

1 Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts
2 genome decompaction and the progression of immediate-early
3 transcription

4

5 Ashley P.E. Roberts^{1/2}, Anne Orr¹, Victor Iliev¹, Lauren Orr¹, Steven McFarlane¹, Zhousiyu
6 Yang¹, Ilaria Epifano¹, Colin Loney¹, Milagros Collados Rodriguez¹, Anna R. Cliffe³, Kristen
7 L. Conn^{4*}, and Chris Boutell^{1*}

8

9 ¹ MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker
10 Building, Garscube Campus, Glasgow, Scotland, UK

11 ² School of Life and Environmental Sciences, College of Health and Science, Joseph Banks
12 laboratories, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK

13 ³ Department of Microbiology, Immunology and Cancer Biology, University of Virginia,
14 Charlottesville, VA, USA

15 ⁴ Department of Veterinary Microbiology, Western College of Veterinary Medicine,
16 University of Saskatchewan, Saskatoon, SK, CAN

17

18 * Co-corresponding authors; chris.boutell@glasgow.ac.uk, kristen.conn@usask.ca

19

20 **Short Title:** Daxx restricts HSV-1 genome expansion

21 **Key Words:** HSV-1, histone, nucleosome, ICP0, Daxx, PML-NB

22

23 **Abstract**

24 Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear
25 entry, their genomes associate with histones and chromatin modifying enzymes that regulate
26 the progression of viral transcription and outcome of infection. While the composition and
27 modification of viral chromatin has been extensively studied on bulk populations of infected
28 cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined
29 at single-genome resolution. Here we use high-resolution quantitative imaging to investigate
30 the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1
31 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population
32 heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A,
33 H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear
34 body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry.
35 We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with
36 PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that
37 limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early
38 (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0,
39 which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the
40 progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our
41 data support a model of intermediate and sequential histone assembly initiated by Daxx that
42 limits the rate of HSV-1 genome decompaction independently of the stable enrichment of
43 histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We
44 identify HSV-1 genome decompaction upon nuclear infection to play a key role in the
45 initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the
46 transcriptional regulation of many nuclear replicating herpesvirus pathogens.

47 Introduction

48 Herpesviruses are a ubiquitous family of pathogens that cause a variety of clinically
49 important diseases, ranging from mild skin sores and rashes to severe birth defects, cancer,
50 and life-threatening encephalitis [1]. A common feature shared by all herpesviruses is the
51 configuration of their double-stranded DNA genomes that range in size from 125 to 240 kb in
52 length [2]. These genomes are tightly packaged into viral capsids devoid of cellular protein
53 (e.g., histones) under extreme pressure in the presence of spermine [3-11]. Following entry,
54 these genomes are delivered into the nucleus of newly infected cells [12-15], where they
55 appear as compact foci ($\sim 0.1 \mu\text{m}^3$) that progressively expand following the initiation of
56 transcription into viral DNA (vDNA) replication centres [16, 17].

57 Compaction of eukaryotic chromatin occurs through nucleosome formation, with each
58 nucleosome comprising of an octamer of histones (two molecules each of H2A, H2B, H3.1,
59 and H4) wrapped in approximately 147 bp of DNA. Nucleosome assembly can occur in a
60 DNA replication-dependent and -independent manner through the specific loading functions
61 of histone chaperones [18-21]. The expression of canonical histones is robustly induced
62 during S-phase. In contrast, histone variants (including histone H3.3, H2A.Z, macroH2A, and
63 H2A.X) are constitutively expressed throughout the cell cycle and actively exchanged into
64 chromatin to define specific chromatin boundaries [22]. The organization of cellular
65 chromatin into euchromatin (transcriptionally active) or heterochromatin (transcriptionally
66 repressive) is controlled by histone reader complexes that bind specific histones carrying
67 distinct epigenetic modifications that regulate gene accessibility and DNA compaction state
68 [21]. While chromatin immunoprecipitation (ChIP) studies have demonstrated Herpes
69 Simplex Virus 1 (HSV-1) genomes to bind histones carrying epigenetic marks indicative of
70 both euchromatin (H3K4me3, acetylated H3) and heterochromatin (H3K9me2/me3 and
71 H3K27me2/me3) dependent on the presence or absence of viral transactivating proteins (e.g.,
72 VP16 or ICP0) during productive infection [23-27], the *de novo* assembly of chromatin on
73 viral DNA (vDNA) remains poorly defined on a genome population basis. Consequently, it
74 remains unclear as to whether the composition or epigenetic modification of viral chromatin
75 identified by ChIP is representative of the total population of genomes under investigation or
76 a limited subset of enriched genomes. Thus, it remains to be determined to what degree
77 population heterogeneity in viral chromatin assembly or epigenetic modification may
78 functionally contribute to the outcome of infection.

79 We and others have shown HSV-1 genomes pre-labelled with EdC (5-Ethynyl-2'-
80 deoxycytidine) to enable the single-molecule detection of vDNA by click chemistry [16, 17,
81 27-29]. We have shown nuclear infecting HSV-1 genomes to rapidly associate with core
82 constituent proteins of promyelocytic leukaemia nuclear bodies (PML-NBs) leading to
83 vDNA entrapment [16]. This nuclear host defence to infection is counteracted by the HSV-1
84 ubiquitin ligase ICP0 [30-32], which induces the proteasome-dependent degradation of PML
85 (the major scaffolding protein of PML-NBs, [33]), leading to the dispersal of repressive
86 PML-NB host factors from vDNA that stimulates the onset of lytic infection [31, 32, 34-37].
87 HSV-1 nuclear infection also induces the recruitment of two DNA histone H3.3/H4
88 chaperones to vDNA; Daxx (death domain associated protein 6) and HIRA (histone cell cycle

89 regulator) [16, 38-41]. The stable recruitment of these histone chaperones to vDNA occurs
90 asynchronously, with Daxx localizing to genomes immediately upon nuclear entry [16, 39],
91 while HIRA recruitment is dependent on the initiation of vDNA replication or stimulation of
92 cytokine-mediated immune defences [38, 42, 43]. Notably, both Daxx and HIRA colocalize
93 with PML at vDNA, which can lead to the epigenetic modification of histone H3.3 indicative
94 of heterochromatin silencing [27, 28, 42-44]. Recent evidence also has shown PML to
95 influence the equilibrium of heterochromatic marks associated with vDNA (e.g., H3K27me2
96 vs. H3K9me3) [27] and viral genomes associated with PML-NBs to be more transcriptionally
97 repressed during viral latency [44]. Such observations have led to the hypothesis that PML-
98 NBs may act as sites for the assembly and/or maintenance of viral heterochromatin.
99 However, it remains to be formally investigated as to what role PML-NB entrapment of
100 vDNA may play in the *de novo* assembly of viral chromatin upon nuclear infection. We
101 therefore set out to investigate the spatial localization and relationship between PML-NB
102 entrapment of HSV-1 genomes and vDNA chromatin assembly using quantitative imaging at
103 single-genome resolution.

104 We identify significant population heterogeneity in the stable enrichment and spatial
105 proximity of canonical histones (H2A, H2B, and H3.1) to nuclear infecting HSV-1 genomes
106 entrapped within PML-NBs. We show PML-NBs not to sterically inhibit the enrichment of
107 these canonical histones to infecting genomes, but to cooperate with Daxx in the spatial
108 localization and enrichment of variant histone H3.3 at vDNA. We show HSV-1 genomes
109 released from capsids *in vitro* to have equivalent volumetric dimensions to those observed
110 inside infected cells upon nuclear infection, demonstrating HSV-1 genomes to retain a
111 significant degree of vDNA compaction post-capsid release independently of chromatin
112 assembly. We demonstrate Daxx to be responsible for the localization of variant histone H3.3
113 at vDNA that limits the rate of HSV-1 genome decompaction and progression of viral
114 immediate-early (IE) transcription. This host response to nuclear infection is counteracted by
115 the HSV-1 ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone
116 H3.3 from vDNA to stimulate genome expansion, progression of IE transcription, and the
117 onset of viral lytic replication. Our study identifies Daxx as a key mediator in the
118 intermediate and sequential assembly of viral chromatin that constrains HSV-1 genome
119 decompaction post-capsid release independently of stable canonical nucleosome assembly.
120

121 **Results**

122 **Canonical histones do not stoichiometrically localize to nuclear infecting HSV-1**
123 **genomes.** We began our analysis by validating HSV-1 genomes to bind cellular histones
124 upon nuclear infection. Human foreskin fibroblast (HFT) cells were infected with an HSV-1
125 ICP0-null mutant (Δ ICP0; MOI 3 PFU/cell) to prevent the ICP0-dependent disruption of viral
126 chromatin and proteasome-dependent degradation of PML-NBs [30, 45]. Cells were
127 harvested at 90 minutes post-infection (90 mpi; post-addition of virus) and viral chromatin
128 immunoprecipitated (IP) using ChIP-grade histone antibodies or species-matched IgG
129 (negative control). Consistent with previous studies [45-47], IP of histones led to the recovery
130 of HSV-1 DNA (Fig. 1A), demonstrating a proportion (~ 0.5 to 1 % of soluble input) of

131 infecting genomes to stably bind histones. We hypothesized that if nucleosome assembly
132 were required to promote HSV-1 genome compaction post-capsid release that we would
133 observe the stable enrichment of canonical histones (H2A, H2B, H3.1, and H4) at vDNA on a
134 population wide basis [20, 48]. As PML-NBs rapidly entrap infecting HSV-1 genomes [16],
135 and are known repositories for variant histone H3.3 deposition [49-51], we first examined the
136 localization of histones at PML-NBs in mock-treated cells. For controls, we examined the
137 localization of two histone H3.3/H4 chaperones, Daxx and HIRA, known to either reside or
138 transiently associate with PML-NBs, respectively [33, 38, 42, 52, 53]. We observed Daxx,
139 but not HIRA, to stably localize at PML-NBs in mock-treated cells (Fig. 1B, S1). Little to no
140 stable colocalization of canonical histones H2A or H2B were observed at PML-NBs (Fig.
141 1B), which predominantly localized to cellular chromatin interspersed with bright puncta
142 (Fig. S1). Using an antibody that recognized both canonical (H3.1) and variant (H3.3) histone
143 H3 (Fig. S2), we observed consistent histone H3 localization at PML-NBs (Fig. 1B, S1).
144 Analysis of transgenic HFT cell lines induced to express fluorescently tagged (mEmerald;
145 mEm) histones corroborated this colocalization to be specific for variant histone H3.3 (Fig.
146 S2, H3.3-mEm; [49-51]). No colocalization was observed for histones H2A-mEm, H2B-
147 mEm, and H3.1-mEm at PML-NBs (Fig. S2). In contrast to the detection of endogenous
148 histone H4 (Fig. 1B, S1), ectopic expression of histone H4-mEm led to its consistent
149 detection at PML-NBs to levels equivalent to that of H3.3-mEm (Fig. S2). We posit that the
150 endogenous detection of histone H4 at PML-NBs may be subject to epitope masking when in
151 complex with Daxx at PML-NBs [54]. Importantly, all mEm-tagged histones could be
152 observed to associate with mitotic cellular chromatin (Fig. S3), demonstrating that the fusion
153 of the mEm tag onto the C-terminus of each histone not to impair nucleosome assembly. We
154 conclude canonical histones H2A, H2B, and H3.1 not to be stably enriched at PML-NBs
155 prior to HSV-1 infection.

156 We next examined the localization of endogenous histones to nuclear infecting HSV-
157 1 genomes by click chemistry and indirect immunofluorescence. Cell monolayers were
158 infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell) and fixed at 90 mpi, a time point in the
159 linear phase of genome delivery to the nucleus (median frequency of 1 genome per nucleus,
160 Fig 1C) [16]. As expected, PML and Daxx robustly localized at vDNA, while HIRA did not
161 (Fig. 1D to G, S4) [16, 38]. The frequency of histone H2A and H2B colocalization at vDNA
162 was equivalent to that of HIRA (Fig. 1E, F, S4), with few genomes showing colocalization at
163 90 mpi. Immunolabelling using a fluorescent H2A/H2B nanobody, which readily detected
164 H2A/H2B heterodimers associated with cellular chromatin (Fig. S5), also failed to detect
165 these histones to be stably enriched at vDNA (Fig. 1E, F, S5; H2A/H2B dimer). In contrast,
166 histone H3 (H3.1/H3.3) colocalized at vDNA with a frequency equivalent to that of Daxx
167 (Fig. 1D to G, S4). While histone H4 was observed to be enriched at vDNA, the frequency of
168 this colocalization was lower than that observed for histone H3 (Fig. 1E, F). Analysis of
169 paired data demonstrated a substantial degree of population heterogeneity in the
170 colocalization of histones at vDNA relative to PML (positive control; Fig. 1E), with histones
171 H3 and H4 exhibiting the highest frequencies of association on a genome population basis at
172 90 mpi (Fig. 1E, F).

173 To exclude the possibility of differences in antibody avidity influencing the detection
174 of histones at vDNA, we next examined the localization of mEm-tagged histones at vDNA
175 under equivalent infection conditions. Only histones H3.3-mEm and H4-mEm stably
176 localized at vDNA, with little to no colocalization observed for eYFPnls (negative control) or
177 histones H2A-mEm, H2B-mEm, or H3.1-mEm (Fig. 2A to C, S6). Analysis of paired data
178 again demonstrated a substantial degree of population heterogeneity in the colocalization of
179 canonical H2A-mEm, H2B-mEm, and H3.1-mEm histones at vDNA relative to PML (Fig.
180 2B). Thus, a failure to detect the stable enrichment of these histones at vDNA is not a
181 consequence of epitope masking or relative differences in antibody avidity. ChIP analysis of
182 infected cells using an anti-GFP antibody led to a similar profile of vDNA recovery to that
183 observed for endogenous histones (Fig. 1A vs. 2D; ~1 to 4 % total soluble input). Together,
184 these data indicate that only a minor fraction of input genomes to stably bind histones on a
185 genome population basis. Thus, the relative high frequency of colocalization observed for
186 variant histone H3.3 and histone H4 at vDNA might relate to their reported interaction with
187 Daxx at PML-NBs independently of their *de novo* deposition on vDNA (Fig. S1, S2; [49-
188 51]).

189 To investigate whether the colocalization of histone H3.3 at vDNA correlated with its
190 constitutive localization at PML-NBs and/or *de novo* deposition on viral genomes, we
191 screened a panel of cell lines for endogenous histone H3.3 colocalization at PML-NBs. We
192 identified HaCaT (human skin keratinocyte) cells to have reduced levels of variant histone
193 H3.3 at PML-NBs in mock-treated cells (Fig. 3A, B) compared to other cell lines (HFt, HEL,
194 RPE). This was surprising, as Daxx (the histone chaperone responsible for histone H3.3/H4
195 deposition at PML-NBs; [49-51]) and its binding partner ATRX (α -thalassemia mental
196 retardation X-linked protein) were both robustly detected at PML-NBs (Fig. 3A, C). We posit
197 the lack of constitutive histone H3.3 localization at PML-NBs may relate to the transformed
198 and/or aneuploid nature of HaCaT cells [55]. Infection of HaCaT cells led to the stable
199 enrichment of PML, histone H3 (H3.1/H3.3), and H4 (to a lesser extent) at vDNA (Fig. 3D,
200 E). Whereas histones H2A and H2B did not (Fig. 3D, E). These data identify histones H3.3
201 and H4 to be actively recruited to vDNA independently of their sub-cellular localization at
202 PML-NBs prior to infection. Taken together with our HFt analysis (Fig. 1, 2), these data
203 indicate nuclear infecting HSV-1 genomes to be preferentially enriched for histones H3.3 and
204 H4 on a population wide basis independently of the stable enrichment of H2A or H2B.

205
206 **High-resolution imaging identifies canonical histones to localize in variable proximity to**
207 **vDNA.** We next investigated the spatial proximity of histones at vDNA utilizing high-
208 resolution confocal microscopy imaging. All histones (H2A, H2B, H3.1/H3.3, and H4) could
209 be observed to localize in relative proximity ($2 \mu\text{m}^3$) to vDNA, which consistently
210 demonstrated a high frequency of entrapment within PML-NBs (Fig. 4A) [16]. A subset of
211 histones could be observed to make surface contact with PML and vDNA entrapped therein,
212 with histone H3 (H3.1/H3.3) being in closest proximity to vDNA (Fig. 4B, C). Notably,

213 histone H3 was observed to localize asymmetrically to both PML-NBs and vDNA entrapped
214 therein (Fig. 4A, white arrows). Volumetric measurements demonstrated PML-NBs that
215 contained vDNA to increase in size relative to non-genome containing PML-NBs within the
216 same nucleus (Fig. 4D), indicative of an increase in PML-NB expansion upon vDNA
217 entrapment. ChIP analysis identified PML to bind vDNA (Fig. 4E), identifying PML to be an
218 accessory component of viral chromatin upon nuclear infection. Collectively, these data
219 demonstrate canonical histones H2A and H2B to be proximal to vDNA on an individual
220 genome basis, but to be spatially separate and distinct from histone H3.3 or PML on a
221 genome population basis (Fig. 4A, C). Moreover, these data also suggest that a significant
222 fraction of histone H3.3 localized at PML-NBs not to be directly associated with viral
223 chromatin at 90 mpi.

224

225 **PML-NBs influence the spatial localization of histone H3.3 at vDNA.** As PML-NB
226 entrapment may exclude the *de novo* deposition of histones at vDNA, we next examined the
227 colocalization of histones (H2A, H2B, H3.1/H3.3, and H4) with vDNA in PML knockout
228 (KO) cells. Relative to non-targeting control (NTC) cells, over 80% of PML gRNA
229 expressing cells lacked detectable PML-NBs (Fig. 5A, B). Infection of PML KO cells led to a
230 reduction in the frequency of Daxx, histone H3, and histone H4 colocalization at vDNA
231 relative to NTC cells (Fig. 5C, D, S7). Consistent with a PML-NB independent mechanism of
232 Daxx recruitment to vDNA [16, 37, 56], a significant proportion of genomes retained
233 colocalization with Daxx and histone H3 in PML KO cells (Fig. 5C, D). These data
234 corroborate our HaCaT analysis (Fig. 3), demonstrating histone H3.3 and H4 to be actively
235 recruited to vDNA upon nuclear infection independently of their native localization at PML-
236 NBs. In contrast, histones H2A and H2B colocalization at vDNA remained below coincident
237 threshold levels (Fig. 5C, D), demonstrating PML-NBs not to sterically inhibit the stable
238 enrichment of these histones to vDNA. High-resolution imaging identified an increase in the
239 spatial distance between histone H3 and vDNA between infected NTC and PML KO cells
240 (Fig. 5E, F), identifying a role for PML in the spatial localization and/or stable enrichment of
241 histone H3.3 at vDNA. We conclude that PML entrapment of HSV-1 genomes not to
242 sterically inhibit the deposition of histones H2A or H2B at vDNA upon nuclear infection.

243

244 **The histone H3.3/H4 chaperone Daxx restricts HSV-1 genome expansion.** As Daxx is
245 known to promote the deposition of histone H3.3/H4 at PML-NBs [49-51], we next examined
246 the role of Daxx in the stable colocalization of Histone H3.3 at vDNA in NTC and Daxx KO
247 cells. Relative to NTC cells, over 80% of Daxx gRNA expressing cells lacked detectable
248 Daxx localization at PML-NBs (Fig. 6A-C, S8). Daxx KO led to a loss of ATRX, the binding
249 partner of Daxx [53, 57], and histone H3.3 localization at PML-NBs (Fig. 6D, S8). Infection
250 of Daxx KO cells led to a significant reduction in ATRX and histone H3.3 colocalization at
251 vDNA relative to infected NTC cells (Fig. 6E, F, S9), demonstrating a Daxx-dependent
252 mechanism of histone H3.3 enrichment at vDNA. High-resolution imaging identified PML-
253 NB entrapment of vDNA to occur independently of Daxx (Fig. 6G) and for the spatial
254 proximity of histone H3 at vDNA to increase between NTC and Daxx KO cells (Fig. 6H).

255 Importantly, volumetric measurements of vDNA foci identified an increase in genome
256 volume between Daxx KO and NTC or PML KO cells (Fig. 6I), indicative of change in
257 vDNA decompaction previously ascribed to the initiation of viral transcription [17]. These
258 data identify a role for Daxx in the deposition of chromatin at vDNA that limits the rate of
259 HSV-1 genome expansion independently of the stable enrichment of histones H2A or H2B
260 (Figs. 1 to 5).

261

262 **HSV-1 DNA retains a significant degree of compaction upon capsid release.** As we had
263 observed significant levels of population heterogeneity in the stable enrichment of histones
264 H2A or H2B at vDNA (Figs. 1 to 5), these data suggested HSV-1 genome compaction upon
265 nuclear infection to occur independently of stable canonical nucleosome assembly on a
266 genome population basis. The visualization of herpesvirus genome entry into the nucleus
267 remains poorly defined. However, electron microscopy (EM) and atomic force microscopy
268 (AFM) studies have shown HSV-1 DNA to transit through the nuclear pore complex (NPC)
269 as an electron-dense rod-shaped mass [13, 14]. In contrast, *in vitro* EM and AFM
270 experiments have shown HSV-1 genomes to be released from viral capsids as linear strands
271 of dsDNA when incubated in the presence of trypsin [58], detergent [59], or application of
272 extreme pressure [60]. We hypothesized the presence of spermine in the capsid particle [9]
273 and/or solvent density might be sufficient to retain genome compaction under less stringent
274 conditions of release. To investigate, we performed *in vitro* genome release assays in the
275 presence of non-specific carrier control protein (0.1 % FBS) to recapitulate the high protein
276 content of the nucleoplasm (> 150 mg/ml; [61]) into which viral genomes are injected.
277 Genomes released under these conditions appeared as spherical foci (Fig. 7A; [16, 17]), as
278 opposed to long filamentous strands of dsDNA. Volumetric measurements demonstrated
279 these genomes to have equivalent dimensions to those observed inside infected cells at 90
280 mpi (median volume 0.08 vs. 0.0803 μm^3 , respectively; Fig. 7B). These data demonstrate
281 HSV-1 genomes to retain a high degree of compaction post-capsid release independently of
282 the presence of histones or chromatin modifying enzymes required to facilitate *de novo*
283 nucleosome assembly. Taken together with our volumetric measurements in Daxx KO cells
284 (Fig. 6I), these data support a role for Daxx to limit the rate of viral genome decompaction
285 post-capsid release [14, 17], as opposed to promoting the re-compaction of linear DNA
286 genomes into compact foci.

287

288 **The HSV-1 ubiquitin ligase ICP0 disperses Daxx and variant histone H3.3 from vDNA**
289 **to stimulate genome expansion and the progression of IE transcription.** We next
290 examined the influence of ICP0 to disrupt the spatial localization of Daxx and variant histone
291 H3.3 from vDNA entrapped within PML-NBs. HT1080 cells were infected with WT or Δ ICP0
292 HSV-1^{EdC/A} (MOI of 0.5 PFU/cell) and fixed at 90 or 240 mpi. Consistent with the ICP0
293 dependent degradation of PML (Fig. S10A; [30, 35, 36]), PML colocalization at vDNA
294 dropped below coincident threshold levels by 240 mpi during WT HSV-1 infection (Fig. 8A,
295 B) [16]. An equivalent decrease in Daxx and variant histone H3.3 colocalization at vDNA
296 could also be observed at this time point of infection, even though the stability of these

297 proteins remained unchanged over the time course of infection (Fig. 8A, B, S10A). While the
298 frequency of PML, Daxx, and histone H3.3 colocalization at vDNA decreased during Δ ICP0
299 HSV-1 infection (Fig. 8A, B), a significant population of genomes retained colocalization of
300 these proteins at vDNA (Fig. 8A; [16]). Volumetric measurements demonstrated WT HSV-1
301 genomes to undergo significant expansion by 240 mpi (Fig. 8C, D). In contrast, Δ ICP0 HSV-
302 1 genomes retained an equivalent degree of compaction to that observed at 90 mpi (Fig. 8C,
303 D). Thus, the ICP0-dependent degradation of PML and dispersal of Daxx and variant histone
304 H3.3 from vDNA stimulates the onset of viral genome expansion. Taken together with our
305 Daxx KO analysis (Fig. 6), these data identify a role for Daxx in the formation of viral
306 chromatin that limits the rate of viral genome decompaction upon nuclear infection.

307 To determine if this initial wave of chromatin assembly had a positive or negative
308 impact on viral transcription, we next examined the kinetics of WT HSV-1 immediate-early
309 (IE) transcription in NTC and Daxx KO cells. RT-qPCR analysis identified a delay in WT
310 HSV-1 IE transcription (ICP0 and ICP4) between 90 and 240 mpi in NTC cells relative to
311 Daxx KO cells, which began to recover to Daxx KO levels by 360 mpi (Fig. 8E, S10B). An
312 equivalent delay in ICP0 and ICP4 protein expression was also observed in NTC cells
313 relative to Daxx KO cells (Fig. 8F). These data demonstrate the Daxx mediated deposition of
314 histones H3.3/H4 at vDNA to restrict the onset of WT HSV-1 IE transcription independently
315 of the stable enrichment of histones H2A or H2B at vDNA (Figs. 1 to 5). Virus yield assays
316 demonstrated no significant difference in WT HSV-1 titres between NTC and Daxx KO cells
317 (Fig. 8G; HSV-1), consistent with a recovery in IE transcription by 360 mpi (Fig. 8E). In
318 contrast, infection with Δ ICP0 HSV-1 led to higher viral titres in Daxx KO relative to NTC
319 cells (Fig. 8G; Δ ICP0). Taken together, we conclude the histone chaperone properties of
320 Daxx to play a key role in the assembly of viral chromatin that limits the rate of viral genome
321 decompaction and progression of IE transcription. This host response to nuclear infection is
322 antagonized by ICP0, which disperses Daxx from vDNA to destabilize this initial wave of
323 replication-independent chromatin assembly to stimulate the progression of viral genome
324 decompaction, IE transcription, and onset of HSV-1 lytic replication.

325

326 **Discussion**

327 While the epigenetic modification of viral chromatin is known to play a fundamental role in
328 the transcriptional regulation of herpesviruses during both lytic and latent phases of infection
329 [23-25, 27], the prerequisite assembly of viral chromatin prior to its modification has
330 remained poorly defined on a genome population basis. Here we utilise high-resolution
331 quantitative imaging to investigate the population heterogeneity and spatial proximity of
332 histones at vDNA upon HSV-1 nuclear infection at single-genome resolution.

333 Our imaging analysis identifies nuclear infecting HSV-1 genomes to asynchronously
334 associate with canonical histones H2A, H2B, and H3.1 at a frequency significantly lower
335 than that observed for PML-NB host factors (PML, Daxx, ATRX) or variant histone H3.3 at
336 90 mpi (Figs. 1 to 5). These data identify significant population heterogeneity in the
337 recruitment of cellular histones to infecting HSV-1 genomes that is likely to differentially

338 influence the kinetics or outcome of HSV-1 nuclear infection on an individual genome basis.
339 Our data are consistent with ChIP and micrococcal nuclease studies that have reported only a
340 small percentage of soluble input genomes to stably bind histones in a manner distinct from
341 that of nucleosome arrays associated with cellular chromatin [29, 45-47, 62-65]. Thus, care
342 needs to be taken when interpreting infection studies heavily reliant on ChIP, as the
343 enrichment of viral genomes bound to specific histones or identified to carry specific
344 epigenetic modifications may represent only a fraction of the total population of genomes
345 under investigation. While microscopy studies come with experimental limitations too (e.g.,
346 the detection of low abundant antigens and epitope masking), we demonstrate equivalent
347 trends in canonical histone localization to occur independently of cell type, levels of histone
348 expression, or potential differences in antibody avidity on a genome population basis (Figs. 1
349 to 3). Importantly, our imaging analysis could readily identify changes in host factor
350 recruitment and spatial proximity at vDNA under a variety of genetic (e.g., NTC vs. PML or
351 Daxx KO; Figs. 5 and 6) and infection (WT vs. ΔICP0 HSV-1; Fig. 8) conditions,
352 demonstrating the sensitivity of the approach employed. However, we cannot discount the
353 possibility of highly transient or unstable histone interactions [66] that may be disrupted as a
354 consequence of the microscopy conditions employed in our study. Our findings are broadly
355 consistent with ATAC-Seq (assay for transposase-accessible chromatin sequencing) studies,
356 which indicate that the majority HSV-1 DNA during lytic infection lack protection from
357 transposase activity by stable canonical nucleosomes [67, 68].

358 Our data support an alternate model of herpesvirus chromatin assembly and
359 compaction, where vDNA retains a significant degree of compaction post-capsid release that
360 progressively expands as infection progresses through viral genome decompaction (Fig. 6I, 7,
361 8C) [17]. Such a model could be explained by the presence of spermine within the capsid
362 particle [9] and/or molecular crowding due to the density of the nucleoplasm into which
363 vDNA is injected. We demonstrate HSV-1 genomes released *in vitro* to have equivalent
364 volumetric dimensions to that observed within infected cells at 90 mpi independently of the
365 presence of histones or chromatin modifying enzymes required to facilitate *de novo* vDNA
366 compaction (Fig. 7). These findings are supported by AFM studies that have shown infecting
367 HSV-1 genomes transiting through the NPC to appear as rod-like densities and mass
368 spectrometry experiments that have shown isolated vDNA not to stably bind histones upon
369 nuclear infection [14, 29]. Together with our imaging analysis, these data provide compelling
370 evidence demonstrating HSV-1 genomes are delivered into the nucleus in a pre-existing
371 semi-compact state independently of chromatin assembly. Thus, the pressure-driven release
372 of herpesvirus genomes from the capsid particle into the nuclei of cells is unlikely to occur as
373 a linear strand of dsDNA, as often depicted in the literature [23, 24]. Rather, genome release
374 from the capsid is more likely to occur in a ‘globular-like’ fashion, as ejected vDNA meets
375 the protein density and impedance of the surrounding nucleoplasm that is required to be
376 displaced for genome exit to occur. Such observations are consistent with bacteriophage
377 studies, which have shown exterior solvent density to promote vDNA compaction to facilitate
378 full genome exit from the particle [69]. This model warrants further investigation, as genome
379 decompaction is likely to represent a key stage in the infectious lifecycle of all herpesviruses

380 that will be intimately linked to the initiation of viral transcription and gene accessibility (Fig.
381 8) [17].

382 While canonical histones (H2A, H2B, and H3.1) were not stably enriched at viral
383 genomes, we consistently observed PML, Daxx, and variant histone H3.3 to be localized at
384 vDNA on a genome population basis, indicative of an active host response to nuclear
385 infection [16, 39]. Notably, a degree of population heterogeneity in the stable co-recruitment
386 of these host factors to vDNA could also be observed (e.g., PML plus Daxx; Fig. 5). Thus,
387 kinetic differences in the spatiotemporal assembly of viral and cellular protein complexes on
388 vDNA will likely contribute to the probability of any individual genome successfully
389 initiating a productive infection (e.g., ΔICP0; Fig 8) [16, 70]. This observation is supported
390 by single-cell RNA-Seq studies, which have identified individual cells to express distinct
391 profiles of viral and host transcription [71, 72]. Thus, the application of quantitative imaging
392 provides a powerful tool to investigate the spatiotemporal relationship between pro- and anti-
393 viral host factors that actively compete for vDNA binding to regulate the outcome of
394 infection [29, 73-75].

395 Although high-resolution imaging identified canonical histones H2A and H2B to
396 make surface contact with vDNA on an individual genome basis (Fig. 4), these occurrences
397 were rare in frequency and unique in their spatial arrangements relative to PML or variant
398 histone H3.3 (Fig. 4 to 6). Notably, we observed the asymmetric localization of variant
399 histone H3.3 at PML-NBs (Fig. 4A, white arrows), which likely reflects the transition of
400 histone H3.3/H4 heterodimers deposited at PML-NBs by Daxx into cellular chromatin
401 undergoing active remodelling [49-51, 76, 77]. These data suggest that the majority of variant
402 histone H3.3 localized at PML-NBs is unlikely to be associated with viral chromatin directly
403 (Fig. 4, 5), highlighting the importance of studying viral-host interactions in the context of
404 the three-dimensional microenvironment in which they occur. We demonstrate PML to be an
405 accessory component of viral chromatin prior to its degradation by ICP0 (Fig. 4E, 8, Fig
406 S10A) [30], confirming ICP0 capable of targeting multiple anti-viral host factors bound to
407 vDNA for proteasomal degradation to stimulate the progress of infection [75]. Additional
408 study is warranted to determine how PML interacts with vDNA due to its importance as a
409 host restriction factor to multiple pathogens [78, 79]. We show PML-NBs not to sterically
410 inhibit the enrichment of canonical histones H2A or H2B at vDNA (Fig. 5). Thus, we find no
411 evidence to support a hypothesis that PML-NBs act as a site for canonical nucleosome
412 assembly upon nuclear infection. However, we do not discount the possibility that PML-NBs
413 may contribute to the sequential assembly of non-canonical or intermediate form(s) of viral
414 (hetero)chromatin, as we identify a role for Daxx in the deposition of histones at vDNA that
415 limits the rate of viral genome decompaction and IE transcription (Fig. 6I, 8D). Nor do we
416 discount a role for PML-NBs in the establishment or maintenance of nucleosomal
417 heterochromatin during other phases of infection (e.g., HSV-1 latency). Under such
418 conditions, cell-type specific host factors and/or alternate patterns of immune regulation may
419 influence the assembly and/or maintenance of viral heterochromatin at PML-NBs in the
420 absence of key transactivating proteins (e.g., VP16 or ICP0) [43, 80-82]. Thus, it would be of
421 interest to determine the relative population of genomes that are in association with canonical

422 or variant histones within latently infected neurones, as diversity in nucleosome composition,
423 epigenetic modification, or degree of heterochromatin compaction may differentially
424 influence the frequency of HSV-1 reactivation on an individual genome basis.

425 While it remains to be determined as to when and where the assembly of canonical
426 histone tetramers reported to bind vDNA occurs during HSV-1 lytic infection [66, 83, 84],
427 our data are consistent with a model of sequential histone loading onto vDNA that is
428 mediated by individual histone chaperones [54, 85]. Consistent with previous results [38], we
429 failed to observe the stable recruitment of HIRA at vDNA at 90 mpi (Fig. 1, S3),
430 demonstrating the replication-independent deposition of variant histone H3.3 and histone H4
431 at vDNA to be largely dependent on Daxx. Such a model of sequential chromatin assembly is
432 supported by iPOND studies, which have shown chromatin regulators to bind vDNA at
433 distinct stages of infection [29, 74]. This initial wave of replication-independent chromatin
434 assembly by Daxx appears to be relatively short lived, as the ICP0-dependent disruption of
435 PML-NBs is sufficient to disperse Daxx and variant histone H3.3 from vDNA independently
436 of their gross degradation (Fig. 8, S10A). Notably, ATRX has been reported to promote the
437 stability of viral heterochromatin upon infection of fibroblasts [28]. Thus, the Daxx
438 dependent recruitment of ATRX to vDNA may also contribute to the stabilization of
439 intermediary forms of viral chromatin entrapped within PML-NBs. This hypothesis is
440 consistent with ChIP studies that have shown ICP0 expression to reduce histone deposition
441 on vDNA [45] and for Daxx/ATRX to work cooperatively with PML in the epigenetic
442 silencing of ΔICP0 HSV-1 [28, 43, 86]. Our imaging analysis provides spatial context to
443 these studies and identifies histone H3.3/H4 deposition at vDNA to occur prior to the stable
444 enrichment of histones H2A or H2B upon nuclear infection. It remains to be determined if
445 other histone variants (e.g., macroH2A, H2A.Z, or H2A.X) may participate in this initial
446 wave of replication-independent chromatin assembly. However, we note the expression of
447 histone H2B variants (e.g., H2B.1 and H2B.W) to be highly cell-type specific (testis, oocyte,
448 and zygote; [HistoneDB 2.0](#)) [87]. Thus, the lack of detectable histone H2B enrichment at
449 vDNA (Fig. 1 to 5) suggests viral chromatin entrapped within PML-NBs is likely to be
450 unstable, possibly accounting for its relative ease of disruption by ICP0 following PML
451 degradation [45]. Our data are consistent with a model of sequential histone loading, where
452 histone H3/H4 heterodimers are loaded onto cellular DNA by Daxx as a tetrasome prior to
453 histone H2A/H2B incorporation [18]. Whether this initial wave of replication-independent
454 viral chromatin assembly is subject to further histone assembly and/or epigenetic
455 modification in the absence of ICP0 remains an open question for future research.

456 While we observed variable levels of endogenous histone H4 localization at vDNA,
457 the ectopic expression of histone H4-mEm led to equivalent levels of enrichment to that
458 observed for histone H3.3-mEm at vDNA (Fig. 2). Notably, Daxx is known to bind histone
459 H3.3/H4 heterodimers in a conformation specific manner that restricts histone accessibility to
460 other chaperones [54]. We posit the non-stoichiometric levels of endogenous histone H4
461 enrichment observed at vDNA likely relate to epitope masking for this histone-antibody
462 combination. Such findings highlight the importance of utilising multiple confirmatory
463 controls when interpreting microscopy data (Fig. 2, S5, S6). We demonstrate Daxx to

464 mediate the enrichment of histone H3.3 at vDNA that correlates with a delay in viral genome
465 decompaction and a restriction in IE transcription independently of the stable enrichment of
466 histones H2A and H2B on a genome population basis. Due to the importance of Daxx in the
467 cellular restriction of multiple pathogens, additional investigation is warranted to determine if
468 Daxx influences the viral genome decompaction state of other viruses known to actively
469 target Daxx to stimulate the progress of infection [88].

470 In summary, we demonstrate HSV-1 genome compaction upon delivery to the
471 nucleus to occur independently of the stable enrichment of canonical histones H2A and H2B
472 at vDNA on a genome population basis. We identify a role for the histone H3.3/H4
473 chaperone Daxx in the replication-independent assembly of viral chromatin at vDNA that
474 restricts the rate of HSV-1 genome decompaction to limit the progression of WT HSV-1 IE
475 transcription. This initial wave of chromatin assembly is disrupted by ICP0, which induces
476 the degradation of PML to disperse Daxx and variant histone H3.3 from vDNA that
477 stimulates the expansion of viral genomes, progression of IE transcription, and efficient
478 initiation of HSV-1 lytic replication. Thus, we identify HSV-1 genome decompaction upon
479 nuclear entry to play a key role in the transcriptional regulation and functional outcome of
480 HSV-1 infection. Findings that are likely to be highly pertinent to the transcriptional
481 regulation of many nuclear replicating herpesvirus pathogens.

482

483 **Materials and Methods**

484 **Cells and drugs**

485 Human osteosarcoma (U2OS; ECACC 92022711), human keratinocyte (HaCaT; AddexBio,
486 T0020001), hTERT immortalized human Retinal Pigmented Epithelial (RPE-1; ATCC, CRL-
487 4000), and hTERT immortalized human foreskin fibroblast (HFT; [89]) cells were grown in
488 Dulbecco's Modified Eagle Medium (DMEM; Life Technologies, 41966). Primary human
489 embryonic lung fibroblasts (HEL 299; PHE, 87042207) were grown in Minimal Eagle
490 Medium (MEM; Invitrogen, 21090-22) supplemented with 1% L-glutamine (Invitrogen,
491 25030024) and 1% sodium pyruvate (Invitrogen, 11360039). All media was supplemented
492 with 100 units/ml penicillin, 100 µg/ml streptomycin (Life Technologies, 15140-122) and
493 10% foetal bovine serum (FBS; Life Technologies, 10270). TERT immortalisation was
494 maintained in the presence of 5 µg/ml of Hygromycin (Invitrogen, 10687-010). Cells
495 transduced with lentiviruses were maintained in media supplemented with 1 µg/ml
496 Puromycin (Sigma-Aldrich, P8833) for selection or 0.5 µg/ml Puromycin for maintenance.
497 For the inducible expression of auto-fluorescent proteins, cells were treated with media
498 containing 0.1 µg/ml doxycycline (Sigma; D9891). All cell lines were cultured and
499 maintained at 37°C in 5% CO₂.

500

501 **Generation of inducible mEmerald-tagged histone, SPOT-tagged PML, and NTC, PML,
502 and Daxx knock-out (KO) cell lines.**

503 Plasmids expressing histones H2A, H2B, H3.1, H3.3, and H4 with C-terminal mEmerald
504 (mEm) fluorescent tags were a gift from Michael Davidson and obtained from Addgene (Cat.
505 # 54110, 56475, 54115, 54116, 54117, respectively). cDNAs were cloned into the
506 doxycycline inducible lentiviral vector pLKO.TetO.R.eYFPnls [90] replacing the eYFPnls
507 ORF. A plasmid expressing eYFP.PML.I was a gift from Roger Everett [91]. cDNA
508 encoding PML.I was ligated in frame with oligos encoding SPOT-tag into the lentiviral
509 vector pLKO.TetO.R.eYFPnls replacing the eYFPnls ORF. Inducible histone-mEm,
510 eYFPnls, or SPOT.PML.I HFT cell lines were generated by lentiviral transduction as
511 described [37]. Non-targeting control (NTC), PML KO, and Daxx KO HFT cell lines were
512 generated as described [37, 92]. Target sequences: NTC, ATC GTT TCC GCT TAA CGG
513 CG; PML, CAC CGC GGG TGT GTC TGC ACC TA G; Daxx CAC CGT CTA TGT GGC
514 AGA GAT CCG G. plentiCRIPSR v2 (a gift from Feng Zhang) was obtained from Addgene
515 (Cat # 52961). pVSV-G and pCMVDR8.91 were a gift from Didier Trono. Cells were
516 transfected using Lipofectamine LTX with PLUS reagent (Invitrogen; 15338100) as per the
517 manufacturer's instructions.

518

519 **Viruses**

520 Wild-type (WT) HSV-1 17^{syn} (HSV-1), its ICP0-null mutant derivative *dl1403* (ΔICP0;
521 [93]), and auto-fluorescent protein (AFP) variant that expresses ECFP-ICP4 and EYFP-ICP0
522 (AFP4/0; [94]) were propagated in RPE cells and titrated in U2OS cells, as previously
523 described [70]. The labelling and purification of single or double labelled HSV-1 virions with
524 5-Ethynyl-2'-deoxycytidine (EdC; Sigma-Aldrich, T511307) and 7-Deaza-7-ethynyl-2'-
525 deoxyadenosine (EdA; Jena Bioscience, CLK-099) was performed as described [16, 38].

526 Briefly, RPE cells were infected with WT or ICP0-null mutant HSV-1 at a MOI of 0.001 or
527 0.5 PFU/cell, respectively, and incubated at 33 °C. 24 h post-infection (hpi), infected cells
528 were pulse labelled with EdC/A (final combined concentration of 1 µM) every 24 h until
529 extensive cytopathic effect (CPE) was observed. Supernatant containing EdC/A labelled cell-
530 released virus (CRV) was clarified by centrifugation (1500 rpm for 10 min), filtered through
531 a 0.45 µm sterile filter, and purified through a NAP-25 Sephadex column (GE Healthcare;
532 17-0852-01). Purified virus was titrated on U2OS cells [70]. For virus yield assays, cells were
533 infected at the indicated multiplicity of infection (MOI) for 1 h at 37 °C prior to overlay with
534 media. Media containing infectious cell released virus (CRV) was harvested from wells at the
535 indicated time points and titrated on U2OS cells as described [70].
536

537 **Virion genome release assay.**

538 1x10⁸ PFU of HSV-1^{EdC/A} labelled and column purified virus in DMEM containing 10% FBS
539 was diluted 1 in 2 in TE (20mM Tris-HCL pH 7.5, 1 mM EDTA) and incubated at RT for 30
540 mins prior a 1 in 5 dilution in 100% MeOH (final concentration of 70 % MeOH and 0.1 %
541 FBS). 50 µl of the virion solution was applied to poly-D-lysine (Sigma-Aldrich, P7405)
542 treated coverslips and incubation at 60 °C in a pre-heated oven for 15 mins. Coverslips were
543 fixed in 1.8 % formaldehyde in PBS for 10 mins, washed twice in PBS, and blocked in filter
544 sterilised PBS containing 2 % FBS for 30 mins at RT prior to click chemistry.
545

546 **Antibodies**

547 Mouse primary Abs: HSV-1 Major capsid protein VP5 (DM165; [95]), HSV-1 ICP0 (11060;
548 [96]), HSV-1 ICP4 (58s; [97]), PML (Abcam, ab96051), HIRA (Millipore, 04-1488), Daxx
549 (AbD Serotec, MCA2143) and Actin (Developmental Studies Hybridoma Bank, 224-236-1-
550 s). Rabbit primary Abs: Histone 2A (Abcam, ab18255), Histone 2B (Abcam, ab1790),
551 Histone H3 (Abcam, ab1791), Histone H4 (Abcam, ab10158), Daxx (Upstate, 07-471),
552 Sp100 (GeneTex, GTX131569), ATRX (Santa Cruz, H300), Actin (Sigma-Aldrich, A5060),
553 PML (Jena Biosciences, ABD-030; Bethyl Laboratories, A301-167A), and GFP (Abcam,
554 ab290). Nanobody: H2A-H2B dimer (Chromotek; Atto488). Secondary antibodies used for
555 detection: Alexa-488 or -647 donkey anti-mouse or -rabbit (Invitrogen; A21206, A21202,
556 A31573, A31571), DyLight-680 or -800 goat anti-mouse or -rabbit (Thermo; 35568, SA5-
557 35571, 35518, 35521), and goat anti-mouse HRP (Sigma-Aldrich, A4416).
558

559 **Chromatin immunoprecipitation (ChIP)**

560 Cells were seeded into 60 mm dishes at a density of 1.5x10⁶ cells/dish. 24 h post-seeding,
561 cells were either infected or induced to express proteins of interest by the addition of
562 doxycycline (0.1 µg/ml) for 16 h prior to infection (ΔICP0 MOI of 3 PFU/cell). Media was
563 aspirated from infected cell monolayers at 90 mpi, chromatin crosslinked using shortwave
564 UV irradiation (235 nm, 9k x 0.1 mJ/cm²) using a UVP CL-1000 shortwave Ultraviolet
565 Crosslinker. Chromatin was extracted using a Chromatin extraction kit (Abcam, ab117152)
566 as per the manufacturer's guidelines, sheared using a Branson cup horn sonicator (10 pulses
567 at 25 % amplitude, 25 secs on and 15 secs off), and clarified by centrifugation (12,000 rpm
568 for 10 mins) at 4 °C. 10 µg of soluble chromatin (input) was immunoprecipitated using a

569 ChIP magnetic-one step kit (Abcam, ab156907) using 1 µg of polyclonal ChIP-grade antisera
570 or species-matched negative control IgG immune sera o/n at 4 °C on a rotary wheel.
571 Magnetic beads were washed, proteinase-K treated, and DNA extracted following the
572 manufacturer's guidelines.

573

574 **Quantitative PCR (qPCR) and reverse transcriptase quantitative PCR (RT-qPCR)**

575 HSV-1 genomes isolated by ChIP were quantified by DNA amplification using Taqman Fast
576 Universal PCR Master mix (Applied Biosystems, 435042) using target and control-specific
577 primer/probe mixes (Table 1) in sealed MicroAmp Fast Optical 96-well plates (Applied
578 Biosystems, 4346907 and 4360954) on a 7500 Fast Real-Time PCR system (Applied
579 Biosystems); 1x cycle of 90 °C for 20 secs, 40x cycles of 95 °C for 3 min and 60 °C for 30
580 secs. Cycle threshold (Ct) values were normalized to their respective input controls and
581 expressed as a percentage of soluble input. Viral transcript expression was quantified by RT-
582 qPCR. RNA was isolated from infected cells using an RNAeasy Plus Kit (Qiagen, 74134),
583 according to manufacturer's instructions. RT was performed using TaqMan Reverse
584 Transcriptase Reagents Kit (Life Technologies, N8080234) with oligo(dT) primers. cDNA
585 was quantified (as above) using ICP0 or ICP4 and GAPDH (Life Technologies; 4333764F)
586 primer/probe mixes (Table 1). Ct values were normalized to GAPDH using the $\Delta\Delta Ct$ method
587 and expressed relative to the indicated control treatment.

588

Primer/Probe	Sequence	Supplier
HSV Us3_F	5'-GATTGGGGCCACGGGATTTA-3'	Sigma-Aldrich
HSV Us3_R	5'-GGGGTAATCTGGATGGCTG-3'	Sigma-Aldrich
HSV Us3_Cy5 probe	5'-[Cyanine5]CGATCCACGGAGCGCTACC[BHQ3]-3'	Sigma-Aldrich
HSV UL36_F	5'-AAGAGGGTGACCGCGCTTACAA-3'	Sigma-Aldrich
HSV UL36_R	5'-GTAACAGGCGCGGATCAGTA-3'	Sigma-Aldrich
HSV UL36_FAM probe	5'-[6FAM]CTGTCGCGACGCTACGTGCA[BHQ1]-3'	Sigma-Aldrich
HSV ICP0_F	5'-GGTGTACCTGATAAGTGGCG-3'	Sigma-Aldrich
HSV ICP0_R	5'-GCTGATTGCCGCTCCAGATA-3'	Sigma-Aldrich
HSV ICP0_FAM probe	5'-[FAM]AACGACCCCCAGACCCGCA[BHQ1] -3'	Sigma-Aldrich
HSV ICP4_F	5'-CGTCTGCTGCTGTCCAC-3'	Sigma-Aldrich
HSV ICP4_R	5'-CACGGTGTGACCACGATGAG-3'	Sigma-Aldrich
HSV ICP4_JOE probe	5'- [JOE]GGCCGTGGAGTTCTGGGC[BHQ1] -3'	Sigma-Aldrich

589 **Table 1.** List of qPCR primer/probes used in the study.

590

591 **Western blot**

592 Cells were washed twice in PBS before whole cell lysates were collected in 1x SDS-PAGE
593 loading buffer supplemented with 2.5 M Urea (Sigma-aldrich; U0631) and 50 mM
594 Dithiothreitol (DTT; Sigma-Aldrich, D0632). Proteins were resolved on 4-12% Bis-Tris
595 NuPAGE gels (Invitrogen, NP0322BOX) in MES or MOPS buffer (Invitrogen, NP0001 or
596 NP0002), and transferred to nitrocellulose (0.2 µm, Amersham; 15249794) using Novex
597 transfer buffer (Invitrogen, NP0006-1) at 30 volts for 90 min. Membranes were blocked in
598 PBS with 5% FBS for 1 h at RT. Membranes were incubated with primary antibodies diluted
599 in blocking buffer at RT for at least 1 h or overnight at 4°C. Membranes were washed three
600 times in PBST (PBS with 0.1 % Tween20), before incubation with secondary antibodies
601 diluted in blocking buffer for 1 h at RT. Membranes were washed three times in PBST and
602 rinsed in Milli-Q water before imaging on an Odyssey Infrared Imager (LiCor).

603

604 **Immunofluorescence and confocal microscopy**

605 Cells were seeded onto 13 mm glass coverslips and incubated o/n at 37 °C in 5% CO₂ prior to
606 treatment or infection (as indicated). Cells were washed twice in CSK buffer (10 mM Herpes,
607 100 mM NaCl, 300 mM sucrose, 3mM MgCl₂, 5 mM EDTA) prior to fixation and
608 permeabilization in 1.8 % formaldehyde (Sigma-Aldrich, F8775) and 0.5 % Triton-X-100
609 (Sigma-Aldrich, T-9284) in CSK buffer for 10 mins at RT. Coverslips were washed twice in
610 CSK buffer and blocked in 2 % Human Serum (HS; MP Biomedicals, 092931149) in PBS for
611 30 mins prior to click chemistry and immunostaining. Click chemistry was performed using a
612 Click-iT-Plus EdU Alexa Fluor 488 or 555 imaging kit (ThermoFisher Scientific, C10637 or
613 C10638) according to manufacturer's instructions. For viral or host protein labelling, cells
614 were incubated with primary antibodies diluted in PBS containing 2 % HS for 1 h, washed
615 three times in PBS, and incubated in secondary antibodies and DAPI (Sigma-Aldrich,
616 D9542) in PBS containing 2 % HS for 1 h. Coverslips were washed three times in PBS, twice
617 in Milli-Q-H₂O, and air dried prior to mounting onto Citiflour AF1 (Agar Scientific, R1320)
618 on glass slides. Coverslips were examined using a Zeiss LSM 880 confocal microscope using
619 the 63x Plan-Apochromat oil immersion lens (numerical aperture 1.4) using 405, 488, 545,
620 and 633 nm laser lines. Zen black software was used for image capture, generating cut mask
621 channels, and calculating weighted colocalization coefficients. High-resolution Z-series
622 images were capture under LSM 880 Airy scan deconvolution settings using 1:1:1 capture
623 conditions. Z-series images were process using Imaris (Bitplane v9.3) to produce rendered
624 3D images for distance and volumetric measurements.

625

626 **Statistical analysis**

627 GraphPad Prism (version 10.2.2) was used for statistical analysis. For unpaired non-
628 parametric data, a Kruskal-Wallis one-way ANOVA or Mann-Whitney *U*-test was applied.
629 For unpaired parametric data, a two-tailed *t* test was applied. Statistical *P*-values are shown
630 throughout. Significant differences were accepted at *P* ≤ 0.05.

631

632 **Acknowledgements**

633 The authors would like to thank Mathew Weitzman for their constructive comments and
634 input in the preparation of this manuscript.

635

636 **Funding**

637 This work was funded by the Medical Research Council (MRC; <https://mrc.ukri.org>) grant
638 MC_UU_12014/5 and MC_UU_00034/2 awarded to CB and the National Institute of Health
639 (NIH) R01 NS105630 awarded to ARC. The funders had no role in the study design, data
640 collection and analysis, decision to publish, or preparation of the manuscript.

641

642 **Data Availability**

643 The data sets generated in this study are available in Supplemental File **S1 data**.

644

645 **Author Contributions**

646 Conceptualization: APER, ARC, KLC, CB.
647 Methodology: APER, AO, VI, KLC, ZY, CB.
648 Investigation: APER, AO, VI, SMF, MCR, LO, ZY, CB.
649 Formal analysis: APER, AO, VI, SMF, MCR, LO, CB.
650 Data curation: APER, VI, SMF, MCR, LO, ZY, CB.
651 Project administration: APER, CB.
652 Supervision: CL, KLC, ARC, CB.
653 Resources: AO, SMF, KLC, CB.
654 Validating: APER, ZY, LO, CB
655 Funding acquisition: CB, ARC
656 Writing - original draft: APER, KLC, CB.
657 Writing - review editing: APER, MCR, IE, ARC, KLC, CB.
658

659 **Conflicts of Interest**

660 The authors declare no conflict of interest.
661
662

663 **References**

- 664 1. Knipe DM, Howley PM. *Fields virology*. 6th ed. Philadelphia, PA: Wolters
665 Kluwer/Lippincott Williams & Wilkins Health; 2013. 2 volumes p.
- 666 2. Davison AJ. Comparative analysis of the genomes. In: Arvin A, Campadelli-Fiume G,
667 Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. *Human Herpesviruses: Biology,
668 Therapy, and Immunoprophylaxis*. Cambridge2007.
- 669 3. Booy FP, Newcomb WW, Trus BL, Brown JC, Baker TS, Steven AC. Liquid-crystalline,
670 phage-like packing of encapsidated DNA in herpes simplex virus. *Cell*. 1991;64(5):1007-15.
671 Epub 1991/03/08. doi: 10.1016/0092-8674(91)90324-r. PubMed PMID: 1848156; PubMed
672 Central PMCID: PMCPMC4140082.
- 673 4. Sae-Ueng U, Li D, Zuo X, Huffman JB, Homa FL, Rau D, et al. Solid-to-fluid DNA
674 transition inside HSV-1 capsid close to the temperature of infection. *Nat Chem Biol*.
675 2014;10(10):861-7. Epub 2014/09/10. doi: 10.1038/nchembio.1628. PubMed PMID:
676 25195012; PubMed Central PMCID: PMCPMC6528806.
- 677 5. Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W. Visualization of tegument-capsid
678 interactions and DNA in intact herpes simplex virus type 1 virions. *J Virol*. 1999;73(4):3210-
679 8. Epub 1999/03/12. PubMed PMID: 10074174; PubMed Central PMCID: PMCPMC104084.
- 680 6. McElwee M, Vijayakrishnan S, Rixon F, Bhella D. Structure of the herpes simplex virus
681 portal-vertex. *PLoS Biol*. 2018;16(6):e2006191. Epub 2018/06/21. doi:
682 10.1371/journal.pbio.2006191. PubMed PMID: 29924793; PubMed Central PMCID:
683 PMCPMC6028144.
- 684 7. Liu YT, Jih J, Dai X, Bi GQ, Zhou ZH. Cryo-EM structures of herpes simplex virus type 1
685 portal vertex and packaged genome. *Nature*. 2019;570(7760):257-61. Epub 2019/05/31.
686 doi: 10.1038/s41586-019-1248-6. PubMed PMID: 31142842.
- 687 8. Liu F, Zhou ZH. Comparative virion structures of human herpesviruses. In: Arvin A,
688 Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. *Human
689 Herpesviruses: Biology, Therapy, and Immunoprophylaxis*. Cambridge2007.
- 690 9. Gibson W, Roizman B. Compartmentalization of spermine and spermidine in the
691 herpes simplex virion. *Proc Natl Acad Sci U S A*. 1971;68(11):2818-21. Epub 1971/11/01. doi:
692 10.1073/pnas.68.11.2818. PubMed PMID: 5288261; PubMed Central PMCID:
693 PMCPMC389533.
- 694 10. Oh J, Fraser NW. Temporal association of the herpes simplex virus genome with
695 histone proteins during a lytic infection. *J Virol*. 2008;82(7):3530-7. Epub 2007/12/28. doi:
696 10.1128/JVI.00586-07. PubMed PMID: 18160436; PubMed Central PMCID:
697 PMCPMC2268451.
- 698 11. Bauer DW, Huffman JB, Homa FL, Evilevitch A. Herpes virus genome, the pressure is
699 on. *J Am Chem Soc*. 2013;135(30):11216-21. Epub 2013/07/09. doi: 10.1021/ja404008r.
700 PubMed PMID: 23829592; PubMed Central PMCID: PMCPMC4019375.
- 701 12. Sodeik B, Ebersold MW, Helenius A. Microtubule-mediated transport of incoming
702 herpes simplex virus 1 capsids to the nucleus. *J Cell Biol*. 1997;136(5):1007-21. Epub
703 1997/03/10. doi: 10.1083/jcb.136.5.1007. PubMed PMID: 9060466; PubMed Central PMCID:
704 PMCPMC2132479.
- 705 13. Ojala PM, Sodeik B, Ebersold MW, Kutay U, Helenius A. Herpes simplex virus type 1
706 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore
707 complex in vitro. *Mol Cell Biol*. 2000;20(13):4922-31. Epub 2000/06/10. doi:
708 10.1128/MCB.20.13.4922-4931.2000. PubMed PMID: 10848617; PubMed Central PMCID:
709 PMCPMC85943.

710 14. Shahin V, Hafezi W, Oberleithner H, Ludwig Y, Windoffer B, Schillers H, et al. The
711 genome of HSV-1 translocates through the nuclear pore as a condensed rod-like structure. *J
712 Cell Sci.* 2006;119(Pt 1):23-30. Epub 2005/12/13. doi: 10.1242/jcs.02705. PubMed PMID:
713 16339172.

714 15. Kilcher S, Mercer J. DNA virus uncoating. *Virology.* 2015;479-480:578-90. Epub
715 2015/03/03. doi: 10.1016/j.virol.2015.01.024. PubMed PMID: 25728300.

716 16. Alandijany T, Roberts APE, Conn KL, Loney C, McFarlane S, Orr A, et al. Distinct
717 temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation
718 of intracellular host immunity to HSV-1 infection. *PLoS Pathog.* 2018;14(1):e1006769. doi:
719 10.1371/journal.ppat.1006769. PubMed PMID: 29309427; PubMed Central PMCID:
720 PMCPMC5757968.

721 17. Sekine E, Schmidt N, Gaboriau D, O'Hare P. Spatiotemporal dynamics of HSV genome
722 nuclear entry and compaction state transitions using bioorthogonal chemistry and super-
723 resolution microscopy. *PLoS Pathog.* 2017;13(11):e1006721. doi:
724 10.1371/journal.ppat.1006721. PubMed PMID: 29121649; PubMed Central PMCID:
725 PMCPMC5697887.

726 18. Hammond CM, Stromme CB, Huang H, Patel DJ, Groth A. Histone chaperone
727 networks shaping chromatin function. *Nat Rev Mol Cell Biol.* 2017;18(3):141-58. Epub
728 2017/01/06. doi: 10.1038/nrm.2016.159. PubMed PMID: 28053344; PubMed Central
729 PMCID: PMCPMC5319910.

730 19. Pardal AJ, Fernandes-Duarte F, Bowman AJ. The histone chaperoning pathway: from
731 ribosome to nucleosome. *Essays Biochem.* 2019;63(1):29-43. Epub 2019/04/25. doi:
732 10.1042/EBC20180055. PubMed PMID: 31015382; PubMed Central PMCID:
733 PMCPMC6484783.

734 20. Koyama M, Kurumizaka H. Structural diversity of the nucleosome. *J Biochem.*
735 2018;163(2):85-95. Epub 2017/11/22. doi: 10.1093/jb/mvx081. PubMed PMID: 29161414.

736 21. Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and
737 Centromeric Chromatin. *Int J Mol Sci.* 2021;22(13). Epub 2021/07/03. doi:
738 10.3390/ijms22136922. PubMed PMID: 34203193; PubMed Central PMCID:
739 PMCPMC8268097.

740 22. Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone
741 mRNAs: life without a poly(A) tail. *Nat Rev Genet.* 2008;9(11):843-54. Epub 2008/10/18. doi:
742 10.1038/nrg2438. PubMed PMID: 18927579; PubMed Central PMCID: PMCPMC2715827.

743 23. Kristie TM. Dynamic modulation of HSV chromatin drives initiation of infection and
744 provides targets for epigenetic therapies. *Virology.* 2015;479-480:555-61. Epub 2015/02/24.
745 doi: 10.1016/j.virol.2015.01.026. PubMed PMID: 25702087; PubMed Central PMCID:
746 PMCPMC4424070.

747 24. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, et al. Snapshots:
748 chromatin control of viral infection. *Virology.* 2013;435(1):141-56. Epub 2012/12/12. doi:
749 10.1016/j.virol.2012.09.023. PubMed PMID: 23217624; PubMed Central PMCID:
750 PMCPMC3531885.

751 25. Suzich JB, Cliffe AR. Strength in diversity: Understanding the pathways to herpes
752 simplex virus reactivation. *Virology.* 2018;522:81-91. Epub 2018/07/18. doi:
753 10.1016/j.virol.2018.07.011. PubMed PMID: 30014861; PubMed Central PMCID:
754 PMCPMC6092753.

755 26. Tsai K, Cullen BR. Epigenetic and epitranscriptomic regulation of viral replication. *Nat Rev Microbiol.* 2020;18(10):559-70. Epub 2020/06/14. doi: 10.1038/s41579-020-0382-3.
756 PubMed PMID: 32533130; PubMed Central PMCID: PMCPMC7291935.

757 27. Francois AK, Rohani A, Loftus M, Dochnal S, Hrit J, McFarlane S, et al. Single-genome
758 analysis reveals a heterogeneous association of the herpes simplex virus genome with
759 H3K27me2 and the reader PHF20L1 following infection of human fibroblasts. *mBio.*
760 2024;15(4):e0327823. Epub 2024/02/27. doi: 10.1128/mbio.03278-23. PubMed PMID:
761 38411116; PubMed Central PMCID: PMCPMC11005365.

762 28. Cabral JM, Oh HS, Knipe DM. ATRX promotes maintenance of herpes simplex virus
763 heterochromatin during chromatin stress. *eLife.* 2018;7. Epub 2018/11/23. doi:
764 10.7554/eLife.40228. PubMed PMID: 30465651; PubMed Central PMCID: PMCPMC6307862.

765 29. Dembowski JA, DeLuca NA. Temporal Viral Genome-Protein Interactions Define
766 Distinct Stages of Productive Herpesviral Infection. *MBio.* 2018;9(4). Epub 2018/07/19. doi:
767 10.1128/mBio.01182-18. PubMed PMID: 30018111; PubMed Central PMCID:
768 PMCPMC6050965.

769 30. Rodriguez MC, Dybas JM, Hughes J, Weitzman MD, Boutell C. The HSV-1 ubiquitin
770 ligase ICP0: Modifying the cellular proteome to promote infection. *Virus Res.*
771 2020;285:198015. Epub 2020/05/18. doi: 10.1016/j.virusres.2020.198015. PubMed PMID:
772 32416261; PubMed Central PMCID: PMCPMC7303953.

773 31. Boutell C, Everett RD. Regulation of alphaherpesvirus infections by the ICP0 family of
774 proteins. *J Gen Virol.* 2013;94(Pt 3):465-81. doi: 10.1099/vir.0.048900-0. PubMed PMID:
775 23239572.

776 32. Alandijany T. Host Intrinsic and Innate Intracellular Immunity During Herpes Simplex
777 Virus Type 1 (HSV-1) Infection. *Frontiers in Microbiology.* 2019;10(2611). doi:
778 10.3389/fmicb.2019.02611.

779 33. Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, et al. PML is
780 critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear
781 structure when modified by SUMO-1. *J Cell Biol.* 1999;147(2):221-34. PubMed PMID:
782 10525530; PubMed Central PMCID: PMCPMC2174231.

783 34. Muller S, Matunis MJ, Dejean A. Conjugation with the ubiquitin-related modifier
784 SUMO-1 regulates the partitioning of PML within the nucleus. *Embo J.* 1998;17(1):61-70.
785 PubMed PMID: 9427741.

786 35. Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, et al. The disruption
787 of ND10 during herpes simplex virus infection correlates with the Vmw110- and
788 proteasome-dependent loss of several PML isoforms. *J Virol.* 1998;72(8):6581-91. PubMed
789 PMID: 9658103.

790 36. Chelbi-Alix MK, de The H. Herpes virus induced proteasome-dependent degradation
791 of the nuclear bodies-associated PML and Sp100 proteins. *Oncogene.* 1999;18(4):935-41.
792 Epub 1999/02/19. doi: 10.1038/sj.onc.1202366. PubMed PMID: 10023669.

793 37. Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. PML contributes to a
794 cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated
795 by ICP0. *J Virol.* 2006;80(16):7995-8005. doi: 10.1128/JVI.00734-06. PubMed PMID:
796 16873256; PubMed Central PMCID: PMCPMC1563828.

797 38. McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, et al. The histone
798 chaperone HIRA promotes the induction of host innate immune defences in response to
799 HSV-1 infection. *PLoS Pathog.* 2019;15(3):e1007667. Epub 2019/03/23. doi:
800

801 10.1371/journal.ppat.1007667. PubMed PMID: 30901352; PubMed Central PMCID:
802 PMCPMC6472835.

803 39. Everett RD. Dynamic Response of IFI16 and Promyelocytic Leukemia Nuclear Body
804 Components to Herpes Simplex Virus 1 Infection. *J Virol.* 2015;90(1):167-79. doi:
805 10.1128/JVI.02249-15. PubMed PMID: 26468536; PubMed Central PMCID:
806 PMCPMC4702556.

807 40. Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, et al. The histone variant
808 H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. *J
809 Virol.* 2009;83(3):1416-21. Epub 2008/11/14. doi: 10.1128/JVI.01276-08. PubMed PMID:
810 19004946; PubMed Central PMCID: PMCPMC2620911.

811 41. Lukashchuk V, Everett RD. Regulation of ICPO-null mutant herpes simplex virus type
812 1 infection by ND10 components ATRX and hDaxx. *J Virol.* 2010;84(8):4026-40. doi:
813 10.1128/JVI.02597-09. PubMed PMID: 20147399; PubMed Central PMCID:
814 PMCPMC2849514.

815 42. Rai TS, Glass M, Cole JJ, Rather MI, Marsden M, Neilson M, et al. Histone chaperone
816 HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic
817 immunity. *Nucleic Acids Res.* 2017;45(20):11673-83. doi: 10.1093/nar/gkx771. PubMed
818 PMID: 28981850; PubMed Central PMCID: PMCPMC5691367.

819 43. Cohen C, Corpet A, Roubille S, Maroui MA, Poccardi N, Rousseau A, et al.
820 Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes
821 chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis. *PLoS Pathog.*
822 2018;14(9):e1007313. Epub 2018/09/21. doi: 10.1371/journal.ppat.1007313. PubMed
823 PMID: 30235352.

824 44. Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, et al. PML-NB-
825 dependent type I interferon memory results in a restricted form of HSV latency. *EMBO Rep.*
826 2021;22(9):e52547. Epub 2021/07/02. doi: 10.15252/embr.202152547. PubMed PMID:
827 34197022; PubMed Central PMCID: PMCPMC8419685.

828 45. Cliffe AR, Knipe DM. Herpes simplex virus ICPO promotes both histone removal and
829 acetylation on viral DNA during lytic infection. *J Virol.* 2008;82(24):12030-8. Epub
830 2008/10/10. doi: 10.1128/JVI.01575-08. PubMed PMID: 18842720; PubMed Central PMCID:
831 PMCPMC2593313.

832 46. Herrera FJ, Triezenberg SJ. VP16-dependent association of chromatin-modifying
833 coactivators and underrepresentation of histones at immediate-early gene promoters
834 during herpes simplex virus infection. *J Virol.* 2004;78(18):9689-96. Epub 2004/08/28. doi:
835 10.1128/JVI.78.18.9689-9696.2004. PubMed PMID: 15331701; PubMed Central PMCID:
836 PMCPMC515004.

837 47. Kutluay SB, Triezenberg SJ. Regulation of histone deposition on the herpes simplex
838 virus type 1 genome during lytic infection. *J Virol.* 2009;83(11):5835-45. Epub 2009/03/27.
839 doi: 10.1128/JVI.00219-09. PubMed PMID: 19321615; PubMed Central PMCID:
840 PMCPMC2681947.

841 48. Khorasanizadeh S. The nucleosome: from genomic organization to genomic
842 regulation. *Cell.* 2004;116(2):259-72. Epub 2004/01/28. doi: 10.1016/s0092-8674(04)00044-
843 3. PubMed PMID: 14744436.

844 49. Delbarre E, Ivanauskienė K, Kuntziger T, Collas P. DAXX-dependent supply of soluble
845 (H3.3-H4) dimers to PML bodies pending deposition into chromatin. *Genome Res.*
846 2013;23(3):440-51. doi: 10.1101/gr.142703.112. PubMed PMID: 23222847; PubMed Central
847 PMCID: PMCPMC3589533.

848 50. Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3
849 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-
850 NBs important for pericentromeric heterochromatin organization. *Cell Cycle*.
851 2014;13(2):249-67. Epub 2013/11/10. doi: 10.4161/cc.26988. PubMed PMID: 24200965;
852 PubMed Central PMCID: PMCPMC3906242.

853 51. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein
854 DAXX is a novel histone chaperone involved in the replication-independent deposition of
855 H3.3. *Genes Dev*. 2010;24(12):1253-65. doi: 10.1101/gad.566910. PubMed PMID:
856 20504901; PubMed Central PMCID: PMCPMC2885661.

857 52. Ishov AM, Vladimirova OV, Maul GG. Heterochromatin and ND10 are cell-cycle
858 regulated and phosphorylation-dependent alternate nuclear sites of the transcription
859 repressor Daxx and SWI/SNF protein ATRX. *J Cell Sci*. 2004;117(Pt 17):3807-20. Epub
860 2004/07/15. doi: 10.1242/jcs.01230. PubMed PMID: 15252119.

861 53. Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, et al. The ATRX syndrome
862 protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic
863 leukemia nuclear bodies. *Proc Natl Acad Sci U S A*. 2003;100(19):10635-40. Epub
864 2003/09/04. doi: 10.1073/pnas.1937626100. PubMed PMID: 12953102; PubMed Central
865 PMCID: PMCPMC196856.

866 54. Elsasser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. DAXX envelops a histone
867 H3.3-H4 dimer for H3.3-specific recognition. *Nature*. 2012;491(7425):560-5. Epub
868 2012/10/19. doi: 10.1038/nature11608. PubMed PMID: 23075851; PubMed Central PMCID:
869 PMCPMC4056191.

870 55. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE.
871 Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell
872 line. *J Cell Biol*. 1988;106(3):761-71. Epub 1988/03/01. doi: 10.1083/jcb.106.3.761. PubMed
873 PMID: 2450098; PubMed Central PMCID: PMCPMC2115116.

874 56. Everett RD, Parada C, Gripon P, Sirma H, Orr A. Replication of ICP0-null mutant
875 herpes simplex virus type 1 is restricted by both PML and Sp100. *J Virol*. 2008;82(6):2661-
876 72. doi: 10.1128/JVI.02308-07. PubMed PMID: 18160441; PubMed Central PMCID:
877 PMCPMC2258993.

878 57. Tang J, Wu S, Liu H, Stratt R, Barak OG, Shiekhattar R, et al. A novel transcription
879 regulatory complex containing death domain-associated protein and the ATR-X syndrome
880 protein. *J Biol Chem*. 2004;279(19):20369-77. Epub 2004/03/03. doi:
881 10.1074/jbc.M401321200. PubMed PMID: 14990586.

882 58. Newcomb WW, Booy FP, Brown JC. Uncoating the herpes simplex virus genome. *J
883 Mol Biol*. 2007;370(4):633-42. Epub 2007/06/02. doi: 10.1016/j.jmb.2007.05.023. PubMed
884 PMID: 17540405; PubMed Central PMCID: PMCPMC1975772.

885 59. Plomp M, Rice MK, Wagner EK, McPherson A, Malkin AJ. Rapid visualization at high
886 resolution of pathogens by atomic force microscopy: structural studies of herpes simplex
887 virus-1. *Am J Pathol*. 2002;160(6):1959-66. Epub 2002/06/12. doi: 10.1016/S0002-
888 9440(10)61145-5. PubMed PMID: 12057900; PubMed Central PMCID: PMCPMC1850836.

889 60. Liashkovich I, Hafezi W, Kuhn JE, Oberleithner H, Kramer A, Shahin V. Exceptional
890 mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. *J
891 Cell Sci*. 2008;121(Pt 14):2287-92. Epub 2008/06/19. doi: 10.1242/jcs.032284. PubMed
892 PMID: 18559888.

893 61. Pliss A, Peng X, Liu L, Kuzmin A, Wang Y, Qu J, et al. Single Cell Assay for Molecular
894 Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by

895 Two-photon Fluorescence Lifetime Imaging. *Theranostics*. 2015;5(9):919-30. Epub
896 2015/07/15. doi: 10.7150/thno.11863. PubMed PMID: 26155309; PubMed Central PMCID:
897 PMCPMC4493531.

898 62. Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, Berger SL. During lytic infection
899 herpes simplex virus type 1 is associated with histones bearing modifications that correlate
900 with active transcription. *J Virol*. 2004;78(18):10178-86. Epub 2004/08/28. doi:
901 10.1128/JVI.78.18.10178-10186.2004. PubMed PMID: 15331750; PubMed Central PMCID:
902 PMCPMC514973.

903 63. Mouttet ME, Guetard D, Bechet JM. Random cleavage of intranuclear herpes simplex
904 virus DNA by micrococcal nuclease. *FEBS Lett*. 1979;100(1):107-9. Epub 1979/04/01. doi:
905 10.1016/0014-5793(79)81141-2. PubMed PMID: 220083.

906 64. Leinbach SS, Summers WC. The structure of herpes simplex virus type 1 DNA as
907 probed by micrococcal nuclease digestion. *J Gen Virol*. 1980;51(Pt 1):45-59. Epub
908 1980/11/01. doi: 10.1099/0022-1317-51-1-45. PubMed PMID: 6257837.

909 65. Lentine AF, Bachenheimer SL. Intracellular organization of herpes simplex virus type
910 1 DNA assayed by staphylococcal nuclease sensitivity. *Virus Res*. 1990;16(3):275-92. Epub
911 1990/07/01. doi: 10.1016/0168-1702(90)90053-e. PubMed PMID: 2168112.

912 66. Lacasse JJ, Schang LM. During lytic infections, herpes simplex virus type 1 DNA is in
913 complexes with the properties of unstable nucleosomes. *J Virol*. 2010;84(4):1920-33. Epub
914 2009/12/17. doi: 10.1128/JVI.01934-09. PubMed PMID: 20007274; PubMed Central PMCID:
915 PMCPMC2812404.

916 67. Dremel SE, DeLuca NA. Herpes simplex viral nucleoprotein creates a competitive
917 transcriptional environment facilitating robust viral transcription and host shut off. *eLife*.
918 2019;8. Epub 2019/10/23. doi: 10.7554/eLife.51109. PubMed PMID: 31638576; PubMed
919 Central PMCID: PMCPMC6805162.

920 68. Cabral JM, Cushman CH, Sodroski CN, Knipe DM. ATRX limits the accessibility of
921 histone H3-occupied HSV genomes during lytic infection. *PLoS Pathog*.
922 2021;17(4):e1009567. Epub 2021/04/29. doi: 10.1371/journal.ppat.1009567. PubMed
923 PMID: 33909709; PubMed Central PMCID: PMCPMC8109836.

924 69. Jeembaeva M, Castelnovo M, Larsson F, Evilevitch A. Osmotic pressure: resisting or
925 promoting DNA ejection from phage? *J Mol Biol*. 2008;381(2):310-23. Epub 2008/07/08. doi:
926 10.1016/j.jmb.2008.05.081. PubMed PMID: 18602115.

927 70. Everett RD, Boutell C, Orr A. Phenotype of a herpes simplex virus type 1 mutant that
928 fails to express immediate-early regulatory protein ICP0. *J Virol*. 2004;78(4):1763-74. Epub
929 2004/01/30. doi: 10.1128/jvi.78.4.1763-1774.2004. PubMed PMID: 14747541; PubMed
930 Central PMCID: PMCPMC369471.

931 71. Drayman N, Karin O, Mayo A, Danon T, Shapira L, Rafael D, et al. Dynamic Proteomics
932 of Herpes Simplex Virus Infection. *MBio*. 2017;8(6). Epub 2017/11/09. doi:
933 10.1128/mBio.01612-17. PubMed PMID: 29114028; PubMed Central PMCID:
934 PMCPMC5676043.

935 72. Drayman N, Patel P, Vistain L, Tay S. HSV-1 single-cell analysis reveals the activation
936 of anti-viral and developmental programs in distinct sub-populations. *eLife*. 2019;8. Epub
937 2019/05/16. doi: 10.7554/eLife.46339. PubMed PMID: 31090537; PubMed Central PMCID:
938 PMCPMC6570482.

939 73. Dembowski JA, DeLuca NA. Selective recruitment of nuclear factors to productively
940 replicating herpes simplex virus genomes. *PLoS Pathog*. 2015;11(5):e1004939. Epub

941 2015/05/29. doi: 10.1371/journal.ppat.1004939. PubMed PMID: 26018390; PubMed
942 Central PMCID: PMCPMC4446364.

943 74. Dembowski JA, Dremel SE, DeLuca NA. Replication-Coupled Recruitment of Viral and
944 Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and
945 Expression of Viral Genomes. *PLoS Pathog.* 2017;13(1):e1006166. Epub 2017/01/18. doi:
946 10.1371/journal.ppat.1006166. PubMed PMID: 28095497; PubMed Central PMCID:
947 PMCPMC5271410.

948 75. Kim ET, Dybas JM, Kulej K, Reyes ED, Price AM, Akhtar LN, et al. Comparative
949 proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that
950 suppresses viral transcription. *Nat Microbiol.* 2021;6(2):234-45. Epub 2021/01/13. doi:
951 10.1038/s41564-020-00826-3. PubMed PMID: 33432153; PubMed Central PMCID:
952 PMCPMC7856100.

953 76. Kurihara M, Kato K, Sanbo C, Shigenobu S, Ohkawa Y, Fuchigami T, et al. Genomic
954 Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A
955 Exclusion. *Mol Cell.* 2020;78(3):493-505 e8. Epub 2020/05/01. doi:
956 10.1016/j.molcel.2020.04.004. PubMed PMID: 32353257.

957 77. Eskiw CH, Dellaire G, Bazett-Jones DP. Chromatin contributes to structural integrity
958 of promyelocytic leukemia bodies through a SUMO-1-independent mechanism. *J Biol Chem.*
959 2004;279(10):9577-85. Epub 2003/12/16. doi: 10.1074/jbc.M312580200. PubMed PMID:
960 14672938.

961 78. Schweininger J, Scherer M, Rothmund F, Schilling EM, Worz S, Stamminger T, et al.
962 Cytomegalovirus immediate-early 1 proteins form a structurally distinct protein class with
963 adaptations determining cross-species barriers. *PLoS Pathog.* 2021;17(8):e1009863. Epub
964 2021/08/10. doi: 10.1371/journal.ppat.1009863. PubMed PMID: 34370791; PubMed
965 Central PMCID: PMCPMC8376021.

966 79. Jan Fada B, Reward E, Gu H. The Role of ND10 Nuclear Bodies in Herpesvirus
967 Infection: A Frenemy for the Virus? *Viruses.* 2021;13(2). Epub 2021/02/07. doi:
968 10.3390/v13020239. PubMed PMID: 33546431; PubMed Central PMCID: PMCPMC7913651.

969 80. Raja P, Lee JS, Pan D, Pesola JM, Coen DM, Knipe DM. A Herpesviral Lytic Protein
970 Regulates the Structure of Latent Viral Chromatin. *mBio.* 2016;7(3). Epub 2016/05/18. doi:
971 10.1128/mBio.00633-16. PubMed PMID: 27190217; PubMed Central PMCID:
972 PMCPMC4895110.

973 81. Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, et al. HSV-1 genome
974 subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate
975 LAT locus transcription during latency in neurons. *PLoS Pathog.* 2012;8(8):e1002852. Epub
976 2012/08/23. doi: 10.1371/journal.ppat.1002852. PubMed PMID: 22912575; PubMed
977 Central PMCID: PMCPMC3415458.

978 82. Maroui MA, Calle A, Cohen C, Streichenberger N, Texier P, Takissian J, et al. Latency
979 Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the
980 Nuclear Environment. *PLoS Pathog.* 2016;12(9):e1005834. Epub 2016/09/13. doi:
981 10.1371/journal.ppat.1005834. PubMed PMID: 27618691; PubMed Central PMCID:
982 PMCPMC5019400.

983 83. Lacasse JJ, Schang LM. Herpes simplex virus 1 DNA is in unstable nucleosomes
984 throughout the lytic infection cycle, and the instability of the nucleosomes is independent of
985 DNA replication. *J Virol.* 2012;86(20):11287-300. Epub 2012/08/10. doi: 10.1128/JVI.01468-
986 12. PubMed PMID: 22875975; PubMed Central PMCID: PMCPMC3457126.

987 84. Hu M, Depledge DP, Flores Cortes E, Breuer J, Schang LM. Chromatin dynamics and
988 the transcriptional competence of HSV-1 genomes during lytic infections. *PLoS Pathog.*
989 2019;15(11):e1008076. Epub 2019/11/15. doi: 10.1371/journal.ppat.1008076. PubMed
990 PMID: 31725813; PubMed Central PMCID: PMCPMC6855408.

991 85. Voon HP, Wong LH. New players in heterochromatin silencing: histone variant H3.3
992 and the ATRX/DAXX chaperone. *Nucleic Acids Res.* 2016;44(4):1496-501. Epub 2016/01/17.
993 doi: 10.1093/nar/gkw012. PubMed PMID: 26773061; PubMed Central PMCID:
994 PMCPMC4770241.

995 86. Merkl PE, Orzalli MH, Knipe DM. Mechanisms of Host IFI16, PML, and Daxx Protein
996 Restriction of Herpes Simplex Virus 1 Replication. *J Virol.* 2018;92(10). Epub 2018/03/02.
997 doi: 10.1128/JVI.00057-18. PubMed PMID: 29491153; PubMed Central PMCID:
998 PMCPMC5923075.

999 87. Draizen EJ, Shaytan AK, Marino-Ramirez L, Talbert PB, Landsman D, Panchenko AR.
1000 HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones
1001 and their variants. *Database (Oxford)*. 2016;2016. Epub 2016/03/19. doi:
1002 10.1093/database/baw014. PubMed PMID: 26989147; PubMed Central PMCID:
1003 PMCPMC4795928.

1004 88. Schreiner S, Wodrich H. Virion factors that target Daxx to overcome intrinsic
1005 immunity. *J Virol.* 2013;87(19):10412-22. Epub 2013/07/19. doi: 10.1128/JVI.00425-13.
1006 PubMed PMID: 23864634; PubMed Central PMCID: PMCPMC3807389.

1007 89. Conn KL, Wasson P, McFarlane S, Tong L, Brown JR, Grant KG, et al. Novel Role for
1008 Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by
1009 the Cellular Intrinsic Antiviral Immune Response. *J Virol.* 2016;90(9):4807-26. Epub
1010 2016/03/05. doi: 10.1128/JVI.03055-15. PubMed PMID: 26937035; PubMed Central PMCID:
1011 PMCPMC4836348.

1012 90. Busnadio I, Kane M, Rihn SJ, Preugschas HF, Hughes J, Blanco-Melo D, et al. Host
1013 and viral determinants of Mx2 antiretroviral activity. *J Virol.* 2014;88(14):7738-52. Epub
1014 2014/04/25. doi: 10.1128/JVI.00214-14. PubMed PMID: 24760893; PubMed Central PMCID:
1015 PMCPMC4097781.

1016 91. Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, et al. PML isoforms I and II
1017 participate in PML-dependent restriction of HSV-1 replication. *J Cell Sci.* 2011;124(Pt 2):280-
1018 91. Epub 2010/12/22. doi: 10.1242/jcs.075390. PubMed PMID: 21172801; PubMed Central
1019 PMCID: PMCPMC3010193.

1020 92. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for
1021 CRISPR screening. *Nat Methods.* 2014;11(8):783-4. Epub 2014/07/31. doi:
1022 10.1038/nmeth.3047. PubMed PMID: 25075903; PubMed Central PMCID:
1023 PMCPMC4486245.

1024 93. Stow ND, Stow EC. Isolation and characterization of a herpes simplex virus type 1
1025 mutant containing a deletion within the gene encoding the immediate early polypeptide
1026 Vmw110. *J Gen Virol.* 1986;67 (Pt 12):2571-85. Epub 1986/12/01. doi: 10.1099/0022-1317-
1027 67-12-2571. PubMed PMID: 3025339.

1028 94. Everett RD, Sourvinos G, Orr A. Recruitment of herpes simplex virus type 1
1029 transcriptional regulatory protein ICP4 into foci juxtaposed to ND10 in live, infected cells. *J*
1030 *Virol.* 2003;77(6):3680-9. Epub 2003/03/01. doi: 10.1128/jvi.77.6.3680-3689.2003. PubMed
1031 PMID: 12610143; PubMed Central PMCID: PMCPMC149519.

1032 95. McClelland DA, Aitken JD, Bhella D, McNab D, Mitchell J, Kelly SM, et al. pH
1033 reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. *J Virol.*

1034 2002;76(15):7407-17. Epub 2002/07/05. doi: 10.1128/jvi.76.15.7407-7417.2002. PubMed
1035 PMID: 12097553; PubMed Central PMCID: PMCPMC136365.
1036 96. Everett RD, Cross A, Orr A. A truncated form of herpes simplex virus type 1
1037 immediate-early protein Vmw110 is expressed in a cell type dependent manner. *Virology*.
1038 1993;197(2):751-6. Epub 1993/12/01. doi: 10.1006/viro.1993.1651. PubMed PMID:
1039 7504367.
1040 97. Showalter SD, Zweig M, Hampar B. Monoclonal antibodies to herpes simplex virus
1041 type 1 proteins, including the immediate-early protein ICP 4. *Infect Immun.* 1981;34(3):684-
1042 92. Epub 1981/12/01. doi: 10.1128/iai.34.3.684-692.1981. PubMed PMID: 6277788;
1043 PubMed Central PMCID: PMCPMC350925.
1044
1045
1046

1047 **Figure legends**

1048 **Fig 1. Canonical histones do not stoichiometrically localize to nuclear infecting HSV-1**
1049 **genomes.** (A) HFt cells were infected with an HSV-1 ICP0-null mutant (Δ ICP0; MOI of 3
1050 PFU/cell). Chromatin extracts were prepared at 90 mins post-infection (mpi; post-addition of
1051 virus) and subjected to ChIP using ChIP-grade anti-histone H2A or histone H3 antibodies and
1052 species-matched IgG (negative control). Bound viral DNA (vDNA) was quantified by qPCR
1053 using probes specific to HSV-1 US3 or UL36. Values were normalized to input loading
1054 controls and presented as percentage (%) input bound. Means and SEM shown. (B to G) HFt
1055 cells were mock-treated or infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were
1056 fixed at 90 mpi and stained for PML, Daxx, HIRA, histones H2A, H2B, H2A/H2B
1057 heterodimers (dimer), H3, or H4 by indirect immunofluorescence. vDNA was detected by
1058 click chemistry [16]. Nuclei were stained with DAPI. (B) Colocalization frequency of
1059 cellular proteins at PML-NBs in mock-treated HFt cells. $N \geq 60$ nuclei per staining condition.
1060 Confocal microscopy images shown in Fig. S1. Violin plots: median weighted (w.)
1061 colocalization coefficient (coeff.), solid black line; 25th to 75th percentile range, dotted black
1062 lines; coincidence threshold (0.2), dotted grey line; high confidence threshold (0.7), solid
1063 grey line. Threshold values determined from scatter plots shown in Fig. 1D (Daxx positive
1064 control/HIRA negative control) and Fig. 2B (PML positive control/eYFPnls negative control)
1065 [16, 38]. Mann-Whitney *U*-test, *P*-value shown. (C) Quantitation of the number of genome
1066 foci detected in the nucleus of HSV-1^{EdC} infected cells at 90 mpi. $N = 883$ nuclei derived from
1067 18 independent experiments. (D/E) Scatter plots showing paired w. colocalization coeff.
1068 values of proteins of interest (indicated on *x*- and *y*-axis) at vDNA. Percentage (%) of
1069 genomes \geq coincident threshold ($x/y \geq 0.2$) per sample condition shown; number (n) of
1070 genome foci analysed per sample population shown. (F) Colocalization frequency of cellular
1071 proteins of interest at vDNA in HSV-1 infected HFt cells at 90 mpi (as in D, E). Mann-
1072 Whitney *U*-test, *P*-value shown. (G) Merged images of Daxx, HIRA, histones H2A, H2B,
1073 H3, or H4 (Channel 1 (Ch.1), green; as indicated), and PML (cyan) colocalization at vDNA
1074 (red). Cut mask (yellow) highlights regions of colocalization between cellular proteins of
1075 interest and vDNA or PML (as indicated); w. colocalization coeff. shown. Dashed boxes
1076 show magnified regions of interest. White arrows highlight regions of colocalization at
1077 vDNA. Individual panels shown in Fig. S4. (A to G) Data derived from a minimum of three
1078 independent experiments. Raw values presented in S1 data.
1079

1080 **Fig 2. Fluorescent histones do not stoichiometrically localize to nuclear infecting HSV-1**
1081 **genomes.** (A to C) HFt cells were stably transduced with doxycycline inducible lentiviral
1082 vectors encoding C-terminally tagged fluorescent (mEmerald, mEm) histones or eYFPnls
1083 (negative control) as indicated. Cells were induced to express proteins of interest for 6 h prior
1084 to infection with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were fixed at 90 mpi and stained
1085 for PML by indirect immunofluorescence and vDNA by click chemistry. Nuclei were stained
1086 with DAPI. (A) Merged confocal microscopy images of mEm-tagged histones or eYFPnls
1087 (green) and endogenous PML (cyan) colocalization at vDNA (red). Cut mask (yellow)
1088 highlights regions of colocalization between cellular proteins of interest and vDNA or PML;

1089 weighted (w.) colocalization coefficient (coeff.) shown. Dashed boxes show magnified
1090 regions of interest. White arrows highlight regions of colocalization at vDNA. Individual
1091 panels shown in Fig. S6. (B) Scatter plots showing paired w. colocalization coeff. values of
1092 proteins of interest (indicated on x- and y-axis) at vDNA. Percentage (%) of genomes \geq
1093 coincident threshold ($x/y \geq 0.2$) per sample condition shown; number (n) of genome foci
1094 analysed per sample condition shown. (C) Colocalization frequency of proteins of interest at
1095 vDNA (as in B). Violin plots: median w. colocalization coeff., solid black line; 25th to 75th
1096 percentile range, dotted black lines; coincidence threshold (0.2), dotted grey line; high
1097 confidence threshold (0.7), solid grey line. Mann-Whitney *U*-test, *P*-values shown. (D) HFT
1098 cells were infected with an HSV-1 ICP0-null mutant (Δ ICP0; MOI of 3 PFU/cell). Chromatin
1099 extracts were prepared at 90 mpi and subjected to ChIP using anti-GFP antibody or species-
1100 matched IgG (negative control). Bound viral DNA (vDNA) was quantified by qPCR using
1101 probes specific to HSV-1 US3 or UL36. Values were normalized to input loading controls
1102 and presented as percentage (%) input bound. Means and SEM shown. (A to D) Data derived
1103 from a minimum of three independent experiments. Raw values presented in S1 data.
1104

1105 **Fig 3. Histone H3 is enriched at vDNA independently of its sub-cellular localization at**
1106 **PML-NBs.** (A to E) HFT, HEL, RPE, or HaCaT cells were mock-treated or infected with WT
1107 HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were fixed at 90 mpi and stained for proteins of interest
1108 (as indicated) by indirect immunofluorescence and vDNA by click chemistry. Nuclei were
1109 stained with DAPI. (A) Confocal microscopy images of mock-treated HFT and HaCaT cells
1110 showing sub-nuclear localization of histone H3, Daxx, or ATRX (green) and PML (red). Cut
1111 mask (yellow) highlights regions of colocalization between cellular proteins of interest and
1112 PML; weighted (w.) colocalization coefficient (coeff.) shown. (B) Colocalization frequency
1113 of histone H3 at PML-NBs in mock-treated HFT, HEL, RPE, and HaCaT cells. Violin plots:
1114 median w. colocalization coeff., solid black line; 25th to 75th percentile range, dotted black
1115 lines; coincidence threshold (0.2), dotted grey line; high confidence threshold (0.7), solid
1116 grey line. Mann-Whitney *U*-test, *P*-value shown. N>240 nuclei per sample condition. (C)
1117 Colocalization frequency of proteins of interest at PML-NBs in mock-treated HaCaT cells.
1118 N \geq 250 nuclei per sample condition. (D) Scatter plots showing paired w. colocalization coeff.
1119 values of proteins of interest (indicated on x- and y-axis) at vDNA within infected HaCaT
1120 cells. Percentage (%) of genomes \geq coincident threshold ($x/y \geq 0.2$) per sample condition
1121 shown; number (n) of genome foci analysed per sample condition shown. (E) Distribution of
1122 PML, histones H2A, H2B, H3, and H4 colocalization frequency at vDNA (as in D). Mann-
1123 Whitney *U*-test (top), one-way ANOVA Kruskal-Wallis test (bottom), *P*-values shown. (A to
1124 E) Data derived from a minimum of three independent experiments. Raw values presented in
1125 S1 data.
1126

1127 **Fig 4. Cellular histones show alternate patterns of spatial proximity to nuclear infecting**
1128 **HSV-1 genomes.** HFT cells were infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Samples
1129 were fixed at 90 mpi and stained for proteins of interest (histones H2A, H2B, H3, or H4, and
1130 PML) by indirect immunofluorescence and vDNA by click chemistry. (A) Left; 3D render

1131 projections showing the spatial proximity and distance (white lines, μm) of endogenous
1132 cellular histones (green, as indicated) and PML (cyan) within a $2 \mu\text{m}^3$ region centred on
1133 vDNA (red). Right; 360° rotation of region of interest (dashed white boxes, left). Scale bars =
1134 $0.2 \mu\text{m}$. (B/C) Quantitation of histone proximity (centre-to-centre distance, μm) to PML-NBs
1135 (B) or vDNA (C). Violin plots: median, solid black line; 25th to 75th percentile range, dotted
1136 lines. Scatter plots: black line, mean; whisker, SD. $N > 100$ vDNA foci per sample condition
1137 (all points). One-way ANOVA Kruskal-Wallis test, P -values shown. (D) Quantitation of
1138 PML-NB volume (μm^3) in the presence or absence of vDNA. $N \geq 150$ PML-NBs per
1139 condition. Mann-Whitney U -test, P -value shown. (E) HFt or HFt SPOT.PML.I expressing
1140 cells were infected with HSV-1 (MOI of 3 PFU/cell). Chromatin extracts were prepared at 90
1141 mpi and subjected to ChIP using anti-histone H3, SPOT-tag, or species-matched IgG
1142 (negative control). Bound vDNA was quantified by qPCR using probes to HSV-1 US3 or
1143 UL36. Values were normalized to input loading controls and presented as percentage (%)
1144 input bound. Means and SEM shown. (A to E) Data derived from a minimum of three
1145 independent experiments. Raw values presented in S1 data.
1146

1147 **Fig 5. PML-NBs do not sterically inhibit histone H2A or H2B enrichment to nuclear**
1148 **infecting HSV-1 genomes.** HFt cells were stably transduced with lentiviruses expressing
1149 CRISPR/CAS9 and non-targeting control (NTC) or PML-targeting (PML KO) gRNAs. (A)
1150 Quantitation of PML knockout in NTC and PML KO HFt cells by indirect
1151 immunofluorescence staining. $N=17$ fields of view per sample condition; means and SD
1152 shown. (B) Western blot of NTC or PML KO HFt WCLs. Membranes were probed for PML,
1153 Sp100, Daxx, Histone H3, and Actin (loading control). Molecular mass markers indicated.
1154 (C) NTC or PML KO HFt cells were infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells
1155 were fixed at 90 mpi and stained for proteins of interest (Daxx, Histones H2A, H2B, H3, or
1156 H4, and PML) by indirect immunofluorescence and vDNA by click chemistry. Scatter plots
1157 showing paired weighted (w.) colocalization coefficient (coeff.) values of proteins of interest
1158 (indicated on x- and y-axis) at vDNA. Percentage (%) of genomes \geq coincident threshold (x/y
1159 ≥ 0.2) per sample condition shown; number (n) of genome foci analysed per sample condition
1160 shown. Confocal images shown in Fig S7. (D) Distribution in protein colocalization
1161 frequency at vDNA (as in C). Violin plots: median, solid black line; 25th to 75th percentile
1162 range, dotted lines. Mann-Whitney U -test, P -values shown. (E) Left; 3D rendered projections
1163 of super-resolution images showing spatial proximity and distance (white lines, μm) of
1164 histone H3 (green) and PML (cyan) within a $2 \mu\text{m}^3$ region centred on vDNA (red). Right;
1165 360° rotation of region of interest (dashed white boxes, left). Scale bars = $0.2 \mu\text{m}$. (F)
1166 Quantitation of histone H3 proximity (centre-to-centre distance, μm). $N \geq 90$ vDNA foci per
1167 sample condition (all points). Violin plots (as described in D). Scatter plots: black lines,
1168 mean; whisker, SD. Mann-Whitney U -test, P -values shown. (A, C to F) Data derived from a
1169 minimum of three independent experiments. Raw values presented in S1 data.
1170

1171 **Fig 6. Daxx promotes histone H3 deposition at HSV-1 DNA to limit viral genome**
1172 **expansion.** HFT cells were stably transduced with lentiviruses expressing CRISPR/CAS9 and
1173 non-targeting control (NTC) or Daxx-targeting (Daxx KO) gRNAs. (A) Quantitation of Daxx
1174 knockout in NTC or Daxx KO HFT cells by indirect immunofluorescence staining. N≥60
1175 fields of view per sample condition; means and SD shown. Confocal images shown in Fig S8.
1176 (B) Western blot of NTC or Daxx KO HFT WCLs. Membranes were probed for PML, Sp100,
1177 Daxx, Histone H3, and Actin (loading control). Molecular mass markers indicated. (C)
1178 Confocal microscopy images of NTC or Daxx KO HFT cells stained for histone H3 (green)
1179 and Daxx (cyan). Nuclei were stained with DAPI (blue). Cut mask (yellow) highlights
1180 regions of colocalization between cellular proteins of interest; weighted (w.) colocalization
1181 coefficient (coeff.) shown. (D) Distribution in histone H3 colocalization frequency at PML-
1182 NBs in NTC and Daxx KO HFT cells. Violin plots: median, solid black line; 25th to 75th
1183 percentile range, dotted lines. N≥175 nuclei per sample condition. Mann-Whitney *U*-test, *P*-
1184 value shown. (E) NTC or Daxx KO HFT cells were infected with WT HSV-1^{EdC} (MOI of 1
1185 PFU/cell). Cells were fixed at 90 mpi and stained for proteins of interest (PML, ATRX,
1186 histones H3 or H4, and Daxx) by indirect immunofluorescence and vDNA by click
1187 chemistry. Scatter plots showing paired w. colocalization coeff. values of proteins of interest
1188 (indicated on x- and y-axis) at vDNA. Percentage (%) of genomes ≥ coincident threshold (x/y
1189 ≥ 0.2) per sample condition shown; number (n) of genome foci analysed per sample condition
1190 shown. Confocal images shown in Fig. S9. (F) Distribution in protein colocalization
1191 frequency at vDNA (as in E). Violin plots (as described in D); Mann-Whitney *U*-test, *P*-
1192 values shown. (G) Left; 3D rendered projections of super-resolution images showing spatial
1193 proximity and distance (white lines, μm) of histone H3 (green) and PML (cyan) within a 2
1194 μm³ region centred on vDNA (red) within infected NTC or Daxx KO HFT cells. Right; 360°
1195 rotation of region of interest (dashed white boxes, left). Scale bars = 0.2 μm. (H) Quantitation
1196 of histone H3 proximity (centre-to-centre distance, μm) to vDNA. Violin plots (as described
1197 in D). N≥80 vDNA foci per sample condition (all points); Mann-Whitney *U*-test, *P*-values
1198 shown. (I) Quantitation of genome volume (μm³) in NTC, PML KO, or Daxx KO HFT cells.
1199 N≥45 vDNA foci per sample condition; One-way ANOVA Kruskal-Wallis test, *P*-values
1200 shown. (A, C to I) Data derived from a minimum of three independent experiments. Raw
1201 values presented in S1 data.

1202
1203 **Fig 7. HSV-1 DNA retains a significant degree of native compaction post-capsid release.**
1204 (A) 3D rendered projections of super-resolution images of HSV-1^{EdC} genomes released on
1205 glass coverslips *in vitro* or within infected HFT cells (MOI 1 PFU/cell) at 90 mpi (left and
1206 right-hand panels, respectively). vDNA was detected by click chemistry (green). Nuclei were
1207 stained with DAPI (blue). Scale bars = 2 μm. White arrows show cytosolic and nuclear
1208 vDNA foci. (B) Quantitation of vDNA foci dimensions (μm³) (as in A). Boxes, 25th to 75th
1209 percentile range; whisker, 5th to 95th percentile range; black line, median. Number (n) of
1210 genome foci analyzed per sample population shown; Mann-Whitney *U*-test, *P*-value shown.

1211 Data derived from a minimum of three independent experiments. Raw values presented in S1
1212 data.

1213

1214 **Fig 8. ICP0 disperses Daxx and variant histone H3.3 from vDNA to stimulate HSV-1**
1215 **genome decompaction and progression of IE gene transcription.** (A/B) HFT cells were
1216 infected with WT or ICP0 null-mutant (Δ ICP0) HSV-1^{EdC/A} (MOI of 0.5 PFU/cell) for the
1217 indicated times (minutes post-infection; mpi). Cells were fixed and stained for Daxx,
1218 Histones H3, and PML by indirect immunofluorescence. vDNA was detected by click
1219 chemistry. (A) Scatter plots showing paired weighted (w.) colocalization coefficient (coeff.)
1220 values of proteins of interest (indicated on x- and y-axis) at vDNA at either 90 or 240 mpi
1221 (blue and red dots, respectively). Percentage (%) of genomes \geq coincident threshold ($x/y \geq$
1222 0.2) per sample condition shown; number (n) of genome foci analysed per sample condition
1223 shown. (B) Distribution in protein colocalization frequency at vDNA (as in A). Violin plots:
1224 median w. colocalization coeff., solid black line; 25th to 75th percentile range, dotted black
1225 lines; coincidence threshold (0.2), dotted grey line; high confidence threshold (0.7), solid
1226 grey line. One-way ANOVA Kruskal-Wallis test, *P*-values shown. (C/D) Quantitation of
1227 HSV-1^{EdC/A} and Δ ICP0^{EdC/A} DNA foci dimensions (μm^3) over time (as indicated) in the
1228 presence of 2 μM supplemental EdC within the overlay medium; $N \geq 270$ genome foci per
1229 sample population. (C) Means and SD shown. Mann-Whitney *U*-test, *P*-value shown. (D) All
1230 points at 90 and 240 mpi shown. Mann-Whitney *U*-test, *P*-value shown.. (E) RT-qPCR
1231 analysis of HSV-1 IE gene transcription (ICP0 and ICP4, as indicated) in NTC and Daxx KO
1232 HFT cells infected with WT HSV-1 (MOI 0.5 PFU/cell) over time (mpi). Values were
1233 normalized to NTC infected cells at 360 mpi. Means and SEM shown; paired two-tailed t
1234 test, *P*-values shown. Individual replicate experiments shown in Fig. S10B. (F) Quantitation
1235 of HSV-1 immediate gene expression (ICP0 and ICP4) within AFP HSV-1 (MOI 0.5
1236 PFU/cell) infected NTC and Daxx KO HFT cells over time (mpi) as determined by indirect
1237 immunofluorescence staining. Values normalized to the total population of DAPI positive
1238 cells (normalized [norm.] counts) and presented as percentage (%) positive cells. Means and
1239 SEM shown; paired two-tailed t test, *P*-values shown. (G) WT and ICP0 null-mutant (Δ ICP0)
1240 HSV-1 cell supernatant titres derived from of infected NTC and Daxx KO HFT cells (MOI
1241 0.5 PFU/cell) over time (hour post-infection; hpi). Boxes, 25th to 75th percentile range;
1242 whisker, 5th to 95th percentile range; black line, median. Mann-Whitney *U*-test, *P*-values
1243 shown. (A to F) Data derived from a minimum of three independent experiments. Raw values
1244 presented in S1 data.

1245

1246

1247 **Supporting information**

1248 **Fig S1. Histone localization in mock-treated HFT cells.** Confocal microscopy images of
1249 data presented in Fig 1B. Mock-treated HFT cells were stained for Daxx, HIRA, histones
1250 H2A, H2B, H3, or H4 (Channel 1 [Ch.1]; green, as indicated) and PML (red) by indirect
1251 immunofluorescence. Nuclei were stained with DAPI (blue). Cut mask (yellow) highlights

1252 regions of colocalization between cellular proteins of interest and PML; weighted
1253 colocalization coefficient shown.

1254

1255 **Fig S2. Ectopic expression of fluorescently tagged histones in mock-treated HFt cells.**

1256 HFt cells were stably transduced with lentiviral vectors encoding C-terminally tagged
1257 fluorescent (mEmerald; mEm) histones or eYFPnls (negative control) as indicated. (A) Cells
1258 were induced to express proteins of interest for 24 h with doxycycline (DOX) prior to whole
1259 cell lysate (WCL) collection and western blotting. Membranes were probed for GFP and
1260 endogenous (endog.) histones H2A or H3. (B) RPE cells were transfected with plasmids
1261 expressing eGFP, H3.1-mEm, or H3.3-mEm for 24 h prior to WCL collection and western
1262 blotting. Membranes were probed for GFP and histone H3. (A/B) Molecular mass markers
1263 shown. (C to E) HFt cells were DOX induced for 6 h prior to fixation and indirect
1264 immunofluorescence staining for PML (red). Nuclei were stained with DAPI (blue). (C)
1265 Confocal microscopy images of histone-mEm or eYFPnls localization at PML-NBs. Cut
1266 mask (yellow) highlights regions of colocalization between cellular proteins of interest and
1267 PML; weighted (w.) colocalization coefficient (coeff.) shown. (D) Quantitation of the
1268 percentage of cells that demonstrate histone-mEm or eYFPnls colocalization at PML-NBs.
1269 Means and SD shown. (E) Violin plots showing histone-mEm w. colocalization coeff.
1270 frequency at PML-NBs: median w. colocalization coeff., solid black line; 25th to 75th
1271 percentile range, dotted black lines; coincidence threshold (0.2), dotted grey line; high
1272 confidence threshold (0.7), solid grey line. Mann-Whitney *U*-test, *P*-value shown. (D/E) $N \geq$
1273 150 nuclei per sample condition. (A to E) Data derived from a minimum of three independent
1274 experiments. Raw values presented in S1 data.

1275

1276 **Fig S3. Localization of fluorescently tagged histones to mitotic cellular chromatin.** HFt
1277 cells stably transduced with lentiviral vectors encoding C-terminally tagged fluorescent
1278 (mEmerald; mEm) histones (as indicated) or eYFPnls (negative control) were induced with
1279 doxycycline for 6 h prior to fixation. Nuclei were stained with DAPI (blue). Representative
1280 x63 objective lens wide-field confocal microscopy images showing histone-mEm localization
1281 in mock-treated HFt cells. Dashed boxes show magnified regions of interest highlighting
1282 histone-mEm or eYFPnls localization at mitotic chromatin.

1283

1284 **Fig S4. Localization of endogenous histone to nuclear infecting HSV-1 genomes.**

1285 Confocal microscopy images of data presented in Fig. 1D to G. HFt cells were infected with
1286 WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were fixed at 90 mpi and stained for Daxx, HIRA,
1287 histones H2A, H2B, H3, or H4 (Channel 1 [Ch.1]; green, as indicated) and PML (red) by
1288 indirect immunofluorescence. vDNA (red) was detected by click chemistry. Nuclei were
1289 stained with DAPI (blue). Cut mask (yellow) highlights regions of colocalization between
1290 cellular proteins of interest and vDNA or PML (as indicated); weighted colocalization
1291 coefficient shown. Dashed boxes show magnified regions of interest. White arrows highlight
1292 regions of colocalization at vDNA.

1293

1294 **Fig S5. Localization of endogenous histone H2A/H2B heterodimers to nuclear infecting**
1295 **HSV-1 genomes.** (A/B) Confocal microscopy images of data presented in Fig. 1E and F. HFT
1296 cells were mock-treated or infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were
1297 fixed at 90 mpi and stained for heterodimeric histone H2A/H2B (green) using a fluorescently
1298 conjugated nanobody and PML (cyan) by indirect immunofluorescence. vDNA (red) was
1299 detected by click chemistry. Nuclei were stained with DAPI (blue). Cut mask (yellow)
1300 highlights regions of colocalization between cellular proteins of interest and vDNA or
1301 cellular chromatin; weighted colocalization coefficient shown. Dashed box shows magnified
1302 region of interest. White arrows highlight regions of colocalization at vDNA. (B)
1303 Localization of histone H2A/H2B heterodimers to mitotic chromatin in mock-treated HFT
1304 cells.
1305
1306

1307 **Fig S6. Localization of fluorescent histones to nuclear infecting HSV-1 genomes.** HFT
1308 cells stably transduced with lentiviral vectors encoding C-terminally tagged fluorescent
1309 (mEmerald; mEm) histones or eYFPnls (negative control) (Channel 1 [Ch.1]; green, as
1310 indicated) were induced with doxycycline for 6 h prior to infection with WT HSV-1^{EdC} (MOI
1311 of 1 PFU/cell). Cells were fixed at 90 mpi and stained for PML (cyan) by indirect
1312 immunofluorescence and vDNA (red) by click chemistry. Nuclei were stained with DAPI
1313 (blue). Cut mask (yellow) highlights regions of colocalization between cellular proteins of
1314 interest or vDNA (as indicated); weighted colocalization coefficient shown. Dashed boxes
1315 show magnified regions of interest. White arrows highlight regions of colocalization at
1316 vDNA.
1317

1318 **Fig S7. Localization of Daxx and endogenous histones to nuclear infecting HSV-1**
1319 **genomes in NTC and PML KO HFT cells.** Confocal microscopy images of data presented in
1320 Fig. 5C, D. NTC and PML KO HFT cells were infected with WT HSV-1^{EdC} (MOI of 1
1321 PFU/cell). Cells were fixed at 90 mpi and stained for Daxx, histones H2A, H2B, H3, or H4
1322 (green, as indicated) and PML (cyan) by indirect immunofluorescence. vDNA (red) was
1323 detected by click chemistry. Nuclei were stained with DAPI (blue). Cut mask (yellow)
1324 highlights regions of colocalization between cellular proteins of interest and vDNA (as
1325 indicated); weighted colocalization coefficient shown. White arrows highlight regions of
1326 colocalization at vDNA. Dashed boxes show magnified regions of interest.
1327

1328 **Fig S8. Localization of histone H3, ATRX, and PML in NTC and Daxx KO HFT cells.**
1329 Confocal microscopy images of data presented in Fig. 6A. Mock-treated NTC and Daxx KO
1330 HFT cells were fixed and stained for PML, ATRX, and histone H3 (green, as indicated) and
1331 Daxx (cyan) by indirect immunofluorescence. Nuclei were stained with DAPI (blue). Cut
1332 mask (yellow) highlights regions of colocalization between cellular proteins of interest and
1333 Daxx (as indicated); weighted (w.) colocalization coefficient (coeff.) shown.
1334

1335 **Fig S9. Localization of histones H3 and H4 to nuclear infecting HSV-1 genomes in NTC**
1336 **and Daxx KO HFt cells.** Confocal microscopy images of data presented in Fig. 6E, F. NTC
1337 and Daxx KO HFt cells were infected with WT HSV-1^{EdC} (MOI of 1 PFU/cell). Cells were
1338 fixed at 90 mpi and stained for PML, ATRX, histones H3 or H4 (green, as indicated), and
1339 Daxx (cyan) by indirect immunofluorescence. vDNA (red) was detected by click chemistry.
1340 Nuclei were stained with DAPI (blue). Cut mask (yellow) highlights regions of colocalization
1341 between cellular proteins of interest and vDNA (as indicated); weighted colocalization
1342 coefficient shown. White arrows highlight regions of colocalization at vDNA. Dashed boxes
1343 show magnified regions of interest.

1344

1345 **Fig S10. Daxx restricts the progression of WT HSV-1 IE transcription.** (A) HFt cells
1346 were mock-treated or infected with WT or ICP0 null-mutant (Δ ICP0) HSV-1 (MOI of 3
1347 PFU/cell) in the absence or presence of the proteasome inhibitor MG132 (5 μ M). WCLs were
1348 collected at the indicated times (h) post-infection (hpi) and analyzed by western blotting.
1349 Membranes were probed for ATRX, Daxx, PML, viral IE proteins (ICP0 and ICP4), histone
1350 H3, and actin (loading control). Molecular mass markers shown. < denotes the detection of a
1351 non-specific viral protein. (B) Independent replicate experiments of data presented in Fig. 8E.
1352 NTC and Daxx KO HFt cells were infected with WT HSV-1 (MOI 0.5 PFU/cell). RNA was
1353 extracted at the indicated times (minutes post-infection; mpi) and HSV-1 IE transcription
1354 (ICP0 and ICP4) quantified by RT-qPCR analysis. Values were normalized to infected NTC
1355 cells at 360 mpi. N=3 independent experiments. Means and SD per experiment shown. Raw
1356 values presented in S1 data.

1357

1358 **S1 Data.** Underlying data used for quantitative analysis in this study.

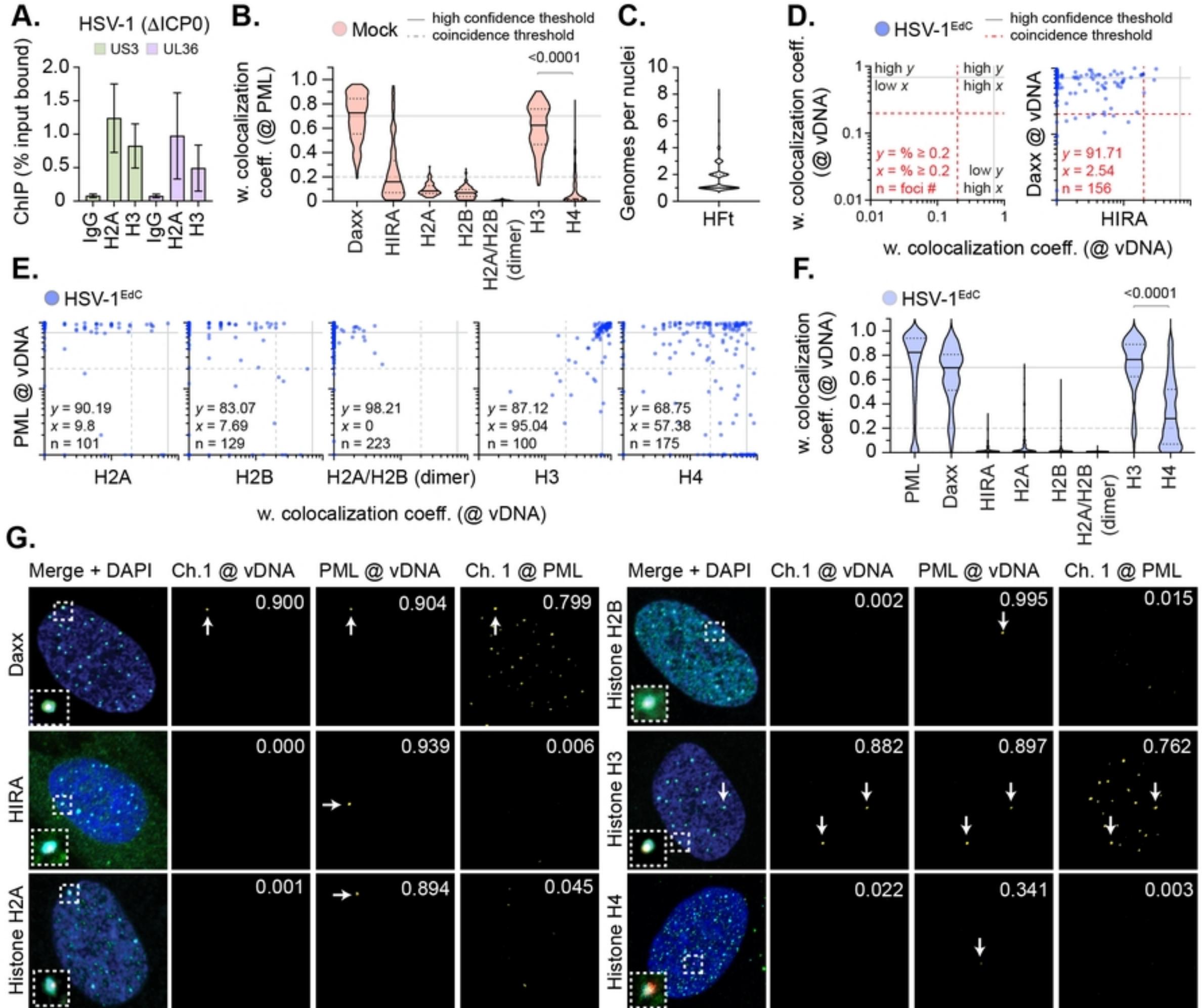


Figure 1

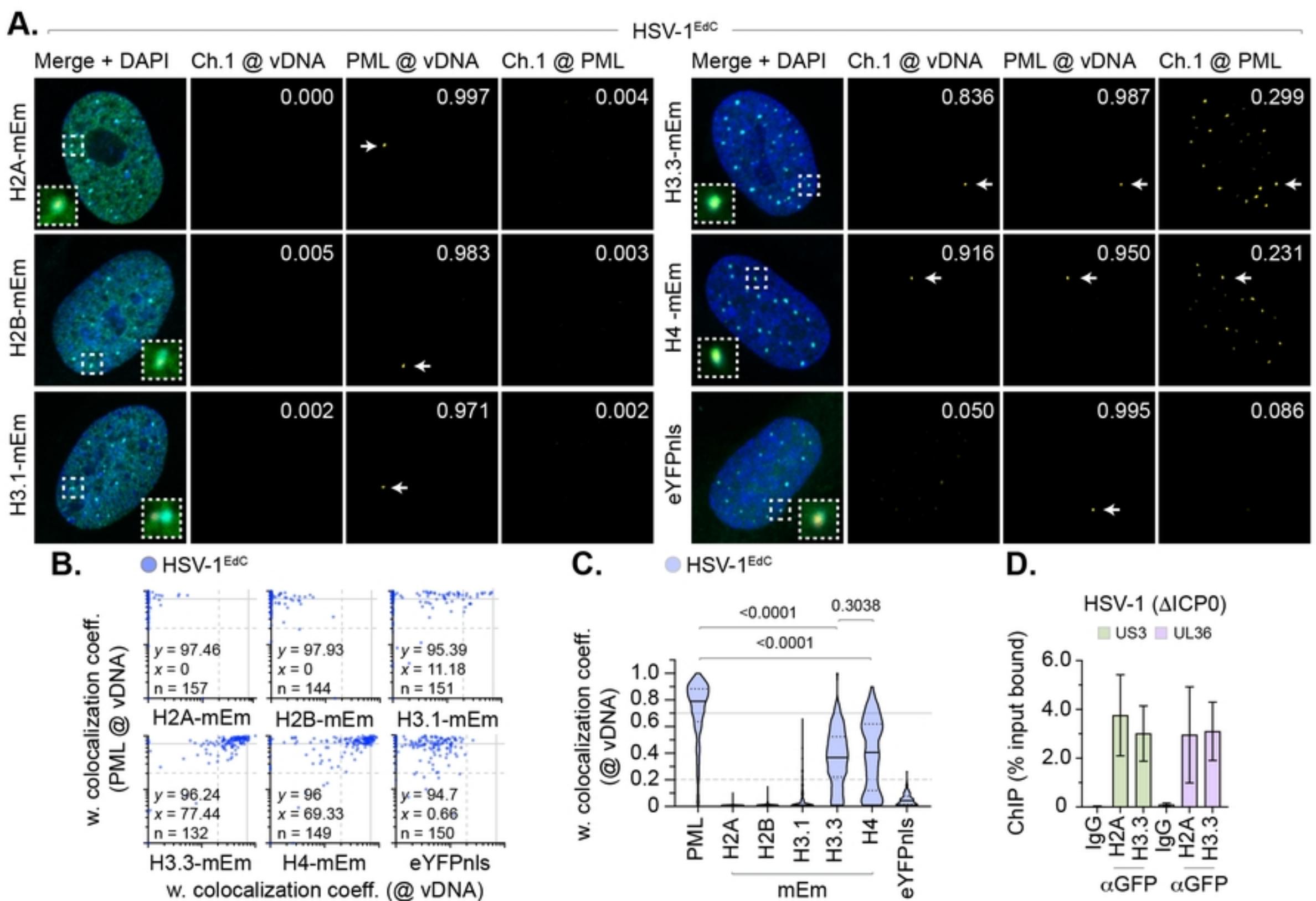
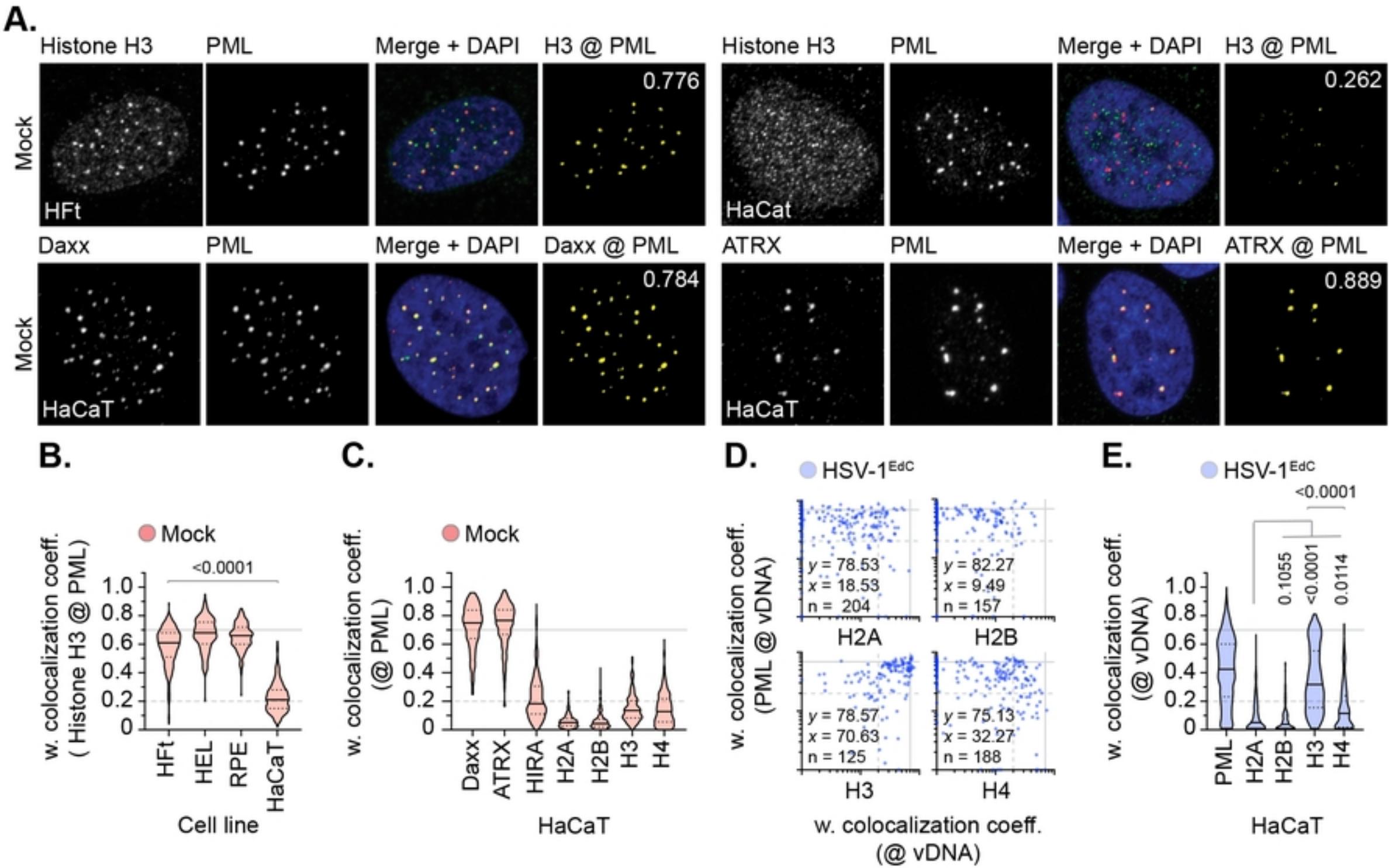
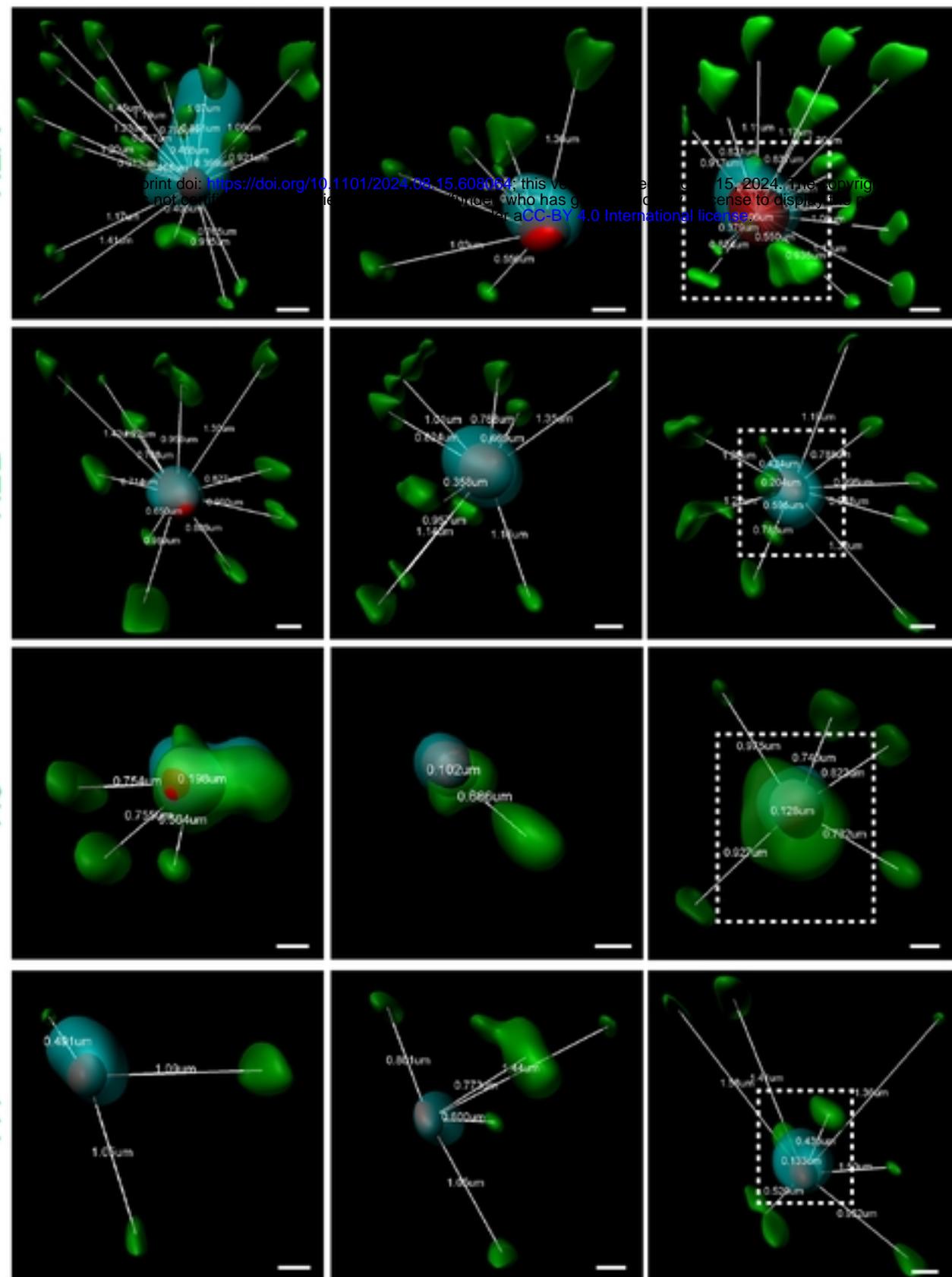
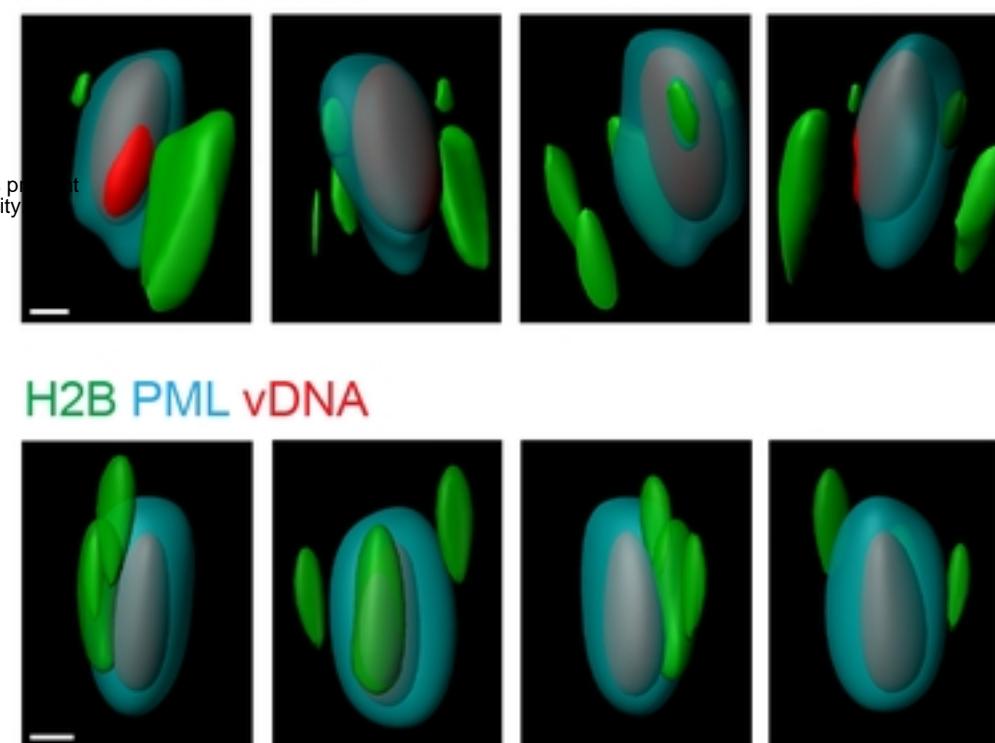
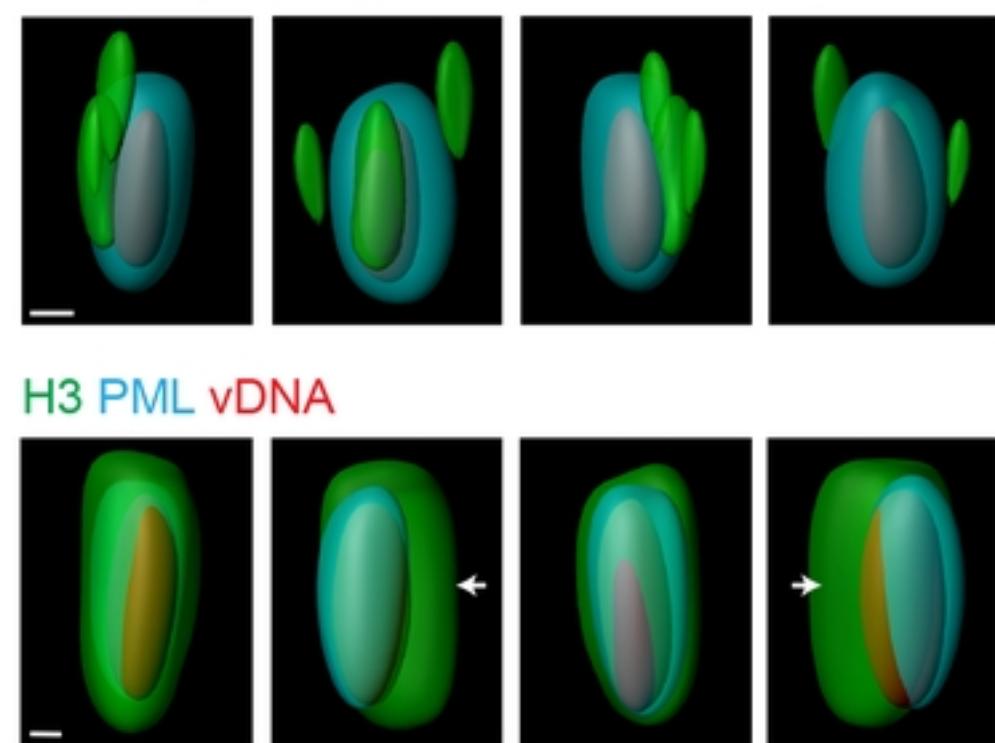
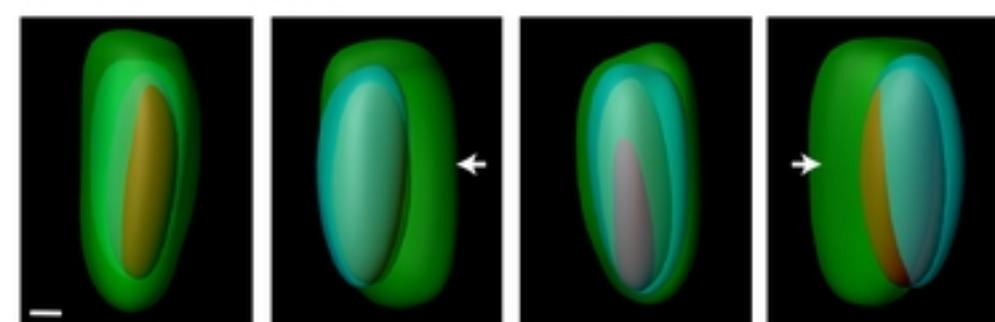
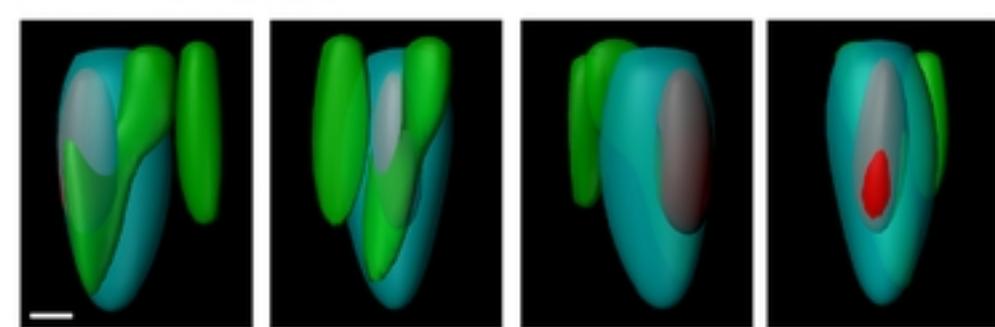
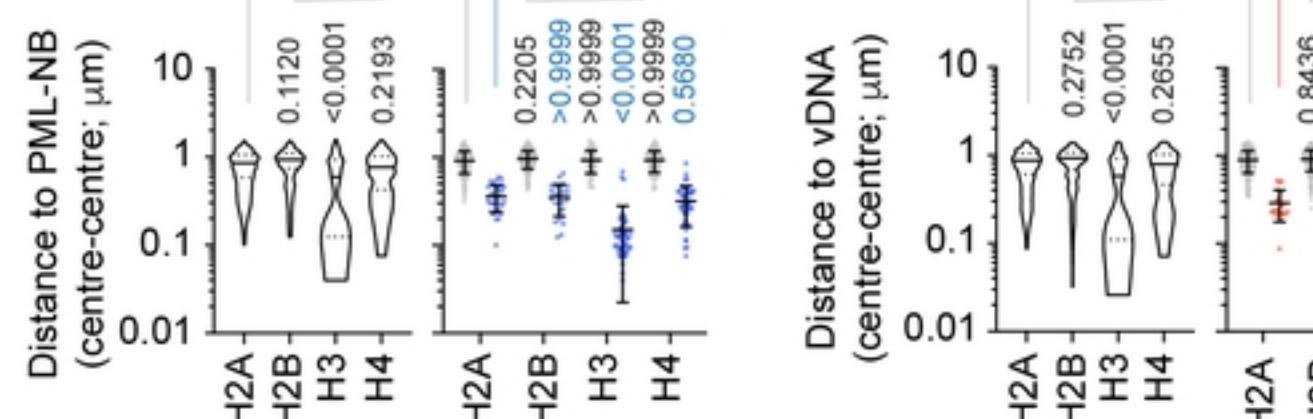
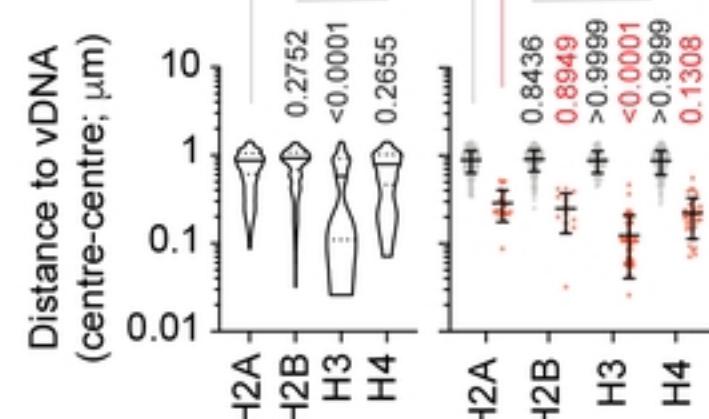


Figure 2

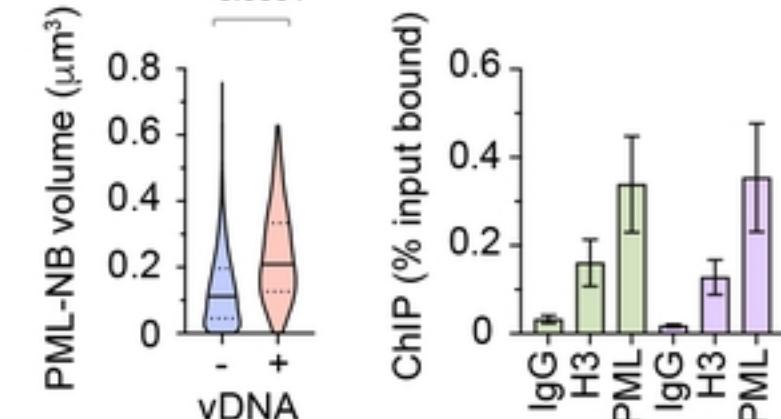








Figure 3

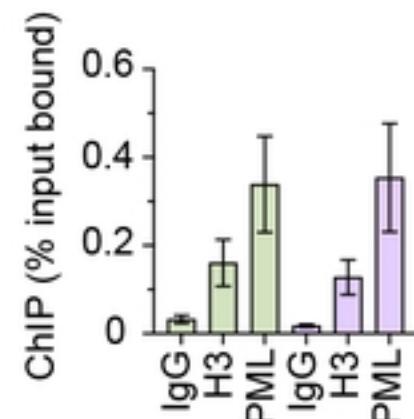
A.**Histone PML vDNA**


90° 90° 90°

H2A PML vDNA**H2B PML vDNA****H3 PML vDNA****H4 PML vDNA****B.**


- All points
- PML contact
- No PML contact

C.


- All points
- vDNA contact
- No vDNA contact

- no vDNA
- plus vDNA

E.**HSV-1**

- US3
- UL36

Figure 4

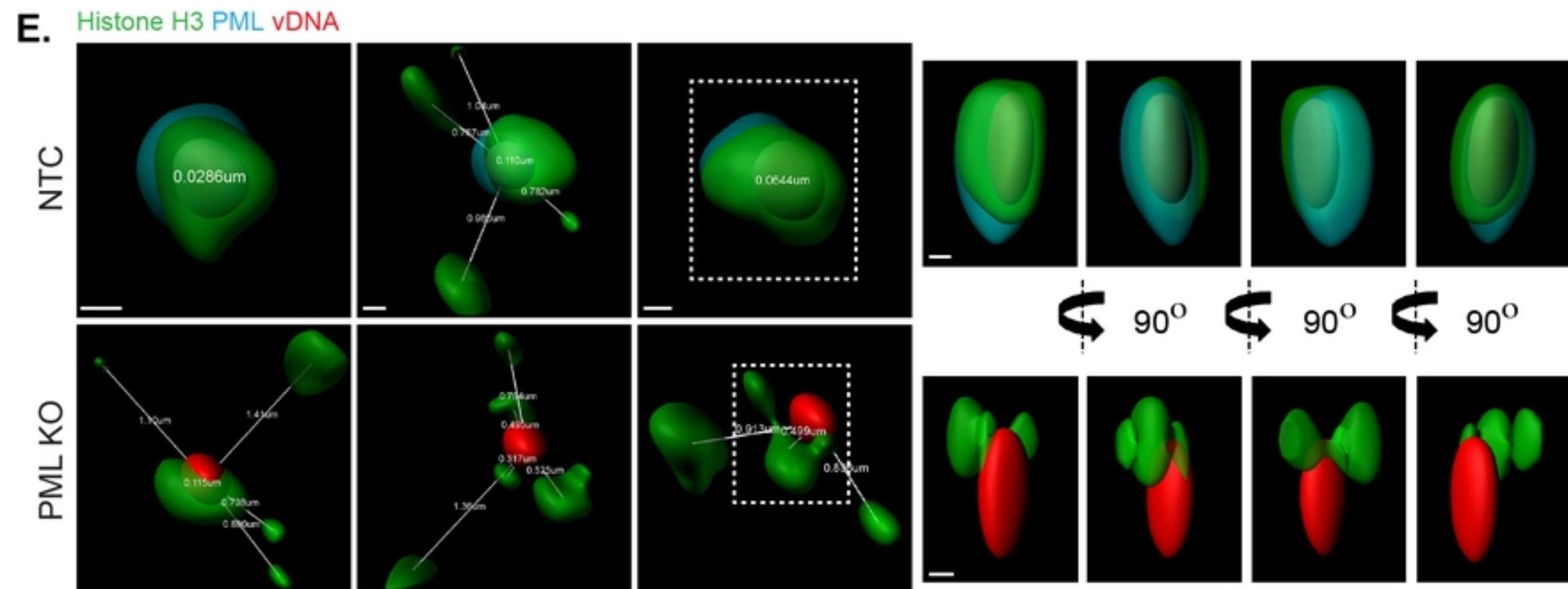
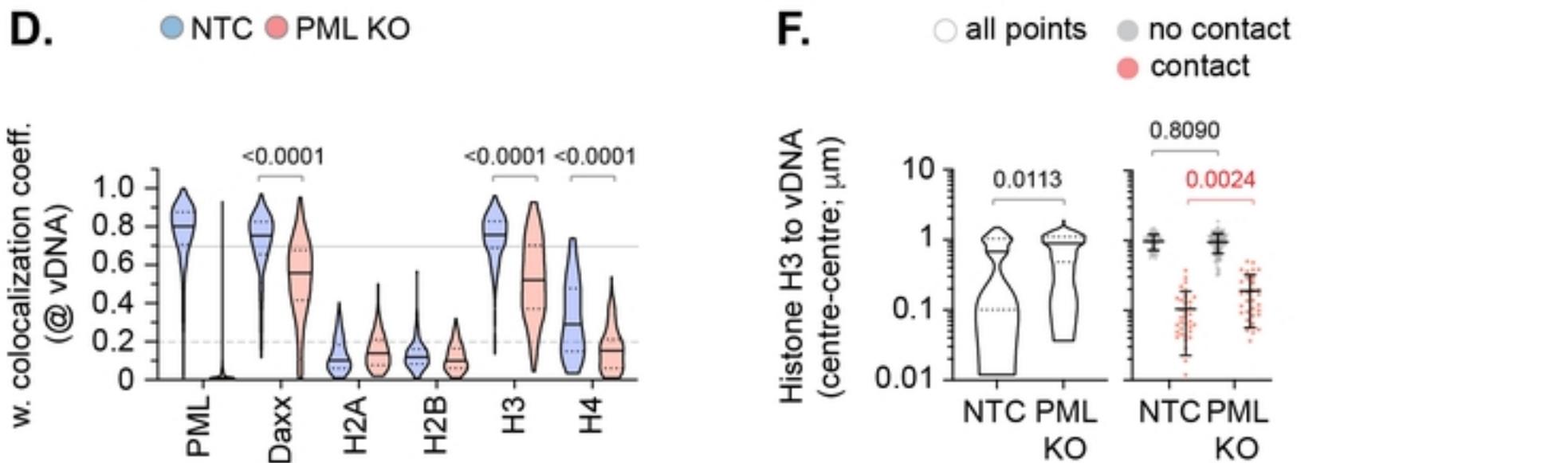
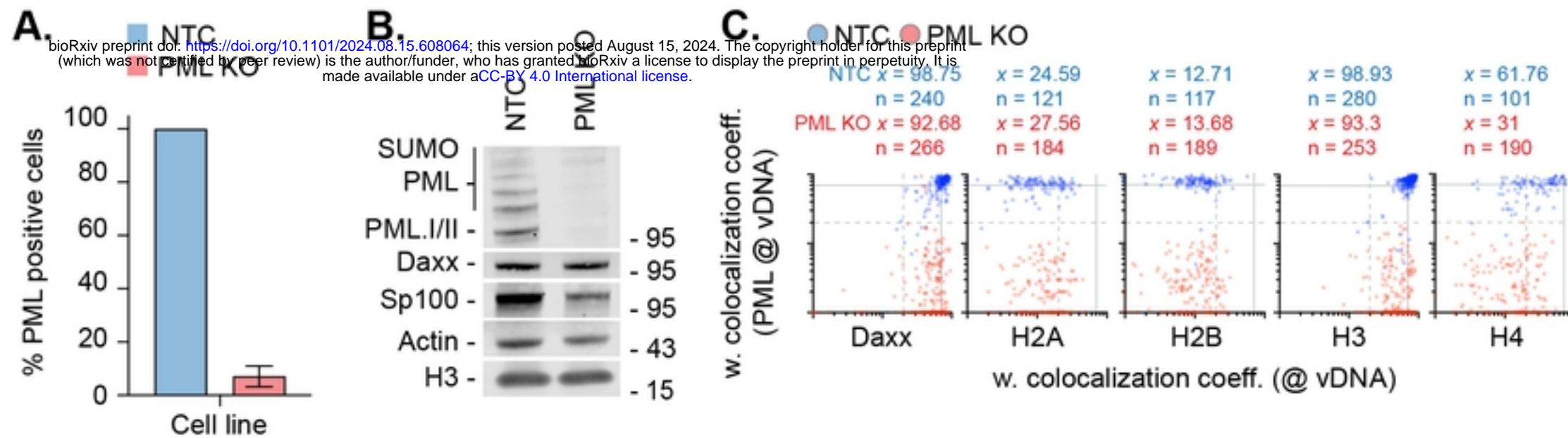




Figure 5

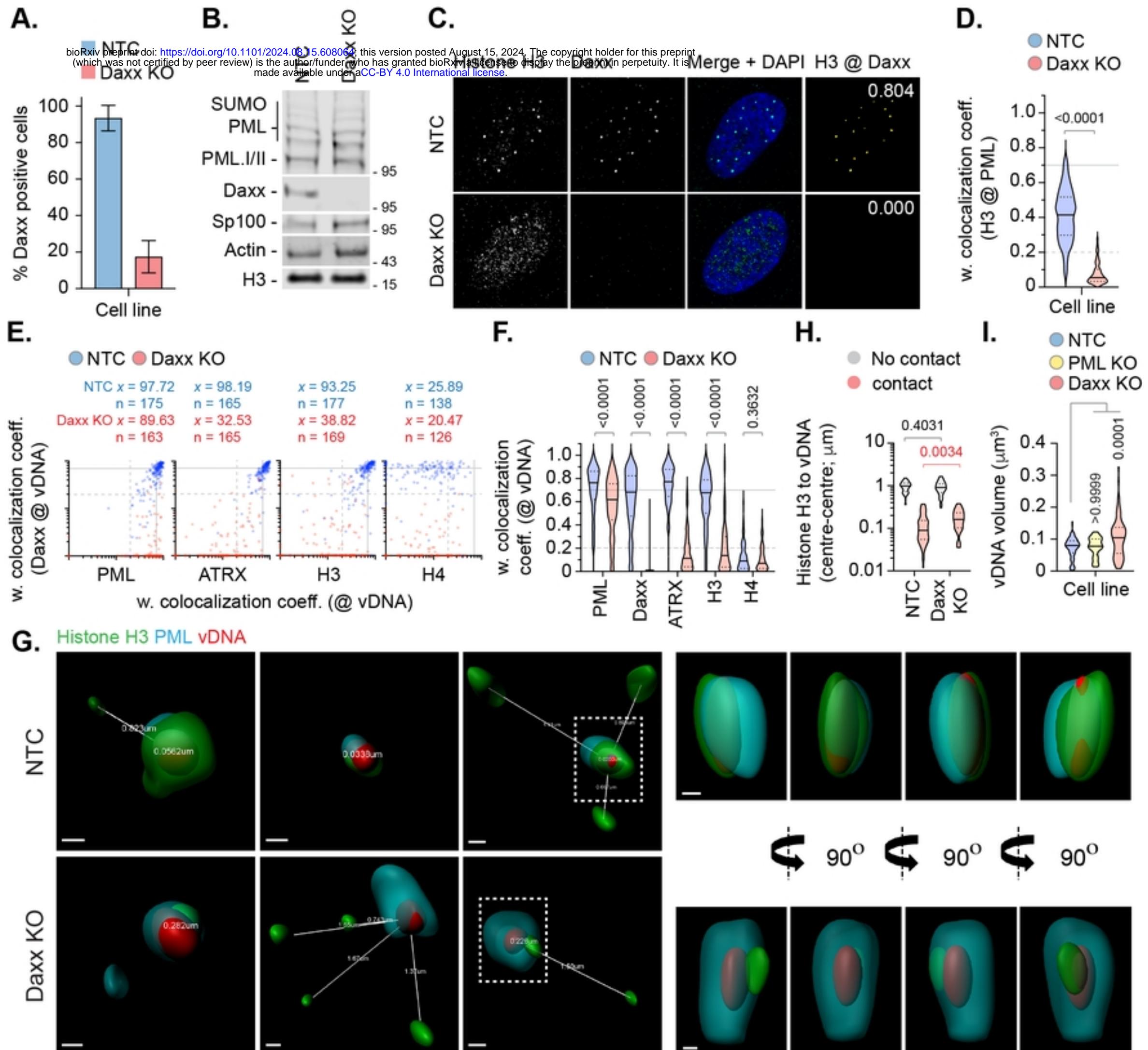
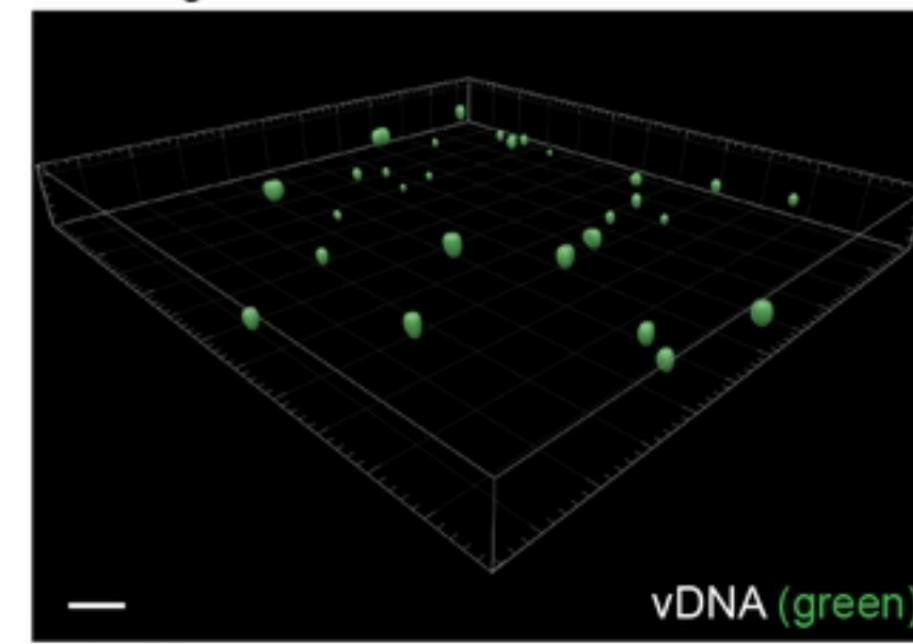
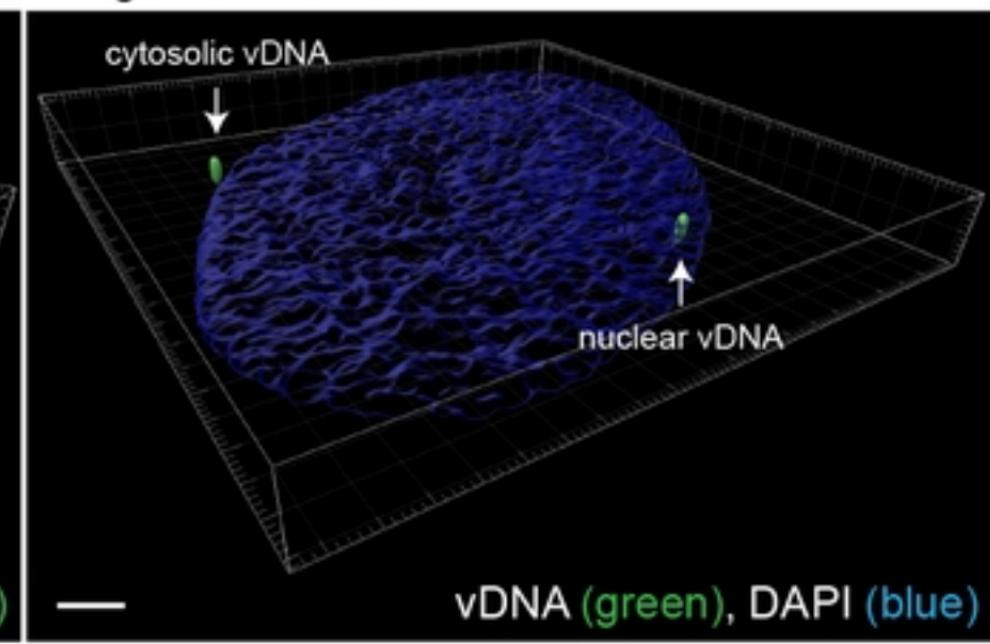
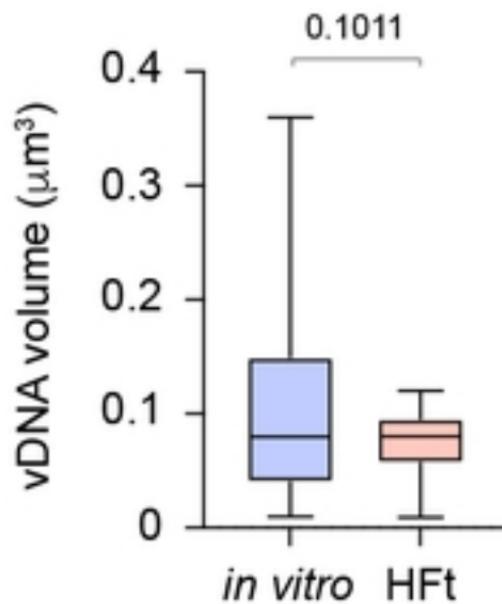




Figure 6

A.*in vitro* genome releaseHSV-1^{EdC/A}


HFt genome release

vDNA (green), DAPI (blue)

B.

n = 2399
n = 135

Figure 7

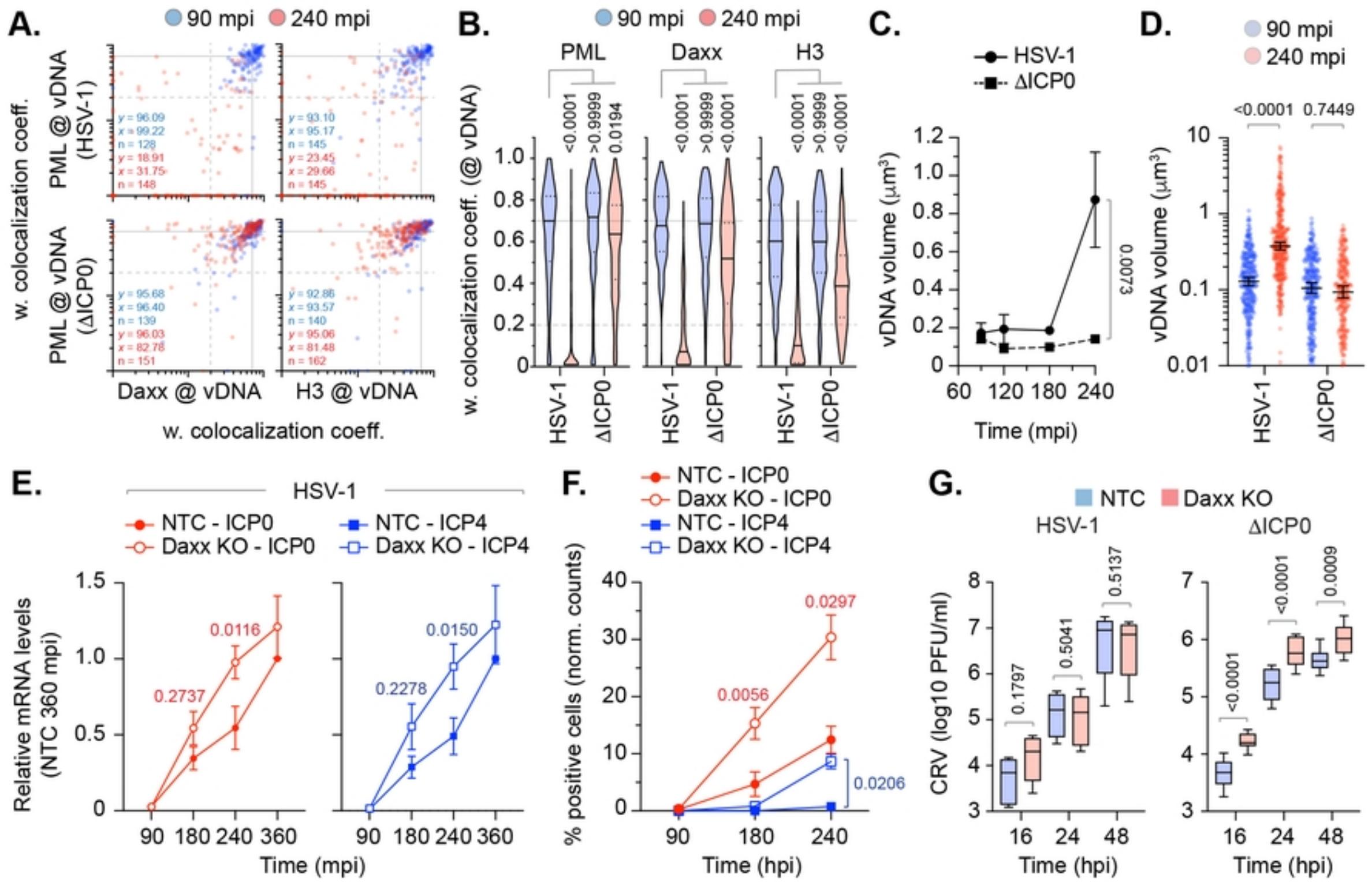


Figure 8