable visual system evolution between sympatric species, over very small spatial scales. Our data also offers insights into how variation in ecologically relevant light environments shapes the assemblage of diverse communities. Specifically, we have shown that light abundance and spectral composition within rainforests can contribute to multiple dimensions of niche separation that overcome phylogenetic niche conservatism. We have further demonstrated how these fluctuations in ambient light conditions can be a potent selective force, predictably driving visual systems towards distinct adaptive peaks. Notably, our data also reveal how mutualistic mimetic interactions can have broad-reaching and perhaps surprising effects on organismal evolution, by indirectly impacting multiple levels of visual pathways. We conclude that ambient light plays a crucial role in shaping both tropical forest communities and patterns of visual system evolution. Together, this introduces mimetic butterflies as an informative model system for disentangling the many manifestations by which species have evolved to perceive and process their sensory world.

898 **References and Notes**

900 1. J. Cavender-Bares, K. H. Kozak, P. V. A. Fine, S. W. Kembel, The merging of
901 community ecology and phylogenetic biology, *Ecology Letters* **12**, 693-715
902 (2009).

903 2. J. A. Endler, The color of light in forests and its implications. *Ecological*
904 *Monographs* **63**, 1-27 (1993).

905 3. T. W. Cronin, S. Johnsen, N. J. Marshall, E. J. Warrant, *Visual Ecology*
906 (Princeton University Press, 2014).

907 4. M. E. Cummings, J. Partidge, Visual pigments and optical habitats of surfperch
908 (Embiotocidae) in the California kelp forest, *Journal of Comparative Physiology*
909 *A- Neuroethology Sensory Neural and Behavioral Physiology* **187**, 875-889
910 (2001).

911 5. J. N. Lythgoe, J. C. Partridge, Visual pigments and the acquisition of visual
912 information, *Journal of Experimental Biology* **146**, 1-8. (1989).

913 6. O. Seehausen, Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mross, R.
914 Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai, N.
915 Okada, Speciation through sensory drive in cichlid fish, *Nature* **455** 620-627
916 (2008).

917 7. A. Couto, J. B. Wainwright, B. J. Morris, S. H. Montgomery, Linking ecological
918 specialisations to adaptations in butterfly brains and sensory systems, *Current*
919 *Opinion in Insect Science* **42**, 55-60 (2020).

920 8. G. W. Beccaloni, Ecology, natural history and behaviour of ithomiine butterflies
921 and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae), *Tropical*
922 *Lepidoptera Research* **8**, 103-124 (1997).

923 9. N. Chazot, K. R. Willmott, G. Lamas, A. V. L. Freitas, F. Piron-Prunier, C. F.
924 Arias, J. Mallet, D. L. De-Silva, M. Elias, Renewed diversification following
925 Miocene landscape turnover in a Neotropical butterfly radiation, *Global Ecology*
926 and Biogeography **28**, 1118-1132 (2019).

927 10. R. I. Hill, Convergent flight morphology among Müllerian mimic mutualists,
928 *Evolution* **75**, 2460-2479 (2021).

929 11. F. Müller, *Ituna* and *Thyridia*; A remarkable case of mimicry in butterflies,
930 *Transactions of the Entomological Society London* **1879**, 20-24 (1879).

931 12. E. Page, L. M. Queste, N. Rosser, P. A. Salazar, N. J. Nadeau, J. Mallet, R. B.
932 Srygley, W. O. McMillan, K. K. Dasmahapatra, Pervasive mimicry in flight
933 behavior among aposematic butterflies, *Proceedings of the National Academy of*
934 *Sciences* **121**, e2300886121 (2024).

935 13. M. Elias, Z. Gompert, C. Jiggins, K. Willmott, Mutualistic interactions drive
936 ecological niche convergence in a diverse butterfly community, *Plos Biology* **6**,
937 2642-2649 (2008).

938 14. R. I. Hill, Habitat segregation among mimetic ithomiine butterflies (Nymphalidae),
939 *Evolutionary Ecology* **24**, 273-285 (2010).

940 15. K. R. Willmott, J. C. R. Willmott, M. Elias, C. D. Jiggins, Maintaining mimicry
941 diversity: optimal warning colour patterns differ among microhabitats in
942 Amazonian clearwing butterflies, *Proceedings of the Royal Society B-Biological*
943 *Sciences* **284**, 20170744 (2017).

944 16. J. B. Wainwright, S. H. Montgomery, Neuroanatomical shifts mirror patterns of
945 ecological divergence in three diverse clades of mimetic butterflies. *Evolution* **76**,
946 1806-1820 (2022).

947 17. J. B. Wainwright, C. Schofield, M. Conway, D. Phillips, E. Martin-Silverstone, E.
948 A. Brodrick, F. Cicconardi, M. J. How, N. W. Roberts, S. H. Montgomery, Multiple
949 axes of visual system diversity in Ithomiini, an ecologically diverse tribe of
950 mimetic, *Journal of Experimental Biology* **226**, jeb246423 (2023).

951 18. D. Osorio, M. Vorobyev, Photoreceptor spectral sensitivities in terrestrial animals:
952 adaptations for luminance and colour vision, *Proceedings of the Royal Society B*
953 *Biological Sciences* **272**, 1745-1752 (2005).

954 19. I. Birskis-Barros, A. L. Freitas, P. R. Guimarães Jr., Habitat generalist species
955 constrain the diversity of mimicry rings in heterogenous habitats, *Scientific*
956 *Reports* **11**, 5072 (2021).

957 20. J. A. Endler, Signals, signal conditions, and the direction of evolution. *American*
958 *Naturalist* **139**, 125-153 (1992).

959 21. R. Grittner, E. Baird, A. Stöckl, Spatial tuning of translational optic flow responses
960 in hawkmoths of varying body size, *Journal of Comparative Physiology A* **208**,
961 279-296 (2022).

962 22. C. Le Roy, V. Debat, V. Llaurens, Adaptive evolution of butterfly wing shape:
963 from morphology to behaviour, *Biological Reviews* **94**, 1261-1281 (2019).

964 23. G. Belušić, M. Ilić, A. Meglić, P. Pirih, Red-green opponency in the long visual
965 fibre photoreceptors of brushfoot butterflies (Nymphalidae), *Proceedings of the*
966 *Royal Society B-Biological Sciences* **288**, 20211560 (2021).

967 24. N. J. Strausfeld, D. R. Nässel, Neuroarchitecture of brain regions that subserve
968 the compound eyes of crustacea and insects" in *Handbook of sensory*
969 *physiology*, H. Autrum (Springer, 1980), pp. 102-112.

970 25. M. S. Farnworth, S. H. Montgomery, Complexity of biological scaling suggests an
971 absence of systematic trade-offs between sensory modalities *in Drosophila*,
972 *Nature Communications* **13**, 2944 (2022).

973 26. L. Hebberecht, J. B. Wainwright, C. Thompson, S. Kershenbaum, W. O.
974 McMillan, S. H. Montgomery, Plasticity and genetic effects contribute to different
975 axes of neural divergence in a community of mimetic *Heliconius* butterflies,
976 *Journal of Evolutionary Biology* **00**, 1-17 (2023).

977 27. R. Frederiksen, E. J. Warrant, Visual sensitivity in the crepuscular owl butterfly
978 *Caligo memnon* and the diurnal blue morpho *Morpho peleides*: a clue to explain
979 the evolution of nocturnal apposition eyes?, *Journal of Experimental Biology* **211**,
980 844-851 (2008).

981 28. C. D. Jiggins, R. E. Naisbit, R. L. Coe, J. Mallet, Reproductive isolation caused
982 by colour pattern mimicry, *Nature* **411**, 302-305 (2001).

983 29. M. McClure, L. Mahrouche, C. Houssin, M. Monllor, Y. Le Poul, B. Frerot, A.
984 Furtos, M. Elias, Does divergent selection predict the evolution of mate
985 preference and reproductive isolation in the tropical butterfly genus *Melinaea*
986 (Nymphalidae: Ithomiini), *Journal of Animal Ecology* **88**, 940-952 (2019).

987 30. C. Mérot, C. Salazar, R. M. Merrill, C. D. Jiggins, M. Joron, What shapes the
988 continuum of reproductive isolation? Lessons from *Heliconius* butterflies,
989 *Proceedings of the Royal Society B Biological Sciences* **284**, 20170335 (2017).

990 31. R. M. Fox, A generic review of the Ithomiinae (Lepidoptera, Nymphalidae),
991 *Transactions of the American Entomological Society* **66**, 161-207 (1940).

992 32. J. Troscianko, OSpRad; an open-source, low-cost, high-sensitivity
993 spectroradiometer, *Journal of Experimental Biology* **226**, jeb245416 (2023).

994 33. F. Chianucci, A. Cutini, Estimation of canopy properties in deciduous forests with
995 digital hemispherical and cover photography, *Agricultural and Forest Meteorology*
996 **168**, 130-139 (2013).

997 34. R Core Team, R: A language and environment for statistical computing, R
998 Foundation for Statistical Computing, Vienna (2022).

999 35. J. Stalleicken, T. Labhart, H. Mouritsen, Physiological characterization of the
1000 compound eye in monarch butterflies with focus on the dorsal rim area, *Journal*
1001 *of Comparative Physiology A* **192**, 321-331 (2006).

1002 36. V. Govardovskii, N. Fyhrquist, T. Reuter, D. Kuzmin, K. Donner, In search of the
1003 visual pigment template, *Visual Neuroscience* **17**, 509-528 (2000).

1004 37. D. G. Stavenga, On visual pigment templates and the spectral shape of
1005 invertebrate rhodopsins and metarhodopsins, *Journal of Comparative Physiology*
1006 *A* **196**, 869-878 (2010).

1007 38. M. A. Liénard, W. A. Valencia-Montoya, N. E. Pierce, Molecular advances to
1008 study the function, evolution and spectral tuning of arthropod visual opsins,
1009 *Philosophical Transactions of the Royal Society B Biological Sciences* **377**,
1010 20210279 (2022).

1011 39. G. Buchsbaum, A. Gottschalk, Trichromacy, opponent colours coding and
1012 optimum colour information transmission in the retina, *Proceedings of the Royal*
1013 *Society B Biological Sciences* **220**, 89-113 (1983).

1014 40. S. L. Heath, M. P. Christenson, E. Oriol, M. Saavedra-Weisenhaus, J. R. Kohn,
1015 R. Behnia, Circuit mechanisms underlying chromatic encoding in *Drosophila*
1016 photoreceptors, *Current Biology* **30**, 264-275 (2020).

1017 41. D. Bates, M. Maechler, B. Bolker, S. Walker, Fitting linear mixed-effects models
1018 using lme4. *Journal of Statistical Software* **67**, 1-48 (2015).
1019 (doi:10.18637/jss.v067.i01)

1020 42. J. D. Hadfield, MCMC methods for multi-response generalized linear mixed
1021 models: The MCMCglmm R package, *Journal of Statistical Software* **33**, 1-22
1022 (2010). (<https://www.jstatsoft.org/v33/i02/>).

1023 43. E. Paradis, K. Schliep, ape 5.0: an environment for modern phylogenetics and
1024 evolutionary analyses in R, *Bioinformatics* **35**, 526-528 (2018).

1025 44. L. J. Revell, phytools: An R package for phylogenetic comparative biology (and
1026 other things), *Methods in Ecology and Evolution* **3**, 217-223 (2012).
1027 (doi:10.1111/j.2041-210X.2011.00169.x)

1028 45. D. Orme, R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz, N. Isaac, W. Pearce,
1029 caper: comparative analyses of phylogenetics and evolution in R, <https://cran.r-project.org/package=caper> (2018).

1030 46. G. Montejo-Kovacevich, J. E. Smith, J. I. Meier, C. N. Bacquet, E. Whiltshire-
1031 Romero, N. J. Nadeau, C. D. Jiggins, Altitude and life-history shape the evolution
1032 of *Heliconius* wings, *Evolution* **73**, 2436-2450 (2019).

1033 47. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
1034 S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J-Y. Tinevez, D. J. White, V.

Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, *Nature Methods* **9**, 676-682 (2012).

48. D. G. Stavenga, Reflections on colourful ommatidia of butterfly eyes, *Journal of Experimental Biology* **205**, 1077-1085 (2002).

49. D. G. Stavenga, J. A. J. Numan, J. Tinbergen, J. W. Kuiper, Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies, *Journal of Comparative Physiology A* **113**, 73-93 (1977).

50. M. Ilić, P-J. Chen, P. Pirih, A. Meglič, J. Prevc, M. Yago, G. Belušić, K. Arikawa, Simple and complex, sexually dimorphic retinal mosaic of fritillary butterflies, *Philosophical Transactions of the Royal Society B Biological Sciences* **377**, 20210276 (2022).

51. J. P. Currea, Y. Sondhi, A. Y. Kawahara, J. Theobald, Measuring compound eye optics with microscope and microCT images, *Communications Biology* **6**, 246 (2023).

52. S. H. Montgomery, S. R. Ott, Brain composition in *Godyris zavaleta*, a diurnal butterfly, reflects an increased reliance on olfactory information, *Journal of Comparative Neurology* **523**, 869-891 (2015).

53. D. I. Warton, R. A. Duursma, D. S. Falster, S. Taskinen, smatr 3 – an R package for estimation and inference about allometric lines. *Methods in Ecology and Evolution* **3**, 257-259 (2012).

54. J. Clavel, G. Escarguel, G. Merceron, mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data, *Methods in Ecology and Evolution* **6**, 1311-1319 (2015).

55. C. T. Stayton, Analysis of convergent evolution, R package version 1.3, <https://CRAN.R-project.org/package=convevol> (2018).

Acknowledgments:

We are extremely grateful to J. C. Armijos, Á Barragán, P. Jarrín, D. Lasso, E. Moreno, and C. Padilla from the Estación Científica Yasuní, Pontificia Universidad Católica del Ecuador (PUCE), M. Arévelo and M. F. Checa for assisting with the acquisition of collection and export permits, and K. Willmott for his identification sheets and assistance with species identification in 2022. We thank G. Montejo-Kovacevich for support on forewing measurements, S. Wright for providing guidance on the eye dissection protocol and W. Hurley for assisting with imaging mounted cuticle samples. We also thank K. Jepson, M. Jepson, and colleagues at the University of Bristol's Wolfson Bioimaging Facility for confocal microscope support, E. Martin-Silverstone from the University of Bristol's XTM Facility for Amira support, and N. Chazot for providing permission to use his phylogenetic tree. We acknowledge the use of ChatGPT Pro 3.5 (Open AI, <https://chat.openai.com>) for assisting in the creation of Fig. 1A and thank K. Manser for assistance. Lastly, we thank R. M. Merrill and L. H. Yusuf for insightful comments on a draft manuscript.

Funding:

Natural Environment Research Council Independent Research Fellowship
NE/N014936/1(SHM)

1082 Natural Environment Research Council GW4+ Doctoral Training Partnership
1083 studentship (JBW)
1084 1851 Royal Commission for the Exhibition Research Fellowship (SHM)
1085 Royal Society Small Grant RG110466 (SHM)
1086 Leverhulme Trust Early Career Research Fellowship (SHM)
1087 Natural Environment Research Council Independent Research Fellowship
1088 NE/P018084/1 (JT)
1089 Air Force Research Laboratory/Air Force Office of Scientific Research through the
1090 European Office of Aerospace Research and Development grant FA9550-18-1-7005
1091 (NWR)
1092 1851 Royal Commission for the Exhibition Research Fellowship (JBW)
1093

1094 **Author contributions:**

1095 Conceptualization: JBW, SHM
1096 Methodology: JBW, ILPW, SJE, MJH, NWR, JT, SHM
1097 Investigation: JBW, TL, FR, ILPW, SJE, AB, JIM, SHM
1098 Visualization: JBW, SJE, SHM
1099 Funding acquisition: JBW, SHM
1100 Project administration: JBW, SHM
1101 Supervision: NWR, JT, SHM
1102 Writing – original draft: JBW, SHM
1103 Writing – review & editing: All authors

1104
1105 **Competing interests:**

1106 Authors declare that they have no competing interests.

1107
1108 **Data and materials availability:**

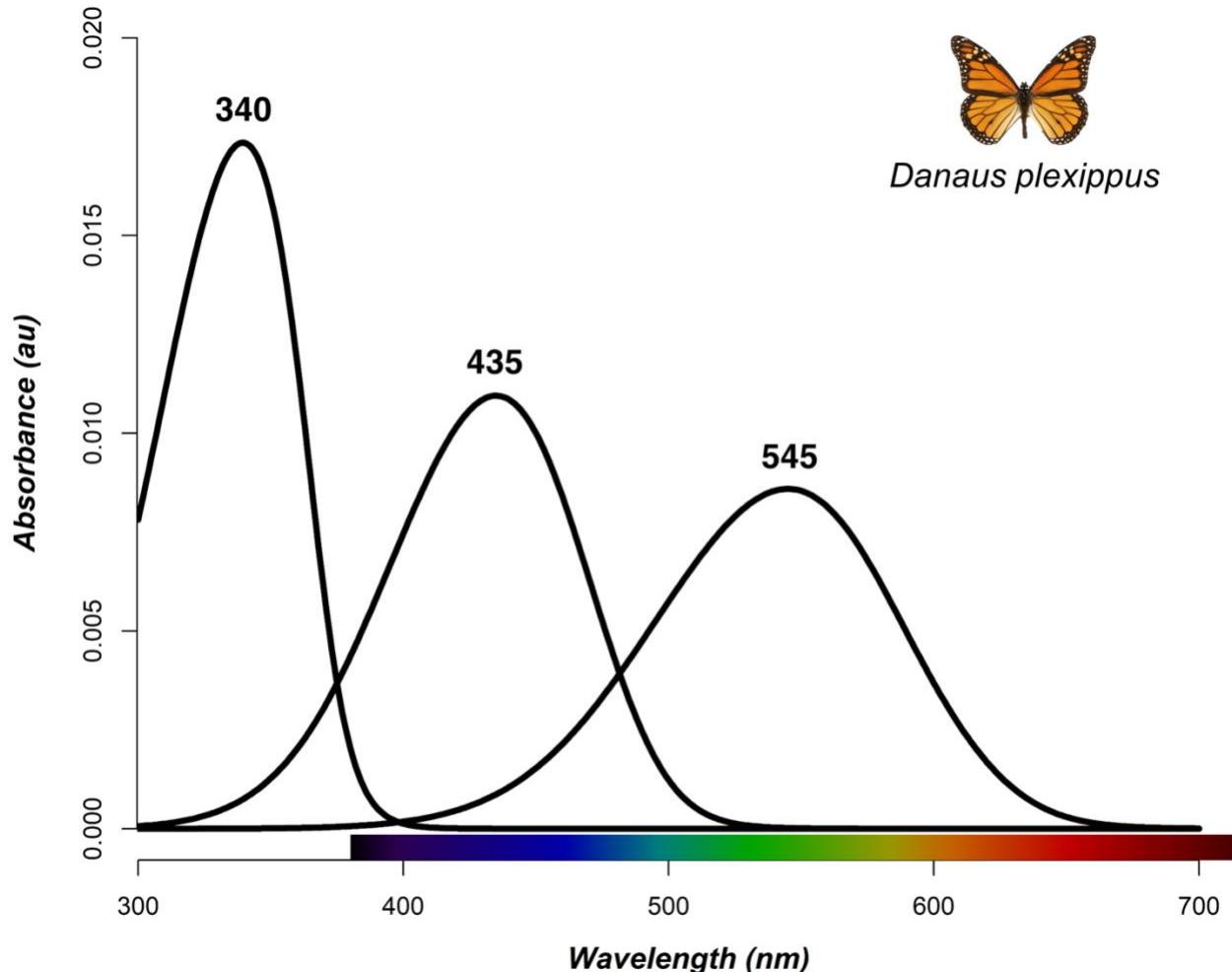
1109 All raw data, R analysis code, uncalibrated spectral data, visual modelling templates,
1110 hemispherical photography images, forewing images, eyeshine video recordings, eye
1111 cuticle images and analyses output, confocal microscopy image stacks, and 3D brain
1112 reconstruction files are available from Zenodo: <https://tinyurl.com/348wst9w>

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

1132 Supplementary Materials

1133 **1134 Figs. S1 to S13**

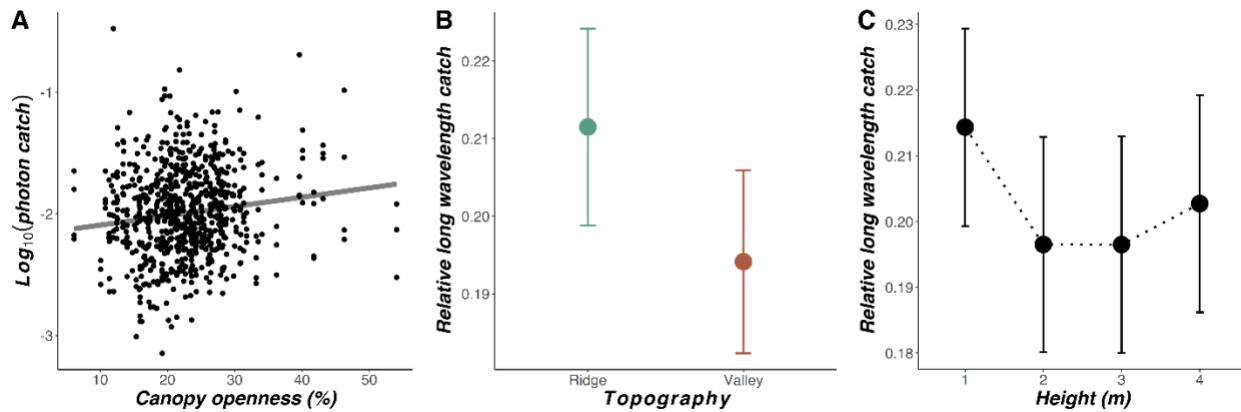
- 1137 • **Fig. S1:** The butterfly visual model used to calibrate raw spectral irradiance values (p. 13)
- 1138 • **Fig. S2:** Additional ecological associations with light environment across a topographically variable
- 1139 forest transect (p. 14)
- 1140 • **Fig. S3:** Ithomiini species abundances within the Ecuadorean community (p. 15)
- 1141 • **Fig. S4:** Relative mimicry ring abundance at ridge and valley sites along a topographically variable
- 1142 forest transect (p. 16)
- 1143 • **Fig. S5:** Flight height (m) differences between ithomiine species, coded by mimicry ring (p. 17)
- 1144 • **Fig. S6:** Variation in spectral composition between ithomiine microhabitats (p. 18)
- 1145 • **Fig. S7:** Forewing aspect ratio differences between ithomiine species, coded by mimicry ring (p. 19)
- 1146 • **Fig. S8:** Additional eye physiological and anatomical associations with light environment and mimicry
- 1147 (p. 20)
- 1148 • **Fig. S9:** Eye anatomical associations with wing morphology (p. 21)
- 1149 • **Fig. S10:** Positive correlations between \log_{10} -transformed allometric controls (p. 22)
- 1150 • **Fig. S11:** Additional neuroanatomical associations with light environment and mimicry (p. 23)
- 1151 • **Fig. S12:** Neuroanatomical associations with wing morphology (p. 24)
- 1152 • **Fig. S13:** Convergence in eye and brain structure separately among co-mimics (p. 25)


1153 **1154 Other Supplementary Materials for this manuscript include the following:**

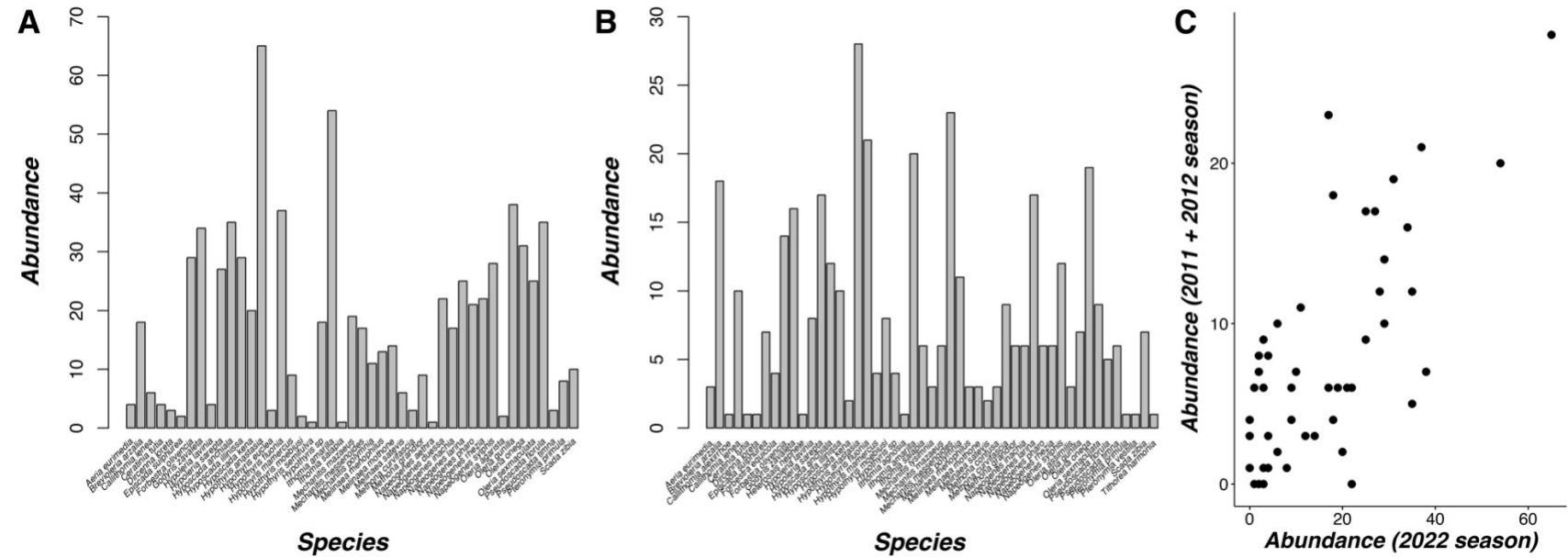
1155 **1156 *Wainwright et al_Supplementary_tables.xlsx: Tables S1 to S7 (details on p. 26)***

- 1159 • **Table S1:** Light microhabitat variation and partitioning along a topographically variable transect.
- 1160 • **Table S2A:** Light microhabitat variation and partitioning for individually caught ithomiine
- 1161 butterflies – MCMCglmm and PGLS segregation analyses.
- 1162 • **Table S2B:** Light microhabitat variation and partitioning for individually caught ithomiine
- 1163 butterflies – spectral PCA and light-wing morphological associations.
- 1164 • **Table S3:** Ecological principal component analysis (PCA).
- 1165 • **Table S4A:** Visual system associations with light environment and flight-related morphology –
- 1166 ecological PC axes.
- 1167 • **Table S4B:** Visual system associations with light environment and flight-related morphology –
- 1168 spectral and wing morphological variables.
- 1169 • **Table S5:** Sensory convergence between co-mimics.
- 1170 • **Table S6:** Visual system principal component analyses (PCA).
- 1171 • **Table S7:** Evolutionary modelling of convergence.

1172 **1173 *Wainwright et al_Supplementary_data.xlsx: Data S1 to S5 (details on p. 28)***


- 1176 • **Data S1:** Transect spectral and ecological data
- 1177 • **Data S2:** Individual spectral and ecological data
- 1178 • **Data S3:** Individual eye physiological and anatomical data
- 1179 • **Data S4:** Individual neuroanatomical data
- 1180 • **Data S5:** Summary data: Species means of all variables

1183
1184
1185
1186
1187
1188
1189


Fig. S1. The butterfly visual model used to calibrate raw spectral irradiance values. Absorbance curves of the three visual pigments (from left to right: ultraviolet, blue, long-wavelength) in the adult compound eye of *Danaus plexippus* (Nymphalidae: Danainae), the most closely related species to ithomiines for which visual pigment sensitivities are known. The wavelengths of maximal absorbance (λ_{\max}) of these visual pigments are labelled above the peak of each curve and were used to calibrate our raw spectral irradiance readings for butterfly vision, using the template by Govardovskii *et al.* (35).

1190
1191

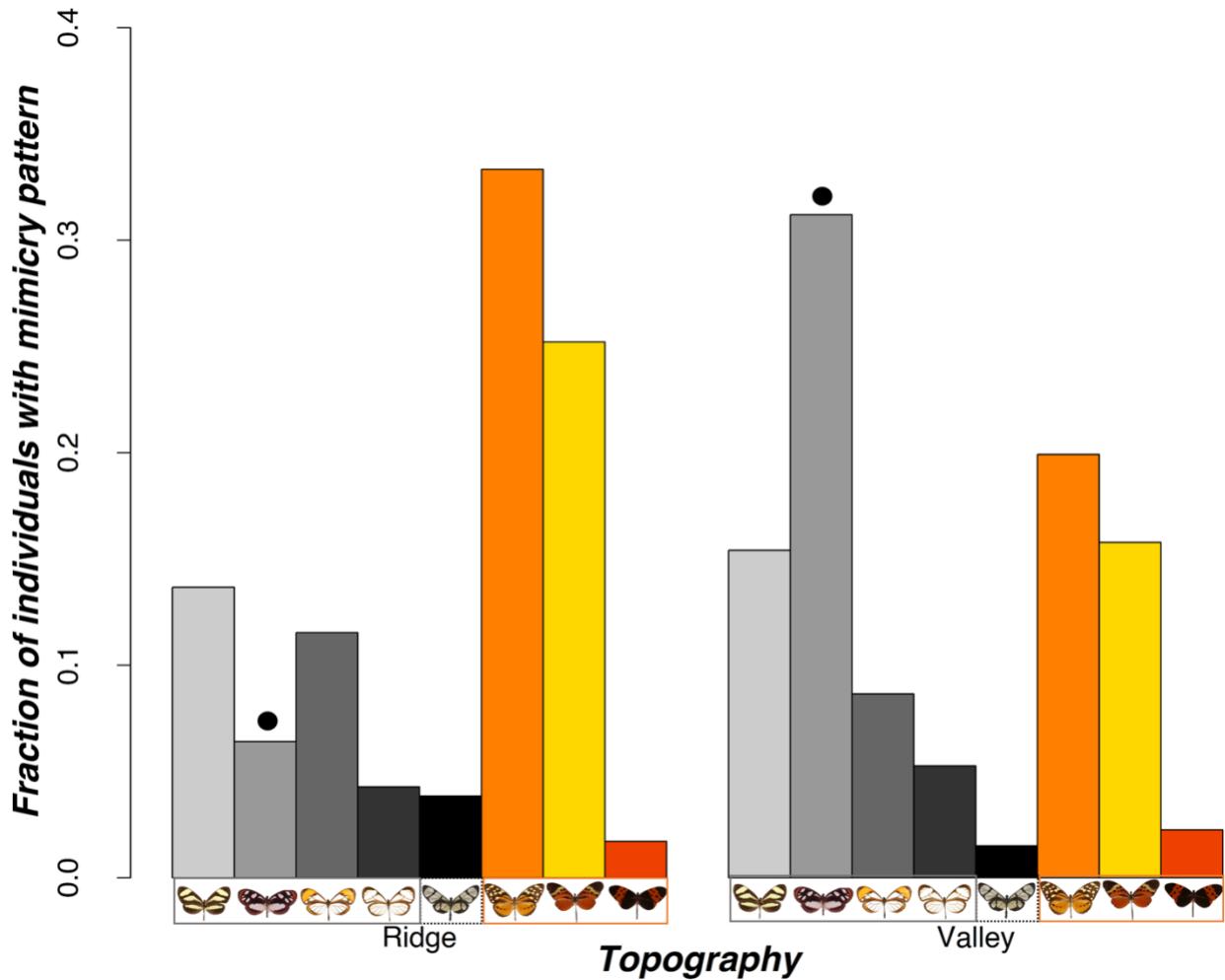
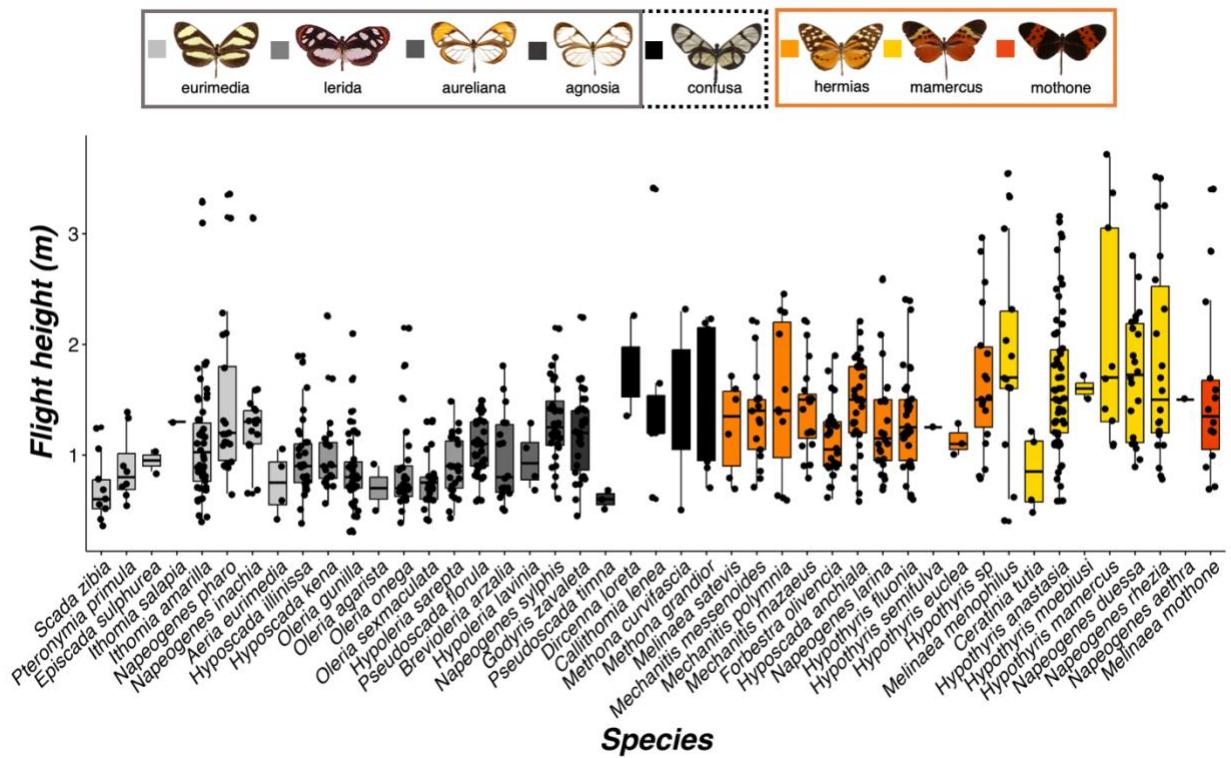
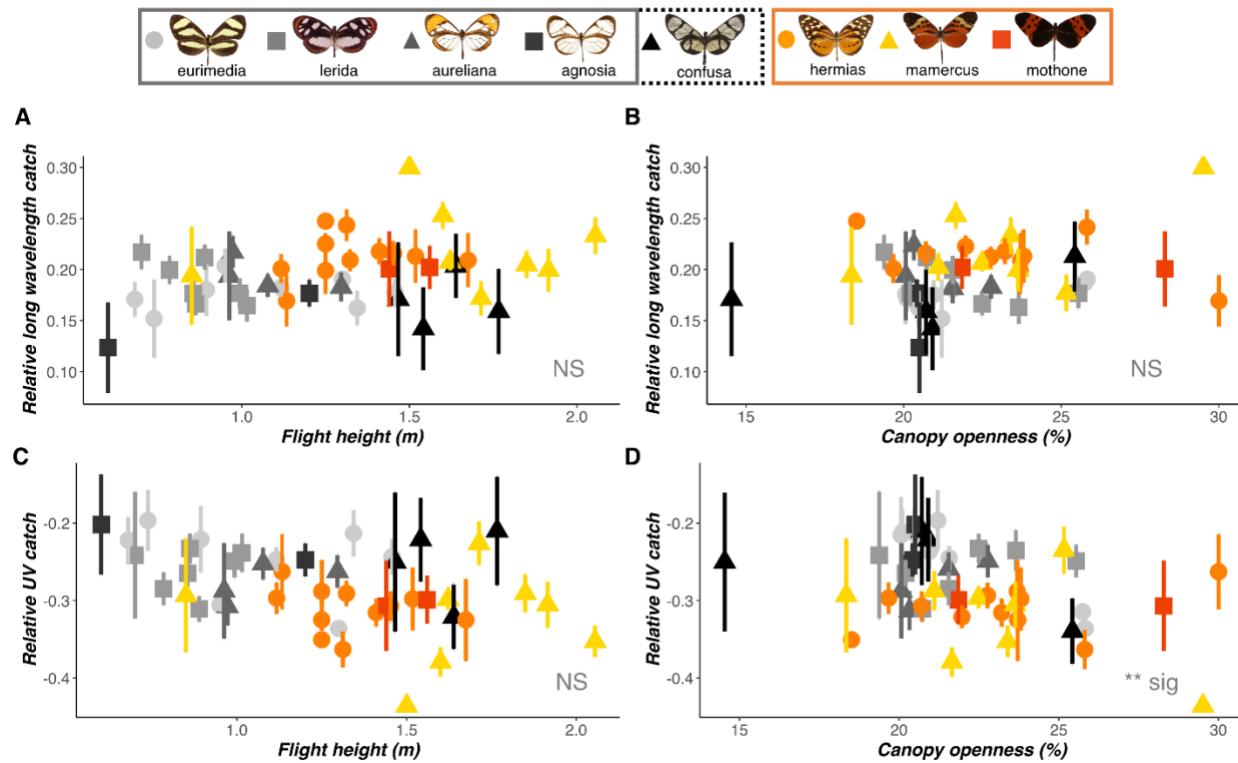

1192
1193
1194
1195
1196
1197
1198

Fig. S2. Additional ecological associations with light environment across a topographically variable forest transect ($N = 762$, 9 ridge/valley replicates). (A,B) Mean relative quantum catch of long wavelengths with respect to transect topography (A) and height from the ground (m) (B). Error bars represent 95% confidence intervals. **(C)** Relationship between (\log_{10} -transformed) photon catch (10^{10} quanta $s^{-1} m^{-2}$) for the LW sensitivity function and canopy openness overlayed with the regression line estimated from linear mixed effect modelling.

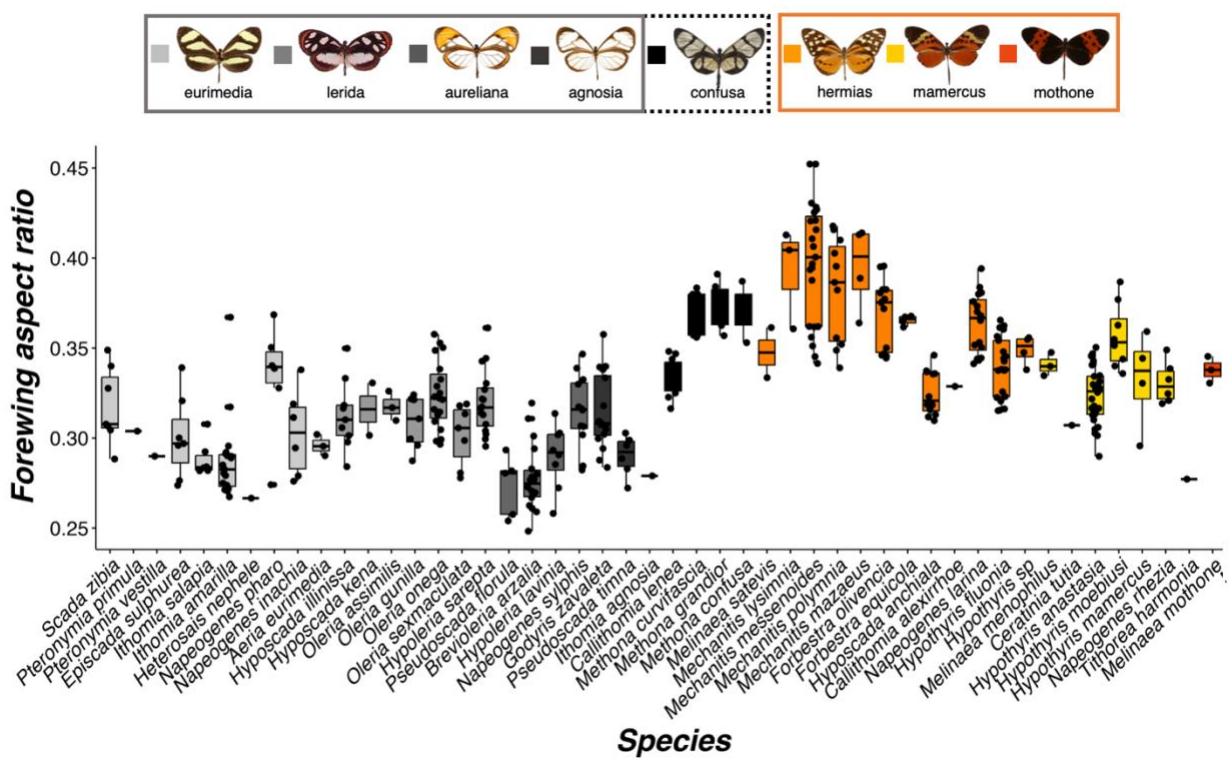


1199
1200
1201
1202
1203
1204

Fig. S3. Ithomiini species abundances within the Ecuadorean community. (A,B) Histograms denoting the abundance distribution of species found in 2022 ($N = 785$, 45 species) (A), from which ecological and eye samples were obtained, and in 2011 and 2012 combined ($N = 392$, 49 species) (B), from which brain samples and wing morphological measurements were obtained. (C) The positive relationship between species abundance from the 2022 field season and the 2011/2012 field seasons combined.


1205
1206 **Fig. S4. Relative mimicry ring abundance at ridge and valley sites along a topographically variable forest**
1207 **transect.** Example models of each mimicry ring are shown below their corresponding bar, grouped based on their
1208 general color pattern classification. Each black dot represents a mimicry ring whose abundance significantly differed
1209 between ridges and valleys in the MCMCglmm analysis.
1210

1211
1212

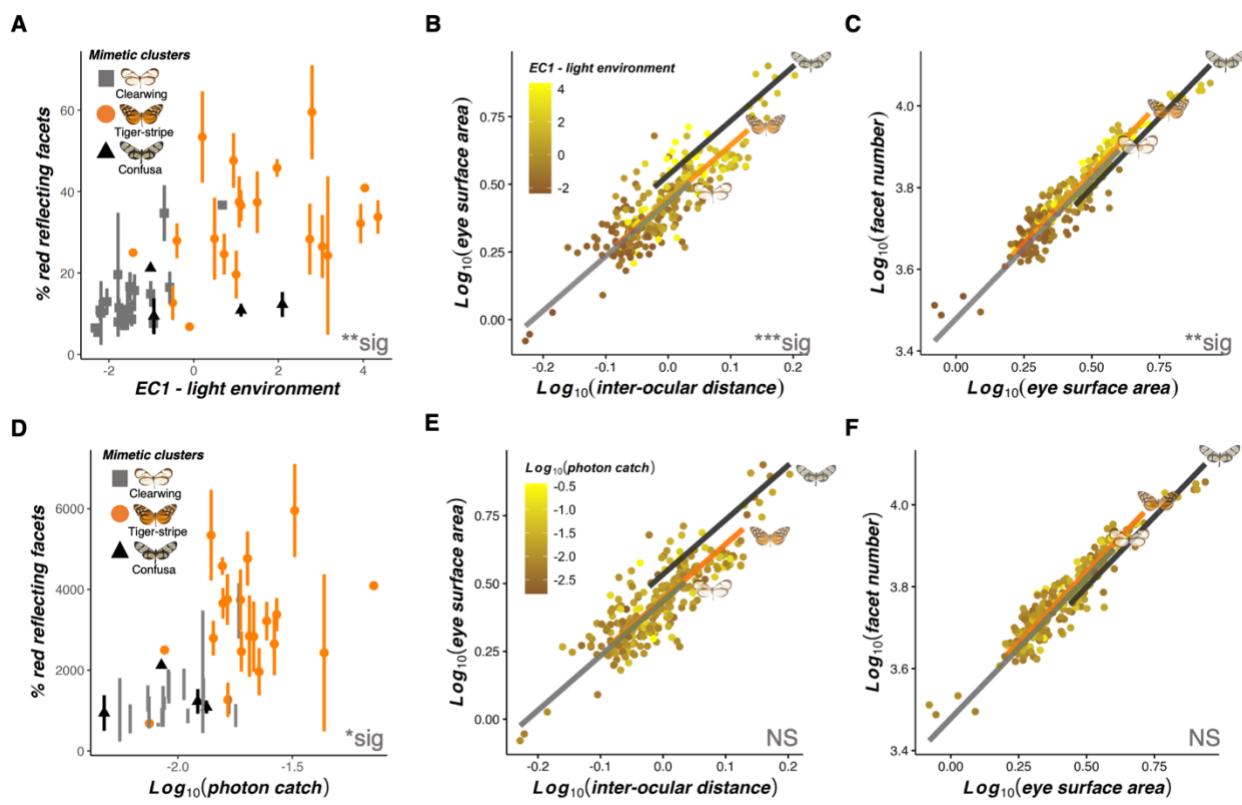

1213 **Fig. S5. Flight height (m) differences between ithomiine species, coded by mimicry ring (N = 785, 45 species).**
1214 Example models of each mimicry ring are shown on the top row, grouped based on their general color pattern
1215 classification. Medians (thick horizontal bars), interquartile ranges (boxes), values within 1.5 interquartile ranges of
1216 the box edges (whiskers), and possible outliers (datapoints outside whiskers) are plotted.

1217

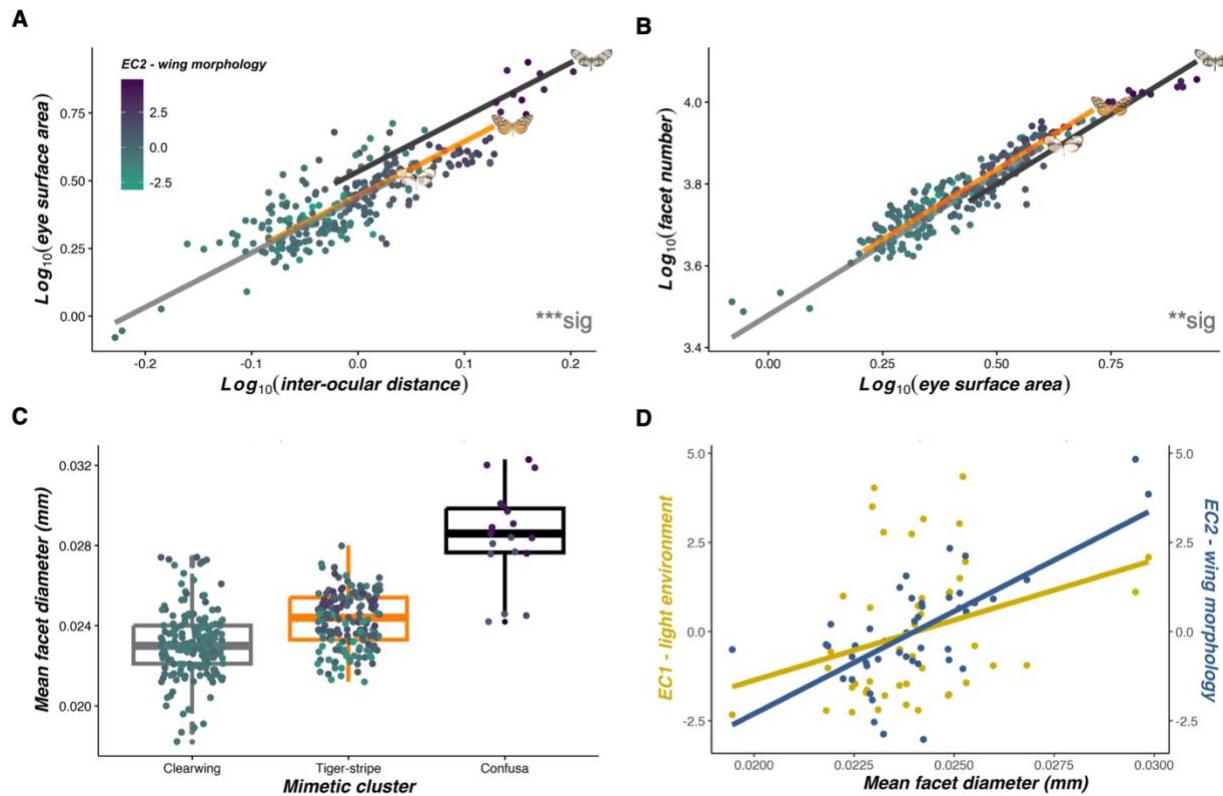
1218
1219
1220
1221
1222
1223
1224
1225
1226

Fig. S6. Variation in spectral composition between ithomiine microhabitats. (A-D) Mean relative quantum catch of long wavelengths (A,B) and ultraviolet (C,D) of each species ($N = 785$, 45 species), coded by mimicry ring, plotted against mean flight height (m; A,C) and canopy openness (%; B,D). Error bars indicate standard error. Mimicry rings were shown to significantly segregate with respect to the relative catch of long wavelengths, but not ultraviolet. Example models for each mimicry ring are shown on the top row, grouped based on their general color pattern classification. Significance of each ecological variable is indicated at the bottom right of each panel. NS $P > 0.05$, $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$.

1227

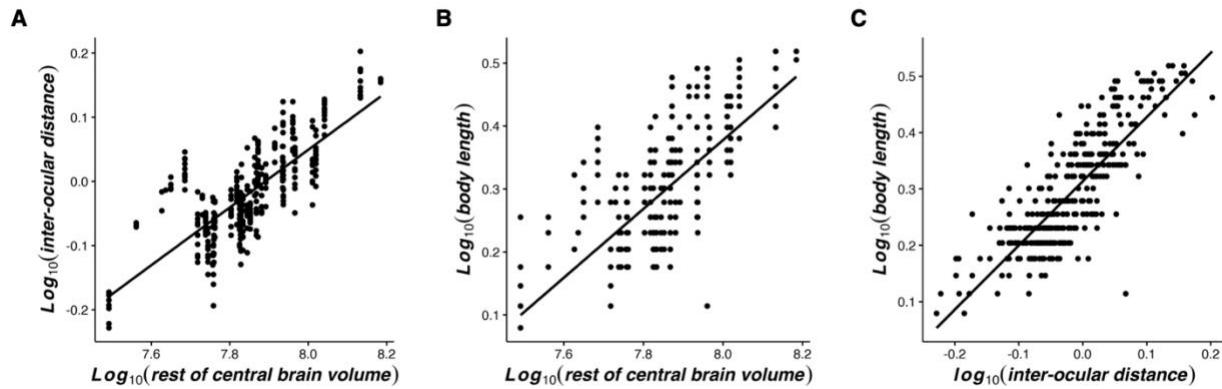

1228 **Fig. S7. Forewing aspect ratio differences between ithomiine species, coded by mimicry ring ($N = 392$, 49**

1229 species). Example models of each mimicry ring are shown on the top row, grouped based on their general color


1230 pattern classification. Medians (thick horizontal bars), interquartile ranges (boxes), values within 1.5 interquartile

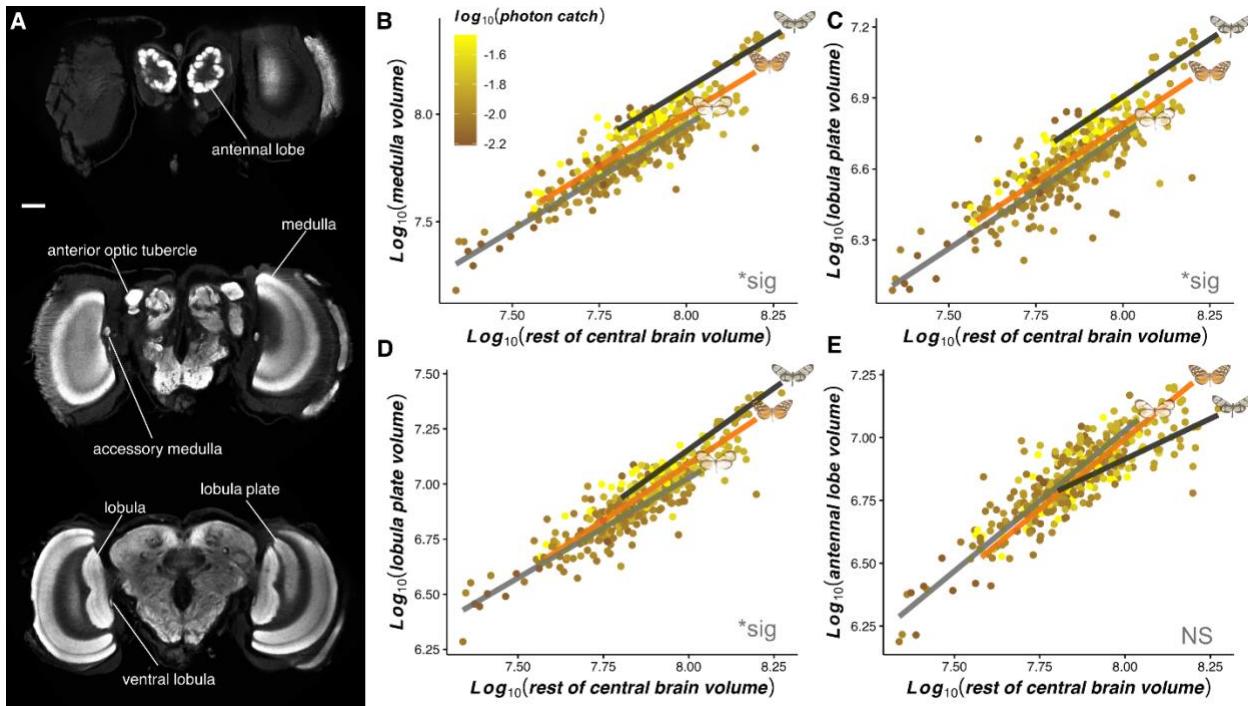
1231 ranges of the box edges (whiskers), and possible outliers (datapoints outside whiskers) are plotted.

1232


Fig. S8. Additional eye physiological and anatomical associations with light environment and mimicry ($N = 363, 45$ species). (A-F) Correlation of traits with respect to EC1 for each species (A-C) and (\log_{10} -transformed) photon catch (10^{10} quanta $s^{-1} m^{-2}$) for the LW sensitivity function (D-F), showing differences in the proportion of red reflecting facets (shown as species means coded by mimetic cluster) (A,D), eye surface area (mm^2) when scaled against inter-ocular distance (mm) (B,E), and number of facets when scaled against eye surface area (C,F). For each panel containing an allometric control, all variables are \log_{10} -transformed and regression lines for each mimetic cluster, estimated from standardized major axis regression are superimposed on top, alongside example models (B,C,E,F). The color scale for EC1 and photon catch are shown on the top left of (B) and (E) respectively. Asterisks at the bottom right of each panel indicate the significance level of EC1 (A-C) and photon catch (D-F) at explaining variation in each trait. NS $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

1245

Fig. S9. Eye anatomical associations with wing morphology ($N = 363$, 45 species). (A,B) Non-allometric convergence between EC2 for each species and eye surface area (mm^2), when scaled against inter-ocular distance (mm) (A), and facet number, when scaled against eye surface area (B). All eye anatomy traits in (A,B) are \log_{10} -transformed. Regression lines for each mimetic cluster, estimated from standardized major axis regressions are superimposed on top, alongside example models. (C) Convergence in mean facet diameter (mm) for individuals with similar wing morphologies, separated by mimetic cluster. Medians (thick horizontal bars), interquartile ranges (boxes), values within 1.5 interquartile ranges of the box edges (whiskers), and possible outliers (datapoints outside whiskers) are plotted. In (A-C), turquoise-purple color shades represent the mean EC2 value for each species, the color scale for which is shown in the top left of (A). Asterisks at the bottom right of each panel indicate the significance level of EC2 at explaining variation in each trait. NS $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. (D) Positive correlation between the mean facet diameter of each species and both ecological PC axes, representing light environmental (EC1, yellow) and wing morphological variation (EC2, blue).


1258

1259

1260 **Fig. S10. Positive correlations between \log_{10} -transformed allometric controls.** (A,B) Inter-ocular distance (mm)
1261 (A) and body length (cm) (B) plotted against the mean “rest of central brain” volume (μm^3) of each species. (C) Body
1262 length plotted against inter-ocular distance. All traits are \log_{10} -transformed.

1263

1265 **Fig. S11. Additional neuroanatomical associations with light environment and mimicry ($N = 374$, 40 species).**

1266 (A) Anti-synapsin immunofluorescence from frontal confocal brain sections of *Ithomia amarilla*, with imaging

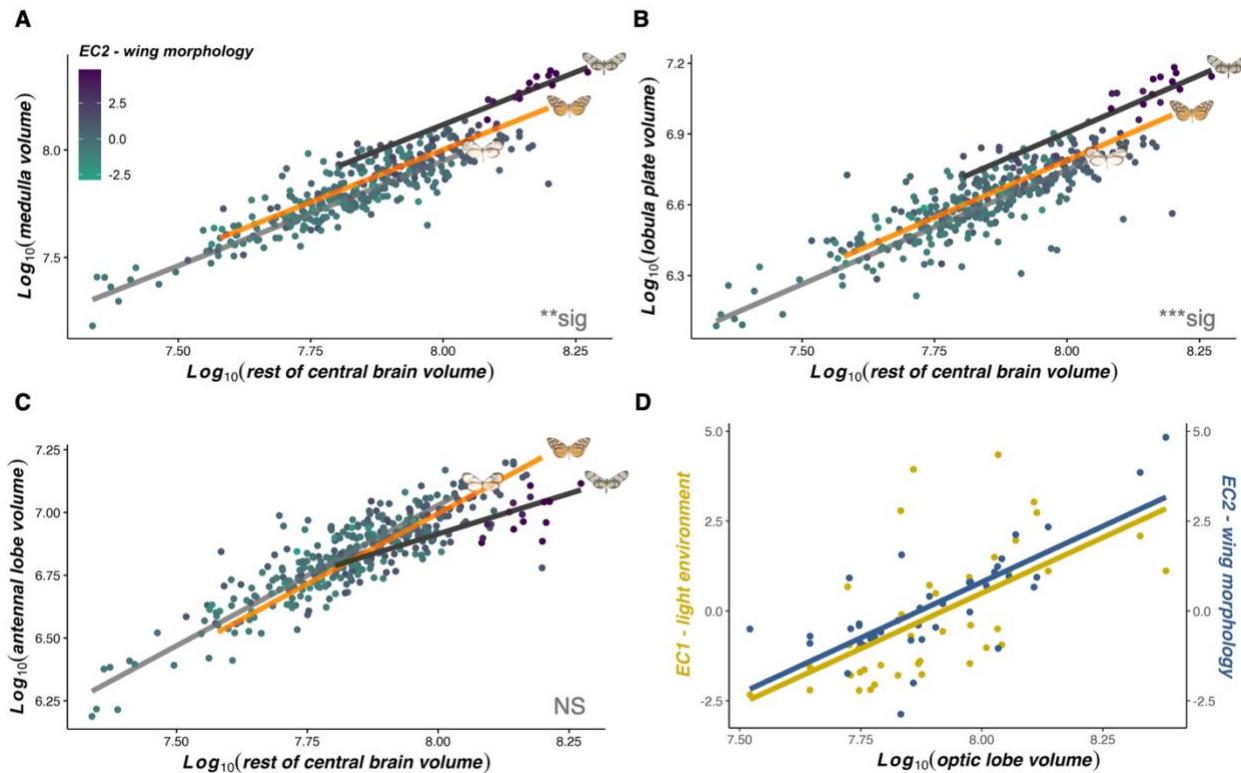
1267 performed progressively along the posterior axis, moving from top to bottom. All reconstructed neuropils are labelled.

1268 Scale bar = 100 μm . (B-E) Non-allometric convergence between the mean overall photon catch (10^{10} quanta $\text{s}^{-1} \text{m}^{-2}$)

1269 for the LW sensitivity function of each species and the level of volumetric investment (μm^3) in the medulla (B), lobula

1270 plate (C), lobula (D), and antennal lobe (E) when scaled against the volume of the “rest of central brain”. Brown-

1271 yellow color shades represent the mean photon catch for each species, the color scale for which is shown in the top


1272 left of (B). All variables are \log_{10} -transformed. Regression lines for each mimetic cluster, estimated from standardized

1273 major axis regressions are superimposed on top, alongside example models. Asterisks at the bottom right of each

1274 panel indicate the significance level of photon catch at predicting relative investment in each neuropil. NS $P > 0.05$,

1275 $*P < 0.05$, $**P < 0.01$, $***P < 0.001$.


1276

1277

1278 **Fig. S12. Neuroanatomical associations with wing morphology ($N = 374$, 40 species).** (A-C) Non-allometric
1279 convergence between the mean wing morphology of each species and the volume (μm^3) of the medulla (A), lobula
1280 plate (B), and antennal lobe (C), when scaled against the volume of the “rest of central brain”. All volumetric traits are
1281 log_{10} -transformed. Turquoise-purple color shades represent the mean EC2 value for each species, the color scale for
1282 which is shown in the top left of (A). Regression lines for each mimetic cluster, estimated from standardized major
1283 axes regressions are superimposed on top, alongside example models. Asterisks at the bottom right of each panel
1284 indicate the significance level of EC2 at explaining variation in each neuropil. NS $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** P
1285 < 0.001. (D) Positive correlation between the mean gross optic lobe volume of each species and both ecological PC
1286 axes, representing light environmental (EC1, yellow) and wing morphological variation (EC2, blue).

1287

1288

1289 **Fig. S13. Convergence in eye and brain structure separately among co-mimics. (A,B)** Above are phenograms
1290 based on PC1 of two principal component analyses which summarized variation in eye ($N = 45$ species) (A) and brain
1291 ($N = 49$ species) (B) structure based on traits which showed significant light environmental effects. Instances where
1292 branches cross and concentrate in a given area indicate convergent lineages. Below each phenogram are Kernel
1293 density plots of small sample corrected Akaike Information Criterion (AICc) scores obtained from multi-peak Brownian
1294 motion (BM) and Ornstein-Uhlenbeck (OU) evolutionary models, constructed from 500 simulated character maps
1295 where species belonging to the same mimetic cluster were assigned to the same selective regime. Blue and green
1296 vertical dashed lines indicate the AICc score for single-peak BM (BM1) and OU (OU1) models respectively. Example
1297 models of each mimetic cluster are shown in the top left of (A).
1298

1299 **Table S1 (separate file). Light microhabitat variation and partitioning along a**
1300 **topographically variable transect. (A)** Linear mixed model output showing the effect
1301 of canopy openness, height from the ground, and topography (and their interaction) at
1302 explaining variation in each spectral variable. **(B)** MCMCglmm output, including pairwise
1303 comparisons, showing how the abundance of ithomiine mimicry rings differs with
1304 respect to ecological variation along the transect. **(C)** Scores and loadings from a
1305 principal component analysis, included in the above analysis, conducted on estimated
1306 photon catches of each photoreceptor for spectral measurements taken along the
1307 transect

1308 **Table S2A (separate file). Light microhabitat variation and partitioning for**
1309 **individually caught ithomiine butterflies – MCMCglmm and PGLS segregation**
1310 **analyses.** MCMCglmm (i) and PGLS (ii) output, including pairwise comparisons,
1311 showing the effect of canopy openness, flight height, and mimicry ring at explaining
1312 visual niche variation for each spectral variable.

1313 **Table S2B (separate file). Light microhabitat variation and partitioning for**
1314 **individually caught ithomiine butterflies – spectral PCA and light-wing**
1315 **morphological associations.** (i) Scores and loadings from a principal component
1316 analysis, included in the above analysis, conducted on estimated photon catches of
1317 each photoreceptor for spectral measurements taken for individual butterflies. (ii)
1318 MCMCglmm and PGLS output showing the effect of wing morphological variables at
1319 explaining visual niche variation for each spectral variable.

1320 **Table S3 (separate file). Ecological principal component analysis (PCA). (A)**
1321 MCMCglmm and **(B)** PGLS output, including pairwise comparisons, showing the effect
1322 of canopy openness, flight height, and mimicry ring at explaining variation in each wing
1323 morphological variable.

1324 **Table S4A (separate file). Visual system associations with light environment and**
1325 **flight-related morphology – ecological PC axes.** MCMCglmm (i) and PGLS (ii) output
1326 showing the effect of EC1 (light environment) and EC2 (wing morphology) at explaining
1327 variation in each visual trait, alongside allometric controls where appropriate. (iii)
1328 MCMCglmm and PGLS output showing correlations between allometric controls.

1329 **Table S4B (separate file). Visual system associations with light environment and**
1330 **flight-related morphology – spectral and wing morphological variables.**
1331 MCMCglmm (i,ii) and PGLS (iii, iv) output showing the effect of individual spectral
1332 variables (i,iii) and individual wing morphological variables (ii,iv) at explaining variation
1333 in each visual trait, alongside allometric controls where appropriate.

1334 **Table S5 (separate file). Sensory convergence between co-mimics. (A)**
1335 MCMCglmm (i) and PGLS (ii) output, including pairwise comparisons, showing the
1336 effect of mimetic cluster at explaining variation in each visual trait that showed
1337 significant light environmental associations, alongside allometric controls where
1338 appropriate. **(B)** Output from standardized major axis regression analysis, including
1339 pairwise comparisons, testing for a non-allometric effect of mimetic cluster at explaining

1340 the scaling relationship of each visual trait, using individual (i) and species mean (ii)
1341 data.

1342 **Table S6 (separate file). Visual system principal component analyses (PCA). (A-C)**
1343 Scores and loadings from PCAs summarizing variation in eye+brain structure (A), and
1344 eye (B) and brain (C) structure separately.

1345 **Table S7 (separate file). Evolutionary modelling of convergence. (A)** Summarized
1346 output from single/multi-peak Brownian motion (BM), Ornstein-Uhlenbeck (OU) and
1347 early burst (EB) models, created in *mvMORPH*, for EC1, EC2, eye+brain structure, and
1348 eye and brain structure separately, with co-mimics assigned to different selective
1349 regimes. **(B)** Raw output from each *mvMORPH* model simulation ($N = 500$) **(C)**
1350 Convergence (C) indices from a *convevol* analysis, testing for convergence in eye+brain
1351 structure.