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Abstract

This study addresses the need for an automated and accurate 3D segmentation of the
healthy human eye and orbit from Magnetic Resonance Images, to allow improved
ophthalmic diagnostics and treatments. Past efforts primarily focused on small sample
sizes and varied imaging modalities. Here, we leverage a large-scale dataset of T1-
weighted MRI of 1245 subjects and the use of the deep learning-based nnU-Net for MR-
Eye segmentation tasks. The results showcase robust and accurate segmentations of
lens, globe, optic nerve, rectus muscles, and fat. We also present the automated
estimation of key ophthalmic biomarkers such as AL and volumetry, while
benchmarking correlations between body mass index (BMI) and eye structure volumes.
Quality control protocols are introduced through the pipeline to ensure the reliability
and clinical relevance of the segmented large-scale data, further enhancing the
applicability of our algorithm.
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Teaser

This study advances MR-Eye with automated 3D segmentation of human eye and orbit, biomarker extraction, and a
large-scale eye atlas in MRI.

Introduction

According to the World Health Organization (WHO), 2.2 billion people have vision impairment or blindness (1) and
preventable causes account for 80% of the total global visual impairment burden. The eyes, small, complex, and delicate
structures that serve as our primary sensory organ, convey crucial information about our visual health and can be seen
as a window to the brain, connecting us to the external world (2). In clinics, an ophthalmic unit is equipped with a
variety of devices to perform qualitative and quantitative imaging of the eye. These include, for example, ultrasound
(3), funduscopy (4), and optical coherence tomography (OCT) (5, 6), which are capable of extracting anatomical
measurements of the eyes. However, these devices are not as effective in imaging the posterior part of the eye, and/or
just provide partial information, for example when in presence of volumetric lesions or other pathologies (7, 8, 9, 10).
Therefore, the development of diagnostic methods and new imaging analysis techniques remains crucial, and that is
where Magnetic Resonance Imaging (MRI) plays a central role. With its non-invasive and penetration characteristics,
MRI is particularly a promising technique as it can provide 3D measurements of the complete eye, related to both the
tissue and organ structure, and informs about particle deposits within the tissues, such as calcification or tissues
deformations. Ophthalmic MRI (7, 8, 9, 10), known as MR-Eye (11, 12, 13, 14, 15), has been proven to be highly
effective in oncology, for the evaluation and treatment planning of tumors, as well as for the quantification of orbital
inflammation and for refractive surgery planning (10). Furthermore, given that neurodegenerative disorders frequently
involve ocular and visual comorbidities (11, 17), and oculomotor dysfunctions can signify underlying brain injuries
(18, 19), advancing the current capabilities of MR-Eye technology is paramount. This will help the assessment of the
eye-brain pathway.

The integration of MR-Eye is advancing towards a comprehensive understanding and early interception of diseases.
Key ophthalmic biomarkers can be manually depicted from MR images, such as the axial length (AL) (20, 21, 22),
useful for refractive errors, myopia, hyperopia, glaucoma, retinal detachment... or the volumetry (23, 24, 25), useful
for eye growth abnormalities, glaucoma, macular degeneration, and orbital tumors. As of today, the automated
extraction of eye biomarkers from MR-Eye remains underdeveloped. To the best of our knowledge, no tools perform
automated extraction of AL using 3D MRI. Regarding volumetry analysis, previous works (23, 24), reported only the
total orbital volume, around 27.5 cm?®. In (25), they analyzed the orbital muscle fraction in relation to the total orbital
volume in patients affected by Graves’ orbitopathy (GO). They provided volumetry of the entire globe (globe, lens,
sclera, and cornea) and extraocular muscles (four rectus and two obliques) of a specific patient as an example, with
6.95 and 7.92 cm?, respectively. However, there is currently no ophthalmic technology that can provide an accurate
volumetric estimation of the eye and its substructures to the millimeter while their possible correlations with other
biomarkers would be highly relevant.

Moreover, the development of eye models, such as eye atlases, would allow for colocalization and navigation in the
eye, and it may serve as standardized spatial references for the eye, serving as means for exploring quantitative
geometric measurements of eye morphology despite systematic differences within a population. Prior knowledge
encoded in the form of anatomical and probability atlases have played a pivotal role in conventional neuroimaging
research since many years by providing a standardized framework for spatial normalization and quantitative analysis
across diverse populations (26, 27, 28). These atlases serve as reference templates that enable researchers to map and
compare structural variations in the brain, facilitating the investigation of neurological disorders and brain function.
However, such standardized tools and frameworks are currently lacking in the field of ophthalmic imaging. A recent
study (29) has pioneered the development of unbiased MRI eye atlas, available through the HUBMAP project (30),
covering various contrasts (T1w pre-contrast, T1w post-contrast, T2w TSE, and T2w FLAIR) based on 100 images.
Despite this first effort there is the need for a larger scale atlas and to separate anatomical models tailored to each sex,
as sex differences may play a crucial role in various diseases (31, 32, 33, 34), e.g. endocrine orbitopathy.

However, achieving these advancements depends critically on robust and accurate delineation of eye and orbit
structures. Pioneer semiautomated methods relied on parametric shape modeling of the eye using prior estimations such
as spheres and ellipsoids (35, 36), or, more sophisticated manifolds, i.e. spherical meshes (37). The main drawback of
parametric models is that they rely on a deterministic pre-defined geometry ignoring normative stochastic modelling
(i.e., image intensity, shape variations, etc.) that could be derived from the anatomical variability within a specific
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90 population. To tackle this, active shape modeling (ASM) algorithms through Machine Learning (ML) optimizations
91  came up with a robust solution to fit each shape to the eye structures via statistically driven deformations. This triggered
92 progress on statistical shape models for semiautomated segmentation of both healthy eye structures and tumors (38,
93  39). Deep learning methods appeared to address this segmentation task and fully automatize it, using a 2D/3D U-Net
94 (40,41, 42). Other approaches were combinations of the previous two methods (43, 44), and clustering techniques (45),
95 having similar results. However, these previous works were generally focused on the segmentation of few eye (non-
96  orbit) structures (lens, globe, sclera, cornea, and not so common, optic nerve, only in (39, 40)). Thus, important orbit
97  structures such as rectus muscles (RM) or fat, are yet unexplored, jeopardizing the construction of a comprehensive
98  model of the eye and orbit. Moreover, despite methodological efforts on resampling (e.g. cross-validation,
99 bootstrapping, etc.), they did not count on a big cohort of manually annotated healthy subjects (sample sizes were
100 limited to 24 to 40 subjects) that would properly gather their anatomical variability for the validation of the results and
101 most of them (except for (38, 39)) relied on the availability of multi-contrast MRI setting. Finally, while image quality
102 is a well-known factor that can significantly bias automated results in neuroimaging (46, 47, 48, 49, 50), it is often
103  overlooked in MR-eye analysis. Only a few of the previous studies (39, 41, 44) implemented some form of quality
104  control prior to the segmentation task.
105
106  The contribution of this work is three-fold. First, we present (i) a comprehensive, accurate 3D MR-Eye segmentation
107 method of the healthy human adult eye and orbit structures including lens, globe, also known as vitreous humor (VH),
108  optic nerve, RM, and fat, using a T1-weighted (T1lw) MRI dataset of 1245 healthy subjects. We evaluated its
109 performance on 74 manually segmented subjects by means of the objective metrics Dice Similarity Coefficient (DSC),
110 Hausdorff distance and volume difference. The state-of-the-art supervised deep learning-based approach, nnU-Net (51),
111 is the method of choice, surpassing our proposed baseline method, namely atlas-based, whose results and method can
112 be found in the Supplementary Materials document. This segmentation method allowed us to (ii) provide automated
113  extraction benchmarks of a large-scale cohort on ocular MR-Eye biomarkers (AL and volumetry) for the first time, and
114 (iii) provide the first large-scale MR-Eye atlases per sex including 594 males and 616 females with their corresponding
115  labels (publicly available at (76)). To ensure the reliability of the segmentation and biomarkers extraction, we
116 introduced a tailored MR-Eye quality control protocol as the existing brain QC approaches failed to assess eye image
117 quality.

1 Results

119 Our work presents a deep-learning algorithm (nnU-Net) for automated 3D segmentation of eye and orbital structures,
120  capable of extracting automatically key biomarkers such as AL and volumetric measurements of eye structures
121 (volumetry). Leveraging the extensive scale of our database, we introduce, for the first time to our knowledge, a large-
122 scale probabilistic atlas of the eye.

123

124 Automated segmentation

125 Figure 1 displays a visual representation of the obtained segmentation. To quantitatively assess the performance of our
126  algorithm in anatomically delineating the eye structures as compared to manual expert annotations (referred as ground
127  truth, and more correctly to surrogate truth or reference standard), we used image quality metrics (Dice score — DSC,
128 Hausdorff distance — HD, and volume difference - VD) on a test set of 43 subjects. These 43 subjects (age 38-77, 28
129  females) have acceptable MR-Eye image quality, i.e. the MR-Eye do not contain major classic artefacts, as rated by
130 MR-Eye experts (subjective ratings, see Material and Methods section). We show that the proposed model produce
131  accurate results in delineating all eye structures (average score across structures: DSC=0.81+0.07, HD=0.35+0.20mm,
132 and VD=0.19+0.14mm3) as compared to the ground truth (scores detailed in Figure 2 and Table 1). As expected, less
133 accuracy was encountered in those structures which are more anatomically variable, such as the fat, and in the superior
134 rectus muscle.

135

136 Extraction of biomarkers at large-scale

137  After automatically delineating the anatomy of eye structures, we developed an automated procedure to compute key
138  ophthalmic biomarkers, including millimeter-scale volumetry of eye structures and AL. This automation allowed us to
139  extract these measurements from a large-scale dataset of 1,157 subjects, following Quality Control (QC; see Quality
140 Control Protocol in the Materials and Methods section).

141

142 Our findings show that our large-scale automated measurements of AL from MRI are in line with the reference manual
143 measures (20). A shows boxplots of the automated AL measures per sex, as in (20), on the large-scale cohort of 1157
144 subjects. The mean AL was close to reported values in the literature (20), which were manually extracted from the T1w
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145 images by trained ophthalmologists, for both males and females. However, in 107/1157 cases, the AL could not be
146 computed due to methodological constraints (e.g., 79 unsegmented lenses), that are further explained in the Materials
147  and Methods section). Specifically, the mean values and standard deviations are:

148 e NnU-Net: 23.8£1.7 mm (524 M) and 22.9£1.6 mm (526 F)
149 e  Previous studies (20): 23.4+0.8 mm (1059 M) and 22.8+0.9 mm (867 F)
150

151 In terms of volumetry extraction, we provide the first large-scale benchmark MR-Eye volumetry of all eye structures.
152 We observed a trend of males having larger eye structures than females (except for the lens), particularly in both
153 intraconal and extraconal fat. Figure 4 illustrates the extracted volumetry per structure, grouped by sex, using violin
154  plots from the large-scale cohort of 1,157 subjects. Table 2 presents median and standard deviation for each structure.
155 Interestingly, we did not find any significant correlation between body mass index (BMI) and the volumes of eye
156  structures. Using correlation analysis and Huber linear regression, we observed Huber scores (R?) below 0.1, except
157  forintraconal fat in males, which was 0.11. Figure 5 illustrates these findings with scatter plots, Huber regression lines,
158  and Huber R? scores, grouped by sex.

159

160 Atlas of the eye

161  Figure 6 presents large-scale, unbiased male and female eye atlases using MRI, constructed from 594 males and 616
162  females, with their corresponding probability maps of the different labels projected onto the average respective male
163  and female templates, which are publicly released. Additionally, a 3D render of the maximum probability maps is
164  shown. The volumes of these maps indicate similar structure sizes for both sexes, except for the fat, which is larger in
165 males, particularly the extraconal fat.

166

w7 DISCUSSION

168 MR-Eye has increasingly gathered interest in the ophthalmic and radiology community (10), due to the incredible tissue
169  contrast that it can achieve in a non-invasive way. Furthermore, and unlike most ophthalmic tools which evaluate the
170  anatomy or the visual performance of the eyes (Ocular Coherence Tomography (OCT) (5, 6), biometry (52),
171 microperimetry (53), eye-tracking, contrast sensitivity), MR-Eye can investigate several pathologies behind the globe,
172 involving nerves paralysis, lesions, tumors and inflammation (7, 10, 54), while exploring the 3D complexity of the eye-
173 shape. In fact, 3T and 1.5T MR-Eye clinical protocols are used regularly in the case of tumor (retinoblastoma (55, 56)
174 or uveal melanoma (57, 58)), or ocular inflammations (10, 20, 57, 59), or pathologies with suspected link to the brain
175 (54), and constitute the current state of the art of clinical practice. Very recent technical advancements propose new
176  ways to deal with the presence of motion artefacts during MR-Eye acquisition (60, 61, 62, 63, 64) or at ultra-high field
177 (7T) (15, 65), increasing the usability and reproducibility of MR-Eye in ophthalmology.

178

179 In this rapidly growing field, it is crucial to enable clinicians to extract measurements from MR-Eye and benchmark
180 new metrics, providing them with tools not available before. To address this need, we propose a comprehensive
181  automated pipeline. This pipeline is benchmarked on a large-scale MR-Eye database of 1,157 subjects and introduces
182  amethodology for automated 3D segmentation, see Figure 1, of all eye structures using deep-learning algorithm (nnU-
183 Net). It extracts key ophthalmic biomarkers, such as AL (Figure 3) and volumetry (Figure 4), and allows us to build
184  the first large-scale comprehensive eye atlas for both males and females, complete with their corresponding probability
185 maps (Figure 6).

186

187 Our automated 3D segmentation via deep learning (hnnU-Net) of all eye structures, once compared with manual
188  segmentation performed by expert ophthalmologists on 43 testing subjects, is optimal with respect to classic image
189  quality metrics, namely DSC, HD, and VD. These results are in line with previous reported values of segmentation
190 performance for lens, globe, and optic nerve (38, 39, 41, 42, 43, 44), but they relied on multi-contrast MRI and healthy
191  and non-healthy eyes, including tumors such as retinoblastoma (41, 42, 43) and uveal melanoma (39, 44). A comparison
192  table of the performances of these previous methods can be found in (42). To our knowledge, this study reports for the
193  first time the anatomical delineation of structures such as fat and rectus muscles’. Moreover, our automated
194  segmentation completes in just one minute per volume. With its high accuracy, it could be seamlessly integrated into
195 MRI console analysis, potentially saving clinicians the 10 to 20 minutes they currently spend on manual segmentation
196 and streamlining the clinical flow. Additionally, we aim to adapt our segmentation to handle variations in contrast and
197  spacing, aligning with the current state-of-the-art MR-Eye protocols, which include T1w imaging, fat-suppressed T1w
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198 and T2w imaging, and contrast injections (7, 8, 10, 54). Incorporating uncertainty quantification for automated
199 predictions can be beneficial to such scopes (66).

200

201  Toensure the removal of low-quality images that could compromise the results, we introduced QC protocols at multiple
202  stages of the segmentation pipeline. Inspired by state-of-the-art methods, MRI-QC (49), we discovered a discordance
203 between low-quality image candidates identified by MRI-QC and those identified by our MR-Eye experts. This
204 suggests that QC in MR-Eye requires different metrics and criteria compared to brain imaging, highlighting a crucial
205 new area of investigation. Future development will need to define image quality metrics tailored specifically to eye
206  tissues, incorporate non-tissue metrics, and extend scrutiny to the periorbital region.

207

208  To further validate our pipeline, we introduce a novel large-scale automated method to measure AL from segmented
209 MR-Eye volumes. Our automated results closely match the reference manual measures of AL (20, 21, 22) performed
210 by expert ophthalmologists on a database of 1,157 subjects. This reinforces the reliability of our automated approaches
211  for both eye structure segmentation and AL extraction.

212

213 We provide the first large-scale benchmark for volumetry of all eye structures at a millimeter scale. Previous work
214 introduced volumetry extraction from MR-Eye volumes (23, 24, 25), but for the entire globe and extraocular muscles
215 in cm®. By distinguishing between male and female eye anatomy, we observe a general trend where males have larger
216  eye structures than females, with the notable exception of the lens. This sex-wise differentiation in eye structure
217  volumetry could have significant implications for understanding sex-specific ophthalmological conditions and tailoring
218 more personalized medical treatments, particularly as such differentiation is nowadays needed for a better health care
219 (33, 34). Interestingly, despite a previous study (20) found that the exophthalmometric value, defined as the
220 perpendicular distance between the interzygomatic line and the posterior surface of the cornea (20), was significantly
221  associated with AL (p<0.001) and that it was also positively correlated with BMI (p<0.001), our investigation revealed
222 no significant correlation between body mass index (BMI) and eye structure volumes. This finding suggests that
223 variations in eye structure volumes may be not associated with BMI.

224

225 Our study introduces a novel method for automated biomarker extraction, paving the way for benchmarking MR-Eye-
226 derived measurements of the adult human eye. The implications of these findings are vast: potentially enhancing
227  diagnostic precision, informing surgical planning, improving our understanding of eye anatomy across different
228  populations, and saving clinicians’ time. Future research should aim to further validate these methods in pathological
229  eyes and explore additional biomarkers. For instance, evaluating changes in rectus muscles is keys in pathology such
230  as strabismus (67, 68), or open to the evaluation of new elements such as cerebrospinal fluid (CSF), whose deposit in
231 the optic nerve plays a crucial role in pathologies such as papilledema and glaucoma (69, 70).

232

233 In this study we present pioneering male and female eye MRI atlases, along with their detailed labels. Atlases are
234 crucial in research as reference tools for registration and segmentation in population imaging studies. In clinical
235 practice, they can facilitate the diagnosis and treatment of a wide range of ocular diseases, help to reveal abnormal
236 structural changes, enhance surgical planning, and improve our understanding of sex-specific variations in eye anatomy
237  and physiology (26). These atlases offer a valuable resource for advancing the study of ocular anatomy and can
238  significantly support the accuracy of eye-related research and clinical applications, as has been largely demonstrated
239  for brain studies (26, 27, 28, 71). Furthermore, the atlases enable colocalization and navigation within the eye, serving
240  as a standardized spatial reference. This facilitates the exploration of quantitative geometric measurements of eye
241 morphology and structures, even in the presence of systematic population differences (29).

242

243 MR-Eye is indispensable when other ophthalmologic imaging modalities fail (7, 8, 9, 10), and constitutes a rapidly
244 expanding field. Our study sets a new precedent in ophthalmology by demonstrating the feasibility and accuracy of
245 large-scale automated segmentation and biomarker extraction from MR-Eye. Our findings propose a ready-to-use
246 solution to promote the adoption of accurate MR-Eye segmentation, together with its applicability in the clinical and
247 research setting.
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x  Materials and Methods

249 Experimental Design

250  We evaluated quantitatively a deep learning-based automated segmentation method on a cohort of manually segmented
251  subjects using similarity metrics (surface overlap, volume error and distance-based error). Then, we performed a large-
252 scale analysis on relevant ophthalmic biomarkers, namely volumetry of eye structures and AL measurements, for which
253  we developed a method for its automated extraction. This allowed further analysis of possible correlation between
254  volumes and BMI grouped by sex (males and females). We introduced eye-quality control checks that are described
255 later in this section. Thus, the major components of our study were large-scale cohort, automated segmentation
256 methods, automated biometry extraction, quality control analysis, and statistical analysis.

257
258 Dataset

259  The cohort was originally acquired within the Study of Health in Pomerania (SHIP) (20) and reused in the context of
260 this study. A total of 3030 healthy subjects underwent whole-body MRI ona 1.5T scanner Magnetom Avanto (Siemens
261 Medical Solutions, Erlangen, Germany) without contrast agent, from which we used 1245 subjects for this study.
262 Subjects were overall aged between 28 and 89 (56+13) years old. Ti.weighted (T1w) images of the head were acquired
263 using a 12-channel head coil, 176 slices per volume, with a slice thickness of 1mm, and a field of view of 256mm,
264  voxel size 1 mm3, TR=1900 ms, TI=1100 ms, TE=3.37 ms. During the MRI examination, subjects rested their eyes
265 naturally without specific guidelines for viewing or eyelid position. All participants gave informed written consent.
266  The study was approved by the Medical Ethics Committee of the University of Greifswald and followed the Declaration
267  of Helsinki. All data of the study participants were accessed from an anonymized database.

268

269 Manual segmentation protocol

270 Manual annotations on a total of 74 subjects were done, using ITK Snap software (72), by two expert readers
271 independently: one senior ophthalmologist (20 years of experience) and one junior ophthalmologist (1y). The senior
272 one double checked the annotation by the junior and corrected them if needed. These manual annotations included 9
273 region-of-interest (ROISs) for the right eye: lens, globe, optic nerve, intraconal and extraconal fats, and the four rectus
274 muscles (lateral, medial, inferior, and superior), see Figure 1B.

275

276  Subjective quality evaluation

277  To evaluate the robustness of the nnU-Net, we evaluated possible correlation between the eye-quality of the images
278  and the segmentation method’s performance, by means of the DSC. To get the subjective eye-quality of the images,
279  two engineer experts in MR image analysis (20 and 5 years of experience) independently rated them from 0 to 4 (being
280 0 excluded and 4 excellent quality) making use of adapted MRIQC (49) reports. These reports consist of an html-file
281 per subject in which many thumbnails of the axial view are presented, as well as some sagittal and coronal views, to
282 help the rater evaluate the quality of the image. A rating widget is provided, including several key components to
283  correctly evaluate the quality of the image, such as overall quality, blur, noise, motion, etc. We modified the original
284 reports to meet our needs by changing the field of view for the thumbnails (centered to the right eye) and adding eye-
285  oriented aspects in the rating widget such as open/close, see Figure 7.

286

287  Automated segmentation method: nnU-Net

288 nnU-Net (51) is the state-of-the-art supervised deep learning-based segmentation approach in which data augmentation
289 is extensively used and the hyperparameters are automatically optimized. It has never been evaluated for MR-Eye, but
290  with OCT (73). We split the manual annotated dataset into 31 for training and 43 for testing. Default nnU-Net
291 hyperparameters used: initial learning rate 0.001 with ReduceLROnNPlateau scheduler, batch size 2; ADAM optimizer;
292  deep supervision with cross entropy plus dice loss function; data augmentation such as scaling, rotation; patch size
293 [128, 160, 112]; Kaiming-He (0.01) weights initialization; five folds cross validation ; no postprocessing after
294 inference; stop condition 1000 epochs, with an elapsed time of around 140s to 170s per epoch; number of classes 10 (9
295 ROIs plus background); GPU RTX2080 and RTX3090 (the first available in the cluster), 10 CPUs per fold, RAM
296 64GB, ran in HPC (High Power Computing) SLURM-based cluster, through Docker accessed by Singularity; PyTorch,
297 Python 3.8. The total training time for the five folds was around 208h 20m. The inference process for one image takes
298  about 1 minute and for the whole non-labeled dataset (1157 subjects), 66185.53s (18h 23m 05s) with GPU RTX 3060Ti.
299

300 Evaluation: segmentation similarity metrics
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301  To adequately assess the performance of the segmentation method, we computed similarity and error metrics between
302  the ground truth (manual segmentations) and the method’s outputs on the right eye. Based on (74), appropriate metrics
303 to evaluate semantic segmentation of biomedical images are:

304 e Dice Similarity Coefficient (DSC): it is defined as twice the number of elements common to both sets divided
305 by the sum of the number of elements in each set. The DSC ranges between 0 (indicating no overlap) and 1
306 (indicating perfect overlap). It is negatively biased by small structures. DSC = fflf:lﬁll
307 e Hausdorff Distance (HD): it measures how far two subsets of a metric space are from each other. It is the
308 greatest of all the distances from a point in one set to the closest point in the other set. It does have units, which
309 are the same as the units of the coordinate space in which the points are defined, mm in our case. The HD can
310 range from 0 to infinity (no overlap between the objects). In Figure 2, this is limited to [0, 3].
311 dy(X,Y) =max{supd(x € X,Y),supd(X,y € V)}.
312 e Volume Difference (\VD): it refers to the difference in the amount of three-dimensional space occupied by two
313 objects. The VD can range from -2 (if the second volume is larger) to +2 (if the first volume is larger). In our
314 case, the first volume is the ground truth (manual segmentation) and the second is atlas-based or nnU-Net
315 segmentation volumes. Hence, having a positive VD means that the manual volume is larger than the
316 corresponding method one, and a negative VD means that the method volume is larger than the manual.
317 yp =20

v1+v2
318

319 Biomarkers extraction

320 Metadata

321  We extracted metadata (sex, age, height, weight) from the original DICOM files and computed BMI (kg/m?) per subject.
322

323  Axial length

324 We developed an algorithm to automatically extract the AL (as defined in (20) and illustrated in Figure 3B). The method
325 inputs both the automated segmented labels and T1w images. First, we computed the centroid of the lens and an
326  orthogonal line to the globe in the 2D axial view, measuring the distance between the extreme intersection points of
327  this line with the lens and the globe. Additionally, we calculated two extra distances: from the globe to the intraconal
328  fat boundary, and from the lens boundary to the cornea. To address the lack of cornea segmentation, we determined the
329  second distance by detecting low-intensity voxels (as the cornea appears black in Tlw images) and identifying a
330  significant intensity increase with the help of Sobel filter. This process was applied to multiple slices from the same
331  subject where required segmented structures to compute the measurement were present (lens, globe, optic nerve and
332 intraconal fat). If that was not the case, the AL would be saved as 0 mm. The final AL for a subject was determined by
333 selecting the slice with the highest lens-to-optic nerve ratio (and whose AL was different from 0), indicating the best
334 alignment of these structures to compute the measurement.

335

336  Volumetry

337  The volumetry of the different segmented eye structures in mm?® was estimated based on the number of voxels per
338  structure, each voxel of 1 mm3.

339

340 Correlation between volumetry and BMI

341  We fit the volumes and BMIs per structure through a Huber regressor, a linear model robust to outliers. We used scikit-
342 learn library (version 1.1.2). We obtained the slope, the intercept, and the R? score.

343

344  Atlas of the eye

345  We performed metric-based registration, consisting of rigid, affine, and then deformable registration, with ANTSs toolkit
346 (75) to iteratively create an average mapping of the subjects grouped by sex (594 males and 616 females). We made
347 use of the multivariate template construction tool, using as input images the right-eye-cropped ones obtained from the
348  atlas-based segmentation method (in Supplementary Materials). Therefore, they were much smaller than the initial ones
349 (that included the whole head). The maximum size of these right-eye-cropped images for the three axes were 61 x 70
350  x 68 and 77 x 95 x 94 voxels for the male and female case, respectively, and the size of the original images was 176 x
351 256 x 176 voxels. The size of the voxels remained 1mm?3. For the deformable registration, we chose the SyN registration
352 algorithm with the similarity metric of cross-correlation. We chose four resolution levels (8, 4, 2, 1), and iterated over
353  each level for 80, 60, 40, and 10 iterations, respectively. Considering the reduced size of the images, we set the iteration
354 limit (the number of iterations of the template construction) to 15, as we wanted to allow enough iterations for the
355  template to converge and capture the variations present in our dataset. We used a 11th Gen Intel® Core™ i9-11900K
356 x 16 processor with 64GB of RAM. The time spent to construct both atlases were 16h 15m 45s and 32h 16m 45s for
357  the male and female cases, respectively.

Page 7 of 18



https://doi.org/10.1101/2024.08.15.608051
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.608051; this version posted August 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

358

359  To generate the labels on both eye atlases, we first registered them with each subject of its respective group (male or
360 female), and project the labels obtained by the segmentation method, nnU-Net, of each subject to the atlas’ space. The
361  whole process lasted for 25m and 39m for males and females, respectively. We then created the maximum probability
362 map of the labels for both atlases based on majority voting. We also generated the probability maps of the labels for
363 both atlases by adjusting the intensity of the color of each voxel per label based on its probability to belong to each one
364  of the classes. More precisely, we assigned an RGB color to every label, converted them to HSV, multiplied the S
365 (saturation) and V (value) components of the color space by the probability per label, reconverted to RGB for
366  visualization, and blended the resulting RGB values for the different labels. This way, low-probability voxels (per
367 label) will appear greyish, showing the uncertainty of those voxels belonging to a single class. The male and female
368  atlases can be downloaded at (76).

369

370 Quality Control Protocol

371 Figure 8 shows a block diagram of this quality control process throughout the pipeline. We passed QC checks at
372 different points of the pipeline (described below) to capture possible excluded-quality subjects, and then manually
373 review those cases, using the previously mentioned reports, to ensure which of them were really excluded. The
374 exclusion criteria for our application are two-fold: first, the quality of the image must be acceptable in terms of noise,
375 blur, motion, and not include heavy artifacts on the area of evaluation (the eyes); and second, all structures intended
376  for segmentation must be visible (i.e. if an image presents no visible lens, it would be removed). We didn’t follow
377  further inclusion/exclusion criteria presented in (20), such as including only the images in which the corneal apex and
378  the head of the optic nerve were in the same axial plane, or excluding images where there was a lateral deviation of the
379 subject’s viewing direction. Their application (20) was focused on imaging analysis (AL and exophthalmos) whereas
380  ours was mostly focused on image segmentation (followed by imaging analysis).

381

382 The QA/QC checks we performed were:

383 1. Before image segmentation: we ran MRIQC (49), to extract no-reference IQMs, and MRIQC classifier, trained
384 and tested on ABIDE and DS030 datasets, respectively, with updated scikit-learn and NumPy python libraries,
385 to extract candidates as possible excluded-quality images. From 1210 subjects (the first batch of 35 manually
386 annotated subjects was not included in the QA/QC protocols, as they had included quality to be manually
387 segmented in the first place), 29 were selected by the classifier as excluded, and, after manual revision, 10
388 were really excluded regarding our criteria.

389 2. After segmentation: we computed the already mentioned similarity metrics but this time between the results
390 of the nnU-Net and the baseline (atlas-based) methods, to then extract the outliers using interquartile approach,
391 as the sets do not follow a normal distribution. The values below and above the lower (Q1-1.5*IQR) and upper
392 (Q3+1.5*IQR) bounds, respectively, were selected as outliers. In total we had 102 outliers, which we manually
393 reviewed, and excluded 20 of them, regarding our criteria.

394 3. After biomarkers extraction: we extracted the outliers following the same method as before in both AL and
395 volumetry cases. From AL, there were 45 and 150 outliers for atlas-based and nnU-Net methods, respectively,
396 some of them shared between the two. After manual revision, 21 were excluded in total. From volumetry, 25
397 and 53 subjects popped up as outliers for atlas-based and nnU-Net methods, respectively. Again, some of them
398 were shared between the two. After manual revision, only 2 subjects in total were excluded. In total, in this
399 third step, we removed 23 subjects.

400

401 In total, 53/1210 subjects (4.38%) were excluded, having a total of 1157 non-excluded quality subjects remaining.
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= Figures and Tables

A B C
670

671 Figure 1. Visual comparison of manual and automated segmentation. (A) Original T1w image. (B) Manual segmentation on 9
672 ROI: lens (red), globe (green), optic nerve (dark blue), intraconal fat (yellow), extraconal fat (cyan), lateral rectus muscle (magenta),
673 medial rectus muscle (ivory), inferior rectus muscle (blue), and superior rectus muscle (brown). (C) nnU-Net segmentation. We
674 provide preliminary overall DSC for nnU-Net compared to the manual segmentation (ground truth).
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Similarity metrics MANUAL vs nnU-Net (N=43)
D5C
06 . . ? '

Hausdorff Distance

=
o

Value
=
=

t

Value

Volume Difference

Value

-1

-2

welral\ Ier!|s gu‘be rter‘ve |ntracolnal fat exlrac(;nal fat Iaterél RM medllal RM |nfeml:tr RM super;ur RM
Figure 2. Similarity metrics on 43 subjects. On the y-axis we have the similarity metric scale (three plots, from top to bottom DSC,
HD, VD), and on the x-axis we have the different eye structures.

Table 1. Similarity metrics’ median and standard deviation values per structure on 43 subjects.

Structure DSC HD VD
Average 0.81+0.07 0.35+0.20 0.19+0.14
Lens 0.86+0.08 0.13+0.07 0.20+0.23
Globe 0.94+0.03 0.07+0.05 0.06+0.08

Optic nerve 0.80+0.07 0.41+0.24 -0.006+0.28
Intraconal fat 0.76+0.11 0.40£0.37 0.32+0.27
Extraconal fat 0.73+0.17 0.44+0.82 0.42+0.33

Lateral RM 0.82+0.14 0.25+0.22 0.17+0.26

Medial RM 0.85+0.09 0.19+0.17 0.09+0.2

Inferior RM 0.85+0.08 0.21+0.28 0.07+0.19
Superior RM 0.77+0.10 0.40+0.59 0.17+0.32
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Axial length grouped by sex (mm) - nnUNet
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680

681 Figure 3. Axial length (posterior surface of the cornea to the posterior pole of the ocular bulb, at the boundary with orbital fat
682 grouped by sex. (A) Boxplots of the obtained AL per sex. (B) Example of AL extraction in MRI: on the left, manual extraction from
683 (Error! Reference source not found.); on the right, automatic extraction using the segmented structures and the T1w image.

Volumetry per Structure in mm?* per Sex. Total = 1157 subjects
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685 Figure 4. Volumetry per method for each eye structure per sex (568 males and 589 females). Median values in mm? are provided
686 on each plot.
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687 Table 2. Structures’ volumes median and standard deviation grouped by sex.

Male volume Female volume

Structure (N=) (mm?) (mm?)
Lens 110433 111432
Globe 5328+1085 5014+703
Optic nerve 6261136 583+95
Intraconal fat 2660+839 2120+610
Extraconal fat 3703+1134 2609+748
Lateral RM 557+124 500+82
Medial RM 726+143 677+104
Inferior RM 671+139 604+97
Superior RM 9084255 770+£193
688
689

690 Figure 5. Correlation of volumetry per structure and BMI grouped by sex. There is no existing correlation between BMI and
691 volumetry per structure based on the Huber R? scores for any of both sex cases in any of the eye structures (the scores are lower
692 than 0.3, indicating the lack of correlation).
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Atlas 594 males
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Figure 6. Male and female atlases of the eye. At the top, the three views of the T1w atlas made of 594 males, below, the probability
maps of the labels projected onto the atlas’ space, and on the right, the 3D-rendered maximum probability maps of these labels. At

the bottom, same for 616 females.
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m

698 Figure 7. Example of MR-Eye QC report with rating widget. To assess the quality of the eyes of the MR images, we created an
699 html-based report for each of them: a series of axial slices centered and cropped on the right eye. The rating widget on the right is
700 composed of several sliders regarding overall quality [0-4], blur, noise, motion, and background artifacts. Also, it includes two
701 toggle buttons for bias field and eyes closed/open and a text box for further comments. Additionally, it’s possible to select specific
702 slices where heavy artifacts are present (red squares will appear).

697 e H O ] '
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703
704 Figure 8. QA/QC integration within a simplified scheme of the A-Eye project’s pipeline. (A) The first batch of 35 manually

705 annotated subjects are removed from the QC protocol as they all have included quality. (B) Subjects excluded from MRIQC
706 classifier. (C) Subjects excluded from similarity metrics outliers between nnU-Net and the baseline (atlas-based) segmentation
707 results. (D) Subjects excluded from biomarkers outliers (AL and volumetry). In total, 53 subjects were excluded because of its image
708 quality for our application, with 1157 subjects remaining.
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