

1 **Enhanced auxin signaling hub triggers root hair growth at moderate**
2 **low temperature in *Arabidopsis thaliana***

5 Victoria Berdion Gabarain¹, Gerardo Núñez-Lillo², Aleš Pěnčík³, Miguel Angel Ibeas^{4,5}, Javier
6 Martínez Pacheco^{1,10}, Leonel Lopez¹, Mariana Carignani Sardoy¹, Jia Zhongtao⁷, Ondřej Novák³,
7 Ricardo F.H. Giehl⁸, Nicolaus von Wieren⁸, Claudio Meneses⁹ & José M. Estevez^{1,4,5,6,†}

10 ¹Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires
11 C1405BWE, Argentina.

12 ²Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia
13 Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile.

14 ³Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of
15 Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-779 00 Olomouc,
16 Czech Republic.

17 ⁴ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of
18 Super Adaptable Plants (MN-SAP), Santiago, Chile.

19 ⁵ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology
20 (iBio) Santiago, Chile.

21 ⁶Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello,
22 Santiago, Chile.

23 ⁷College of Resources and Environmental Sciences, National 13 Academy of Agriculture Green
24 Development, China Agricultural University, 14 100193 Beijing, China.

25 ⁸Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant
26 Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany

27 ⁹Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistema Naturales,
28 Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Genética Molecular y
29 Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile,
30 Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Institute, Center for
31 Genome Regulation, Santiago, Chile.

32 ¹⁰Current Address: SALK Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA
33 92037, USA.

34 [†]Correspondence should be addressed. Email: jestevez@leloir.org.ar (J.M.E)

37 **Abstract**

38

39 Root hairs (RH) as a mixed tip- and non-tip growing protrusions that develop from root
40 epidermal cells are important for nutrient and water uptake, root anchoring, and interaction
41 with soil microorganisms. Although nutrient availability and temperature are critical interlinked
42 factors for sustained plant growth, the molecular mechanisms underlying their sensing and
43 downstream signaling pathways remain unclear. Here, we identified a moderate low
44 temperature (10°C) condition that triggers a strong RH elongation response involving several
45 molecular components of the auxin pathway. Then, we have determined that auxin
46 biosynthesis carried out by YUCCAs/TAA1, the auxin transport conducted by PIN2/PIN4 and
47 AUX1/PGP4, and the auxin signaling controlled by TIR1/AFB2 coupled to four specific ARFs
48 (ARF6/ARF8 and ARF7/ARF19), are all crucial for the RH response at moderate low
49 temperature. These results uncover the auxin pathway as one central hub under moderate low
50 temperature in the roots to trigger RH growth. Our work highlights the importance of moderate
51 low temperature stimulus as a complex nutritional signal from the media soil into the roots that
52 may be fine-tuned for future biotechnological applications to enhance nutrient uptake.

53

54

55

56 Abstract Word counts 186

57

58 Text Word counts x,xxx

59 Figures 1-7

60 Tables S1-S4

61

62 Passwords: *Arabidopsis*, auxin, low temperature, root hairs.

63 **Introduction**

64

65 Root hairs (RH) as mixed tip and non-tip-growing protrusions that develop from root epidermal
66 cells are important for nutrient, water uptake as well as for root anchoring and interaction with
67 soil microorganisms (Balcerowick et al. 2015; Herburger et al. 2023). RH development involves
68 cell fate determination, RH initiation, and then cell elongation by polarized or tip growth. In
69 *Arabidopsis* (*Arabidopsis thaliana*), RH cells (T, trichoblasts) and non-hair cells (AT, atrichoblast)
70 files differentiate from the epidermal cells in the meristematic and transition zones of the root
71 (Dolan et al., 1993). RH constantly integrates inner signals such as hormones (e.g. auxin and
72 ethylene) and environmental cues like nutrients (e.g., phosphates and nitrates) and
73 temperature (e.g., low temperature) (Balcerowick et al. 2015; Shibata et al. 2019; Kia et al.
74 2022; Lopez et al. 2023). The auxin effect in RH growth depends on systemic auxin metabolism
75 focused mainly on the root meristem-root cup, intercellular auxin transport via root epidermis
76 (Sauer et al., 2013) and on site RH signaling (Casal & Estevez, 2021; Lopez et al., 2023). In recent
77 years, it has become evident that RH play a crucial role in root activities, making them a
78 potential target for biotechnological enhancement in commercial cultivars. The integration of
79 hormonal pathways including auxin with environmental signals and the fine-tuning of RH
80 development in plants are intricate and poorly understood processes.

81

82 The main natural auxin, indole-3-acetic acid (IAA), is biosynthesized primarily via two chemical
83 reactions (Zhao, 2012). The amino acid L-tryptophan (Trp) is produced through the shikimate
84 pathway and is the primary precursor in plants' four major auxin biosynthesis pathways. These
85 pathways are known as the indole-3-acetamide (IAM), indole-3-acetaldoxime (IAOx),
86 tryptamine (TRA), and indole-3-pyruvic acid (IPyA) pathways, named after their respective
87 major intermediate compounds (Mano and Nemoto, 2012; Ljung, 2013; Kasahara, 2016). The
88 major sources of newly produced auxin are thought to be these routes. However, there may
89 also be Trp-independent mechanisms (Tivendale et al., 2014; Wang et al., 2015). After being
90 synthesized and transported, auxin may undergo degradation through conjugation and
91 subsequent oxidation (Hayashi et al, 2021). This process results in the formation of two main
92 metabolites: 2-oxindole-3-acetic acid (oxIAA) and oxIAA-glucose (oxIAA-Glc) (Östlin et al., 1998;
93 Kai et al., 2007; Pěnčík et al., 2013). Inactive auxin involves conjugates with amino acids or
94 sugars (Tam et al., 2000; Kowalczyk and Sandberg, 2001). Specific conjugates may undergo
95 hydrolysis, resulting in the release of active auxin. This suggests that these conjugates might
96 function as temporary storage forms of the inactive hormone (Ludwig-Müller 2011). However,
97 in *Arabidopsis thaliana*, the most prevalent amide-linked conjugates, IAA-aspartate (IAA-Asp)
98 and IAA-glutamate (IAA-Glu), do not undergo or it is very low the reversible conversion to IAA.
99 Instead, they likely function as degradation intermediates (Kowalczyk and Sandberg, 2001;
100 Woodward and Bartel, 2005). IPyA is converted to IAA by the catalysis of flavin-containing
101 monooxygenases encoded in YUCCA (YUC) genes (Zhao et al., 2001; Mashiguchi et al., 2011;
102 Won et al., 2011). Downstream biosynthesis, various auxin transporters regulate cellular auxin
103 levels including the auxin efflux carriers PIN-FORMED (PIN) and ATP-BINDING CASSETTE B

104 (ABCB) as well as the auxin influx carriers from the AUXIN RESISTANT1 (AUX1)/LIKE AUX1 (LAX)
105 family. PIN2 is the only family member expressed in root epidermal cells and is present in both
106 root and non-RH cells (Luschnig *et al.*, 1998), with higher PIN2 abundance in atrichoblasts
107 (Löfke *et al.*, 2015). PIN2 displays a polar localization to the apical (shoot-ward) side of the
108 epidermal cells and, thereby, mediates the basipetal (shoot-ward) direction of the auxin flow
109 (Wisniewska *et al.*, 2006; Cho *et al.*, 2007; Rigas *et al.*, 2013). Members from the AUX1/LAX
110 protein family localize to the plasma membrane and mediate auxin uptake into the cell (Yang *et*
111 *al.*, 2006; Swarup & Péret, 2012). The H⁺/IAA symporter AUX1 was demonstrated to facilitate
112 auxin influx (Yang *et al.*, 2006; Yang & Murphy, 2009; Ikeda *et al.* 2009). AUX1 overexpression
113 enhances RH growth, presumably due to the increased auxin levels in the root hair cells
114 (Ganguly *et al.*, 2010). Intriguingly, in the root epidermis of wild-type plants, AUX1 is expressed
115 only in non-hair cells (Jones *et al.*, 2009), suggesting that auxin transport in non-hair cells
116 sustains RH development and cell elongation (Lee & Cho, 2006; Jones *et al.*, 2009; Ikeda *et al.*
117 2009). Finally, the slow genomic auxin response is mediated by the receptors of the
118 TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) family (Dharmasiri *et*
119 *al.*, 2005; Kepinsky & Leyser, 2005). Auxin binding on TIR1/AFB and its coreceptor AUXIN
120 RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (AUX/IAA) induces the proteasome-dependent
121 degradation of the latter. AUX/IAA depletion results in the subsequent release of ARF TFs,
122 which modify the auxin-dependent expression profile. Once in the trichoblasts, auxin sensed *in*
123 *situ* by the TIR1/AFBs and Aux/IAA coreceptors promotes RH growth. ARFs control the
124 expansion of RH (Mangano *et al.*, 2017; Bhosale *et al.*, 2018; Schoenaers *et al.*, 2018; Jia *et al.*,
125 2023). ARF7 and ARF19 are the most abundantly expressed ARFs in root hair cells (Bargmann *et*
126 *al.*, 2013) and they were shown to be linked to low Pi conditions (Bhosale *et al.*, 2018; Giri *et*
127 *al.*, 2018; Schoenaers *et al.*, 2018). On the other hand, ARF6 and ARF8 were shown to be
128 involved in the response of RHs to low nitrate (Jia *et al.*, 2023). Downstream of ARFs, auxin
129 treatments promote RH growth by positively regulating the expression of several TFs, including
130 the main RH regulators bHLH RHD6 and RSL4 (Yi *et al.*, 2010) and several other TFs such as RSL2
131 and LRL3 (Karas *et al.*, 2009; Pires *et al.*, 2013).
132

133 When exposing *Arabidopsis* plant accessions to moderate low temperature condition (around
134 10°C), an enhanced RH growth (up to three-fold) was detected (Moisön *et al.*, 2021; Pacheco *et*
135 *al.*, 2022; Pacheco *et al.*, 2023) although the rest of the plant and roots arrested their growth.
136 This unexpected and specific growth response in RH raised several questions regarding the
137 molecular mechanisms behind it. It was hypothesized that a low availability and mobility of
138 nutrients caused by moderate low temperature might be the direct stimulus that promotes RH
139 growth (Moisön *et al.* 2021; Pacheco *et al.* 2021). Recently, a link between the nitrate
140 availability and this specific low temperature growth was found (Pacheco *et al.* 2023), and, a
141 low nitrate condition promotes an active RH growth mediated by some auxin pathway
142 components (Jia *et al.* 2023). In addition, it was shown that low phosphate also triggers an
143 upregulation of auxin biosynthesis in the tip of the root with a concomitant enhancement of RH
144 growth by using other molecular components than low nitrate (Bhosale *et al.* 2018; Jia *et al.*

145 2023; Lopez et al. 2023). It is known that downstream auxin, ROOT HAIR DEFECTIVE 6 (RHD6)
146 and RHD6-like 4 (RSL4) are the main transcription factors that regulate RH growth in low
147 phosphate (Bhosale et al. 2018), low nitrate (Jia et al. 2023), and low temperature conditions
148 (Moison et al. 2021). Previously, it was shown that the long non-coding RNA APOLO identifies
149 the locus encoding for the master regulator (RHD6) and regulates RHD6 transcriptional activity,
150 which in turn causes moderate low temperature-induced RH elongation by activating the RSL4
151 transcription factor gene (Moison et al. 2021). Additionally, it was shown that APOLO modifies
152 transcription factor WRKY42's binding to the RHD6 promoter through interactions with it.
153 Moderate low temperature activates RHD6 only when WRKY42 is present, and WRKY42
154 deregulation prevents cold-induced RH expansion. All of our findings point to the formation of
155 a new ribonucleoprotein complex including APOLO and WRKY42 that functions as a regulatory
156 hub to shape the epigenetic environment of RHD6 and integrate signals controlling RH growth
157 and development (Moison et al. 2021). In this work, we question if the moderate low
158 temperature condition can trigger changes in auxin synthesis, transport, and signaling, as well
159 as the molecular components involved in the roots as a consequence of the effect on the
160 mobility of the nutrients in the media-soil. Using several diverse approaches, we identified the
161 precise role of the auxin pathway elements during RH polar growth in moderate low
162 temperature conditions. We found that mutant and overexpression lines affected auxin
163 biosynthesis, transport, and downstream signaling, altering the ability to respond to moderate
164 low temperature at the RH level. Our study has not only identified the detailed molecular
165 components of the auxin pathway that govern how RH grows under moderate low
166 temperature, but also highlights possible new targets to be reprogrammed in crop engineering
167 to enhance nutrient uptake by the roots.

168

169

170 Results

171

172 Low temperature induces significant transcriptional changes in the auxin pathway in roots.

173 Root hair (RH) development is a well-conserved adaptation to low soil nutrients. Previous
174 research indicates that growth at 10°C decreases nutrient availability in the growth medium,
175 which has a major impact on RH growth. Pacheco *et al.* (2022) found that this effect limits
176 nitrate transport and accessibility in culture medium, promoting polar RH growth. Previously,
177 auxin was linked to both low nitrate (Jia *et al.*, 2023) and low phosphate promotion of RH
178 growth (Giri *et al.*, 2018; Bhosale *et al.*, 2018). This evidence allowed us to use the moderate
179 low temperature effect on RH to uncover the molecular mechanisms linked to complex
180 nutritional cues. We then asked if the auxin pathway could be involved in moderate low
181 temperature mediated RH growth. To explore auxin-related genes, we first identified which
182 were the *Arabidopsis* genes annotated in the different areas of the auxin pathway:
183 biosynthesis, conjugation, signaling and transport. A total of 349 auxin-related genes based on
184 annotation (**Table S1**) were then used to evaluate their expression at 10°C for 2h and 6h in Wt
185 Col-0 as well as in the hairless double knockout mutant *rsl2 rsl4* (**Figure 1**). RSL2 and RSL4 are

186 major TFs that control cell elongation in RH at moderate low temperature (Moisön *et al.*, 2021).
187 Differential expression analysis compared 2h and 6h of low temperature treatment to basal
188 condition at 22°C in Col-0 genotype to identify low temperature-response genes. A total of
189 7,958 and 12,860 differentially expressed genes were identified at 2h and 6h of cold treatment,
190 respectively. Using a list of 318 annotated auxin-related genes (**Table S1**), we identified a total
191 of 170 differentially expressed auxin-related genes in the moderate low temperature
192 treatments (**Table S2**). The expression values of the 170 auxin-related genes with differential
193 expression were scaled and clustered in the heat-map of **Figure 1A**. Four clusters were
194 identified, cluster 1 (49 DEG), which contains PIL2,5,6 and TIR1 and cluster 2 (29 DEG), which
195 contains genes downregulated by low temperature treatment. Cluster 3 (22 DEG) contains
196 TAA1, ARF19, PIN1,PIN4 and cluster 4 (70 DEG) contains YUCCA genes (YUCCA4,5,6,8), several
197 ARFs (ARF6,7,8), several IAA (IAA14,17,18,28), few PILs (Barbez *et al.* 2012) and PIN2 that are
198 upregulated by low temperature treatment. On the other hand, in the *rsl2 rsl4* double mutant
199 the genes of cluster 2 and cluster 4 have significantly higher expression values than Col-0
200 genotype suggesting a negative regulation. In comparison, genes of cluster 3 have
201 substantially lower expression values than the Col-0 genotype, possibly by a positive regulation
202 by RSL2-RSL4 (**Figure 1B**). A comparative gene ontology analysis was conducted to understand
203 which biological processes are enriched in the 4 clusters identified before (**Figure 1C**). Cluster 1
204 presents GO terms associated with auxin transport and regulation of growth. In contrast, in
205 cluster 2, GO terms related to root morphogenesis and amine biosynthetic process and auxin
206 metabolic process can be found. In cluster 3 GO terms of gravitropism, auxin polar transport
207 and auxin biosynthetic process are highlighted. Finally, in cluster 4, GO terms associated with
208 root morphogenesis, meristem growth and regulation of the flavonoid biosynthetic process are
209 observed. This data shows that auxin biosynthesis, transport, and signaling-related genes are
210 globally affected by the moderate low temperature treatment in roots.
211

212 **Auxin biosynthesis in the root tip is required for RH growth at a moderate low temperature.**
213 Auxin is essential for RH growth and development under variable conditions (Mangano *et al.*,
214 2017; Bhosale *et al.*, 2018; Jia *et al.*, 2023). Tryptophan aminotransferases of the TRYPTOPHAN
215 AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/TRYPTOPHAN AMINOTRANSFERASE RELATED
216 (TAR) family and YUCCA-type flavin monooxygenases catalyze the conversion of tryptophan to
217 auxin, representing the major pathway for local auxin biosynthesis in Arabidopsis (Zhao *et al.*,
218 2001). Interestingly, our RNA-seq gene expression profiling revealed that transcript levels of
219 TAA1 and several YUCCA genes increase rapidly in response to low temperature (**Figure 1**). The
220 RH growth of loss-of-function *taa1* and quintuple *yuc* mutants (*yucq*, lacking *yuc3*, *yuc5*, *yuc7*,
221 *yuc8* and *yuc9*) (Chen *et al.*, 2014; Gaillochet *et al.*, 2020) were analyzed to functionally validate
222 the role of local auxin biosynthesis in stimulating RH elongation under low temperature. RH
223 lengths of *taa1* and *yucq* mutants were much shorter to the WT at both 22°C and at moderate
224 low temperature (**Figure 2A**). Adding 100 nM of auxin (IAA, indole acetic acid) exogenously,
225 restored both *taa1* and *yucq* mutants to WT Col-0 RH growth (**Figure 2A**). In addition, we select
226 one of the YUCCA genes that are induced by moderate low temperature in the RNA-seq data

227 (see Cluster 4, **Figure 1**) to study in more detail. The overexpression of YUC8 (YUC8-OE) showed
228 much longer RH than WT Col-0 at both temperatures (**Figure 2B**) and YUC8-GFP translational
229 reporter, that catalyzes the downstream reaction of TAA1 in auxin synthesis, showed
230 significantly higher signal under low temperature (**Figure 2C**). To investigate whether auxin
231 biosynthesis mediated by TAA1-YUCCs is involved in the RH elongation response at low
232 temperature, we treated Wt Col-0 plants with the auxin biosynthesis inhibitor yucasin
233 (Nishimura *et al.*, 2013) (**Figure 2D**). When yucasin was applied to roots remarkably decreased
234 RH elongation at 22°C (IC50=6 uM) while higher concentrations (IC50=33 uM) were required to
235 block RH growth at low temperature. These results suggest that RH elongation at low
236 temperature relies on local auxin biosynthesis in roots. TAA1-GFP translational reporter showed
237 that protein levels decreased in root apices grown under low temperature after 3 days of
238 treatment (**Figure 2E**). All these results together confirm the role of TAA1 and multiple YUC-
239 dependent auxin synthesis is required to regulate RH elongation under low temperature
240 (**Figure 2F**). Then, we tested if auxin precursor and related metabolites levels were changed
241 under low temperature in the roots of Wt Col-0 and YUC8 OE line. Seedling roots samples were
242 isolated, and auxin precursors and metabolites were identified and quantified using high
243 performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Free
244 IAA, auxin precursors, related metabolites and auxin conjugates were quantified (**Figure 3** and
245 **Table S3**). After moderate, low temperature treatment, the amount of Trp (Tryptophan) in the
246 roots is 3-fold increased in Wt Col-0. Similar trends are observed for the alternative route IAM
247 and IPyA, that both produce IAA, are drastically enhanced under moderate low temperature in
248 Wt Col-0. In addition, the content of oxIAA, oxIAA-Glu and oxIAA-Glc were also increased by
249 low temperature treatment in Wt Col-0 and specially in the YUC8 OE line (**Figure 3**). This
250 suggests that the excess of IAA might be inactivated in the YUC8 OE. Overall, these results
251 indicate that major changes occur in the auxin pathway when roots are exposed to moderate
252 low temperature. This agrees with the overall transcriptional changes in the auxin-related
253 genes detected (**Figure 1**) and specifically in the biosynthetic genes TAA1-YUCs (**Figure 1** and **2**).
254

255 **Auxin transport is mediated by PIN2, PIN4 and AUX1, which affect on RH growth at low-
256 temperature.**

257 To investigate how moderate low temperature induced auxin increase is sustained in root
258 apical meristems, we examined the role of polar auxin transport in more detail by assessing the
259 roles of PINs and AUX1, which mediate shoot-ward auxin transport from the root tip to the
260 epidermis in the elongation and differentiation zones of roots (Swarup *et al.*, 2012; Wiśniewska
261 *et al.*, 2006). As expected, RH elongation of *aux1*, *eir-1-1 (pin2)* and *pgp4-1* mutants under low
262 temperature was significantly lower than the WT (**Figure 4**). In addition, *pin4* also showed a lack
263 of low temperature RH response. In agreement with this, both PIN2 and PIN4 were upregulated
264 under low temperature in the RNA-seq gene expression profiling (**Figure 1**). Before it was
265 demonstrated that AUX1 and PIN2 contribute to most of the total RH auxin uptake capacity
266 (Dindas *et al.*, 2018). Hence, in the absence of auxin uptake carrier activity in *aux1*, the IAA-
267 dependent RH elongation response to low Pi conditions is severely perturbed. By adding 100

268 nM of auxin (IAA, indole acetic acid) exogenously, *aux1* and *pgp4-1* mutants were restored to
269 WT Col-0 RH growth while *pin4* and *pin2* did not restore their growth at moderate low
270 temperature (**Figure 4A**). Furthermore, the addition of NOA (1-naphthoxyacetic acid) as an
271 inhibitor that blocks the activities of both *auxin* influx and efflux carriers (Parry *et al.* 2001), the
272 RH growth is inhibited specifically at moderate low temperature (**Figure 4B**). At the same time,
273 only PIN2:PIN2-GFP, but not PIN4:PIN4-GFP and AUX1:AUX1-GFP protein reporter, increase
274 their signals under low temperature (**Figure 4C-E**). In agreement, PIN2 accumulation in the
275 lateral root cap (LRC) and epidermis is crucial for RH elongation (Swarup *et al.*, 2007; Jones *et*
276 *al.*, 2009). AUX1 level decreases under low temperature, which might indicate an unknown
277 posttranslational regulation. Collectively, these results demonstrate that TAA1/YUC8-mediated
278 local auxin biosynthesis in the root apex, PIN4 controls local transport close to the root tip, and
279 AUX1-PGP4/PIN2-driven auxin shootward transport via epidermal tissues is indispensable to
280 stimulate RH elongation in response to low temperature (**Figure 4F**). To test if there are
281 modified levels of auxin for the enhanced RH growth, we used DII-VENUS that reflects the
282 nuclear auxin signaling and distribution (Brunoud *et al.*, 2012) and DR5:GFP auxin reporter
283 (Heiser *et al.* 2005) in both the root meristematic and differentiation zones (**Figure 5A-B**).
284 Confocal imaging revealed that auxin response was significantly lower in root epidermal cells of
285 WT under low temperature, visualized by DR5-GFP. In agreement, DII-Venus showed an
286 enhanced signal in the meristematic zone. We demonstrate that low temperature modifies
287 polar auxin transport and nuclear auxin signaling to regulate RH growth (**Figure 5C**).
288

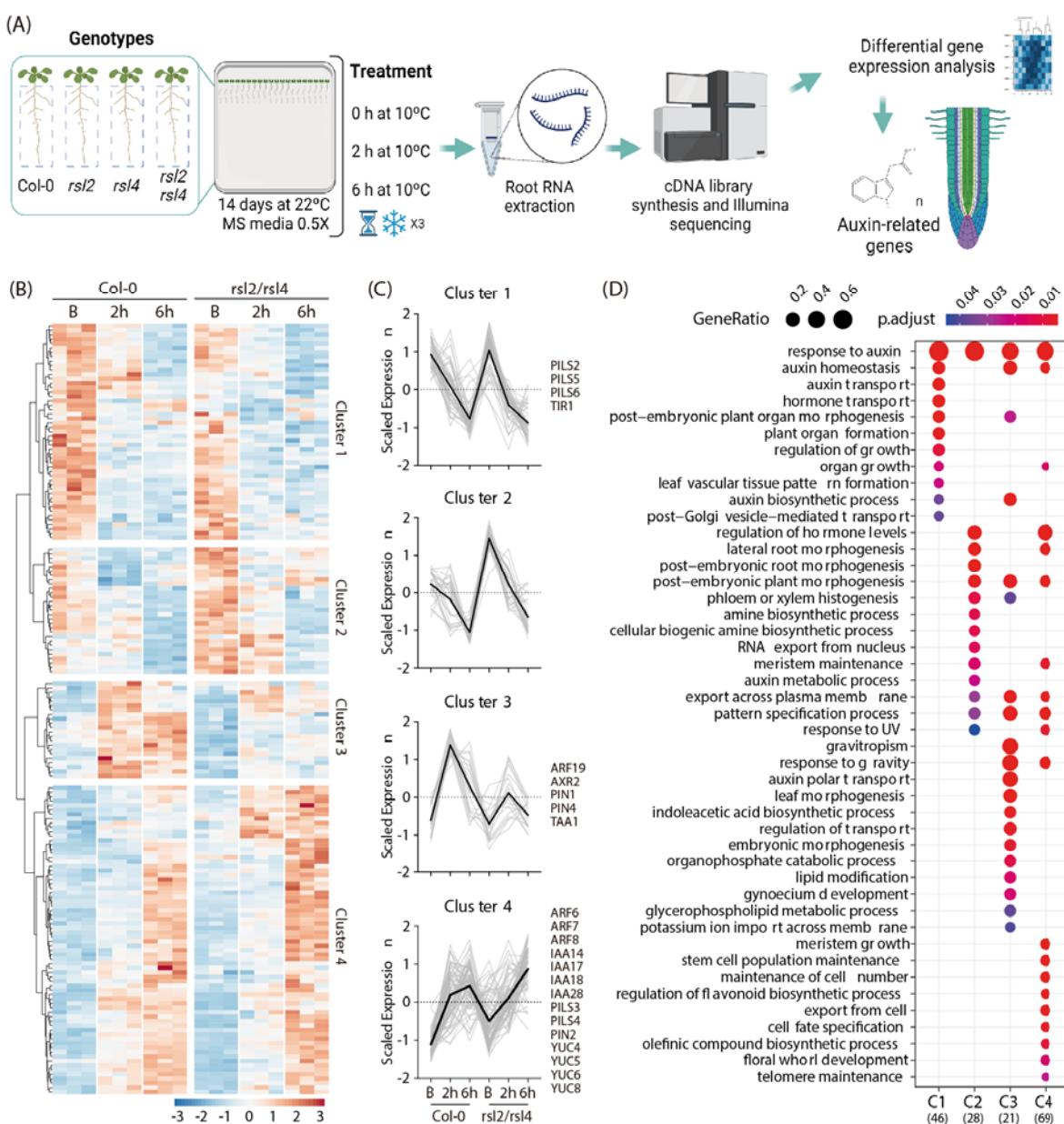
289 **Auxin TIR-AFBs and ARFs mediated signaling effect on RH growth at low temperature.**

290 To cause RH swelling and RH growth, the TRANSPORT INHIBITOR1 (TIR1)/AUXIN SIGNALING F-
291 BOX (AFBs) and Aux/IAA co-receptors need first to detect auxin in the trichoblasts. Based on
292 this, we tested if *tir1-1* and the double mutant *tir1 afb2-3* showed any defect in RH growth
293 under low temperature. TIR1 was already detected in the RNA-seq experiment (**Figure 1**). Both
294 *tir1-1* and the double mutant *tir1 afb2-3* showed much shorter RHs than WT at moderate low
295 temperature while the effect was minor at 22°C (**Figure 6A**). The *tir1 afb2,4,5* multiple mutant
296 showed a similar phenotype than *tir1-1* and the double mutant *tir1 afb2-3*. By adding 100 nM
297 of IAA exogenously, both mutants were restored to WT Col-0 RH growth (**Figure S1**), suggesting
298 that multiple AFBs may be acting together with TIR1. Interestingly, TIR1:TIR1-GFP showed no
299 clear change in the expression level under low temperature in the expansion and
300 differentiation zones where RH develops (**Figure 6B**). Upon arrival to the RH zone, auxin triggers
301 a combination of short- and long-term signaling events coordinated by ARF transcription factors
302 (Velasquez *et al.*, 2016; Dindas *et al.*, 2018). To explore how downstream auxin signaling
303 regulates low temperature-induced RH elongation, we characterized RH phenotypes of a set of
304 several loss-of-function mutants for root-expressed ARF genes (Rademacher *et al.*, 2011). Low
305 temperature-induced RH elongation was significantly impaired in the *arf6/arf8*, and *arf7/arf19*
306 single mutants (**Figure 6C**). A further decrease in RH length specifically at low temperature was
307 observed in the *arf6 af8* double mutant compared to the corresponding single mutants. All
308 suggest that ARF6/ARF8 and ARF7/ARF19 additively regulate the RH elongation under low

309 temperature. In agreement, the ARF7:ARF7-GFP reporter showed enhanced expression at low
310 temperature, and specifically, in epidermal cells, including RHs (**Figure 6D-E**). In agreement
311 with this, all these four ARFs were upregulated under moderate low temperature in the RNA-
312 seq gene expression profiling (**Figure 1**). These results together indicate that at least these four
313 ARFs (ARF6/ARF8 and ARF7/ARF19) are required to trigger RH growth under low temperature
314 (**Figure 6F**).

315

316


317 Discussion

318

319 Plant root In highly heterogeneous soil environments require developmental plasticity to
320 optimize resource acquisition. RH elongation is an essential adaptation for acquiring immobile
321 nutrients such as phosphate and nitrates (Yi *et al.*, 2010; Bhosale *et al.*, 2018; Jia *et al.*, 2023).
322 Here, we report that under low temperature conditions, *Arabidopsis* roots use the hormone
323 auxin to enhance RH growth and trigger uptake of essential nutrients. Our study demonstrates
324 that promoting RH elongation under moderate low temperature requires the concerted
325 activity of auxin synthesis, transport, and transcription-related components, allowing us to
326 construct a mechanistic framework for this essential root adaptive response pathway.
327 Moderate low temperature, as previously indicated, causes more significant RH formation by
328 directly affecting the availability of nitrate (Pacheco *et al.*, 2023), and its influence on
329 phosphate and in other macronutrient dynamics in the media/soil has not yet been
330 determined. It is well known that these two crucial macronutrients are first noticed at the root
331 tip and that a lack of them causes the development of RH (**Figure 7**). Auxin production,
332 transport, and signaling, which depend on both nutrients, convey the signal from the root tip
333 to the differentiation zone, where RH develops. Moderate low temperature possibly triggered
334 low levels of phosphate and nitrate are initially seen at the root tip due to increased expression
335 of TAA1 and YUCCA genes, which causes high auxin levels in the root tip (Bhosale *et al.*, 2018;
336 Jones *et al.*, 2009; Jia *et al.*, 2023; this study). The additional auxin produced at the root tip
337 must either be inactivated as oxiIAA, oxiIAA-Glu and oxiIAA-Glc or reach the RHs for them to
338 grow by the basipetal movement of auxin (shoot-wards). Low temperature triggered at the
339 plasma membrane, higher auxin transport regulated first by PIN4 in the root tip, and then by
340 higher levels of PIN2 at the root epidermis layers (Ganguly *et al.*, 2010; Giri *et al.*, 2018).
341 However, the mechanisms of their inductions may not be only based on transcriptional
342 activation (**Figure 7**). It's still possible that an enhanced symplastic route of Auxin flow through
343 plasmodesmata (Mellor *et al.*, 2020) might be also involved in RH growth but it was not tested
344 here. To cause RH swelling and development, TIR1/AFB2 (and possible other AFBs) were
345 involved in the auxin sensing in the moderate low temperature conditions in the T cells before
346 RH emerged (**Figure 7**). Downstream, ARF7/ARF19 and ARF6/ARF8 are the ARFs that are
347 involved in RH growth response under low temperature. ARF7/ARF19 might encourage PHR1
348 expression and are PHR1's primary targets (Huang *et al.* 2018) while the two most important
349 ARFs for regulating the RH growth response in the presence of low nitrate are ARF6 and ARF8,
350 according to a recent study (Jia *et al.*, 2023). These two groups of ARFs positively control the

351 expression of numerous transcription factors, including ROOT HAIR DEFECTIVE-SIX LIKE 2
352 (RSL2), RSL4 (Yi *et al.*, 2010; Mangano *et al.*, 2017; Marzol *et al.* 2017; Bhosale *et al.*, 2018), and
353 *Lotus japonicus* ROOT HAIRLESS-LIKE 3 (LRL3) (Karas *et al.* 2009), as well as other crucial
354 components of polar development (Mangano *et al.* 2017; Zhu *et al.* 2020). RHD6, along with its
355 partially redundant homolog RSL1, is a fundamental helix-loop-helix transcription factor
356 (Menand *et al.* 2007; Takeda *et al.* 2008) that works as a master regulator to enhance the
357 expression of its downstream transcription factors RSL2, RSL4, and LRL3. RSL4/RSL2 are the TFs
358 that react to low phosphate levels (Bhosale *et al.* 2018), while RHD6/LRL3 are the TFs that
359 respond to low nitrate levels (Jia *et al.*, 2023). Low phosphate and low nitrate sensing diverge
360 at the downstream transcriptional targets of RHD6, where either RSLs or LRLs take over (Jia *et*
361 *al.* 2023; Lopez *et al.* 2023). On the contrary, under excess of nutrients, the trihelix
362 transcription factor GT2-LIKE1 (GTL1) and its closest homolog, DF1, are able to stop RH growth
363 by directly repressing RSL4 and RSL4 target genes (Shibata *et al.*, 2018; Shibata *et al.*, 2022). In
364 addition, GTL1 is able to bind to RHD6 and prevent the activation of RSL4 (Shibata *et al.*, 2022).
365 Overall, auxin and the downstream activation-repression establish an equilibrium of the
366 intensity of RH growth is being triggered depending on the nutritional contexts that is affected
367 by changes in the temperature of the media-soil (Datta *et al.*, 2015; Bhosale *et al.* 2018; Giri *et*
368 *al.* 2018; Jia *et al.* 2023). Moderate low temperature stimulus on root and RHs comprises
369 complex nutritional signals coming from the media-soil.

370 In summary, our work has revealed that moderate low temperatures directly influence auxin
371 synthesis, transport, and signaling, affecting nutrient mobility, both of which impact root hair
372 (RH) growth. Other hormones, such as ethylene, cytokinin, and strigolactones, may also play a
373 role in the interaction between auxin and nutrient dynamics (recently reviewed in Lopez *et al.*,
374 2023). Enhancing RH density and length could be a cost-effective strategy to improve nutrient
375 acquisition, especially for soil nutrients with low mobility, ultimately boosting plant fitness. Our
376 findings, in conjunction with other pivotal studies on RH growth (Yi *et al.*, 2010; Bhosale *et al.*,
377 2018; Giri *et al.*, 2018; Jia *et al.*, 2023), lay the foundation for developing a molecular
378 framework aimed at optimizing root nutrient foraging. This could lead to identifying novel
379 breeding targets for more efficient nutrient-uptake configurations in crops.

380

381

382 **Figure 1. Moderately low temperatures trigger global transcriptomic changes in the auxin**
383 **pathway. (A)** An scheme with the RNA-seq procedure was followed to identify auxin-related

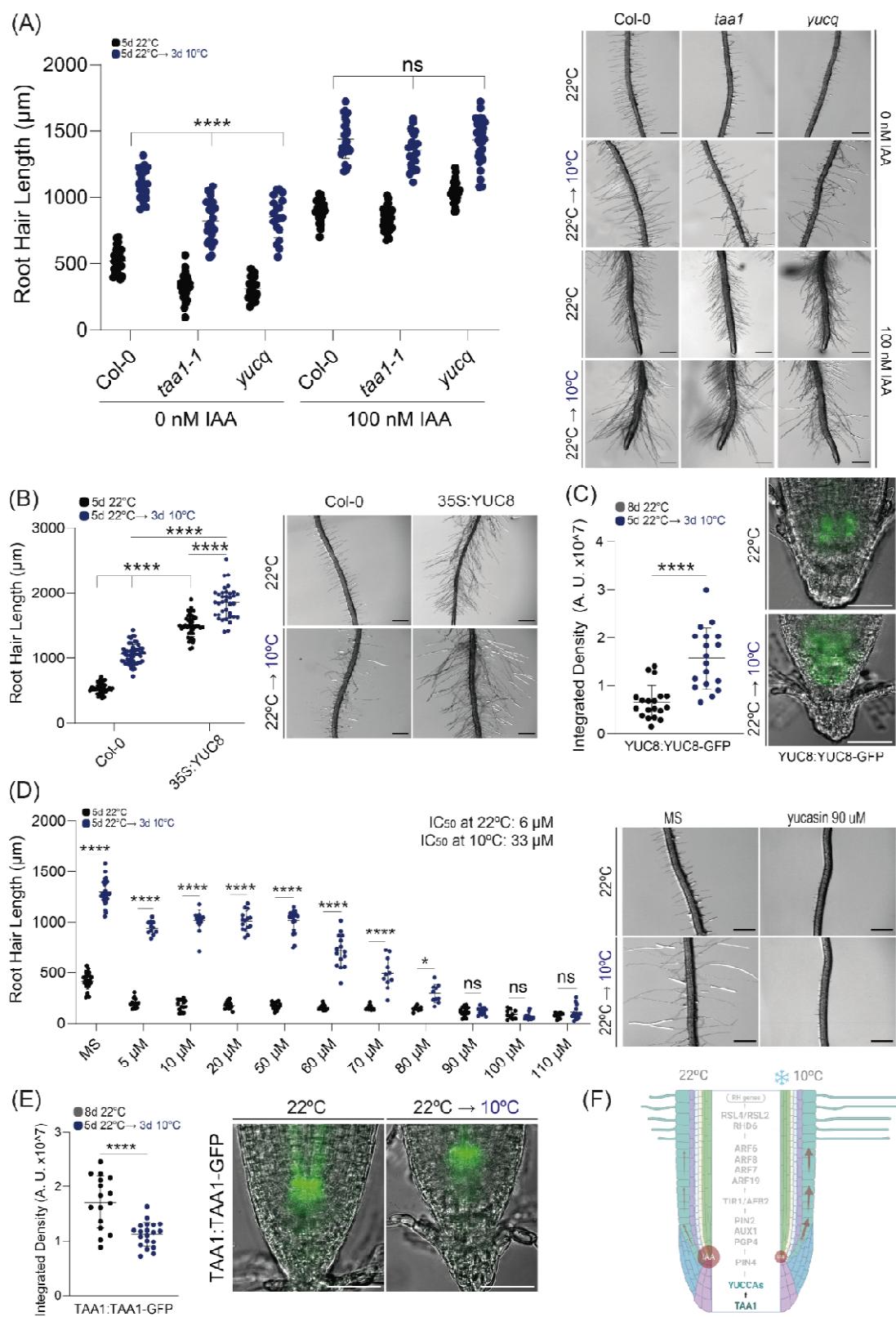
384 genes at moderate low temperature. **(B)** Heatmap showing the hierarchical gene clustering for

385 170 auxin-related genes differentially expressed between room temperature (22°C) and low

386 temperature (10 °C) growth roots in wild type (Col-0) and *rsl2 rsl4* double mutant. Gene

387 expression values were scaled considering the mean centered, divided by standard deviation,

388 and represented in a blue-red color scale. Clustering analysis was made using the ward.D2

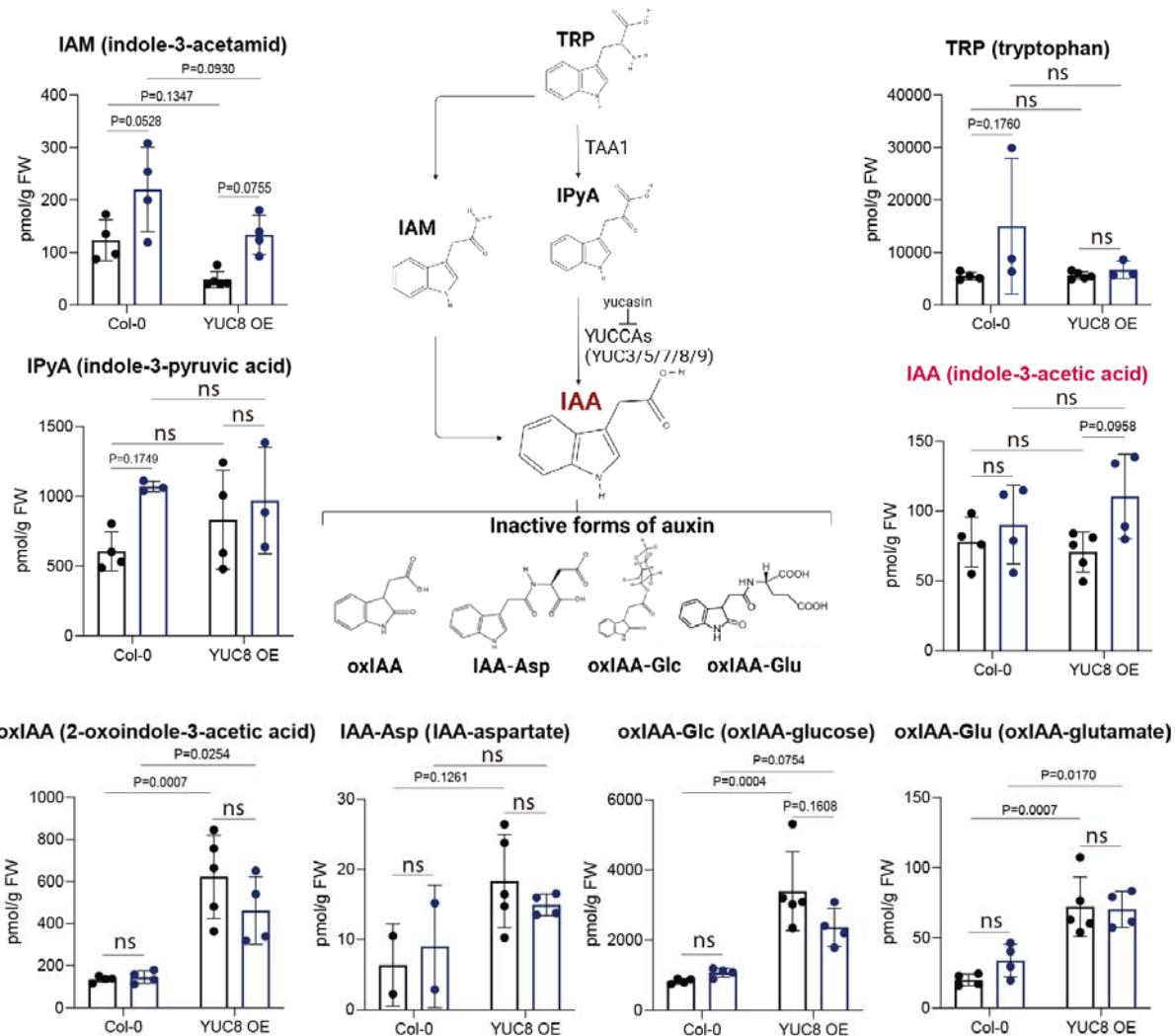

389 method. **(C)** Scaled expression values of each auxin-related gene (gray lines) and the tendency

390 of each cluster (black line) were graphed. Most representative genes were listed on the right

391 side of each corresponding cluster. **(D)** Gene ontology term enrichment analysis of genes

392 belonging to each one of the identified 4 Clusters (C1-C4). Vertical lines represent the

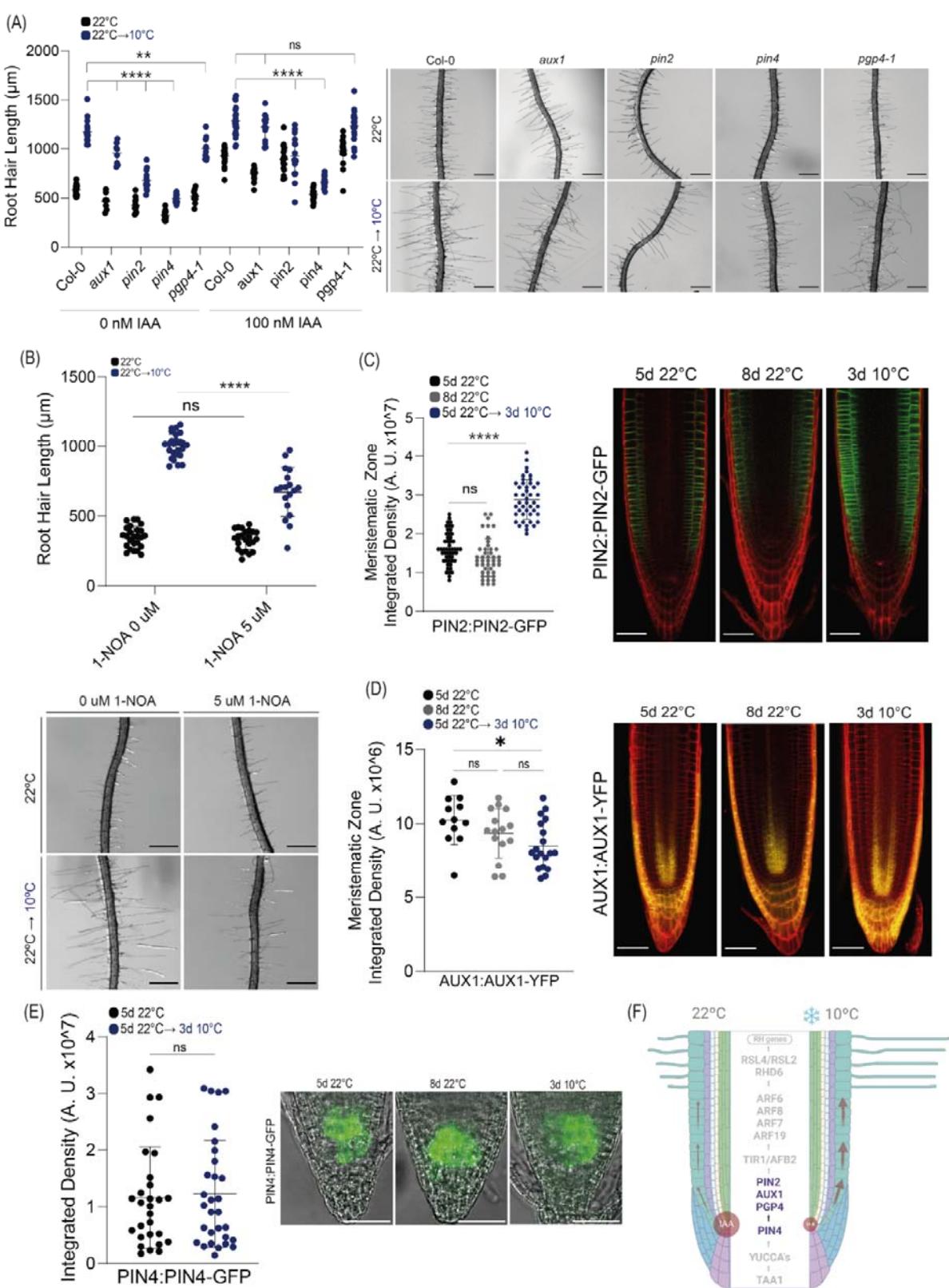
393 information of each identified cluster while the horizontal lines represent the enriched GO
394 terms. The numbers at the bottom correspond to the number of genes used in each cluster.
395 The blue-red scale color represents the adjusted p-value, and the point size represents the
396 gene ratio. See also **Table S1**.


397

398

399 **Figure 2. Auxin biosynthesis is required for RH growth at moderate low temperature. (A)**

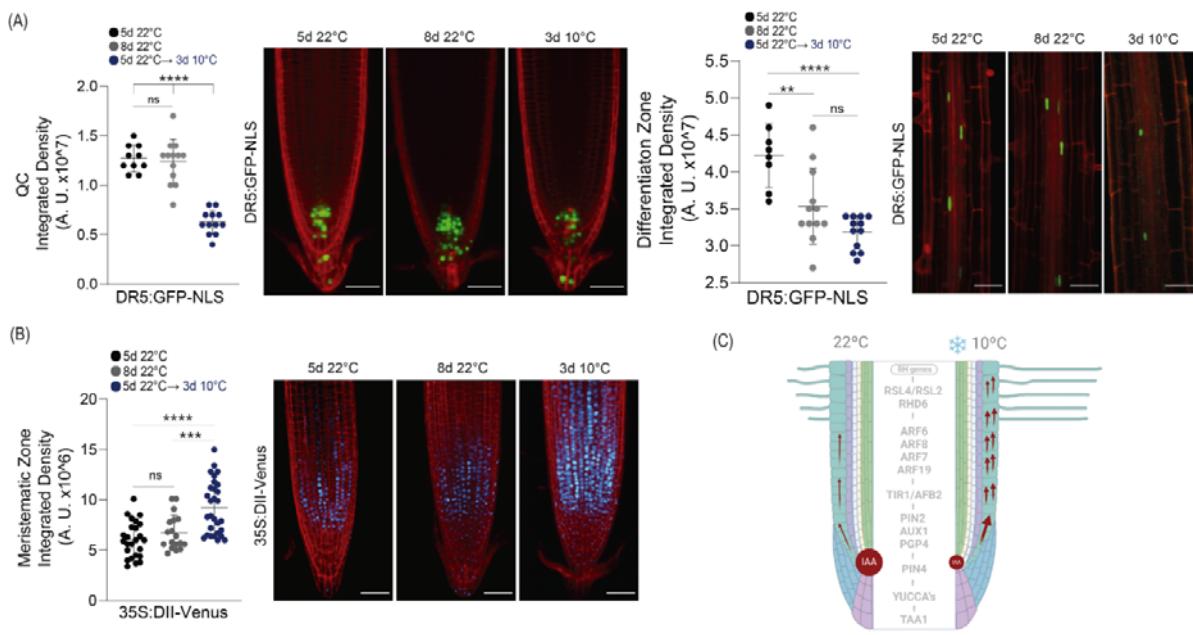
Scatterplot of RH length of Col-0, yucq (lacking yuc3, yuc5, yuc7, yuc8 and yuc9) and sav3-3


400 (*taa1*) grown at 22°C or at 10°C and treated with 100 nM IAA or without auxin as control. RH
401 growth is enhanced at low temperature in Wt Col-0 and *yucq* and *sav3-3* mutant. Each point is
402 the mean of the length of the 10 longest RHs identified in the maturation zone of a single root.
403 Data are the mean \pm SD (n= 10 roots), two-way ANOVA followed by a Tukey–Kramer test;
404 (****) p <0.001, NS= non-significant. Results are representative of three independent
405 experiments. Asterisks indicate significant differences between Col-0 and the corresponding
406 genotype at the same temperature or between the same genotype at different temperatures.
407 Representative images of each genotype are shown on the right. Scale bars= 500 μ m. (B)
408 Scatterplot of RH length of Col-0 and YUC8 OE grown at 22°C or at 10°C. RH growth is enhanced
409 at moderate low temperature in Wt Col-0 and YUC8 OE. Each point is the mean of the length of
410 the 10 longest RHs identified in the maturation zone of a single root. Data are the mean \pm SD
411 (n= 10 roots), two-way ANOVA followed by a Tukey–Kramer test; (****) p<0.001. Results are
412 representative of three independent experiments. Asterisks indicate significant differences
413 between Col-0 and the corresponding genotype at the same temperature or between the same
414 genotype at different temperatures. Representative images of each genotype are shown on the
415 right. Scale bars= 500 μ m. (C) Confocal images of the root apex of a fluorescent translational
416 reporter line of YUC8-GFP at 22°C and after transfer from ambient to low temperature (22 \rightarrow
417 10°C). Fluorescence intensity is expressed in arbitrary units (AU), n= 20 roots. On the right, the
418 GFP-signal is quantified. Results are representative of three independent experiments. Scale
419 bars= 50 μ m. (D) Scatterplot of RH length of non-treated and treated Col-0 with yucasin
420 (inhibitor of Yucca activity) grown at 22°C or at 10°C. RH growth is enhanced at low
421 temperature in Wt Col-0. Each point is the mean of the length of the 10 longest RHs identified
422 in the maturation zone of a single root. Data are the mean \pm SD (n= 10 roots), two-way ANOVA
423 followed by a Tukey–Kramer test; (****) p<0.001, NS= non-significant. Results are
424 representative of three independent experiments. Asterisks indicate significant differences
425 between Col-0 and the corresponding treatment at the same temperature or between the
426 same treatment at different temperatures. Representative images of each treatment are
427 shown on the right. Scale bars= 500 μ m. (E) Confocal images of root apex of a fluorescent
428 translational reporter line of TAA1-GFP at 22°C and after transfer from ambient to low
429 temperature (22 \rightarrow 10°C). Fluorescence intensity is expressed in arbitrary units (AU), n= 20
430 roots. On the right, the GFP-signal is quantified. Results are representative of three
431 independent experiments. Scale bars = 50 μ m. (F) Summary of the results obtained.

432

433

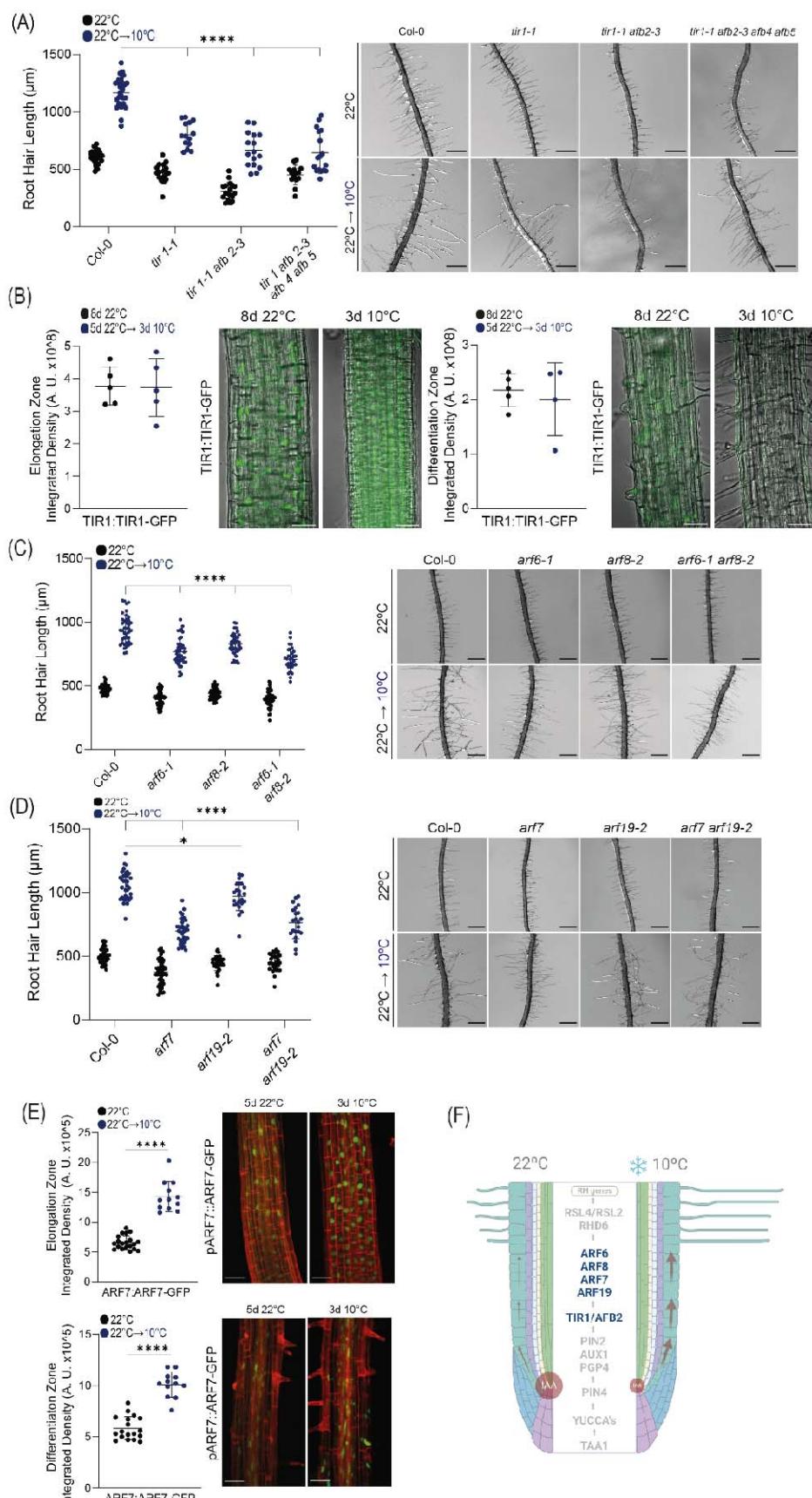
434 **Figure 3. Chemical changes in the Auxin-related pathway linked to moderate low**
 435 **temperature.** Auxin precursors (TRP, Tryptophan; IPyA, indole-3-pyruvic acid; IAM, indole-3-
 436 acetamid), and IAA (indole-3-acetic acid) and inactive forms (oxIAA, 2-oxindole-3-acetic acid,
 437 IAA-Asp, IAA-aspartate; oxIAA-Glc, oxIAA-glucose; oxIAA-Glu, oxIAA-glutamate) were identified
 438 and quantified by high-performance liquid chromatography coupled with mass spectrometry
 439 (UHPLC-MS/MS) in Wt Col-0 and YUC8 OE line from roots grown at 22°C or at 10°C. Data are
 440 the mean \pm SD (N= roots), two-way ANOVA. Only P-values below 0.2 are indicated. Results are
 441 representative of three independent determinations. See also **Table S2** for the quantitative
 442 determinations.


443

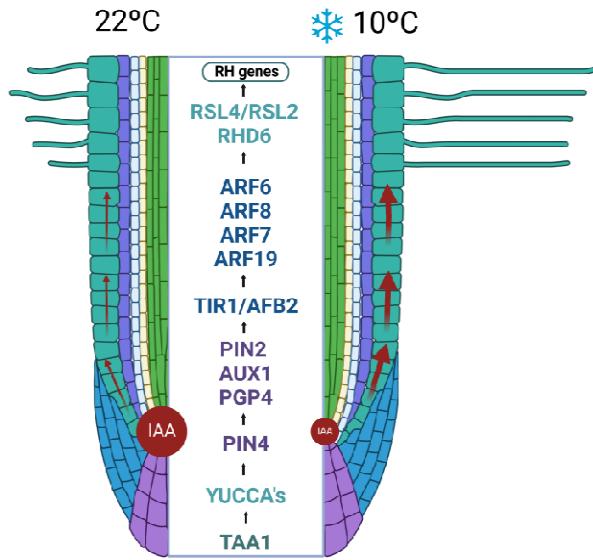
444

445

Figure 4. Auxin transport mediated by PIN2/PIN4 and AUX1/PGP4 triggers RH growth at moderate low temperature.


446 (A) Scatterplot of RH length of Col-0, *aux1*, *eir1-1 (pin2)*, *pin4* and *pgp4-1* grown at 22°C or at
447 10°C. RH growth is enhanced at low temperature in Wt Col-0. Each point is the mean of the
448 length of the 10 longest RHs identified in the maturation zone of a single root. Data are the
449 mean \pm SD (n= 20 roots), two-way ANOVA followed by a Tukey–Kramer test; (****) p <0.001,
450 (**) p <0.01. Results are representative of three independent experiments. Representative
451 images of each genotype are shown on the right. Scale bars= 500 μ m. (B) Scatterplot of RH
452 length of non-treated and treated Col-0 with 1-NOA (auxin influx and efflux inhibitor) grown at
453 22°C or at 10°C. (C) Confocal images of the root apex of a fluorescent translational reporter line
454 of PIN2 (PIN2:PIN2-GFP) at 22°C and after transfer from ambient to low temperature
455 (22 \rightarrow 10°C). Fluorescence intensity is expressed in arbitrary units (AU), n=20 roots. On the right,
456 GFP-signal is quantified. Results are representative of three independent experiments. Scale
457 bars = 50 μ m. (D) Confocal images of the root apex of a fluorescent translational reporter line
458 of AUX1 (AUX1:AUX1-YFP) at 22°C and after transfer from ambient to low temperature
459 (22 \rightarrow 10°C). Fluorescence intensity is expressed in arbitrary units (AU), n=20 roots. On the right,
460 YFP-signal is quantified. Results are representative of three independent experiments. Scale
461 bars = 50 μ m. (E) Confocal images of root apex of a fluorescent translational reporter line of
462 PIN4 (PIN4:PIN4-GFP) at 22°C and after transfer from ambient to low temperature (22 \rightarrow 10°C).
463 Fluorescence intensity is expressed in arbitrary units (AU), n=20 roots. On the left, the GFP-
464 signal is quantified. Results are representative of three independent experiments. Scale bars =
465 50 μ m. (F) Summary of the results obtained.

466


467 **Figure 5. Effect of moderate low temperature on the auxin signaling reporters DR5-GFP and**
468 **DII-Venus.**

469 (A) Quantitative evaluation of DR5:GFP-NLS reporter fluorescence intensity across the root
470 elongation zones at 22°C and after transfer from ambient to moderate low temperature.
471 Fluorescence intensity is expressed in arbitrary units (A.U.), n=20 roots, 10 root hairs. Results
472 are representative of three independent experiments. (****) p <0.001, (**) p <0.01, (*) p
473 <0.05. On the bottom, confocal images of DR5:GFP-NLS reporter line of at 22°C and after
474 transfer from ambient to low temperature (22°C→10°C). Scale bars=5 μ m. (B) Quantitative
475 evaluation of 35S:DII-Venus reporter fluorescence intensity across the root differentiation
476 zones at 22°C and after transfer from ambient to low temperature. Fluorescence intensity is
477 expressed in arbitrary units (A.U.), n=20 roots, 10 root hairs. Results are representative of three
478 independent experiments. (****) p <0.001, (*** p <0.005. (C) Summary of the results
479 obtained.

481 **Figure 6. TIR1/AFB2 and multiple ARFs mediate auxin signaling effect on RH growth at**
482 **moderate low temperature.**

483 (A) Scatterplot of RH length of Col-0, *tir1-1*, and *tir1-1 afb2,4,5* multiple mutant grown at 22°C
484 or at 10°C. Each point is the mean of the length of the 10 longest RHs identified in the
485 maturation zone of a single root. Data are the mean \pm SD (n=20 roots), two-way ANOVA
486 followed by a Tukey–Kramer test; (****) p <0.001, NS= non-significant. Results are
487 representative of three independent experiments. Representative images of each genotype are
488 shown on the right. Scale bars= 300 μ m. (B) Confocal images of TIR1 translational reporter line
489 of at 22°C and after transfer from ambient to low temperature (22°C→10°C) On the bottom:
490 semi-quantitative evaluation of the GFP fluorescence intensity across the subapical root hair
491 zone at 22°C and after transfer from ambient to low temperature, indicated by a interrupted
492 white line. Fluorescence intensity is expressed in arbitrary units (A.U.), n=20 roots, 10 root
493 hairs. Results are representative of three independent experiments. Scale bars=5 μ m. (C)
494 Scatterplot of RH length of Col-0, *arf6-1*, *arf8-2* and double mutant *arf6-1 arf8-2* grown at 22°C
495 or at 10°C. RH growth is enhanced at low temperature. Each point is the mean of the length of
496 the 10 longest RHs identified in the maturation zone of a single root. Data are the mean \pm SD
497 (n=20 roots), two-way ANOVA followed by a Tukey–Kramer test; (****) p<0.001, NS= non-
498 significant. Results are representative of three independent experiments. Representative
499 images of each genotype are shown on the right. Scale bars= 500 μ m. (D) Scatterplot of RH
500 length of Col-0, *arf7*, *arf 19-2* and double mutant *arf7 arf19-2* grown at 22°C or at 10°C. RH
501 growth is enhanced at low temperature. Each point is the mean of the length of the 10 longest
502 RHs identified in the maturation zone of a single root. Data are the mean \pm SD (n=10 roots),
503 two-way ANOVA followed by a Tukey–Kramer test; (****) p<0.001, (*) p<0.05, NS= non-
504 significant. Results are representative of three independent experiments. Representative
505 images of each genotype are shown on the right. Scale bars= 500 μ m. (E) Confocal images of
506 ARF7:ARF-GFP translational reporter line of at 22°C and after transfer from ambient to low
507 temperature (22°C→10°C). Quantitative evaluation of the GFP fluorescence intensity across the
508 root differentiation zones at 22°C and after transfer from ambient to low temperature.
509 Fluorescence intensity is expressed in arbitrary units (A.U.), n=20 roots, 10 root hairs. Results
510 are representative of three independent experiments. (****) p<0.001. Scale bars=5 μ m. (F)
511 Summary of the results obtained.

512

513 **Figure 7. Proposed model on how moderate low temperature affects the auxin pathway in**
514 **the root that impacts on root hair (RH) growth.** This model proposes a regulatory mechanism
515 starting in the root tip to control the foraging response of RH under moderate low
516 temperature. The levels of TAA1 and YUC8 transcripts and YUC8 protein rise in the root apical
517 meristem, resulting in higher amounts of auxin in the root apex. PIN4 then transports auxin out
518 of the tip of the meristem. Then, auxin accumulating in the local area is carried towards the
519 shoot via AUX1 and PIN2/PGP4 proteins in the epidermal cells, specifically to the zone where
520 elongation and differentiation occur. PIN2 expression is enhanced. Auxin is then perceived by
521 TIR1 and AFB2 (by other AFBs) in trichoblast cells and then a transcriptional activation of RH-
522 specific genes by four ARFs (ARF6/ARF8 and ARF7/ARF19) and a downstream RHD6-RSL4/RSL2
523 cascade (Moison et al. 2021), leading to the intense stimulation of RH elongation.

524 **Experimental Procedures**

525

526 **Plant Material and Growth Conditions.** *Arabidopsis (Arabidopsis thaliana)* Columbia-0 (Col-0)
527 ecotype was used as a wild-type genotype in all experiments. All mutants and transgenic lines
528 tested are in this ecotype. Seedlings were germinated on agar plates in a Percival incubator at
529 22°C in a plant growth chamber in continuous light at 120 $\mu\text{mol.sec}^{-1}.\text{m}^{-2}$ intensity for 5 days at
530 22°C + 3 days at 10°C for the low temperature response. Plants were transferred to soil for
531 growth under the same conditions as previously described at 22°C. For identification of T-DNA
532 knockout lines, genomic DNA was extracted from rosette leaves. Confirmation by PCR of a
533 single and multiple T-DNA insertions in the target genes were performed using an insertion-
534 specific LBb1 or LBb1.3 (for SALK lines) or Lb3 (for SAIL lines) primer in addition to one gene-
535 specific primer. To ensure gene disruptions, PCR was also run using two gene-specific primers,
536 expecting bands corresponding to fragments larger than in Wt. In this way, we isolated
537 homozygous lines (for all the genes in this study). For the imaging of fluorescence intensity
538 distribution in root tips and RH, seedlings were grown for 5 days at 22°C plus 3 days at 10°C. All
539 mutants and transgenic lines are listed in **Table S4**.

540

541 **Pharmacological Treatments.** For all experiments, plants were grown first on solid 0.5X MS
542 medium at 22°C for 3 days in continuous light. According to the specific treatment plants were
543 transferred to plates containing regular solid 0.5X MS supplemented with 100nM IAA (auxin
544 treatment), 5 μM 1-NOA (1-Naphthoxyacetic acid, M.W. 186.21) or 5-110 μM Yucasin (5-(4-
545 chlorophenyl)-4H-1,2,4-triazole-3-thiol, M.W. 211.67) and grown at 22°C for 3 days plus 3 days
546 at 10°C in continuous light. RH phenotype was quantified after each 3 day span. Yucasin and 1-
547 NOA were dissolved in DMSO.

548

549 **Root hair phenotype.** Seeds were surface sterilized and stratified in darkness for 3 days at 4°C.
550 Then grown *in vitro* in a MS 0.5X medium (pH 5.7; 0.8% w/v agar) in a plant growth chamber in
551 continuous light (120 $\mu\text{mol.sec}^{-1}.\text{m}^{-2}$) at 22°C and/or 10°C. The quantitative analyses of RH
552 phenotypes of Col-0 and transgenic lines were made the last day of the growth conditions
553 described in the two previous sections. In the case of low temperature treatment, the
554 measurements were done after 5 days at 22°C and after 3 days at 10°C. For that purpose, 10
555 fully elongated RH from the maturation zone were measured per root under the same
556 conditions from each treatment and control. 20 roots were measured as indicated in each case.
557 Images were captured using an Olympus SZX7 Zoom Stereo Microscope (Olympus, Tokyo,
558 Japan) equipped with a Q-Colors digital camera and Q Capture Pro 7 software (Olympus,
559 Japan). Results were expressed as the mean \pm SD using the GraphPad Prism 8.0.1 (GraphPad
560 Software, Boston, MA, USA) statistical analysis software. Results are representative of three
561 independent experiments, each involving 30 roots.

562

563 **Confocal Microscopy.** For measurements of fluorescence intensity distributions after cold
564 stress (22°C \rightarrow 10°C) in root tips and root hairs of DR5:GFP-NLS, PIN2:PIN2-GFP, PIN4:PIN4-GFP,

565 AUX1:AUX1-YPF, ARF7:ARF7-GFP, TIR1:TIR1-GFP lines confocal laser scanning microscopy Zeiss
566 LSM 710 (Carl Zeiss, Germany) was used. For image acquisition, 20x/1.0 NA Plan-Apochromat
567 objective for root tips and 40x/1.4 Oil DIC Plan-Apochromat objective for root hairs were used.
568 The GFP signal was excited with a 488 nm argon laser at 4% laser power intensity and emission
569 band of 493-549 nm. Propidium Iodide signal was excited with a 488 nm argon laser at 4% laser
570 power intensity and emission band 519-583 nm. Fluorescence AU was expressed as the mean \pm
571 SD using the GraphPad Prism 8.0.1 (USA) statistical analysis software. Results are
572 representative of three independent experiments, each involving 10-20 roots as indicated in
573 each case.

574

575 **RNA-seq analyses.** For the RNA-seq analysis, seedlings were grown on $\frac{1}{2}$ strength MS agar
576 plates, in a plant growth chamber at 22°C in continuous light ($120 \mu\text{mol s}^{-1} \text{m}^{-2}$) for 14 days at
577 22°C as a pretreatment and then at 10°C (moderate-low temperature treatment) for 0hs, 2hs
578 and 6hs. We analyzed a dataset with 6 factor groups (tree time points and two genotypes: Col-0
579 and *rs2rs4*, each with three biological replicates) giving 18 samples in total. Total RNA was
580 extracted from 20–30 mg of frozen root tissue. Frozen root samples were ground in liquid
581 nitrogen and total RNAs were extracted using E.Z.N.A Total RNA Kit I (Omega Bio-tek, Georgia,
582 USA). RNA quantity and purity were evaluated with a Qubit®2.0 fluorometer (InvitrogenTM,
583 Carlsbad, CA, USA) using a QubitTM RNA BR assay kit. RNA integrity and concentration were
584 assessed by capillary electrophoresis using an automated CE Fragment AnalyzerTM system
585 (Agilent Technologies, Santa Clara, CA, USA) with the RNA kit DNF-471-0500 (15nt). Total RNA-
586 seq libraries were prepared according to the TruSeq Stranded Total RNA Kit (Illumina, San
587 Diego, CA, USA) following the manufacturer's instructions. Finally, the constructed libraries
588 were sequenced using Macrogen sequencing services (Seoul, Korea) in paired end mode on a
589 HiSeq4000 sequencer. For total RNA differential expression analysis, a quality check was
590 performed with FASTQC software (Andrews, 2010). Then, the adapter sequences were
591 removed, reads with a quality score less than 30 and length less than 60 nucleotides were
592 eliminated using Flexbar (Dodd et al., 2012). Resulting filtered reads were aligned against
593 *Arabidopsis thaliana* Araport 11 genome with the STAR aligner software. A total of 18 RNA
594 libraries were sequenced, obtaining an average of 84,678,135 reads for each one, with a
595 minimum and maximum value of 72,658,864 and 100,764,020 reads, respectively. After
596 filtering them by quality and removing adapters, an average of 98.8% of the reads remained
597 and after aligning them against the *Arabidopsis thaliana* reference genome, between 88.1%
598 (69,820,848) and 96.5% (93,072,528) of total reads were correctly aligned (**Table S2**). For each
599 library, the feature Counts software from the Rsubread package (Liao et al., 2019) was applied
600 to assign expression values to each uniquely aligned fragment. Differential gene expression
601 analysis was performed using the Bioconductor R edgeR package (Robinson et al., 2010).
602 Differentially expressed genes (DEG) were selected with an FDR<0.05 and a $|\text{FC}| > 0.2$. To search
603 for genetic functions and pathways overrepresented in the DEG lists, genetic enrichment
604 analysis was performed using the Genetic Ontology (GO) database with the R package
605 ClusterProfiler v4.0.5 (Yu et al., 2012), using the compareCluster function. The parameters used

606 for this analysis were: lists of differentially expressed genes for each comparison in ENTREZID,
607 enrichGO sub-function, the universe from the total of differentially expressed genes that
608 present annotation as genetic background, Benjamini-Hochberg statistical test and a filter of
609 FDR less than 0.05. Subsequently, the semantics filter of GO terms was performed using the
610 simplify function of the same package using a p-value and q-value cutoff less than 0.05.
611

612 **Quantification of IAA metabolites.** The determination of endogenous auxin metabolites was
613 conducted following the protocol described by Pěnčík et al. (2018). Briefly, 3-6 samples of
614 approximately 10 mg (fresh weight) for each genotype or condition (roots growth at 22°C for
615 two weeks or 11 days at 22°C and then transferred for 3 days at 10°C) were freeze-dried and
616 then extracted using 1 mL of cold 50 mmol/L phosphate buffer (pH 7.0) containing 0.1% sodium
617 diethyldithiocarbamate and mixture of stable isotope-labeled internal standards. A 200 µl
618 portion of the extract was acidified to pH 2.7 with HCl and subjected to in-tip micro solid phase
619 extraction (in-tip µSPE). Another 200 µl portion was derivatized with cysteamine, acidified to
620 pH 2.7 with HCl, and purified using in-tip µSPE to determine IPyA. Following elution, samples
621 were evaporated under reduced pressure, reconstituted in 10% aqueous methanol, and
622 analyzed using an HPLC system 1260 Infinity II (Agilent Technologies, USA) equipped with a
623 Kinetex C18 column (50 mmx2.1 mm, 1.7 µm; Phenomenex) and coupled to 6495 Triple Quad
624 detector (Agilent Technologies, USA). See **Table S3** for the quantification details.
625
626

627 **Acknowledgements**

628 We would like to thank all the groups that provide us with the seeds mentioned in **Table S4**,
629 including Mark Estelle, Jiril Friml, Marisa Otregui, Ramiro Paris. We thank NASC (Ohio State
630 University) for providing T-DNA lines seed lines. J.M.E. is an investigator of the National
631 Research Council (CONICET) from Argentina. This work was supported by grants from ANPCyT
632 (PICT2019-0015 and PICT2021-0514), by ANID – Programa Iniciativa Científica Milenio
633 ICN17_022, NCN2021_010, ICN2021_044 (C.M.) and Fondo Nacional de Desarrollo Científico y
634 Tecnológico [1200010] to J.M.E.
635

636 **Author Contribution**

637 V.B.G. performed most of the experiments, analyzed the data and helped with the manuscript
638 writing process. M.A.I., J.M.P., L.L., M.C. helped in some experiments and in the writing
639 process. G.N.L and C.M. carried out the RNA-seq data analysis. A.P. and O.N. carried out the
640 chemical determination of auxins; Z.J., R.F.H.G and N.vH provided several lines used in this
641 study and helped on the writing process. J.M.E. designed the research, analyzed the data,
642 supervised the project, and wrote the paper. All authors commented on the results and the
643 manuscript. This manuscript has not been published and is not being considered for publication
644 elsewhere. All the authors have read the manuscript and have approved this submission.
645

646 **Competing financial interest**

647 The authors declare no competing financial interests. Correspondence and requests for
648 materials should be addressed to J.M.E. (Email: jestevez@leloir.org.ar).

649 **Table S4.** Mutants and transgenic lines used and generated in this study.

Mutants and transgenic lines				
Locus	Gene name	Gene expression effect	Line name	Reference
Auxin Biosynthesis				
AT1G70560	<i>TAA1</i>	mutant	<i>taa1-1</i>	SALK_022743C ABRC
		reporter	TAA1:TAA1-GFP	Yang et al. 2014
AT1G04610 AT5G43890 AT2G33230 AT4G28720 AT1G04180	<i>yuc3</i> <i>yuc5</i> <i>yuc7</i> <i>yuc8</i> <i>yuc9</i>	mutant	<i>yuc quintuple</i>	Li et al. 2012
AT4G28720	<i>YUC8</i>	O.E.	35S:YUC8	
		reporter	YUC8:YUC8-GFP	Jia et al. 2023
		reporter	DR5:GFP-NLS	Heiser et al. 2005
		reporter	35S:DII-Venus	Brunoud et al., 2012
Auxin Transport				
AT2G38120	<i>AUX1</i>	mutant	<i>aux1-7</i>	Pickett et al. 1990
		reporter	AUX1:AUX1-YFP	Jones et al., 2009
AT5G57090	<i>PIN2</i>	mutant	<i>pin2-1</i>	
		reporter	PIN2:PIN2-GFP	Jones et al., 2009
AT2G01420	<i>PIN4</i>	mutant	<i>pin4-1</i>	
		reporter	PIN4:PIN4-GFP	
AT2G47000	<i>PGP4</i>	mutant	<i>pgp4-1</i>	
Auxin signaling				
AT3G62980	<i>TIR1</i>	mutant	<i>tir1-1</i>	
		reporter	TIR1:TIR1-GFP	
AT3G62980 AT3G26810	<i>TIR1 AFB2</i>	mutant	<i>tir1-1 afb2-3</i>	
AT3G62980 AT3G26810 AT4G24390 AT5G49980	<i>TIR1</i> <i>AFB2</i> <i>AFB4</i> <i>AFB5</i>	mutant	<i>tir1-1 afb2-3 afb4-8 afb5-5</i>	
AT1G30330	<i>ARF6</i>	mutant	<i>arf6-1</i>	Jia et al. 20123
AT5G37020	<i>ARF8</i>	mutant	<i>arf8-2</i>	Jia et al. 20123
AT5G37020 AT1G30330	<i>ARF6 ARF8</i>	mutant	<i>arf6-1 arf8-2</i>	Jia et al. 20123
AT5G20730	<i>ARF7</i>	mutant	<i>arf7-1</i>	CS24607 ABRC
		reporter	ARF7:ARF7-GFP	
AT1G19220	<i>ARF19</i>	mutant	<i>arf19-2</i>	
AT5G20730 AT1G19220	<i>ARF7</i> <i>ARF19</i>	mutant	<i>arf7 arf19-2</i>	

651 REFERENCES

652

653 Balcerowicz, D., Schoenaers, S., Vissenberg, K. Cell Fate Determination and the Switch from
654 Diffuse Growth to Planar Polarity in *Arabidopsis* Root Epidermal Cells. *Front Plant Sci.*
655 <https://doi.org/10.3389/fpls.2015.01163> (2015)

656

657 Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y. A
658 novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. *Nature* 485: 119-122 (2012).

660

661 Bargmann, B. O., Vanneste, S., Krouk, G., Nawy, T., Efroni, I., Shani, E., Choe, G., Friml, J.,
662 Bergmann, D. C., Estelle, M., Birnbaum, K. D. A map of cell type-specific auxin responses. *Mol*
663 *Syst Biol* 9: 688. <https://doi.org/10.1038/msb.2013.40> (2013).

664

665 Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., Truskina, J., Leftley, N.,
666 Hanlon, M., Swarup, K., *et al.*: A mechanistic framework for auxin dependent *Arabidopsis* root
667 hair elongation to low external phosphate. *Nat Commun.* <https://doi.org/10.1038/s41467-018-03851-3> (2018).

669

670 Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., Beeckman, T.,
671 Kepinski, S., Traas, J., Bennett, M. J., Vernoux, T. A novel sensor to map auxin response and
672 distribution at high spatio-temporal resolution. *Nature*. Jan 15;482(7383):103-6.
673 <https://doi.org/10.1038/nature10791> (2012).

674

675 Casal, J. J., Estevez, J. M. Auxin-Environment Integration in Growth Responses to Forage for
676 Resources. *Cold Spring Harb Perspect Biol.* Apr 1;13(4):a040030.
677 <https://doi.org/10.1101/cshperspect.a040030> (2021).

678

679 Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., Kamiya, Y., Zhao, Y.
680 Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in *Arabidopsis* Roots. *Plant &*
681 *Cell Physiology*. <https://doi.org/10.1093/pcp/pcu039> (2014).

682

683 Cho, M., Sang, H.L., Cho, H.T. P-glycoprotein4 displays auxin efflux transporterlike action in
684 *Arabidopsis* root hair cells and tobacco cells. *Plant Cell* 19, 3930-3943.
685 <https://doi.org/10.1105/tpc.107.054288> (2007).

686

687 Dharmasiri, N., Dharmasiri, S., Estelle, M. The F-box protein TIR1 is an auxin receptor. *Nature*
688 435, 441-445. <https://doi.org/10.1038/nature03543> (2005).

689

690 Dindas, J., Scherzer, S., Roelfsema, M. R. G. *et al.* AUX1-mediated root hair auxin influx governs
691 SCFTIR1/AFB-type Ca²⁺ signaling. *Nat Commun* 9, 1174. <https://doi.org/10.1038/s41467-018-03582-5> (2018).

693

694 Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., Scheres, B. Cellular
695 organization of the *Arabidopsis thaliana* root. *Development* 119: 71-84.
696 <https://doi.org/10.1242/dev.119.1.71> (1993).

697

698 Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR-Flexible Barcode and Adapter Processing for
699 Next-Generation Sequencing Platforms. *Biology (Basel)*. 2012 Dec 14;1(3):895-905.
700 <https://doi.org/10.3390/biology1030895> (2012).

701

702 Gaillochet, C., Burko, Y., Platret, M. P., Zhang, L., Simura, J., Willige, B. C., Kumar, S. V., Ljung, K.,
703 Chory, J., Busch, W. HY5 and phytochrome activity modulate shoot-to-root coordination during
704 thermomorphogenesis in *Arabidopsis*. *Development*. Dec 15;147(24):dev192625.
705 <https://doi.org/10.1242/dev.192625> (2020).

706

707 Ganguly, A., Lee, S. H., Cho, M., Lee, O. R., Yoo, H., Cho, H. T. Differential auxin-transporting
708 activities of PIN-FORMED proteins in *Arabidopsis* root hair cells. *Plant Physiol.*
709 <https://doi.org/10.1104/pp.110.156505> (2010).

710

711 Giri, J., Bhosale, R., Huang, G. Q., Pandey, B. K., Parker, H., Zappala, S., Yang, J., Dievart, A.,
712 Bureau, C., Ljung, K., *et al.*: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in
713 response to low external phosphate. *Nat Commun.* <https://doi.org/10.1038/s41467-018-03850-4> (2018).

714

715

716 Hayashi, K.-I., Arai, K., Aoi, Y., Tanaka, Y., Hira, H., Guo, R., Hu, Y., Ge, C., Zhao, Y., Kasahara, H.,
717 & Fukui, K. The main oxidative inactivation pathway of the plant hormone auxin. *Nature
718 Communications*, 12(1). <https://doi.org/10.1038/s41467-021-27020-1> (2021).

719

720 Heisler, M. G. *et al.* Patterns of auxin transport and gene expression during primordium
721 development revealed by live imaging of the *Arabidopsis* inflorescence meristem. *Curr. Biol.* 15,
722 1899–1911 (2005).

723

724 Herburger K, Schoenaers S, Vissenberg K, Mravec J: Shank-localized cell wall growth contributes
725 to *Arabidopsis* root hair elongation. *Nat Plants* 2022 <https://doi.org/10.1038/s41477-022-01259-y> (2022).

726

727

728 Huang KL, Ma GJ, Zhang ML, Xiong H, Wu H, Zhao CZ, Liu CS, Jia HX, Chen L, Kjorven JO, *et al.*:
729 The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION
730 RESPONSE1 in *Arabidopsis* roots. *Plant Physiol.*, <https://doi.org/10.1104/pp.17.01713> (2018).

731

732 Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M. Local auxin biosynthesis
733 modulates gradient-directed planar polarity in *Arabidopsis*. *Nature Cell Biol* 11: 731-738 (2009).

734

735 Jia ZT, Giehl RFH, von Wirén N: Nutrient-hormone relations: driving root plasticity in plants. *Mol
736 Plant* 2022, <https://doi.org/10.1016/j.molp.2021.12.004> (2022).

737

738 Jia, Z., Giehl, R. F. H., Hartmann, A., Estevez, J. M., Bennett, M. J., von Wieren, N. A spatially-
739 concerted epidermal auxin signaling framework steers the root hair foraging response under
740 low nitrogen. *Current Biology*. <https://doi.org/10.1016/j.cub.2023.08.040> (2023).

741

742 Jones, A. R., Kramer, E. M., Knox, K., Swarup, R., Bennett, M. J., Lazarus, C. M., Leyser, H. O.,
743 Grierson, C. S. Auxin transport through non-hair cells sustains root-hair development. *Nature Cell Biology* 11: 78-84. <https://doi.org/10.1038/ncb1815> (2009).

744

745 Kai K, Horita J, Wakasa K, Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from
746 *Arabidopsis thaliana*. *Phytochemistry* 68, 1651–1663 (2007).

747

748 Karas, B., Amyot, L., Johansen, C., Sato, S., Tabata, S., Kawaguchi, M., Szczyglowski, K.
749 Conservation of lotus and *Arabidopsis* basic helix-loop-helix proteins reveals new players in root
750 hair development. *Plant Physiol* 151: 1175-1185. <https://doi.org/10.1104/pp.109.143867>
751 (2009).

752

753 Kasahara H. Current aspects of auxin biosynthesis in plants. *Bioscience, Biotechnology, and
754 Biochemistry* 80, 34–42 (2016).

755

756 Kowalczyk M, Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in
757 *Arabidopsis*. *Plant Physiology* 127, 1845–1853(2001).

758

759 Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale
760 UV, Jung H-S, Ecker JR, Kay SA, Chory J. Linking photoreceptor excitation to changes in plant
761 architecture. *Genes Dev* 26:785–790 2012).

762

763 Liao, Y., Smyth, G. K., Shi, W. The R package Rsubread is easier, faster, cheaper and better for
764 alignment and quantification of RNA sequencing reads. *Nucleic Acids Res.* 47(8). e47.
765 <https://doi.org/10.1093/nar/gkz114> (2019).

766

767 Löfke, C., Dünser, K., Scheuring, D., Kleine-Vehn, J. Auxin regulates SNARE-dependent vacuolar
768 morphology restricting cell size. *Elife* 4:e05868. <https://doi.org/10.7554/eLife.05868> (2015).

769

770 Lopez, L. E., Song-Chuah, Y., Encina, F., Carignani, M., Berdion-Gabarain, V., Mutwil, M.,
771 Estevez, J. M. New molecular components that regulate the transcriptional hub in root hairs:
772 coupling environmental signals to endogenous hormones to coordinate growth. *Journal of
773 Experimental Botany*. <https://doi.org/10.1093/jxb/erad419> (2023).

774

775 Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land
776 plants. *Journal of Experimental Botany* 62, 1757–1773 (2011).

777

778 Ljung K. Auxin metabolism and homeostasis during plant development. *Development* 140, 943–
779 950 (2013).

780

781 Luschnig, C., Gaxiola, R. A., Grisafi, P., Fink, G. R. EIR1, a root-specific protein involved in auxin
782 transport, is required for gravitropism in *Arabidopsis thaliana*. *Genes Dev* 12: 2175-2187.
783 <https://doi.org/10.1101/gad.12.14.2175> (1998).

784

785 Mangano, S., Denita-Juarez, S. P., Choi, H. S., Marzol, E., Hwang, Y., Ranocha, P., Velasquez, S.
786 M., Borassi, C., Barberini, M. L., Aptekmann, A. A., *et al.*: Molecular link between auxin and ROS
787

788 mediated polar growth. *Proc Natl Acad Sci U S A*, <https://doi.org/10.1073/pnas.1701536114>
789 (2017).

790

791 Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. *Journal of Experimental Botany*
792 63, 2853–2872 (2012).

793

794 Marzol E, Borassi C, Denita Juárez SP, Mangano S, Estevez JM: RSL4 Takes Control: Multiple
795 Signals, One Transcription Factor. *Trends Plant Sci*,
796 <https://doi.org/10.1016/j.tplants.2017.04.007> (2017).

797

798 Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A.,
799 Yahoo, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y., Kasahara, H. The
800 main auxin biosynthesis pathway in *Arabidopsis*. *Proc. Natl Acad. Sci.*
801 <https://doi.org/10.1073/pnas.1108434108> (2011).

802

803 Mellor, N. L., Voß, U., Janes, G., Bennett, M. J., Wells, D. M., Band, L. R. Auxin fluxes through
804 plasmodesmata modify root-tip auxin distribution. *Development*
805 <https://doi.org/10.1242/dev.181669> (2020).

806

807 Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L. An ancient
808 mechanism controls the development of cells with a rooting function in land plants. *Science*
809 316: 1477-1480 (2007).

810

811 Moisón, M., Martínez-Pacheco J., Lucero, L., Fonouni-Farde, C., Rodríguez-Melo, J., Mansilla, N.,
812 Christ, A., Bazin, J., Benhamed, M., Ibañez, F., *et al.* The lncRNA APOLO interacts with the
813 transcription factor WRKY42 to trigger root hair cell expansion in response to cold. *Mol Plant*.
814 <https://doi.org/10.1080/15592324.2021.1920191> (2021).

815

816 Nishimura, T., Hayashi, K., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y., Matsumoto, S.,
817 Kasahara, H., Sakai, T., Kato, J., Kamiya, Y., Koshiba, T. Yucasin is a potent inhibitor of YUCCA, a
818 key enzyme in auxin biosynthesis. *Plant J.* Feb;77(3):352-66. <https://doi.org/10.1111/tpj.12399>
819 (2013).

820

821 Ostin A, Kowalczyk M, Bhalerao RP, Sandberg G. Metabolism of indole-3-acetic acid in
822 *Arabidopsis*. *Plant Physiology* 118, 285–296 (1998).

823

824 Pacheco JM, Ranocha P, Kasulin L, Fusari CM, Servi L, Aptekmann AA, Berdion-Gabarain V,
825 Peralta JM, Borassi C, Marzol E, *et al.*: Apoplastic class III peroxidases PRX62 and PRX69
826 promote *Arabidopsis* root hair growth at low temperature. *Nat Commun*
827 <https://doi.org/10.1038/s41467-022-28833-4> (2022).

828

829 Pacheco JM, Mansilla N, Moison M, Lucero L, Berdion-Gabarain V, Ariel F, Estevez JM: The
830 lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN
831 encoding genes to trigger root hair cell elongation. *Plant Signal Behav* 2021,
832 <https://doi.org/10.1080/15592324.2021.1920191> (2021).

833

834 Pacheco JM, Song L, Kubanova L, Ovecka M, Berdion-Gabarain V, Peralta JM, Lehuedé TU, Ibeas
835 MA, Ricardi MM, Zhu S, *et al.* Cell surface receptor kinase FERONIA linked to nutrient sensor
836 TORC signaling controls root hair growth at low temperature linked to low nitrate in
837 *Arabidopsis thaliana*. *New Phytologist* 2023, <https://doi.org/10.1111/nph.18723> (2023).

838

839 Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ. Novel
840 auxin transport inhibitors phenocopy the auxin influx carrier mutation *aux1*. *Plant J.*
841 <https://doi.org/10.1046/j.1365-313x.2001.00970.x> (2001).

842

843 Pěnčík A, Rolcík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek Sondi B, Strnad M. Isolation
844 of novel indole-3-acetic acid conjugates by immunoaffinity extraction. *Talanta* 80, 651–655
845 (2009).

846

847 Pickett, F.B., Wilson, A.K., and Estelle, M. The aux1 mutation of *Arabidopsis* confers both auxin
848 and ethylene resistance. *Plant Physiol.* 94, 1462–1466 (1990).

849

850 Rademacher, E.H., Möller, B., Lokerse, A. S., Llavata-Peris, C. I., van den Berg, W. and Weijers,
851 D. A cellular expression map of the *Arabidopsis AUXIN RESPONSE FACTOR* gene family. *The*
852 *Plant Journal*, 68: 597-606. <https://doi.org/10.1111/j.1365-313X.2011.04710.x> (2011).

853

854 Rigas, S., Ditengou, F. A., Ljung, K., Daras, G., Tietz, O., Palme, K., Hatzopoulos, P. Root
855 gravitropism and root hair development constitute coupled developmental responses regulated
856 by auxin homeostasis in the *Arabidopsis* root apex. *New Phytologist* 197: 1130-1141.
857 <https://doi.org/10.1111/nph.12092> (2013).

858

859 Robinson, M. D., McCarthy, D. J., Smyth, G.K. edgeR: a Bioconductor package for differential
860 expression analysis of digital gene expression data. *Bioinformatics* 26(1), 139-40.
861 <https://doi.org/10.1093/bioinformatics/btp616> (2010).

862

863 Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. *J Exp Bot.* 64(9):2565-77.
864 <https://doi.org/10.1093/jxb/ert139>. PMID: 23669571 (2013).

865

866 Shibata M, Breuer C, Kawamura A, Clark NM, Rymen B, Braidwood L, Morohashi K, Busch W,
867 Benfey PN, Sozzani R, *et al.*: GTL1 and DF1 regulate root hair growth through transcriptional
868 repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in *Arabidopsis*. *Dev Camb* 2018,
869 <https://doi.org/10.1242/dev.159707> (2018).

870

871 Shibata M, Sugimoto K: A gene regulatory network for root hair development. *J Plant Res*,
872 <https://doi.org/10.1007/s10265-019-01100-2> (2019).

873

874 Shibata M, Favero DS, Takebayashi R, Takebayashi A, Kawamura A, Rymen B, Hosokawa Y,
875 Sugimoto K: Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in
876 an excess nutrient condition. *New Phytol*, <https://doi.org/10.1111/nph.18255> (2022)

877

878 Stepanova, A. N., Robertson-Hoyt, J., Yun, J., Benavente, L. M., Xie, D. Y., Dolezal, K., Schlereth,
879 A., Jürgens, G., Alonso, J. M. TAA1-mediated auxin biosynthesis is essential for hormone
880 crosstalk and plant development. *Cell*. <http://doi.org/10.1016/j.cell.2008.01.047> (2008).

881
882 Swarup, R., Péret, B. AUX/LAX family of auxin influx carriers—an overview. *Front Plant Sci.*
883 <https://doi.org/10.3389/fpls.2012.00225> (2012).

884
885 Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G. T., Sandberg, G.,
886 Bhalerao, R., Ljung, K., Bennett, M. J. Ethylene upregulates auxin biosynthesis in Arabidopsis
887 seedlings to enhance inhibition of root cell elongation. *Plant Cell* 19: 2186-2196.
888 <https://doi.org/10.1105/tpc.107.052100> (2007).

889
890 Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation
891 determines cell shape in root hair cells. *Science* 319: 1241-1244 (2008).

892
893 Tam YY, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-
894 state levels of indole-3-acetylaspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose.
895 *Plant Physiology* 123, 589–596(2000).

896
897 Tivendale ND, Ross JJ, Cohen JD. The shifting paradigms of auxin biosynthesis. *Trends in Plant
898 Science* 19, 44–51 (2014).

899
900 Velasquez, S. M., Barbez, E., Kleine-Vehn, J., Estevez, J. M. Auxin and Cellular Elongation. *Plant
901 Physiology*, Volume 170, Issue 3, 1206–1215, <https://doi.org/10.1104/pp.15.01863> (2016).

902
903 Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J. Tryptophan-
904 independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. *Proceedings
905 of the National Academy of Sciences, USA* 112, 4821–4826 (2015).

906
907 Wiśniewska, J., Xu, J., Seifertová, D., Brewer, P. B., Růžička, K., Blilou, I., Rouquié, D., Benková,
908 E., Scheres, B., Friml, J. Polar PIN localization directs auxin flow in plants. *Science* 312: 883-883.
909 <https://doi.org/10.1126/science.1121356> (2006).

910
911 Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory,
912 J., Zhao, Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN
913 AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. *Proc. Natl Acad. Sci. U S A.*
914 2011;108:18518–18523. <https://doi.org/10.1073/pnas.1108436108> (2011).

915
916 Woodward AW, Bartel B. Auxin: regulation, action, and interaction. *Annals of Botany* 95, 707–
917 735 (2005).

918 Yang, Y., Hammes, U. Z., Taylor, C. G., Schachtman, D. P., Nielsen, E. High-affinity auxin
919 transport by the AUX1 influx carrier protein. *Current Biology* 16: 1123-1127.
920 <https://doi.org/10.1016/j.cub.2006.04.029> (2006).

921
922 Yang, H., Murphy, A. S. Functional expression and characterization of Arabidopsis ABCB, AUX1
923 and PIN auxin transporters in *Schizosaccharomyces pombe*. *Plant J.* 2009, 59, 179–191.
924 <https://doi.org/10.1111/j.1365-313X.2009.03856.x> (2009).

925

926 Yang, Z.B., Geng, X.Y., He, C.M., Zhang, F., Wang, R., Horst, W.J., and Ding, Z.J. TAA1-regulated
927 local auxin biosynthesis in the rootapex transition zone mediates the aluminum-induced
928 inhibition of root growth in *Arabidopsis*. *Plant Cell* 26, 2889–2904 (2014).

929

930 Yi, K., Menand, B., Bell, E., Dolan, L. A basic helix-loop-helix transcription factor controls cell
931 growth and size in root hairs. *Nature Genetics* 42: 264-267. <https://doi.org/10.1038/ng.529>
932 (2010).

933

934 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes
935 among gene clusters. *OMICS*. 16(5):284-7. <https://doi.org/10.1089/omi.2011.0118> (2012).

936

937 Zhao, Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-
938 Acetic Acid in Plants. *Molecular Plant*. <https://doi.org/10.1093/mp/ssr104> (2012).

939

940 Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., Chory, J. A
941 role for flavin monooxygenase-like enzymes in auxin biosynthesis. *Science* 291: 306-309.
942 <https://doi.org/10.1126/science.291.5502.306> (2001).

943

944 Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, Guo H, Yu F. The
945 RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root
946 Hair Growth. *Mol Plant*. 13(5):698-716. <https://doi.org/10.1016/j.molp.2019.12.014> (2020).