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Abstract 22 

This study addresses the need for an automated and accurate 3D segmentation of the 23 

healthy human eye and orbit from Magnetic Resonance Images, to allow improved 24 

ophthalmic diagnostics and treatments. Past efforts primarily focused on small sample 25 

sizes and varied imaging modalities. Here, we leverage a large-scale dataset of T1-26 

weighted MRI of 1245 subjects and the use of the deep learning-based nnU-Net for MR-27 

Eye segmentation tasks. The results showcase robust and accurate segmentations of 28 

lens, globe, optic nerve, rectus muscles, and fat. We also present the automated 29 

estimation of key ophthalmic biomarkers such as AL and volumetry, while 30 

benchmarking correlations between body mass index (BMI) and eye structure volumes. 31 

Quality control protocols are introduced through the pipeline to ensure the reliability 32 

and clinical relevance of the segmented large-scale data, further enhancing the 33 

applicability of our algorithm. 34 
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Teaser 35 

This study advances MR-Eye with automated 3D segmentation of human eye and orbit, biomarker extraction, and a 36 

large-scale eye atlas in MRI. 37 

 38 

Introduction 39 

According to the World Health Organization (WHO), 2.2 billion people have vision impairment or blindness (1) and 40 

preventable causes account for 80% of the total global visual impairment burden. The eyes, small, complex, and delicate 41 

structures that serve as our primary sensory organ, convey crucial information about our visual health and can be seen 42 

as a window to the brain, connecting us to the external world (2). In clinics, an ophthalmic unit is equipped with a 43 

variety of devices to perform qualitative and quantitative imaging of the eye. These include, for example, ultrasound 44 

(3), funduscopy (4), and optical coherence tomography (OCT) (5, 6), which are capable of extracting anatomical 45 

measurements of the eyes. However, these devices are not as effective in imaging the posterior part of the eye, and/or 46 

just provide partial information, for example when in presence of volumetric lesions or other pathologies (7, 8, 9, 10). 47 

Therefore, the development of diagnostic methods and new imaging analysis techniques remains crucial, and that is 48 

where Magnetic Resonance Imaging (MRI) plays a central role. With its non-invasive and penetration characteristics, 49 

MRI is particularly a promising technique as it can provide 3D measurements of the complete eye, related to both the 50 

tissue and organ structure, and informs about particle deposits within the tissues, such as calcification or tissues 51 

deformations. Ophthalmic MRI (7, 8, 9, 10), known as MR-Eye (11, 12, 13, 14, 15), has been proven to be highly 52 

effective in oncology, for the evaluation and treatment planning of tumors, as well as for the quantification of orbital 53 

inflammation and for refractive surgery planning (10). Furthermore, given that neurodegenerative disorders frequently 54 

involve ocular and visual comorbidities (11, 17), and oculomotor dysfunctions can signify underlying brain injuries 55 

(18, 19), advancing the current capabilities of MR-Eye technology is paramount. This will help the assessment of the 56 

eye-brain pathway. 57 

 58 

The integration of MR-Eye is advancing towards a comprehensive understanding and early interception of diseases. 59 

Key ophthalmic biomarkers can be manually depicted from MR images, such as the axial length (AL) (20, 21, 22), 60 

useful for refractive errors, myopia, hyperopia, glaucoma, retinal detachment… or the volumetry (23, 24, 25), useful 61 

for eye growth abnormalities, glaucoma, macular degeneration, and orbital tumors. As of today, the automated 62 

extraction of eye biomarkers from MR-Eye remains underdeveloped. To the best of our knowledge, no tools perform 63 

automated extraction of AL using 3D MRI. Regarding volumetry analysis, previous works (23, 24), reported only the 64 

total orbital volume, around 27.5 cm3. In (25), they analyzed the orbital muscle fraction in relation to the total orbital 65 

volume in patients affected by Graves’ orbitopathy (GO). They provided volumetry of the entire globe (globe, lens, 66 

sclera, and cornea) and extraocular muscles (four rectus and two obliques) of a specific patient as an example, with 67 

6.95 and 7.92 cm3, respectively. However, there is currently no ophthalmic technology that can provide an accurate 68 

volumetric estimation of the eye and its substructures to the millimeter while their possible correlations with other 69 

biomarkers would be highly relevant. 70 

 71 

Moreover, the development of eye models, such as eye atlases, would allow for colocalization and navigation in the 72 

eye, and it may serve as standardized spatial references for the eye, serving as means for exploring quantitative 73 

geometric measurements of eye morphology despite systematic differences within a population. Prior knowledge 74 

encoded in the form of anatomical and probability atlases have played a pivotal role in conventional neuroimaging 75 

research since many years by providing a standardized framework for spatial normalization and quantitative analysis 76 

across diverse populations (26, 27, 28). These atlases serve as reference templates that enable researchers to map and 77 

compare structural variations in the brain, facilitating the investigation of neurological disorders and brain function. 78 

However, such standardized tools and frameworks are currently lacking in the field of ophthalmic imaging. A recent 79 

study (29) has pioneered the development of unbiased MRI eye atlas, available through the HuBMAP project (30), 80 

covering various contrasts (T1w pre-contrast, T1w post-contrast, T2w TSE, and T2w FLAIR) based on 100 images. 81 

Despite this first effort there is the need for a larger scale atlas and to separate anatomical models tailored to each sex, 82 

as sex differences may play a crucial role in various diseases (31, 32, 33, 34), e.g. endocrine orbitopathy. 83 

 84 

However, achieving these advancements depends critically on robust and accurate delineation of eye and orbit 85 

structures. Pioneer semiautomated methods relied on parametric shape modeling of the eye using prior estimations such 86 

as spheres and ellipsoids (35, 36), or, more sophisticated manifolds, i.e. spherical meshes (37). The main drawback of 87 

parametric models is that they rely on a deterministic pre-defined geometry ignoring normative stochastic modelling 88 

(i.e., image intensity, shape variations, etc.) that could be derived from the anatomical variability within a specific 89 
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population. To tackle this, active shape modeling (ASM) algorithms through Machine Learning (ML) optimizations 90 

came up with a robust solution to fit each shape to the eye structures via statistically driven deformations. This triggered 91 

progress on statistical shape models for semiautomated segmentation of both healthy eye structures and tumors (38, 92 

39). Deep learning methods appeared to address this segmentation task and fully automatize it, using a 2D/3D U-Net 93 

(40, 41, 42). Other approaches were combinations of the previous two methods (43, 44), and clustering techniques (45), 94 

having similar results. However, these previous works were generally focused on the segmentation of few eye (non-95 

orbit) structures (lens, globe, sclera, cornea, and not so common, optic nerve, only in (39, 40)). Thus, important orbit 96 

structures such as rectus muscles (RM) or fat, are yet unexplored, jeopardizing the construction of a comprehensive 97 

model of the eye and orbit. Moreover, despite methodological efforts on resampling (e.g. cross-validation, 98 

bootstrapping, etc.), they did not count on a big cohort of manually annotated healthy subjects (sample sizes were 99 

limited to 24 to 40 subjects) that would properly gather their anatomical variability for the validation of the results and 100 

most of them (except for (38, 39)) relied on the availability of multi-contrast MRI setting. Finally, while image quality 101 

is a well-known factor that can significantly bias automated results in neuroimaging (46, 47, 48, 49, 50), it is often 102 

overlooked in MR-eye analysis. Only a few of the previous studies (39, 41, 44) implemented some form of quality 103 

control prior to the segmentation task. 104 

 105 

The contribution of this work is three-fold. First, we present (i) a comprehensive, accurate 3D MR-Eye segmentation 106 

method of the healthy human adult eye and orbit structures including lens, globe, also known as vitreous humor (VH), 107 

optic nerve, RM, and fat, using a T1-weighted (T1w) MRI dataset of 1245 healthy subjects. We evaluated its 108 

performance on 74 manually segmented subjects by means of the objective metrics Dice Similarity Coefficient (DSC), 109 

Hausdorff distance and volume difference. The state-of-the-art supervised deep learning-based approach, nnU-Net (51), 110 

is the method of choice, surpassing our proposed baseline method, namely atlas-based, whose results and method can 111 

be found in the Supplementary Materials document. This segmentation method allowed us to (ii) provide automated 112 

extraction benchmarks of a large-scale cohort on ocular MR-Eye biomarkers (AL and volumetry) for the first time, and 113 

(iii) provide the first large-scale MR-Eye atlases per sex including 594 males and 616 females with their corresponding 114 

labels (publicly available at (76)). To ensure the reliability of the segmentation and biomarkers extraction, we 115 

introduced a tailored MR-Eye quality control protocol as the existing brain QC approaches failed to assess eye image 116 

quality. 117 

Results 118 

Our work presents a deep-learning algorithm (nnU-Net) for automated 3D segmentation of eye and orbital structures, 119 

capable of extracting automatically key biomarkers such as AL and volumetric measurements of eye structures 120 

(volumetry). Leveraging the extensive scale of our database, we introduce, for the first time to our knowledge, a large-121 

scale probabilistic atlas of the eye. 122 

 123 

Automated segmentation 124 

Figure 1 displays a visual representation of the obtained segmentation. To quantitatively assess the performance of our 125 

algorithm in anatomically delineating the eye structures as compared to manual expert annotations (referred as ground 126 

truth, and more correctly to surrogate truth or reference standard), we used image quality metrics (Dice score – DSC, 127 

Hausdorff distance – HD, and volume difference - VD) on a test set of 43 subjects. These 43 subjects (age 38-77, 28 128 

females) have acceptable MR-Eye image quality, i.e. the MR-Eye do not contain major classic artefacts, as rated by 129 

MR-Eye experts (subjective ratings, see Material and Methods section). We show that the proposed model produce 130 

accurate results in delineating all eye structures (average score across structures: DSC=0.81±0.07, HD=0.35±0.20mm, 131 

and VD=0.19±0.14mm3) as compared to the ground truth (scores detailed in Figure 2 and Table 1). As expected, less 132 

accuracy was encountered in those structures which are more anatomically variable, such as the fat, and in the superior 133 

rectus muscle. 134 

 135 

Extraction of biomarkers at large-scale 136 

After automatically delineating the anatomy of eye structures, we developed an automated procedure to compute key 137 

ophthalmic biomarkers, including millimeter-scale volumetry of eye structures and AL. This automation allowed us to 138 

extract these measurements from a large-scale dataset of 1,157 subjects, following Quality Control (QC; see Quality 139 

Control Protocol in the Materials and Methods section). 140 

 141 

Our findings show that our large-scale automated measurements of AL from MRI are in line with the reference manual 142 

measures (20). A shows boxplots of the automated AL measures per sex, as in (20), on the large-scale cohort of 1157 143 

subjects. The mean AL was close to reported values in the literature (20), which were manually extracted from the T1w 144 
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images by trained ophthalmologists, for both males and females. However, in 107/1157 cases, the AL could not be 145 

computed due to methodological constraints (e.g., 79 unsegmented lenses), that are further explained in the Materials 146 

and Methods section). Specifically, the mean values and standard deviations are: 147 

• NnU-Net: 23.8±1.7 mm (524 M) and 22.9±1.6 mm (526 F) 148 

• Previous studies (20): 23.4±0.8 mm (1059 M) and 22.8±0.9 mm (867 F) 149 

 150 

In terms of volumetry extraction, we provide the first large-scale benchmark MR-Eye volumetry of all eye structures. 151 

We observed a trend of males having larger eye structures than females (except for the lens), particularly in both 152 

intraconal and extraconal fat. Figure 4  illustrates the extracted volumetry per structure, grouped by sex, using violin 153 

plots from the large-scale cohort of 1,157 subjects. Table 2 presents median and standard deviation for each structure. 154 

Interestingly, we did not find any significant correlation between body mass index (BMI) and the volumes of eye 155 

structures. Using correlation analysis and Huber linear regression, we observed Huber scores (R2) below 0.1, except 156 

for intraconal fat in males, which was 0.11. Figure 5  illustrates these findings with scatter plots, Huber regression lines, 157 

and Huber R2 scores, grouped by sex.  158 

 159 

Atlas of the eye  160 

Figure 6 presents large-scale, unbiased male and female eye atlases using MRI, constructed from 594 males and 616 161 

females, with their corresponding probability maps of the different labels projected onto the average respective male 162 

and female templates, which are publicly released. Additionally, a 3D render of the maximum probability maps is 163 

shown. The volumes of these maps indicate similar structure sizes for both sexes, except for the fat, which is larger in 164 

males, particularly the extraconal fat. 165 

 166 

Discussion 167 

MR-Eye has increasingly gathered interest in the ophthalmic and radiology community (10), due to the incredible tissue 168 

contrast that it can achieve in a non-invasive way. Furthermore, and unlike most ophthalmic tools which evaluate the 169 

anatomy or the visual performance of the eyes (Ocular Coherence Tomography (OCT) (5, 6), biometry (52), 170 

microperimetry (53), eye-tracking, contrast sensitivity), MR-Eye can investigate several pathologies behind the globe, 171 

involving nerves paralysis, lesions, tumors and inflammation (7, 10, 54), while exploring the 3D complexity of the eye-172 

shape. In fact, 3T and 1.5T MR-Eye clinical protocols are used regularly in the case of tumor (retinoblastoma (55, 56) 173 

or uveal melanoma (57, 58)), or ocular inflammations (10, 20, 57, 59), or pathologies with suspected link to the brain 174 

(54), and constitute the current state of the art of clinical practice. Very recent technical advancements propose new 175 

ways to deal with the presence of motion artefacts during MR-Eye acquisition (60, 61, 62, 63, 64) or at ultra-high field 176 

(7T)  (15, 65), increasing the usability and reproducibility of MR-Eye in ophthalmology. 177 

 178 

In this rapidly growing field, it is crucial to enable clinicians to extract measurements from MR-Eye and benchmark 179 

new metrics, providing them with tools not available before. To address this need, we propose a comprehensive 180 

automated pipeline. This pipeline is benchmarked on a large-scale MR-Eye database of 1,157 subjects and introduces 181 

a methodology for automated 3D segmentation, see Figure 1, of all eye structures using deep-learning algorithm (nnU-182 

Net). It extracts key ophthalmic biomarkers, such as AL (Figure 3) and volumetry (Figure 4), and allows us to build 183 

the first large-scale comprehensive eye atlas for both males and females, complete with their corresponding probability 184 

maps (Figure 6). 185 

 186 

Our automated 3D segmentation via deep learning (nnU-Net) of all eye structures, once compared with manual 187 

segmentation performed by expert ophthalmologists on 43 testing subjects, is optimal with respect to classic image 188 

quality metrics, namely DSC, HD, and VD. These results are in line with previous reported values of segmentation 189 

performance for lens, globe, and optic nerve (38, 39, 41, 42, 43, 44), but they relied on multi-contrast MRI and healthy 190 

and non-healthy eyes, including tumors such as retinoblastoma (41, 42, 43) and uveal melanoma (39, 44). A comparison 191 

table of the performances of these previous methods can be found in (42). To our knowledge, this study reports for the 192 

first time the anatomical delineation of structures such as fat and rectus muscles’. Moreover, our automated 193 

segmentation completes in just one minute per volume. With its high accuracy, it could be seamlessly integrated into 194 

MRI console analysis, potentially saving clinicians the 10 to 20 minutes they currently spend on manual segmentation 195 

and streamlining the clinical flow. Additionally, we aim to adapt our segmentation to handle variations in contrast and 196 

spacing, aligning with the current state-of-the-art MR-Eye protocols, which include T1w imaging, fat-suppressed T1w 197 
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and T2w imaging, and contrast injections (7, 8, 10, 54). Incorporating uncertainty quantification for automated 198 

predictions can be beneficial to such scopes (66). 199 

 200 

To ensure the removal of low-quality images that could compromise the results, we introduced QC protocols at multiple 201 

stages of the segmentation pipeline. Inspired by state-of-the-art methods, MRI-QC (49), we discovered a discordance 202 

between low-quality image candidates identified by MRI-QC and those identified by our MR-Eye experts. This 203 

suggests that QC in MR-Eye requires different metrics and criteria compared to brain imaging, highlighting a crucial 204 

new area of investigation. Future development will need to define image quality metrics tailored specifically to eye 205 

tissues, incorporate non-tissue metrics, and extend scrutiny to the periorbital region. 206 

 207 

To further validate our pipeline, we introduce a novel large-scale automated method to measure AL from segmented 208 

MR-Eye volumes. Our automated results closely match the reference manual measures of AL (20, 21, 22) performed 209 

by expert ophthalmologists on a database of 1,157 subjects. This reinforces the reliability of our automated approaches 210 

for both eye structure segmentation and AL extraction. 211 

 212 

We provide the first large-scale benchmark for volumetry of all eye structures at a millimeter scale. Previous work 213 

introduced volumetry extraction from MR-Eye volumes (23, 24, 25), but for the entire globe and extraocular muscles 214 

in cm3. By distinguishing between male and female eye anatomy, we observe a general trend where males have larger 215 

eye structures than females, with the notable exception of the lens. This sex-wise differentiation in eye structure 216 

volumetry could have significant implications for understanding sex-specific ophthalmological conditions and tailoring 217 

more personalized medical treatments, particularly as such differentiation is nowadays needed for a better health care 218 

(33, 34). Interestingly, despite a previous study (20) found that the exophthalmometric value, defined as the 219 

perpendicular distance between the interzygomatic line and the posterior surface of the cornea (20), was significantly 220 

associated with AL (p<0.001) and that it was also positively correlated with BMI (p<0.001), our investigation revealed 221 

no significant correlation between body mass index (BMI) and eye structure volumes. This finding suggests that 222 

variations in eye structure volumes may be not associated with BMI. 223 

 224 

Our study introduces a novel method for automated biomarker extraction, paving the way for benchmarking MR-Eye-225 

derived measurements of the adult human eye. The implications of these findings are vast: potentially enhancing 226 

diagnostic precision, informing surgical planning, improving our understanding of eye anatomy across different 227 

populations, and saving clinicians’ time. Future research should aim to further validate these methods in pathological 228 

eyes and explore additional biomarkers. For instance, evaluating changes in rectus muscles is keys in pathology such 229 

as strabismus (67, 68), or open to the evaluation of new elements such as cerebrospinal fluid (CSF), whose deposit in 230 

the optic nerve plays a crucial role in pathologies such as papilledema and glaucoma (69, 70).  231 

 232 

In this study we present pioneering male and female eye MRI atlases, along with their detailed labels. Atlases are 233 

crucial in research as reference tools for registration and segmentation in population imaging studies. In clinical 234 

practice, they can facilitate the diagnosis and treatment of a wide range of ocular diseases, help to reveal abnormal 235 

structural changes, enhance surgical planning, and improve our understanding of sex-specific variations in eye anatomy 236 

and physiology (26). These atlases offer a valuable resource for advancing the study of ocular anatomy and can 237 

significantly support the accuracy of eye-related research and clinical applications, as has been largely demonstrated 238 

for brain studies (26, 27, 28, 71). Furthermore, the atlases enable colocalization and navigation within the eye, serving 239 

as a standardized spatial reference. This facilitates the exploration of quantitative geometric measurements of eye 240 

morphology and structures, even in the presence of systematic population differences (29). 241 

 242 

MR-Eye is indispensable when other ophthalmologic imaging modalities fail (7, 8, 9, 10), and constitutes a rapidly 243 

expanding field. Our study sets a new precedent in ophthalmology by demonstrating the feasibility and accuracy of 244 

large-scale automated segmentation and biomarker extraction from MR-Eye. Our findings propose a ready-to-use 245 

solution to promote the adoption of accurate MR-Eye segmentation, together with its applicability in the clinical and 246 

research setting. 247 
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Materials and Methods 248 

Experimental Design 249 

We evaluated quantitatively a deep learning-based automated segmentation method on a cohort of manually segmented 250 

subjects using similarity metrics (surface overlap, volume error and distance-based error). Then, we performed a large-251 

scale analysis on relevant ophthalmic biomarkers, namely volumetry of eye structures and AL measurements, for which 252 

we developed a method for its automated extraction. This allowed further analysis of possible correlation between 253 

volumes and BMI grouped by sex (males and females). We introduced eye-quality control checks that are described 254 

later in this section. Thus, the major components of our study were large-scale cohort, automated segmentation 255 

methods, automated biometry extraction, quality control analysis, and statistical analysis. 256 

 257 

Dataset 258 

The cohort was originally acquired within the Study of Health in Pomerania (SHIP) (20) and reused in the context of 259 

this study. A total of 3030 healthy subjects underwent whole-body MRI on a 1.5T scanner Magnetom Avanto (Siemens 260 

Medical Solutions, Erlangen, Germany) without contrast agent, from which we used 1245 subjects for this study. 261 

Subjects were overall aged between 28 and 89 (56±13) years old. T1-weighted (T1w) images of the head were acquired 262 

using a 12-channel head coil, 176 slices per volume, with a slice thickness of 1mm, and a field of view of 256mm, 263 

voxel size 1 mm3, TR=1900 ms, TI=1100 ms, TE=3.37 ms. During the MRI examination, subjects rested their eyes 264 

naturally without specific guidelines for viewing or eyelid position. All participants gave informed written consent. 265 

The study was approved by the Medical Ethics Committee of the University of Greifswald and followed the Declaration 266 

of Helsinki. All data of the study participants were accessed from an anonymized database. 267 

 268 

Manual segmentation protocol 269 

Manual annotations on a total of 74 subjects were done, using ITK Snap software (72), by two expert readers 270 

independently: one senior ophthalmologist (20 years of experience) and one junior ophthalmologist (1y). The senior 271 

one double checked the annotation by the junior and corrected them if needed. These manual annotations included 9 272 

region-of-interest (ROIs) for the right eye: lens, globe, optic nerve, intraconal and extraconal fats, and the four rectus 273 

muscles (lateral, medial, inferior, and superior), see Figure 1B. 274 

 275 

Subjective quality evaluation 276 

To evaluate the robustness of the nnU-Net, we evaluated possible correlation between the eye-quality of the images 277 

and the segmentation method’s performance, by means of the DSC. To get the subjective eye-quality of the images, 278 

two engineer experts in MR image analysis (20 and 5 years of experience) independently rated them from 0 to 4 (being 279 

0 excluded and 4 excellent quality) making use of adapted MRIQC (49) reports. These reports consist of an html-file 280 

per subject in which many thumbnails of the axial view are presented, as well as some sagittal and coronal views, to 281 

help the rater evaluate the quality of the image. A rating widget is provided, including several key components to 282 

correctly evaluate the quality of the image, such as overall quality, blur, noise, motion, etc. We modified the original 283 

reports to meet our needs by changing the field of view for the thumbnails (centered to the right eye) and adding eye-284 

oriented aspects in the rating widget such as open/close, see Figure 7. 285 

 286 

Automated segmentation method: nnU-Net 287 

nnU-Net (51) is the state-of-the-art supervised deep learning-based segmentation approach in which data augmentation 288 

is extensively used and the hyperparameters are automatically optimized. It has never been evaluated for MR-Eye, but 289 

with OCT (73). We split the manual annotated dataset into 31 for training and 43 for testing. Default nnU-Net 290 

hyperparameters used: initial learning rate 0.001 with ReduceLROnPlateau scheduler, batch size 2; ADAM optimizer; 291 

deep supervision with cross entropy plus dice loss function; data augmentation such as scaling, rotation; patch size 292 

[128, 160, 112]; Kaiming-He (0.01) weights initialization; five folds cross validation ; no postprocessing after 293 

inference; stop condition 1000 epochs, with an elapsed time of around 140s to 170s per epoch; number of classes 10 (9 294 

ROIs plus background); GPU RTX2080 and RTX3090 (the first available in the cluster), 10 CPUs per fold, RAM 295 

64GB, ran in HPC (High Power Computing) SLURM-based cluster, through Docker accessed by Singularity; PyTorch, 296 

Python 3.8. The total training time for the five folds was around 208h 20m. The inference process for one image takes 297 

about 1 minute and for the whole non-labeled dataset (1157 subjects), 66185.53s (18h 23m 05s) with GPU RTX 3060Ti. 298 

 299 

Evaluation: segmentation similarity metrics 300 
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To adequately assess the performance of the segmentation method, we computed similarity and error metrics between 301 

the ground truth (manual segmentations) and the method’s outputs on the right eye. Based on (74), appropriate metrics 302 

to evaluate semantic segmentation of biomedical images are: 303 

• Dice Similarity Coefficient (DSC): it is defined as twice the number of elements common to both sets divided 304 

by the sum of the number of elements in each set. The DSC ranges between 0 (indicating no overlap) and 1 305 

(indicating perfect overlap). It is negatively biased by small structures. 𝐷𝑆𝐶 =
2|𝐴∩Â|

|𝐴|+|Â|
. 306 

• Hausdorff Distance (HD): it measures how far two subsets of a metric space are from each other. It is the 307 

greatest of all the distances from a point in one set to the closest point in the other set. It does have units, which 308 

are the same as the units of the coordinate space in which the points are defined, mm in our case. The HD can 309 

range from 0 to infinity (no overlap between the objects). In Figure 2, this is limited to [0, 3].  310 

𝑑𝐻(𝑋, 𝑌) = max⁡{sup 𝑑(𝑥 ∈ 𝑋, 𝑌), sup 𝑑(𝑋, 𝑦 ∈ 𝑌)}. 311 

• Volume Difference (VD): it refers to the difference in the amount of three-dimensional space occupied by two 312 

objects. The VD can range from -2 (if the second volume is larger) to +2 (if the first volume is larger). In our 313 

case, the first volume is the ground truth (manual segmentation) and the second is atlas-based or nnU-Net 314 

segmentation volumes. Hence, having a positive VD means that the manual volume is larger than the 315 

corresponding method one, and a negative VD means that the method volume is larger than the manual.  316 

𝑉𝐷 =
2∗(𝑣1−𝑣2)

𝑣1+𝑣2
. 317 

 318 

Biomarkers extraction  319 

Metadata 320 

We extracted metadata (sex, age, height, weight) from the original DICOM files and computed BMI (kg/m2) per subject. 321 

 322 

Axial length 323 

We developed an algorithm to automatically extract the AL (as defined in (20) and illustrated in Figure 3B). The method 324 

inputs both the automated segmented labels and T1w images. First, we computed the centroid of the lens and an 325 

orthogonal line to the globe in the 2D axial view, measuring the distance between the extreme intersection points of 326 

this line with the lens and the globe. Additionally, we calculated two extra distances: from the globe to the intraconal 327 

fat boundary, and from the lens boundary to the cornea. To address the lack of cornea segmentation, we determined the 328 

second distance by detecting low-intensity voxels (as the cornea appears black in T1w images) and identifying a 329 

significant intensity increase with the help of Sobel filter. This process was applied to multiple slices from the same 330 

subject where required segmented structures to compute the measurement were present (lens, globe, optic nerve and 331 

intraconal fat). If that was not the case, the AL would be saved as 0 mm. The final AL for a subject was determined by 332 

selecting the slice with the highest lens-to-optic nerve ratio (and whose AL was different from 0), indicating the best 333 

alignment of these structures to compute the measurement. 334 

 335 

Volumetry 336 

The volumetry of the different segmented eye structures in mm3 was estimated based on the number of voxels per 337 

structure, each voxel of 1 mm3. 338 

 339 

Correlation between volumetry and BMI 340 

We fit the volumes and BMIs per structure through a Huber regressor, a linear model robust to outliers. We used scikit-341 

learn library (version 1.1.2). We obtained the slope, the intercept, and the R2 score. 342 

 343 

Atlas of the eye  344 

We performed metric-based registration, consisting of rigid, affine, and then deformable registration, with ANTs toolkit 345 

(75) to iteratively create an average mapping of the subjects grouped by sex (594 males and 616 females). We made 346 

use of the multivariate template construction tool, using as input images the right-eye-cropped ones obtained from the 347 

atlas-based segmentation method (in Supplementary Materials). Therefore, they were much smaller than the initial ones 348 

(that included the whole head). The maximum size of these right-eye-cropped images for the three axes were 61 x 70 349 

x 68 and 77 x 95 x 94 voxels for the male and female case, respectively, and the size of the original images was 176 x 350 

256 x 176 voxels. The size of the voxels remained 1mm3. For the deformable registration, we chose the SyN registration 351 

algorithm with the similarity metric of cross-correlation. We chose four resolution levels (8, 4, 2, 1), and iterated over 352 

each level for 80, 60, 40, and 10 iterations, respectively. Considering the reduced size of the images, we set the iteration 353 

limit (the number of iterations of the template construction) to 15, as we wanted to allow enough iterations for the 354 

template to converge and capture the variations present in our dataset. We used a 11th Gen Intel® Core™ i9-11900K 355 

× 16 processor with 64GB of RAM. The time spent to construct both atlases were 16h 15m 45s and 32h 16m 45s for 356 

the male and female cases, respectively. 357 
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 358 

To generate the labels on both eye atlases, we first registered them with each subject of its respective group (male or 359 

female), and project the labels obtained by the segmentation method, nnU-Net, of each subject to the atlas’ space. The 360 

whole process lasted for 25m and 39m for males and females, respectively. We then created the maximum probability 361 

map of the labels for both atlases based on majority voting. We also generated the probability maps of the labels for 362 

both atlases by adjusting the intensity of the color of each voxel per label based on its probability to belong to each one 363 

of the classes. More precisely, we assigned an RGB color to every label, converted them to HSV, multiplied the S 364 

(saturation) and V (value) components of the color space by the probability per label, reconverted to RGB for 365 

visualization, and blended the resulting RGB values for the different labels. This way, low-probability voxels (per 366 

label) will appear greyish, showing the uncertainty of those voxels belonging to a single class. The male and female 367 

atlases can be downloaded at (76). 368 

 369 

Quality Control Protocol 370 

Figure 8 shows a block diagram of this quality control process throughout the pipeline. We passed QC checks at 371 

different points of the pipeline (described below) to capture possible excluded-quality subjects, and then manually 372 

review those cases, using the previously mentioned reports, to ensure which of them were really excluded. The 373 

exclusion criteria for our application are two-fold: first, the quality of the image must be acceptable in terms of noise, 374 

blur, motion, and not include heavy artifacts on the area of evaluation (the eyes); and second, all structures intended 375 

for segmentation must be visible (i.e. if an image presents no visible lens, it would be removed). We didn’t follow 376 

further inclusion/exclusion criteria presented in (20), such as including only the images in which the corneal apex and 377 

the head of the optic nerve were in the same axial plane, or excluding images where there was a lateral deviation of the 378 

subject’s viewing direction. Their application (20) was focused on imaging analysis (AL and exophthalmos) whereas 379 

ours was mostly focused on image segmentation (followed by imaging analysis). 380 

 381 

The QA/QC checks we performed were: 382 

1. Before image segmentation: we ran MRIQC (49), to extract no-reference IQMs, and MRIQC classifier, trained 383 

and tested on ABIDE and DS030 datasets, respectively, with updated scikit-learn and NumPy python libraries, 384 

to extract candidates as possible excluded-quality images. From 1210 subjects (the first batch of 35 manually 385 

annotated subjects was not included in the QA/QC protocols, as they had included quality to be manually 386 

segmented in the first place), 29 were selected by the classifier as excluded, and, after manual revision, 10 387 

were really excluded regarding our criteria. 388 

2. After segmentation: we computed the already mentioned similarity metrics but this time between the results 389 

of the nnU-Net and the baseline (atlas-based) methods, to then extract the outliers using interquartile approach, 390 

as the sets do not follow a normal distribution. The values below and above the lower (Q1-1.5*IQR) and upper 391 

(Q3+1.5*IQR) bounds, respectively, were selected as outliers. In total we had 102 outliers, which we manually 392 

reviewed, and excluded 20 of them, regarding our criteria. 393 

3. After biomarkers extraction: we extracted the outliers following the same method as before in both AL and 394 

volumetry cases. From AL, there were 45 and 150 outliers for atlas-based and nnU-Net methods, respectively, 395 

some of them shared between the two. After manual revision, 21 were excluded in total. From volumetry, 25 396 

and 53 subjects popped up as outliers for atlas-based and nnU-Net methods, respectively. Again, some of them 397 

were shared between the two. After manual revision, only 2 subjects in total were excluded. In total, in this 398 

third step, we removed 23 subjects. 399 

 400 

In total, 53/1210 subjects (4.38%) were excluded, having a total of 1157 non-excluded quality subjects remaining. 401 
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Figures and Tables 669 

 670 
Figure 1. Visual comparison of manual and automated segmentation. (A) Original T1w image. (B) Manual segmentation on 9 671 
ROI: lens (red), globe (green), optic nerve (dark blue), intraconal fat (yellow), extraconal fat (cyan), lateral rectus muscle (magenta), 672 
medial rectus muscle (ivory), inferior rectus muscle (blue), and superior rectus muscle (brown). (C) nnU-Net segmentation. We 673 
provide preliminary overall DSC for nnU-Net compared to the manual segmentation (ground truth). 674 
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 675 
Figure 2. Similarity metrics on 43 subjects. On the y-axis we have the similarity metric scale (three plots, from top to bottom DSC, 676 
HD, VD), and on the x-axis we have the different eye structures. 677 

Table 1. Similarity metrics’ median and standard deviation values per structure on 43 subjects. 678 

Structure DSC HD VD 

Average 0.81±0.07 0.35±0.20 0.19±0.14 

Lens 0.86±0.08 0.13±0.07 0.20±0.23 

Globe 0.94±0.03 0.07±0.05 0.06±0.08 

Optic nerve 0.80±0.07 0.41±0.24 -0.006±0.28 

Intraconal fat 0.76±0.11 0.40±0.37 0.32±0.27 

Extraconal fat 0.73±0.17 0.44±0.82 0.42±0.33 

Lateral RM 0.82±0.14 0.25±0.22 0.17±0.26 

Medial RM 0.85±0.09 0.19±0.17 0.09±0.2 

Inferior RM 0.85±0.08 0.21±0.28 0.07±0.19 

Superior RM 0.77±0.10 0.40±0.59 0.17±0.32 

 679 
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 680 

Figure 3. Axial length (posterior surface of the cornea to the posterior pole of the ocular bulb, at the boundary with orbital fat 681 
grouped by sex. (A) Boxplots of the obtained AL per sex. (B) Example of AL extraction in MRI: on the left, manual extraction from 682 
(Error! Reference source not found.); on the right, automatic extraction using the segmented structures and the T1w image. 683 

 684 
Figure 4. Volumetry per method for each eye structure per sex (568 males and 589 females). Median values in mm3 are provided 685 
on each plot. 686 
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Table 2. Structures’ volumes median and standard deviation grouped by sex. 687 

Structure 
Male volume 

(N=) (mm3) 

Female volume 

(mm3) 

Lens 110±33 111±32 

Globe 5328±1085 5014±703 

Optic nerve 626±136 583±95 

Intraconal fat 2660±839 2120±610 

Extraconal fat 3703±1134 2609±748 

Lateral RM 557±124 500±82 

Medial RM 726±143 677±104 

Inferior RM 671±139 604±97 

Superior RM 908±255 770±193 

 688 

 689 
Figure 5. Correlation of volumetry per structure and BMI grouped by sex. There is no existing correlation between BMI and 690 
volumetry per structure based on the Huber R2 scores for any of both sex cases in any of the eye structures (the scores are lower 691 
than 0.3, indicating the lack of correlation). 692 
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 693 
Figure 6. Male and female atlases of the eye. At the top, the three views of the T1w atlas made of 594 males, below, the probability 694 
maps of the labels projected onto the atlas’ space, and on the right, the 3D-rendered maximum probability maps of these labels. At 695 
the bottom, same for 616 females. 696 
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 697 
Figure 7. Example of MR-Eye QC report with rating widget. To assess the quality of the eyes of the MR images, we created an 698 
html-based report for each of them: a series of axial slices centered and cropped on the right eye. The rating widget on the right is 699 
composed of several sliders regarding overall quality [0-4], blur, noise, motion, and background artifacts. Also, it includes two 700 
toggle buttons for bias field and eyes closed/open and a text box for further comments. Additionally, it’s possible to select specific 701 
slices where heavy artifacts are present (red squares will appear). 702 

 703 
Figure 8. QA/QC integration within a simplified scheme of the A-Eye project’s pipeline. (A) The first batch of 35 manually 704 
annotated subjects are removed from the QC protocol as they all have included quality. (B) Subjects excluded from MRIQC 705 
classifier. (C) Subjects excluded from similarity metrics outliers between nnU-Net and the baseline (atlas-based) segmentation 706 
results. (D) Subjects excluded from biomarkers outliers (AL and volumetry). In total, 53 subjects were excluded because of its image 707 
quality for our application, with 1157 subjects remaining. 708 
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