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Abstract

Molecular hydrogen (H>) is among the most central, but least understood, metabolites in the human
gastrointestinal tract (gut). H> gas is produced in large quantities during bacterial fermentation and
consumed as an energy source by bacteria and archaea. Disruption of Hx cycling is linked to
gastrointestinal disorders, infections, and cancers, with Hz used as an indicator of gut dysfunction
through breath tests. Despite this, the microorganisms, pathways, and enzymes mediating H:
production remain unresolved. Here we show that a previously uncharacterised enzyme, the group
B [FeFe]-hydrogenase, drives most fermentative H, production in the human gut. Analysis of stool,
biopsy, and isolate (meta)genomes and (meta)transcriptomes show this hydrogenase is encoded by
most gut bacteria and is highly expressed. Through analysis of 19 taxonomically diverse gut isolates,
the group B [FeFe]-hydrogenase produces large amounts of H> gas and supports fermentative
growth of both Bacteroidetes and Firmicutes. Bacteroides particularly dominate H, production.
Biochemical and spectroscopic characterisation shows purified group B [FeFe]-hydrogenases are
catalytically active and bind a di-iron active site. These hydrogenases are highly enriched in the guts
of healthy individuals, but significantly depleted in favour of other fermentative hydrogenases in
Crohn’s disease. Furthermore, we show that metabolically flexible respiratory bacteria are the most
abundant H; oxidizers in the gut, not sulfate reducers, methanogens, and acetogens as previously
thought. This combination of enzymatic, cellular, and ecosystem-level analysis provides the first
detailed understanding of H; cycling in the human gut and reveals new links between microbiota

function and gastrointestinal health.
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Introduction

Molecular hydrogen (H;) is a central intermediate in gastrointestinal digestive processes. Most
bacteria within the gut hydrolyse and ferment dietary carbohydrates to absorbable short-chain fatty
acids'2 and large quantities of H, gas*®°. H, accumulates to high micromolar levels in the gut, where
it is primarily consumed by other microbes for energy conservation and carbon fixation®’, though
some is also expelled as flatus or exhaled®'°. Classically, three groups of gut microbes are thought
to consume H,, namely acetogenic bacteria, methanogenic archaea, and sulfate-reducing
bacteria®'-14. H, consumption by gut microbes lowers H, partial pressures, thereby ensuring
fermentation remains thermodynamically favourable®*5-19, In turn, many H.-producing and H.-
consuming microbes form mutualistic relationships by conducting interspecies H. transfer depending
on physical association*>2°, In addition to supporting digestion, gastrointestinal H, cycling modulates
levels of important metabolites in the gut, including butyrate??, hydrogen sulfide??, bile acids?, and
host steroids®?, with diverse effects on processes such as digestion, inflammation, and
carcinogenesis. It is also proposed that microbiota-derived or therapeutically-supplied H> may
directly benefit human cells as an antioxidant?#25, Disruption of the balance between H.-producing
and Hz-consuming bacteria has been linked with a range of gut and wider disorders!®?¢; most
notably, gas buildup contributes to the symptoms of irritable bowel syndrome (IBS) and hydrogen
breath tests are frequently, if controversially, used to detect disorders such as carbohydrate
malabsorption?’-2°, Numerous pathogens also exploit microbiota-derived H. during invasion,
including Helicobacter pylori and Salmonella®-34, or rapidly produce it in the case of pathogenic

Clostridia and protists30:35:36,

Despite the central importance of H; cycling in human health and disease, surprisingly little is known
about which microbes and enzymes mediate this process. Both the production and consumption of
H. are catalysed by hydrogenases, which fall into three major groups dependent on the metal content
of their active site, the [FeFe]-, [NiFe]-, and [Fe]-hydrogenases, and multiple subgroups®”:38. It's been
classically thought that most H, production in the gut is mediated by fermentative bacteria, primarily
the class Clostridia, that couple reoxidation of ferredoxin (e.g. reduced during acetate fermentation
by the pyruvate-ferredoxin oxidoreductase reaction) to the evolution of H.. Some Clostridia use group
Al [FeFe]-hydrogenases, an extensively structurally and mechanistically characterised lineage of
enzymes, to rapidly produce H:%*%4°, Some H, may also be produced by formate hydrogenlyase
complexes (containing a group 4a [NiFe]-hydrogenase) that disproportionate formate during
fermentative survival of Enterobacteriaceae*#?2. Yet two recent findings suggest that other
fermenters are also active in the human gut. Our 2016 survey showed a distantly related enzyme
(28% amino acid identity) called the group B [FeFe]-hydrogenase is widespread in diverse gut
isolates and abundant in gut metagenomes °43, Two recent biochemical studies suggest these

enzymes are active and biased towards H, production?445, though their physiological activity and
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role has yet to be confirmed in any organism. In parallel, trimeric electron-confurcating hydrogenases
(group A3 [FeFe]-hydrogenases) have been discovered that couple oxidation of NAD(P)H and
reduced ferredoxin to the evolution of H; 4649, We have demonstrated that group A3 [FeFe]-
hydrogenases are primarily responsible for H, production in ruminants’°05% though it is unclear if
these principles also extend to humans. Similarly, it is unclear whether the paradigms regarding Hz
consumption are accurate, given the three classical groups of H; oxidizers (hydrogenotrophs) are
generally in low abundance in the human gut. Indeed, only approximately half of people produce
methane gas®?%3 and it is becoming increasingly apparent that most hydrogen sulfide is derived from
organosulfur compounds rather than sulfate reduction®+°. Respiratory hydrogenotrophs that use
electron acceptors such as fumarate, nitrate, sulfoxides, and inflammation-derived oxygen may also

be active but overlooked members of gut microbiota®32,

Here we gained the first detailed understanding of the enzymes and microbes responsible for
hydrogen cycling in the human gastrointestinal tract. To do so, we holistically profiled the abundance,
expression, and distribution of hydrogenases using metagenomes and metatranscriptomes,
including original biopsy samples, in both healthy individuals and those with gastrointestinal
disorders. We then performed in-depth analysis of 19 bacterial isolates and four heterologously
produced enzymes to confirm the activity and roles of these enzymes. We reveal that group B [FeFe]-
hydrogenase drives most H, production in the human gut, highlight the overlooked role of
Bacteroides as major H.-producing fermenters, and show that hydrogenases are differentially
abundant between healthy people and those with chronic disease phenotypes such as Crohn’s

disease.
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Results and Discussion

Group B [FeFe]-hydrogenases are the most widespread and expressed gut hydrogenases

We initially investigated the distribution of hydrogenase genes in the human gut by analysing 300
human stool metagenomes®’ (Table S1). Hydrogenase genes are extremely abundant, occurring on
average at 1.44 = 0.58 copies per genome (cpg), based on normalisation to single-copy bacterial
and archaeal marker genes (Fig. 1a). By far the most abundant are the functionally uncharacterised
group B [FeFe]-hydrogenase (0.75 % 0.25 cpg), hypothesized but unproven to mediate fermentative
H, production!® (Fig. 1b). Genes encoding these enzymes are much more abundant than the
monomeric ferredoxin-dependent group Al [FeFe]-hydrogenases (0.10 + 0.09 cpg), previously
thought to account for most fermentative hydrogen production in gastrointestinal tracts®%85° and
trimeric electron-confurcating group A3 [FeFe]-hydrogenases (0.19 + 0.11 cpg) that dominate H»
production in ruminants!”*0. Other enzymes also potentially play minor roles in H, production in the
human gut, including formate hydrogenlyases (group 4a [NiFe]-hydrogenases; 0.02 £ 0.07 cpg) and
possibly ferredoxin-dependent energy-converting hydrogenases (group 4e [NiFe]-hydrogenases;
0.06 £ 0.04 cpg) (Table S1; Fig. 1a & 1b). Consistently, analyses of 78 paired metatranscriptomes
confirm that these hydrogenases are highly expressed (RNA / DNA ratios between 1.76 to 6.90
depending on subgroup) (Table S1; Fig. 1a). Transcripts for the group B [FeFe]-hydrogenase are
the most numerous (95 + 86 reads per kilobase per million mapped reads, RPKM; RNA / DNA ratio
=2.0) and 3.3-, 4.7-, and 26-fold higher than the group A3, Al, and 4a enzymes typically thought to
be responsible for gastrointestinal H; production (Fig. 1a). Given [FeFe]-hydrogenases are usually
highly active enzymes?4°, these expression levels are likely to enable rapid H, production in the gut.
Nitrogenases, which produce H, during their reaction cycle®®, were also widely encoded but
minimally expressed by gut bacteria (Fig. 1a). Altogether, group B [FeFe]-hydrogenases potentially

drive most H» production in the gut, though operate alongside other enzymes.

To infer which gut microbes encode these enzymes, we mapped the hydrogenase-encoding reads
to both our comprehensive hydrogenase database (HydDB)®' and our in-house collection of 812
sequenced gut isolates (Table S2). Group B [FeFe]-hydrogenases are very widespread among gut
bacteria, encoded by 62% of isolates and the dominant gut phyla Firmicutes, Bacteroidetes, and
Actinobacteria (Table S2; Fig. 2). Their widespread conservation among Firmicutes and
Bacteroidetes is demonstrated by the genome tree in Fig. 2. Based on read mapping, Bacteroides
accounted for the most group B [FeFe]-hydrogenases in the metagenomes and metatranscriptomes,
followed by Alistipes and Clostridia lineages such as Faecalibacterium, Agathobacter, and
Roseburia (Fig. 1c; Table S1). This finding suggests that this enzyme plays a core role in the
lifestyles of diverse fermentative bacteria. The group Al and A3 [FeFe]-hydrogenases were also

widespread, encoded, and expressed by various Bacteroidia, Clostridia, and Fusobacteria genera,
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whereas formate hydrogenlyases were restricted to Enterobacteriaceae, Pasteurellaceae, and

Coriobacteraceae (Fig. 1c; Fig. 2; Table S1).

A small but active proportion of the community are predicted to mediate H» uptake in the human gut.
Group 1 [NiFe]-hydrogenases, known to support anaerobic respiration using electron acceptors such
as fumarate, nitrate, nitrite, and sulfite®"38, are encoded by 9% of gut bacteria based on metagenomic
short reads (Table S1; Fig. 1a & 1b) and 6% of our isolates (Table S2; Fig. 2). As evidenced by the
extremely high standard deviations of their metagenome counts (0.09 = 0.17 cpg) and
metatranscriptome reads (51 + 153 RPKM), these enzymes greatly vary between individuals (Fig.
1la). They were primarily encoded and expressed by Enterobacteriaceae ([NiFe] group 1c, 1d), which
are well known for using gut-derived H, as a respiratory energy source during colonisation3%6263 as
well as lineages such as Veillonella (1d), Parabacteroides (1d), and Akkermansia (1f) that remain to
be investigated for their H, metabolism (Fig. 1¢). Some group A3 [FeFe]-hydrogenases were also
encoded by hydrogenotrophic acetogens such as Blautia, where these enzymes oxidize H., rather
than produce it, in contrast to fermenters®. The group 3 and 4 [NiFe]-hydrogenases and [Fe]-
hydrogenases of methanogenic archaea were also detected in a subset of samples. Consistently,
we also detected genes encoding the signature enzymes responsible for fumarate, sulfite, nitrate,
and nitrite reduction, acetogenesis, and methanogenesis in the metagenomes and
metatranscriptomes (Fig. 1a, Table S1). Importantly, although these enzymes except for fumarate
reductase were in low abundance, they were often highly expressed (RNA / DNA ratio of 54 for
acetyl-CoA synthase, 37 for dissimilatory sulfite reductase, 8 for periplasmic nitrate reductase)
(Table S1). Phylogenomic analysis of the gut isolates also revealed frequent co-occurrence of group
1 [NiFe]-hydrogenases with respiratory reductases (Fig. 2). However, it should be noted that the
respiratory reductases can accept electrons from a range of both organic and inorganic donors other
than H,. Also detected were putative sensory hydrogenases (group C [FeFe]-hydrogenases, 0.11 £
0.15 cpg) (Fig. l1la), thought to differentially regulate [FeFe]-hydrogenases in response to H:

accumulation in Clostridia and likely other lineages?!’:374°,

We tested whether these findings also extend to microbiota sampled within gut tissues, given stool
samples provide a biased assessment of gut microbial content®®%7, To do so, we collected mucosal
biopsies from the terminal ileum, caecum, and rectum of 42 donors, then enriched and sequenced
their microbiota®® (Table S1). Concordantly group B [FeFe]-hydrogenases were by far the most
abundant hydrogenases across these mucosal biopsy samples (0.75 + 0.25 cpg); they were 3.7-fold
more abundant than the next most abundant hydrogenase (group A3 [FeFe]-hydrogenase) and
primarily encoded by Bacteroides based on read mapping (Fig. 1a-c). The group 1c, 1d, and 4a
[NiFe]-hydrogenases were also enriched by 6.1-, 2.6-, and 7.0-fold in the biopsy compared to stool
metagenomes; this likely reflects the adherence of Enterobacteriaceae to the gut luminal walls,

where they potentially use microbiota-derived H; to support anaerobic and potentially even aerobic
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respiration (Table S1; Fig. 1b & 1c). Thus, the group B [FeFe]-hydrogenase appears to drive
fermentative H, production throughout the intestines, much of which is likely recycled by respiratory
hydrogenotrophs. No significant differences in hydrogenase content were found between intestinal

regions, which was likely masked by the high degree of interindividual variation.

Group B [FeFe]-hydrogenases are expressed and active in diverse gut isolates

While these analyses of metagenomes, metatranscriptomes, and isolate genomes respectively
suggest the group B [FeFe]-hydrogenase is abundant, expressed, and widespread among gut
bacteria, the precise activity of this enzyme remains unresolved. To confirm whether this enzyme is
active, we used gas chromatography to test H, production of 19 phylogenetically and physiologically
diverse bacterial gut isolates each grown on standard YCFA medium under fermentative conditions
(Table S4; Fig. S1). Of these isolates, thirteen encoded group B [FeFe]-hydrogenases, either
individually or together with other hydrogenases, all but one of which produced high levels of H (Fig.
3a, Fig. S2). This collection included seven Bacteroides isolates that each rapidly produced
headspace H» to average maximum levels of 3.0 + 0.6% during fermentative growth, as well as four
genera from the class Clostridia (Fig. 3b; Fig. S1; Table S3). We compared these activities to those
of six control isolates that encoded either well-characterized lineages of H.-producing hydrogenases
(group Al [FeFe]- and group 4a [NiFe]-hydrogenases; positive controls) or lacked hydrogenases
altogether (negative controls). The controls behaved as expected (Fig. 3a; Fig. S1): no H; was
detected in the three isolates lacking hydrogenases (Catenibacterium mitsuokai, Bifidobacterium
longum, and Bacteroides stercoris); high levels of H, were produced during fermentative growth of
a Fusobacterium varium isolate encoding prototypical group Al [FeFe]-hydrogenase; and H, was
produced during fermentative survival in bacteria encoding the group 4a [NiFe]-hydrogenase
containing formate hydrogenlyases (Collinsella aerofaciens, Necropsobacter rosorum) in line with
their confirmed roles*2%°. Altogether, these analyses show H; production is a widespread trait among

gut bacteria that encode group B [FeFe]-hydrogenases.

We performed transcriptome sequencing to confirm whether the group B [FeFe]-hydrogenases are
expressed and likely responsible for the observed activities (Table S4). Patterns of hydrogenase
expression and activity varied between species within the class Clostridia Anaerostipes hadrus
encoded three [FeFe]-hydrogenases yet expressed the group B at higher levels (average 318 TPM)
than its group A2 enzyme (33 TPM) (Fig. 3a; Table S4). Similarly, Gemmiger formicilis also exhibited
higher expression of the group B hydrogenase (254 TPM) compared to its group Al (139 TPM) and
A2 (39 TPM) hydrogenases (Fig. 3a; Table S4). These findings indicate that the group B [FeFe]-
hydrogenase serves as the primary fermentative hydrogenase in both species. In contrast, the
opportunistic pathogens Clostridium perfringens and Clostridium baratii expressed their prototypical

fermentative group Al [FeFe]-hydrogenases at much higher levels (C. perfringens: 305 TPM, C.
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baratii: 850 TPM) than their group B [FeFe]-hydrogenases (C. perfringens: 3.03 TPM, C. baratii: 0.42
TPM) (Fig. 3a; Table S4). These extremely fast-growing bacteria also both produced much higher
levels of H, than the other isolates (up to 26.7% H,) (Fig. 3a; Fig. S1). These findings are consistent
with biochemical and genetic studies suggesting the group Al enzyme predominates H; production
in C. perfringens3>7°, Such Clostridium species appear to have evolved exceptionally rapid
hydrogenases to enable vigorous growth in high nutrient conditions, though the metagenomic and
metatranscriptomic analyses suggests they are in low abundance in most stool and biopsy samples
(Fig. 1). It remains unclear under which conditions such species express group B [FeFe]-
hydrogenase. These findings suggest that species within the same phyla may employ distinct
hydrogenases for similar purposes. Dorea longicatena generated substantial amounts of H,, but
transcriptomes yielded minimal reads mapping to metabolic genes and hence it is unclear whether
its group B [FeFe]-hydrogenase is responsible (Fig. 3a). In a further exception, the actinobacterium
Olsenella umbonata did not produce detectable H, despite encoding and expressing a group B
[FeFe]-hydrogenase (Fig. 3a). It is possible that its hydrogenase is active under specific conditions

or alternatively this microbe internally recycles H; using its group A2 [FeFe]-hydrogenase.

Our culture-dependent studies also indicated that fermentative H», production is a key feature of
Bacteroides physiology. After six hours of fermentative growth, the seven hydrogenase-encoding
Bacteroides species had each produced between 0.68% and 2.50% levels of H; in the headspace,
averaging 1.51 + 0.6% (Fig. S1). For all seven strains, the group B [FeFe]-hydrogenase was
expressed at high levels during growth, averaging 180 TPM (ranging from 71 + 18 TPM for B. fragilis
to 345 + 17 TPM for B. plebius) (Fig. 3a; Table S4). Four of these strains encoded the group B
[FeFe]-hydrogenase as their sole Hz-metabolizing enzyme. Three other strains (B. caccae, B.
thetaiotaomicron, B. faecis) also encoded the trimeric electron-confurcating group A3 [FeFe]-
hydrogenase, though the expression of this enzyme was minimal during these growth conditions
(average 3.5 TPM) (Fig. 3a; Table S4). Moreover, we observed no H, production by B. stercoris,
the only Bacteroides species in our isolate collection that consistently lacked any hydrogenase (Fig.
S2). These results show that the group B [FeFe]-hydrogenase accounts for the H» production of
Bacteroides during fermentative growth. In combination, the culture-dependent and culture-
independent data suggest that these enzymes are highly conserved, expressed, and active across
diverse gastrointestinal Bacteroides species. This suggests that this genus, despite not traditionally

being associated with Hz cycling, is a dominant Hz producer in the human gut.
Bacteroides use group B [FeFe]-hydrogenases to reoxidize ferredoxin during fermentation
We combined structural modelling, biochemical measurements, and metabolic reconstructions to

confirm the activity and role of the group B [FeFe]-hydrogenase within Bacteroides (Fig. 4).

AlphaFold2 modelling (Fig. S3 & S4) confirms group B [FeFe]-hydrogenase are structurally

8
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conserved between Bacteroides species (Fig. S5) and form monomers with two distinct globular
domains (Fig. 4b): a H-cluster domain (containing the typical catalytic H,-binding H-cluster of [FeFe]-
hydrogenases and two [4Fe4S] clusters) and a smaller ferredoxin-like domain (containing two
[4Fe4dS] clusters) connected through a short flexible linker. Consistent with being bona fide
hydrogenases, these enzymes encode the three highly conserved sequence motifs of [FeFe]-
hydrogenases, which line the binding pocket of the H-cluster (L1: T204SCCPSYsq, L2:
G342PCVAKRKE3s0, L3: E4sVMACEGGCISGP4e0) (Fig. 4b; Fig. S5); notably, Cys456 bridges the
[4Fe4S] and catalytic di-iron site of the H-cluster, and Met450 coordinates the dithiolate bridgehead
group of the di-iron site. Structural comparison with the well-characterized group Al [FeFe]-
hydrogenase (C. pasteurianum hydrogenase, Cpl; PDB: 6GM27!) revealed that, while the H-cluster
domain is largely conserved, the group B [FeFe]-hydrogenase is otherwise structurally unique (Fig.
4a). They particularly differ in their electron-relaying iron-sulfur clusters: whereas the group A
enzyme contains a [2Fe2S] ferredoxin-like domain and a His-ligated [4Fe4S] cluster’?, the group B
enzyme is instead predicted to have a single ferredoxin-like domain containing 2x[4Fe4S] clusters.
This ferredoxin-like domain is unusual in that its iron-sulfur clusters are distant from the main body
of the enzyme as they are separated from the nearest [4Fe4S] cluster in the H-cluster domain by an
edge-to-edge distance of at least 22 A (Fig. 4a). The distance between these two clusters is likely
too far for effective electron transfer’3, even after we accounted for conformational change driven by
the flexible loops using AF-Cluster’s. We hypothesise that the group B [FeFe]-hydrogenase interacts
with soluble ferredoxins to enable productive electron transfer. Structural predictions also indicated
that the group A3 [FeFe]-hydrogenases of Bacteroides are trimeric enzymes that confurcate

electrons from reduced ferredoxin and NADH to H; (Fig. S6).

To determine whether Bacteroides [FeFe]-hydrogenases can bind the catalytic H-cluster and
produce H;, we expressed their group B and A3 [FeFe]-hydrogenase catalytic subunit genes in E.
coli BL21(DE3) cells (Table S5; Fig. S7), activated lysates with the H-cluster mimic [2Fe]2® as
previously described*>757% and tested their ability to produce H; using the standard methyl viologen
as redox mediator and sodium dithionite as sacrificial electron donor. The group B [FeFe]-
hydrogenases expressed from three different species all produced H», in contrast to blank and empty
vector controls, confirming that this group of enzymes are catalytically active (Fig. 4c). Their relative
activity varied compared to the positive control (the fast-acting group Al [FeFe]-hydrogenase of
Chlamydomonas reinhardtii, CrHydA176-8%; at 30% (B. fragilis), 8% (B. thetaiotaomicron), and 2% (B.
vulgatus) (Fig. 4c; Table S5); these contrasting activities likely reflect differences in the expression,
maturation, or solubility of these enzymes in the heterologous host, though are unlikely to be
physiologically relevant given the species these enzymes were derived from each produced
comparable amounts of H, (Fig. 3). In this recombinant system, the catalytic subunit of the group A3
[FeFe]-hydrogenase from B. thetaiotaomicron exhibited low activity close to the blank and empty

vector controls when mixed with [2Fe]2® (Fig. 4c; Table S5).
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302

303  Despite extensive effort, we were unable to purify stable or active group B [FeFe]-hydrogenases due
304 to the low solubility of these enzymes. This prevented detailed comparisons of their kinetics,
305 electrochemistry, or experimental structures compared to group Al [FeFe]-hydrogenases.
306  Nevertheless, we were able to demonstrate through whole-cell X-band EPR spectroscopy that the
307 B. fragilis group B [FeFe]-hydrogenase, when incubated with the [2Fe]Pdt (a catalytically inactive
308 cofactor mimic known to stabilise the di-iron site in a mixed valent Fe'Fe' oxidation state such as
309 EPR-active, Hox), produced spectroscopic signatures consistent with a typical H-cluster’>8! (Fig. 4d).
310 Cell suspensions displayed a partially resolved rhombic EPR signal with g1 = 2.101 and g2 2.053
311 (Fig. 4d). The observed g-values suggest formation of the H-cluster in an Hox-like state and support
312 the notion that the H-cluster of the group B [FeFe]-hydrogenase has an electronic structure similar
313 to the distantly related prototypical group A enzymes (Table S6). As elaborated in Supplementary
314  Note 1, the third g-value (gs) was not observed likely due to being obscured by unrelated signals. In
315 combination, the structural predictions and recombinant analysis suggest the group B [FeFe]-
316  hydrogenases are true hydrogenases that bind the H-cluster and produce Hz, though differ from
317  other hydrogenases in their redox centres and electron flow pathways.

318

319 We used the transcriptomes of the seven Bacteroides species to predict their central carbon
320 metabolism and infer how their [FeFe]-hydrogenases likely integrate (Table S3). Supporting
321  previous physiological observations, these reconstructions suggest that all species are mixed-acid
322 fermenters®® that can break down sugars to pyruvate through the glycolysis pathway, convert
323  pyruvate to acetate (via pyruvate-ferredoxin oxidoreductase and acetate kinase); and also reduce
324  oxaloacetate to succinate (via enzymes including fumarate reductase) and propionate (via
325 methylmalonyl-CoA pathway). Consistently, these bacteria all express the genes for these pathways
326  at similarly high levels during mid-exponential fermentative growth (Fig. 4e). The group B [FeFe]-
327 hydrogenase likely primarily reoxidizes the ferredoxin reduced by the pyruvate-ferredoxin
328 oxidoreductase (PFOR) during acetate production, disposing these excess electrons as Hz. The Rnf
329 complex, which couples Na*/H*-import to reverse electron transport from NADH to oxidized
330 ferredoxin, is potentially an additional source of reduced ferredoxin for the hydrogenase2?87;
331  however, this physiologically reversible complex may also serve as a reduced ferredoxin sink that
332  generates sodium/proton-motive force (Fig. 4e). All other reductive branches of the Bacteroides
333 fermentation pathways, namely for succinate, propionate, and lactate formation, do not directly
334  compete with H, production via the Group B [FeFe]-hydrogenase for electrons, but will indirectly
335 reduce H; production by shunting pyruvate away from PFOR. Pyruvate-formate lyase provides an
336 additional PFOR bypass via the redox-neutral production of formate and acetyl-CoA (Fig. 4e).
337 Whereas the genes for the succinate/propionate branch and PFOR were relatively consistently
338 expressed across the strains, expression of pyruvate-formate lyase and a putative lactate

339 dehydrogenase varied as much as 4.5- and 50-fold respectively (Table S3); thus, lactate and formate
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production may be the most important alternate routes of electron disposal that compete with H;
production in Bacteroides species. The group A3 [FeFe]-hydrogenase potentially contributes to
redox homeostasis, likely by coupling oxidation of reduced ferredoxin and NADH to H» production,
and may be important under certain conditions (Fig. 4e); however, during fermentative growth, the
enzyme remains expressed at low levels, likely reflecting that NADH consumption by this enzyme
would compete with the reductant used for fumarate and propionate production and thereby ATP

production through substrate-level phosphorylation.

Group B [FeFe]-hydrogenases are depleted in gastrointestinal disorders and other diseases

To investigate the links between hydrogen metabolism with health and disease, we compared the
levels of hydrogenase-associated genes based on stool metagenomes of 871 healthy individuals
and 790 diseased individuals, based on a case-control study of Crohn’s disease (CD)® and reports
on 11 other chronic disease phenotypes® (Fig. 5). Consistent with the above analyses (Fig. 1),
group B [FeFe]-hydrogenases were the most abundant hydrogenase genes overall, though their
levels often varied between individuals (Fig. 5; Table S7). However, their average levels were
significantly higher (p = 0.0023) in healthy individuals (0.72 £ 0.17 cpg) compared to those with
Crohn’s disease (0.56 £ 0.24 cpg). Contrastingly, there were strong increases in the average levels
of the prototypical fermentative hydrogenase (group Al, 2.8-fold, p = 6.6 x 107), formate
hydrogenlyase (group 4a, 5.2-fold, p = 6.8 x 10°), and to lesser extent the electron-confurcating
hydrogenase (group A3, 1.4-fold, p = 0.04) in Crohn’s disease individuals. Most remarkably, the ratio
of group B to group Al [FeFe]-hydrogenases shifted by 2.3-fold between the two cohorts (p = 1.9 x
1011). Capacity for H, oxidation also increased, with a 2.6-fold increase in respiratory group 1d
[NiFe]-hydrogenase genes in Crohn’s disease (p = 3.8 x 10°) (Fig. 5). Though these differences
may be potentially only correlative, altered H; cycling may contribute to the Crohn’s disease
phenotype through various possible mechanisms. For example, intestinal respiratory bacteria (e.g.
Enterobacteriaceae) may benefit from elevated H» production by the highly active group Al [FeFe]-
hydrogenases, by using this electron donor to reduce inflammation-derived electron acceptors.
Consistently, a previous study showed increased H; oxidation contributes to the expansion of E. coli
during gut inflammation in a murine model®.. There was also a significant enrichment of group Al
compared to group B [FeFe]-hydrogenases in several other chronic disease states, including
atherosclerosis, liver cirrhosis, colorectal cancer, and type 2 diabetes (Fig. S8). A range of other
significant variations were also observed, including a near-absence of group 1d [NiFe]-
hydrogenases in type 2 diabetes (p = 7.8 x 10°) (Fig. S9). Further mechanistic studies are required

to better understand the basis of these differences.
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378  Conclusions

379 By integrating analyses at the enzyme, cellular, and gut ecosystem levels, we provide multifaceted
380 evidence that the group B [FeFe]-hydrogenase mediates H; production in diverse bacteria and drives
381 fermentation in the healthy human gut. These observations also suggest that Bacteroides, a genus
382  previously unrecognised as major H, producers, plays a more central role in gut H, cycling than
383 initially understood and uses a hydrogenase of previously unknown function. It remains unclear what
384  competitive advantage is conferred by the group B [FeFe]-hydrogenase compared to the functionally
385 similar group Al [FeFe]-hydrogenase. Both enzymes are predicted to be monomeric ferredoxin-
386 dependent Hx-producing enzymes with similar active site structures and biosynthetic pathways.
387 Nevertheless, the group B enzyme is unique for its ferredoxin-like domain separated by a flexible
388 linker and also seems to have somewhat lower activity than its group Al counterparts based on the
389 cellular and whole-cell data. Detailed side-by-side studies of the protein-protein interactions, kinetics,
390 electrochemistry, and oxygen sensitivity of the purified enzymes may help disentangle their
391 differences. Nevertheless, it is apparent that the group B enzyme has been selected in diverse
392  bacterial species to produce high levels of H, during fermentative growth*4. This hydrogenase is
393  particularly abundant in healthy people and may be an indicator of H, homeostasis, whereas there
394 is a shift in favour of group Al [FeFe]-hydrogenases in disease states such as Crohn’s disease.
395

396  This study also provides a holistic perspective on the microbes and enzymes responsible for H»
397 cycling in the human gut. We provide the most in-depth study of the distribution of gastrointestinal
398 hydrogenases to date, surpassing our last bioinformatics survey in this area that was limited to just
399 20 metagenomes, and bridge genomic insights with culture- and enzyme-based validation!®. We
400 show H; production is an extremely widespread trait, demonstrating this trait extends to gut
401 Bacteroidetes, Fusobacteria, Actinobacteria and Proteobacteria in addition to the well-studied
402  Clostridia. Our findings also highlight that the mediators of the three conventionally described
403  pathways for H, disposal, namely methanogenesis, acetogenesis, and sulfidogenesis, are in low
404  abundance but are transcriptionally active in the gut®*?14, Given their high abundance in both stool
405 and biopsy metagenomes, it is nevertheless likely that respiratory bacteria that use electron
406  acceptors such as fumarate, nitrate, and sulfoxides are also major and potentially dominant
407  hydrogenotrophs, especially the Enterobacteriaceae. These lineages are especially enriched in
408 certain disease states, such as Crohn’s disease, where they may support both aerobic and anaerobic
409 respiration using inflammation-derived electron acceptors. Follow-up studies should combine
410 metagenomic, biochemical, and culture-based studies to determine which processes and microbes
411  dominate H; oxidation in the human gut. Further studies are also required to better characterise the
412  roles of some of the moderately abundant but still functionally characterised hydrogenases identified
413  here, including the group A2 [FeFe]-hydrogenases, group 4e [NiFe]-hydrogenases, and the sensory

414  hydrogenases. There is also critical need to better understand what drives the vast interindividual
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variation in hydrogenase composition and expression between individuals, and how this relates with
gastrointestinal function and disease states. In summary, our multifaceted approach uncovers the
abundance, diversity, and functional roles of hydrogenases of previously unrecognised importance

in the human gut during health and disease.
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419 Materials and methods

420 Mucosal biopsy sampling and metagenomes. Mucosal biopsy metagenome samples were
421  obtained from 102 mucosal biopsy enrichment metagenomes of 42 paediatric patients receiving
422  colonoscopy due to non-inflammatory conditions at the Monash Children’s Hospital (Monash Health;
423  Victoria, Australia; Human Research Ethics Committee (HREC) (HREC/16/MonH/253) and Monash
424  University Ethics Committee (Monash Health ref. 16367A). Samples were obtained from the terminal
425 ileum, caecum and rectum and transferred to anaerobic conditions within 15 minutes of collections.
426  Biopsy metascrapes were performed after 24 hour incubation on YCFA agar plates at 37°C under
427  anaerobic as described previously®® with resulting DNA extracted using the MP Biomedicals
428  FastDNA SPIN Kit for soil and sequenced on the lllumina NextSeq2000. Resulting data is accessible
429 via the European Nucleotide Archive (ENA) under accession number PRJEB45397
430  (https://www.ebi.ac.uk/ena/browser/view/PRIJEB45397).

431

432  Stool metagenome and metatranscriptome datasets. For the stool metagenome and
433  metatranscriptome analyses, raw paired-end short reads were obtained from an IBD microbiome
434  functionality study®’, accessed via the European Nucleotide Archive (ENA) under accession number
435  PRJNA389280 (https://www.ebi.ac.uk/ena/browser/view/PRINA389280). The dataset included 78

436 paired metagenomes and metatranscriptomes, along with 222 additional metagenomes from the

437  faecal samples of 117 healthy patients as well as those with varying gastrointestinal IBD pathologies.
438

439 Metagenomic and metatranscriptomic analyses. For the stool metagenome and
440 metatranscriptome analyses, raw paired-end short reads were obtained from an IBD microbiome
441  functionality study®’, accessed via the European Nucleotide Archive (ENA) under accession number
442  PRJINA389280 (https://www.ebi.ac.uk/ena/browser/view/PRINA389280). The dataset included 78

443  paired metagenomes and metatranscriptomes, along with 222 additional metagenomes from the

444  faecal samples of 117 patients. The stool metagenome, stool metatranscriptome, and mucosal
445  biopsy metagenomes were quality-checked using FastQC (v0.11.7)8° and MultiQC (v1.0)°. Adapter
446  and PhiX sequences, and low-quality bases were trimmed and filtered with BBDuk from BBTools
447  (v38.51) suite®l. SortmeRNA (v4.3.3)°? removed rRNA sequences from metatranscriptomic reads.
448  Resulting cleaned forward reads were screened (blastx) using DIAMOND v2.0.%3 against the HydDB
449  dataset®® and a manually curated in-house database including enzymes associated with H,-

450 producing and Hz-consuming pathways (https://doi.org/10.26180/c.5230745). Alignments were

451 filtered to a minimum length of 28 amino acids, and further based on minimum percentage identity
452  thresholds previously determined and validated for each protein in the database: 50% (AcsB, ArsC,
453 AsrA, CcoN, CooS, CoxA, CydA, CyoA, DsrA, FdhA, NapA, NarG, NiFe (60% for group 4), NifH,
454  NirK, NorB, NosZ, NrfA, RHO, SdhA_FrdA and Sqr), 60% (FeFe and NuoF) and 70% (AtpA and

455  YgfK). Read counts were normalised to reads per kilobase million (RPKM), and metagenomes were
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further normalised against mean RPKM values estimated from 14 single-copy ribosomal marker
genes to obtain an ‘average gene copy per organism’ value for each gene. For predicted
hydrogenase sequence reads, the taxonomy of the best hit was retrieved and summarised in RPKM

to evaluate which taxonomic groups contribute most of these reads.

Gut isolate genomic analysis. Whole genome sequences of 818 gut isolates from adult and
paediatric faecal and biopsy samples were obtained from the Australian Microbiome Culture

Collection (AusMicc; https://ausmicc.org.au/) and a previous study describing a collection of gut

isolate genomes (HBC)®*. Resulting genomes were quality checked with CheckM (v1.1.3)% and
those with >90% completeness and <5% contamination (n = 812) were retained. Protein sequences
of the retained genomes were used to search for and identify alignments matching the previously
mentioned protein database using the blastp function of DIAMOND (v2.0.9)%. Alignment criteria
included query and subject coverage thresholds set at 80%, and further filtering was conducted
based on the previously mentioned percentage identity thresholds for each database protein. GTDB-
Tk (v1.6.0) (database R06-RS202)% was used to assign a taxonomic classification to each isolate
using the “classify_wf” option, and a phylogenetic tree was constructed with the “de_novo_wf” option.
The tree was visualized, midpoint-rooted, and the copy number per isolate genome of relevant
hydrogen-related metabolic genes and hydrogenase subgroups was overlaid using the Interactive
Tree of Life (iTOL)% to observe differences in hydrogen metabolism across the different phylogenetic

groups.

Bacterial growth analyses. All isolates used in this study, sourced from healthy human faecal
samples, were obtained from AusMiCC®?°, Nineteen isolates were selected to compare the
expression and activity of the group B [FeFe]-hydrogenases compared to other Hz-producing
bacteria across taxonomically diverse gut bacteria, including three control isolates lacking
hydrogenases and three positive controls encoding well-characterised H; producing
hydrogenases*?%°. Table S3 lists the strains and their hydrogenase content. All isolates were
accessed from glycerol stocks containing Yeast Casitone Fatty Acids (YCFA) broth media® with
25% glycerol, stored at -80°C, and revived in pre-reduced YCFA broth. Incubation was carried out
anaerobically at 37°C in an atmosphere of 10% H,, 10% CO,, 80% N, for 24 hrs. Solid media, when
required, was supplemented with 0.8% w/v of bacterial agar. Growth assessment involved
measuring the optical density (ODsoo) of each isolate over 24 hours while anaerobically cultured in
YCFA broth at 37°C. Each isolate, in duplicate, was sub-cultured into a 200 ul 96-well plate, with a
1:100 dilution of culture to broth. An hourly assessment of ODgoo Was conducted using a FLUOstar
Omega Microplate Reader, with readings taken under anaerobic conditions, and shaking before

each measurement.
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493  Hydrogen production assays. For the H, production assay, isolates were plated on pre-reduced
494  YCFA agar plates and grown anaerobically at 37°C for 24 hrs. A single colony was used to inoculate
495 3 mL of pre-reduced YCFA broth in a 15 mL Falcon tube, which was incubated anaerobically at 37°C
496  for 24 hrs. After incubation, each starter culture was used to inoculate triplicate 30 mL aliquots of
497  YCFA broth to a starting ODego 0f 0.025. Cultures were maintained in 120 mL glass serum vials
498 sealed with lab-grade butyl rubber stoppers. Immediately after inoculation, the headspace of each
499  culture vial was flushed for 10 minutes with 99.99% pure N, to remove residual H> and ensure that
500 production of H, was thermodynamically favourable, and entirely biotic in origin. Gas
501 chromatography was used to assess the H, production capabilities of each isolate over time. To
502 establish a baseline H, concentration for each isolate (in triplicate), a gas-tight syringe was used to
503 collect initial headspace gas samples from each culture immediately after N, flushing. Headspace
504 gas samples were then collected at pre-determined time points based on growth curve data, and
505 until increases in H, concentration were no longer detected. H, concentration was measured using
506 agas chromatograph containing a pulse discharge helium ionisation detector (model TGA-6791-W-
507 4U-2, Valco Instruments Company Inc) as previously described °°. This gas chromatograph was able
508 to detect a wide range of H, concentrations (0.1% — 10% H;), however, sample dilution of 2.5x was
509 necessary to measure the H, produced by the isolates within the quantifiable range. Calibration
510 samples of known H, concentration were used to quantify H: in parts per million. The H,
511  concentration within the media-only control vials was measured concurrently to confirm that H,
512  production in isolate samples was biotic.

513

514 RNA extraction. Transcriptomic analysis was performed for all isolates to verify the active
515  expression of hydrogenases identified within the genome. Triplicate cultures of each isolate were
516  grown under the same conditions as described for the H, production assay. Cells were harvested
517  for RNA extraction during active H, production at either exponential phase (isolates with a group A
518 or B [FeFe]-hydrogenase) or stationary phase (isolates with a group 4a [NiFe]-hydrogenase), as
519 indicated by previously conducted growth curves. To quench cells, a glycerol-saline solution (3:2 v/v,
520 -20°C) was added prior to centrifugation (4500 x g, 30 min, -9°C). The cell pellet was resuspended
521 in 1 mL of an additional glycerol-saline solution (1:1 v/v, -20°C) and centrifuged again (4,500 x g, 30
522 min, -9°C). Cell pellets were then resuspended in 1 mL TRIzol reagent, transferred to a tube
523  containing 0.3 g of 0.1 mm zircon beads, and subjected to five cycles of bead-beating (30 seconds
524  per cycle, 5000 rpm, resting on ice for 30 seconds between cycles) using a Bertin Technologies
525  ‘Precellys 24’ bead-beater before centrifugation (12,000 x g, 10 minutes at 4°C). Supernatant was
526 transferred to a new tube and 200 pl of chloroform was added, inverted to mix for 15 seconds, then
527 incubated at room temperature for 2-3 minutes prior to centrifugation (10,000 x g, 15 minutes at 4°C)
528 for phase separation. The aqueous phase underwent purification using the RNeasy Mini Kit following
529 the manufacturer’s instructions (QIAGEN), with on-column DNA digestion using the RNase-free

530 DNase Kit (RNeasy Mini Handbook, QIAGEN). RNA was eluted into RNase-free water, and the
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531 concentration for each sample was determined using the RNA HS Qubit Assay Kit according to
532  manufacturer’s instruction (Thermo Fisher Scientific).

533

534  Transcriptome sequencing. The Monash Health Translation Precinct Medical Genomics Facility
535 prepared libraries using the lllumina ‘Stranded Total RNA prep with Ribo-Zero plus Microbiome’ kit.
536 A total of 200 ng of RNA underwent 16 cycles of amplification. Final libraries were quantified by
537  Qubit, combined into an equimolar pool, and quality-checked by Qubit, Bioanalyzer, and gPCR. For
538 sequencing, 1000 pM of the library pool was clustered on a P2 NextSeq2000 run and 59 bp
539  sequencing was performed. The total run yield was 66.56 G, with approximately 496.7 million reads
540 passing filter, achieving a %Q30 of 92.57. Transcriptomic data was quality checked and pre-
541  processed using FastQC (v0.11.7), MultiQC (v1.0)°° and BBDuk from BBTools suite (v38.51)% as
542  above. Successful ribodepletion was confirmed by SortMeRNA (v4.3.3)%. Each isolate’s genome
543  was annotated using Prokka (v1.14.6)'%, and transcript expression was quantified by mapping the
544  transcripts to these annotated genomic features using Salmon (v1.9.0)! with default settings
545  (salmon quant). Gene expression was quantified as relative abundance in transcripts per million
546  (TPM). To identify transcripts matching previously identified hydrogenase hits, Prokka-generated
547  annotated protein sequence files were validated with DIAMOND alignment as described above.
548  Transcript IDs were used to match the hydrogenase hits for each isolate to the corresponding TPM
549  values, for evaluation of hydrogenase expression. For metabolic pathway analysis, DRAM
550 (v.1.4.6)'%2 was used to annotate each transcriptome with the KEGG protein database!®®. The
551 genome of B. fragilis was incomplete and lacking mapped atpA and cydA genes, so the genome of
552  a reference strain from NCBI (ASM1688992v1) was used to map these genes to and demonstrate
553  their expression.

554

555  AlphaFold2 structural modelling. Protein structure predictions from Bacteroides Group B [FeFe]-
556  hydrogenase sequences (Table S4) were generated using AlphaFold2 (v2.1.1)1941% through the
557 ColabFold (v1.5.2)'% notebook. The specified ColabFold parameters were as follows: num_relax
558 (1), template_mode (none), msa_mode (mmseqs2_uniref_env), pair_mode (unpaired_paired),
559 model_type (alphafold2_ptm), pairing_strategy (greedy). For the B. fragilis group B [FeFe]-
560 hydrogenase model (BfHydM), num_recycles was set to 48, whereas B. thetaiotaomicron and B.
561 vulgatus num_recycles were set to 3. For the B. thetaiotaomicron group A3 [FeFe]-hydrogenase
562  model (BtHydABC), num_recycles was set to 48. To model cofactors into the predicted BfHydM and
563  BtHydABC apo structures, the Foldseek®” web server was used to search the PDB100 database for
564  experimental structures with similar folds to BfHydM and BtHydABC. The following Foldseek
565  parameters were used: databases (PDB100 2201222), mode (3Di/AA), taxonomic filter (none). For
566  BfHydM, two experimental structures returned by Foldseek, PDB 8ALN% and 1FCA'%°, exhibited
567  high structural similarity to the input, while also containing iron-sulfur clusters and a H-cluster (Fig.

568  S4). Similarly, for BtHydABC, three experimental structures returned by Foldseek were used for

17


https://doi.org/10.1101/2024.08.15.608110
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.608110; this version posted August 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

569  cofactor modelling, PDB 8A5E®4, 1FEH*°, and 1FCA1® (Fig. S6). UCSF ChimeraX (v1.6.1)'° was
570 used to align these experimental structures to the predicted BfHydM and BtHydABC models with the
571  matchmaker command (Needleman-Wunsch algorithm setting). Cofactors were added in
572  corresponding positions to those of the experimental structures as shown in Fig. S3 and Fig S6. At
573  sites where the AlphaFold2 model and the experimental structures differed, cofactors were manually
574  positioned and adjusted to optimise coordination and to minimise clashes, and bond lengths were
575 assessed to ensure they were biochemically valid.

576

577  Protein expression and preparation. Chemicals used for protein production and characterisation
578 were purchased from VWR and used as received unless otherwise stated. Genes encoding the
579 group B [FeFe]-hydrogenases of B. fragilis, B. vulgatus, and B. thetaiotaomicron and group A3
580 [FeFe]-hydrogenase of B. thetaiotaomicron (Table S5) were cloned into pET-11a(+) by Genscript,
581 using restriction sites Ndel and BamHI following codon optimisation for expression in Escherichia
582  coli. Chemically competent E. coli BL21(DES3) cells were transformed using the constructs to express
583  the apo-forms of the hydrogenases lacking the diiron subsite of the H-cluster. Starter cultures were
584  grown overnight in 5 mL LB medium containing 100 pg mL-* ampicillin at 37°C. These cultures were
585  subsequently used to inoculate 80 mL of M9 medium (22 mM NazHPO,4, 22 mM KH2PO,, 85 mM
586  NaCl, 18 mM NH4CI, 0.2 mM MgSOs, 0.1 mM CacCl,, 0.4% (v/v) glucose) containing 100 pg mL?
587  ampicillin. Cultures were grown at 37°C and 150 rpm until reaching an optical density (ODeoo) Of
588  approximately 0.4 to 0.6. Protein expression was induced by the addition of 0.1 mM FeSO4 and 1
589 mM IPTG. Induced cultures were incubated at 20°C and 150 rpm for approximately 16 h. Cells were
590 thereafter harvested by centrifugation at 4,930 x g for 10 mins at 4°C. All subsequent operations
591  were carried out under anaerobic conditions to prevent hydrogenase inactivation by atmospheric
592  oxygen in an MBRAUN glovebox ([O2] < 5 ppm). The cell pellet was resuspended in a 0.5 mL lysis
593  buffer (30 mM Tris-HC pH 8.0, 0.2 % (v/v) Triton X-100, 0.6 mg mL* lysozyme, 0.1 mg mL* DNase,
594 0.1 mg mL?! RNase). Cell lysis involved three cycles of freezing/thawing in liquid N, and the
595  supernatant was recovered by centrifugation (29,080 x g, 10 mins, 4°C).

596

597 H:production assays of activated hydrogenases. The H; production assays followed established
598 protocols with minor modifications’. In short, the [2Fe]s subsite mimic, (EtsN)z[Fez(u-
599  SCH;NHCH,S)(CO)4(CN);] ([2Fe]?), was synthesised in accordance to previous protocols with
600 minor modifications and verified by Fourier transform infrared (FTIR) spectroscopy (Li and
601  Rauchfuss, 2002; Zaffaroni et al., 2012). Incorporation of cofactor involved the addition of 100 pg of
602  the [2Fe]? subsite mimic (final concentration 80 uM) to 380 uL of the supernatant in potassium
603  phosphate buffer (100 mM, pH 6.8) and 1 % (v/v) Triton X-100. The reaction mixture was
604  anaerobically incubated at 20°C for 1-4 hr in a sealed vial. The non-purified lysate containing the
605 [2Fe]* subsite mimic was mixed with 200 pL of potassium phosphate buffer (100 mM, pH 6.8) with

606 10 mM methyl viologen and 20 mM sodium dithionite. Reactions were incubated at 37°C for up to
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607 120 mins. H; production was determined by analysing the reaction headspace after 15 mins using a
608  PerkinElmer Clarus 500 gas chromatograph (GC) equipped with a thermal conductivity detector
609 (TCD) and a stainless-steel column packed with Molecular Sieve (60/80 mesh). The operational
610 temperatures of the injection port, oven, and detector were 100°C, 80°C, and 100°C, respectively.
611  Argon was used as carrier gas at a flow rate of 35 mL min™. The strain expressing prototypical
612 CrHydA1768 served as a positive control, while “Blank” denoted the same strain, but containing an
613  empty vector that was also added with [2Fe]2®. Three biological replicates were run at varying times
614  (1-4 hours) of incubating the cell lysates with the [2Fe]2% subsite mimic. Incubation time was not
615 found to influence the observed H> production. Thus, variation in H-cluster formation rates did not
616  appear to have a substantial influence on the outcome of the screening process.

617

618 Whole-cell EPR spectroscopy. Samples for whole-cell electron paramagnetic resonance (EPR)
619  spectroscopy were prepared following a previously published protocol with minor modifications’¢. The
620  cell pellet from 80 mL cultures (see Protein expression and preparation) was resuspended in 1 mL
621 M9 medium, flushed with N2 gas for 10 mins, and mixed with a [2Fe]4 subsite mimic that lacks the
622  natural nitrogen bridgehead of [2Fe]2® to propane-1,3-dithiolate ([2Fel]P, (EtsN)[Fez(p-
623  SCH>CHCH,S)(CO)4(CN)2]. This alternative mimic was synthesised according to previous protocols
624  with minor modifications and verified by FTIR spectroscopy’®8. The dense cell suspension was
625  centrifuged, and the cell pellet was washed with 1 mL Tris-HCI buffer (100 mM Tris, 150 mM NacCl,
626  pH 8.0) three times under anaerobic conditions. The cells were then resuspended with 200 pL Tris
627  buffer pH 8.0 and transferred into EPR tubes. The tubes were capped and promptly frozen in liquid
628  N.. Measurements were performed on a Bruker ELEXYS E500 spectrometer using an ER049X
629  SuperX microwave bridge in a Bruker SHQO0601 cavity equipped with an Oxford Instruments
630  continuous flow cryostat and using an ITC 503 temperature controller (Oxford Instruments).

631

632 Metagenomic analyses across health status

633  To assess the distribution of hydrogenases across health status, we used a previously curated and
634 quality controlled dataset containing 1661 metagenomes from 33 studies®. The dataset
635 encompassed 871 healthy and 790 diseased individuals, including 11 chronic disease phenotypes.
636  Quality control was performed with TrimGalore v.0.6.6'! using a threshold of 80 bp for read length
637 and minimum Phred score of 25. Host sequence reads were removed by mapping the sequence
638 reads to the human genome with bowtie v.2.3.55212. To minimize the impact of sequence depth,
639 samples were rarefied to 15M reads with seqtk v.1.313, as previously described®. Forward reads
640  were mapped to a dataset of hydrogenase and ribosomal RNA sequences with DIAMOND v2.0%,
641 as described above. Alignments were filtered to a minimum length of 26 amino acids, subject to
642 identity threshold filtering, and normalized to gene copy per organism as described above. The
643 largest case-control IBD-related study within this dataset® was selected to investigate the

644  distribution of hydrogenase subgroups between healthy and disease-associated microbiomes, which
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645 included 46 patients with Crohn’s disease and 38 healthy controls. Statistical significance was

646  assessed with Wilcoxon tests, using the Holm-Bonferroni method to account for multiple

647  comparisons across disease states.

20


https://doi.org/10.1101/2024.08.15.608110
http://creativecommons.org/licenses/by-nc-nd/4.0/

648

649
650
651
652
653
654
655
656
657
658
659

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.608110; this version posted August 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figures

Figure 1. Abundance, expression, and distribution of hydrogenases and H,-related metabolic
genes throughout the human gut. (a) Abundance and expression of the genes encoding the
catalytic subunits of the three types of hydrogenases and the terminal reductases known to use Hp-
derived electrons in faecal metagenomes (left; n = 300), faecal metatranscriptomes (middle; n = 78),
and biopsy enrichment metagenomes (right; n = 102). These results summarise homology-based
searches against comprehensive reference databases and are shown in average gene copies per
organism (normalised to a set of universal single-copy ribosomal genes) for metagenomes and
RPKM for metatranscriptomes. (b) Proportion of each hydrogenase group present in each sample
per dataset. (c) Top genera predicted to encode or express hydrogenases for each dataset. The top
10 most abundant genera are included, for the five most abundant gut hydrogenase lineages,

expressed in RPKM.
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Figure 2. Phylogenomic tree showing distribution of hydrogenases among 812 bacterial
isolates from the human gut. Isolates are from the five dominant phyla within the human gut
with branch colours showing their phylum-level taxonomy. Isolates were shown to encode the
catalytic subunit genes coding for the major groups of gut hydrogenases and the terminal
reductases associated with methanogenesis, acetogenesis, sulfidogenesis, nitrate reduction,
or succinogenesis (coloured rings). The tree was generated using approximately-maximum-
likelihood estimation, Jukes-Cantor model (via FastTree) and the standardised ‘bac120’
phylogenetic analysis (via GTDB-Tk) and was midpoint rooted. Results are based on
homology-based searches against comprehensive reference databases. Specific isolates
were selected for further analysis, including culture-based activity measurements and
transcriptome studies (black dots). Tree scale represents branch length of the tree, as

calculated by number of base substitutions per base position.
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Figure 3. Hydrogenase expression and activity across 18 bacterial gut isolates. (a) The
heatmap showing the average expression levels in transcripts per million (TPM) of the catalytic
subunit genes for hydrogenases and the terminal reductases associated with sulfidogenesis,
succinogenesis, nitrate reduction, and aerobic respiration. The bottom row shows the average
maximum Hx production for each isolate. In both heatmaps, results show means from
biologically independent triplicates. B. longum and C. mitsuokai do not encode hydrogenases
and so are used as negative controls. (b) Bacterial growth measured by optical density (ODsgo,
green lines) and H; production (ppm; red lines), of representative isolates from chosen phyla
over 24-168-hour periods (n = 3, mean + SEM), where the lower detection threshold of the
gas chromatograph is 1000 ppm (dashed red line).
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684  Figure 4. Metabolic integration, predicted structure, and biochemical activity of the
685 group B [FeFe]-hydrogenases from Bacteroides. (a) A superposition of representative
686  structures of the group A [FeFe]-hydrogenase (Clostridium pasteurianum Cpl; X-ray
687  crystallography; PDB: 6GM27) and the group B [FeFe]-hydrogenase (Bacteroides fragilis;
688  AlphaFold2). Portions where the two [FeFe]-hydrogenase groups show structural similarity
689  (where RMSD <2 A) are highlighted in bold and black outline. Divergence between the two
690  structures (RMSD >2 A) is depicted as transparent with no outline. RMSD: root mean square
691 deviation. (b) Top-ranked predicted protein structure (AlphaFold2) of the B. fragilis group B
692 [FeFe]-hydrogenase with putative [FeFe]-hydrogenase cofactors modelled. The predicted H-
693  cluster site is shown in focus with conserved residues coordinating with the H-cluster labelled
694 in green. Four iron-sulfur clusters are predicted to coordinate with conserved cysteines
695 throughout the protein, labelled Al to A4. (c) H2 production (measured by GC) monitored from
696 cell lysates activated by addition of [2Fe]2®. Results are shown for the group B [FeFe]-
697 hydrogenases of B. fragilis, B. vulgatus, and B. thetaiotaomicron, as well as the group A3
698 [FeFe]-hydrogenase of B. thetaiotaomicron. Activities were normalised for number of cells
699  used (nmol H, min ODeggot) and error bars reflect standard deviation from biological triplicates.
700  All enzymes were expressed in E. coli BL21(DE3) cells. The strain expressing the prototypical
701  group Al [FeFe]-hydrogenase from Chlamydomonas reinhardtii (CrHydAl) was used as a
702  positive control, while “Blank” represents the same strain but containing an empty vector that
703  was also added with [2Fe]?. (d) X-band EPR spectra recorded of cells expressing the B.
704  fragilis group B [FeFe]-hydrogenase and empty vector BL21(DE3) control cells following
705  anaerobic incubation with [2Fe]rdt. A distinct partial rhombic EPR signal attributable to the Hox
706  state of the H-cluster with the first two g-values (g1 = 2.101, g = 2.053) observable in [2Fe]rt
707  -treated hydrogenase-expressing cells, while the third g-value is not discernible due to signal
708  overlap with cell background (see also Supplementary Note 1). EPR spectra were recorded at
709 20 K, 64 pW microwave power, and at a microwave frequency of 9.36 GHz. (e) Summary of
710 the expression levels of fermentation genes in seven enteric Bacteroides isolates, including
711  the group B and group A3 [FeFe]-hydrogenases. Expression is shown as TPM in boxes in the
712 order of B. caccae, B. faecis, B. fragilis, B. thetaiotaomicron, B. dorei, B. plebius, and B.
713  vulgatus under each relevant gene. Grey boxes indicate the gene is neither encoded nor

714  expressed.
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Figure 5. Comparison of hydrogenase gene levels in healthy individuals compared to Crohn’s
disease (CD) patients in a case-control study. Sum of counts per genome are shown for (a) group
B [FeFe]-hydrogenases, (b) group Al [FeFe]-hydrogenases, (c) group A3 [FeFe]-hydrogenases, (d)
all [FeFe]-hydrogenase subgroups, (e) group 1d [NiFe]-hydrogenases, (f) group 4a [NiFe]-
hydrogenases, and (g) all [NiFe]-hydrogenase subgroups. Also shown is (h) the ratio of group B to
group Al [FeFe]-hydrogenases. Statistical significance was assessed with Wilcoxon tests, where *
p <0.05, ** p < 0.01, *** p < 0.001. Box plots show median (centre line), upper and lower quartiles

(box limits), 1.5 x interquartile range (whiskers), and individual samples. n = 46 Crohn’s disease

patients, n = 38 healthy controls.
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748 Supplementary information

749  Supplementary Note 1. EPR characteristics of the Bacteroides [FeFe]-hydrogenases.
750  The [2Fe]rd cofactor mimic lacks the nitrogen bridgehead of [2Fe]2d, hampering catalysis and
751  promoting the build-up of the EPR-active H-cluster resting state, Hox. The [2Fe]Pd-treated whole
752  cells expressing the B. fragilis group B [FeFe]-hydrogenase showed a partial rhombic signal
753  for Hox-like state, with the first two g-values in good agreement with previously reported [FeFe]-
754  hydrogenases, typically with values above g = 2 (see Table S6). The third g-value is
755  theoretically positioned at around 2.010-2.009, but it cannot be distinctly resolved due to strong
756  overlap with BL21(DE3) cell background signals. Whole-cell samples of the B.
757  thetaiotaomicron group B [FeFe]-hydrogenase, the second most active gut hydrogenase in the
758  activity screening, did not exhibit clear H-cluster signals when incubated with [2Fe]P and
759  exhibited a spectrum equivalent to that of BL21(DE3) cells not expressing any [FeFe]-
760  hydrogenase (data not shown). The absence of any discernible EPR signal attributable to the
761  H-cluster in these samples is potentially due to the formation of thermodynamically favourable
762  H-cluster states that are EPR-silent, but is more likely due to the low solubility and thereby low
763  concentration of holo-enzyme in the whole-cell mixture.

764

765  Table S1 (xIsx). Abundance, expression, and origin of hydrogenases and associated genes
766  in stool metagenomes, stool metatranscriptomes, and biopsy metagenomes.

767

768 Table S2 (xIsx). Taxonomy and metabolic capabilities of the 812 sequenced human gut

769  isolates from the Australian Microbiome Culture Collection (AusMiCC).
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Microbiome Culture Collection (AusMiCC) used for growth, gas, and transcriptome analyses.

Species Strain Hydrogenase subgroup
Clostridium perfringens CC01445 Group B [FeFe]-hydrogenase
Group B [FeFe]-hydrogenase
Group Al [FeFe]-hydrogenase
Group Al [FeFe]-hydrogenase
Clostridium baratii CC01452 Group B [FeFe]-hydrogenase
Group Al [FeFe]-hydrogenase
Fusobacterium varium CC01421 Group Al [FeFe]-hydrogenase
Group Al [FeFe]-hydrogenase
Group A3 [FeFe]-hydrogenase
Necropsobacter rosorum CC01403 Group 1c [NiFe]-hydrogenase
Group 4a [NiFe]-hydrogenase
Bacteroides caccae CC01389 Group B [FeFe]-hydrogenase
Group A3 [FeFe]-hydrogenase
Bacteroides thetaiotaomicron CC00765 Group B [FeFe]-hydrogenase
Group A3 [FeFe]-hydrogenase
Bacteroides dorei CC01440 Group B [FeFe]-hydrogenase
Bacteroides faecis CC01412 Group B [FeFe]-hydrogenase
Group A3 [FeFe]-hydrogenase
Bacteroides vulgatus CC01422 Group B [FeFe]-hydrogenase
Bacteroides fragilis CC01400 Group B [FeFe]-hydrogenase
Bacteroides plebius CC01397 Group B [FeFe]-hydrogenase
Gemmiger formicilis CC00311 Group B [FeFe]-hydrogenase
Group Al [FeFe]-hydrogenase
Group A2 [FeFe]-hydrogenase
Dorea longicatena CC00515 Group B [FeFe]-hydrogenase
Group A2 [FeFe]-hydrogenase
Anaerostipus hadrus CC00501 Group B [FeFe]-hydrogenase
Group B [FeFe]-hydrogenase
Group A2 [FeFe]-hydrogenase
Olsenella umbonata CC00540 Group B [FeFe]-hydrogenase
Group A2 [FeFe]-hydrogenase
Collinsella aerofaciens CC00529 Group 4a [NiFe]-hydrogenase
Group 4e [NiFe]-hydrogenase
Group A2 [FeFe]-hydrogenase
Bifidobacterium longum CC00565 None
Catenibacterium mitsuokai CCO00599 None
Bacteroides stercoris CC00654 None
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773

774  Table S4 (xIsx). Annotated transcriptomes of the 18 gut isolates.

775

776  Table S5. Features and activities of the [FeFe]-hydrogenases heterologously expressed and

777  semisynthetically matured in E. coli.

7 Group Subclass | Species [FeS] Architecture Size (kDa) | % Activity*

B M3a Bacteroides fragilis 3 x [4Fe-4S], 1 x 55 34+6
(Bf) [2Fe-2S]

B M3a Bacteroides vulgatus 3 x [4Fe-4S], 1 x 65 19+0.3
(Bv) [2Fe-2S]

B M3a Bacteroides 3 x [4Fe-4S], 1 x 55 76+1.3
thetaiotaomicron (Bt) [2Fe-2S]

A3 M3 Bacteroides 3 x [4Fe-4S], 1 x 65 0.22 £0.04
thetaiotaomicron (Bt) [2Fe-2S]

779  * with respect to the H; evolution rates of the Chlamydomonas reinhardtii group Al [FeFe]-
780  hydrogenase (CrHydALl).

781

782  Table S6. Previously reported g-values for [FeFe]-hydrogenases matured with [2Fe]P%, i.e. Hox-
783  [2Fe]rd state.

Group Subclass Species (o[ 02 gs
Chlamydomonas reinhardtii

Al M1 2.094 2.039 1.998
(CrHydA1)*

Al M3 Clostridium pasteurianum (Cpl)*®> | 2.092 2.039 2.000

Al M2 Solobacterium moorei (SmHydA)* | 2.100 2.040 2.010
Desulfovibrio desulfuricans

Al M2 2.095 2.041 1.998
(DdH)*6
Bacteroides fragilis (BfHydM, Not

B M3a ) 2.101 2.053
this study) detected

C M2f Thermotoga maritima (TmHydS)*" | 2.108 2.043 2.000
Thermoanaerobacter mathranii

D M2e 2.106 2.051 2.010
(TamHydS)*

784

785 Table S7 (xIsx). Hydrogenase levels in the stool metagenomes of healthy individuals
786  compared to those with chronic disease states.

787

788
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789

Figure S1. Comparison of the growth and H; production of the 18 human gut isolates.
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791  Figure S2. Comparison of H, production activities in Bacteroides strains containing and
792 lacking group B [FeFe]-hydrogenases. The B. stercoris strain lacks group B [FeFe]-

793  hydrogenases, whereas the other strains encode and express them.
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796  Figure S3. AlphaFold2 predicted protein structures. AlphaFold2 confidence scores for the
797  two protein models made in this study. The top ranked model is shown and coloured according
798 to their predicted local distance difference test (pLDDT) score, and their corresponding
799  predicted aligned error (PAE) plots shown below. Portions of the BtHydABC PAE plot axis are
800 labelled according to their subunit identities. PAE plots were generated using PAE Viewer web
801  servert'4 ipTM: interface predicted template modelling score. pTM: predicted template

802  modelling score.

BfHydM BtHydABC

ipTM=- ,pTM =0.89 ipTM =0.89, pTM = 0.90
100
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Scored residue
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804  Figure S4. Process for modelling putative cofactors into the predicted structure of the
805  B.fragilis group B [FeFe]-hydrogenase predicted structure. (a) Overview of strategy used
806  for modelling cofactors into apo BfHydM. Experimental structures chosen from FoldSeek
807  output summarised on the right with their corresponding positional overlap and structural
808 overlap (TM-score and RMSD). (b) Superposition of apo BfHydM against overlapping portions
809  of experimental structures chosen from FoldSeek. The PDBs were chosen to act as a template
810 for cofactor modelling based on their (i) presence of experimentally observed cofactors and (ii)
811  structural similarity to portions of apo BfHydM, especially at conserved cysteine residues. (c)
812  the putative H-cluster pocket in BfHydM is highly similar to the structural architecture of that
813  seen in the group Al [FeFe]-hydrogenase of Clostridium pasteurianum (Cpl; PDB: 8ALN8),
814  Conserved H-cluster binding residues between the two structures overlay near identically,
815 allowing for minimal manual repositioning of the H-cluster into BfHydM. (d) Putative iron-sulfur
816  cluster pockets (Al and A2) in BfHydM share some structural similarity to those seen in group
817 Al [FeFe]-hydrogenase from Cpl, but with larger divergence compared to the aforementioned
818  H-cluster. The iron-sulfur clusters required manual repositioning to coordinate with the
819  cysteines and bond lengths were checked as being biochemically reasonable in the UCSF
820 ChimeraX software. (e) Putative iron-sulfur cluster pockets (A3 and A4) in BfHydM share near
821 identical structural similarity to those seen in Cpl. Iron-sulfur clusters were transposed into
822  BfHydM without any manual repositioning from their relative positions observed in the Cpl

823 structure.
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A Predict protein structure
(AlphaFold2)

Find struc‘[ural PDB ID Position in query TM-score RMSD
Simllal’lty in PDB 8ALN_B 146-488 0.67473 6.02
1FCA_A 114-168 0.83937 135

(Foldseek) = C H-cluster

Model cofactors from
similar structures
(ChimeraX)

Alphafold:

PDB: 1FCA

824
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825  Figure S5. AlphaFold2 structural predictions of group B [FeFe]-hydrogenases from the
826 Bacteroides. (a) Sequence conservation of Group B [FeFe]-hydrogenase homologs between
827  Bacteroides fragilis, Bacteroides thetaiotaomicron, and Bacteroides vulgatus. Multiple
828  sequence alignment was performed with ClustalO v1.2.4 and visualised with the ESPript 3.0
829  web server'?®>16  (b) Top-ranked AlphaFold2 models of the B. thetaiotaomicron and B.
830 vulgatus group B [FeFe]-hydrogenase, coloured by pLDDT. The low pLDDT scoring N-term
831  portion of BvHyd is possibly an intrinsically disordered domain. (c) Superposition of all three
832  Bacteroides Group B [FeFe]-hydrogenases showing overall structural conservation, except for

833  the N-terminal portion of BvHydM which is predicted to be largely disordered.
A
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835 Figure S6. Predicted structure of the group A3 [FeFe]-hydrogenase from Bacteroides
836 thetaiotaomicron. (a) Top and side view of the AlphaFold2 predicted structure. (b)
837  Superposition of HydABC components with structures of Acetobacterium woodii HydABC
838 (PDB ID: 8A5E®*), Clostridium pasteurianum [FeFe]-hydrogenase (PDB ID: 1FEH*°), and
839  Clostridium acidurici ferredoxin (PDB ID: 1FCA'%9). The structural similarity between these
840  proteins and BtHydABC allowed for homology modelling of cofactors. (c) Putative cofactors
841 and enzymatic reactions of BtHydABC. Cofactors are positioned based on homology models
842  and labelled according to their subunit identity. (d) Structure of the putative FMN and NADH
843  binding site in the AlphaFold structure (left) compared to the same site in the experimental
844  structure of A. woodii HydB (right). A trio of phenylalanine residues which form a r-stacking
845  “clamp” around the adenine moiety of NADH is conserved in both structures. RMSD: root-
846  mean-square-deviation. A: &ngstrom. FMN: flavin mononucleotide. NADH: nicotinamide
847  adenine dinucleotide (reduced). NAD": nicotinamide adenine dinucleotide (oxidized). Fdieq:
848  reduced ferredoxin. Fdox: oxidized ferredoxin.

849
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Figure S7. SDS-PAGE visualising the molecular weights of the heterologously
expressed [FeFe]-hydrogenases from Bacteroides. Expression constructs with verified
sequences were used to transform chemically competent E. coli BL21(DE3). Protein bands
are shown from before induction with IPTG (B), after induction (Name-Subclass and with the
expected kDa size in parenthesis), and lysate or supernatant after cell lysis and centrifugation
(L). The bands in each after-induction lane corresponded well with the expected molecular
weights in kDa. Three gut-associated [FeFe]-hydrogenases (Bf-M3a, Bt-M3, and Bt-M3a)
exhibited high levels of expression and low to moderate solubility while Bv-M3a had poor

expression and solubility levels.
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Figure S8. Distribution of key [FeFe] hydrogenase subgroups across diseases.

Statistical significance was assessed with Wilcoxon tests, using the Holm—Bonferroni method

to account for multiple comparisons. IBD = inflammatory bowel disease. cpg = counts per

genome. ME/CSF = myalgic encephalomyelitis / chronic fatigue syndrome.
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867  Figure S9. Distribution of key [NiFe] hydrogenase subgroups across diseases. Statistical
868  significance was assessed with Wilcoxon tests, using the Holm—Bonferroni method to account
869  for multiple comparisons. IBD = inflammatory bowel disease. cpg = counts per genome.

870 ME/CSF = myalgic encephalomyelitis / chronic fatigue syndrome.
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