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Abstract 

The origins of awareness of action (AoA), the ability to report an action just performed, remain 

elusive. Differing theories ascribe AoA to pre-action, efferent motor/volitional mechanisms 

versus post-action, afferent sensory/perceptual neural mechanisms. To study these two types of 

mechanisms and others, we developed a paradigm where very similar aware and unaware actions 

occur repeatedly. Aware actions demonstrated larger neurophysiological signals both preceding 

and following movement. The differences included well-known volitional and perceptual event 

related potentials (PMP, N140, P300), as well as frontal midline theta, event-related alpha/beta 

desynchronization, and post-move blink rates. On longer time scales, we identified a novel event 

related potential preceding unaware moves, and found behavioral and pupillometric evidence for 

decreased attention and arousal over minutes concurrent with AoA loss. Our findings suggest 

that both dynamic, individual action-associated volitional and perceptual neural activity, as well 

as long-term attention and arousal states play a role in maintaining AoA. 
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Introduction 

The neural origins of awareness of action (AoA), the ability to report an action just 

performed, have long been poorly understood, yet have been debated from the inception of 

psychological science. The loss of AoA is a part of everyday experience, seen in phenomena like 

“highway hypnosis” and “white line fever” where awareness of recent driving actions are lost, or 

being unable to know whether everyday tasks have been completed such as locking the door or 

turning off the gas[1, 2]. Aberrant AoA is regularly seen in medical conditions such as 

Parkinson’s disease, ataxia, and schizophrenia[3, 4]. Despite the lack of understanding of neural 

mechanisms of AoA, definitions of AoA are also considered in legal judgments, with distinctions 

between murder versus manslaughter and voluntary versus involuntary crimes, depending on 

whether the offenses were committed with intention and awareness[5-7]. 

The early founders of modern psychological science fell into two primary camps on the 

origins of awareness of motor action, creating the “Two Williams Debate”. The first camp, led 

by Wilhelm Wundt, posited that the contents of action are represented a priori, and that AoA is a 

mental, generative phenomenon independent of somatosensory feedback. The second camp, led 

by William James, suggested that the contents of action are represented a posteriori, and that the 

somatosensory, afferent processes allow for AoA[8]. We posit that neither perspective fully 

encapsulates the neural processes underlying AoA. Volitional as well as perceptual neural 

mechanisms both pre- and post-action may be needed to establish AoA on short time scales, 

while additional state-related attention and arousal mechanisms could influence AoA over longer 

time periods.  

To test whether AoA is an a priori or a posteriori process (Two Williams Debate), a 

carefully designed, behavioral paradigm to isolate instances of awareness or unawareness is 
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needed. While previous studies of action have included varying motor components such as 

button presses when the subject feels the urge to move (e.g. the classic Libet paradigm), forced 

choices, and even bungee jumping, they do not query whether the subjects are aware of the 

identity of the action or not[9-11]. Therefore, they have not tested AoA itself, by looking for 

neural signals seen when AoA is present versus absent in a controlled setting. To address this, we 

developed a paradigm based upon a classic sliding block puzzle game, which subjects complete 

at a self-set pace. Periodically, subjects are asked questions about their just-completed move, to 

assess awareness of the previous action. This approach, referred to as contrastive analysis, where 

neural signals are compared between very similar events with versus without conscious 

awareness, has been applied widely to sensory paradigms, but has not been used so far to study 

motor awareness [12-17]. The paradigm we developed, involving repeated relatively similar 

clicks and keypresses, allows us to perform a contrastive method to AoA and to observe both 

pre-action and post-action neural signals.  

Should the neural mechanisms of AoA differ a priori, differences in neural activity are 

expected during the preparation and initiation of action. Previous studies of action, including the 

classic Libet paradigm, have established pre-action differences in awareness of intent to act[18, 

19]. These studies have established the presence of the bereitschaftspotential (BP), or readiness 

potential, a negativity in EEG 1-2 seconds preceding the intent to act[10, 18-21]. The readiness 

potential has been shown to be generated by activity in supplementary motor cortex and 

premotor cortex[22-25]. Much closer to performance of the action (approximately 100 ms prior), 

a pre-movement positivity (PMP) has been observed as well, associated with the immediate 

initiation of the action as opposed to its planning[26-28]. Additionally, pre-action activation 

changes in prefrontal and parietal cortex have been shown to occur prior to intent to act, seen in 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.08.15.608153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608153
http://creativecommons.org/licenses/by-nd/4.0/


 Jin, et al              6    
 

both PET and fMRI [29-31]. On the other hand, a posteriori differences in neural activity would 

manifest in perceptual signals, like those seen in the visual, auditory, and tactile domains. Known 

event-related potentials following perceptual stimuli include the face-specific N170, N100 

(vision), auditory awareness negativity, and N140 (somatosensory awareness negativity)[12, 32, 

33]. In addition, signals which support both a priori volitional and a posteriori perceptual 

hypotheses of AoA are known to exist. In the time-frequency domain, pre-action beta frequency 

(12-30 Hz) suppression occurs prior to the initiation or imagination of a voluntary movement[34-

36], and directives to attend to a visual stimulus are known to decrease the presence of beta 

activity[37]. Lastly, suppression of alpha activity (8-12 Hz) has long been known to increase the 

probability of detecting a visual stimulus, and, like beta activity, is also quieted by the 

presentation of a visual stimulus[38-40] and is quieted prior to the execution of voluntary 

movement[41]. Alpha suppression is also observed in auditory and tactile domains[42, 43], and 

alpha/beta event-related desynchronization more generally is viewed as signature of prominent 

behavioral or perceptual events and conscious awareness[44-46]. 

The view of action as purely a priori or a posteriori may also be incomplete. Actions in 

the real world are rarely performed as individual discretized motions, a drawback of many 

traditional forced choice and Libet-style studies. Instead, they are completed in sequence and 

under varying states of arousal. Studies of attentional states suggest that these flow states are 

bimodal in nature (i.e. “in the zone” or “out of the zone”), modulated by the default mode 

network, and can be last on the order of seconds to minutes[47-49].  We hypothesized that AoA 

may be lost more often during mind-wandering and daydreaming circumstances, generally states 

of lower-arousal or distraction from the task at hand. We encouraged these circumstances by 

having subjects play the game while an engaging video appeared in the background, which they 
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had to describe following each run. To measure the effects of fatigue and arousal-related factors 

on awareness over the course of the study, we used pupillometric measurements. Pupil diameter 

is a known to track with neural activity in the salience network, and can provide rich, 

noninvasive information on arousal levels[50, 51]. The success of multiple continuous 

performance task types can be predicted by pupil diameter[52]. Decreased arousal in tandem 

with decreased AoA would provide concrete evidence for this anecdotal link. 

We found clear differences in event-related potential, EEG time-frequency, and eye 

metric data both before and after action. We also found that arousal levels, measured by pupil 

diameter, decreased throughout the course of the experiment, in tandem with decreased levels of 

behavioral awareness and increased levels of unawareness. Thus, our findings support both 

hypotheses of the Two Williams Debate: that generative, volitional processes and afferent, 

perceptive processes allow for AoA. Our findings also highlight the role of longer-term attention 

and arousal states in the maintenance of AoA and that AoA must be considered in a broader 

context of sequences of actions. 

 

Methods 

Clinically Healthy Participants 

Sixty-seven clinically normal, adult subjects were recruited for our study. Inclusion criteria 

included normal vision (with soft lens correction) and normal hearing. Exclusion criteria 

included current or past diagnoses of neurological disorders and vision correction which required 

hard lenses. All subjects underwent EEG and pupillometry measurements. Summary data for 

healthy participants are shown in Table 1. 
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Behavioral Exclusionary Criteria 

A total of 10 subjects were excluded from the EEG sample due if their total number of aware 

trials and/or unaware trials fell below a 12 trial minimum following individual trial rejection (See 

hdEEG – Data Preprocessing; Pupillometry – Individual Trial Rejection). Individual trials were 

labeled as having excessive artifact labeled by our automated pipeline. A similar 12-trial 

minimum was applied to the pupillometry sample and a total of 11 subjects were excluded due to 

tracker loss or noise. Thus, our sample included 57 EEG subject datasets and 56 pupillometry 

subject datasets. For our analyses of video engagement and familiarity, 46 datasets were 

collected. Of these subjects, one had previously seen the videos as a participant in a pilot version 

of the task. This subject was therefore excluded from analyses of video familiarity. Additionally, 

block identity data for 12 of 67 subjects were not saved due to a coding error; thus, our block 

identity chi-squared analyses were based on 55 of 67 subjects. 

 

Behavioral Task 

Equipment and Hardware 

Subjects completed the task using a gameplay mouse (Lenovo Essential USB Mouse) and 

keyboard (Lenovo Essential Wired Keyboard) attached via USB to the task laptop (Figure S1). 

In addition, for a free recall session, subjects spoke into a microphone (Snowball iCE, Logitech). 

Subjects viewed the game on a 17-inch LCD monitor an arm mount (EyeLink 1000 Plus System, 

SR Research, Inc.) displaying the task laptop (MSI Gf63 Thin, MSI) visual feed. The LCD 

screen was connected to the experiment laptop via a VGA/HDMI adapter. The task code was 

implemented in the PsychoPy package of Python. 
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Task Progression 

Subjects performed the task across three days, with one training day and two testing days (Fig 1. 

A). Six ten-minute runs were administered on each day for a total of one hour of gametime (Fig 

1B). To complete the task, subjects had to navigate a red block out of the bounds of a grid, by 

moving obstructing blocks to free a path for the block. To move a block, subjects used the mouse 

in the right hand to click on and select a block. They then used the WASD keys in the left hand 

(W = up, middle finger; A = left, ring finger; S = down, middle finger; D = right, index finger) to 

move a block. Upon completion of the movement, subjects pressed the spacebar with the left 

thumb to confirm the action. Subjects could not select and move another block without first 

confirming the current block movement. Event related potential, time-frequency, and 

pupillometry analyses were time-locked to the confirmation of the action, and all further uses of 

“time from action” refer to timeframe with respect to the confirmation. When the subject solved 

an individual puzzle, a message depicting “Good Job” would appear on the right third of the 

screen, after which the next puzzle configuration would be shown. A randomized rotation of ten 

unique puzzle configurations was used. Every 2-5 moves, the board disappeared for a period of 

2-8 seconds before reappearing. Subjects were trained on this task for three runs with a plain 

blue background. 

 

In latter three runs of the training day, subjects performed the task with a distractor task added, in 

which they were instructed that at the end of each run, they would have to freely recall as many 

details as possible in a background video that played as they performed the task. Subjects were 

instructed to maintain a chosen pace of play even with the background video playing. At the end 

of each run, subjects completed a three-minute recall session in which they were instructed to 
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continue recounting details until the end of the three minute period. Subjects completed three 

runs of this task. The two testing days were identical to one another. On the testing days, the 

game with video background and free recall session was administered. However, after the board 

disappeared following 2-5 moves, there was a 50% probability that a two-part quiz would be 

shown. The first part of the quiz was a four-part multiple choice question, in which four 

candidate moves (with the block and direction indicated) were presented to the subject (with the 

instruction to “Choose your last move.”). Subjects clicked on which of the four moves they 

thought was their previous move. The second part of a quiz was a confidence indication. 

Subjects were asked to indicate their confidence level (“How certain are you of your choice?”) 

by clicking on a slider (leftmost = least confident, rightmost = most confident). Subjects then 

pressed a “Go” key to submit their answer, and the game with video resumed.  

 

To discourage subjects from trying to recalculate a particular route taken in the game, as opposed 

to immediately demonstrating awareness of the previous action, a three-second time limit was 

imposed for the multiple choice question. If subjects did not answer the multiple choice question 

within the three second limit, the confidence question was not administered. Late answers were 

excluded from analysis due to the possibility of mouse slips. During the first three runs, subjects 

were monitored for excessive numbers of late quizzes. After the first three runs of the 

experiment, subjects’ late trials were tabulated. If a subject averaged at least two late quizzes per 

run, or had three or more late quizzes in a single run, subjects were instructed, “Please provide an 

answer within the three second limit”.   

 

Data Processing 
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After each run, five types of behavioral data were saved: 1. TTL pulse timing, 2. Multiple choice 

accuracy, 3. Confidence slider positions, 3. Order of puzzles presented to the subject, 4. Initial 

configurations prior to a move being performed, and 5. Background movie identity. These were 

saved in a .psydat file, constituting the behavioral data files from which awareness was 

determined.  

 

Pupillometry 

 

Equipment and Software 

Pupillometry and eye metric data were collected using the EyeLink 1000 Plus System (v5.09, SR 

Research) running on a Dell desktop PC (Model D13M; Dell, Inc.). Data were sampled at 

1000Hz using a 35 mm camera and an infrared illuminator mounted below the LCD game 

monitor (Figure S1). Prior to the first and fourth runs of the procedure, participant gaze position 

was calibrated using a 9-point visual gaze sequence. Additionally, prior to the first run of the 

experiment, corneal and pupil thresholds for reflectivity were determined. To stabilize head 

positions, participants performed the task in a chinrest set 55 cm away from the EyeLink camera.  

 

Data Processing 

EyeLink recordings were saved following each run. Raw EyeLink data consisted of two items: 1. 

Pupil diameter, 2. x/y gaze position, and 3. Ethernet synchronization messages. We extracted 

three datasets from the raw data: 1. Z-scored pupil diameter, 2. Blink rate, and 3. Saccade rate. 

Firstly, blinks were identified at the whole run level using the Stublinks procedure, which 

initially downsampled the data of 1000 Hz timepoints to 60 Hz samples. Stublinks identifies 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.08.15.608153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608153
http://creativecommons.org/licenses/by-nd/4.0/


 Jin, et al              12    
 

blinks as changes in pupil diameter fulfilling the following requirements: 1. Diameter changes 

greater than 0.5 mm between consecutive samples, 2. Diameter differences < 0.1 mm or > 4 mm 

from the median pupil diameter of the entire run, and 3. Diameter changes 0.4 mm across four 

consecutive samples, 4. Timepoints with > 1 mm difference between 60 Hz downsampled and 

1000 Hz raw timecourses, and 5. Samples with diameter outside of the Tukey’s test IQR. Any 

period of consecutive artifactual timepoints lasting 100-1000 ms was deemed a blink. A binary 

vector containing all timepoints was then generated (1 = blink, 0 = non-blink) to represent the 

run. All artifactual timepoints were linearly interpolated with adjacent non-artifactual samples 

for creating mean timecourses of pupil diameter. Saccade occurrences in timecourses were 

determined by identifying timepoints in which gaze position subtended a velocity > 3 

degrees/second and < 7 degrees/second of visual angle in a 5 ms duration. As with blink data, a 

binary vector containing all timepoints was then generated (1 = saccade, 0 = non-saccade) to 

represent the presence of saccades in the run . Following initial processing of raw data, pupil 

diameters were z-scored. Given that the luminance of the quiz was brighter than that of 

gameplay, all timepoints in a run that corresponded to the gameplay only were identified. To 

account for recalibration after run 3, all non-quiz timepoints of runs 1-3 were aggregated and the 

mean and standard deviation of all three runs in aggregate was calculated. Individual gameplay 

pupil diameters were then z-scored according to these mean and standard deviation values. The 

same process was repeated for runs 4-6. We then extracted 8-second epochs (4 seconds prior to 4 

seconds following) centered around the confirmation of an action immediately preceding the 

board disappearance, leading up to a quiz. These trial epochs were identified with Ethernet 

timing messages communicated from the behavioral laptop, and were extracted for raw pupil 

data, z-scored pupil data, blink rates, and saccade rates. 
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Individual Trial Rejection 

To identify tracker loss, a period 2 seconds before to 2 seconds following action was isolated 

within each individual trial. The starting pupil diameter of the isolated period was determined 

and the end point pupil diameter determined. A 4000-timepoint vector was then generated 

representing a straight line between the pupil’s starting diameter and the end diameter. The 

Pearson correlation between this vector and the actual -2 to 2 second period of data were 

computed. Any trial with a r-value greater than 0.99 was eliminated, as the only circumstance 

under which the actual pupil trace would resemble a straight line would be if the tracker was lost. 

In these cases, Stublinks would isolate the point before the loss of the tracker and the point after 

the tracker began tracking once again, and interpolate a straight line between these. Such a high 

r-value could also occur if the tracker had tracked a miscellaneous object of fixed diameter (e.g. 

an EEG electrode). 

 

 

hdEEG 

 

Equipment and Software 

EEG data were collected with 257-lead Ag/AgCl electrode nets (Hydrocel GSN 256, Magstim 

EGI Inc), sampled at 1000 Hz. Two systems were used: 1. Two Net Amps 200 128-Channel 

Amplifiers, and 2. Net Amps 400 256-Channel Amplifier. Recordings were made on a 1. desktop 

computer (Power Mac G5 Quad; Mac OS X v10.5.8, Apple, Inc.) running NetStation 4.2.2 and 

2. (A Macbook Pro 2018; MacOsX 10.14.2). Signals were acquired as Cz-referenced. 
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Data Preprocessing 

EEG data were preprocessed with the EEGLAB (function name in parenthesis) at the session and 

the individual epoch level. Session level processing began with an initial 1 Hz high-pass filter  

First, data were high-pass filtered (> 1Hz) to correct for drift (function clean drifts with 

parameters for 0.25 and 0.75 Hz). Next, 60 Hz line noise was removed from the data (function 

pop_cleanline, with parameters for 60 and 120 Hz). Following cleaning of line noise, remaining 

noisy channels were rejected (function clean_channels, with parameters 0.8, 0.5, and 4) and 

noisy data timepoints were found (function clean_windows with parameters -Inf, 7, and 0.25). 

The data were then re-interpolated with spherical interpolation (function pop_interp). Data were 

then re-referenced to the common average reference. 

 

At the epoch level, epochs of 4000 ms (2000 ms prior to action and 2000 ms following) were 

isolated from the data based upon timing synchronization flags. These trials were then rejected if 

the quantity of noisy timepoints between 200 ms pre-action and 500 ms following action 

exceeded 175 ms (i.e. 25% of timepoints). The kept trials were then concatenated into a single 

vector (channels x timepoints x epochs). This vector was passed through a 10-component 

principal component analysis (PCA), then through independent component analysis (ICA) upon 

the PCA data. Components corresponding to blink, saccade, cardiac, and myographic artifacts 

were identified by eye and rejected, and the remaining components recomposed to form the final 

subject data.  
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Time-frequency maps were extracted using wavelet decomposition (continuous wavelet 

transform; CWT) and individual epoch rejection was performed with short-time Fourier 

transform (STFT).   Wavelet transformation was chosen as it demonstrated superiority in 

maintaining both temporal precision while also accounting for the disparity in duration of slow 

versus fast waves[53]. STFT was chosen for epoch rejection as high-power, artifactual 

frequencies would require maintenance over longer periods to be deemed a contaminant. For 

these data, 6000 ms data vectors (3 seconds pre-action to 3 seconds post-action) were extracted 

and preprocessed as described above. For the calculation of STFT, individual epochs were first 

divided into bins of 125 ms duration with 25% overlap. STFT was then performed in MATLAB 

extracting spectral power for 1-150 Hz (with function spectrogram) on each channel. These were 

then squared to give power values. Next, bins corresponding to timepoints 2 seconds pre-action 

to 1 second pre-action were identified for baselining and mean and standard deviation of power 

values calculated. All other timebins were then z-scored using these values. The beta and gamma 

power z-score for each timebin was then calculated by averaging the z-score value of each 

constituent frequency of the band (12-30 Hz for beta, 40-140 Hz for gamma). If any timebin in 

any channel of the epoch contained an average beta power z-score value greater than 100, or 

average gamma power z-score value greater than 100, the trial was excluded. 

 

For statistical analysis and visualization, CWT was performed on the included epochs. First, a 

discrete Fast Fourier transform was performed on each individual trial. Next, for each frequency 

we analyzed (1-125 Hz), a Morelet wavelet was generated and convolved with the data. An 

inverse discrete Fourier transform was then performed on the data. These data were then 

converted to power values by squaring. For each epoch, channel, and frequency, timepoints 
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corresponding to the period 2 seconds prior to the action to 1 second prior were identified, and 

the mean and standard deviation taken. The data timepoints within the epoch and the particular 

channel were then z-scored according to the corresponding mean and standard deviation 

channel).  

 

Timing Synchronization 

hdEEG 

Task and behavioral events were transmitted from the experimental laptop to an Arduino Uno R3 

board via USB to deliver transistor-transistor logic pulses to the EEG amplifier. For the Net 

Amps 200 system, the pulse was delivered from Arduino to amplifier with a DB9 cable. For the 

Net Amps 400 system, the pulse was either delivered via DB9 to a clock box which connected to 

the amplifier via MRTJ cable, or via DB9 to a HyperGrip adapter. Four events were employed: 

1. The answering of any quiz question, or late multiple choice message display; 2. Any visual 

state change (i.e. board disappearance, puzzle completion, quiz display); 3. Confirmation of the 

action with the spacebar, and 4. Selection of the block with the mouse.  Timing testing with a 

photodiode was employed as described previously[13]. For the Net Amps 200 system and clock 

box connection, the photodiode reflex appeared 70 ms after the arrival of the TTL pulse; and for 

the hypergrip cable, the photodiode reflex appeared 78 ms prior to the TTL pulse. Thus, a 148 

ms difference was noted between the two connections. Epochs acquired from each system were 

extracted from raw data with these offsets applied.  

 

EyeLink 
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Behavioral performance and pupillometry were synchronized via Ethernet messages sent 

between the experimental laptop and EyeLink PC (SR Research, Inc.). These messages included 

timing data on block selection, block movement, action confirmation, quiz display, and quiz 

answers. In addition to timing details, Ethernet messages also detailed the block selected, 

movement direction, quiz accuracy, and confidence slider submission position. 

 

Statistical Analysis 

Behavioral Data 

Following behavioral data acquisition, .psydat files were read into MATLAB (R2019, 

Mathworks) to extract raw data from the .psydat files. Designations for “aware” and “unaware” 

actions based upon quiz answers contained in the .psydat files were analyzed at the session level. 

The multiple choice answers (either “Y” for correct, or “N” for incorrect) were aggregated across 

all six runs. The same was done for raw confidence values (-450 to 450, a 900-pixel span 

centered on the screen). Confidence values were then sorted by percentile. Any correct answer 

followed by high confidence (>75th percentile within the subject’s data) was marked “Aware”, 

and any incorrect answer followed by low confidence (<25th percentile within the subject’s data) 

was marked “Unaware”. These designations were then used to sort aware and unaware epochs in 

EyeLink and hdEEG data.  

 

One-sample t-tests testing runs 2-5 pairwise with run 1 were used to compare run-by-run effects 

(p < 0.05, Benjamini-Hochberg false-discovery rate correction). One-sample t-tests were used to 

compare differences between days (p < 0.05) in awareness, unawareness, confidence, and 

accuracy. One sample t-tests were used to test awareness rates for each quiz timepoint (i.e. quiz 
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n-6 prior to an aware quiz was compared against quiz n-6 prior to an unaware quiz). The twelve 

timebins were corrected for significance with the Benjamini-Hochberg procedure.  Two-sample 

t-tests were used to compare differences between sexes (p < 0.05) in awareness, unawareness, 

confidence, and accuracy. Spearman correlation coefficients were used to compare relationships 

between video engagement and awareness, unawareness, confidence, and accuracy. Spearman 

correlation coefficients were also used to compare relationships between video familiarity and 

awareness, unawareness, confidence, and accuracy. χ2 tests  were used to compare outcomes for 

awareness and unawareness based on identity (red vs white): 2. Two-category (aware, unaware); 

2. Three-category (aware, unaware, other); 3. Five-category (aware, unaware, mid-high 

confidence, mid-low confidence, unvalidated). Mid-high trials have confidence percentile >50% 

and ≤75% (regardless of answer on multiple choice); Mid-low trials have confidence percentile 

≥25% and ≤50% (regardless of answer on multiple choice); Unvalidated trials have either 

incorrect move identification on multiple choice and confidence percentile >75% or correct 

move identification on multiple choice and confidence percentile <25%. 

 

hdEEG Spatiotemporal Analyses 

To correct for multiple comparisons, we performed spatiotemporal cluster-based permutation 

analyses on our data[54]. In this analysis, an aggregate null distribution is constructed by 

randomly permuting our EEG data and identifying significant timepoints with spatially or 

temporally adjacent to one another, which form spatiotemporal clusters. Initially, an aggregate 

spatiotemporal null distribution was generated for 5000 permutations. For each iteration, 

baseline data (2 seconds pre-action to 1 second before action) were shuffled with test period data 

(1 second pre-action to 2 seconds post-action). Each individual timepoint between aware and 
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unaware epochs was tested for significance with a paired 2-tailed t-test and significance level p < 

0.05. Spatial adjacency was determined by a binary matrix, representing each electrode and the 

electrode number (1-257) of adjacent electrodes. Temporal adjacency was determined if two 

surrounding timepoints were also deemed significant. Following identification of spatiotemporal 

clusters, the summed absolute t-value (negative and positive clusters were identified differently) 

was calculated for all clusters. The cluster with the most positive and most negative t-value was 

then added to the respective aggregate null distribution. Any cluster within the top 5% of the 

aggregate null distribution was considered to be statistically significant. Timecourse data were 

constructed using the findings of the aggregate null distribution for voltage and frequency power. 

For timepoints within timecourses to be considered significant, their constituent spatiotemporal 

cluster had to exceed set thresholds of temporal duration and spatial extent (20 ms and 20 

electrodes for event-related potential voltage, 200 ms and 10 electrodes for frequency power z-

score). Additionally, within individual electrode timecourses, the absolute duration of a series of 

significant timepoints had to exceed 20 ms to be considered as such.  

 

EyeLink Temporal Analyses 

Given the lack of spatial information within pupillometric data (i.e. pupil diameter, blink rate, 

and saccade rate), clustering along spatial lines was not possible. Therefore, we performed 

cluster permutation on temporal lines only. As with spatiotemporal cluster permutation, an 

aggregate temporal null distribution was initially generated with 5000 iterations. For each 

iteration, baseline data (the average value of all timepoints 2 seconds pre-action to 1 second 

before action) were permuted with test period data (1 second pre-action to 2 seconds post-

action). The permuted data were then tested with a paired one-sample t-test, and as with 
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spatiotemporal clustering, clusters were identified by temporal adjacency (i.e. statistically 

significant timepoints occurring in sequence), and negative and positive clusters were considered 

separately. Within cluster, t-values were summed and the cluster with the most positive and most 

negative t-value sum was then added to the respective aggregate null distributions. Clusters were 

then identified on the original unpermuted data with the same method as the permuted data (one 

sample t-test compared to baseline mean), and then tested against the aggregate null distribution. 

 

Pupil Run-by-Run Data 

Run-by-run calculation of pupil data was performed in a similar manner as for run-by-run 

behavioral metrics. Within individual aware and unaware epochs, the mean of all pupil diameter 

values one second prior to action until action performance was taken. These were then averaged 

within subject and then across subjects. One-sample t-tests were then used to compare runs 2-6 

against the pupil diameter of run 1 (p < 0.05, Benjamini-Hochberg false-discovery rate 

correction).  

 

Results 

Behavioral Results – Task Validation 

To determine if our paradigm had reliably induced the loss of awareness of action in a 

manner that subjects could self-assess and recognize, we assessed the validation rates and 

frequencies of awareness and unawareness in our data. Actions in which the subject correctly 

identified the block and direction of move, and indicated high confidence in their answer was 

deemed “aware”. Actions in which the subject incorrectly identified the block and direction of 

move, and indicated low confidence in their answer was deemed “unaware”. Confidence was 
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defined relatively within subject; high confidence was defined as being >75th percentile amongst 

the subject’s confidence submissions, and low confidence was defined as being <25th percentile 

amongst the subject’s confidence submissions (Fig 1C). We found that if subjects had indicated 

high confidence on the confidence question, there was a 90.6% probability they had that they had 

correctly identified the block they had moved (expected: 100%). We also found that if subjects 

indicated low confidence on the confidence question, there was a 68.1% probability that they had 

incorrectly identified the block (expected: 75%; given the four options, being at chance level 

would indicate that only 25% should be correct; Fig 1D). Subjects produced a mean of 32.6 ± 8.0 

aware and 25.5 ± 6.5 unaware trials summed across the two testing days (Fig 1E). 

Lastly, we found no relationship between block identity (red block vs. white block) on 

awareness/unawareness outcomes (Table S1). We found no effects of sex on awareness, 

unawareness, raw confidence, and accuracy (Table S2). We found no effects of age on 

awareness, raw confidence level, and accuracy, and a statistically significant, albeit small 

relationship between age and unawareness rates (r = -0.29, p = 0.02; Fig S2). Of our 67 subjects, 

61 completed both testing days of the experiment. We found no effects of testing day on 

unawareness, awareness, accuracy, nor confidence. (Table S3).  

To assess the effects of the background distractor task on accuracy and awareness rates, 

we had subjects rate each video on a 5-point Likert scale for both their familiarity with the video 

and its subject matter, and their interest and engagement with the video. We found no effects of 

familiarity and engagement on awareness, unawareness, accuracy, nor confidence, neither within 

subjects nor across subjects (Table S4, S5).  
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Event-Related Potentials – Volitional and Perceptual 

To understand the pre-action, anticipatory mechanisms underlying AoA, and the post-

action perceptual signals underlying AoA, we performed 256-channel high-density scalp EEG on 

subjects as they completed the Rush Hour Task/ Immediately prior to the performance of the 

action, we noted a pre-motion positivity (PMP) over frontal regions, which begins ~100 ms prior 

to action and peaks at action performance (Fig. 2A, B). The amplitude of the PMP was 

heightened prior to aware actions as compared to unaware actions. Following the action, we 

noted the presence of a well-known perceptual signal, the somatosensory awareness potential, or 

N140. The N140 peaked over right parietal regions (contralateral to the hand executing the 

action and confirmation) ~120 ms following the action, and was greater in amplitude for aware 

actions (Fig 2A, B).  

 

Event Related Potentials – Precursors and Consequences 

In addition to the potentials observed in the periphery of action, we also observed 

volitional precursors occurring in long timescales before (beyond 200 ms pre-action) and 

attentional consequences in long timescales after (beyond 200 ms post-action) action. Pre-action, 

we observed a robust negative deflection in scalp voltage over parietal and occipital regions for 

both aware and unaware actions (Fig 3C), beginning ~600 ms prior to action and peaking ~150 

ms prior to action performance (Fig 3B). The magnitude of this potential did not differ between 

aware and unaware actions. The timing of this potential, the largest observed ERP in magnitude 

and duration in our experiment, resembles that of the late BP, generated by primary motor 

cortices[21]. Notably, the parietal and occipital distribution of this potential does not align with 

the late BP’s spatial distribution over supplementary and primary somatomotor regions. Prior to 
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this potential, we have noted a novel potential, the pre-readiness positivity (PR+), over parietal 

and occipital regions (Fig 3A). This magnitude of the potential was greater in unaware actions 

compared to aware actions. To ensure that the PR+ was not the result of carry-over from the 

previous move, we analyzed the mouse click associated with the quizzed move, as well as the 

confirmation preceding the selection of the quizzed move. We found no differences in these 

between aware and unaware actions, suggesting that the PR+ was not the result of these action 

types (Fig S3). In late time periods following action, we observed the well-known postperceptual 

attention-related potential, the P300[55-59]. As with the N140, the P300 also peaked over 

parietal and occipital regions, ~350 ms following the action, and was also greater in amplitude 

for aware actions (Fig 3D, E).  

 

Time-Frequency Analyses 

To further understand the links between AoA and both volition and perception, we 

performed time-frequency analyses on our EEG data (Fig 4). We found that prior to aware 

actions, there was a greater event-related desynchronization in the alpha (8-12 Hz) range over 

frontal and occipital regions (Fig 4A). Alpha ERD in aware actions began ~1000 ms prior to 

action, peaking at the performance of the action (Fig 4B). We also noted event-related 

desynchronization in beta (12-30 Hz) range over right somatomotor regions preceding aware 

actions, a finding consistent with previous literature on action generation (Fig 4C). Beta ERD in 

aware actions began ~150 ms prior to action, and as with alpha ERD, peaked at action 

performance (Fig 4D). Following action, we noted an increase in theta power (4-8 Hz) 

throughout all electrodes following both aware and unaware actions; however, the magnitude of 

the increase in theta over midfrontal regions specifically was greater for aware actions compared 
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to unaware actions (Fig 4E). The increase in theta power began immediately following action for 

both aware and unaware actions, and peaked ~300 ms following aware actions and ~250 ms 

following unaware actions (Fig 4F). Lastly, we observed a robust post-movement beta rebound 

throughout all electrodes in both aware and unaware actions (Fig 4G), beginning at action and 

reaching steady state ~600 ms post-action. The magnitude of the post-movement beta rebound in 

frontal regions following aware actions exceeded that of unaware actions, from ~1400 ms post-

action onwards (Fig 4H). 

 

 

Eye Metrics - Immediate 

To assess the relationship between perceptual awareness and AoA, subjects underwent 

pupillometry and eye tracking while performing the Rush Hour task. Following the confirmation 

of a move and subsequent disappearance of the board in preparation for a quiz, a consistent 

increase in blink rate was observed, beginning ~200 ms post-action and peaking ~500 ms post-

action (Fig 5A). This increase was greater in magnitude for aware actions compared to unaware 

actions. Post-action increases in pupil diameter (peaking ~1300 ms post-action) and saccade 

rates (peaking at ~350 ms post-action) were observed in both aware and unaware actions, and did 

not differ in magnitude (Fig 5B, C). 

 

Behavioral and Physiological Metrics – Long Term  

To assess the presence of physiological metrics of fatigue across runs, we analyzed pre-

action pupil diameter by run (Fig. 5D). We calculated the average pupil diameter one second 

prior to action (-1000 ms to 0) in all trials, regardless of awareness designation, and found 
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consistent, statistically significant decreases in pupil diameter with each succeeding run. Pupil 

diameter peaked in Run 1 (mean pupil diameter: 3.8 mm) and fell to its lowest in Run 5 (mean 

pupil diameter: 3.6 mm).  

To assess the effects of fatigue and arousal on the task, we assessed the averages of four 

key metrics at the whole-run level across the six runs of the experiment: awareness (percentage 

of aware quizzes), unawareness (percentage of unaware quizzes), quiz accuracy (move 

identification), and confidence (percentile)(Fig 5E). We found that there was a trend towards 

decreased accuracy across the six runs. As compared to Run 1, we observed statistically 

significant decreases in awareness in later runs (Runs 2, 4, 6), decreases in confidence (Runs 4, 

5, 6), and increases in unawareness rate (Runs 5, 6).  

To determine if awareness and unawareness was a sustained state, we looked at whether 

awareness levels remained the same in successive quizzed moves. The median time period 

between quizzes was 46.2 seconds, allowing us to observe the maintenance of AoA across 

multiple minutes. We found that given a quizzed move was aware, the three quizzed moves prior 

were more likely to also have been aware as compared to if the given move was unaware (with 

the current quizzed move as move n, n-3: 22.8% aware if aware vs 16.4% aware if unaware, n-2: 

22.6% aware if aware vs 14.5% aware if unaware, n-1 21.0% aware if aware vs 14.0% aware if 

unaware). We also found the same for the two quizzed moves following the current move (n+1: 

20.1% aware if aware vs. 13.3% aware if unaware, n+2: 20.6% aware if aware vs. 13.1% aware 

if unaware.  We found that awareness rates for quizzed moves beyond n-3 and n+3 generally did 

not differ regardless of whether move n was aware or unaware (with the exception of n-5: 22.2% 

aware if aware vs. 18.3% aware if unaware). Our findings suggest that awareness is a sustained 

state over tens of seconds (Fig. S4).   
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Discussion 

 

Our behavioral paradigm has demonstrated that it can reliably separate aware actions from 

unaware ones, with high rates of behavioral validation. This has enabled us to study the 

spatiotemporal dynamics of neural activity underlying AoA. We have found clear differences 

pre- and post-action, in behavioral, pupillometric, ERP, and time-frequency domains between 

aware and unaware actions. Overall, many ERPs we observed, the PMP, N140, and P300, have 

all been observed in prior work on perceptual awareness and volitional action. The presence of a 

heightened PMP prior to action suggests increased pre-action volitional monitoring in AoA, 

while the presence of a heightened N140 suggests that post-action somatosensory processes 

allow for the report of action. Our novel pre-action potential, the PR+, suggests that aware and 

unaware actions may differ in neural activity up to 800 ms pre-action. Our observed negativity 

600 ms prior to action showed temporal but not spatial resemblance to the late BP, suggesting it 

may be a separate action-related process. This was observed regardless of if an action was aware 

or unaware, suggesting that negative cortical potentials may be common across action-related 

paradigms. Our time-frequency analyses further indicated that common neural patterns may 

underlie both volition and perception, and our findings of pre-action event-related 

desynchronization in the alpha/beta band also suggest that neural mechanisms which are 

common to both volition and perception are present during aware actions.  

The report-based and time between action and quiz raises the question of whether the 

observed effects are purely the result of memory-related neural mechanisms. It is certain that 

given sufficient time, such as the course of minutes or hours, the ability to report a move will 
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diminish. However, we observe differences in physiological metrics well before and within the 

bounds of iconic memory (a few hundred milliseconds)[60, 61]. Furthermore, the time delay 

between the action performed and the presentation of a quiz remains within the bounds of short-

term memory, measured on the scale of tens of seconds[62, 63]. Thus, our findings cannot be 

purely attributable to memory-related mechanisms.  

 

Our findings also suggest that long timescale, post-action reflection plays a role in 

maintaining AoA and the ability to report an action. We found that the P300, a later potential, 

was heightened following aware actions, suggesting that AoA requires post-action attention and 

preparation to report. In addition to our study, the combination of the N140 and P300 is observed 

across multiple somatosensory task paradigms, suggesting that the P300 is an attentional 

consequence of somatosensation[64-66]. We also found increases in midfrontal theta in aware 

actions, a reflective mechanism seen in cognitive control tasks involving a motor component[67, 

68]. Our findings also provide support to other studies which have highlighted the role of 

midfrontal theta in successful navigation[69-71]. In the longer post-action timescales (>1500 s), 

we noted increases in post-movement beta rebound following aware actions. Post-movement 

beta rebound is generated by inhibition of motor cortex and preparation for sensory feedback of 

action, a long-term consequence of action[72-75].   

The eye metrics seen in our finding indicate that spontaneous blink rate may be the most 

indicative of AoA. Previous primate research has suggested that somatosensory areas, in 

conjunction with visual areas, are important contributors to spontaneous eyeblinks, indicating 

possible overlap with AoA-related brain regions[76]. Additionally, blink rates are known to 

correlate with dopamine levels in the brain, suggesting a dopaminergic mechanism for AoA[77]. 
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Saccades, on the other hand, are hallmarks of visual attention, with direct links from primary 

visual cortex[78, 79]. The fact that we found no difference in saccade rates between aware and 

unaware actions suggests that the visual modality is less important than somatosensation in 

maintaining AoA. 

We found behavioral patterns and physiological measurements suggesting a heavy role of 

arousal and fatigue in the maintenance of AoA. These patterns and biological signals occurred 

over the course of multiple seconds or even over the course of minutes. This sampling frequency 

allowed us to look at state-based factors of awareness within a typical attention span. Our 

sequential quiz-to-quiz analyses suggest that periods of awareness are maintained for ~4.5 

minutes, nearly half of an entire run. Our run-by-run behavioral findings of decreased 

confidence, accuracy, and awareness, as well as increased unawareness rates, suggest that long-

term decreases in arousal compromise AoA. Our run-by-run decreases in pupil diameter support 

our behavioral findings, with physiological evidence for decreased arousal across runs. 

While our study has encapsulated much of the action patterns and planning seen in 

naturalistic AoA, it still remains to be seen if the kinesthetics underlying an action affect AoA. 

Our study has probed navigation, only one naturalistic situation under which AoA is lost. Other 

effortful actions, such as those involving physical fatigue, or grasping while obstructed may 

show diverging neural pathways[80-82]. Furthermore, a whole body experience may differ from 

a simple point-and-click game, especially when coordinating multiple limbs[83, 84]. 

Additionally, our study has also probed only the cortical mechanisms of AoA. Given that action 

is known to be generated in the cerebellum, brainstem, basal ganglia, and other subcortical 

regions, further studies with fMRI and other imaging modalities are needed[85-88]. Lastly, our 

behavioral experiment is readily adaptable to interventional modalities which have been tested 
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on motor regions, such as transcranial magnetic stimulation and transcranial alternating current 

stimulation[89-92]. These studies will allow causal neuroanatomical determinants of AoA to be 

conclusively identified. 

The overlap between findings in our clinically normal population and populations with 

impaired AoA is notable. Two of our time-frequency findings, midfrontal theta and beta 

desynchronization, are known to be diminished in patients with Parkinson’s disease[93-95]. 

Furthermore, pre-movement event-related desynchronization  and post-movement beta rebound 

are attenuated in amylotrophic lateral sclerosis, and beta hypersynchronization is noted in 

dystonia[94, 96]. This suggests that the aberrant AoA seen in these movement disorders may be 

related to loss of control over normal awareness processes. Further testing of our novel 

behavioral paradigm in clinical populations will be able to validate this hypothesis, and 

determine its value as a part of diagnostic batteries.  

Our findings have given a definitive answer to the Two Williams Debate. Given our 

findings of both pre- and post-action differences in neural activity between aware and unaware 

actions, we conclude that it is impossible to ascribe the neural bases of AoA to purely a priori, 

volitional or purely a posteriori, perceptual mechanisms. Thus, both perspectives held in the 

Two Williams Debate hold merit in explaining the mechanisms underlying action. Furthermore, 

our longer-term findings in the precursors and consequences of action suggest that the 

dichotomous view of action mechanisms as either pre- or post-action is incomplete. These long-

term findings demonstrate that beyond its characterization with dynamic, transient neural 

activity, AoA is also characterized by static, long-term states. Further investigation of AoA 

through the perspective of individual events and overarching states in tandem will help reveal the 

richness of neural mechanisms underlying voluntary action.  
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Supplementary Table S1. Awareness and unawareness by block color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Total number of Red or White blocks quizzed across all participants, and percent of total. 
2Definitions as follows, based on Figure 1C, D:  Aware trials have correct move identification on multiple choice 
and confidence percentile >75%; Unaware trials have incorrect move identification on multiple choice and 
confidence percentile <25%; Mid-High trials have confidence percentile >50% and ≤75% (regardless of answer on 
multiple choice); Mid-Low trials have confidence percentile ≥25% and ≤50% (regardless of answer on multiple 
choice); Unvalidated trials have either incorrect move identification on multiple choice and confidence percentile 
>75% or correct move identification on multiple choice and confidence percentile <25%. 

 

 

 

 

 

 

  

 Red Blocks1 White Blocks1 

 N (%) N (%) 
Aware2 163 (21.0%) 1,614 (21.2%) 

Unaware2 156 (20.0%) 1,354 (17.8%) 
Mid-High2 201 (25.8%) 1,870 (24.5%) 
Mid-Low2 187 (24.0%) 1,977 (25.9%) 

Unvalidated2 72 (9.2%) 812 (10.6%) 
Total 779 (100%) 7,627 (100%) 

 χ2 p-value 
Aware vs Unaware 1.25 0.26 

 
Aware vs Unaware vs 
(Mid-High, Mid-Low 

or Unvalidated)   

2.53 0.28 
 
 
 

Aware vs Unaware vs 
Mid-High vs Mid-

Low vs Unvalidated   
 

4.86 0.30 
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Supplementary Table S2. Relationship between key behavioral metrics and sex. 

 

 

 

 
1Two-tailed two-sample t-test, with Benjamini-Hochberg FDR correction for multiple comparisons. N is number of 
participants. 
2Definitions: Awareness is percentage of all quizzed trials in a participant that have correct move identification on 
multiple choice and confidence percentile >75%; Unawareness is percentage of all quizzed trials in a participant that 
have incorrect move identification on multiple choice and confidence percentile <25%; Accuracy is percentage of all 
quizzed trials in a participant that have correct move identification on multiple choice (regardless of confidence); 
Confidence is average confidence rating across all quizzed trials in a participant (regardless of quiz accuracy). 

 

 

  

 Male Female  
 N = 24 N = 43 p-value1 

Awareness2 21.3±1.7% 21.3±1.0% 0.99 
Unawareness2 17.6±1.9% 18.4±1.3% 0.61 

Accuracy2 67.6±7.2% 64.4±4.6% 0.61 
Confidence2 59.1±5.9% 54.9±4.6% 0.61 
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Supplementary Table S3. Relationship between key behavioral metrics and testing day. 

 

 

 

 
1Two-tailed paired t-test, with Benjamini-Hochberg FDR correction for multiple comparisons. N is number of 
participants. 
2Definitions: Awareness is percentage of all quizzed trials in a participant that have correct move identification on 
multiple choice and confidence percentile >75%; Unawareness is percentage of all quizzed trials in a participant that 
have incorrect move identification on multiple choice and confidence percentile <25%; Accuracy is percentage of all 
quizzed trials in a participant that have correct move identification on multiple choice (regardless of confidence); 
Confidence is average confidence rating across all quizzed trials in a participant (regardless of quiz accuracy). 

 

 

  

 Day 1 
N=61 

Day 2 
N=61 

p-value1 

 
Awareness2 21.7±1.1% 22.3±1.1% 0.50 

Unawareness2 17.4±1.0% 17.0±1.2% 0.61 
Accuracy2 64.9±4.1% 67.6±4.5% 0.15 

Confidence2 57.0±3.7% 57.9±4.0% 0.98 
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Supplementary Table S4. Relationship between key behavioral metrics and video engagement. 

 

1Spearman correlation coefficient ρ was calculated to relate video engagement questionnaire scores to the key 
behavioral metrics across runs within each participant. N is number of participants. 
2Definitions: Awareness is percentage of all quizzed trials in a participant that have correct move identification on 
multiple choice and confidence percentile >75%; Unawareness is percentage of all quizzed trials in a participant that 
have incorrect move identification on multiple choice and confidence percentile <25%; Accuracy is percentage of all 
quizzed trials in a participant that have correct move identification on multiple choice (regardless of confidence); 
Confidence is average confidence rating across all quizzed trials in a participant (regardless of quiz accuracy). 

 

 

  

 Engagement 
(Average ρ)1 

Significant 
Positive ρ1 (N) 

Significant 
Negative ρ1 (N) 

Non-Significant 
ρ1 (N) 

Awareness2 -0.01 1 2 43 
Unawareness2 0.06 2 0 44 

Accuracy2 0.03 1 2 43 
Confidence2 -0.04 1 1 44 
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Supplementary Table S5. Relationship between key behavioral metrics and video familiarity. 

 

 

 

 

1Spearman correlation coefficient ρ was calculated to relate video familiarity questionnaire scores to the key 
behavioral metrics across runs within each participant. N is number of participants. 
2Definitions: Awareness is percentage of all quizzed trials in a participant that have correct move identification on 
multiple choice and confidence percentile >75%; Unawareness is percentage of all quizzed trials in a participant that 
have incorrect move identification on multiple choice and confidence percentile <25%; Accuracy is percentage of all 
quizzed trials in a participant that have correct move identification on multiple choice (regardless of confidence); 
Confidence is average confidence rating across all quizzed trials in a participant (regardless of quiz accuracy). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Familiarity 
(Average ρ)1 

Significant 
Positive ρ1 

Significant 
Negative ρ1 

Non-
Significant  ρ1 

Awareness2 0.02 2 2 41 
Unawareness2 0.08 2 0 43 

Accuracy2 0.00 1 1 43 
Confidence2 0.00 1 2 42 
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Figure Legends 

Figure 1. 

A. Experimental task. Subjects (N = 67) played the task game by navigating a red block out of 

the bounds of the grid by moving obstructing blocks out of the way. Periodically, the game board 

would disappear, and a two part quiz could be shown: 1. A multiple choice question in which 

subjects selected the move just performed (direction and block) and 2. Indicated their confidence 

in their choice. B. Experimental progression. The experiment consisted of one training and two 

testing days. On the training day, subjects were first trained on a fixed set of puzzle 

configurations for three 10-minute run. Next, subjects completed the puzzles while a background 

distractor video played. After each run, subjects had to recount what they recalled from the 

distractor video. Subjects completed three runs with the background distractor on the training 

day. The two testing days were identical. Subjects completed six runs with the background 

distractor and with quizzes for awareness administered periodically. C. All quiz results amongst 

all subjects (n = 9,966). Any quiz in which the subject correctly identified the block and 

indicated high confidence was designated aware. Any quiz in which the subject incorrectly 

identified the block and indicated low confidence was designated unaware. High confidence was 

designated as any confidence above the 75th percentile of the subject’s answers. Low confidence 

was designated as any confidence below the 25th percentile of the subjects answers. D. 

Validation rates. Amongst high confidence responses, 90.6% were correct (expected: 100% 

correct), and amongst low confidence responses, 68.1% were incorrect (expected: 75% incorrect 

as the subject had a ¼ chance of randomly guessing correctly). E. Subject aware and unaware 
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trial totals. Subjects attained an average of 32.6 aware and 25.5 unaware trials (both testing day 

totals summed).  

 

Figure 2. 

Candidate potentials for AoA. A. Representative topoplot for the pre-movement positivity 

(PMP). Statistically significant electrodes as determined by spatiotemporal cluster permutation 

analyses (see Methods – hdEEG spatiotemporal analyses) are shown for aware, unaware, and 

aware minus unaware conditions. Times indicated are relative to the confirmation of the action. 

B. Individual timecourse of PMP with SEM. Blue traces indicate aware actions, while yellow 

traces indicate unaware actions. Crimson timepoints indicate statistically significant timepoints 

as determined by spatiotemporal criteria (see Methods – hdEEG spatiotemporal analyses). C. 

Representative topoplot for the somatosensory awareness potential (N140). D. Individual 

timecourse of N140 with SEM. 

 

Figure 3. 

Precursors and consequences of action. A. Representative topoplots for the pre-readiness 

positivity (PR+). Statistically significant electrodes as determined by spatiotemporal cluster 

permutation analyses (see Methods – hdEEG spatiotemporal analyses) are shown for aware, 

unaware, and aware minus unaware conditions. B. Individual timecourse of PR+. Blue traces 

indicate aware actions, while yellow traces indicate unaware actions. Crimson timepoints 

indicate statistically significant timepoints as determined by spatiotemporal criteria (see Methods 

– hdEEG spatiotemporal analyses). C. Representative topoplots of the characteristic pre-action 

negativity. D. Representative topoplots of the P300. E. Individual timecourse of P300 with SEM.  
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Figure 4. 

Time frequency analyses. A. Representative topoplots demonstrating pre-action alpha event-

related desynchronization (ERD). Statistically significant electrodes as determined by 

spatiotemporal cluster permutation analyses (see Methods – hdEEG spatiotemporal analyses) are 

shown for aware, unaware, and aware minus unaware conditions. B. Individual timecourse of 

alpha ERD shown with SEM. Blue traces indicate aware actions, while yellow traces indicate 

unaware actions. Crimson timepoints indicate statistically significant timepoints as determined 

by spatiotemporal criteria (see Methods – hdEEG spatiotemporal analyses). C. Representative 

topoplots demonstrating pre-action beta ERD. D. Individual timecourse of beta ERD shown with 

SEM. E. Representative topoplots demonstrating post-action midfrontal theta. F. Individual 

timecourse with midfrontal theta shown with SEM. G. Representative topoplots showing post-

movement beta rebound (PMBR). H. Individual timecourse with PMBR shown with SEM. 

 

Figure 5. 

Action-related eye metrics and long-term behavioral and physiological metrics. A. Blink rates 

following the confirmation of an action. B. Z-scored pupil diameter before and after the 

confirmation of an action. C. Saccade rates before and after confirmation of an action. Blue 

traces indicate aware actions, while yellow traces indicate unaware actions. Crimson timepoints 

indicate statistically significant timepoints as determined by spatiotemporal criteria (see Methods 

– EyeLink temporal analyses) D. Run-by-run averages of raw pupil diameter. Significance of 

run-by-run findings was assessed with a one-sample t-test of the current run against Run 1 
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corrected with the Benjamini-Hochberg procedure. E. Run-by-run averages of quiz accuracy, 

confidence percentile, awareness rate, and unawareness rate with SEM. 

 

Supplementary Figure 1. 

Experimental setup. Subjects performed the task using items shown in green. Pupillometry-

related items are shown in yellow, and EEG-related items are shown in purple. The Arduino to 

amplifier connection was established with three methods (1) direct DB9 connection (N = 30 

subjects), (2) DB9 to clock box (N = 7 subjects), and (3) DB9 to hypergrip (N = 20 subjects). 

 

Supplementary Figure 2 

Relationship between age and key metrics of A. Accuracy (r = 0.09 p = 0.47), B. Confidence (r = 

0.18, p = 0.15), C. Awareness (r = -0.18, p = 0.15) and D. Unawareness (r = -0.29*, p = 0.02*). 

 

Supplementary Figure 3. 

Assessments of other epochs for potential leakage to the PR+. A. Representative topoplots for 

the move selection associated with the quizzed action. B. Individual timecourse of the move 

selection epoch with SEM. C. Representative topoplots for the confirmation of the move 

immediately preceding a quizzed action. D. Individual timecourse of the confirmation of the 

move preceding a quizzed action with SEM. Blue traces indicate aware actions, while yellow 

traces indicate unaware actions. Crimson timepoints indicate statistically significant timepoints 

as determined by spatiotemporal criteria (see Methods – hdEEG spatiotemporal analyses). 

 

Supplementary Figure 4.  
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Awareness rates surrounding a move, designated move n, which is either aware (blue) or 

unaware (orange). Statistical significance was assessed with a one sample paired t-test with 

Benjamini-Hochberg FDR correction.  

 

 

Supplementary Table S1. 

Block identity association with awareness levels. Red indicates the target block which must be 

moved to solve the puzzle, while white indicates any obstructing block. Unvalidated answers 

were considered those that were either correct and low confidence, or incorrect and high 

confidence. 

χ2 tests compared awareness and unawareness for the target red block versus other white blocks. 

Three categorizations were used: 1. Two category (aware vs. unaware) 1. Three category (aware, 

unaware, other) and 2. Five-category (aware, unaware, mid-high confidence, mid-low 

confidence, unvalidated). The “other” category was defined as any quiz in either mid-high, mid-

low, or unvalidated categories.  

 

Supplementary Table S2. 

Relationship between sex and four key metrics of awareness, unawareness, quiz accuracy, and 

quiz confidence. Sex was tested with a two-tailed two-sample t-test (p<0.05).  

 

Supplementary Table S3 

Relationship between testing day and four key metrics of awareness, unawareness, quiz 

accuracy, and quiz confidence. day was tested with a two-tailed paired t-test (p<0.05).  
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Supplementary Table S4 

Relationship between video engagement rating and within-run averages of four key metrics of 

awareness, unawareness, quiz accuracy, and quiz confidence (N = 46). Engagement correlations 

within subject were assessed with a Spearman correlation coefficient. The number of statistically 

significant and non-significant within-subject correlations is listed. 

 

Supplementary Table S5 

Relationship between video familiarity rating and within-run averages of four key metrics of 

awareness, unawareness, quiz accuracy, and quiz confidence (N = 45). Engagement correlations 

within subject were assessed with a Spearman correlation coefficient. The number of statistically 

significant and non-significant within-subject correlations is listed. 
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Figure 1 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.08.15.608153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608153
http://creativecommons.org/licenses/by-nd/4.0/


 Jin, et al              54    
 

 

Figure 2 

 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.08.15.608153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608153
http://creativecommons.org/licenses/by-nd/4.0/


 Jin, et al              55    
 

 

Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Figure 1. 
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Supplementary Figure 2 
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Supplementary Figure 3 
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Supplementary Figure 4 
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