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Abstract 
Accurate taxonomic profiling of the human microbiome composition is crucial for linking microbial 
species to health outcomes. Therefore, we created the Clinical Microbiomics Human Microbiome 
Profiler (CHAMP), a comprehensive tool designed for the profiling of prokaryotes, eukaryotes, and 
viruses across all body sites. Boasting a reference database derived from 30,382 human microbiome 
samples, CHAMP covers 6,567 prokaryotic and 244 eukaryotic species as well as 64,003 viruses. We 
used a diverse set of in silico metagenomes and DNA mock communities to benchmark CHAMP 
against the established profiling tools MetaPhlAn 4, Bracken 2, mOTUs 3, and Phanta. CHAMP 
demonstrated unparalleled species recall, F1 score, and significantly reduced false positives 
compared to all other tools benchmarked. Indeed, the false positive relative abundance (FPRA) for 
CHAMP was, on average, 50-fold lower than the second-best performing profiler. CHAMP also 
proved to be more robust than the other tools to low sequencing depths, highlighting its application 
for low biomass samples. Taken together, this establishes CHAMP as a best-in-class human 
microbiome profiler of prokaryotes, eukaryotes, and viruses in diverse and complex communities 
across low and high biomass samples. CHAMP profiling is offered as a service by Clinical 
Microbiomics A/S and available for a fee at https://cosmosidhub.com. 

 

Introduction 
Understanding the role of the human microbiome in health and disease hinges on accurate species-
level taxonomic profiling. This requires an accurate representation of the diverse consortium of 
bacteria, archaea, eukaryotes, and viruses across various human body sites (Huttenhower et al., 
2012; Liang and Bushman, 2021). Hence, taxonomic profiling tools must accurately represent the 
true sample composition, even in samples with variable biomass and sequencing depths, while 
minimizing false detections. 
 The landscape of known human microbiome microorganisms has expanded significantly, largely due 
to the generation of bacterial and archaeal genome assemblies from metagenomic data, also known 
as metagenome-assembled genomes (MAGs). This has allowed the creation of comprehensive MAG 
databases such as the Unified Human Gastrointestinal Genome (UHGC) collection (Almeida et al., 
2020) and the Early-Life Gut Genomes (ELGG) catalog (Zeng et al., 2022). Similarly, bacteriophage 
identification from metagenomic and metavirome data has led to the discovery of thousands of 
novel phages (Johansen et al., 2022). Binning of eukaryotic contigs from metagenomic samples, 
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albeit less developed, has also yielded some MAGs, although nowhere near the number found for 
prokaryotes (Olm et al., 2019; Saraiva et al., 2023). Consequently, most profiling databases combine 
known and novel prokaryotic and viral species from isolates and metagenomes, whilst eukaryote 
genomes are primarily represented by sequenced isolates (Parks et al., 2021; Blanco-Míguez et al., 
2023). 

Multiple strategies for taxonomic profiling exist, among which the most used are marker-gene and k-
mer based methods (Wright et al., 2023). Marker-gene based methods such as MetaPhlAn 4 (Blanco-
Míguez et al., 2023) and MOTUs 3 (Ruscheweyh et al., 2022) align entire sequencing reads to specific 
gene catalogs, whereas k-mer based methods, such as Bracken 2, compare short subsequences of 
reads against extensive reference databases (Wood et al., 2019). Marker-gene and k-mer based 
strategies have both performed well in profiling benchmarks (Wright et al., 2023). Standardization of 
benchmarking practices in human microbiome research including convergence of the datasets (both 
in silico and DNA mock communities), performance metrics and reporting systems is crucial for the 
impartial evaluation of accuracy and precision across taxonomic profilers (Sczyrba et al., 2017; Amos 
et al., 2020).  

Here we introduce CHAMP, a comprehensive human microbiome profiler, which synergizes sensitive 
marker gene identification with the potential of MAGs to profile prokaryotes and eukaryotes, and a 
specialized k-mer method for low-abundance phage detection. CHAMP was designed exclusively for 
the taxonomic profiling of short-read (>100bp), paired-end and human microbiome data. CHAMP 
focuses on accurately capturing the diversity across the human microbiome, covering a total of nine 
body sites and 6,546 bacterial species, 21 archaeal species, and 244 eukaryotic species, and 64,003 
viruses. Our profiler shows improved performance across all domains of life and viruses, and is 
robust across sequencing depths, as validated by both in silico and sequenced DNA mock 
communities. 

Materials and Methods 

Human Microbiome Reference gene catalog for prokaryote and eukaryote profiling 

The Clinical Microbiomics Human Microbiome Reference (HMR05) gene catalog was derived 
primarily from high-quality (HQ) prokaryotic MAGs identified de novo. These were complemented 
with MAGs from public repositories UHGC (82,834 MAGs and 6,428 isolates; Almeida et al., 2020) 
and ELGG (25,303 MAGs; Zeng et al., 2022). The de novo MAGs were generated from 30,382 human 
microbiome samples collected across nine distinct human body sites, including: gut (n = 19,296), 
small intestinal biopsies (n = 780), oral (n = 4,994), skin (n = 4,306), urine (n = 934), nasopharyngeal 
(n = 422), vaginal (n = 422), airway (n = 108), and milk (n = 100). 11% (n = 3,317) of the samples were 
not publicly available. In addition, isolate genome assemblies from NCBI (Sayers et al., 2022) and 
PATRIC (Wattam et al., 2017) were added to capture otherwise missing species of interest, including 
human-associated pathogens and probiotics. Human-relevant eukaryotic species were manually 
collected from various sources, including an analysis of gut fungal species (Nash et al., 2017), publicly 
available lists of pathogens from the World Health Organization (WHO), and the eukaryotes profiled 
by MetaPhlAn 4 (Blanco-Míguez et al., 2023), resulting in 2740 genomes representing 244 species. In 
addition, genomes from prokaryotic and eukaryotic species relevant for benchmarking and absolute 
abundance estimation by spike-in were also included. 

For MAGs not obtained from publicly available MAG repositories, reads were trimmed, host-filtered, 
and assembled into contigs with MEGAHIT (v. 1.2.9, Li et al., 2015) or metaSPAdes (v. 3.15.5, Nurk et 
al., 2017), and then binned using VAMB (v. 3.0.6, Nissen et al., 2021). MAGs were considered high-
quality if they had > 90% completeness and < 5% contamination based on CheckM2 (v. 2022-07-19; 
Chklovski et al., 2023) and passed the GUNC chimerism test (v. 1.0.5, Orakov et al., 2021). 
Redundant MAGs were removed by clustering MAGs within a species cluster using a 99.5% ANI 
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cutoff. All MAGs were taxonomically annotated using GTDB-Tk (v. 2.3.0, Chaumeil et al., 2022) with 
Genome Taxonomy Database (GTDB) release 214 (Parks et al., 2022). To combine MAGs from 
multiple VAMB batches and MAG repositories, MAGs annotated to the same species were merged. 
MAGs without GTDB-Tk species-level annotations were clustered into species clusters based on 95% 
average nucleotide identity (ANI) (dRep, Olm et al., 2017; FastANI, Jain et al., 2018). This resulted in 
6,567 prokaryotic species clusters, 11% of which were unannotated at a species level according to 
GTDB. 

Identification of pan-genomes and signature genes 

To derive a pan-genome catalog for each species, we called genes using Pyrodigal (v 2.0.2, Larralde, 
2022) and then used a three-step clustering approach. First, nucleotide sequences of the genes were 
clustered with MMseqs2 (v. 14, Steinegger & Söding, 2018) with 98% identity and 90% bi-directional 
coverage. Second, the representatives from the first iteration were clustered with MMseqs2 to 95% 
identity and 90% bi-directional coverage. Representatives of the second iteration were chosen as the 
ones with highest cardinality from the first iteration. Third, the second iteration representatives 
were clustered with CD-HIT (cd-hit-est, v. 4.8.1, Fu et al., 2012) to 95% identity and 90% coverage of 
the shorter sequence. For the third iteration clusters, genes were discarded if they were overlapping 
with >20% of their length with another gene of higher cardinality, such that only non-overlapping 
(<20% of shorter sequence) genes with the highest cardinality were left. Genes shorter than 100 bp 
or with a species prevalence < 1% were discarded.  

For prokaryotes and eukaryotes separately, the complete set of pangenomes were then clustered 
with MMseqs2 to 97% identity and 90% bi-directional coverage to obtain between-species clusters. 
The pan-genomes from prokaryotic (n = 6,567) and eukaryotic (n = 244) species were merged into a 
final gene catalog of 25,761,278 genes. 

To enable quantification of each species in the database, up to 250 signature (also called marker) 
genes were selected for each species based on core genes (≥ 60% prevalence in species MAGs) with 
a length ≥ 200 bp and ≤ 20 kbp. To ensure specificity, a potential signature gene was removed if it 
aligned to another gene in the catalog with > 97% identity over 100 bp. However, if fewer than 20 
genes met these criteria for a species, then genes with segments > 200 bp without alignments to 
other genes were used, and non-unique segments of these genes were masked. 

Preprocessing of sequencing reads  

Raw reads were trimmed to remove adapters and low-quality bases (Phred score < 30) using 
AdapterRemoval (v. 2.3.1, Schubert et al., 2016). Then, host contamination was removed by 
discarding read pairs where either read mapped to the human reference genome GRCh38 with 
Bowtie2 (v. 2.4.2, Langmead & Salzberg, 2012). Resulting read pairs were retained if both reads had 
a length of at least 100 bp; these were classified as high-quality non-host (HQNH) reads. 

Abundance profiling of prokaryotes and eukaryotes 

HQNH reads were mapped to the HMR05 pan-genome catalog using BWA mem (v. 0.7.17, Li and 
Durbin, 2009). An individual read was considered uniquely mapped to a gene if the MAPQ was ≥ 20 
and the read aligned with ≥ 95 % identity over ≥ 100 bp. 

However, if > 10 bases of the read did not align to the gene or extend beyond the gene, the read was 
considered unmapped. The expected read counts for signature genes in each species in each sample 
were modelled with a negative binomial distribution as follows. First, if (1) ≥50 of the signature 
genes for a species had non-zero read counts and (2) ≥99% of genes were expected to have non-zero 
read counts given the total read count for that species (1-(((n_genes-1)/n_genes)^n_reads) ≥0.99), 
then signature genes with zero reads were ignored in that sample. Second, the expected 99% 
quantile (between 0.5% and 99.5%) of read counts was calculated for each gene based on a negative 
binomial distribution with a mean proportional to the effective gene length and dispersion defined 
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as log2 (effective gene length). The abundance of each species was then calculated, using only the 
signature genes with observed read counts within the expected 99% quantile, as the mean read 
count normalized by effective gene length. Species abundances were set to zero if fewer than 5 
genes with non-zero read counts were within the 99% quantile. Furthermore, species with < 66% of 
genes with non-zero read counts within the 99% quantile were set to zero, unless the median 
abundance of signature genes was non-zero, in which case the median gene-length-corrected 
abundance of non-zero genes was used. Abundances were then normalized sample-wise such that 
the total abundance of all species sums to 100%. 

Human phage and viral genome database for bacteriophage profiling 

The Human Virome Reference v. 1 (HVR01) was constructed by combining viral genomes identified 
de novo with the public viral databases: MGV (n = 54,118, Nayfach, Páez-Espino, et al., 2021), 
IMG/VR (n = 250,970, v. 4, downloaded 2022-12-19, using the subset of human-associated virus 
genomes, a database of infant viruses from the COPSAC consortium (n = 10,021, (Shah et al., 2023), 
and NCBI RefSeq viruses (n=15,247, downloaded 2023-03-02, Brister et al., 2015). Putative viral 
contigs from HMR05 MAGs were determined by running geNomad (v. 1.3.3, Camargo & Kyrpides, 
2023) and accepting only hits with a geNomad viral score of ≥ 0.7. Putative viral contigs were 
retained if they had either (1) direct-terminal-repeats (DTR) and a minimum size of 2,000 bp, or (2) 
at least one viral hallmark gene and a minimum size of 4,000 bp. For datasets processed using VAMB 
metagenomic binning, multiple viral contigs were combined into a viral MAG if found in the same 
VAMB bin. Altogether, de novo discovery of viruses resulted in 547,573 putative viral genomes.  

Each of the putative viral genomes were scored with a viral confidence score as described in the 
IMG/VR v4 (Camargo et al., 2023). First, viral genomes were annotated with CheckV (v.1.0.1, default 
settings, Nayfach et al., 2021a). Second, viral genomes were clustered with RefSeq viral genomes 
into viral operational taxonomic units (vOTU) based on all-vs-all genome alignment using Blastn (v 
2.10.1+, -task megablast -evalue 1e-5 -max_target_seqs 10000, McGinnis and Madden, 2004). 
Genomes were clustered into a vOTU if they had a 95% ANI across at least 85% of the genome. 
Subsequently, viral genomes were scored accordingly: 

3 points: Viral genome clustered with a RefSeq viral genome into a vOTU, and three or more 
geNomad viral hallmark markers.  

2 points: High-confidence CheckV average amino acid identity (AAI) completeness estimate, and at 
least two geNomad viral hallmark markers.  

1 point: Medium-confidence CheckV AAI completeness estimate, and one geNomad viral hallmark 
marker; direct or inverted terminal repeats; two or more matches to CRISPR spacers. 

Viral genomes with at least 2 points (n = 231,587 genomes) were retained for downstream analysis. 
These genomes were combined with viral genomes from the public viral databases and clustered 
into vOTUs (95% ANI across 85% aligned genome fraction [AF]) to form a non-redundant viral 
genome database. To optimize the non-redundant database for viral profiling, we minimized the 
degree of shared nucleotide sequences between representatives by filtering out vOTUs as follows: 
(1) viral genomes in a vOTU (n > 1) with any edges to genomes of other vOTUs were removed from 
that cluster; (2) satellite vOTUs (n = 1, one genome in cluster) with edges to multiple vOTUs were 
removed entirely; (3) satellite vOTUs (n = 1) with edges to members of only a single other vOTU 
were reassigned to that vOTU; (4) entire vOTUs were removed if genome members had borderline 
similarity to other clusters (ANI > 93 and 30 < AF < 85) or (93 < ANI < 95 and AF > 85 AF). The longest 
genome within each of the refined vOTUs was chosen as the representative genome, resulting in a 
final representative viral database containing 64,003 genomes. 

Genomes acquired from RefSeq and the COPSAC consortium were assigned their preexisting 
taxonomy. The remaining uncultivated viral genomes without taxonomic annotation were assigned 
to viral taxa as defined in the International Committee on Taxonomy of Viruses (ICTV) Release #38 
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(Nayfach et al., 2021b). The following taxonomic classification methods were used in order of 
priority: (1) clustering with RefSeq viral genomes; (2) clustering with COPSAC viral genomes; (3) 
geNomad marker-based taxonomic assignment. For the marker-based assignment, geNomad was 
employed to classify sequences using taxonomically informative protein profiles. The first taxonomic 
annotation steps (1-3) yielded class and family annotation for 94.7% and 12.8% of viruses, 
respectively, of which 49,997 out of 64,003 genomes belonged to the class Caudoviricetes, i.e., tailed 
bacteriophages. 

Prediction of vOTU host taxonomy 

The bacterial and archaeal-host taxonomy for each vOTU was predicted at each taxonomic level 
based on CRISPR spacer alignment and k-mer matching between vOTUs and prokaryotic genomes.  

For the CRISPR spacers, a non-redundant database (100% identity and 100% coverage) of 4,793,298 
CRISPR spacers, originally derived from approximately 1.6 million genomes from the NCBI and MAG 
study (Camargo et al., 2023) were merged with a non-redundant database (100% identity and 100% 
coverage) of 1,049,986 CRISPR spacers extracted using minced (v 0.4.2, Bland et al., 2007) from the 
HMR05 HQ MAGs. The spacers of the combined database were mapped with blastn (v.2.10.1+, -
max_target_seqs = 1000 -word_size = 8 -dust = no) against all representative vOTU genomes. 
Confident virus-host connections were considered if spacer-alignments had a length of at least 25 bp 
and 95% spacer coverage with a maximum of 1 mismatch.  

K-mer matching was performed using PHIST (v. 1.0.0, default settings, Zielezinski et al., 2022) 
between representative vOTU genomes and bacterial and archaeal MAGs from HMR05 HQ MAGs. To 
prevent spurious matches, only virus-host connections where at least 20% of the viral k-mers were 
found in a prokaryotic genome were accepted.   

The prokaryotic host taxon was then assigned to each vOTU at the lowest taxonomic rank, having at 
least two connections (either spacers or k-mers) and representing > 50% of all connections. We 
chose the method that was supported by the greatest number of host assignments, prioritizing 
CRISPR-spacers over k-mer matching annotations. 

Abundance profiling of bacteriophages  

Read pairs mapping to each vOTU genome were counted using KMA (v. 1.4.7, Clausen et al., 2018) 
with the settings: "-mrs 0.01 -apm p". A vOTU was considered detected if it had ≥ 5 aligned paired-
end reads and either (1) the percentage of identical nucleotides between genome and consensus 
sequence assembled from mapped reads was ≥ 99%, and ≥ 5% of the genome was covered by reads, 
or (2) the percentage of identical nucleotides between genome and consensus sequence of mapped 
reads was ≥ 95%, and ≥ 30% of the genome was covered by reads. vOTU abundance was estimated 
based on number of mapped read pairs divided by genome length. 

Benchmarking of prokaryotic profiling 

For prokaryotic benchmarking, ten body site-representative prokaryotic metagenomes were 
simulated for each of the following five body sites: adult gut, infant gut, oral, skin, and vagina. 
Genome accession ids for prokaryotic species found in each human body site were identified from 
published literature to avoid biasing the benchmark to our own database (Bäckhed et al., 2015; 
Proctor et al., 2019; Saheb Kashaf et al., 2021). For the adult gut, oral and vagina, GCA/GCF 
identifiers were extracted from the publications and used for simulation if present in GTDB 
metadata. For the skin and infant gut, MAGs from the publications were classified with GTDB-Tk and 
the GCA/GCF references of classified MAGs were used for simulation (Supplementary Table 1). 100 
(80 for vaginal) randomly sampled prokaryotic species specific to each body site were provided for 
each community. Metagenomes were generated using CAMISIM (Fritz et al., 2019), which simulates 
2.1 Gb of Illumina 2 ×150 bp paired end reads with the default HiSeq 2500 error profile and a mean 
insert size of 200 bp. To assess profiling performance for a range of sequencing depths, the 50 in 
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silico metagenomes were also downsampled with seqtk (-s100) to sequencing depths of 20, 5, 2, 1, 
0.5, 0.25 and 0.1 million read pairs. 

Prokaryotic profiling was also benchmarked with DNA reference reagents. NIBSC sequencing data for 
ten DNA mock communities comprising 19 common gut bacterial species was downloaded from the 
NCBI Sequence Read Archive (NCBI Bioproject ID PRJNA622674, Amos et al., 2020).  

CHAMP performance was compared against popular and third-party benchmarked top-ranking 
(Meyer et al., 2022; Poussin et al., 2022) open-source taxonomic profilers: marker-gene based 
profilers MetaPhlAn 4 (v 4.0.6, database from 2022-12, Blanco-Míguez et al., 2023) and mOTUs 3 
(Ruscheweyh et al., 2022), and Bracken 2 (Lu et al., 2017), which uses the k-mer based method 
KRAKEN for mapping (Wood et al., 2019). Two iterations of Bracken 2 profiling were conducted: the 
first, using the standard Bracken 2 database based on the RefSeq database (O’Leary et al., 2016) and 
a second instance, using the GTDB release 214 (r214).  

MetaPhlAn 4, mOTUs 3 and Bracken 2 were run on default settings. A long tail of incorrectly 
predicted low abundance species leading to low precision estimates has been previously shown for 
kmer-based profilers (Sun et al., 2021). To assess the veracity of low abundance species predictions, 
taxonomic profiles for the 50 in silico human body site metagenomes were filtered to relative 
abundance cutoffs of 0.0005, 0.0001, 0.0005, 0.001, 0.005 and 0.01 (Supplementary Figure 1) across 
profilers. Based on these results, we chose to filter relative abundances < 0.001 from Bracken 2 
profiling output to maximize F1 scores for the prokaryotic benchmark. We did not filter low 
abundant species detections from any of the other profilers. 

We also tested Bracken 2 built with GTDB r214 database to harmonize species annotations between 
Bracken 2 and CHAMP, however, Bracken 2 performed better on RefSeq than GTDB (Supplementary 
Figure 2). Hence, all other Bracken 2 benchmarks use the RefSeq database. 

Benchmarking of eukaryotic profiling 

30 eukaryotic in silico metagenomes comprising up to 200 randomly sampled genomes were 
generated using CAMISIM. Species genomes were selected from a set of 113 eukaryotic species 
(Supplementary Table 2) corresponding to the eukaryotic species within both CHAMP (244 species) 
and MetaPhlAn 4 (122 species) databases. Eukaryotic taxonomy was based on NCBI annotations 
(Schoch et al., 2020). CHAMP eukaryotic profiling was compared against MetaPhlAn 4 using these 30 
in silico eukaryotic metagenomes. mOTUs 3 and Bracken 2 were excluded from the eukaryotic 
benchmark, as their default databases do not include eukaryotes.  

Benchmarking of phage profiling using in silico mixed prokaryotic and phage communities 

The phage-inclusive profiling of CHAMP was benchmarked against Phanta (Pinto et al., 2023) using 
10 synthetic metagenomic mixed community datasets constructed using CAMISIM (Fritz et al., 
2019). Each community consisted of 200 randomly selected bacterial genomes from GTDB with 
species-level annotation and 200 viral genomes from the Gut Phage Database (GPD, Camarillo-
Guerrero et al., 2021). GPD genomes were sourced to avoid simulating reads from genomes 
corresponding to genomes present in HVR01 or Phanta (matched using genome-index). GPD 
genomes were clustered with genomes in MGV vOTUs using ANI ≥ 95% and coverage ≥ 85% to 
identify the subset of genomes covered by both databases (MGV vOTUs were part of both HVR01 
and Phanta). One GPD genome was sourced for each vOTU (Supplementary Table 3). ART Illumina 
HiSeq 2500 error profile with an insert size of 200 ± 25 bp was used to simulate a total of 50 million 
paired reads (2 × 150 bp) for each community with 95% of the reads originating from bacteria and 
5% of the reads originating from viruses. Reads were subsampled for each community using seqtk 
(parameters: -s100) to generate metagenomes at 25, 20, and 10 million reads for each of the 10 
communities, thereby bringing the total number of metagenomes in the benchmarking dataset to 
40. 
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To investigate the robustness of CHAMP to lower sequencing depths, the 10 metagenomes were 
rarefied to 5, 2, 1, 0.5, 0.25, and 0.1 million reads. 

Benchmarking of phage profiling and removal of false-positives proviruses  

Phanta (v.0.3.0) was run using default settings but changing bacterial and viral coverage threshold 
according to the sequencing depth of the profiled metagenome. The threshold between bacterial 
and viral coverage was set to 0.05/0.35 for in-silico samples with a depth of 50 million reads, 
0.02/0.2 for samples with a depth between 20-25 million reads, and 0.01/0.05 for samples with a 
depth equal to 10 million reads. 

In silico read simulations from whole bacterial genomes can introduce the presence of "false-
positive" (FP) viruses, due to reads from prophages integrated in bacterial chromosomes mapping to 
viruses in the profiling database. As these prophages are not part of the expected true set of viruses 
in each benchmark community, we introduced a filtering criterion to detect these false positives 
(although they are true prophages) to allow a fair benchmark between profilers, in line with the 
methodology applied previously (Pinto et al., 2023). Viruses detected by either CHAMP or Phanta 
which attracted ten or more reads from a bacterial chromosome were classified as FP viruses and 
removed from the set of viruses detected in each sample. 

Classification performance metrics  

Binary performance metrics were calculated using correctly (TP) and incorrectly (FP) detected 
species by a profiler along with the number of undetected species present in each sample (FN). 
Precision = TP/(TP+FP), describes the fraction of species detected by a classifier correctly, while 
recall = TP/(TP+FN), is the fraction of correctly detected species within a sample. The F1 score is the 
harmonic mean of recall and precision and was calculated as F1 = (2 × precision × recall)/(precision + 
recall). We also report false positive relative abundance (FPRA) = FP abundance/total species 

abundance; sensitivity = TP/(TP+FN); and Bray–Curtis similarity = 1  −
∑ |#!"$#!#|"#	
∑ #!"$#!#"#	

, where xij and xik 

refer to the observed and ground truth abundance of a species as defined by NIBSC (Amos et al., 
2020).  We also calculated additional benchmarking metrics as described in (Meyer et al., 2019; 
Supplementary Table 4). 
  

Results 

Development of the Human Microbiome Reference and the Human Virome Reference 
databases 

Large-scale efforts to build human microbiome references have predominantly focused on 
cataloging prokaryotic genomes from human stool samples (Almeida et al., 2019; Nayfach et al., 
2019), with lesser emphasis on other body sites (Pasolli et al., 2019) and even less on identifying viral 
genomes (Benler et al., 2021; Shah et al., 2023). To broaden the spectrum of species and viral 
genomes represented, we compiled 4,994 oral, 4,306 skin, 422 vaginal, 934 urine, 422 
nasopharyngeal, 108 airways, and 100 human milk samples. Notably, 30% of these samples were 
sourced from non-public domains. Furthermore, we included 780 samples from intestinal biopsies to 
capture the distinct microbiome of the gastrointestinal tract compared to stool (Zmora et al., 2018), 
2,158 stool samples from countries unrepresented in the public repositories, and 1,000 stool 
samples from the SCAPIS cohort (Dekkers et al., 2022). These samples were batch processed using 
VAMB (Nissen et al.,2021) to bin contigs, resulting in 147,427 MAGs from prokaryotic species of 
which 79,796 were high-quality (HQ) and non-chimeric, along with, 547,573 putative viral genomes 
(see Materials and Methods).  
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We supplemented these 79,796 HQ, non-chimeric prokaryotic MAGs with MAGs from public 
repositories—UHGC (82,834 MAGs and 6,428 isolates, Almeida et al., 2020) and ELGG (25,303 MAGs, 
Zeng et al., 2022)—and with 27,492 genome assemblies from NCBI (Sayers et al., 2022) and PATRIC. 
This inclusion aimed to encompass missing species of interest such as human-associated pathogens, 
gut fungal species, probiotics, and species found in DNA mock communities or utilized as spike-ins 
for absolute abundance estimation. All prokaryotic MAGs and reference genomes were organized 
into species clusters based on GTDB annotations. MAGs without species-level annotation were 
clustered with a 95% ANI threshold to each other and to the representative MAGs with a species 
level annotation. Redundant MAGs within each cluster were pruned using a 99.5% ANI cutoff 
yielding a total of 102,445 prokaryotic MAGs. The 547,573 putative viral genomes from our human 
metagenomic data were merged with 330,356 viral genomes from four public viral repositories, 
clustered with a 95% ANI threshold and scored based on presence of viral features to form a 
comprehensive, non-redundant database with 64,003 viral genomes.  

Altogether, the Human Microbiome Reference (HMR05) and the Human Virome Reference version 1 
(HVR01) encompass 6,546 bacterial species, 21 archaeal species, 244 eukaryotic species, and 64,003 
viruses. 

 

Benchmarking of prokaryotic profiling using CAMI in silico datasets 

CHAMP employs signature genes for profiling prokaryotic and eukaryotic species. These are selected 
genes that are ubiquitous among strains of the species while not similar to genes of other species. 
Nevertheless, there may exist rare genetic elements that result in irregular mapping to signature 
genes. For example, from rare species or rare conspecific genetic diversity. To counteract this, 
CHAMP models the abundance of each signature gene in every sample using a negative binominal 
distribution and subsequently filter out genes that fall outside the 99% percentile expected mapping, 
assuming that a given set of signature genes have the same abundance in a sample. The 
performance of CHAMP was evaluated by benchmarking it against three prominent metagenomic 
profilers: MetaPhlAn 4, mOTUs 3 and Bracken 2, across a variety of sample types using standardized 
benchmarking metrics (Meyer et al., 2019). 

We first assessed the performance of CHAMP on simulated mock communities, designed to mirror 
the diversity of prokaryotic species within the human microbiome. These communities, representing 
five key human body sites: the adult gut, infant gut, oral cavity, skin, and vagina, and were generated 
using the CAMISIM tool (Fritz et al., 2019). We simulated 10 communities for each of the five body 
sites.  

CHAMP excelled over all other profilers in recall (percentage of actual species that were detected 
correctly), across all body sites, indicating its superior ability to detect species. Both CHAMP and 
MetaPhlAn 4 demonstrated exceptional precision (the percentage of correctly detected species) 
across these community types, with average precisions of 0.95 ± 0.03 and 0.93 ± 0.03, respectively, 
significantly surpassing Bracken 2 and mOTUs 3 (Figure 1). CHAMP showed superior precision in the 
adult and infant gut, as well as oral communities, while MetaPhlAn 4 performed marginally better in 
skin and vaginal communities. Importantly, CHAMP struck the best precision-recall tradeoff with the 
highest F1 scores across all body sites. For similarity estimates (Bray–Curtis similarity a measure of 
abundance differences from the ground truth), CHAMP and MetaPhlAn 4 again achieved the highest 
averages (avg. 0.9 ± 0.08 vs. avg. 0.9 ± 0.08) across body site communities. Finally, CHAMP excelled 
with an FPRA (avg. 0.008 ± 0.02) that is more than six times less than the second-best profiler 
MetaPhlAn 4 (0.05 ± 0.08). Overall, CHAMP performed exceptionally well, outperforming all other 
profilers across key metrics and body sites. We found similar results in benchmarks at genus-level 
(Supplementary Figure 3). 
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Figure 1. Evaluating the taxonomic profilers CHAMP, MetaPhlAn 4, mOTUs 3, and Bracken 2 on key 
benchmarking metrics: precision, recall, F1 score, similarity, and FPRA across five human body 
communities. A total of 50 metagenomes (10 per body site) each with 100 prokaryotic species were 
simulated using CAMISIM. 
 
Given the significant variability in sequencing depth across studies and its known impact on 
taxonomic profiling, we evaluated the performance of CHAMP compared to the other profilers by 
generating in-silico metagenomes at seven different sequencing depths, ranging from 20 million to 
100,000 reads (Figure 2). Precision was found to be consistent across all sequencing depths for each 
profiler. However, recall and, to some extent, F1 scores, declined with reduced sequencing depths. 
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Notably, CHAMP exhibited enhanced robustness at lower sequencing depths, particularly between 1 
million and 100,000 paired reads. At the threshold of 500,000 paired reads, CHAMP had an average 
F1 score 1.5 times higher than that of the next-best profiler for the F1 score, MetaPhlAn 4, across all 
body site communities. This supports the utility of shallow shotgun sequencing as a cost-effective 
yet accurate approach for taxonomic profiling, where CHAMP at 500,000 reads, on average, had a 
17-fold lower FPRA compared to the second-best profiler.  

 

Figure 2. Evaluating performance across the sampled sequencing depths: 20, 5, 2, 1, 0.5, 0.25 and 0.1 
million reads for the four taxonomic profilers: CHAMP, MetaPhlAn 4, mOTUs 3, and Bracken 2. The 
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following benchmarking metrics were compared: precision, recall, F1 score, similarity, and FPRA. Each of 
50 (10 per body site) metagenomes comprising 100 species were randomly sampled at seven sequencing 
depths resulting in 350 metagenomic samples. 

 

Benchmarking prokaryotic profiling using NIBSC reference reagents 

We assessed the performance of CHAMP against MetaPhlAn 4, Bracken 2, and mOTUs 3 on two DNA 
reference reagents provided by NIBSC: Gut-Hi-Low-RR, featuring even compositions, and Gut-Mix-
RR, with staggered compositions of 19 common gut microbial species. Each reagent included five 
samples. For both DNA reference reagents, CHAMP showed the lowest average FPRA (Table 1), 
significantly outperforming the next-best profiler in terms of FPRA, by 55 times in Gut-Mix-RR and 
110 times in Gut-Hi-Low-RR. CHAMP demonstrated superior sensitivity compared to MetaPhlAn 4 
and mOTUs 3 on both reagents and outperformed Bracken 2 on Gut-Hi-Low-RR. For Gut-Mix-RR, 
Bracken 2 achieved perfect sensitivity, although it consistently detected more species than those 
that were in the reagents. Overall, CHAMP excelled in benchmarking metrics and showed 
unparalleled FPRA performance against current state-of-the-art profilers. 

Benchmarking of eukaryotic profiling using CAMI in silico datasets 

Eukaryotes, integral components of the human microbiome, have only recently been incorporated 
into many microbiome profilers (Blanco-Míguez et al., 2023). In assessing eukaryotic species-level 
profiling, we compared CHAMP with MetaPhlAn 4, excluding mOTUs 3 and Bracken 2 due to their 
lack of eukaryotic coverage. Using 113 eukaryotic species common between CHAMP and MetaPhlAn 
4 databases, we generated 30 simulated mock communities for benchmarking. Both CHAMP and 
MetaPhlAn 4 exhibited high precision on these communities (avg. 0.97 ± 0.02 and 0.95 ± 0.03, 
respectively, Figure 3). CHAMP demonstrated superior recall compared to MetaPhlAn 4 (avg. 0.90 ± 
0.05 vs. 0.53 ± 0.08), resulting in a higher F1 score average of 0.93 ± 0.03 compared to 0.67 ± 0.07 
for MetaPhlAn 4. Additionally, CHAMP surpassed MetaPhlAn 4 in the similarity of predicted profiles 
to the ground truth composition and had lower abundance of false positives (FPRA avg. 0.02 ± 0.06 
vs. 0.03 ± 0.03). Altogether, CHAMP displayed superior performance at eukaryotic profiling 
compared to MetaPhlAn 4 across all benchmarking metrics. 

Figure 3. Comparison of eukaryotic taxonomic profiling by CHAMP and MetaPhlAn 4 using in silico 
metagenomes. 30 metagenomes were simulated encompassing 113 eukaryotic species found both in 
CHAMP and MetaPhlAn 4 databases. Benchmarking metrics included: precision, recall, F1 score, 
similarity, and FPRA. 
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Benchmarking of phage profiling using CAMI in silico datasets 

Phage profiling has emerged as an underexplored domain, crucial for delineating bacteria-phage 
interactions within the microbiome. The field has few extensively validated tools for accurate phage 
detection. To address this gap, the capabilities of CHAMP for phage profiling were rigorously 
evaluated against the current state-of-the-art phage profiler, Phanta (Pinto et al., 2023), which, like 
CHAMP, leverages k-mer matching for virus identification. The benchmarking dataset (n = 10) was 
simulated to reflect a realistic composition of 95% bacteria and 5% bacteriophages, with sequencing 
depths between 10 and 50 million reads, corresponding to the benchmarking framework previously 
proposed by Pinto et al., 2023. To ensure a balanced comparison, only genomes with species-level 
annotations shared between the databases were included. Phanta showed good precision (avg. 0.95 
± 0.02); however it was surpassed by CHAMP, which demonstrated near-perfect precision (avg. 0.99 
± 0.01, Figure 4A). CHAMP also outperformed Phanta in recall (avg. 0.95 ± 0.02 vs. 0.84 ± 0.05), F1 
scores (avg. 0.97 ± 0.01 vs. 0.87 ± 0.03), and similarity (0.98 ± 0.01 vs. 0.90 ± 0.07), while maintaining 
a lower FPRA (avg. 0.07% ± 0.13% vs. 5.08% ± 3.34%, Figure 4B). CHAMP therefore exhibited 
superior performance across all benchmarking metrics, demonstrating both high precision and 
substantial recall, thereby establishing its precedence in phage profiling accuracy. 

Phanta does not recommend phage profiling in samples below 10 million reads. Nonetheless, 
CHAMP maintained exceptional precision (>0.98) across a broad range of sequencing depths, of 
which the lowest depth had only 100,000 reads (Figure 4C). Recall rates decreased with reduced 
sequencing depth, mirroring observations in prokaryotic community benchmarks. Recall remained 
high (>0.75) even at a depth of only 100,000 reads, underscoring the superior performance of 
CHAMP in profiling phage communities across deep and shallow samples.  
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Figure 4. (A-B) Benchmark of phage profiling on in silico dataset with 10 simulated metagenomes 
containing 95% prokaryotic and 5% phage reads across the sequencing depths: 10, 20, 25, and 50 million 
reads. The performance of phage profiling with CHAMP and Phanta was assessed by F1 score, precision, 
recall, similarity, and FPRA. (C) Precision and recall of CHAMP after rarefying the 10 in silico communities 
with 50 million to 25, 20, 10, 5, 2, 1, 0.5, 0.25, and 0.1 million reads. 

 

Discussion 
CHAMP was developed to accurately profile all types of microbes including eukaryotes, archaea, 
bacteria, and viruses found in human microbiome samples. Despite the existence of multi-domain 
and phage-inclusive profilers (Parks et al., 2021; Zolfo et al., 2024), CHAMP is the first to 
systematically evaluate the performance across prokaryotes, eukaryotes, and phages, thereby 
providing a broad evaluation and comparison of current profilers. When compared against 
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MetaPhlAn 4, mOTUs 3, Bracken 2, and Phanta, CHAMP achieved the highest recall and F1 scores of 
all tools across all benchmark datasets (Figure 1, 3, and 4). CHAMP also consistently achieved the 
lowest FPRA that was up to 110 times lower than the second-best tool, emphasizing its superior 
accuracy in the taxonomic profiling of diverse and complex microbiome samples.Accounting for 
differences in database comprehensiveness is crucial to ensure fairness in the comparison of 
profiling tools. The prokaryote profiling accuracy of CHAMP was assessed against MetaPhlAn 4, 
mOTUs 3, and Bracken 2, and based on two reference datasets from NIBSC with common gut 
microbiome species and 50 in silico metagenomes. The in silico metagenomes were designed to 
reflect the diversity across different body sites, including human adult gut, infant gut, oral, and skin 
samples. The species included in each body sites were selected from relevant publications to ensure 
fairness in the benchmark. For the eukaryotic and phage benchmarks, where CHAMP was compared 
against MetaPhlAn 4 and Phanta, respectively, the communities were simulated using the subset of 
species or genome sequences shared between the databases. As CHAMP was developed specifically 
for profiling the human microbiome, it should not be used to profile metagenomes from non-human 
origin.  

A disadvantage to limiting the species in the benchmark to cultured species shared across databases 
is that unknown members of the microbiome are not included. Other benchmarks have focussed on 
covering primarily unknown species (Parks et al., 2021). CHAMP was built with the intention of 
profiling rare and/or uncultured species as evident from our large efforts in collecting and building 
MAGs from 15,224 samples from under-sampled body sites and countries. However, we did not 
include unknown species for two reasons: first, to make the benchmark fair across different tools 
and databases as some databases may not include uncultured species and second, because we 
designed body-site specific communities using published relative abundance matrices where only 
cultured species were profiled. 

Accounting for differences in species present in different databases does not mean the 
comprehensiveness and quality of the database does not affect profiling accuracy. For example, 
Bracken 2 showed promising results on DNA reference reagents, presumably because the reagents 
consisted of well-characterized species. Nonetheless, Bracken 2 underperformed on the in-silico 
communities using its suggested database, RefSeq (2023-09-10). Still, the performance of Bracken 2 
did not improve when we sought to create a more comprehensive k-mer database based on GTDB 
(Supplementary Figure 1).  Bracken 2 using GTDB as a database also resulted in lower sensitivity on 
the DNA reagents, Gut-Hi-Low-RR and Gut-Mix-RR, which was 35 for both, compared to 100 and 
91.6 for Bracken 2 built with the standard RefSeq database (data not shown). Some authors have 
noted parameters used and database choice in Bracken 2 influences predicted profiles (Wright et al., 
2023). Although we tinkered with the Bracken 2 database for benchmarking purposes, optimizing 
Bracken 2 run parameters would be unfair to the other profilers evaluated as they were all run using 
recommended settings. 

Runtime and memory usage often affect the choice of profilers used (Meyer et al., 2022). In this 
regard, k-mer based methods (e.g. Bracken 2) are typically faster but use more memory compared to 
alignment-dependent methods, such as CHAMP, as can be seen in Supplementary Tables 5-6.   

 As CHAMP uses a different profiling methodology for bacteriophage profiling, we also evaluated 
bacteriophage profiling resource use compared to Phanta on a single viral metagenome. CHAMP 
bacteriophage profiling was also significantly slower than Phanta (2 hrs 16 mins vs 36 mins 40 secs) 
but displayed significantly less peak memory usage (0.09 Gb vs 33.27 Gb). CHAMP was designed for 
parallelization, so just enabling profiling on 4 threads would bring total runtime under an hour, 
whilst bringing total maximum memory to around 14Gb. In this scenario, its runtime and maximum 
memory usage becomes very similar to MetaPhlAn 4. All in all, the time and memory available 
needed to run CHAMP does not significantly differ from the other considered profilers, as there is a 
clear tradeoff between runtime and maximum memory use. CHAMP can be run on the Cosmos-ID 
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hub (https://cosmosidhub.com/) and by default, takes about an hour to process a sample of 20 
million reads. 10 samples can be run in parallel.   

CHAMP is solely intended for profiling the human microbiome, whilst the microbiome profilers we 
benchmarked against are designed to profile human, host-associated, and environmental 
microbiomes. As such, the background noise of these profilers when performing human microbiome 
profiling will be higher than CHAMP, as they must distinguish among more species increasing the 
likelihood of species misclassification. Another key to CHAMP performance is the number of human 
specific references and the curation of the reference database. The database was constructed using 
strict quality filtering of MAGs and (completeness >= 90%, contamination < 0.05 and multiple tests 
for chimerism, for details see Materials and Methods), to improve the quality of the signature genes 
(Orakov et al., 2021). MetaPhlAn 4 and mOTUs 3 include assemblies with completeness values >= 
50% and contamination values < 5% and 10% into their databases, respectively. These differences 
likely explain the consistently higher recall and lower FPRA that CHAMP displays across benchmarks. 
Moreover, CHAMP employs a dynamic sample-specific signal filtering (for details see Materials and 
Methods) that handles spurious mapping, further reduces false signal, and improves precision and 
abundance estimates. 

Signature or marker gene-based profiling strategies, such as those employed by MetaPhlAn 4 and 
CHAMP for prokaryotic and eukaryotic profiling come with its challenges. At times, signature genes 
may be non-specific to a species or absent in a given sample. Hence, CHAMP implements a dynamic 
sample-specific signature gene filtering approach to reduce FPs as well as improve abundance 
estimates. CHAMP maps all reads of a given sample to the entire HMR05 gene catalogue (pan 
genomes) to obtain the total species read count. Then, it models the expected read counts mapping 
to signature genes using a negative binomial distribution. The expectation is that as the number of 
reads for that species increases, the number of reads mapped to its signature genes also increases 
until all signature genes are captured. Signature genes outside the 99% quantile distribution 
representing non-specific genes at the top or missing genes at the bottom of the distribution are 
removed. We believe the thorough profiling strategy of CHAMP explains its lower FPRA estimates 
compared to the next-best profiler MetaPhlAn 4, which adopts a more rigid cutoff-based approach. 
It estimates abundance by removing the upper and lower 20% of marker gene coverage estimates to 
tackle non-specific marker genes and the random absence of marker genes, respectively. The quality 
of the HMR05 database coupled with its unique signature gene approach may help explain why 
CHAMP sees the lowest impact of FPs across profilers while still achieving high precision and 
similarity scores. 
 

Overall, CHAMP performed better than other tools in terms of precision and similarity, and in 
specific benchmarks at least at par with other profilers. For the prokaryotic and eukaryotic in silico 
benchmarks, CHAMP and MetaPhlan 4 both performed extremely well with CHAMP outperforming 
MetaPhlAn 4 across 3 out of 5 body sites for prokaryotic profiling as well as for eukaryotic profiling. 
Likewise, CHAMP and MetaPhlAn 4 had the highest similarity values for the in silico prokaryotic 
communities as well as comparable similarity scores on the DNA reference reagents, where Bracken 
2 achieved marginally better scores. Eukaryotic and viral profiling are less mature than prokaryotic 
profiling with a lower number of methodologies published. The fact that CHAMP consistently 
outperformed MetaPhlAn 4 and Phanta across all benchmarking metrics when it came to profiling 
eukaryotes (MetaPhlAn 4) and viruses (Phanta) shows that CHAMP paves the way for a new 
generation of taxonomic profilers that are also able to capture viral and eukaryotic members of the 
microbiome.  

The exploration of sensitivity thresholds in taxonomic profiling rarely occurs in benchmarking 
studies, yet it is crucial, especially as profiling accuracy is lower for low abundant species or samples 
with low microbial biomass. An example of such is the suboptimal profiling of tumor biopsies where 
inaccurate detection of species led to the conclusion that different cancer types had their own 
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unique microbiome (Gihawi et al., 2023). We explored the sensitivity of CHAMP along with 
MetaPhlan 4, mOTUs 3, and Bracken 2 by comparing their accuracy to diminishing sequencing 
depths. CHAMP proved to be more robust at lower sequencing depths than all other profilers 
(Figures 2 and 4C), with very high recall and low false discovery rates even at very shallow 
sequencing depths. Taken together, benchmarks show that CHAMP sets a new standard for the 
accuracy of multi-domain and phage-inclusive human microbiome profiling across sample types and 
body sites. CHAMP software and code is proprietary, but it is now available online for a fee; 
https://cosmosidhub.com. 
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Table 1. Evaluation of CHAMP against other profilers using the NIBSC DNA Reference Reagents Gut-Hi-
Low-RR and Gut-Mix-RR.  

 
A. 

Gut-Hi-Low-RR 
Profiler Sensitivity FPRA Diversity  Similarity 
CHAMP 94 0.01 19 0.62 
Bracken 2 91.6 4.26 21.4 0.76 
MetaPhlAn 4 89 1.1 18.8 0.65 
mOTUs 3 70 18.1 20.6 0.53 

 

B. 

Gut-Mix-RR 
Profiler Sensitivity FPRA Diversity Similarity 
Bracken 2 100 4.96 22.2 0.76 
CHAMP 96 0.09 19.8 0.72 
MetaPhlAn 4 90 5.55 19 0.72 
mOTUs 3 70 26.2 24.2 0.63 
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Supplementary Figure 1. Detection limits at species relative abundance cutoffs of 0.0005, 0.0001, 0.0005, 
0.001, 0.005 and 0.001. 50 metagenomes were used and subset at the abundance cutoffs leading to 350 
communities. 
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Supplementary Figure 2. Evaluating Bracken 2 with RefSeq vs GTDB r214 on key benchmarking metrics 
across 5 human body communities. 50 metagenomic communities (10 per body site) comprising 100 
prokaryotic species each were used. 
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Supplementary Figure 3. Genus-level evaluation the taxonomic profilers CHAMP, MetaPhlAn 4, mOTUs 3, 
and Bracken 2 on key benchmarking metrics: precision, recall, F1 score, similarity, and FPRA across five 
human body communities. A total of 50 metagenomes (10 per body site) each with 100 prokaryotic 
species were simulated using CAMISIM. 
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Supplementary Tables   
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Supplementary Table 6. Runtime and maximum memory comparisons (in Gb) comparisons between 
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